9.1二次根式及其性质第三课时
人教版八年级下册数学第十六章二次根式二次根式的概念和性质教案
-设计分层次练习,从基础到提高,逐步突破难点。
-引导学生通过自主探索和合作交流,构建数学模型,提高数学建模能力。
-在教学中注重教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算平方根的情况?”(例如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
-详细讲解二次根式的性质,结合图形和实际例子,使学生直观理解。
-以典型例题形式,展示二次根式的化简和运算过程,指出易错点,强调运算规则。
-设计具有挑战性的问题,让学生在实际情境中应用二次根式,识别难点,培养解决问题的能力。
-通过小组讨论和互动,激发学生的学习兴趣,促进数学表达和交流能力的提升。
4.教学策略:
在新课讲授环节,我采用了案例分析的教学方法,让学生通过解决实际问题来体会二次根式的应用。从实践活动的表现来看,学生们对此表现出较高的兴趣,但在小组讨论中,部分学生仍然显得不够积极主动。针对这一问题,我计划在接下来的课程中,多鼓励学生发表自己的观点,培养他们的团队协作能力和沟通能力。
此外,在学生小组讨论环节,我发现有些学生在解决问题时思路不够清晰,容易陷入思维定势。为了帮助学生打破思维局限,我将在以后的课堂中,适时给予他们提示和引导,培养他们的问题分析能力和创新意识。
。
三、教学难点与重点
1.教学重点:
-二次根式的定义及其性质的理解和掌握。
-二次根式的化简和运算方法的运用。
2.教学难点:
-对二次根式性质的深入理解,特别是乘法法则和除法法则的应用。
二次根式的概念和性质ppt课件
又 ∵ a+2 +|3b-9|+(4-c) 2=0,
∴ a+2=0 , 3b-9=0 ,4-c=0 。
∴ a= -2 , b= 3 ,c= 4。
∴ 2 a -b + c = 2 × (精-选2 p)pt-课3件+ 4 = -3 。
17
二次根式的双重非负性解析
经常作为隐含条件,是解题的关键
例 已知 x 1 y 3 0,求x+y的值
1.表示a的算术平方根
2. a可以是数,也可以是式.
3. 形式上含有二次根号
4. a≥0, a≥0 ( 双重非负性)
5.既可表示开方运算,也可表示运算的结果.
精选ppt课件
6
例1 : 判断,下列各式中那些是二次根式?
a 10, 00..0044,, a a2 , 2 ,
5,
aa , , 3 8 .
成一个数的平方的形式。如 4= 4 2 。
试一试(4)把下列各数写成平方的形式:
2
3=
3 2,
5 2
5 2
0.04
2
0.04
精选ppt课件
24
( a)2a (a0) 面积a a
2
(
2 )2 7
7
a
( 2 1 )2 2 1
3
3
( 5)2 5
(
2 )2 -
3
2 3
精选ppt课件
25
( 2 x ) 2 ( 3 y ) 2 2 x 3 y 2 x 3 y
精选ppt课件
41
练习.在实数范围内分解因式
(1) 3x2 15
(2) 2a24b2
精选ppt课件
42
二次根式及其性质课件
1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;
•
的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法
二次根式知识结构图
乘法法则 a b .......... .......( a0 除法法则
ab b 0)
二次根式的乘除 a a
最简二次根 式
b b .......... .......( a0 b 0)
二 次 根 式 的 乘 除
方法:1、分解 质因数或因式 2、分母中不含 二次根式
被开方数相同的二次根式加 减时,把系数相加减,根指 二次根式的加 数与被开方数保持不变。
本章知识结构图二次根式的性质二次根式二次根式二次根式的定义确定被开方数中字母的取值范围二次根式的性质代数式11根据二次根式有意义的条件列出不等式或不等式组22解不等式不等式组求出字母的取值范围11必须含有22被开方数是非负数方数非负实数表示为一个平它可以将一个它本身算数平方根的平方式是表示一个非负数的是一个非负数040030201222?????????????aaaaaaaaaaaaaa代数式中不含等符号只能含有运算符号二次根式的乘除二次根式的乘除二次根式的乘除二次根式乘除逆运算最简二次根式式00
第十六章 《二次根式》
教材解说
实验中学数学组
教材地位和作用
二次根式属于“数与代数”领域 的内容,它是在学生学习了平方根、 立方根等内容的基础上进行的,是 对七年级上册“实数、整式、分式” 内容的延伸和补充。同时也是以后 学习“解直角三角形”、“一元二 次方程”和“二次函数”等内容的 重要基础.
数学思考
1 3 的结果是 2 B.2到3之间 C.3到4之间
(株洲) D.4到5之间
2、当实数X满足什么条件时,
x 1 有意义? x 1
3、计算
1 27 18 12 3
的结果是
。(临沂)
不到之处
敬请批评指正
二次根式的概念与性质
二次根式的概念与性质二次根式是数学中一个重要的概念,它在代数学和几何学中都有广泛的应用。
本文将介绍二次根式的概念、计算方法以及其性质。
通过对二次根式的深入理解,读者将能够更好地应用它解决实际问题。
一、二次根式的概念在代数学中,二次根式是指一个被平方的数的根。
普遍形式下,二次根式可以表示为√a,其中a为一个非负实数。
二次根式可以分为有理二次根式和无理二次根式两类。
当a为有理数的平方时,二次根式是一个有理数;当a为无理数的平方时,二次根式是一个无理数。
二、二次根式的计算计算二次根式时,可以运用以下几种常见方法:1. 提取因式法当二次根式的被开方数具有完全平方因式时,可以利用提取因式法进行计算。
例如:√16 = √(4×4) = 42. 合并同类项法当二次根式的被开方数可以分解为多个相同的完全平方数时,可以利用合并同类项法进行计算。
例如:√12 = √(4×3) = 2√33. 分解因式法当二次根式的被开方数不能直接提取完全平方因式时,可以利用分解因式法进行计算。
例如:√20 = √(4×5) = √4×√5 = 2√5三、二次根式的性质二次根式具有以下几个性质:1. 乘法性质:对于任意非负实数a和b,有√(ab) = √a × √b。
2. 除法性质:对于任意非负实数a和b(b≠0),有√(a/b) = √a / √b。
3. 加法性质:对于任意非负实数a和b,如果√a和√b是二次根式,且它们的被开方数和指数相等,那么√a + √b也是一个二次根式。
例如:√2 + √2 = 2√24. 减法性质:对于任意非负实数a和b,如果√a和√b是二次根式,且它们的被开方数和指数相等,那么√a - √b也是一个二次根式。
例如:√5 - √25. 乘方性质:对于任意非负实数a和整数n(n为奇数),有(√a)^n = a^(n/2)。
例如:(√2)^3 = 2^(3/2)= 2√2四、应用举例二次根式在几何学中有广泛的应用。
专题01 二次根式的定义及性质(原卷版)(重点突围)
3
3
33
22 -1
3
3 3 = 3 + 3 ,验证: 3 3 = 33 = 33 - 3 + 3 = 3 + 3 .
8
8
88
32 -1
8
(1)按照上述两个等式及其验证过程的基本思路,猜想 4 4 的变形结果,并进行验证. 15
(2)写出用 n ( n 为任意自然数,且 n ³ 2 )表示的等式反映上述各式的规律,并给出证明.
13.(2022 秋·安徽合肥·八年级校考期中)观察下列等式: ① 5-1 =3 1
22 ② 6-2 =4 1
33 ③ 7-3 =5 1 ¼
44 (1)根据等式规律写出第④个等式,并验证其正确性:______. (2)猜想第 n 个等式,并证明.
14.(2022 秋·湖北孝感·八年级统考期中)观察下列等式:
【考点一 二次根式的定义】............................................................................................................................1 【考点二 二次根式有意义的条件】 ................................................................................................................1 【考点三 求二次根式的值】............................................................................................................................2 【考点四 求二次根式中的参数】 ....................................................................................................................2 【考点五 利用二次根式的性质化简】 ............................................................................................................2 【考点六 复合二次根式的化简】 ....................................................................................................................3 【过关检测】 .....................................................................................................................................................4
9.1二次根式及其性质第3课时
9.1二次根式及其性质(第三课时)课前案一、学习目标:1 .了解ba b a =(a ≥0,b >0)。
最简二次根式的定义。
2 .会化简二次根式。
二. 知识回顾: b a ab =(a ≥0,b ≥0)。
并会用语言叙述。
三.预习新知:1. ba b a =(a 0,b 0)。
2. 叫最简二次根式。
课中案一、探究一1、计算下面算式,并比较它们的运算结果,你有什么发现?(1)=94 ,=94 (2)=1625 ,1625= (3)53与53相等吗?为什么? 一般地,ba b a =(a ≥0,b >0)。
商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。
2.例题例5 化简:(1)12181 (2) 4003 (3)24a b (4)21练一练:化简(1)196144 (2) 950 (3)36128二、探究二观察例4、例5中化简后的格式,可以发现① ② 这样的二次根式称为最简二次根式。
例6 把下列各式化成最简二次根式:(1)32 (2)ba 3(3) 544练一练: 1.12+a ,21,8,27,10,6是最简二次根式的是 2. 把下列各式化成最简二次根式(1)52 (2)125 (3)429y x三、 当堂达标:(A )1.化简:= ,= ,= ,= ,= ,= 。
2、下列各式中,哪些是最简二次根式?哪些不是最简二次根式?为什么?(1)(2,(3(4(53、下列二次根式中,是最简二次根式的是()A、B C D4、下列各式中,化简正确的是()A、6==B、18==C、311422 ==+=5、= = 0)x≥== = =(B)6、0)x<= ,7、已知x<0化简后是8、= ,= 。
9、若=,则a的取值范围是。
(C )10、如果24x =-,则x 的取值范围是 。
11、)m n <= 。
12、0)b <= 。
13、= 。
课后延伸案1 化简:(1)32)1(+b a (2) 4314445y x (3)2一组按规律排列的数:32,36,94,32,278,962…… (1) 写出这组数中的第11个数和第12个数;(2) 写出这组数中的第2n -1个数和第2n 个数。
《二次根式和它的性质》PPT课件
二次根式和它的性质
我国自主研制的第一艘载人航 天飞船“神舟5号”于2003年10月15 日发射成功.
(1)运用运载火箭发射航天飞船,火箭必须达到一定的 速度,才能克服地心的引力,将飞船送入环绕地球运行 的轨道.这个速度称为第一宇宙速度.第一宇宙速度的 计算公式是 V1 = gR .其中g≈9.8米/秒2,R为地球的半 径.你能求出第一宇宙速度吗?
( 双重非负性)
例3:已知(x+2)2 + y =0,求xy=? 解: ∵ ( x+2 )2 ≥0, y ≥0,(x+2)2+ y =0
∴ (x+2 )2 =0, y =0
解得x=-2
x y=0
y
∴
练习:若
xy =(-2)0=1
a+
a + b + 1 =0,求a、b的值。
小试身手
已知 a b + 6与 a + b 8互为相反数
(2)要使一艘飞船脱离地心引力,进入围绕太阳运行的 轨道所需要的速度称为第二宇宙速度.第二宇宙速度 为 V2 = 2V1 .第二宇宙速度是多少?
交流与发现
山青林场有甲、乙、丙、丁四块正方形苗圃.已知甲苗圃的面积为S平方米.
(1)如果乙苗圃的面积比甲苗圃大25平方米,乙苗圃的边长是多少? S + 25 米. (2)如果丙苗圃的面积为甲苗圃的2倍,丙苗圃的边长是多少? 2 S 米. s 1 (3)如果丁苗圃的面积是甲苗圃的面积的 ,丁苗圃的边长是多少? p 米
p
(4)你发现上面各题的答案有什么共同特点?与学过的算术平方根等相比有什 么共同点?与同学交流.
式子 S+25 , 2S ,
s
二次根式(第3课时)精品课件
当堂检测
1.下列计算中正确的是( B)
A. 3( 3 1 ) 3 3
B.( 12- 27) 3 1
C. 32 1 2 2 2
D. 3( 2 3) 6 2 3
2.计算:( 2+ 3)2 24 5 .
3.设 a 1 ,b 10 3 , 则a = b(填“>”“ < ”或“= ”).
2
4
2.上述化简后的二次根式有什么特点?你会怎么对它们进行分类?
几个二次根式化简后被开方数相同
8 ,18 ,0.5 ,1 8
为一组;
80 ,20 为一组.
探索新知
总结归纳
同类二次根式
几个二次根式化成最简二次根式以后,如果被开方 数相同,这几个二次根式就叫做同类二次根式.
判断同类二次根式的关键: (1)化成最简二次根式, (2)被开方数相同,根指数相同(都等于2)
二 二次根式的混合运算
如果梯形的上、下底长分别为 2 2 cm, 4 3 cm,高
为 6 cm,那么它的面积是多少?
梯形面积 = 12(2 2 +4 3)× 6 =( 2 +2 3)× 6 = 2× 6 +2 3× 6 = 2×6 +2 3×6 = 2×2×3 +2 3×3×2 = 2 3 +2×3 2 = 2 3 +6 2(cm2).
10 3
当堂检测
4.三角形的三边长分别为 20 ,40 ,45 ,则这个三角形的 周长为__5_5_+_2__1_0__.
5.计算:(1)5 2 18 =_8__2__
(2) 4 18 -9 2 =_3__2__ (3)10 2 (3 8 - 7 2)=__9_2__ (4)5 12 (- 3 8 2 27)=__4_3_-_6__2__
二次根式的概念和性质PPT课件
.
2
2、 a 表示什么? 表示非负数a的算术平方根
试一试 :说出下列各式的意义;
16, 81, 0, 1, 0.04; 49
观察: 上面几个式子中,被开方数的特点? 被开方数是非负数 即:a0
.
3
1.二次根式的概念
a (a ≥ 0 )表 示 非 负 数 a 的 算 术 平 方 根 ,
形 如 a (a ≥ 0 )的 式 子 叫 做 二 次 根 式 。
解:(1) (3- p)2 =|3- p|
∵ 3- p< 0
∴ (3- p)2 = p- 3 (2) x2-2x+1=(x-1)2=|x-1|
当x=- 3 时,x-1<0
∴ x2-2x+1=1-x=1+3
∴当x=- 3 时. , x2- 2x+1=1+ 3 20
初中阶段的三个非负数:
a (a≥0)
它必须具备如下特点: 1、 根 指 数 为 2; 2、 被 开 方 数 必 须 是 非 负 数 。
想 一 想 : 10 、 -5 、 3 8 5 3 、 (-2)2 a (a< 0﹚ 、 a 2+ 0 . 1 、 - a ( a < 0 ﹚ 是 不 是 二 次 根 式 ?
.
4
s
定义: 像 a2 2500 , , b 3 这样表示的算术 平方根,且根号内含有字母的代数式叫做二 次根式。
|a |
≥0
a2
a + b = 0 ? a 0,b = 0
a + | b |= 0 ? a 0, b = 0
a 2 + | b |= 0 ? a 0, b = 0
......
.
21
二次根式的概念和性质 PPT教学课件(数学人教版八年级下册)
(3)二次根式与算术平方根有什么关系? 二次根式都是非负数的算术平方根,带有根号的算术平方根
是二次根式.
数学初中 二次根式的概念和性质
课堂小结
(4)你知道了二次根式的哪些性质?
( a )2= a(a≥0) a2 =a(a≥0)
a2 a
(5)我们以前学习过的整式、分式都能像数一样进行运算,你认为 对于二次根式应该进一步研究哪些问题?
数学初中 二次根式的概念
上面问题中,得到的结果分别是: 3, S, 65 , h. 5
1 这些式子分别表示什么意义? 2 这些式子有什么共同特征?
h 分别表示 3,S,65,5 的算术平方根.
这些式子的共同特征是: 都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
数学初中 二次根式的概念
t
1 含有数或表示数的字母; 2 用基本运算符号连接数或表示数的字母. 用基本运算符号把数或表示数的字母连接起来得到的式子叫代数式.
数学初中
课堂小结
二次根式的概念和性质
1 本节课你学到了哪一类新的式子? 2 二次根式有意义的条件是什么?二次根式的值的范围是什么? 3 二次根式与算术平方根有什么关系?
数学初中 二次根式的概念
变式 a 取何值时,下列二次根式有意义? (1) a2 -2a+1 ;(2) -(a-1)2 .
答案:(1) a为任何实数; (2) a =1.
总结:被开方数不小于零.
数学初中 二次根式的性质
问题1 根据算术平方根的意义填空.
( 4 )2= __4___;( 2 )2= ___2__;
(2)由 x-2≥0,得 x≥2
数学初中 二次根式的性质
二次根式的概念及性质 课件
(1) a 1
(2) 2a 3
(1) a-1 0,a 1. (2) 2a 3 0,a 3 .
2
(3) a
(4) 2
5a
(3) a 0,a 0.
(4) 5 a>0,a<5.
巩固新知 深化理解
5.要画一个面积为24cm2的长方形,使它的长与宽之比为3:2,
它的长、宽各应是多少?
A
D
解:(1)由题意可知a-2=0,b-3=0,c-4=0,解得a=2,b=3,c=4 所以a-b+c=2-3+4=3;
(2)由题意知,1-x≥0,且x-1≥0,联立解得x=1.从而知y=2016, 所以x+2y=1+2×2016=4033.
归纳总结 多个非负数的和为零,则可得每个非负数均为零.初中 阶段学过的非负数主要有绝对值、偶次幂及二次根式.
填一填:
a
a2
a2
-4
(-4)2=16
4
0
02=0
0
1 平方运算
12=1
1
算术平方根
-1
(-1)2=1
1
1 2
1
4 16
观察: 两者有什么关系?
合作探究 获取新知
活动2 :根据前面得出的结论填一填
22 =
2
;
0.12 =
0.1
;
2 3
2
=
2 3
; 02 =
0
.
如何用字母表示你 所得的公式呢?
巩固新知 深化理解
1. 下列式子中,不属于二次根式的是( C )
a C D
2.式子 2 有意义的条件是
3x 6
A.x>2 B.x≥2 C.x<2
二次根式(第3课时)课件北师大版数学八年级上册
(第3课时)
教学内容
第二章 实 数
2.7.3 二次根式加减乘除的综合运算
教学目标——重点难点
第二章 实 数
1.会进行二次根式加减乘除的综合运算.(重点) 2.利用二次根式乘加减乘除的综合运算解决问题.(难点)
教学目标——温故知新
知识储备
1.二次根式乘除法的法则是什么?
教学过程——新典知例探解究 析
例3 计算:
第二章 实 数
教学过程——新典知例探解究 析
第二章 实 数
教学过程——新典知例探解究 析
第二章 实 数
教学过程——课堂小结 今天你学到了什么?
第二章 实 数
❈
1.二次根式的运算顺序与实数的运算顺序一样,先算乘 方,再算乘除,最后算加减,有括号的先算括号里面的.
第二章 实 数
2.什么是同类二次根式?
几个二次根式化为最简二次根式后,如果被开方数相同, 这样的二次根式,称为同类二次根式.
教学过程——新课引入 议一议
第二章 实 数
前面我们分别学习了二次根式的乘除法和加减法运算, 与实数的运算一样,二次根式也有加减乘除以及乘方的 综合运算,那么我们如何进行二次根式的综合运算呢?
教学过程——新典知例探解究 析
例1 计算:
第二章 实 数
教学过程——典例解析
第二章 实 数
教学过程——典例解析
第二章 实 数
你能其他方法做这个题吗?
教学过程——典例解析
第二章 实 数
教学过程——典例解析
例2 计算:
第二章 实 数
教学过程——典例解析
第二章 实 数
教学过程——典例解析
第二章 实 数
2.多项式乘法法则和乘法公式对二次根式的运算同样适用.
第3讲 分式与二次根式
数与式
第3课时 分式与二次根式
知识点一:分式的概念及其性质 1. 分式的概念:形如AB(A,B 都是整式,且 B 中含有字母,B≠0)
的式子,叫做分式,其中 A 叫做分式的(1) 分分子子 ,B 叫做分 式的(2) 分分母母 .
【例 1】下列各式中,是分式的是( C )
3 A. 5
x2-x+2 B. 3
13. 若(a+ 2)2 与|b+1|互为相反数,则b-1 a的值为 2++1 1 . 14. 当 1<x<4 时,|x-4|+ x2-2x+1= 3 .
15. 计算:(-3)2-51-1+(-2)0.
解:原式=9-5+1=5.
16. 计算:x-1 4-x2-2x16.
解:原式=x-1 4-(x-4)2x(x+4) =(x-x+ 4)4- (2xx+4) =(x-4)4-(xx+4)=-x+1 4.
ab××dc
ad =(23) bc
.
③分式的乘方:把分式的分子、分母分别(24)
an =(25) bn .
乘乘方方
. 即:abn
④分式的加减乘除、乘方混合运算:先算(26) 乘方 ,再算
(27) 乘乘除 ,最后算(28) 加加减减 . 有括号的先算(29)
括括号号里里 的顺序. 要保证最后结果为(30) 最最简简分式 .
有( BB )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
3. 下列各式中,正确的是( DD )
A. --53yx=-3x5y
B. -a+c b=-ac+b;
C. -ac-b=a-c b
D. -b-a a=a-a b
4. 下列各式中属于最简二次根式的是( A ).
第十六章第1讲二次根式及其性质(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解二次根式的基本概念。二次根式是形如$\sqrt{a}$的数学表达式,其中$a \geq 0$。它是解决平方、立方等问题的基本工具,广泛应用于数学、物理、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。例如,计算一个边长为$\sqrt{5}$的正方形的面积,通过二次根式的运用可以轻松解决。
-通过图形或物理模型帮助学生形象理解二次根式的乘除法性质。
-举例说明分母有理化的步骤和技巧,如将$\frac{1}{\sqrt{a} + \sqrt{b}}$有理化。
-提供具有挑战性的综合性问题,指导学生如何识别问题中的二次根式,并引导学生将其转化为可解决的问题。
-设计逻辑推理练习题,通过学生的自主练习和小组讨论,提升他们的逻辑推理能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式及其性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算平方根的情况?”(如面积计算、速度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次根式的基本概念、重要性质和应用。同时,我们也通过实践活动和小组讨论加深了对二次根式的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二次根式的性质精选教学课件
义务教育课程标准苏科版实验教科书八年级 下
1、16的平方根是什么?16的算术平方根是什么?
2、0的平方根是什么?0的算术平方根是什么?
3、-7有没有平方根?有没有算术平方根?
正数和0都有算术平方根;负数没有算术平方根。
Think 思考
正数有两个平方根且互为相反数;1、平
解: (1)由a+1≥0,得a≥-1。 ∴字母a的取值范围是大于或等于-1的实数.
(2)由 >0,得1-2a >0,即a< ∴字母a的取值范围是小于 的实数.
(3)因为无论a取何值,都有 ,所以a的取值范围是全体实数。
例1求下列二次根式中字母a的取值范围:练习求下列二次根式中字
的值。
解 将x=-4代入二次根式,得
=
=
=3
例4当x=-4时,求二次根式的值。解 将x=-4代入二次
1当x=-2时,求二次根式
的值。
2 当x分别取下列值时,求二次根式
的值:
(1)x=0;
(2)x=1;
(3)x=-1
随堂练习1当x=-2时,求二次根式的值。2 当x分别取下
小试牛刀:
①观察配方法;
② 列不等式或不等式组法来求解.
⑶ 求二次根式的值
③分母不能为0
归纳小结:⑴ 二次根式的概念;表示算术平方根的代数式⑵
作业:作业本(1)P1-2 1、1
再见
了一个可以安歇的去处。坐在窗
感谢聆听
提高题
2.物体自由下落时,下落距离h(米)可用公式 h=5t2来估
4.已知 时,求xy的平方根。
3、已知
谈谈我的收获
归纳小结:
⑴ 二次根式的概念;
表示算术平方根的代数式