2011年—2017年新课标全国卷1文科数学分类汇编—13.坐标系与参数方程 专题卷(乙卷文科)

合集下载

2011年—2018年新课标全国卷1文科数学分类汇编—13.坐标系与参数方程

2011年—2018年新课标全国卷1文科数学分类汇编—13.坐标系与参数方程

新课标全国卷Ⅰ文科数学分类汇编13.坐标系与参数方程一、解答题【2018,22】在直角坐标系xOy 中,曲线C 1的方程为y=k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l ,求a .【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程;(II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【2013,23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。

20122017年高考文科数学真题汇编坐标系和参数方程老师版

20122017年高考文科数学真题汇编坐标系和参数方程老师版

学科教师辅导教案 学员姓名 年 级高三 辅导科目 数 学授课老师课时数2h第 次课授课日期及时段 2017年 月 日 : — :1.(2015年广东文)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 ()2,4- .2.(2015年新课标2文)在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I )求2C 与3C 交点的直角坐标; (II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,22230x y x +-=,联立解历年高考试题集锦——坐标系和参数方程3.(2015年陕西文)在直角坐标版权法xOy 吕,直线l 的参数方程为132(32x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C e 的极坐标方程为23sin ρθ=.(I)写出C e 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.试题解析:(I)由23sin ρθ=,得223sin ρρθ=,从而有2223x y y +=所以()2233x y +-=(II)设133,22P t t ⎛⎫+ ⎪⎝⎭,又(0,3)C ,则22213331222PC t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪⎝⎭⎝⎭,故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0).4、(2015新课标1)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1222,2ρρ==.故122ρρ-=,即2MN =由于2C 的半径为1,所以2C MN ∆的面积为12.5、(2016年全国I )在直角坐标系xOy 中,曲线C 1的参数方程为(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解:⑴ cos 1sin x a t y a t=⎧⎨=+⎩ (t 均为参数)∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-=即为1C 的极坐标方程⑵ 24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=即()2224x y -+= ②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C ∴210a -=∴1a =6、(2016年全国II )在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭, 即22369014k k =+,整理得253k =,则153k =±. 7、(2016年全国III )在直角坐标系xOy 中,曲线1C 的参数方程为3cos ()sin x y θθθ⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+= .(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求|PQ |的最小值及此时P 的直角坐标.8、(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为11232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数),椭圆C 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩ (θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解:椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y t⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t t ++=,即27160t t +=,解得10t =,2167t =-.所以1216||7AB t t =-=.9.(2013江苏理)在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=t y t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标。

2011—2017高考全国卷Ⅰ文科数学函数及其性质汇编

2011—2017高考全国卷Ⅰ文科数学函数及其性质汇编

新课标全国卷Ⅰ文科数学分类汇编函数及其性质(含解析)一、选择题【2017,8】函数sin2 1cosxyx=-的部分图像大致为()【2017,9】已知函数()()ln ln2f x x x=+-,则()A.()f x在()0,2单调递增B.()f x在()0,2单调递减C.()y f x=的图像关于直线1x=对称D.()y f x=的图像关于点()1,0对称【2016,8】若0a b>>,01c<<,则()A.log loga bc c<B.log logc ca b<C.c ca b<D.a bc c>【2016,9】函数22e xy x=-在[]2,2-的图像大致为()-221O xy-221O xy-221O xy-221O xyA.B.C.D.【2015,10】已知函数1222,1()log(1),1x xf xx x-⎧-≤=⎨-+>⎩,且f(a)=-3,则f(6-a)=( )A.74-B.54-C.34-D.14-【2015,12】设函数y=f(x)的图像与y=2x+a的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=( ) C A.-1 B.1 C.2 D.4【2014,5】5.设函数()f x,()g x的定义域为R,且()f x是奇函数,()g x是偶函数,则下列结论中正确的是()A.()()f xg x是偶函数B.()()f xg x是奇函数C.()()f xg x是奇函数D.()()f xg x是奇函数【2013,9】函数f(x)=(1-cos x)sin x在[-π,π]的图像大致为()【2013,12】已知函数f(x)=22,0,ln(1),0.x x xx x⎧-+≤⎨+>⎩若|f(x)|≥ax,则a的取值范围是().A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]【2012,11】11.当12x<≤时,4logxax<,则a的取值范围是()A.(0,22)B.(22,1)C.(12)D.2,2)【2011,3】下列函数中,既是偶函数又在()0,+∞单调递增的函数是()A.3y x=B.||1y x=+C.21y x=-+D.||2xy-=【2011,10】在下列区间中,函数()e43xf x x=+-的零点所在的区间为().A.1,04⎛⎫- ⎪⎝⎭B.10,4⎛⎫⎪⎝⎭C.11,42⎛⎫⎪⎝⎭D.13,24⎛⎫⎪⎝⎭【2011,12】已知函数()y f x=的周期为2,当[1,1]x∈-时函数2()f x x=,那么函数()y f x=的图像与函数lgy x=的图像的交点共有().A.10个B.9个C.8个D.1个二、填空题【2015,14】已知函数f(x)=ax3+x+1的图像在点(1, f(1))的处的切线过点(2,7),则a= .【2014,15】设函数113,1(),1xe xf xx x-⎧<⎪=⎨⎪≥⎩,则使得()2f x≤成立的x的取值范围是_____.【2012,16】16.设函数22(1)sin()1x xf xx++=+的最大值为M,最小值为m,则M m+=_______.2.函数及其性质(解析版) 一、选择题【2017,8】函数sin21cos x y x =-的部分图像大致为( )【解法】选C 由题意知,函数sin 21cos x y x =-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 201cos 2y =>-,排除A .. 【2017,9】已知函数()()ln ln 2f x x x =+-,则( )A .()f x 在()0,2单调递增B .()f x 在()0,2单调递减C .()y f x =的图像关于直线1x =对称D .()y f x =的图像关于点()1,0对称【解析】(法一)函数的定义域为)2,0(,)2(ln )2ln(ln )(x x x x x f -=-+=,设2)1(2)2()(22+--=+-=-=x x x x x x t ,)(t f 为增函数,当)1,0(∈x 时,)(x t 为增函数,∴)(x f 为增函数,当)2,1(∈x 时,)(x t 为减函数,∴)(x f 为减函数.排除A,B ,因为)(x t 是二次函数,图像关于直线1=x 对称,故)2()(x t x t -=,所以)2()(x f x f -=,()y f x =的图像关于直线1x =对称,故选 C ;(法二))2(22211)(x x x x x x f --=--=',当)1,0(∈x 时,0)(>'x f ,)(x f 为增函数. 当)2,1(∈x 时,0)(<'x f ,)(x f 为减函数,故排除A,B . 故选 C ;【2016,8】若0a b >>,01c <<,则( )1 1- x y o 1= 10 若102x <≤时,4log x a x <, 当且仅当011log 22a a <<⎧⎪⎨>⎪⎩, 2011log log 2a a a a <<⎧⎪⎨>⎪⎩,即20112a a <<⎧⎪⎨>⎪⎩. 21a <<,故选择B . 【2011,3】下列函数中,既是偶函数又在()0,+∞单调递增的函数是( )A .3y x =B .||1y x =+C .21y x =-+D .||2x y -=【解析】四个选项中的偶函数只有B ,C ,D ,故排除,当x ∈(0,)+∞时,三个函数分别为1y x =+单调递增,21y x =-+单调递减,12()2x x y -==单调递减.故选B .【2011,10】在下列区间中,函数()e 43x f x x =+-的零点所在的区间为( ). A .1,04⎛⎫- ⎪⎝⎭ B .10,4⎛⎫ ⎪⎝⎭ C . 11,42⎛⎫ ⎪⎝⎭ D . 13,24⎛⎫ ⎪⎝⎭【解析】因为11042f f ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭,由函数零点存在性定理,可知函数零点处于区间11,42⎛⎫ ⎪⎝⎭内.故选择C . 【2011,12】已知函数()y f x =的周期为2,当[1,1]x ∈-时函数2()f x x =,那么函数()y f x =的图像与函数lg y x =的图像的交点共有( ).A .10个B .9个C .8个D .1个【解析】 考查数形结合思想,在同一直角坐标系中作出两个函数的图像,如下图.容易判断出两函数图像的交点个数为10个. 故选A .二、填空题【,14】已知函数f (x )=ax 3+x +1的图像在点(2,7),则a = .(1, a +2),且切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.【2014,15】设函数113,1(),1x e x f x x x -⎧<⎪=⎨⎪≥⎩,则使得()2f x ≤成立的x 的取值范围是_____. 解:(-∞,8],当x<1时,由e x -1≤2可得x ≤1+ln 2,故x<1;当x≥1时,由13x ≤2可得x ≤8,故1≤x ≤8,综上可得x ≤8.【2012,16】16.设函数22(1)sin ()1x x f x x ++=+的最大值为M ,最小值为m ,则M m +=_______. 【解析】2. 2222(1)sin 12sin ()11x x x x x f x x x +++++==++222sin 111x x x x =++++. 令222sin ()11x x g x x x =+++,则()()1f x g x =+,因为()g x 为奇函数,所以max min ()()0g x g x +=. 所以M m +=max min max min [()1][()1]()()22g x g x g x g x +++=++=.。

2010-2017年高考数学全国卷试题汇编(极坐标与参数方程部分)

2010-2017年高考数学全国卷试题汇编(极坐标与参数方程部分)

2010-2017年高考数学全国卷试题汇编(极坐标与参数方程部分)1、【2010年新课标】已知直线1:C x 1t cos sin y t αα=+⎧⎨=⎩(t 为参数),曲线2:C x cos sin y θθ=⎧⎨=⎩(θ为参数). (1)当α=3π时,求1C 与2C 的交点坐标; (2)过坐标原点O 做1C 的垂线,垂足为A ,P 为OA 中点,当α变化时,求P 点的轨迹的参数方程,并指出它是什么曲线.2、【2011年新课标】在直角坐标系xoy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C . (1)求2C 的方程; (2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .3、【2012年新课标】曲线1C 的参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线2C 的坐标系方程是2=ρ,正方形ABCD 的顶点都在2C 上,且,,,A B C D 依逆时针次序排列,点A 的极坐标为(2,)3π. (1)求点,,,A B C D 的直角坐标;(2)设P 为1C 上任意一点,求2222PA PB PC PD +++的取值范围.4、【2013年新课标1】已知曲线1C 的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程; (2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).5、【2013年新课标2】已知动点,P Q 都在曲线C :2sin y t ⎨=⎩(t 为参数)上,对应参数分别为t α=与2t α=()02απ<<,M 为PQ 的中点.(1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.6、【2014年新课标1】已知曲线C :22149x y +=,直线:l ⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程; (2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.7、【2014年新课标2】在直角坐标系xOy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(1)求C 的参数方程; (2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.8、【2015年新课标1】在坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.(1)求12,C C 的极坐标方程; (2)若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积。

最新—2017高考全国卷ⅰ文科数学坐标系与参数方程汇编

最新—2017高考全国卷ⅰ文科数学坐标系与参数方程汇编

新课标全国卷Ⅰ文科数学汇编坐标系与参数方程一、解答题【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l a .【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程; (II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值.【2013,23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。

20122017年高考文科数学真题汇编:坐标系和参数方程老师版.doc

20122017年高考文科数学真题汇编:坐标系和参数方程老师版.doc

C的极坐标方程为C的直角坐标方程;为直线l上一动点,当到圆心C的距离最小时,求点ρ=(I)由2:化为普通方程为2=由题意:y x,(I )求直线l 和圆C 的普通方程;(II )若直线l 与圆C 有公共点,求实数a 的取值范围.【简解】(I )直线l 的普通方程为220x y a --=.圆C 的普通方程为2216x y +=. (II )因为直线l 与圆有公共点,故圆C 的圆心到直线l 的距离245a d -=≤,解得2525a -≤≤12. (2014新标1理)已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值. 【简解】.(Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩(θ为参数), 直线l 的普通方程为:260x y +-=(Ⅱ)在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为54cos 3sin 65d θθ=+-, 则()025||5sin 6sin 305d PA θα==+-,其中α为锐角.且4tan 3α=. 当()sin 1θα+=-时,||PA 取得最大值,最大值为2255; 当()sin 1θα+=时,||PA 取得最小值,最小值为255. 13.(2013新标2理)已知动点P 、Q 都在曲线C :2cos 2sin x ty t =⎧⎨=⎩(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程; (2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 【简解】 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α). M 的轨迹的参数方程为{ x =cos α+cos 2α,=sin α+sin 2α,(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x2+y2=2+2cos α(0<α<2π).当α=π,d =0,故M 的轨迹过坐标原点. 14、已知点A 的极坐标为(2,)4π,直线l 的极坐标方程为cos()4a πρθ-=,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程; (2)圆c 的参数方程为1cos sin x y αα=+⎧⎨=⎩,(α为参数),试判断直线l 与圆的位置关系.2=,15.(2012辽宁)在直角坐标-3)(-3≤≤3) 16.(2013新标1) 已知曲线⎝⎛⎭⎫2,π4⎭⎫,π217.(2013辽宁)⎭⎪⎫-422. =2t3解⎨⎪⎧x2+-=4,得⎨⎪⎧x1=0,⎨⎪⎧x2=2,所以C 与C 交点的一个极坐标为 ⎛⎪⎫4,π,=12|OA ⎭⎫-π3⎪⎪⎭⎫-π3-32+ 3. =-π12时,+ 3.+ 3.23.(2017·全国Ⅲ文,22)在直角坐标系=m k -2==1k (设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =-,y =1k+消去k 得x -y =4(y ≠0).所以C 的普通方程为x -y =4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧-=4,+-2=0,得=-13,从而=910,=110.的极径为 5.24.(2017·江苏,21)在平面直角坐标系中=t222s22s 从而点P 到直线的距离d =|2s2-42s +8|5=-2+4|,当s =2时,d =45.。

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—13.坐标系与参数方程

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—13.坐标系与参数方程

2011年—2018年新课标全国卷文科数学试题分类汇编13.坐标系与参数方程(逐题解析版)(2018·新课标Ⅰ,文22)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+。

以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=(I )求2C 的直角坐标方程;(II )若1C 与2C 有且仅有三个公共点,求1C 的方程。

(2018·新课标Ⅱ,文22)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x l ay l a =+⎧⎨=+⎩(l 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为()12,,求l 的斜率.(2018·新课标Ⅲ,文22) [选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)α的取值范围;⑵求AB 中点P 的轨迹的参数方程.(2017·新课标Ⅰ,22)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l a .(2017·新课标Ⅱ,22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.(2017·新课标Ⅲ,22)在直角坐标系xOy 中,直线1l 的参数方程为2+x t y kt =⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm m y k =-+⎧⎪⎨=⎪⎩(为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3cos sin 0l ρθθ+=:,M 为3l 与C 的交点,求M 的极径.(2016·新课标Ⅰ,23)在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C . (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .(2016·新课标Ⅱ,23)在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,10AB,求l 的斜率.(2016·新课标Ⅲ,23)在直线坐标系xoy 中,曲线C 1的参数方程为3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数)。

2017年—2011年新课标高考数学全国卷1文科数学分类汇编全集(附答案)

2017年—2011年新课标高考数学全国卷1文科数学分类汇编全集(附答案)

1.集合与常用逻辑用语一、选择题【2017,1】已知集合{}2A x x =<,{}320B x x =->,则( )A .3{|}2AB x x =< B . AB =∅C .3{|}2A B x x =< D . AB =R【2016,1】设集合{}1,3,5,7A =,{}25B x x =剟,则A B =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7【2015,1】已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( )A .5B .4C .3D .2 【2014,1】已知集合{|13}M x x =-<<,{|21}N x x =-<<,则MB =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(- 【2013,1】已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}【2013,5】已知命题p :x R ∀∈,23xx<;命题q :x R ∃∈,231xx =-,则下列命题中为真命题的是( )A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【2012,1】1.已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .A B φ=【2011,1】已知集合{}0,1,2,3,4M =,{}1,3,5N =,P MN =,则P 的子集共有 ( ).A .2个B .4个C .6个D .8个1.集合与常用逻辑用语(解析版)一、选择题【2017,1】已知集合{}2A x x =<,{}320B x x =->,则( )A .3{|}2AB x x =< B . A B =∅C .3{|}2A B x x =< D . AB =R解:由320x ->得32x <,所以3{|}2A B x x =<,故选A .【2016,1】设集合{}1,3,5,7A =,{}25B x x =剟,则A B =( )A .{}1,3B .{}3,5C .{}5,7D .{}1,7解析:把问题切换成离散集运算,{}1,3,5,7A =,{}2,3,4,5B ⊆,所以{}3,5AB =.故选B .【2015,1】已知集合A={x |x=3n +2, n ∈N},B={6,8,10,12,14},则集合A ∩B 中的元素个数为( ) DA .5B .4C .3D .2 解: A ∩B={8,14},故选D . 【2014,1】已知集合{|13}M x x =-<<,{|21}N x x =-<<,则MB =( )A . (2,1)-B . (1,1)-C . (1,3)D . )3,2(-解:取M , N 中共同的元素的集合是(-1,1),故选B【2013,1】已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}答案:A 解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4}.【2013,5】已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q解析:选B ,由20=30知,p 为假命题.令h (x )=x 3-1+x 2,∵h (0)=-1<0,h (1)=1>0,∴x 3-1+x 2=0在(0,1)内有解. ∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.. 【2012,1】1.已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则( )A .AB B .B AC .A B =D .AB φ=【解析】因为{|12}A x x =-<<,{|11}B x x =-<<,所以B A ,故选择B . 【2011,1】已知集合{}0,1,2,3,4M =,{}1,3,5N =,P MN =,则P 的子集共有 ( ).A .2个B .4个C .6个D .8个 【解析】因为{}0,1,2,3,4M =,{}1,3,5N =,所以{}1,3M N =.所以MN 的子集共有224=个. 故选B .2011年—2017年新课标全国卷Ⅰ文科数学分类汇编3.导数及其应用一、选择题【2016,12】若函数1()sin 2sin 3f x x x a x =-+在(),-∞+∞上单调递增,则a 的取值范围是( )A .[]1,1-B .11,3⎡⎤-⎢⎥⎣⎦ C .11,33⎡⎤-⎢⎥⎣⎦ D .11,3⎡⎤--⎢⎥⎣⎦【2014,12】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 A .(2,)+∞ B .(1,)+∞ C .(,2)-∞- D .(,1)-∞- 二、填空题【2017,14】曲线21y x x=+在()1,2处的切线方程为 . 【2012,13】13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为_________. 三、解答题【2017,21】已知函数()()2xxf x eea a x =--.(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【2016,21】已知函数()()()22e 1xf x x a x =-+-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【2015,21】设函数()2e ln x f x a x =-.(1)讨论()f x 的导函数()f x '零点的个数;(2)求证:当0a >时,()22ln f x a a a≥+.【2014,21】设函数2(1)()ln 2a f x a x x bx -=+-(1)a ≠,曲线()y f x =在点(1, f (1))处的切线斜率为0.(Ⅰ)求b ; (Ⅱ)若存在x 0≥1,使得0()1af x a <-,求a 的取值范围.【2013,20】已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值.【2012,21】21.设函数()2x f x e ax =--. (1)求)(x f 的单调区间;(2)若1a =,k 为整数,且当0x >时,()'()10x k f x x -++>,求k 的最大值.【2011,21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (1)求a ,b 的值;(2)证明:当0x >,且1x ≠时,ln ()1xf x x >-.2011年—2017年新课标全国卷Ⅰ文科数学分类汇编3.导数及其应用(解析版)一、选择题【2016,12】若函数1()sin 2sin 3f x x x a x =-+在(),-∞+∞上单调递增,则a 的取值范围是( )A .[]1,1-B .11,3⎡⎤-⎢⎥⎣⎦ C .11,33⎡⎤-⎢⎥⎣⎦ D .11,3⎡⎤--⎢⎥⎣⎦解析:选C .问题转化为()21cos2cos 03f x x a x '=-+…对x ∈R 恒成立, 故()2212cos 1cos 03x a x --+…,即245cos cos 033a x x -+…恒成立. 令cos x t =,得245033t at -++…对[]1,1t ∈-恒成立. 解法一:构造()24533g t t at =-++,开口向下的二次函数()g t 的最小值的可能值为端点值, 故只需保证()()11031103g a g a ⎧-=-⎪⎪⎨⎪=+⎪⎩……,解得1133a -剟.故选C .解法二:①当0t =时,不等式恒成立;②当01t <…时,1543a t t ⎛⎫- ⎪⎝⎭…恒成立,由y =1543t t ⎛⎫- ⎪⎝⎭在01t <…上单调递增,所以()1511445333t t ⎛⎫--=- ⎪⎝⎭…,故13a -…;③当10t -<…时,1543a t t ⎛⎫- ⎪⎝⎭…恒成立.由y =1543t t ⎛⎫- ⎪⎝⎭在10t -<…上单调递增,()1511445333t t ⎛⎫--+= ⎪⎝⎭…,所以13a …. 综上可得,1133a -剟.故选C . 【2014,12】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-解:依题a≠0,f '(x )=3ax 2-6x ,令f '(x )=0,解得x =0或x =2a,当a >0时,在(-∞, 0)与(2a ,+∞)上,f '(x )>0,f (x )是增函数.在(0,2a) 上,f '(x )<0,f (x )是减函数.且f (0)=1>0,f (x )有小于零的零点,不符合题意.当a <0时,在(-∞,2a )与(0,+∞)上,f '(x )<0,f (x )是减函数.在(2a,0)上,f '(x )>0,f (x )是增函数.要使f (x )有唯一的零点x 0,且x 0>0,只要2()0f a>,即a 2>4,所以a <-2.故选C另解:依题a≠0,f (x )存在唯一的正零点,等价于3113a x x =-有唯一的正零根,令1t x=,则问题又等价于a =-t 3+3t 有唯一的正零根,即y =a 与y =-t 3+3t 有唯一的交点且交点在在y 轴右侧,记g (t )=-t 3+3t ,g'(t )=-3t 2+3,由g '(t )=0,解得t =±1,在(-∞,-1)与(1,+∞)上,g '(t )<0,g (t )是减函数.在(-1,1)上,g '(t )>0,g (t )是增函数.要使a =-t 3+3t 有唯一的正零根,只要a <g (-1)=-2,故选C 二、填空题【2017,14】曲线21y x x=+在()1,2处的切线方程为 . 【解】1y x =+.求导得212y x x'=-,故切线的斜率1|1x k y ='==,所以切线方程为21y x -=-,即1y x =+.【2012,13】13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为_________.【解析】430x y --=.由已知'3ln 4y x =+,根据导数的几何意义知切线斜率1'|4x k y ===,因此切线方程为14(1)y x -=-,即430x y --=. 三、解答题【2017,21】已知函数()()2xxf x eea a x =--.(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围. 【解析】(1)()()()()2222'=--=+-xx x x f x e ae a e a e a①当0>a 时,20+>x e a ,令()0'>f x ,即0->x e a ,解得ln >x a , 令()0'<f x ,即0-<x e a ,解得ln <x a ,所以当0>a ,()f x 在()ln ,+∞a 上递增,在(),ln -∞a 上递减. ②当0=a 时,()()220'=>xf x e , ()f x 在R 上递增.③当0<a 时,0->x e a ,令()0'>f x ⇒20+>x e a ⇒2>-xa e ⇒ln 2⎛⎫>- ⎪⎝⎭a x , 令()0'<f x ⇒20+<x e a ⇒2<-xa e ⇒ln 2⎛⎫<- ⎪⎝⎭a x ,所以当0<a 时,()f x 在ln ,2⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭a 上递增,在,ln 2⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭a 上递减. 综上所述:当0>a ,()f x 在(),ln -∞a 上递减,在()ln ,+∞a 上递增;当0=a 时, ()f x 在R 上递增; 当0<a 时,()f x 在,ln 2⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭a 上递减,在ln ,2⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭a 上递增.(2)由(1)得当0a >时,()()()ln ln 2min ln ln ==--aa f x f a ee a a a 2ln 0=-≥a a , ∴ln 0≤a ,得01<≤a .当0=a 时,()()20=>x f x e 满足条件.当0<a 时,()ln ln 222minln ln 22⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭a a a a f x f e ea a 223ln 042⎛⎫=--≥ ⎪⎝⎭a a a , ∴3ln 24⎛⎫-≤ ⎪⎝⎭a ⇒342-≤ae ⇒342≥-a e ,又因为0<a ,所以3420-≤<e a .综上所述,a 的取值范围是342,1e ⎡⎤-⎢⎥⎣⎦.【2016,21】已知函数()()()22e 1xf x x a x =-+-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.解析:(1)由题意()()()1e 21x f x x a x '=-+-()()=1e 2xx a -+.①当20a …,即0a …时,e 20xa +>恒成立.令()0f x '>,则1x >, 所以()f x 的单调增区间为()1,+∞.同理可得()f x 的单调减区间为(),1-∞. ②当20a <,即0a <时,令()0f x '=,则1x =或()ln 2a -. (ⅰ)当()ln 21a ->,即e2a <-时,令()0f x '>,则1x <或()ln 2x a >-, 所以()f x 的单调增区间为(),1-∞和()()ln 2,a -+∞.同理()f x 的单调减区间为()()1,ln 2a -; (ⅱ)当()ln 21a -=,即e2a =-时,当1x …时,10x -…,1e 2e e 0x a +-=…,所以()0f x '….同理1x >时,()0f x '>. 故()f x 的单调增区间为(),-∞+∞; (ⅲ)当()ln 21a -<,即e02a -<<时.令()0f x '>,则()ln 2x a <-或1x >, 所以()f x 的单调增区间为()(),ln 2a -∞-和()1,+∞,同理()f x 的单调减区间为()()ln 2,1a -. 综上所述,当e2a <-时,()f x 的单调增区间为(),1-∞和()()ln 2,a -+∞,单调减区间为()()1,ln 2a -; 当e2a =-时,()f x 的单调增区间为(),-∞+∞; 当e02a -<<时,()f x 的单调增区间为()(),ln 2a -∞-和()1,+∞,单调减区间为()()ln 2,1a -; 当0a …时,()f x 的单调增区间为()1,+∞,单调减区间为(),1-∞. (2)解法一(直接讨论法):易见()1e 0f =-<,如(1)中讨论,下面先研究(ⅰ)(ⅱ)(ⅲ)三种情况. ①当e2a <-时,由()f x 单调性可知,()()()ln 210f a f -<<,故不满足题意; ②当e2a =-时,()f x 在(),-∞+∞上单调递增,显然不满足题意; ③当e02a -<<时,由()f x 的单调性,可知()()()1ln 2f f a <-, 且()()()()()()()2ln 2ln 222ln 21f a a a a a -=---+--()2ln 220a a a =--+<⎡⎤⎣⎦,故不满足题意;下面研究0a …, 当0a =时,()()2e xf x x =-,令()0f x =,则2x =,因此()f x 只有1个零点,故舍去;当0a >时,()1e 0f =-<,()20f a =>,所以()f x 在()1,+∞上有1个零点;(i )当01a <…时,由ln 02a<,而2ln ln 2ln 12222a a a a f a ⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23ln ln 0222a a a ⎛⎫=-> ⎪⎝⎭,所以()f x 在(),1-∞上有1个零点;(i i )当1a >时,由20-<,而()()22424e990ef a a --=-+=->,所以()f x 在(),1-∞上有1个零点;可见当0a >时()f x 有两个零点.所以所求a 的取值范围为()0,+∞. 解法二(分离参数法):显然1x =不是()f x 的零点, 当1x ≠时,由()0f x =,得()22e 1x xa x -=-()1x ≠.设()()22e 1xxg x x -=-()1x ≠,则问题转化为直线y a =与()g x 图像有两个交点, 对()g x 求导得()()()()2e 1211x x x g x x ⎡⎤---+⎣⎦'=-, 所以()g x 在(),1-∞单调递增,在()1,+∞单调递减.①当0a …时,若(),1x ∈-∞,()0g x >,直线y a =与()g x 图像没有交点, 若()1,x ∈+∞,()g x 单调递减,直线y a =与()g x 图像不可能有两个交点, 故0a …不满足条件;②若0a >时,取13min 12x ⎧⎫⎪⎪=+⎨⎬⎪⎪⎩⎭,则()()12111g x a x >-…, 而()20g a =<,结合()g x 在()1,+∞单调递减, 可知在区间()1,2x 上直线y a =与()g x 图像有一个交点,取2min 1x ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭,3x = 则()()22221g x a x -厖,()33223322x g x a x x -<<<, 结合()g x 在(),1-∞单调递增,可知在区间()32x x 上直线y a =与()g x 图像有一个交点, 综上所述,0a >时直线y a =与()g x 图像有两个交点,函数()f x 有两个零点.【2015,21】设函数()2e ln x f x a x =-.(1)讨论()f x 的导函数()f x '零点的个数;(2)求证:当0a >时,()22ln f x a a a+….解:(Ⅰ) f '(x )=2e 2x ax-, x >0 …2分 (1)若a ≤0时,f '(x )>0在(0,+∞)恒成立,所以f '(x )没有零点; …3分(2)若a >0时,f '(x )单调递增.当x →0, f '(x ) →-∞;当x →+ ∞,f '(x ) →+∞, 所以f '(x ) 存在一个零点. …6分(Ⅱ) 设f '(x )的唯一零点为k ,由(Ⅰ)知(0, k )上,f '(x )<0,f (x )单调递减; 在(k ,+∞)上,f '(x )>0,f (x )单调递增.所以f (x )取最小值f (k ). …8分 所以f (x )≥f (k )= e 2k -a ln k ,又f '(k )= 2e 2k a k -=0,所以e 2k =2ak,22ln ln k k a =-,所以f (k )=2(ln 2)2ln 2ln 2222a a a aa k ka a a a k a k --=++≥+, 所以f (x )≥22lna a a+. …12分 21. 解析 (1)()()2e ln 0x f x a x x =->,()22e xa f x x'=-. 显然当0a …时,()0f x '>恒成立,()f x '无零点.当0a >时,取()()22e xa g x f x x '==-,则()224e 0xa g x x'=+>,即()f x '单调递增. 令()()22e 0x a g x f x x '==-=,即22e xa x =.画出22e x y =与ay x=的图像,如图所示.由图可知,()f x '必有零点,所以导函数()f x '存在唯一零点.(2)由(1)可知()f x '有唯一零点,设零点为0x , 由图可知,当()00,x x ∈时,()0f x '<,即()f x 单调递减;当()0,x x ∈+∞时,()0f x '>,即()f x 单调递增.所以()f x 在0x x =处取得极小值,即()()0200min e ln x f x f x a x ==-.又()02002e 0xa f x x '=-=,解得020e 2x a x =.① ①两边分别取自然对数,得002ln ln 2x a x =-,即00ln ln 22ax x =-. 所以()00000ln 22ln 2222a a a a f x a x ax a x x ⎛⎫=--=+- ⎪⎝⎭… 22ln2ln 2a a a a a a -=+(当且仅当0022a ax x =,即012x =时取等号).【2014,21】设函数2(1)()ln 2a f x a x x bx -=+-(1)a ≠,曲线()y f x =在点(1, f (1))处的切线斜率为0.(Ⅰ)求b ; (Ⅱ)若存在x 0≥1,使得0()1af x a <-,求a 的取值范围. 解:(Ⅰ) ()(1)af x a x b x'=+--(x >0),依题f '(1)=0,解得b =1, …3分 (Ⅱ)由(Ⅰ)知2(1)()ln 2a f x a x x x -=+-,2(1)(1)[(1)]()a x x a x a x a f x x x--+---'==, 因为a ≠1,所以f '(x )=0有两根:x =1或1ax a=-。

2011-2017年新课标全国卷2理科数学试题分类汇编——13.坐标系与参数方程

2011-2017年新课标全国卷2理科数学试题分类汇编——13.坐标系与参数方程

2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编1.集合与简易逻辑一、选择题(2017·2)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5(2016·2)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A B =( ) A .{1}B .{1,2}C .{0,1,2,3}D .{-1,0,1,2,3}(2015·1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}(2014·1)设集合M ={0, 1, 2},N ={}2|320x x x -+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}(2013·1)已知集合M ={x|(x -1)2 < 4, x ∈R },N ={-1,0,1,2,3},则M ∩ N =( )A .{0, 1, 2}B .{-1, 0, 1, 2}C .{-1, 0, 2, 3}D .{0, 1, 2, 3}(2012·1)已知集合A ={1, 2, 3, 4, 5},B ={(x ,y )| x ∈A , y ∈A , x -y ∈A },则B 中所含元素的个数为( )A. 3B. 6C. 8D. 10(2011·10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦a b3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦a bA . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 42011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编1.集合与简易逻辑(逐题解析)(2017·2)C 【解析】∵ {}1A B =,∴ 1是方程240x x m -+=的一个根,即3m =,∴ {}2430B x x x =-+=,故{}1,3B =,选C.(2016·2)C 解析:()(){}120Z B x x x x =+-<∈,,∴{}01B =,,∴{}0123A B =,,,,故选C .(2015·1)A 解析:由已知得{}21B x x =-<<,故,故选A.(2014·1)D 解析:∵2={|320}{|12}N x x x x x -+≤=≤≤,∴{1,2}MN =.(2013·1)A 解析:解不等式(x -1)2<4,得-1<x <3,即M ={x |-1<x <3}.而N ={-1, 0, 1, 2, 3},所以M ∩N ={0, 1, 2},故选A.(2012·1)D 解析:要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.(2011·10)A 解析:由||1+==>a b 得1cos 2θ>-2[0,)3πθ⇒∈.由||1-=a b 得1cos 2θ<(,]3πθπ⇒∈,故选A.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编2.复数一、选择题 (2017·1)31ii+=+( ) A .12i + B .12i - C .2i + D .2i -(2016·1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)(2015·2)若a 为实数且(2+ai )(a -2i ) = -4i ,则a =( )A .-1B .0C .1D .2(2014·2)设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A .- 5B .5C .- 4 + iD .- 4 - i(2013·2)设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -(2012·3)下面是关于复数iz +-=12的四个命题中,真命题为( )P 1: |z |=2, P 2: z 2=2i ,P 3: z 的共轭复数为1+i ,P 4: z 的虚部为-1 . A. P 2,P 3B. P 1,P 2C. P 2,P 4D. P 3,P 4(2011·1)复数212ii+-的共轭复数是( ) A .35i -B .35iC .i -D .i2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编2.复数(逐题解析)(2017·1)D 【解析】()()()()3134221112i i i ii i i i +-+-===-++-. (2016·1)A 解析:∴30m +>,10m -<,∴31m -<<,故选A .(2015·2)B 解析:由已知得4a + (a 2 -4)i = -4i ,所以4a = 0,a 2 -4 = -4,解得a = 0,故选B. (2014·2)A 解析:∵12i z =+,复数1z ,2z 在复平面内的对应点关于虚轴对称,∴22z i =-+,∴2212(2)(2)2145z z i i i =+-+=-=--=-.(2013·2)A 解析:由(1-i )·z =2i ,得221=111i i i z i i i (+)=-(-)(+)=222i-+=-1+i . (2012·3)C 解析:经计算2221,||2(1)21z i z z i i i==--∴==---+ =,,复数z 的共轭复数为1i -+,z 的虚部为1-,综上可知P 2,P 4正确.(2011·1)C 解析:212i i+-=(2)(12),5i i i ++=共轭复数为C.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编3.程序框图(2017·8)执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .5结束输出S 1M =,3S =开始输入x ,t1k =k t ≤M M x k=S M S =+1k k =+是否 (2017·8) (2016·8) (2015·8) (2014·7)(2016·8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( ) A .7B .12C .17D .34(2015·8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a ,b 分别为14,18,则输出的a =( ) A .0B .2C .4D .14(2014·7)执行右面程序框图,如果输入的x ,t 均为2,则输出的S = ( )A .4B .5C .6D .7开始,x n输入00k s ==,a输入s s x a=⋅+1k k =+k n>s输出结束否是(2013·6) (2012·6) (2011·3) (2013·6)执行右面的程序框图,如果输入的10N =,那么输出的S =( )A .11112310++++ B .11112!3!10!++++ C .11112311++++D .11112!3!11!++++(2012·6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数a 1, a 2,…,a N ,输入A 、B ,则( )A. A +B 为a 1, a 2,…,a N 的和B.2B A +为a 1, a 2,…,a N 的算术平均数C. A 和B 分别是a 1, a 2,…,a N 中最大的数和最小的数D. A 和B 分别是a 1, a 2,…,a N 中最小的数和最大的数(2011·3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是( )A .120B .720C .1440D .5040否是开始 k<N输出p 输入N 结束k =1, p =1 k =k+1p=p·k2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编3.程序框图(2017·8)【解析】解法一:常规解法∵ 00S =,01K =,01a =-,S S a K =+⋅,a a =-,∴ 执行第一次循环:11S =-﹑11a =﹑ 12K =;执行第二次循环:21S =﹑21a =-﹑23K =;执行第三次循环:32S =-﹑31a =﹑ 34K =;执行第四次循环:42S =﹑41a =-﹑45K =;执行第五次循环:53S =-﹑51a =﹑56K =;执行第五次循环:63S =﹑61a =﹑67K =;当676K =>时,终止循环,输出63S =,故输出值为3.解法二:数列法()11nn n S S n -=+-⋅,1n K n =+,裂项相消可得()121nin i S S i =-=-⋅∑;执行第一次循环:11S =-﹑11a =﹑12K =,当6n K >时,6n =即可终止,61234564S +=-+-+=,即63S =,故输出值为3.(2016·8)C 解析:第一次运算:0222s =⨯+=,第二次运算:2226s =⨯+=,第三次运算:62517s =⨯+=,故选C .(2015·8)B 解析:程序在执行过程中,a ,b 的值依次为a =14,b =18,b =4,a =10,a =6,a =2,b =2,此时a =b =2程序结束,输出a 的值为2,故选B .(2014·7)D 解析:输入的x ,t 均为2.判断12≤?是,1221M =⋅=,235S =+=,112k =+=;判断22≤?是,2222M =⋅=,257S =+=,213k =+=,判断32≤?否,输出7S =.(2013·6)B 解析:由程序框图知,当k =1,S =0,T =1时,T =1,S =1;当k =2时,12T =,1=1+2S ; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯;… … … … ; 当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++, k 增加1变为11,满足k >N ,输出S ,故选B .(2012·6)C 解析:由程序框图判断x >A 得A 应为a 1,a 2,…,a N 中最大的数,由x <B 得B 应为a 1,a 2,…,a N 中最小的数.(2011·3)B 解析:框图表示1n n a n a -=⋅,且11a =所求6a =720,故选B.【题目7】(2017·新课标全国Ⅱ卷理7)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 【命题意图】本题考查推理与证明的有关知识,考查考生推理论证能力. 【解析】解法一:假设法甲看乙﹑丙成绩,甲不知道自己的成绩,那么乙﹑丙成绩中有一人为优,一人为良;乙已经知道 自己的成绩要么良,要么优,丙同样也是,当乙看到丙的成绩,一定知道自己的成绩,但是丙一 定不知道自己的成绩;而丁同学也知道自己的成绩要么良,要么优,只有看到甲的成绩,才能判 断自己的成绩,丁同学也一定知道自己的成绩,故只有乙﹑丁两位同学知道自己的成绩. 解法二:选项代入法当我们不知道如何下手,则从选项入手,一一假定成立,来验证我们的假设是否成立,略2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编4.平面向量一、选择题(2017·12)已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1- (2016·3)已知向量(1)(32),,=,m =-a b ,且()⊥a +b b ,则m =( ) A .-8B .-6C .6D .8(2014·3)设向量a ,b 满足10|a b |+=,6|a b |-=,则a b ⋅=( )A .1B .2C .3D .5二、填空题(2015·13)设向量a ,b 不平行,向量λ+a b 与2+a b 平行,则实数λ= ____________. (2013·13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=_______. (2012·13)已知向量a ,b 夹角为45º,且1=||a ,102=-||b a ,则=||b .2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编4.平面向量(逐题解析版)一、选择题(2017·12)【解析】解法一:建系法,连接OP ,(0,OA =,()1,0OB =-,()1,0OC =.2PC PB PO +=,∴()(),,3PO PA x y x y ⋅=--⋅-- ,∴22223334PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭∴34PO PA ⋅≥-,∴ ()322PA PC PB PO PA ⋅+=⋅≥-,∴最小值为32-解法二:均值法:∵2PC PB PO +=,∴ ()2PA PC PB PO PA ⋅+=⋅ 由上图可知:OA PA PO =-;两边平方可得()()2232PA PO PA PO =+-⋅∵ ()()222PA POPA PO +≥-⋅,∴ 322PO PA ⋅≥-,∴ ()322PA PC PB PO PA ⋅+=⋅≥-,∴最小值为32-.(2016·3)D 【解析】(42)a b m +=-,,∵()a b b +⊥,∴()122(2)0a b b m +⋅=--=,解得8m =,选D .(2014·3)A 解析:2222||10||6210,26,a b a b a b a b a b a b +=-=∴++⋅=+-⋅=,两式相减得:1a b ⋅=.二、填空题(2015·13)12解析:因为向量a b λ+与2a b +平行,所以(2)a b k a b λ+=+,则12k kλ=⎧⎨=⎩,所以12λ=.(2013·13)2解析:以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则AE =(1,2),BD =(-2, 2),所以=2AE BD ⋅.(2012·13)32由已知得222222|2|(2)444||4||||cos45||a b a b a a b b a a b b -=-=-⨯+=-⋅+2422|||10b b =-+=,解得||32b =.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编5.线性规划一、选择题(2017·5)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9(2014·9)设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A .10B .8C .3D .2(2013·9)已知0a >,x ,y 满足约束条件13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )A .14B .12C .1D .2二、填空题(2015·14)若x ,y 满足约束条件1020+220x y x y x y -+≥⎧⎪-≤⎨⎪-≤⎩,则z x y =+的最大值为_______.(2014·14)设x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x ,则2z x y =-的取值范围为 . (2011·13)若变量x , y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值为 .2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编5.线性规划一、选择题(2017·5)A 【解析】根据约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩画出可行域(图中阴影部分), 作直线:20l x y +=,平移直线l ,将直线平移到点A 处Z 最小,点A 的坐标为()6,3--,将点A 的坐标代到目标函数2Z x y =+, 可得15Z =-,即min 15Z =-.解法二:直接求法对于封闭的可行域,我们可以直接求三条直线的交点,代入目标函数中,三个数种选其最小的 为最小值即可,点A 的坐标为()6,3--,点B 的坐标为()6,3-,点C 的坐标为()0,1,所求值分 别为15-﹑9﹑1,故min 15Z =-,max 9Z =.(2014·9)B 解析:作出x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩所表示的平面区域为如图阴影部分,做出目标函数l 0:y =2x ,∵y =2x -z ,∴当y =2x -z 的截距最小时,z 取最大值.当y =2x -z 经过C 点时,z 取最大值.由31070x y x y -+=⎧⎨+-=⎩得C (5,2),此时z 取最大值为2×5-2=8.(2013·9)B 解析:由题意作出13(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩所表示的区域如图阴影部分所示,当目标函数表示的直线经过点A 时,取得最小值,而点A 的坐标为(1,-2a ),所以2-2a =1,解得12a =. 故选B.l 0l 1 3x-y-5=0yxo 12 x-3y+1=0l 2x+y-7=052CA BA (1, -2a )lAy = -32x +3y -3=02x -3y +3=0xOyCB二、填空题 (2015·14)32解析:画出可行域,如图所示,将目标函数变形为y =-x +z ,当z 取到最大时,直线y = -x + z 的纵截距最大,故将直线尽可能地向上平移到1(1,)2D ,则z =x +y 的最大值为32.(2014·14)[3,3]-解析:画出可行域,易知当直线2Z x y =-经过点(1,2)时,Z 取最小值-3;当直线2Z x y =-经过点(3,0)时,Z 取最大值3. 故2Z x y =-的取值范围为[3,3]-.(2011·13)-6】解析:画出可行域如图,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.6.二项式定理一、选择题(2013·5)已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )A .4-B .3-C .2-D .1-(2011·8)51()(2)a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为( )A .- 40B .- 20C .20D .40二、填空题(2015·15)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =_______. (2014·13)10()x a +的展开式中,7x 的系数为15,则a =________.2012年—2017年新课标全国卷Ⅱ理科数学试题分类汇编6.二项式定理(逐题解析)一、选择题(2013·5)D 解析:因为(1+x )5的二项展开式的通项为5C r r x (0≤r ≤5,r ∈Z ),则含x 2的项为225C x +ax ·15C x =(10+5a )x 2,所以10+5a =5,a =-1. 故选D.(2011·8)D 解析:由51()(2)a x x x x+-的展开式中各项系数的和为2,得a =1(令x =1). 故原式=511()(2)x x x x+-,所以通项521552155(2)()(1)2r r r r r r r r T C x x C x ----+=-=-,由5-2r =1得r =2,对应的常数项=80,由5-2r =-1得r =3,对应的常数项=-40,故所求的常数项为40,故选D .二、填空题(2015·15)3解析:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =. (2014·13)12解析:∵10110r r r r T C x a -+=,∴107r -=,即3r =,∴373741015T C x a x ==,解得12a =.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编7.函数与导数一、填空题(2017·11)若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1(2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2015·5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A .3B .6C .9D .12(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )A .B .C .D .(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-B .(1,0)(1,)-+∞C .(,1)(1,0)-∞--D .(0,1)(1,)+∞(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3(2014·12)设函数()x f x m π=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围是( )A .(,6)(6,+)-∞-∞B .(,4)(4,+)-∞-∞C .(,2)(2,+)-∞-∞D .(,1)(4,+)-∞-∞ (2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b c a >>C .a c b >>D .a b c >>(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .00,()0x f x ∃∈=RB .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '= (2012·10)已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为( )A.C. D.(2012·12)设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-B.)2ln 1(2-C. 2ln 1+D.)2ln 1(2+(2011·2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=(2011·9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103B .4C .163D .6(2011·12)函数11y x =-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8二、填空题(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________. (2016·16)若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = . 三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;xx x x(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(2016·21)(Ⅰ)讨论函数2()2x x f x e x -=+ 的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.14.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).16.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.17.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值.18.(2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编7.函数与导数(解析版)(2017·11)A 【解析】∵ ()()211x f x x ax e -=+- ∴ 导函数()()2121x f x x a x a e -'⎡⎤=+++-⎣⎦,∵ ()20f '-=,∴ 1a =-,∴ 导函数()()212x f x x x e -'=+-,令()0f x '=,∴ 12x =-,11x =, 当x 变化时,()f x ,()f x '随变化情况如下表:从上表可知:极小值为()11f =-.故选A(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2016·12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而111x y x x+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111022m m mi i i i i i i mx y x y m ===+=+=+⋅=∑∑∑,故选B .(2015·5)C 解析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.(2015·10)B 解析:由已知得,当点P 在BC 边上运动时,即04x π≤≤时,tan PA PB x +;当点P 在CD 边上运动时,即344x ππ≤≤,2x π≠时,PA PB +=2x π=时,PA PB +=;当点P 在AD 边上运动时,即34x ππ≤≤时,PA PB +=tan x -,从点P的运动过程可以看出,轨迹关于直线2x π=对称,且()()42f f ππ>,且轨迹非线型,故选B . (2015·12)A 解析:记函数()()f x g x x =,则2()()()x f x f x g x x '-'=,因为当x >0时,xf ´(x )-f (x )<0,故当x >0时,g ´ (x )<0,所以g (x )在(0, +∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞, 0)单调递增,且g (-1)=g (1)=0.当0<x <1时,g (x )>0,则f (x )>0;当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞, -1)∪(0, 1),故选A .(2014·8)D 解析:∵1'1y a x =-+,且在点(0,0)处的切线的斜率为2,∴01'|201x y a ==-=+,即3a =.(2014·12)C 解析:∵()x f x m π'=,令()0x f x m π'==得1(),2x m k k Z =+∈,∴01(),2x m k k Z =+∈,即01|||||()|22m x m k =+≥,mxx f πsin 3)(= 的极值为3±, ∴3)]([20=x f ,,34)]([22020+≥+∴m x f x 22200[()]x f x m +<, 2234∴m m <+, 即:24m >,故:2m <-或2m >. (2013·8)D 解析:根据公式变形,lg 6lg 21lg 3lg 3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+, 因为lg 7>lg 5>lg 3,所以lg 2lg 2lg 2lg 7lg 5lg 3<<,即c <b <a . 故选D. (2013·10)C 解析:∵f ´(x )=3x 2+2ax +b ,∴y =f (x )的图像大致如右图所示,若x 0是f(x )的极小值点,则则在(-∞,x 0)上不单调,故C 不正确.(2012·10)B 解析:易知ln(1)0y x x =+-≤对(1,0)(0,)x ∈-+∞恒成立,当且仅当0x =时,取等号,故的值域是(-∞, 0). 所以其图像为B.(2012·12)B 解析:因为12x y e =与ln(2)y x =互为反函数,所以曲线12x y e =与曲线ln(2)y x =关于直线y =x 对称,故要求|PQ |的最小值转化为求与直线y =x 平行且与曲线相切的直线间的距离,设切点为A ,则A 点到直线y =x 距离的最小值的2倍就是|PQ |的最小值. 则11()122xxy e e ''===,2x e ∴=,即ln 2x =,故切点A 的坐标为(ln 2,1),因此,切点A 点到直线y =x距离为d ==,所以||2ln 2)PQ d ==-.(2011·2)B 解析:由各函数的图像知,故选B.(2011·9)C 】解析:用定积分求解342420021162)(2)|323S x dx x x x =+=-+=⎰,故选C. (2011·12)D 解析:11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在x =1的左侧有4个交点,则x =1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则182736452x x x x x x x x +=+=+=+=,故选D .二、填空题(2014·15)(1,3)- 解析:∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->⇔->=,又∵()f x 在[0,)+∞单调递减,∴|1|2x -<,解得:13x -<<(2016·16)1ln2-解析:ln 2y x =+的切线为:111ln 1y x x x =⋅++(设切点横坐标为1x ),()ln 1y x =+的切线为:()22221ln 111x y x x x x =++-++,∴()122122111ln 1ln 11xx x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x = 212x =-,∴1ln 11ln 2b x =+=-.三、解答题(2017·21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2ef x --<<.(2017·21)解析:(1)法一:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ , 所以()1ln 0a x x --≥,即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-;当1x =时,()1ln 0a x x --≥成立. 令()1ln g x x x =--,()11'1x g x x x-=-=,当()0,1x ∈时,()'0g x <,()g x 递减,()()10g x g <=,所以:1ln x x ->,即:ln 11xx >-,所以1a ≤; 当()1,x ∈+∞时,()'0g x >,()g x 递增,()()10g x g >=,所以:1ln x x ->,即:ln 11xx <-.所以,1a ≥. 综上,1a =.法二:洛必达法则:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ ,所以:()1ln 0a x x --≥. 即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1xa x ≥-; 当1x =时,()1ln 0a x x --≥成立.令()ln 1x g x x =-,()()()()22111ln 1ln '11x x x x x g x x x ----==--. 令()11ln h x x x =--,()22111'xh x x x x-=-=. 当()0,1x ∈时,()'0h x >,()h x 递增,()()10h x h <=; 所以()'0g x <,()g x 递减,()()()111ln 'ln 1limlimlim 111'x x x x xg x x x x→→→>===--,所以:1a ≤; 当()1,x ∈+∞时,()'0h x <,()h x 递减,()()10h x h <=;所以()'0g x <,()g x 递减,()()()111ln 'ln 1lim lim lim 111'x x x x x g x x x x→→→<===--,所以:1a ≥.故1a =.(2)由(1)知:()()1ln f x x x x =--,()'22ln f x x x =--,设()22ln x x x ϕ=--,则()1'2x x ϕ=-.当10,2x ⎛⎫∈ ⎪⎝⎭时,()'0x ϕ<;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()'0x ϕ>. 所以()x ϕ在10,2⎛⎫ ⎪⎝⎭递减,在1,2⎛⎫+∞ ⎪⎝⎭递增.又()20e ϕ->,102ϕ⎛⎫< ⎪⎝⎭,()10ϕ=,所以()x ϕ在10,2⎛⎫ ⎪⎝⎭有唯一零点0x ,在1,2⎛⎫+∞ ⎪⎝⎭有唯一零点1, 且当()00,x x ∈时,()0x ϕ>;当()0,1x x ∈时,()0x ϕ<; 当()1,x ∈+∞时,()0x ϕ>.又()()'f x x ϕ=,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈得()014f x <.因为0x x =是()f x 在()0,1的唯一极大值点,由()10,1e -∈,()10f e -≠得()()120f x f e e -->=所以220()2ef x --<<.(2016·21)(Ⅰ)讨论函数2()2x x f x e x -=+ 的单调性,并证明当x >0时,(2)20xx e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax a g x x x-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域. (2016·21)证明:⑴()()()22224e e 222xxx x f x x x x ⎛⎫-' ⎪=+= ⎪+++⎝⎭,∵当x ∈()()22,-∞--+∞,时,()0f x '>,∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12xx f x ->-+,∴()2e 20x x x -++>. ⑵ ()()()24e 2e x x a x x ax a g x x ----'=()4e 2e 2x x x x ax a x -++=32(2)(e )2xx x a x x -+⋅++=,[)01a ∈,,由(1)知,当0x >时,()2e 2x x f x x -=⋅+的值域为()1-+∞,,只有一解.使得2e 2tt a t -⋅=-+,(]02t ∈,,当(0,)x t ∈时,()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增,()()()222e 1e e 1e 22tt t t t t a t t h a t t t -++⋅-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()2e 102t t k t t +'=>+,∴()k t 单调递增,∴()()21e 24h a k t ⎛⎤=∈ ⎥⎝⎦,.(2015·21)设函数2()mx f x e x mx =+-.(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.(2015·21)解析:(Ⅰ)()(1)2mx f x m e x '=-+,若0m ≥,则当(,0)x ∈-∞时,10,()0mx e f x '-≤<;当(0,)x ∈+∞时,10mxe -≥,()0f x '>. 若0m <,则当(,0)x ∈-∞时,10,()0mx e f x '-><;当(0,)x ∈+∞时,10mxe-<,()0f x '>,所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[-1,0]单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值,所以对于任意12,[1,1]x x ∈-,12|()()|1f x f x e -≤-的充要条件是(1)(0)1(1)(0)1f f e f f e -≤-⎧⎨--≤-⎩,即11mm e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①. 设函数()1t g t e t e =--+,则()1t g t e '=-,当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0,()0g m g m ≤-≤,即①式成立;当1m >时,由()g t 的单调性,()0g m >,即1me m e ->-;当1m <-时,()0g m ->,即1me m e -+>-,综上,m 的取值范围是[-1,1].(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001). (2014·21)解析:(Ⅰ)1()2()2=220.x x x x x x f x e e x x R f x e e e e --'=--∈∴=+-+-≥=,, ∴当且仅当x =0时等号成立,所以函数()f x 在R 上单调递增. (Ⅱ)22()(2)4()44(2),x x x x g x f x bf x e e x b e e x --=-=-----∴当x >0时,2244(2)0,x x x x e e x b e e x ------->22()2[2()(42)]x x x x g x e e b e e b --'∴=+-++- 2(2)[(22)]x x x x e e e e b --=+-+--,2x x e e -+≥=,2(2)0x x e e -∴+-≥,(1) 当2b ≤时,()0g x '≥,当且仅当x =0时等号成立. 所以此时g (x )在R 上单调递增,而g (0)=0,所以对任意x >0,有g (x )>0.(2) 当2b >时,若x 满足222x x e e b -<+<-时,即0ln(1x b <<-时,()0g x '<,而g (0)=0,因此当0ln(1x b <<-时,g (x )<0.综上可知,当2b ≤时,才对任意的x >0,有g (x )>0,因此b 的最大值为2. (Ⅲ)由(Ⅱ)知,32(21)ln 22g b =-+-,当b =2时,36ln 202g =->,ln 20.6928>>;当14b =+时,ln(1b -=32)ln 202g =--<,18ln 20.693428<<,所以ln2的近似值为0.693.(2013·21)已知函数()ln()x f x e x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >. (2013·21)解析:(Ⅰ)f ′(x )=1xe x m-+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=11x e x -+.函数f ′(x )=11xe x -+在(-1,+∞)单调递增,且f ′(0)=0.因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.(Ⅱ)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=12xe x -+在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值.由f ′(x 0)=0得0x e =012x +,ln(x 0+2)=-x 0,故f (x ) ≥ f (x 0)=012x ++x 0=20012x x (+)+>0. 综上,当m ≤2时,f (x )>0.(2012·21)已知函数121()(1)(0)2x f x f e f x x -'=-+.(Ⅰ)求)(x f 的解析式及单调区间;(Ⅱ)若b ax x x f ++≥221)(,求b a )1(+的最大值. (2012·21)解析:(Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令x =1得,f (x )=1,再由121()(1)(0)2x f x f e f x x -'=-+,令0x =得(1)f e '=. 所以)(x f 的解析式为21()2xf x e x x =-+,∴()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00f x x '>⇔>,()00f x x '<⇔<,所以函数)(x f 的增区间为(0,)+∞,减区间为(,0)-∞. (Ⅱ) 若b ax x x f ++≥221)(恒成立,即21()()(1)02x h x f x x ax b e a x b =---=-+-≥ 恒成立,()(1)x h x e a '=-+.(1)当10a +<时,()0h x '>恒成立,()h x 为R 上的增函数,且当x →-∞时, ()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立,则0b ≤,(1)0a b +=;(3)当10a +>时,()(1)xh x e a '=-+为增函数,由()0h x '=得ln(1)x a =+,故()0ln(1)f x x a '>⇔>+,()0ln(1)f x x a '<⇔<+,当ln(1)x a =+时,()h x 取最小值(ln(1))1(1)ln(1)h a a a a b +=+-++-. 依题意有(ln(1))1(1)ln(1)0h a a a a b +=+-++-≥,即1(1)ln(1)b a a a ≤+-++,10a +>,22(1)(1)(1)ln(1)a b a a a ∴+≤+-++,令22()ln 0u x x x x x =-> (),则()22ln (12ln )u x x x x x x x '=--=-,()00()0u x x u x ''>⇔<<x ⇔>所以当x =()u x 取最大值2eu =.故当1a b +==(1)a b +取最大值2e . 综上,若b ax x x f ++≥221)(,则 b a )1(+的最大值为2e. (2011·21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围. 解析:(Ⅰ)221(ln )()(1)x x b x f x x x α+-'=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)11(1)2f f =⎧⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (Ⅱ)由(Ⅰ)知ln 1()1x f x x x =++,所以22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.考虑函数2(1)(1)()2ln k x h x x x --=+(0)x >,则22(1)(1)2'()k x x h x x-++=. (i)设0k ≤,由222(1)(1)()k x x h x x+--'=知,当1x ≠时,()0h x '<. 而(1)0h =,故当(0,1)x ∈时,()0h x >,可得21()01h x x>-;当x ∈(1,+∞)时,h (x )<0,可得21()01h x x >-,从而当x >0,且x ≠1时,ln ()01x k f x x x -+>-,即ln ()1x kf x x x>+-.(ii )设0<k <1. 由于当x ∈(1,k -11)时,(k -1)(x 2 +1)+2x >0,故h ´(x )>0,而h (1)=0,故当x ∈(1,k-11)时,h (x )>0,可得211x- h (x )<0,与题设矛盾. (iii )设k ≥1. 此时h ´(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x)>0,可得211x -h (x )<0,与题设矛盾.综上可得,k 的取值范围为(-∞,0].2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编8.三角函数与解三角形一、选择题(2016·7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2016·9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2014·4)钝角三角形ABC 的面积是12,AB =1,BC ,则AC =( )A .5BC .2D .1(2012·9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2](2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( )A .45-B .35-C .35D .45(2011·11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增二、填空题(2017·14)函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .(2014·14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2013·15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.(2011·16)在△ABC 中,60,B AC ==2AB BC +的最大值为 . 三、解答题(2017·17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c += , ABC ∆面积为2,求.b .(2015·17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC∠∠;(Ⅱ) 若AD =1,DC ,求BD 和AC 的长.(2013·17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ)求A ;(Ⅱ)若a =2,△ABC 的面积为3,求b ,c .2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编8.三角函数与解三角形(逐题解析版)一、选择题(2016·7)B 解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(2016·9)D 解析:∵3cos()45πα-=,2ππ7sin 2cos(2)cos[2()]2cos ()124425παααα=-=-=--=,故选D .(2014·4)B 解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin 2B =,即45B =或135. 又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:||AC =(2012·9)A 解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.(2011·5)B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B.(2011·11)A 解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴=+=,故选A.二、填空题(2017·14)1【解析】∵ ()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,22sin cos 1x x +=,∴ ()21cos 4f x x x =-+,设cos t x =,[]0,1t ∈,∴ ()214f x t =-++,函数对称轴为[]0,1t =,∴ ()max 1f x =.(2016·13)2113解析:∵4cos 5A =,5cos 13C =,∴3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B A C A C A C =+=+=,由正弦定理得:sin sin b a B A =,解得2113b =.(2014·14)1 解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x x ϕϕϕϕϕϕϕϕϕϕ=+++-+=+-+=∵x R ∈,∴()f x 的最大值为1.。

2011—2018年新课标全国卷2文科数学试题分类汇编——13.坐标系与参数方程

2011—2018年新课标全国卷2文科数学试题分类汇编——13.坐标系与参数方程

10⎩2011年—2018年新课标全国卷Ⅱ文科数学试题分类汇编13.坐标系与参数方程(2018.22)在直角坐标系xOy 中,曲线C 的参数方程为,(θ为参数),直线l 的参数方程为,(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.(2017·22)[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |⋅|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2016·23)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;⎧x =t cos α(Ⅱ)直线l 的参数方程是⎨y =t sin α(t 为参数),l 与C 交于A ,B 两点,AB ,求l 的斜率.(Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.⎨y =2s in t ⎨y =3sin ϕ⎨y =2+2sin α(2014·23)在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈[0,π].2(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :y =确定D 的坐标.(2013·23)已知动点P ,Q 都在曲线C :⎧x =2c o s t ⎩3x +2垂直,根据(Ⅰ)中你得到的参数方程,(t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.(2012·23)已知曲线C 1的参数方程是⎧x =2cos ϕ(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极⎩轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π).3(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围.(2011·23)在直角坐标系xOy 中,曲线C 1的参数方程为⎧x =2cos α⎩(α为参数),M 是C 1上的动点,P 点满足OP =2OM ,P 点的轨迹为曲线C 2.(Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π与C 1的异于极点的交点为A ,3与C 2的异于极点的交点为B ,求|AB |.x 2+y 2ρ12011年—2018年新课标全国卷Ⅱ文科数学试题分类汇编13.坐标系与参数方程(逐题解析版)(2018.22)【解答】解:(1)曲线C 的参数方程为(θ为参数),转换为直角坐标方程为:.直线l的参数方程为(t 为参数).转换为直角坐标方程为:x sin α﹣y cos α+2cos α﹣sin α=0.(2)把直线的参数方程(t 为参数),代入椭圆的方程得到:+=1整理得:(4cos 2α+sin 2α)t 2+(8cos α+4sin α)t ﹣8=0,则:,(由于t 1和t 2为A 、B 对应的参数)由于(1,2)为中点坐标,所以利用中点坐标公式,则:8cos α+4sin α=0,解得:tan α=﹣2,即:直线l 的斜率为﹣2.(2017·22)[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |⋅|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为π,点B 在曲线C 上,求∆OAB 面积的最大值.(2,)23(2017·22)解析:(1)解法一:设P 点在极坐标下坐标为(ρ,θ)⎛16⎫由OM ⋅OP =16可得M 点的坐标为 ,θ⎪,代入曲线C 的极坐标方程,得:⎝⎭16cos θ=4,即ρρ=4c o s θ,两边同乘以ρ,化成直角坐标方程为:x 2+y 2=4x ,由题意知ρ>0,所以检验得x 2+y 2=4x (x ≠0).解法二:设P 点在直角坐标系下坐标为(x ,y ),曲线C 1的直角坐标方程为x =4,因为O ,P ,M 三点共线,⎛4y ⎫所以M 点的坐标为 4,x ⎪,代入条件OM ⋅OP =16得:⋅=16,因为x >0,⎝⎭化简得:x 2+y 2=4x (x ≠0).(2)解法一:由(1)知曲线C 2的极坐标方程为ρ=4cos θ,故可设B 点坐标为(4cos θθ,,16+16y 2x 21015⎩⎨⎩⎩(2016·23)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;⎧x =t cos α(Ⅱ)直线l 的参数方程是⎨y =t sin α(t 为参数),l 与C 交于A ,B 两点,AB ,求l 的斜率.⎧ρ2=x 2+y 2(2016·23)解析:⑴整理圆的方程得x 2+y 2+12+11=0,由⎪ρcos θ=x ⎪ρsin θ=y 可知,圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)记直线的斜率为k ,则直线的方程为kx -y =0,由垂径定理及点到直线距离公式知:-6k=36k 2,即290,整理得k 2=5,则k =±.1+k 21+k 433(2015·23)在直角坐标系xOy 中,曲线C :⎧x =t cos α(t 为参数,t ≠0)其中0≤α<π,在以O 为1⎨y =t sin α极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(Ⅰ)求C 2与C 3交点的直角坐标;(Ⅱ)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.25-⎛10⎫2 ⎪⎝⎭2=。

2012-2017年高考文科数学真题汇编:坐标系和参数方程老师版

2012-2017年高考文科数学真题汇编:坐标系和参数方程老师版

学 科 教 师 辅 导 教 案授课日期及时段2017年月日:一1.( 2015年广东文)线G 的极坐标方程为 ?COST sinv - -2,曲线C 2的参数方程为X" ( t 为参数),则c ,与C 2交[y =2(2txOy 中,曲线 G : x-tcos- ,(t 为参数,且t = o ), y =tsinot,,在以o 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ' = 2sin 二,C 3:『=2 3cos .(I )求C 2与C 3交点的直角坐标;(II )若C ,与C 2相交于点A C i 与C 3相交于 点B ,求AB 最大值.试题分析:(I )把C 2与C 3的方程化为直角坐标方程分别为X 2 y 2-2y =0,x 2 y 2 - 2 - 3^0, 联 立 解学员姓名 年级咼二辅导科目 数学授课老师课时数2h第次课建立极坐标系.曲点的直角坐标为 2, -4 .其中 0 _ :方程溟可帚玄毛住届 5)元踴定田连q 跆捋方程为&二列尸怎比口砂〕起一步求比点4田股生标 先(24n 蔭.cr ]点3的赣坐标为:2^3阳cc rxj 由lit 可届 |-切| ==4 sin ; a~—;I I »tv.门】曲纯G 的劃i 坐标才程为討+H -即"堆錢C 的臣角坐标2隍为Y 3 +j :- 烬=0慝注T孑百3、:厨以G 写Q 喪点的直审业悟[0』片丄二訂di: it 或G 粧生标古里対■立耳中。

三空v-兀 因i 汽亠田槻坐咄利2血尤②車g以坐标原点为极点,X 轴正半轴为极轴建立极坐标系(I )求C i ,C 2的极坐标方程.(II )若直线C 3的极坐标方程为日=』(PE R ),设C 2,C 3的交点为M,N ,求A C 2MN1;■ I=sidff-—xOy 吕,直线I 的参数方程为]x = 3十」t占2 (t 为参数),以原点为极点,X 轴的正半轴为极轴建立极坐标系, L C 的极坐标方程为二=2 3sinx⑴ 写出L C 的直角坐标方程;(II) 为求点P 的坐标.试题解析: ⑴ 由—2、:3sinr ,得「2=2、.3飞inn ,从而有x 2 亠〔y - ;3 = 3卡寸二2 3y 所以 (II)设+号呼「『3昇卜A 2丿<2 丿t 2 12 , 故当t =0时,PC 取得最小值,此时P 点的坐标为(3,0).4、(2015新课标1)在直角坐标系xOy 中,直线C i:x = -2 ,圆 C2:(x-1$+(y -2)2=1 ,兰口=苓时⑷限待醍人直醍尢值拘1. 6Hi以「iff | - |2si]i!Z-2^ UJ > L £(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(H )直线l 的参数方程是[xicosc ^t 为参数),|与C 交于A ,B 两点,|AB|=V10 , y = tsi na求l 的斜率. f = x 2• y 2解:⑴整理圆的方程得x 2y 212 1^0,由Tcosv-x 可知圆C 的极坐标"sin J - y方程为J 2 12 2osr 1仁0 .⑵记直线的斜率为k ,则直线的方程为kx — y=0, 由垂径定理及点到直线距离公式知:単=丄5 一回f , 即、时' I 2丿36k : =90,整理得 k 2=5,则—15 . 1 k 24 337、( 2016年全国III )在直角坐标系xOy 中,曲线C 1的参数方程为日(日为参数), [y =s in 日以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线C 2的 极坐标方程为宀心尸2(I )写出C 1的普通方程和C 2的直角坐标方程;(II )设点P 在C 1上,点Q 在C 2上,求|PQ 的最小值及此时P 的直角坐8、(2016江苏)在平面直角坐标系xOy 中,已知直线I 的参数方程为x =cos 入厂2sin '(二为参数).设直线|与椭圆C 相 交于A, B两点,求线段AB 的长.x =1 - t23 F (t为参数),椭圆C 的参数方程为通方程,并求出它们的公共点的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标全国卷Ⅰ文科数学分类汇编13.坐标系与参数方程一、解答题【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l a .【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C .(Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程; (II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【2013,23】已知曲线C 1的参数方程为45cos ,55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。

正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,3π)。

(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围。

【2011,23】在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u v,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .新课标全国卷Ⅰ文科数学分类汇编 13.坐标系与参数方程(解析版)一、解答题【2017,22】在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数). (1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .【解析】(1)1a =-时,直线l 的方程为430x y +-=.曲线C 的标准方程是2219xy +=,联立方程2243019x y x y +-=⎧⎪⎨+=⎪⎩,解得:30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,则C 与l 交点坐标是()30,和21242525⎛⎫- ⎪⎝⎭, (2)直线l 一般式方程是440x y a +--=.设曲线C 上点()3cos sin p θθ,. 则P 到l距离d =,其中3tan 4ϕ=. 依题意得:max d 16a =-或8a =.【2016,23】在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C . (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】:⑴ cos 1sin x a t y a t=⎧⎨=+⎩ (t 均为参数),∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-=即为1C 的极坐标方程⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,224x y x ∴+=,即()2224x y -+= ②,3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C ∴210a -=,∴1a =【2015,23】在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(I )求1C ,2C 的极坐标方程; (II )若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.解析:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=,2ρ|MN |=1ρ-2ρ2C 的半径为1,则2C MN ∆的面积o 11sin 452⨯=12.【2014,23】已知曲线C :22149x y +=,直线l :222x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值. 【解析】:.(Ⅰ) 曲线C 的参数方程为:2cos 3sin x y θθ=⎧⎨=⎩ (θ为参数),直线l 的普通方程为:260x y +-=(Ⅱ)(2)在曲线C 上任意取一点P (2cos θ,3sin θ)到l 的距离为3sin 6d θθ=+-,则()0||6sin 30d PA θα==+- ,其中α为锐角.且4tan 3α=.当()sin 1θα+=-时,||PA当()sin 1θα+=时,||PA【2013,23】已知曲线C 1的参数方程为45cos ,55sin x t y t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0. 将cos ,sin x y ρθρθ=⎧⎨=⎩代入x 2+y 2-8x -10y +16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由2222810160,20x y x y x y y ⎧+--+=⎨+-=⎩解得1,1x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩所以C 1与C 2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.【2012,23】已知曲线1C 的参数方程为⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ。

正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,3π)。

(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围。

【解析】(1)曲线1C 的参数方程⎩⎨⎧==ϕϕsin 3cos 2y x 化为直角坐标方程为22149x y +=, 曲线2C 的极坐标方程2=ρ化为 直角坐标方程为224x y +=, 因为点A 的极坐标为(2,3π), 所以点B 的极坐标为(2,56π),点C 的极坐标为(2,43π),点D 的极坐标为(2,116π),因此点A 的直角坐标为(1,点B 的直角坐标为(1),点C 的直角坐标为(-1,点D 1)。

(2)设P (2cos ϕ,3sin ϕ),则2222||||||||PD PC PB PA +++2222(2cos 1)(3sin (2cos (3sin 1)ϕϕϕϕ=-+++-2222(2cos 1)(3sin (2cos (3sin 1)ϕϕϕϕ++++++2222(2cos 1)(3sin (2cos (3sin 1)ϕϕϕϕ=-+++-2222(2cos 1)(3sin (2cos (3sin 1)ϕϕϕϕ++++++220sin 32ϕ=+[32,52]∈。

因此2222||||||||PD PC PB PA +++的取值范围为[32,52]。

【2011,23】在直角坐标系xOy 中,曲线C 1的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数)M 是C 1上的动点,P 点满足2OP OM =u u u v u u u v,P 点的轨迹为曲线C 2(Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .解:(I )设(),P x y ,则由条件知,22x y M ⎛⎫ ⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩.从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(II)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=.。

相关文档
最新文档