2019届高考数学(人教A版文科)一轮复习考点规范练12函数与方程

合集下载

2019届高考数学人教A版文科一轮复习考点规范练10 精品

2019届高考数学人教A版文科一轮复习考点规范练10 精品

考点规范练10幂函数与二次函数基础巩固1.已知幂函数f(x)=k·xα的图象过点,则k+α=()A. B.1C. D.22.已知y=f(x)是奇函数,当x<0时,f(x)=x2+ax,且f(3)=6,则a的值为()A.5B.1C.-1D.-33.(2017山东济宁模拟)若函数y=x2-3x-4的定义域为[0,m],值域为,则m的取值范围是()A.[0,4]B.C.D.4.若函数f(x)=x2-|x|-6,则f(x)的零点个数为()A.1B.2C.3D.45.若a<0,则0.5a,5a,5-a的大小关系是()A.5-a<5a<0.5aB.5a<0.5a<5-aC.0.5a<5-a<5aD.5a<5-a<0.5a6.(2017福建龙岩一模)已知f(x)=x3,若当x∈[1,2]时,f(x2-ax)+f(1-x)≤0,则a的取值范围是()A.a≤1B.a≥1C.a≥D.a≤7.设α∈,则使f(x)=xα为奇函数,且在区间(0,+∞)内单调递减的α的值的个数是()A.1B.2C.3D.48.若关于x的不等式x2+ax+1≥0对于一切x∈恒成立,则a的最小值是()A.0B.2C.-D.-39.已知二次函数f(x)的图象过点(0,1),对称轴为x=2,最小值为-1,则它的解析式为.10.若函数f(x)是幂函数,且满足=3,则f=.11.(2017北京,文11)已知x≥0,y≥0,且x+y=1,则x2+y2的取值范围是.12.已知幂函数f(x)=,若f(a+1)<f(10-2a),则a的取值范围是.能力提升13.设函数f(x)=x2+x+a(a>0),若f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<014.设abc>0,则二次函数f(x)=ax2+bx+c的图象可能是()15.已知函数f(x)=2ax2+3b(a,b∈R).若对于任意x∈[-1,1],都有|f(x)|≤1成立,则ab的最大值是.高考预测16.设甲:ax2+2ax+1>0的解集是实数集R;乙:0<a<1,则甲是乙成立的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件答案:1.C解析:由幂函数的定义知k=1.又f,所以,解得α=,从而k+α=.2.A解析:∵y=f(x)是奇函数,且f(3)=6,∴f(-3)=-6,∴9-3a=-6,解得a=5.故选A.3.D解析:二次函数图象的对称轴的方程为x=,且f=-,f(3)=f(0)=-4,结合图象可得m∈.4.B解析:当x>0时,x2-x-6=0,解得x=-2或x=3,可知x=3;当x<0时,x2+x-6=0,解得x=2或x=-3,可知x=-3;故f(x)的零点个数为2.故选B.5.B解析:5-a=.因为a<0,所以函数y=x a在(0,+∞)内单调递减.又<0.5<5,所以5a<0.5a<5-a.6.C解析:f(x)在(-∞,+∞)内为奇函数且单调递增.∴由f(x2-ax)+f(1-x)≤0,得f(x2-ax)≤f(x-1),∴x2-ax≤x-1,即x2-(a+1)x+1≤0.设g(x)=x2-(a+1)x+1,则有解得a≥.故选C.7.A解析:由f(x)=xα在区间(0,+∞)内单调递减,可知α<0.又因为f(x)=xα为奇函数,所以α只能取-1.8.C解析:由x2+ax+1≥0得a≥-在x∈上恒成立.令g(x)=-,则g(x)在上为增函数,所以g(x)max=g=-,所以a≥-.9.f(x)=(x-2)2-1解析:依题意可设f(x)=a(x-2)2-1.∵函数图象过点(0,1),∴4a-1=1.∴a=.∴f(x)=(x-2)2-1.10.解析:依题意设f(x)=xα(α∈R),则有=3,即2α=3,得α=log23,则f(x)=,于是f.11.解析:x2+y2=x2+(1-x)2=2x2-2x+1,x∈[0,1],所以当x=0或1时,x2+y2取最大值1;当x=时,x2+y2取最小值.因此x2+y2的取值范围为.12.(3,5)解析:∵f(x)=(x>0),∴f(x)是定义在(0,+∞)内的减函数.又f(a+1)<f(10-2a),∴解得∴3<a<5.13.C解析:∵f(x)图象的对称轴为x=-,f(0)=a>0,∴f(x)的大致图象如图所示.由f(m)<0,得-1<m<0,∴m+1>0,∴f(m+1)>f(0)>0.14.D解析:由选项A,C,D知,f(0)=c<0.∵abc>0,∴ab<0,∴对称轴x=->0,知选项A,C错误,选项D符合要求.由选项B知f(0)=c>0,则ab>0,故x=-<0,即选项B错误.15.解析:(方法一)由|f(x)|≤1,得|f(1)|=|2a+3b|≤1.所以6ab=2a·3b≤(2a+3b)2≤.且当2a=3b=±时,取得等号.所以ab的最大值为.(方法二)由题设得故因此ab=(f(1)-f(0))f(0)≤.故ab的最大值为.16.C解析:当a=0时,得1>0,符合ax2+2ax+1>0的解集是实数集R;当a>0时,由ax2+2ax+1>0的解集是R可知Δ=4a2-4a<0,解得0<a<1;故0≤a<1,故甲是乙成立的必要不充分条件.。

2019版高考文科数学大一轮复习人教A版文档:9.7

2019版高考文科数学大一轮复习人教A版文档:9.7

§9.7 抛物线最新考纲考情考向分析1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用.2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.抛物线的方程、几何性质及与抛物线相关的综合问题是命题的热点.题型既有小巧灵活的选择、填空题,又有综合性较强的解答题.1.抛物线的概念平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程与几何性质y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)标准方程p 的几何意义:焦点F 到准线l 的距离图形顶点坐标O (0,0)对称轴x 轴y 轴焦点坐标F (p2,0)F (-p 2,0)F(0,p2)F(0,-p 2)离心率e =1准线方程x =-p 2x =p 2y =-p2y =p 2范围x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下知识拓展1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F 的距离|PF |=x 0+,也称为抛物线的(p 2,0)p2焦半径.2.y 2=ax (a ≠0)的焦点坐标为,准线方程为x =-.(a 4,0)a43.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=,y 1y 2=-p 2.p 24(2)弦长|AB |=x 1+x 2+p =(α为弦AB 的倾斜角).2psin2α(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是,准线方(a4,0)程是x =-.( × )a4(3)抛物线既是中心对称图形,又是轴对称图形.( × )(4)AB 为抛物线y 2=2px (p >0)的过焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(p2,0)x 1x 2=,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )p 24(5)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( × )(6)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )题组二 教材改编2.[P64A 组T3]过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( )A .9 B .8 C .7 D .6答案 B解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.[P59T1]已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为____________.答案 y 2=-8x 或x 2=-y解析 设抛物线方程为y 2=2px (p ≠0)或x 2=2py (p ≠0).将P (-2,-4)代入,分别得方程为y 2=-8x 或x 2=-y .题组三 易错自纠4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( )A .4 B .6C .8 D .12答案 B解析 如图所示,抛物线的准线l 的方程为x =-2,F 是抛物线的焦点,过点P 作PA ⊥y 轴,垂足是A ,延长PA 交直线l 于点B ,则|AB |=2.由于点P 到y 轴的距离为4,则点P 到准线l 的距离|PB |=4+2=6,所以点P 到焦点的距离|PF |=|PB |=6.故选B.5.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( )A .y 2=±2x B .y 2=±2x 2C .y 2=±4x D .y 2=±4x 2答案 D解析 由已知可知双曲线的焦点为(-,0),(,0).设抛物线方程为y 2=±2px (p >0),则22=,所以p =2,所以抛物线方程为y 2=±4x .故选D.p22226.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是__________.答案 [-1,1]解析 Q (-2,0),当直线l 的斜率不存在时,不满足题意,故设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1.题型一 抛物线的定义及应用典例 设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则|PB |+|PF |的最小值为________.答案 4解析 如图,过点B 作BQ 垂直准线于点Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |.则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4,即|PB |+|PF |的最小值为4.引申探究1.若将本例中的B 点坐标改为(3,4),试求|PB |+|PF |的最小值.解 由题意可知点B (3,4)在抛物线的外部.∵|PB |+|PF |的最小值即为B ,F 两点间的距离,F (1,0),∴|PB |+|PF |≥|BF |==2,42+225即|PB |+|PF |的最小值为2.52.若将本例中的条件改为:已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,求d 1+d 2的最小值.解 由题意知,抛物线的焦点为F (1,0).点P 到y 轴的距离d 1=|PF |-1,所以d 1+d 2=d 2+|PF |-1.易知d 2+|PF |的最小值为点F 到直线l 的距离,故d 2+|PF |的最小值为=3,|1+5|12+(-1)22所以d 1+d 2的最小值为3-1.2思维升华 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.跟踪训练设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.答案 5解析 如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知点P 到直线x =-1的距离等于点P 到F 的距离.于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小,显然,连接AF 与抛物线相交的点即为满足题意的点,此时最小值为=.[1-(-1)]2+(0-1)25题型二 抛物线的标准方程和几何性质命题点1 求抛物线的标准方程典例(2017·深圳模拟)如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=xB .y 2=9x32C .y 2=x D .y 2=3x 92答案 D解析 分别过点A ,B 作AA 1⊥l ,BB 1⊥l ,且垂足分别为A 1,B 1,由已知条件|BC |=2|BF |,得|BC |=2|BB 1|,所以∠BCB 1=30°.又|AA 1|=|AF |=3,所以|AC |=2|AA 1|=6,所以|CF |=|AC |-|AF |=6-3=3,所以F 为线段AC 的中点.故点F 到准线的距离为p =|AA 1|=,1232故抛物线的方程为y 2=3x .命题点2 抛物线的几何性质典例 已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=;p 24(2)+为定值;1|AF |1|BF |(3)以AB 为直径的圆与抛物线的准线相切.证明 (1)由已知得抛物线焦点坐标为.(p2,0)由题意可设直线方程为x =my +,代入y 2=2px ,p2得y 2=2p,即y 2-2pmy -p 2=0.(*)(my +p2)因为在抛物线内部,(p 2,0)所以直线与抛物线必有两交点.则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2.因为y =2px 1,y =2px 2,所以y y =4p 2x 1x 2,212212所以x 1x 2===.y 21y 24p 2p 44p 2p 24(2)+=+1|AF |1|BF |1x 1+p 21x 2+p 2=.x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24因为x 1x 2=,x 1+x 2=|AB |-p ,代入上式,p 24得+==(定值).1|AF |1|BF ||AB |p 24+p 2(|AB |-p )+p 242p (3)设AB 的中点为M (x 0,y 0),如图所示,分别过A ,B 作准线l 的垂线,垂足为C ,D ,过M 作准线l 的垂线,垂足为N ,则|MN |=(|AC |+|BD |)12=(|AF |+|BF |)=|AB |.1212所以以AB 为直径的圆与抛物线的准线相切.思维升华 (1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.跟踪训练 (1)(2017·广西三市调研)若抛物线y 2=2px (p >0)上的点A (x 0,)到其焦点的距离是2A 到y 轴距离的3倍,则p 等于( )A.B .1 C. D .21232答案 D解析 由题意得3x 0=x 0+,即x 0=,p2p4即A ,代入抛物线方程,得=2,(p4,2)p 22∵p >0,∴p =2.故选D.(2)(2017·郑州二模)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且|PA |=|AB |,则点A 到抛物线C 的焦点的距离为( )12A. B. C. D .2537597答案 A解析 设A (x 1,y 1),B (x 2,y 2),分别过点A ,B 作直线x =-2的垂线,垂足分别为点D ,E .∵|PA |=|AB |,12∴Error!又Error!得x 1=,23则点A 到抛物线C 的焦点的距离为1+=.2353题型三 直线与抛物线的综合问题命题点1 直线与抛物线的交点问题典例 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若·=0,则k =________.MA→ MB → 答案 2解析 抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0,则抛物线C 与直线必有两个交点.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+,x 1x 2=4.8k 2所以y 1+y 2=k (x 1+x 2)-4k =,8k y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为·=(x 1+2,y 1-2)·(x 2+2,y 2-2)MA→ MB → =(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=x 1x 2+2(x 1+x 2)+y 1y 2-2(y 1+y 2)+8=0,将上面各个量代入,化简得k 2-4k +4=0,所以k =2.命题点2 与抛物线弦的中点有关的问题典例 (2016·全国Ⅲ)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.(1)证明 由题意知,F ,设l 1:y =a ,l 2:y =b ,则ab ≠0,(12,0)且A ,B ,P ,Q ,R.(a 22,a )(b 22,b )(-12,a )(-12,b )(-12,a +b2)记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1===a -b1+a 2a -b a 2-ab 1a=-=-b ==k 2.ab a b -0-12-12所以AR ∥FQ .(2)解 设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0),则S △ABF =|b -a ||FD |=|b -a |,1212|x 1-12|S △PQF =.|a -b |2由题意可得|b -a |=,|x 1-12||a -b |2所以x 1=1,x 1=0(舍去).设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得=(x ≠1).2a +b yx -1而=y ,所以y 2=x -1(x ≠1).a +b2当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0),满足方程y 2=x -1.所以所求轨迹方程为y 2=x -1.思维升华 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.跟踪训练(2018届武汉调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线交点为N .(1)若N 在以AB 为直径的圆上,求p 的值;(2)若△ABN 面积的最小值为4,求抛物线C 的方程.解 (1)可设AB :y =kx +1,A (x 1,y 1),B (x 2,y 2),将AB 的方程代入抛物线C ,得x 2-2pkx -2p =0,显然方程有两不等实根,则x 1+x 2=2pk ,x 1x 2=-2p .①又x 2=2py 得y ′=,xp 则A ,B 处的切线斜率乘积为=-=-1,x 1x 2p 22p 则有p =2.(2)设切线AN 为y =x +b ,x 1p 又切点A 在抛物线y =上,x 22p∴y 1=,∴b =-=-,x 212p x 212p x 21p x 212p ∴y AN =x -.x 1p x 212p 同理y BN =x -.x 2p x 22p 又∵N 在y AN 和y BN 上,∴Error!解得N.(x 1+x 22,x 1x 22p )∴N (pk ,-1).|AB |=|x 2-x 1|1+k 2=,1+k 24p 2k 2+8p 点N 到直线AB 的距离d ==,|kxN +1-yN |1+k 2|pk 2+2|1+k 2S △ABN =·|AB |·d 12=≥2,p (pk 2+2)32p ∴2=4,∴p =2,2p 故抛物线C 的方程为x 2=4y .直线与圆锥曲线问题的求解策略典例 (12分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q .(1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.思维点拨 (3)中证明·=0.QA→ QB → 规范解答解 (1)∵抛物线C :x 2=y ,1m ∴它的焦点F.[2分](0,14m )(2)∵|RF |=y R +,14m ∴2+=3,得m =.[4分]14m 14(3)存在,联立方程Error!消去y 得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0,得m >-.[6分]12设A (x 1,mx ),B (x 2,mx ),则Error!(*)212∵P 是线段AB 的中点,∴P ,(x 1+x 22,mx 21+mx 22)即P ,∴Q,[8分](1m ,yP )(1m ,1m )得=,QA → (x 1-1m ,mx 21-1m )=.QB → (x 2-1m ,mx 2-1m )若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形,则·=0,QA→ QB → 即·+=0,[10分](x 1-1m )(x 2-1m )(mx 21-1m )(mx 2-1m )结合(*)式化简得--+4=0,4m 26m 即2m 2-3m -2=0,∴m =2或m =-,12而2∈,-∉.(-12,+∞)12(-12,+∞)∴存在实数m =2,使△ABQ 是以Q 为直角顶点的直角三角形.[12分]解决直线与圆锥曲线的位置关系的一般步骤第一步:联立方程,得关于x 或y 的一元二次方程;第二步:写出根与系数的关系,并求出Δ>0时参数范围(或指出直线过曲线内一点);第三步:根据题目要求列出关于x 1x 2,x 1+x 2(或y 1y 2,y 1+y 2)的关系式,求得结果;第四步:反思回顾,查看有无忽略特殊情况.1.点M (5,3)到抛物线y =ax 2(a ≠0)的准线的距离为6,那么抛物线的方程是( )A .y =12x 2B .y =12x 2或y =-36x 2C .y =-36x 2D .y =x 2或y =-x 2112136答案 D解析 分两类a >0,a <0,可得y =x 2或y =-x 2.1121362.(2018届云南昆明一中摸底)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,点A ∈l ,线段AF 交抛物线C 于点B ,若=3,则||等于( )FA → FB → AF→ A .3 B .4 C .6 D .7答案 B解析 由已知B 为AF 的三等分点,作BH ⊥l 于H ,如图,则|BH |=|FK |=,∴||=||=,∴||=3||=4,故选B.2343BF → BH → 43AF → BF→3.(2017·皖北协作区联考)已知抛物线C :x 2=2py (p >0),若直线y =2x 被抛物线所截弦长为4,则抛物线C 的方程为( )5A .x 2=8y B .x 2=4y C .x 2=2y D .x 2=y答案 C解析 由Error!得Error!或Error!即两交点坐标为(0,0)和(4p,8p ),则=4,得p =1(舍去负值),(4p )2+(8p )25故抛物线C 的方程为x 2=2y .4.(2017·赣州二模)抛物线C :y 2=2px (p >0)的焦点为F ,A 是抛物线上一点,若A 到F 的距离是A 到y 轴距离的两倍,且△OAF 的面积为1,O 为坐标原点,则p 的值为( )A .1 B .2C .3 D .4答案 B解析 不妨设A (x 0,y 0)在第一象限,由题意可知Error!即Error!∴A ,又∵点A 在抛物线y 2=2px 上,(p 2,4p )∴=2p ×,即p 4=16,又∵p >0,∴p =2,故选B.16p 2p25.(2018届新余市第一中学模拟)动点P 到点A (0,2)的距离比它到直线l :y =-4的距离小2,则动点P 的轨迹方程为( )A .y 2=4x B .y 2=8x C .x 2=4yD .x 2=8y答案 D解析 ∵动点P 到点A (0,2)的距离比它到直线l :y =-4的距离小2,∴动点P 到点A (0,2)的距离与它到直线y =-2的距离相等.根据抛物线的定义可得点P 的轨迹为以A (0,2)为焦点,以直线y =-2为准线的抛物线,其标准方程为x 2=8y ,故选D.6.(2017·昆明调研)已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若·=-12,则抛物线C 的方程为( )OA→ OB → A .x 2=8y B .x 2=4y C .y 2=8x D .y 2=4x答案 C解析 由题意,设抛物线方程为y 2=2px (p >0),直线方程为x =my +,联立Error!p2消去x 得y 2-2pmy -p 2=0,显然方程有两个不等实根.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=-p 2,得·=x 1x 2+y 1y 2=+y 1y 2OA → OB → (my 1+p 2)(my 2+p2)=m 2y 1y 2+(y 1+y 2)++y 1y 2=-p 2=-12,得p =4(舍负),pm 2p 2434即抛物线C 的方程为y 2=8x .7.(2017·河北六校模拟)抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为________.答案 y 2=16x解析 设满足题意的圆的圆心为M (x M ,y M ).根据题意可知圆心M 在抛物线上.又∵圆的面积为36π,∴圆的半径为6,则|MF |=x M +=6,即x M =6-,p2p2又由题意可知x M =,∴=6-,解得p =8.p4p4p2∴抛物线方程为y 2=16x .8.已知抛物线y 2=2px (p >0)的焦点F 与双曲线-y 2=1的右焦点重合,若A 为抛物线上x x 23轴上方一点,且|AF |=3,则直线AF 的斜率等于________.答案 -22解析 双曲线-y 2=1的右焦点为(2,0),x 23∴抛物线方程为y 2=8x ,p =4.∵|AF |=3,∴x A +2=3,∴x A =1,代入抛物线方程可得y A =±2.2∵点A 在x 轴上方,∴A (1,2),2∴直线AF 的斜率k ==-2.221-229.(2017·江西九校联考)抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案 23解析 y 2=2px 的准线方程为x =-.由于△ABF 为等边三角形,因此不妨设A ,Bp2(-p 2,p 3),又点A ,B 在双曲线y 2-x 2=1上,从而-=1,(-p 2,-p 3)p 23p 24又p >0,所以p =2.310.(2017·全国Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.答案 6解析 如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF ,∴|MP |=|FO |=1.12又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.11.(2018·郑州模拟)已知过抛物线y 2=2px (p >0)的焦点,斜率为2的直线交抛物线于2A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值.OC → OA → OB→解 (1)直线AB 的方程是y =2,与y 2=2px 联立,从而有4x 2-5px +p 2=0.2(x -p2)由题易知,方程必有两个不等实根.所以x 1+x 2=,由抛物线定义得5p4|AB |=x 1+x 2+p =+p =9,5p4所以p =4,从而抛物线方程为y 2=8x .(2)由于p =4,则4x 2-5px +p 2=0,即x 2-5x +4=0,从而x 1=1,x 2=4,于是y 1=-2,y 2=4,22从而A (1,-2),B (4,4).设C (x 3,y 3),22则=(x 3,y 3)=(1,-2)+λ(4,4)OC→ 22=(4λ+1,4λ-2).22又y =8x 3,即[2(2λ-1)]2=8(4λ+1),232整理得(2λ-1)2=4λ+1,解得λ=0或λ=2.12.(2017·北京)已知抛物线C :y 2=2px 过点P (1,1),过点作直线l 与抛物线C 交于不(0,12)同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程;(2)求证:A 为线段BM 的中点.(1)解 由抛物线C :y 2=2px 过点P (1,1),得p =,12所以抛物线C 的方程为y 2=x ,抛物线C 的焦点坐标为,准线方程为x =-.(14,0)14(2)证明 由题意知,直线l 的斜率必存在.设直线l 的方程为y =kx +(k ≠0),12l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由Error!得4k 2x 2+(4k -4)x +1=0,则x 1+x 2=,x 1x 2=.1-kk 214k 2因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1).直线ON 的方程为y =x ,点B 的坐标为.y 2x 2(x 1,y 2x 1x 2)因为y 1+-2x 1=y 2x 1x 2y 1x 2+y 2x 1-2x 1x 2x 2=(kx 1+12)x 2+(kx 2+12)x 1-2x 1x 2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2==0,(2k -2)×14k 2+1-k 2k 2x 2所以y 1+=2x 1,y 2x 1x 2故A 为线段BM的中点.13.(2017·邵阳联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M (x 0,2)是抛物线2(x 0>p2)C 上一点,圆M 与线段MF 相交于点A ,且被直线x =截得的弦长为|MA |.若=2,则p23|MA ||AF ||AF |等于( )A. B .1 C .2 D .332答案 B解析 由题意知M (x 0,2)在抛物线上,2则8=2px 0,则px 0=4,①由抛物线的性质可知,|DM |=x 0-,=2,p2|MA ||AF |则|MA |=2|AF |=|MF |=,2323(x 0+p2)∵圆M 被直线x =截得的弦长为|MA |,p23则|DE |=|MA |=,3233(x 0+p2)又|MA |=|ME |=r ,在Rt △MDE 中,|DE |2+|DM |2=|ME |2,即2+2=2,13(x 0+p2)(x 0-p2)49(x 0+p2)代入整理得4x +p 2=20,②20由①②,解得x 0=2,p =2(舍负),∴|AF |==1,故选B.13(x 0+p2)14.过点(0,3)的直线与抛物线y 2=4x 交于A ,B 两点,线段AB 的垂直平分线经过点(4,0),F 为抛物线的焦点,则|AF |+|BF |的值为________.答案 6解析 设AB 的中点为H ,抛物线的焦点为F (1,0),准线方程为x =-1,设A ,B ,H 在准线上的射影为A ′,B ′,H ′,则|HH ′|=(|AA ′|+|BB ′|),由抛物线的定义可得,12|AF |=|AA ′|,|BF |=|BB ′|,|AF |+|BF |=|AA ′|+|BB ′|=2|HH ′|.由题意知直线的斜率必存在,设为y =kx +3,与y 2=4x 联立得k 2x 2+(6k -4)x +9=0,Δ=(6k -4)2-36k 2>0,计算得出k <且k ≠0,13又x 1+x 2=,AB 的中点为,4-6kk 2(2-3k k 2,2k )线段AB 的垂直平分线过点(4,0),方程为y =-(x -4),且过中点,则=-1k (2-3k k 2,2k )2k 1k,(2-3k k 2-4)得2k 2+3k -2=0,解得k =-2或k =(舍去),12则H (2,-1),|HH ′|=2+1=3,则|AF |+|BF |=|AA ′|+|BB ′|=2|HH ′|=6.15.已知曲线G :y =及点A (1,0),若曲线G 上存在相异两点B ,C ,其到直-x 2+16x -15线l :x +1=0的距离分别为|AB |和|AC |,则|AB |+|AC |=________.答案 14解析 曲线G :y =,即为半圆M :(x -8)2+y 2=49(y ≥0),由题意得B ,C -x 2+16x -15为半圆M 与抛物线y 2=4x 的两个交点,由y 2=4x 与(x -8)2+y 2=49(y ≥0)联立方程组得x 2-12x +15=0,方程必有两不等实根,设B (x 1,y 1),C (x 2,y 2).所以|AB |+|AC |=x 1+1+x 2+1=12+2=14.16.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________________.答案 (2,4)解析 如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则Error!两式相减得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2).当l 的斜率k 不存在时,符合条件的直线l 必有两条.当k 存在时,x 1≠x 2,则有·=2,y 1+y 22y 1-y 2x 1-x 2又y 1+y 2=2y 0,所以y 0k =2.由CM ⊥AB ,得k ·=-1,y 0-0x 0-5即y 0k =5-x 0,因此2=5-x 0,x 0=3,即M 必在直线x =3上.将x =3代入y 2=4x ,得y 2=12,则有-2<y 0<2.33因为点M 在圆上,所以(x 0-5)2+y =r 2,20故r 2=y +4<12+4=16.20又y +4>4(为保证有4条,在k 存在时,y 0≠0),20所以4<r 2<16,即2<r <4.。

2019届高考数学人教A版文科一轮复习考点规范练13 精品

2019届高考数学人教A版文科一轮复习考点规范练13 精品

考点规范练13函数模型及其应用基础巩固1.在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x年可能增长到原来的y倍,则函数y=f(x)的图象大致为()2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是()A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+1003.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()A.3B.4C.6D.124.已知某矩形广场的面积为4万平方米,则其周长至少为()A.800米B.900米C.1 000米D.1 200米5.某产品的总成本y(单位:万元)与产量x(单位:台)之间的函数关系是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是()A.100台B.120台C.150台D.180台6.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子租不出去.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出去的房子不需要花这些费用).要使公司获得最大利润,每套公寓月租金应定为()A.3 000元B.3 300元C.3 500元D.4 000元7.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况8.世界人口在过去40年内翻了一番,则每年人口平均增长率是(参考数据lg 2≈0.301 0,100.007 5≈1.017)()A.1.5%B.1.6%C.1.7%D.1.8%9.一个人以6 m/s的速度去追赶停在交通灯前的汽车,当他离汽车25 m时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=t2 m,则此人()A.可在7 s内追上汽车B.可在9 s内追上汽车C.不能追上汽车,但期间最近距离为14 mD.不能追上汽车,但期间最近距离为7 m10.某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣,若顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,按下表折扣分别累计计算.某人在此商场购物总金额为x元,可以获得的折扣金额为y元,则y关于x的解析式为y=若y=30元,则他购物总金额为元.11.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0<x<100,x∈N*)人去进行新开发的产品B的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是.能力提升12.点P从点O出发,按逆时针方向沿周长为l的图形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系如图,则点P所走的图形是()13.某食品的保鲜时间y(单位:h)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192 h,在22 ℃的保鲜时间是48 h,则该食品在33 ℃的保鲜时间是()A.16 hB.20 hC.24 hD.28 h14.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过min,容器中的沙子只有开始时的八分之一.15.为了在“十一”黄金周期间降价搞促销,某超市对顾客实行购物优惠活动,规定一次购物付款总额:①若不超过200元,则不予优惠;②若超过200元,但不超过500元,则按标价给予9折优惠;③若超过500元,则其中500元按第②条给予优惠,超过500元的部分给予7折优惠.辛云和她母亲两次去购物,分别付款168元和423元,假设他们一次性购买上述同样的商品,则应付款额为.高考预测16.如图,正方形ABCD的顶点A,B,顶点C,D位于第一象限,直线l:x=t(0≤t≤)将正方形ABCD 分成两部分,记位于直线l左侧阴影部分的面积为f(t),则函数s=f(t)的图象大致是()答案:1.D解析:由题意可得y=(1+10.4%)x,函数是底数大于1的指数函数,故选D.2.C解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型.3.A解析:设隔墙的长为x(0<x<6),矩形面积为y,则y=x·=2x(6-x)=-2(x-3)2+18,故当x=3时,y 最大.4.A解析:设这个广场的长为x米,则宽为米.故其周长为l=2≥800,当且仅当x=200时取等号.5.C解析:设利润为f(x)万元,则f(x)=25x-(3 000+20x-0.1x2)=0.1x2+5x-3 000(0<x<240,x∈N*).令f(x)≥0,得x≥150,故生产者不亏本时的最低产量是150台.6.B解析:由题意,设利润为y元,租金定为(3 000+50x)元(0≤x≤70,x∈N),则y=(3 000+50x)(70-x)-100(70-x)=(2 900+50x)(70-x)=50(58+x)(70-x)≤50=204 800,当且仅当58+x=70-x,即x=6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润,故选B.7.B解析:设该股民购这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n 元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.8.C解析:设每年人口平均增长率为x,则(1+x)40=2,两边取以10为底的对数,则40lg(1+x)=lg 2,所以lg(1+x)=≈0.007 5,所以100.007 5=1+x,得1+x=1.017,所以x=1.7%.9.D解析:已知s=t2,车与人的间距d=(s+25)-6t=t2-6t+25=(t-6)2+7.当t=6时,d取得最小值7.结合选项可知选D.10.1 350解析:若x=1 300,则y=5%(1 300-800)=25(元)<30(元),因此x>1300.故10%(x-1 300)+25=30,得x=1 350.11.16解析:由题意,分流前每年创造的产值为100t(万元),分流x人后,每年创造的产值为(100-x)(1+1.2x%)t,则解得0<x≤.因为x∈N*,所以x的最大值为16.12.C解析:函数的运动图象有两个特点,①点P运动到周长的一半时,OP最大;②点P的运动图象是抛物线.选项A,B中点P开始运动后的一段路程是直线,故不符合;选项D中OP的距离不是对称变化的,也不符合,故选C.13.C解析:由题意,得(0,192)和(22,48)是函数y=e kx+b图象上的两个点,所以由②得,48=e22k·e b,③把①代入③得e22k=,即(e11k)2=,所以e11k=.所以当储藏温度为33 ℃时,保鲜时间y==(e11k)3·e b=×192=24(小时).14.16解析:当t=0时,y=a,当t=8时,y=aa,可得e-8b=.故容器中的沙子只有开始时的八分之一时,可得y=a e-bt=a,即e-bt==(e-8b)3=e-24b,则t=24,所以再经过16 min,容器中的沙子只有开始时的八分之一.15.546.6元解析:依题意,价值为x元的商品和实际付款额f(x)之间的函数关系式为f(x)=当f(x)=168时,由168÷0.9≈187<200,故此时x=168;当f(x)=423时,由423÷0.9=470∈(200,500],故此时x=470.故两次共购得价值为470+168=638元的商品.又500×0.9+(638-500)×0.7=546.6元,即若一次性购买上述商品,应付款额为546.6元.16.C解析:依题意得s=f(t)=分段画出函数的图象可得图象如选项C所示,故选C.。

【配套K12】[学习]2019版高考数学一轮复习 第二章 函数、导数及其应用 第12讲 函数与方程课

【配套K12】[学习]2019版高考数学一轮复习 第二章 函数、导数及其应用 第12讲 函数与方程课

第12讲 函数与方程1.(2015年安徽)下列函数中,既是偶函数又存在零点的是( )A .y =ln xB .y =x 2+1 C .y =sin x D .y =cos x2.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)3.(2016年辽宁大连模拟)设方程log 4x -⎝ ⎛⎭⎪⎫14x =0,log 14x -⎝ ⎛⎭⎪⎫14x=0的根分别为x 1,x 2,则( )A .0<x 1x 2<1B .x 1x 2=1C .1<x 1x 2<2D .x 1x 2≥24.设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<05.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}6.已知f (x )是奇函数,且在R 上是单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18 C .-78 D .-387.已知函数f (x )=⎩⎪⎨⎪⎧2x,x >1,9x ()1-x 2,x ≤1,若函数g (x )=f (x )-k 仅有一个零点,则k 的取值范围是( )A.⎝ ⎛⎦⎥⎤43,2 B .(-∞,0)∪⎝ ⎛⎭⎪⎫43,+∞ C .(-∞,0)D .(-∞,0)∪⎝ ⎛⎭⎪⎫43,2 8.(2017年广东深圳二模)若对任意的实数a ,函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点,则实数b 的取值范围是( )A .(-∞,-1]B .(-∞,0)C .(0,1)D .(0,+∞)9.(2016年河南郑州模拟)已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围.10.已知f (x )是二次函数,不等式f (x )<0的解集是(0,5),且f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行.(1)求f (x )的解析式;(2)是否存在t ∈N ,使得方程f (x )+37x=0在区间(t ,t +1)内有两个不相等的实数根?若存在,求出t 的值;若不存在,说明理由.第12讲 函数与方程1.D 解析:y =ln x 的定义域为(0,+∞),故y =ln x 不具备奇偶性,故选项A 错误;y =x 2+1是偶函数,但y =x 2+1=0无解,即不存在零点,故选项B 错误;y =sin x是奇函数,故选项C 错误;y =cos x 是偶函数,且y =cos x =0⇒x =π2+k π,k ∈Z .故选项D 正确.2.C 解析:因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.3.A 解析:在同一平面直角坐标系内画出函数y =⎝ ⎛⎭⎪⎫14x,y =log 4x ,y =log 14x 的图象,如图D99,图D99则x 1>1>x 2>0,则log 4x 1=⎝ ⎛⎭⎪⎫141x ,log 14x 2=⎝ ⎛⎭⎪⎫142x ,得log 4(x 1x 2)=⎝ ⎛⎭⎪⎫141x -⎝ ⎛⎭⎪⎫142x <0,所以0<x 1x 2<1.故选A.4.A 解析:由f (0)·f (1)<0,f (a )=0,得0<a <1;由g (1)·g (2)<0,g (b )=0,得1<b <2.显然f (b )>0,g (a )<0.故选A.5.D 解析:当x ≥0时,f (x )=x 2-3x ,令g (x )=x 2-3x -x +3=0,得x 1=3,x 2=1.当x <0时,-x >0,∴f (-x )=(-x )2-3(-x ).∴-f (x )=x 2+3x .∴f (x )=-x 2-3x .令g (x )=-x 2-3x -x +3=0,得x 3=-2-7,x 4=-2+7>0(舍).∴函数g (x )=f (x )-x +3的零点的集合是{-2-7,1,3}.故选D.6.C 解析:令y =f (2x 2+1)+f (λ-x )=0,因为f (x )是奇函数,所以f (2x 2+1)=-f (λ-x )=f (x -λ),又因为f (x )在R 上是单调函数,所以方程2x 2+1=x -λ只有一个根,即方程2x 2-x +1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-78.7.D 解析:函数f (x )的图象如图D100,由题知该函数图象与直线y =k 只有一个公共点,图D100故k 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫43,2. 8.B 解析:令F (x )=(x -1)ln x ,则F ′(x )=ln x -1x+1=0,可得x =1,F (x )在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,即F (x )在x =1处取得极小值F (1)=0.令G (x )=ax -a -b ,则G (x )恒过点(1,-b ).而函数f (x )=(x -1)ln x -ax +a +b 有两个不同的零点,所以F (x )与G (x )有2个不同的交点,所以-b >f (1)=0,解得b <0,即实数b 的取值范围是(-∞,0).故选B.9.解:(1)当x ∈(-∞,0)时,-x ∈(0,+∞). 因为y =f (x )是奇函数,所以f (x )=-f (-x )=-[(-x )2-2(-x )]=-x 2-2x .所以f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)当x ∈[0,+∞)时,f (x )=x 2-2x =(x -1)2-1,最小值为-1;当x ∈(-∞,0)时,f (x )=-x 2-2x =1-(x +1)2,最大值为1.所以据此可作出函数y =f (x )的图象(如图D101),根据图象,若方程f (x )=a 恰有3个不同的解,则a 的取值范围是(-1,1).图D10110.解:(1)方法一,∵f (x )是二次函数,不等式f (x )<0的解集是(0,5), ∴可设f (x )=ax (x -5),a >0. ∴f ′(x )=2ax -5a .∵函数f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行,∴f ′(1)=-6. ∴2a -5a =-6.解得a =2.∴f (x )=2x (x -5)=2x 2-10x .方法二,设f (x )=ax 2+bx +c , ∵不等式f (x )<0的解集是(0,5),∴方程ax 2+bx +c =0的两根为0,5. ∴c =0,25a +5b =0.① ∵f ′(x )=2ax +b .又函数f (x )在点(1,f (1))处的切线与直线6x +y +1=0平行,∴f ′(1)=-6. ∴2a +b =-6.②由①②,解得a =2,b =-10.∴f (x )=2x 2-10x .(2)由(1)知,方程f (x )+37x=0等价于方程2x 3-10x 2+37=0.设h (x )=2x 3-10x 2+37,则h ′(x )=6x 2-20x =2x (3x -10).当x ∈⎝ ⎛⎭⎪⎫0,103时,h ′(x )<0,函数h (x )在⎝ ⎛⎭⎪⎫0,103上单调递减;当x ∈⎝ ⎛⎭⎪⎫103,+∞时,h ′(x )>0,函数h (x )在⎝ ⎛⎭⎪⎫103,+∞上单调递增. ∵h (3)=1>0,h ⎝ ⎛⎭⎪⎫103=-127<0,h (4)=5>0, ∴方程h (x )=0在区间⎝ ⎛⎭⎪⎫3,103,⎝ ⎛⎭⎪⎫103,4内分别有唯一实数根,在区间(0,3),(4,+∞)内没有实数根.∴存在唯一的自然数t =3,使得方程f (x )+37x =0在区间(t ,t +1)内有且只有两个不相等的实数根.倚窗远眺,目光目光尽处必有一座山,那影影绰绰的黛绿色的影,是春天的颜色。

专题12 函数与方程-2019年高考文科数学一轮总复习名师讲解及强化检测训练

专题12 函数与方程-2019年高考文科数学一轮总复习名师讲解及强化检测训练

专题12函数与方程本专题特别注意: 1.图象的平移变换陷阱; 2. 图象的伸缩变换陷阱;3. 一个函数图象的对称问题陷阱;4.两个函数图象的对称问题陷阱; 5.数形结合思想的灵活应用陷阱; 6.根据函数图象对参数的范围问题求解 ; 7.二次函数图象与根的分布. 【学习目标】1.结合二次函数的图象,了解函数的零点与方程根的联系,判断根的存在性与根的个数.2.利用函数的零点求解参数的取值范围 【知识要点】 1.函数的零点 (1)函数零点的定义对于函数y =f (x ),我们把使___________的实数x 叫做函数y =f (x )的零点. (2)方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有________. (3)函数零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是_________的一条曲线,并且有____________,那么,函数y =f (x )在区间__________内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.2.二次函数y =f (x )=ax 2+bx +c (a >0)零点的分布f (x )=0 零点 连续不断 f (a )·f (b )<0 f (x )=0考点训练:一、单选题1.定义在R上的奇函数f(x)满足条件,当x∈时,f(x)=x,若函数g(x)=-a e-在区间上有4 032个零点,则实数a的取值范围是A. (0,1)B. (e,e3)C. (e,e2)D. (1,e3)【答案】B【解析】分析:根据满足条件且为奇函数,可周期为,当时,,根据与图像,判断在一个周期内的焦点情况即可求解.详解:因为满足条件且为奇函数,函数,∴周期为,∵当时,,作与图像,函数在区间上有个零点,即与在且仅有两个交点,∴即.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.2.函数的零点个数为()A. 1B. 2C. 3D. 4【答案】C点睛:该题考查的是有关函数零点个数的问题,在解题的过程中,将零点的个数转化为图像交点的个数,在同一个坐标系中,画出两条曲线画出,之后看两条曲线有几个交点,从而得到函数零点的个数来解决.3.已知函数,则方程恰有两个不同的实根时,实数的取值范围是()A. B. C. D.【答案】C【解析】分析:作出与的函数图象,根据图象和交点个数判断的范围.详解:作出与的函数图象,如图所示:设直线与相切,切点坐标为,则,解得,,.∵方程恰有两个不同的实根∴根据图象可知当时,两图象有两个交点.∴实数的取值范围是故选C.点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.4.已知关于的方程为(其中),则此方程实根的个数为()A. 2 B. 2或3 C. 3 D. 3或4【答案】C令,则,列表考查函数的性质如下:函数在有意义的区间内单调递增,故的单调性与函数的单调性一致,且函数的极值绘制函数图像如图所示,观察可得,与函数恒有3个交点,即题中方程实根的个数为3.本题选择C选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.5.已知函数,函数,则函数的零点的个数为()A. B. C. D.【答案】C【解析】分析:求出函数的解析式,推出的表达式,然后求解函数的零点.详解:函数,可得,则,令,可得,画出与y=的图象如图所示:由图可得:与y=有4个交点故有4个零点。

2019年高三文科数学一轮复习:函数与方程知识总结与题型演练

2019年高三文科数学一轮复习:函数与方程知识总结与题型演练

2019年高三文科数学一轮复习:函数与方程知识总结与题型演练一、考纲指导1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、利用函数零点的存在性定理或函数的图象,对函数是否存在零点进行判断或利用零点(方程实根)的存在情况求相关参数的范围,是高考的热点,题型以选择、填空为主,也可和导数等知识交汇出现解答题,中高档难度.二、知识梳理1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系(x,0),(x,0) (x,0) 无交点三、知识拓展有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.四、基础检测题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(4)f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,恒有h (x )<f (x )<g (x ).( √ ) 题组二 教材改编2.[P92A 组T5]函数f (x )=ln x -2x 的零点所在的大致区间是( )A .(1,2)B .(2,3) C.⎝⎛⎭⎫1e ,1和(3,4) D .(4,+∞)答案 B解析 ∵f (2)=ln 2-1<0,f (3)=ln 3-23>0且函数f (x )的图象连续不断,f (x )为增函数, ∴f (x )的零点在区间(2,3)内.3.[P88例1]若函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 答案 2解析 由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.4.[P92A 组T4]函数f (x )=12x -⎝⎛⎭⎫12x的零点个数为________. 答案 1解析 作函数y 1=12x 和y 2=⎝⎛⎭⎫12x 的图象如图所示, 由图象知函数f (x )有1个零点.题组三 易错自纠5.已知函数f (x )=x -x (x >0),g (x )=x +e x ,h (x )=x +ln x 的零点分别为x 1,x 2,x 3,则( ) A .x 1<x 2<x 3 B .x 2<x 1<x 3 C .x 2<x 3<x 1 D .x 3<x 1<x 2答案 C解析 作出y =x 与y 1=x ,y 2=-e x ,y 3=-ln x 的图象如图所示,可知选C.6.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )有______个零点.答案 1解析 当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上函数f (x )只有1个零点.7.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________. 答案 ⎝⎛⎭⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得 f (-1)f (1)<0,∴(-3a +1)·(1-a )<0, 解得13<a <1,∴实数a 的取值范围是⎝⎛⎭⎫13,1.五、题型演练题型一 函数零点所在区间的判定1.设f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)答案 B解析 ∵f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0, ∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,且为增函数, ∴f (x )的零点所在的区间是(1,2).2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)答案 A解析 ∵a <b <c ,∴f (a )=(a -b )(a -c )>0, f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函数零点存在性定理可知,在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点.因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内,故选A.3.设函数y 1=x 3与y 2=⎝⎛⎭⎫12x -2的图象的交点为(x 0,y 0),若x 0∈(n ,n +1),n ∈N ,则x 0所在的区间是______. 答案 (1,2)解析 令f (x )=x 3-⎝⎛⎭⎫12x -2,则f (x 0)=0,易知f (x )为增函数,且f (1)<0,f (2)>0, ∴x 0所在的区间是(1,2).思维升华 确定函数零点所在区间的常用方法 (1)利用函数零点存在性定理; (2)数形结合法.题型二 函数零点个数的判断典例 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.答案 2解析 当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点;当x >0时,f ′(x )=2+1x>0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(2)设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x +x -3,则f (x )的零点个数为( ) A .1 B .2 C .3 D .4 答案 C解析 因为函数f (x )是定义域为R 的奇函数,所以f (0)=0,即0是函数f (x )的一个零点, 当x >0时,令f (x )=e x +x -3=0,则e x =-x +3,分别画出函数y 1=e x 和y 2=-x +3的图象,如图所示,两函数图象有一个交点,所以函数f (x )有一个零点,根据对称性知,当x <0时函数f (x )也有一个零点. 综上所述,f (x )的零点个数为3. 思维升华 函数零点个数的判断方法: (1)直接求零点;(2)利用零点存在性定理再结合函数的单调性确定零点个数; (3)利用函数图象的交点个数判断.跟踪训练 (1)函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .7D .0 答案 B解析 方法一 由f (x )=0得⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0, 解得x =-2或x =e. 因此函数f (x )共有2个零点.方法二 函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.(2)函数f (x )=2x |log 0.5x |-1的零点个数为________. 答案 2解析 由f (x )=0,得|log 0.5x |=⎝⎛⎭⎫12x , 作出函数y 1=|log 0.5x |和y 2=⎝⎛⎭⎫12x 的图象,由上图知两函数图象有2个交点, 故函数f (x )有2个零点.题型三 函数零点的应用命题点1 根据函数零点个数求参数典例 已知函数f (x )=|x 2+3x |,x ∈R ,若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围是________________. 答案 (0,1)∪(9,+∞)解析 设y 1=f (x )=|x 2+3x |,y 2=a |x -1|,在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.由图可知f (x )-a |x -1|=0有4个互异的实数根等价于y 1=|x 2+3x |与y 2=a |x -1|的图象有4个不同的交点且4个交点的横坐标都小于1,所以⎩⎪⎨⎪⎧y =-x 2-3x ,y =a (1-x )有两组不同解,消去y 得x 2+(3-a )x +a =0有两个不等实根, 所以Δ=(3-a )2-4a >0,即a 2-10a +9>0, 解得a <1或a >9.又由图象得a >0,∴0<a <1或a >9. 引申探究本例中,若f (x )=a 恰有四个互异的实数根,则a 的取值范围是________________. 答案 ⎝⎛⎭⎫0,94 解析 作出y 1=|x 2+3x |,y 2=a 的图象如图所示.当x =-32时,y 1=94;当x =0或x =-3时,y 1=0,由图象易知,当y 1=|x 2+3x |和y 2=a 的图象有四个交点时,0<a <94.命题点2 根据函数有无零点求参数典例 (1)若函数f (x )=3ax +1-2a 在区间(-1,1)内存在一个零点,则a 的取值范围是( ) A.⎝⎛⎭⎫15,+∞ B .(-∞,-1)∪⎝⎛⎭⎫15,+∞ C.⎝⎛⎭⎫-1,15 D .(-∞,-1)答案 B解析 当a =0时,f (x )=1与x 轴无交点,不合题意,所以a ≠0;函数f (x )=3ax +1-2a 在区间(-1,1)内是单调函数,所以f (-1)·f (1)<0,即(5a -1)(a +1)>0,解得a <-1或a >15.(2)已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,e x ,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,1]∪(2,+∞)D .(-∞,0]∪(1,+∞)答案 D解析 函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,画出h (x )=f (x )+x =⎩⎪⎨⎪⎧x ,x ≤0,e x +x ,x >0的大致图象(图略).观察它与直线y =m 的交点,得知当m ≤0或m >1时,有交点,即函数g (x )=f (x )+x -m 有零点. 命题点3 根据零点的范围求参数典例 若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是__________. 答案 ⎝⎛⎭⎫14,12解析 依题意,结合函数f (x )的图象分析可知m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +(2m +1)](2m +1)<0,[m -2+m +(2m +1)][4(m -2)+2m +(2m +1)]<0, 解得14<m <12.思维升华 根据函数零点的情况求参数有三种常用方法.(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.跟踪训练 (1)方程12log (2)x a -=2+x 有解,则a 的最小值为________.答案 1解析 若方程12log (2)x a -=2+x 有解,则⎝⎛⎭⎫122+x =a -2x 有解,即14⎝⎛⎭⎫12x +2x=a 有解, 因为14⎝⎛⎭⎫12x +2x ≥1,故a 的最小值为1.(2)已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.答案 (0,1)解析 画出函数f (x )==⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图所示.由于函数g (x )=f (x )-m 有3个零点,结合图象得0<m <1,即m ∈(0,1).利用转化思想求解函数零点问题典例 (1)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x <1,12log x ,x ≥1,若关于x 的方程f (x )=k 有三个不同的实根,则实数k 的取值范围是__________.(2)若关于x 的方程22x +2x a +a +1=0有实根,则实数a 的取值范围为________.思想方法指导 (1)函数零点个数可转化为两个函数图象的交点个数,利用数形结合求解参数范围. (2)“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域解决.解析 (1)关于x 的方程f (x )=k 有三个不同的实根,等价于函数y 1=f (x )与函数y 2=k 的图象有三个不同的交点,作出函数的图象如图所示,由图可知实数k 的取值范围是(-1,0).(2)由方程,解得a =-22x +12x +1,设t =2x (t >0),则a =-t 2+1t +1=-⎝⎛⎭⎫t +2t +1-1=2-⎣⎡⎦⎤(t +1)+2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 答案 (1)(-1,0) (2)(-∞,2-22]六、限时检测1.设函数f (x )=e x +x -4,则f (x )的零点位于区间( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)答案 C解析 f (1)=e +1-4=e -3<0,f (2)=e 2+2-4=e 2-2>0,f (1)f (2)<0.故f (x )的零点位于区间(1,2). 2.已知a 是函数f (x )=2x -12log x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定答案 C解析 f (x )在(0,+∞)上是增函数,若0<x 0<a , 则f (x 0)<f (a )=0.3.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2) 答案 C解析 因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3,故选C. 4.已知函数f (x )=⎩⎪⎨⎪⎧1,x ≤0,1x ,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是( )A .(1,2)B .(-∞,-2]C .(-∞,1)∪(2,+∞)D .(-∞,1]∪[2,+∞)答案 D解析 当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即x +1x =m ,解得m ≥2,即实数m 的取值范围是(-∞,1]∪[2,+∞).故选D.5.(2017·山东)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2]∪[23,+∞)D .(0,2]∪[3,+∞)答案 B解析 在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝⎛⎭⎫x -1m 2与g (x )=x +m 的大致图象. 分两种情形:(1)当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意.(2)当m >1时,0<1m <1,如图②,要使f (x )与g (x )的图象在[0,1]上只有一个交点,只需g (1)≤f (1),即1+m ≤(m-1)2,解得m ≥3或m ≤0(舍去). 综上所述,m ∈(0,1]∪[3,+∞).6.函数f (x )=x -ln(x +1)-1的零点个数是________.答案 2解析 函数f (x )=x -ln(x +1)-1的零点个数,即为函数y 1=ln(x +1)(x >-1)与y 2=x -1(x > -1)图象的交点个数.在同一坐标系内分别作出函数y 1=ln(x +1)(x >-1)与y 2=x -1(x >-1)的图象,如图所示,由图可知函数f (x )=x -ln(x +1)-1的零点个数是2.7.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪-32<x <1 解析 ∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧ -2+3=-a ,-2×3=b .∴⎩⎪⎨⎪⎧a =-1,b =-6,∴f (x )=x 2-x -6.∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ -32<x <1. 8.若函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________. 答案 (0,1]解析 当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1.9.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 015x +log 2 015x ,则在R 上,函数f (x )零点的个数为________. 答案 3解析 因为函数f (x )为R 上的奇函数,所以f (0)=0,当x >0时,f (x )=2 015x +log 2 015x 在区间⎝⎛⎭⎫0,12 015内存在一个零点,又f (x )为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一个零点,从而函数f (x )在R 上的零点个数为3.10.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.答案 -12解析 函数y =|x -a |-1的图象如图所示,因为直线y =2a 与函数y =|x -a |-1的图象只有一个交点,故2a=-1,解得a =-12.11.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围.解 显然x =0不是方程x 2+(m -1)x +1=0的解,0<x ≤2时,方程可变形为1-m =x +1x, 又∵y =x +1x在(0,1]上单调递减,在[1,2]上单调递增, ∴y =x +1x在(0,2]上的取值范围是[2,+∞), ∴1-m ≥2,∴m ≤-1,故m 的取值范围是(-∞,-1].12.设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b的值; (3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围.解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪1-1x =⎩⎨⎧ 1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数.由0<a <b 且f (a )=f (b ),得0<a <1<b 且1a -1=1-1b ,∴1a +1b=2. (3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根.13.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个答案 B解析 因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y =f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.14.已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.答案 ⎝⎛⎭⎫0,12 解析 函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同的交点,在坐标系中作出函数f (x )在一个周期内的图象如图所示,可知当0<a <12时满足题意.15.(2018·郑州模拟)若a >1,设函数f (x )=a x +x -4的零点为m ,函数g (x )=log a x +x -4的零点为n ,则1m+1n的最小值为________. 答案 1解析 设F (x )=a x ,G (x )=log a x ,h (x )=4-x ,则h (x )与F (x ),G (x )的交点A ,B 横坐标分别为m ,n (m >0,n >0).因为F (x )与G (x )关于直线y =x 对称,所以A ,B 两点关于直线y =x 对称.又因为y =x 和h (x )=4-x 交点的横坐标为2,所以m +n =4.又m >0,n >0,所以1m +1n =⎝⎛⎭⎫1m +1n ·m +n 4=14⎝⎛⎭⎫2+n m +m n ≥14⎝⎛⎭⎫2+2 n m ×m n =1. 当且仅当n m =m n,即m =n =2时等号成立. 所以1m +1n的最小值为1. 16.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧-2x x +1,x ∈[0,1),1-|x -3|,x ∈[1,+∞),则函数F (x )=f (x )-1π的所有零点之和为________.答案 11-2π 解析 函数f (x )的图象如图所示.而F (x )的零点即函数f (x )的图象与直线y =1π交点的横坐标x 1,x 2,x 3,x 4,x 5,又x 1+x 2=-6,x 4+x 5=6,故函数F (x )=f (x )-1π的所有零点之和就是x 3,又x 3=11-2π,故F (x )的所有零点之和为11-2π.。

2019届高考数学人教A版文科一轮复习考点规范练20 精品

2019届高考数学人教A版文科一轮复习考点规范练20 精品

考点规范练20函数y=A sin(ωx+φ)的图象及应用基础巩固1.如果函数f(x)=sin(πx+θ)(0<θ<2π)的最小正周期为T,且当x=2时,f(x)取得最大值,那么()A.T=2,θ=B.T=1,θ=πC.T=2,θ=πD.T=1,θ=2.已知函数f(x)=sin,则要得到g(x)=-cos的图象,只需将函数y=f(x)的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度3.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.104.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A. B.C.0D.-5.将函数y=3sin的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减B.在区间上单调递增C.在区间上单调递减D.在区间上单调递增6.若函数f(x)=2sin 2x的图象向右平移φ个单位后得到函数g(x)的图象,若对满足|f(x1)-g(x2)|=4的x1,x2,有|x1-x2|的最小值为,则φ=()A. B. C. D.7.已知函数f(x)=sin(ωx+φ)的部分图象如图所示,则y=f取得最小值时x的集合为()A.B.C.D.8.(2016河南信阳、三门峡一模)已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,把f(x)的图象向左平移个单位长度后,得到函数g(x)的图象,则g=()A.-1B.1C.-D.9.(2017辽宁大连一模)若关于x的方程2sin=m在区间上有两个不等实根,则m的取值范围是()A.(1,)B.[0,2]C.[1,2)D.[1,]10.函数y=sin x-cos x的图象可由函数y=2sin x的图象至少向右平移个单位长度得到.11.已知函数y=g(x)的图象由f(x)=sin 2x的图象向右平移φ(0<φ<π)个单位得到,这两个函数的部分图象如图所示,则φ=.12.设函数f(x)=sin,则下列命题:①f(x)的图象关于直线x=对称;②f(x)的图象关于点对称;③f(x)的最小正周期为π,且在区间上为增函数;④把f(x)的图象向右平移个单位长度,得到一个奇函数的图象.其中正确的命题的序号为.能力提升13.已知函数f(x)=A sin(ωx+φ)(A,ω,φ均为正常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)14.(2017天津,文7)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π,若f=2,f=0,且f(x)的最小正周期大于2π,则()A.ω=,φ=B.ω=,φ=-C.ω=,φ=-D.ω=,φ=15.已知函数f(x)=cos(2x+φ)的图象关于点对称,若将函数f(x)的图象向右平移m(m>0)个单位得到一个偶函数的图象,则实数m的最小值为.16.已知函数y=3sin.(1)用五点法作出函数的图象;(2)说明此图象是由y=sin x的图象经过怎么样的变化得到的.高考预测17.(2017北京,文16)已知函数f(x)=cos-2sin x cos x.(1)求f(x)的最小正周期;(2)求证:当x∈时,f(x)≥-.答案:1.A解析:T==2,当x=2时,由π×2+θ=+2kπ(k∈Z),得θ=-+2kπ(k∈Z).又0<θ<2π,所以θ=.2.C解析:y=-sin y=-cos=-cos,故选C.3.C解析:因为sin∈[-1,1],所以函数y=3sin+k的最小值为k-3,最大值为k+3.由题图可知函数最小值为k-3=2,解得k=5.所以y的最大值为k+3=5+3=8,故选C.4.B解析:由题意可知平移后的函数为y=sin=sin.由平移后的函数图象关于y轴对称,可得+φ=kπ+(k∈Z),即φ=kπ+(k∈Z),故选B.5.B解析:设平移后的函数为f(x),则f(x)=3sin=3sin=-3sin.令2kπ-≤2x+≤2kπ+,k∈Z,解得f(x)的单调递减区间为,k∈Z,同理得单调递增区间为,k∈Z.从而可判断B正确.6.C解析:由函数f(x)=2sin 2x的图象向右平移φ个单位后得到函数g(x)=2sin[2(x-φ)]的图象,可知对满足|f(x1)-g(x2)|=4的x1,x2,有|x1-x2|的最小值为-φ.故-φ=,即φ=.7.B解析:根据所给图象,周期T=4×=π,故π=,即ω=2,因此f(x)=sin(2x+φ),又图象经过,代入有2×+φ=kπ(k∈Z),再由|φ|<,得φ=-,故f=sin,当2x+=-+2kπ(k∈Z),即x=-+kπ(k∈Z)时,y=f取得最小值.8.A解析:根据函数f(x)=A sin(ωx+φ)的图象,可得A=2,,求得ω=π.根据五点作图法可得π·+φ=,2kπ(k∈Z),结合|φ|<,求得φ=,故f(x)=2sin.把f(x)的图象向左平移个单位长度后,得到函数g(x)=2sin=2cos的图象,则g=2cos=2cos=-1,故选A.9.C解析:方程2sin=m可化为sin,当x∈时,2x+,画出函数y=f(x)=sin在区间上的图象如图所示.由题意,得<1,即1≤m<2,∴m的取值范围是[1,2),故选C.10.解析:因为y=sin x-cos x=2sin,所以函数y=sin x-cos x的图象可由函数y=2sin x的图象至少向右平移个单位长度得到.11.解析:函数f(x)=sin 2x的图象在y轴右侧的第一个对称轴为2x=,则x=.x=关于x=对称的直线为x=,由图象可知,通过向右平移之后,横坐标为x=的点平移到x=,则φ=.12.③④解析:对于①,f=sin=sin,不是最值,因此x=不是函数f(x)的图象的对称轴,故该命题错误;对于②,f=sin=1≠0,因此点不是函数f(x)的图象的对称中心,故该命题错误;对于③,函数f(x)的最小正周期为T==π,当x∈时,令t=2x+,显然函数y=sin t在区间上为增函数,因此函数f(x)在区间上为增函数,故该命题正确;对于④,把f(x)的图象向右平移个单位长度后所对应的函数为g(x)=sin=sin 2x,是奇函数,故该命题正确.13.A解析:由周期T==π,得ω=2.当x=时,f(x)取得最小值,所以+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,所以f(x)=A sin.所以f(0)=A sin>0,f(2)=A sin A sin 4+cos 4<0,f(-2)=A sin=-A sin 4+cos 4.因为f(2)-f(-2)=A sin 4<0,所以f(2)<f(-2).又f(-2)-f(0)=-A sin=-A,因为π<4-<π+π,所以sin>sin=-,即sin>0,所以f(-2)<f(0).综上,f(2)<f(-2)<f(0),故选A.14.A解析:由题意可知,>2π,,所以≤ω<1.所以排除C,D.当ω=时,f=2sin=2sin=2,所以sin=1.所以+φ=+2kπ,即φ=+2kπ(k∈Z).因为|φ|<π,所以φ=.故选A.15.解析:∵函数f(x)的图象关于点对称,∴2×+φ=kπ+(k∈Z),解得φ=kπ-,k∈Z.∴f(x)=cos,k∈Z.∵f(x)的图象向右平移m个单位得到函数y=cos,k∈Z为偶函数,∴x=0为其对称轴,即-2m+kπ-=k1π(k∈Z,k1∈Z),m=(k∈Z,k1∈Z),∵m>0,∴m的最小正值为,此时k-k1=1,k∈Z,k1∈Z.16.解:(1)列表:描点、连线,如图所示:(2)(方法一)“先平移,后伸缩”.先把y=sin x的图象上所有点向右平移个单位,得到y=sin的图象,再把y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin的图象,最后将y=sin的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin的图象.(方法二)“先伸缩,后平移”先把y=sin x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin x的图象,再把y=sin x图象上所有的点向右平移个单位,得到y=sin=sin的图象,最后将y=sin的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y=3sin的图象.17.(1)解:f(x)=cos 2x+sin 2x-sin 2x=sin 2x+cos 2x=sin.所以f(x)的最小正周期T==π.(2)证明:因为-≤x≤,所以-≤2x+.所以sin≥sin=-.所以当x∈时,f(x)≥-.。

【推荐】2019最新人教版最新全国高考新课标A卷文科数学复习专题---函数专题Word版

【推荐】2019最新人教版最新全国高考新课标A卷文科数学复习专题---函数专题Word版
【推荐】2019最新人教版最新全国高考新课标A卷文科数学复习专题---函数专题Word版
一、集合
1. (2009,全国卷1)设集合A={4,5,7,9},B={3,4,7,8,9},全集,则集合中的元素共有( )
(A) 3个 (B) 4个 (C)5个 (D)6个
2.(2010,全国卷1)设全集,集合,,则( )
(Ⅰ)求的值;
(Ⅱ)讨论的单调性,并求的极大值.
6. (2014,全国卷1)(12分)
设函数,曲线处的切线斜率为0
(1)求b;
(2)若存在使得,求a的取值范围。
7. (2015,全国卷1)(本小题满分12分)
设函数。
(Ⅰ)讨论的导函数零点的个数;
(Ⅱ)证明:当时,。
(A) (B)
(C) (D)
9. (2010,全国卷1)不等式的解集是 .
二、初等函数
1. (2009,全国卷1)已知函数的反函数为,则( )
Байду номын сангаас(A)0 (B)1 (C)2 (D)4
2.(2010,全国卷1)已知函数.若且,则的取值范围是( )
(A) (B) (C) (D)
3.(2010,全国卷1)设则( )
10.(2013,全国卷1)已知函数 若≥,则的取值范围是( )
(A)(B)(C)(D)
11.(2014,全国卷1)设函数的定义域为,且是奇函数,是偶函数,则下列结论中正确的是( )
A. 是偶函数 B. 是奇函数
C. 是奇函数 D. 是奇函数
12.(2014,全国卷1)已知函数,若存在唯一的零点,且,则的取值范围是( )
已知函数.
(Ⅰ)讨论的单调性;
(Ⅱ)设点P在曲线上,若该曲线在点P处的切线通过坐标原点,求的方程。

2019届高考数学人教A版文科一轮复习考点规范练32 精品

2019届高考数学人教A版文科一轮复习考点规范练32 精品

考点规范练32二元一次不等式(组)与简单的线性规划问题基础巩固1.若点(1,b)在两条平行直线6x-8y+1=0和3x-4y+5=0之间,则b应取的整数值为()A.2B.1C.3D.02.(2017全国Ⅲ,文5)设x,y满足约束条件则z=x-y的取值范围是()A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]3.(2017山东,文3)已知x,y满足约束条件则z=x+2y的最大值是()A.-3B.-1C.1D.34.给出平面区域如图所示,其中A(5,3),B(1,1),C(1,5),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值是()A. B.C.2D.5.(2017福建泉州一模)已知实数x,y满足则z=ax+y(a>0)的最小值为()A.0B.aC.2a+1D.-16.已知实数x,y满足约束条件则x2+y2+2x的最小值是()A. B.-1 C. D.17.已知实数x,y满足条件若目标函数z=3x+y的最小值为5,则其最大值为.8.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过13吨、B原料不超过18吨,则该企业可获得的最大利润是万元.9.已知实数x,y满足则x2+y2的取值范围是.能力提升10.已知x,y满足约束条件若z=y-ax取得最大值的最优解不唯一,则实数a的值为()A.或-1B.2或C.2或1D.2或-111.若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()A.-3B.1C.D.312.某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的质量(单位:吨)如下表所示:原A B C料现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数量.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.高考预测13.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则|OM|的最小值是.答案:1.B解析:由题意知(6-8b+1)(3-4b+5)<0,即(b-2)<0,解得<b<2,则b应取的整数为1.2.B解析:画出不等式组表示的可行域,如图.结合目标函数的几何意义可得目标函数在点A(0,3)处取得最小值z=0-3=-3,在点B(2,0)处取得最大值z=2-0=2.故选B.3.D解析:可行域为如图所示阴影部分(包括边界).把z=x+2y变形为y=-x+z,作直线l0:y=-x并向上平移,当直线过点A时,z取最大值,易求点A的坐标为(-1,2),所以z max=-1+2×2=3.4.B解析:直线y=-ax+z(a>0)的斜率为-a<0,当直线y=-ax平移到直线AC位置时取得最大值的最优解有无穷多个.∵k AC=-,∴-a=-,即a=.5.D解析:由约束条件作出可行域如图.化目标函数z=ax+y(a>0)为y=-ax+z,由图可知,当直线y=-ax+z过点A(0,-1)时,直线在y轴上的截距最小,z有最小值为-1.6.D解析:约束条件所表示的平面区域如图中阴影部分所示.x2+y2+2x=(x+1)2+y2-1表示点(-1,0)到可行域内任一点距离的平方再减1,由图可知当x=0,y=1时,x2+y2+2x取得最小值1.7.10解析:画出x,y满足的可行域如下图,可得直线x=2与直线-2x+y+c=0的交点A,使目标函数z=3x+y取得最小值5,故由解得x=2,y=4-c,代入3x+y=5得6+4-c=5,即c=5.由得B(3,1).当过点B(3,1)时,目标函数z=3x+y取得最大值,最大值为10.8.27解析:设生产甲产品x吨、乙产品y吨,则获得的利润为z=5x+3y.由题意得此不等式组表示的平面区域如图阴影部分所示.由图可知当y=-x+经过点A时,z取得最大值,此时x=3,y=4,z max=5×3+3×4=27(万元). 9.解析:画出约束条件对应的可行域(如图中阴影部分所示),x2+y2表示原点到可行域中的点的距离的平方,由图知原点到直线2x+y-2=0的距离的平方为x2+y2的最小值,为,原点到点(2,3)的距离的平方为x2+y2的最大值,为22+32=13.因此x2+y2的取值范围是.10.D解析:(方法一)由题中条件画出可行域如图中阴影部分所示,可知A(0,2),B(2,0),C(-2,-2),则z A=2,z B=-2a,z C=2a-2,要使目标函数取得最大值的最优解不唯一,只要z A=z B>z C或z A=z C>z B或z B=z C>z A,解得a=-1或a=2.(方法二)目标函数z=y-ax可化为y=ax+z,令l0:y=ax,平移l0,则当l0∥AB或l0∥AC时符合题意,故a=-1或a=2.11.B解析:如图,要使不等式组表示的平面区域为三角形,则不等式x-y+2m≥0表示的平面区域为直线x-y+2m=0下方的区域,且-2m<2,即m>-1.这时平面区域为三角形ABC.由解得则A(2,0).由解得则B(1-m,1+m).同理C,M(-2m,0).S△ABC=S△ABM-S△ACM=·(2+2m)·,由已知得,解得m=1(m=-3<-1舍去).12.解:(1)由已知,x,y满足的数学关系式为该二元一次不等式组所表示的平面区域为图1中的阴影部分:图1图2(2)设利润为z万元,则目标函数为z=2x+3y.考虑z=2x+3y,将它变形为y=-x+,这是斜率为-,随z变化的一族平行直线,为直线在y轴上的截距,当取最大值时,z的值最大.又因为x,y满足约束条件,所以由图2可知,当直线z=2x+3y 经过可行域上的点M时,截距最大,即z最大.解方程组得点M的坐标为(20,24).所以z max=2×20+3×24=112.答:生产甲种肥料20车皮、乙种肥料24车皮时利润最大,且最大利润为112万元.13.解析:由约束条件画出可行域如图阴影部分所示.由图可知OM的最小值即为点O到直线x+y-2=0的距离,即d min=.。

2019届高考数学(文科)一轮复习课件(人教A版)第二章 函数 2.2

2019届高考数学(文科)一轮复习课件(人教A版)第二章 函数 2.2
2.2
函数的单调性与最值
-2知识梳理 双基自测 自测点评
1
2
3
1.函数的单调性 (1)单调函数的定义
增函数 减函数
一般地,设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2 定 当 x1<x2 时,都 f(x1)<f(x2) 义 有 ,那么就 当 x1<x2 时,都 有 f(x1)>f(x2) ,那么就
(4)设任意 x1, x2∈[a,b],则 f(x)在区间[a, b]上是增函数 ⇔
������(������1 )-������(������2) ������1 -������2
>0. (
1
)
1
(5)函数 y=������在区间[1,3]上的最小值为3. (
)
关闭
(1)× (2)× (3)× (4)√ (5)√
-5知识梳理 双基自测 自测点评
1
2
3பைடு நூலகம்
2.函数的最值
前提 设函数 y=f(x)的定义域为 I,如果存在实数 M 满足 (1)对于任意 x∈I,都 有 f(x)≤M ; 条件 (2)存在 x0∈I,使 得 f(x0)=M . 结论 M 为最大值 (1)对于任意 x∈I,都 有 f(x)≥M ; (2)存在 x0∈I,使 得 f(x0)=M . M 为最小值
大于
小于

增函数+增函数 内外层单调性 相同
减函数+减函数 内外层单调性
相反
-7知识梳理 双基自测 自测点评
1
2
3
(2)对勾函数
������ f(x)=x+ (a>0)的递增区间为(-∞,������

2019届高考数学人教A版文科一轮复习考点规范练3 精品

2019届高考数学人教A版文科一轮复习考点规范练3 精品

考点规范练3命题及其关系、充要条件基础巩固1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=32.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”3.设原命题:若a+b≥2,则a,b中至少有一个不小于1.则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题4.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题6.若x∈R,则“1<x<2”是“|x-2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2017广东六校联考)“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是()A.m>B.0<m<1C.m>0D.m>18.下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分不必要条件C.命题“若m>0,则关于x的方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0,且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”9.若a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件10.(2017北京海淀一模)若实数a,b满足a>0,b>0,则“a>b”是“a+ln a>b+ln b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是.12.若“∀x∈,tan x≤m”是真命题,则实数m的最小值为.能力提升13.已知命题“若函数f(x)=e x-mx在区间(0,+∞)内是增函数,则m≤1”,则下列结论正确的是()A.否命题是“若函数f(x)=e x-mx在区间(0,+∞)内是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在区间(0,+∞)内是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在区间(0,+∞)内是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在区间(0,+∞)内不是增函数”,是真命题14.下列命题中是真命题的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若x-是有理数,则x是无理数”的逆否命题.A.①②B.①③C.②③D.①②③15.(2017天津,文2改编)设x∈R,则“2-x≥0”是“|x-1|≤1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.已知p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足若p是q的必要不充分条件,则实数a的取值范围是.17.已知条件p:x∈A,且A={x|a-1<x<a+1},条件q:x∈B,且B={x|y=}.若p是q的充分条件,则实数a的取值范围是.高考预测18.若a,b∈R,则“a>b”是“a(e a+e-a)>b(e b+e-b)”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:1.A解析:a+b+c=3的否定是a+b+c≠3,a2+b2+c2≥3的否定是a2+b2+c2<3.2.B解析:将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.3.A解析:原命题的逆否命题:若a,b都小于1,则a+b<2.显然为真.故原命题为真.原命题的逆命题:若a,b中至少有一个不小于1,则a+b≥2.因为a=1.2,b=0.2,有a+b<2,所以其逆命题为假.4.A解析:若直线a,b相交,设交点为P,则P∈a,P∈b.又因为a⊆α,b⊆β,所以P∈α,P∈β.故α,β相交.反之,若α,β相交,设交线为l,当a,b都与直线l不相交时,有a∥b.显然a,b可能相交,也可能异面、平行.综上,“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.5.A解析:对于A,逆命题是:若x>|y|,则x>y.因为x>|y|≥y,必有x>y,所以逆命题是真命题;对于B,否命题是:若x≤1,则x2≤1.因为x=-5,有x2=25>1,所以否命题是假命题;对于C,否命题是:若x≠1,则x2+x-2≠0.因为x=-2,有x2+x-2=0,所以否命题是假命题;对于D,若x2>0,则x≠0,不一定有x>1,因此逆否命题是假命题.6.A解析:由|x-2|<1,解得1<x<3.因为“1<x<2”能推出“1<x<3”,“1<x<3”推不出“1<x<2”,所以“1<x<2”是“|x-2|<1”的充分不必要条件.7.C解析:不等式x2-x+m>0在R上恒成立,则Δ=1-4m<0,解得m>.所以“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是m>0.8.C解析:若关于x的方程x2+x-m=0有实根,则Δ=1+4m≥0,即m≥-,不能推出m>0.所以“若m>0,则方程x2+x-m=0有实根”的逆命题不是真命题,故选C.9.B解析:∵3a>3b>3,∴a>b>1.∴log3a>log3b>0.∴,即log a3<log b3.∴“3a>3b>3”是“log a3<log b3”的充分条件.当0<a<1,b>1时,满足log a3<log b3.而由3a>3b>3,得a>b>1,∴由log a3<log b3不能推出3a>3b>3,∴“3a>3b>3”不是“log a3<log b3”的必要条件.∴“3a>3b>3”是“log a3<log b3”的充分不必要条件,故选B.10.C解析:设f(x)=x+ln x,显然f(x)在区间(0,+∞)内单调递增,∵a>b,∴f(a)>f(b),即a+lna>b+ln b,故充分性成立,∵a+ln a>b+ln b,∴f(a)>f(b),∴a>b,故必要性成立,故“a>b”是“a+ln a>b+ln b”的充要条件,故选C.11.②③解析:①原命题的否命题为“若a≤b,则a2≤b2”,是假命题;②原命题的逆命题为“若x,y互为相反数,则x+y=0”,是真命题;③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,是真命题.12.1解析:由题意知m≥(tan x)max.∵x∈,∴tan x∈[0,1].∴m≥1.故m的最小值为1.13.D解析:由f(x)=e x-mx在区间(0,+∞)内是增函数,可知f'(x)=e x-m≥0在区间(0,+∞)内恒成立,故m≤1.因此命题“若函数f(x)=e x-mx在区间(0,+∞)内是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在区间(0,+∞)内不是增函数”是真命题.14.B解析:对于①,其否命题是“若x2+y2=0,则x,y全为零”,这显然是正确的,故①为真命题;对于②,其逆命题是“若两多边形相似,则它们一定是正多边形”,这显然是错误的,故②为假命题;对于③,原命题为真,故逆否命题也为真.因此是真命题的是①③.15.B解析:∵x=-3满足2-x≥0,但不满足|x-1|≤1,∴“2-x≥0”不是“|x-1|≤1”的充分条件.若|x-1|≤1,则-1≤x-1≤1,即0≤x≤2,可得2-x≥0,即“2-x≥0”是“|x-1|≤1”的必要条件.故“2-x≥0”是“|x-1|≤1”的必要不充分条件.故选B.16.(1,2]解析:∵p是q的必要不充分条件,∴q⇒p,且p q.设A={x|p(x)},B={x|q(x)},则B⫋A.又B={x|2<x≤3},当a>0时,A={x|a<x<3a};当a<0时,A={x|3a<x<a}.故当a>0时,有解得1<a≤2;当a<0时,显然A∩B=⌀,不合题意.综上所述,实数a的取值范围是(1,2].17.(-∞,0]∪[3,+∞)解析:易得B={x|x≤1或x≥2},且A={x|a-1<x<a+1},由p是q的充分条件,可知A⊆B,故a+1≤1或a-1≥2,即a≤0或a≥3.即所求实数a的取值范围是(-∞,0]∪[3,+∞).18.C解析:设f(x)=e x+e-x,则f'(x)=e x-e-x=.当x>0时,e x>1,∴(e x)2-1>0.∴f'(x)>0,∴当x>0时,f(x)是增函数;∵a>b>0,∴f(a)>f(b).∴e a+e-a>e b+e-b.∴a(e a+e-a)>b(e b+e-b).当x<0时,0<e x<1,∴(e x)2-1<0.∴f'(x)<0,∴当x<0时,f(x)是减函数;∵b<a<0,∴f(a)<f(b).∴e a+e-a<e b+e-b.∴a(e a+e-a)>b(e b+e-b).当a>0>b时,a(e a+e-a)>b(e b+e-b)显然成立,综上所述,当a>b时,a(e a+e-a)>b(e b+e-b)恒成立,故充分性成立;反之也成立,故必要性成立;故“a>b”是“a(e a+e-a)>b(e b+e-b)”的充要条件,故选C.。

2019届高考数学人教A版文科一轮复习考点规范练42 精品

2019届高考数学人教A版文科一轮复习考点规范练42 精品

考点规范练42点与直线、两条直线的位置关系基础巩固1.(2017浙江温州模拟)若直线l1:kx+(1-k)y-3=0和l2:(k-1)x+(2k+3)y-2=0互相垂直,则k=()A.-3或-1B.3或1C.-3或1D.-1或32.已知直线3x+4y-3=0与直线6x+my+14=0平行,则它们之间的距离是()A.1B.2C.D.43.若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最小值为()A.3B.2C.3D.44.已知平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,D点在直线3x-y+1=0上移动,则B点的轨迹方程为()A.3x-y-20=0B.3x-y-10=0C.3x-y-9=0D.3x-y-12=05.如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.2B.6C.3D.26.已知平行直线l1:2x+y-1=0,l2:2x+y+1=0,则l1与l2之间的距离是.7.已知点A(1,3)关于直线y=kx+b对称的点是B(-2,1),则直线y=kx+b在x轴上的截距是.8.已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是.9.已知两条直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8.当m分别为何值时,l1与l2:(1)相交?(2)平行?(3)垂直?10.已知光线从点A(-4,-2)射出,到直线y=x上的B点后被直线y=x反射到y轴上的C点,又被y轴反射,这时反射光线恰好过点D(-1,6),求BC所在的直线方程.能力提升11.(2017浙江杭州月考)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解12.点P到点A'(1,0)和到直线x=-1的距离相等,且P到直线y=x的距离等于,这样的点P共有()A.1个B.2个C.3个D.4个13.已知M=,N={(x,y)|ax+2y+a=0},且M∩N=⌀,则a=()A.-6或-2B.-6C.2或-6D.-214.已知曲线=1与直线y=2x+m有两个交点,则m的取值范围是()A.(-∞,-4)∪(4,+∞)B.(-4,4)C.(-∞,-3)∪(3,+∞)D.(-3,3)15.(2017宁夏银川模拟)点P(2,1)到直线l:mx-y-3=0(m∈R)的最大距离是.16.(2017江苏淮安调研)已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为.17.已知三条直线l1:2x-y+a=0(a>0),l2:-4x+2y+1=0,l3:x+y-1=0,且l1与l2之间的距离是.(1)求a的值;(2)能否找到一点P,使P同时满足下列三个条件:①点P在第一象限;②点P到l1的距离是点P到l2的距离的;③点P到l1的距离与点P到l3的距离之比是.若能,求点P的坐标;若不能,说明理由.高考预测18.设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,且0≤c≤,则这两条直线之间的距离的最大值和最小值分别是()A. B. C. D.答案:1.C解析:若1-k=0,即k=1,直线l1:x=3,l2:y=,显然两直线垂直.若k≠1,直线l1,l2的斜率分别为k1=,k2=.由k1k2=-1,得k=-3.综上k=1或k=-3,故选C.2.B解析:由直线3x+4y-3=0与直线6x+my+14=0平行可得,则m=8,直线6x+8y+14=0可化为3x+4y+7=0.故d==2.3.A解析:依题意知,AB的中点M的集合为与直线l1:x+y-7=0和l2:x+y-5=0距离相等的直线,则M到原点的距离的最小值为原点到该直线的距离.设点M所在直线的方程为l:x+y+m=0,根据平行线间的距离公式得⇒|m+7|=|m+5|⇒m=-6,即l:x+y-6=0,根据点到直线的距离公式,得中点M到原点的距离的最小值为=3.4.A解析:设AC的中点为O,则O.设B(x,y)关于点O的对称点为(x0,y0),即D(x0,y0),则由3x0-y0+1=0得3x-y-20=0.5.A解析:易得AB所在的直线方程为x+y=4,由于点P关于直线AB对称的点为A1(4,2),点P 关于y轴对称的点为A2(-2,0),则光线所经过的路程即A1(4,2)与A2(-2,0)两点间的距离.于是|A1A2|==2.6.解析:利用两平行线间距离公式,得d=.7.解析:由题意得线段AB的中点在直线y=kx+b上,故解得所以直线方程为y=-x+.令y=0,即-x+=0,解得x=,故直线y=kx+b在x轴上的截距为.8.[0,10]解析:由题意得,点P到直线的距离为.又≤3,即|15-3a|≤15,解得0≤a≤10,故a的取值范围是[0,10].9.解:(1)当m=-5时,显然l1与l2相交但不垂直;当m≠-5时,两条直线l1和l2的斜率分别为k1=-,k2=-,它们在y轴上的截距分别为b1=,b2=.由k1≠k2,得-≠-,即m≠-7,且m≠-1.则当m≠-7,且m≠-1时,l1与l2相交.(2)由解得m=-7.则当m=-7时,l1与l2平行.(3)由k1k2=-1,得=-1,解得m=-.则当m=-时,l1与l2垂直.10.解:作出草图如图所示.设A关于直线y=x的对称点为A',D关于y轴的对称点为D',则易得A'(-2,-4),D'(1,6).由入射角等于反射角可得A'D'所在直线经过点B与点C.故BC所在的直线方程为,即10x-3y+8=0.11.B解析:由题意,直线y=kx+1一定不过原点O,P1,P2是直线y=kx+1上不同的两点,则不平行,因此a1b2-a2b1≠0,所以二元一次方程组一定有唯一解.12.C解析:设P(x,y),由题意知=|x+1|且,所以①或②解得①有两根,②有一根.13.A解析:集合M表示去掉一点A(2,3)的直线3x-y-3=0,集合N表示恒过定点B(-1,0)的直线ax+2y+a=0,因为M∩N=⌀,所以两直线要么平行,要么直线ax+2y+a=0与直线3x-y-3=0相交于点A(2,3).因此=3或2a+6+a=0,即a=-6或a=-2.14.A解析:曲线=1的草图如图所示.由该曲线与直线y=2x+m有两个交点,可得m>4或m<-4.15.2解析:直线l经过定点Q(0,-3),如图所示.由图知,当PQ⊥l时,点P(2,1)到直线l的距离取得最大值,|PQ|==2,所以点P(2,1)到直线l 的最大距离为2.16.6x-y-6=0解析:设点M(-3,4)关于直线l:x-y+3=0的对称点为M'(a,b),则反射光线所在直线过点M',所以解得又反射光线经过点N(2,6),所以所求直线的方程为,即6x-y-6=0.17.解:(1)因为直线l2:2x-y-=0,所以两条平行线l1与l2间的距离为d=,所以,即,又a>0,解得a=3.(2)假设存在点P,设点P(x0,y0).若点P满足条件②,则点P在与l1,l2平行的直线l':2x-y+c=0上,且,即c=或c=,所以2x0-y0+=0或2x0-y0+=0;若点P满足条件③,由点到直线的距离公式,有,即|2x0-y0+3|=|x0+y0-1|,所以x0-2y0+4=0或3x0+2=0;因为点P在第一象限,所以3x0+2=0不可能.联立解得(舍去);联立解得所以存在点P同时满足三个条件.18.D解析:依题意得|a-b|=,当0≤c≤时,≤|a-b|=≤1.因为两条直线间的距离等于,所以两条直线间的距离的最大值与最小值分别是.。

2019届高考数学一轮复习训练第二章 函数 考点规范练12 函数与方程 文 新人教A版

2019届高考数学一轮复习训练第二章 函数 考点规范练12 函数与方程 文 新人教A版

考点规范练函数与方程基础巩固.(北京房山区一模)由表格中的数据可以判定函数() 的一个零点所在的区间是()(∈),则的值为().已知函数()则函数()的零点为()..函数()与的图象交点的横坐标所在的区间为().() .().() .().若函数()的一个零点在区间()内,则实数的取值范围是().() .().() .().若()是奇函数,且是()的一个零点,则一定是下列哪个函数的零点()() ()() ().已知函数()若方程()有三个不同的实数根,则实数的取值范围是().() .().() .().已知函数(),函数()为奇函数,则函数()的零点个数为().(江西南昌模拟)已知()是定义在上的奇函数,且当∈(∞)时() ,则函数()的零点个数是().已知偶函数()满足()(),且当∈[]时(),则关于的方程()在区间[]上解的个数是().已知函数()若函数()()有个零点,则实数的取值范围是..若函数()则(());若函数()()存在两个零点,则实数的取值范围是..已知函数()有零点,则的取值范围是.能力提升.已知函数()(),若(())≥对∈[]恒成立,则实数的取值范围是().[∞) .[ ∞).[∞) ..已知定义在上的奇函数()满足()(),且在区间[]上为增函数,若方程()(>)在区间[]上有四个不同的根,则的值为().已知是自然对数的底数,函数()的零点为,函数() 的零点为,则下列不等式中成立的是()()<()<() ()<()<()()<()<() ()<()<().若方程()有两个不等的实根,则的取值范围是..若定义在上的函数()满足()(),且当∈[]时(),函数()则函数()()()在区间[]上的零点的个数为.高考预测.(全国Ⅲ,文)已知函数()()有唯一零点,则()..答案:解析:当取值分别是时()()()()(),∵()()<,∴函数的零点在区间()上,∴,故选.解析:当≤时,由(),解得;当>时,由(),解得,又因为>,所以此时方程无解.综上可知函数()的零点只有,故选.解析:函数()与的图象交点的横坐标,即为函数()()的零点.∵()在(∞)上是图象连续的,且() <() >,∴()的零点所在区间为().故选.解析:因为函数()在区间()上单调递增,又函数()的一个零点在区间()内,所以()·()<,所以()()<,即()<.所以<<.解析:由已知可得(),则()(),故一定是()的零点.解析:画出函数()的图象如图所示,观察图象可知,若方程()有三个不同的实数根,则函数()的图象与直线有三个不同的交点,此时需满足<<,故选.解析:∵(),∴()()()()()().∵函数()为奇函数,∴.。

新教材高考数学一轮复习课时规范练12函数与方程含解析新人教A版

新教材高考数学一轮复习课时规范练12函数与方程含解析新人教A版

课时规范练12 函数与方程基础巩固组1.(2020云南玉溪一中二模)函数f (x )=2x +3x 的零点所在的一个区间是( ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)2.函数f (x )=sin(πcos x )在区间[0,2π]上的零点个数是( )A.3B.4C.5D.63.设f (x )=3x +3x-8,用二分法求方程3x +3x-8=0在x ∈(1,2)内的近似解的过程中得f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在( ) A.(1,1.25) B.(1.25,1.5) C.(1.5,2) D.不能确定4.已知x 0是f (x )=12x +1x 的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A.f (x 1)<0,f (x 2)<0B.f (x 1)>0,f (x 2)>0C.f (x 1)>0,f (x 2)<0D.f (x 1)<0,f (x 2)>05.已知函数f (x )={|2x -1|,x <2,3x -1,x ≥2,若方程f (x )-a=0有三个不同的实数根,则实数a 的取值范围是( )A.(1,3)B.(0,3)C.(0,2)D.(0,1)6.(多选)(2020山东济南历城二中模拟四,9)已知f (x )是定义域为R 的偶函数,在(-∞,0)上单调递减,且f (-3)·f (6)<0,那么下列结论中正确的是( ) A.f (x )可能有三个零点B.f (3)·f (-4)≥0C.f (-4)<f (6)D.f (0)<f (-6)7.(多选)已知函数f (x )={-x 2-2x ,x ≤0,|log 2x |,x >0,若x 1<x 2<x 3<x 4,且f (x 1)=f (x 2)=f (x 3)=f (x 4),则下列结论正确的是( ) A.x 1+x 2=-1 B.x 3x 4=1 C.1<x 4<2D.0<x 1x 2x 3x 4<1 8.(多选)(2020山东济宁三模,12)已知直线y=-x+2分别与函数y=e x 和y=ln x 的图象交于点A (x 1,y 1),B (x 2,y 2),则下列结论正确的是( ) A.x 1+x 2=2B.e x 1+e x 2>2eC.x 1ln x 2+x 2ln x 1<0D.x 1x 2>√e29.若函数f (x )=log 2x+x-k (k ∈Z )在区间(2,3)上有零点,则k= .10.已知函数f (x )={log 2(x +1),x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是 .11.函数f (x )={|x 2+2x -1|,x ≤0,2x -1+a ,x >0有两个不同的零点,则实数a 的取值范围为 .综合提升组12.(2020湖北恩施高中月考,理11)已知单调函数f (x )的定义域为(0,+∞),对于定义域内任意x ,f ([f (x )-log 2x ])=3,则函数g (x )=f (x )+x-7的零点所在的区间为( ) A.(1,2) B.(2,3) C.(3,4)D.(4,5)13.已知函数f (x )=|2x -2|+b 的两个零点分别为x 1,x 2(x 1>x 2),则下列结论正确的是( ) A.1<x 1<2,x 1+x 2<2 B.1<x 1<2,x 1+x 2<1 C.x 1>1,x 1+x 2<2D.x 1>1,x 1+x 2<114.(2020安徽安庆二模,理12)函数f (x )=|ln x|-ax 恰有两个零点x 1,x 2,且x 1<x 2,则x 1所在区间为( ) A.0,1e 3B.1e3,1e 2C.1e 2,1eD.1e,115.(2020天津和平区一模,15)已知函数f (x )={1-|x +1|,x ∈[-2,0],2f (x -2),x ∈(0,+∞),则3log f (3)256= ;若方程f (x )=x+a 在区间[-2,4]有三个不等实根,则实数1a的取值范围为 .创新应用组16.(2020河南实验中学4月模拟,12)已知函数f (x )={-x 2+2x ,x ≥0,x 2-2x ,x <0,若关于x 的不等式[f (x )]2+af (x )<0恰有1个整数解,则实数a 的最大值为( ) A.2 B.3 C.5 D.8 17.已知函数f (x )=x 2-2x+a (e x-1+e -x+1)有唯一零点,则a=( )A.-12 B.13C.12D.1参考答案课时规范练12 函数与方程1.B 易知f (x )=2x +3x 在R 上单调递增,且f (-2)=2-2-6<0,f (-1)=2-1-3<0,f (0)=1>0,所以由函数零点存在定理得,零点所在的区间是(-1,0).故选B .2.C 令f (x )=0,得πcos x=k π(k ∈Z ),即cos x=k (k ∈Z ),故k=0,1,-1.若k=0,则x=π2或x=3π2;若k=1,则x=0或x=2π;若k=-1,则x=π,故零点个数为5.故选C .3.B 由f (1.25)<0,f (1.5)>0可得方程f (x )=0的根落在区间(1.25,1.5)内.故选B .4.C 在同一平面直角坐标系内作出函数y=12x ,y=-1x的图象(图略),由图象可知,当x ∈(-∞,x 0)时,12x >-1x,当x ∈(x 0,0)时,12x <-1x,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0,故选C .5.D 画出函数f (x )的图象如图所示,观察图象可知,若方程f (x )-a=0有三个不同的实数根,则函数y=f (x )的图象与直线y=a 有三个不同的交点,此时需满足0<a<1,故选D .6.AC 因为f (x )是偶函数,又f (-3)f (6)<0,所以f (3)f (6)<0.又f (x )在(0,+∞)上单调递增,所以函数f (x )在(0,+∞)上有一个零点,且f (3)<0,f (6)>0.所以函数f (x )在(-∞,0)∪(0,+∞)上有两个零点.但是f (0)的值没有确定,所以函数f (x )可能有三个零点,所以A 选项正确;又f (-4)=f (4),4∈(3,6),所以f (-4)的符号不确定,所以B 选项不正确;C 选项显然正确;由于f (0)的值没有确定,所以f (0)与f (-6)的大小关系不确定,所以D 选项不正确.7.BCD 画出函数f (x )的大致图象如图,由图象得出x 1+x 2=-2,-log 2x 3=log 2x 4,则x 3x 4=1,故A 错误,B 正确;由图可知1<x 4<2,故C正确;因为-2<x 1<-1,x 1x 2=x 1(-2-x 1)=-x 12-2x 1=-(x 1+1)2+1∈(0,1),所以x 1x 2x 3x 4=x 1x 2∈(0,1),故D正确.故选BCD .8.ABC 因为函数y=e x 与y=ln x 互为反函数,它们的图象关于直线y=x 对称,直线y=-x+2与直线y=x 垂直,且交点为(1,1),则点(1,1)为A (x 1,y 1),B (x 2,y 2)的中点,所以x 1+x 2=2,故选项A 正确;e x 1+e x 2≥2√e x 1e x 2=2√e x 1+x 2=2√e 2=2e ,由题意x 1≠x 2,所以e x 1≠e x 2,所以e x 1+e x 2>2e ,故选项B 正确;因为点(1,1)为A (x 1,y 1),B (x 2,y 2)的中点,不妨设x 1<1<x 2,所以x 1ln x 2+x 2ln x 1<x 2ln x 2+x 2ln x 1=x 2(ln x 2+ln x 1)=x 2ln(x 1x 2)<x 2ln x 1+x 222=x 2ln1=0,故选项C 正确;因为x 1+x 2>2√x 1x 2,则x 1x 2<x 1+x 222=1,所以x 1x 2>√e2错误,故选项D 错误,故选ABC .9.4 由题意可得f (2)f (3)<0,即(log 22+2-k )(log 23+3-k )<0,整理得(3-k )(log 23+3-k )<0,解得3<k<3+log 23,而4<3+log 23<5,因为k ∈Z ,故k=4.10.(0,1) 因为函数g (x )=f (x )-m 有3个零点,所以f (x )-m=0有3个根,所以y=f (x )的图象与直线y=m 有3个交点.画出函数y=f (x )的图象,由抛物线顶点为(-1,1),可知实数m 的取值范围是(0,1).11.-∞,-12 由于当x ≤0,f (x )=|x 2+2x-1|时图象与x 轴只有1个交点,即只有1个零点,故由题意只需方程2x-1+a=0有1个正根即可,变形为2x-1=-a ,结合图形知-a>12,解得a<-12.12.C 因为f (x )在(0,+∞)上为单调函数,且f ([f (x )-log 2x ])=3,设t=f (x )-log 2x ,则f (x )=log 2x+t ,又由f (t )=3,所以f (t )=log 2t+t=3,得t=2,所以f (x )=log 2x+2,所以g (x )=log 2x+x-5.因为g (3)<0,g (4)>0,所以零点所在的区间为(3,4).故选C .13.A 函数f (x )=|2x -2|+b 有两个零点,即y=|2x -2|与y=-b 的图象有两个交点,交点的横坐标就是x 1,x 2(x 1>x 2),在同一坐标系中画出y=|2x -2|与y=-b 的图象,可知1<x 1<2,当y=-b=2时,x 1=2,两个函数图象只有一个交点,当y=-b<2时,由图可知x 1+x 2<2.14.D 当a<0时,f (x )>0恒成立,不符合题意,当a=0时,f (x )=|ln x|只有一个零点为1,也不符合题意,当a>0时,作函数g (x )=|ln x|与h (x )=ax 图象,易知g (x )与h (x )图象在区间(0,1)上必有一个交点,则在区间(1,+∞)上有且仅有一个公共点,当x ∈(1,+∞)时,f (x )=ln x-ax ,f'(x )=1-ax x,f (x )在0,1a上单调递增,在1a,+∞上单调递减,所以f (x )max =f1a=ln 1a-1,则只需ln 1a-1=0,故a=1e,当x ∈(0,1)时,f (x )=-ln x-1ex ,易知f1e=1-1e2>0,f (1)=-1e <0,可知x 1∈1e,1,故选D .15.81-∞,-12∪{1} ∵f (x )={1-|x +1|,x ∈[-2,0],2f (x -2),x ∈(0,+∞),∴f (3)=2f (1)=4f (-1)=4×(1-|-1+1|)=4. ∴log f (3)256=lo g 2228=82=4,3log f (3)256=34=81. 若x ∈[0,2],则-2≤x-2≤0,∴f (x )=2f (x-2)=2(1-|x-2+1|)=2-2|x-1|,0≤x ≤2. 若x ∈(2,4],则0<x-2≤2,∴f (x )=2f (x-2)=2(2-2|x-2-1|)=4-4|x-3|,2<x ≤4. ∴f (1)=2,f (2)=0,f (3)=4.设y=f (x )和y=x+a ,则方程f (x )=x+a 在区间[-2,4]内有3个不等实根,等价为函数y=f (x )和y=x+a 在区间[-2,4]内有3个不同的零点.作出函数f (x )和y=x+a 的图象,如图所示,当直线经过点A (2,0)时,两个图象有2个交点,此时直线为y=x-2,当直线经过点O (0,0)时,两个图象有4个交点,此时直线为y=x ,当直线经过点B (3,4)和C (1,2)时,两个图象有3个交点,此时直线为y=x+1,∴要使方程f (x )=x+a 在区间[-2,4]内有3个不等实根,则a=1或-2<a<0.故实数1a 的取值范围为{1}∪-∞,-12. 16.D 作函数f (x )图象,如图所示,由[f (x )]2+af (x )<0,得f (x )[f (x )+a ]<0,当a>0时,-a<f (x )<0,由于关于x 的不等式[f (x )]2+af (x )<0恰有1个整数解,因此其整数解为3,又f (3)=-9+6=-3,所以-a<-3<0,-a ≥f (4)=-8,则3<a ≤8.当a=0时,[f (x )]2<0,则a=0不满足题意;当a<0时,0<f (x )<-a ,当0<-a ≤1时,0<f (x )<-a ,没有整数解,当-a>1时,0<f (x )<-a ,至少有两个整数解,综上,实数a 的最大值为8,故选D . 17.C (方法1)∵f (x )=x 2-2x+a (e x-1+e -x+1),∴f (2-x )=(2-x )2-2(2-x )+a [e 2-x-1+e -(2-x )+1]=x 2-4x+4-4+2x+a (e 1-x+e x-1)=x 2-2x+a (e x-1+e -x+1),∴f (2-x )=f (x ),即直线x=1为f (x )图象的对称轴.∵f (x )有唯一零点,∴f (x )的零点只能为1,即f (1)=12-2×1+a (e 1-1+e -1+1)=0,解得a=12.(方法2)函数的零点满足x 2-2x=-a (e x-1+e -x+1)=-a e x-1+1e x -1,设g (x )=e x-1+1e x -1,令t=e x-1>0,则y=t+1t在(0,1)单调递减,在[1,+∞)单调递增,即g (x )=e x-1+1e x -1在(-∞,1)上单调递减,在[1,+∞)上单调递增,所以当x=1时,y min =2,设h (x )=x 2-2x ,当x=1时,h (x )min =-1,若-a>0,函数h (x )与-ag (x )有两个交点,不合题意.当-a<0时,-ag (x )的最大值为-2a ,当-2a=h (x )min =-1,两个函数有一个交点,解得a=12.。

2019届高考数学一轮复习 第二章 函数 考点规范练12 函数与方程 文 新人教A版

2019届高考数学一轮复习 第二章 函数 考点规范练12 函数与方程 文 新人教A版

考点规范练12 函数与方程基础巩固1.(2017北京房山区一模)由表格中的数据可以判定函数f(x)=ln x-x+2的一个零点所在的区间是(k,k+1)(k∈Z),则k的值为()A.1B.2C.3D.42.已知函数f(x)=则函数f(x)的零点为()A.,0B.-2,0C. D.03.函数y=ln(x+1)与y=的图象交点的横坐标所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.若函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)5.若f(x)是奇函数,且x0是y=f(x)+e x的一个零点,则-x0一定是下列哪个函数的零点()A.y=f(-x)e x-1B.y=f(x)e-x+1C.y=e x f(x)-1D.y=e x f(x)+16.已知函数f(x)=若方程f(x)-a=0有三个不同的实数根,则实数a的取值范围是()A.(1,3)B.(0,3)C.(0,2)D.(0,1)7.已知函数f(x)=x3+ax2+bx+1,函数y=f(x+1)-1为奇函数,则函数f(x)的零点个数为()A.0B.1C.2D.38.(2017江西南昌模拟)已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2 016x+log2 016x,则函数f(x)的零点个数是()A.1B.2C.3D.49.已知偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=x,则关于x的方程f(x)=在区间[0,4]上解的个数是()A.1B.2C.3D.410.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是.11.若函数f(x)=则f(f(-1))=;若函数g(x)=f(x)-k存在两个零点,则实数k的取值范围是.12.已知函数f(x)=e x-2x+a有零点,则a的取值范围是.能力提升13.已知函数f(x)=-x2+3x+a,g(x)=2x-x2,若f(g(x))≥0对x∈[0,1]恒成立,则实数a的取值范围是()A.[-e,+∞)B.[-ln 2,+∞)C.[-2,+∞)D.14.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上为增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为()A.8B.-8C.0D.-415.已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则下列不等式中成立的是()A.f(a)<f(1)<f(b)B.f(a)<f(b)<f(1)C.f(1)<f(a)<f(b)D.f(b)<f(1)<f(a)16.若方程=k(x-2)+3有两个不等的实根,则k的取值范围是.17.若定义在R上的函数y=f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x2,函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为.高考预测18.(2017全国Ⅲ,文12)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=()A.-B.C. D.1答案:1.C解析:当x取值分别是1,2,3,4,5时,f(1)=1,f(2)=0.69,f(3)=0.1,f(4)=-0.61,f(5)=-1.39,∵f(3)f(4)<0,∴函数的零点在区间(3,4)上,∴k=3,故选C.2.D解析:当x≤1时,由f(x)=2x-1=0,解得x=0;当x>1时,由f(x)=1+log2x=0,解得x=,又因为x>1,所以此时方程无解.综上可知函数f(x)的零点只有0,故选D.3.B解析:函数y=ln(x+1)与y=的图象交点的横坐标,即为函数f(x)=ln(x+1)-的零点.∵f(x)在(0,+∞)上是图象连续的,且f(1)=ln 2-1<0,f(2)=ln 3->0,∴f(x)的零点所在区间为(1,2).故选B.4.C解析:因为函数f(x)=2x--a在区间(1,2)上单调递增,又函数f(x)=2x--a的一个零点在区间(1,2)内,所以f(1)·f(2)<0,所以(-a)(4-1-a)<0,即a(a-3)<0.所以0<a<3.5.C解析:由已知可得f(x0)=-,则f(x0)=-1,f(-x0)=1,故-x0一定是y=e x f(x)-1的零点.6.D解析:画出函数f(x)的图象如图所示,观察图象可知,若方程f(x)-a=0有三个不同的实数根,则函数y=f(x)的图象与直线y=a有三个不同的交点,此时需满足0<a<1,故选D.7.B解析:∵f(x)=x3+ax2+bx+1,∴f(x+1)-1=(x+1)3+a(x+1)2+b(x+1)+1-1=x3+(3+a)x2+(3+2a+b)x+1+b+a.∵函数y=f(x+1)-1为奇函数,∴a=-3,b=2.∴f(x)=x3-3x2+2x+1.∴f'(x)=3x2-6x+2=3(x-1)2-1=3.经分析可知f(x)在内是增函数,在内是减函数,在内是增函数,且f>0,f>0,∴函数f(x)的零点个数为1,故选B.8.C解析:作出函数y=2 016x和y=-log2 016x的图象如图所示,可知函数f(x)=2 016x+log2 016x在x∈(0,+∞)内存在一个零点.∵f(x)是定义在R上的奇函数,∴f(x)在x∈(-∞,0)内只有一个零点.又f(0)=0,∴函数f(x)的零点个数是3,故选C.9.D解析:由f(x-1)=f(x+1),可知函数f(x)的周期T=2.∵x∈[0,1]时,f(x)=x,又f(x)是偶函数,∴f(x)的图象与y=的图象如图所示.由图象可知f(x)=在区间[0,4]上解的个数是4.故选D.10.(0,1)解析:因为函数g(x)=f(x)-m有3个零点,所以f(x)-m=0有3个根,所以y=f(x)的图象与直线y=m有3个交点.画出函数y=f(x)的图象,由抛物线顶点为(-1,1),可知实数m的取值范围是(0,1).11.-2(0,1]解析:f(f(-1))=f=log2=-2;令g(x)=0,得f(x)=k,等价于y=f(x)的图象和直线y=k有两个不同的交点,在平面直角坐标系中画出y=f(x)的图象,如图所示,要使得两个函数图象有2个不同交点,需0<k≤1.则实数k的取值范围是(0,1].12.(-∞,2ln 2-2]解析:∵f(x)=e x-2x+a,∴f'(x)=e x-2.当x∈(-∞,ln 2)时,f'(x)<0;当x∈(ln 2,+∞)时,f'(x)>0;故f(x)min=f(ln 2)=2-2ln 2+a.因为f>0,所以f(x)有零点当且仅当2-2ln 2+a≤0,所以a≤2ln 2-2.13.C解析:令t=g(x),x∈[0,1],则g'(x)=2x ln 2-2x.可知存在x0∈(0,1),使g'(x0)=0,则函数g(x)在[0,x0]上单调递增,在[x0,1]上单调递减.故g(x)在x∈[0,1]上的值域为[1,g(x0)],且g(x0)=.故f(g(x))≥0可转化为f(t)≥0,即a≥t2-3t.又当x0∈[0,1]时,g(x0)=<2,因为φ(t)=t2-3t在[1,2]上的最大值为φ(1)=φ(2),所以φ(t)在[1,g(x0)]上的最大值为φ(1).所以φmax(t)=φ(1)=1-3=-2.所以a≥-2.故选C.14.B解析:∵定义在R上的奇函数f(x)满足f(x-4)=-f(x),∴f(x)=f(x+8),f(4-x)=f(x),f(0)=0.∴函数图象关于直线x=2对称,且函数的周期为8.∵f(x)在区间[0,2]上为增函数,∴f(x)在区间[-2,0]上为增函数,综上条件得函数f(x)的示意图如图所示.由图看出,四个交点中两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,故x1+x2+x3+x4=-8,故选B.15.A解析:由题意,知f'(x)=e x+1>0在x∈R上恒成立,故函数f(x)在R上单调递增.而f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)的零点a∈(0,1);由题意,知g'(x)=+1>0在x∈(0,+∞)内恒成立,故函数g(x)在(0,+∞)内单调递增.又g(1)=ln 1+1-2=-1<0,g(2)=ln 2+2-2=ln 2>0,所以函数g(x)的零点b∈(1,2).综上,可得0<a<1<b<2.因为f(x)在R上是单调递增的,所以f(a)<f(1)<f(b).故选A.16.解析:作出函数y1=和y2=k(x-2)+3的图象如图所示,函数y1的图象是圆心在原点,半径为2且在x 轴上方的半圆(包括端点),函数y2的图象是过定点P(2,3)的直线.因为点A(-2,0),则k PA=.设直线PB是圆的切线,由圆心到直线的距离等于半径,得=2,得k PB=.由图可知,当k PB<k≤k PA时,两个函数图象有两个交点,即原方程有两个不等实根.故<k≤.17.8解析:∵f(x+1)=-f(x),∴f(x+2)=f(x).又x∈[-1,1]时,f(x)=x2,∴f(x)的图象如图所示,在同一平面直角坐标系中作出函数g(x)的图象,可见y=f(x)(-5≤x≤5)与y=2x(x≤1)有5个交点,y=f(x)(-5≤x≤5)与y=log3(x-1)(x>1)的图象有3个交点,故共有8个交点.18.C解析:∵f(x)=x2-2x+a(e x-1+e-x+1),∴f(2-x)=(2-x)2-2(2-x)+a[e2-x-1+e-(2-x)+1]=x2-4x+4-4+2x+a(e1-x+e x-1)=x2-2x+a(e x-1+e-x+1),∴f(2-x)=f(x),即直线x=1为f(x)图象的对称轴.∵f(x)有唯一零点,∴f(x)的零点只能为1,即f(1)=12-2×1+a(e1-1+e-1+1)=0,解得a=.。

【名师一号】2019高考数学(人教版a版)一轮配套题库:2-9函数与方程

【名师一号】2019高考数学(人教版a版)一轮配套题库:2-9函数与方程

第九节函数与方程时间:45分钟分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.函数f(x)=ln(x+1)-2x的零点所在的大致区间是( )A.(0,1) B.(1,2)C.(2,e) D.(3,4)解析∵f(1)=ln2-2<0,f(2)=ln3-1>0,∴f(1)·f(2)<0.故选B.答案 B2.函数y=f(x)在区间(-1,1)上的图象是连续的,且方程f(x)=0在(-1,1)上仅有一个实根0,则f(-1)·f(1)的值( )A.大于0 B.小于0C.等于0 D.无法确定解析由题意知f(x)在(-1,1)上有零点0,该零点可能是变号零点,也可能是不变号零点,∴f(-1)·f(1)符号不定,如f(x)=x2,f(x)=x.答案 D3.(2018·天津卷)函数f(x)=2x|log0.5x|-1的零点个数为( )A.1 B.2C.3 D.4解析f(x)=2x|log0.5x|-1=0,得|log0.5x|=12x ,即|log0.5x|=(12)x,所以问题转化为y=|log0.5x|与y=(12)x图象的交点个数.在同一坐标系中作出函数y=|log0.5x|与y=(12)x的图象,易知交点个数为2.答案 B4.(2018·厦门市质检)设函数f(x)=⎩⎪⎨⎪⎧2-x,x≥0,log12-,x<0.则函数y=f(x)-(x2+1)的零点个数为( )A.1 B.2C .3D .4解析 y =f(x)-(x 2+1)的零点个数等于y =f(x)与y =x 2+1的交点个数,由图可知,选B. 答案 B5.(2018·河北质监)若f(x)是奇函数,且x 0是y =f(x)+e x的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f(-x)e x-1 B .y =f(x)e -x+1 C .y =e xf(x)-1 D .y =e xf(x)+1解析答案 C6.(2018·乌鲁木齐第一次诊断)已知函数f(x)=⎩⎪⎨⎪⎧0,x≤0,e x,x>0,则使函数g(x)=f(x)+x -m 有零点的实数m 的取值范围是( )A .[0,1)B .(-∞,1)C .(-∞,1]∪(2,+∞)D .(-∞,0]∪(1,+∞)解析 函数g(x)=f(x)+x -m 的零点就是方程f(x)+x =m 的根,作出h(x)=f(x)+x =⎩⎪⎨⎪⎧x ,x≤0,e x+x ,x>0的大致图象(图略),观察它与直线y =m 的交点,得知当m≤0或m>1时有交点,即函数g(x)=f(x)+x -m 有零点,选D.答案 D二、填空题(本大题共3小题,每小题5分,共15分)7.如果函数f(x)=ax +b(a≠0)有一个零点是2,那么函数g(x)=bx 2-ax 的零点是________. 解析 由已知条件2a +b =0,即b =-2a. g(x)=-2ax 2-ax =-2ax(x +12),则g(x)的零点是0,-12答案 0,-128.函数f(x)=3x -7+lnx 的零点位于区间(n ,n +1)(n ∈N)内,则n =________.解析 求函数f(x)=3x -7+lnx 的零点,可以大致估算两个相邻自然数的函数值,如f(2)=-1+ln2,由于ln2<lne =1,所以f(2)<0,f(3)=2+ln3,由于ln3>1,所以f(3)>0,所以函数f(x)的零点位于区间(2,3)内,故n =2.答案 29.(2018·长春调研)定义在R 上的函数f(x)满足f(x)+f(x +5)=16,当x ∈(-1,4]时,f(x)=x 2-2x,则函数f(x)在[0,2 013]上的零点个数是________.解析 由f(x)+f(x +5)=16,可知f(x -5)+f(x)=16,则f(x +5)-f(x -5)=0,所以f(x)是以10为周期的周期函数,在一个周期(-1,9]上,函数f(x)=x 2-2x在(-1,4]区间内有3个零点,在(4,9]区间内无零点,故f(x)在一个周期内仅有3个零点,由于区间(3,2 013]中包含2018周期,且在区间[0,3]内也存在一个零点x =2,故f(x)在[0,2 013]上的零点个数为3×20181=604.答案 604三、解答题(本大题共3小题,每小题10分,共30分) 10.已知函数f(x)=x 3-x 2+x 2+14.证明:存在x 0∈⎝ ⎛⎭⎪⎫0,12,使f(x 0)=x 0. 证明 令g(x)=f(x)-x. ∵g(0)=14,g ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12-12=-18,∴g(0)·g ⎝ ⎛⎭⎪⎫12<0. 又函数g(x)在⎣⎢⎡⎦⎥⎤0,12上连续, ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12,使g(x 0)=0,即f(x 0)=x 0. 11.若函数f(x)=ax 2-x -1有且仅有一个零点,求实数a 的取值范围.解 (1)当a =0时,函数f(x)=-x -1为一次函数,则-1是函数的零点,即函数仅有一个零点. (2)当a≠0时,函数f(x)=ax 2-x -1为二次函数,并且仅有一个零点,则一元二次方程ax 2-x -1=0有两个相等实根.则Δ=1+4a =0,解得a =-14.综上,当a =0或a =-14时,函数仅有一个零点.12.(2018·江西七校联考)已知函数f(x)=log 4(4x+1)+kx(k ∈R)为偶函数. (1)求k 的值;(2)若方程f(x)=log 4(a·2x-a)有且只有一个根,求实数a 的取值范围. 解 (1)∵f(x)为偶函数,∴f(-x)=f(x),即log 4(4-x +1)-kx =log 4(4x+1)+kx , 即(2k +1)x =0,∴k =-12.(2)依题意有log 4(4x+1)-12x=log 4(a·2x-a),即⎩⎪⎨⎪⎧4x+1=a·2x-a ·2x,a·2x-a>0,令t =2x,则(1-a)t 2+at +1=0(*), 只需其有一正根即可满足题意. ①当a =1,t =-1时,不合题意. ②(*)式有一正一负根t 1,t 2,即 ⎩⎪⎨⎪⎧Δ=a 2--,t 1t 2=11-a <0,得a>1,经验证正根满足at -a>0,∴a>1.③(*)式有相等两根,即Δ=0⇒a =±22-2, 此时t =a-,若a =2(2-1),则有t =a -<0,此时方程(1-a)t 2+at +1=0无正根,故a =2(2-1)舍去; 若a =-2(2+1),则有t =a ->0,且a·2x-a =a(t -1)=a[a --1]=-->0,因此a =-2(2+1).综上所述,a>1或a =-2-2 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点规范练12函数与方程基础巩固1.(2017北京房山区一模)由表格中的数据可以判定函数f(x)=ln x-x+2的一个零点所在的区间是(k,k+1)(k∈Z),则k的值为()A.1B.2C.3D.42.已知函数f(x)=则函数f(x)的零点为()A.,0B.-2,0C. D.03.函数y=ln(x+1)与y=的图象交点的横坐标所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)4.若函数f(x)=2x--a的一个零点在区间(1,2)内,则实数a的取值范围是()A.(1,3)B.(1,2)C.(0,3)D.(0,2)5.若f(x)是奇函数,且x0是y=f(x)+e x的一个零点,则-x0一定是下列哪个函数的零点()A.y=f(-x)e x-1B.y=f(x)e-x+1C.y=e x f(x)-1D.y=e x f(x)+16.已知函数f(x)=若方程f(x)-a=0有三个不同的实数根,则实数a的取值范围是()A.(1,3)B.(0,3)C.(0,2)D.(0,1)7.已知函数f(x)=x3+ax2+bx+1,函数y=f(x+1)-1为奇函数,则函数f(x)的零点个数为()A.0B.1C.2D.38.(2017江西南昌模拟)已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2 016x+log2 016x,则函数f(x)的零点个数是()A.1B.2C.3D.49.已知偶函数f(x)满足f(x-1)=f(x+1),且当x∈[0,1]时,f(x)=x,则关于x的方程f(x)=在区间[0,4]上解的个数是()A.1B.2C.3D.410.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是.11.若函数f(x)=则f(f(-1))=;若函数g(x)=f(x)-k存在两个零点,则实数k的取值范围是.12.已知函数f(x)=e x-2x+a有零点,则a的取值范围是.能力提升13.已知函数f(x)=-x2+3x+a,g(x)=2x-x2,若f(g(x))≥0对x∈[0,1]恒成立,则实数a的取值范围是()A.[-e,+∞)B.[-ln 2,+∞)C.[-2,+∞)D.14.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上为增函数,若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4的值为()A.8B.-8C.0D.-415.已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则下列不等式中成立的是()A.f(a)<f(1)<f(b)B.f(a)<f(b)<f(1)C.f(1)<f(a)<f(b)D.f(b)<f(1)<f(a)16.若方程=k(x-2)+3有两个不等的实根,则k的取值范围是.17.若定义在R上的函数y=f(x)满足f(x+1)=-f(x),且当x∈[-1,1]时,f(x)=x2,函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为.高考预测18.(2017全国Ⅲ,文12)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=()A.-B.C. D.1答案:1.C解析:当x取值分别是1,2,3,4,5时,f(1)=1,f(2)=0.69,f(3)=0.1,f(4)=-0.61,f(5)=-1.39,∵f(3)f(4)<0,∴函数的零点在区间(3,4)上,∴k=3,故选C.2.D解析:当x≤1时,由f(x)=2x-1=0,解得x=0;当x>1时,由f(x)=1+log2x=0,解得x=,又因为x>1,所以此时方程无解.综上可知函数f(x)的零点只有0,故选D.3.B解析:函数y=ln(x+1)与y=的图象交点的横坐标,即为函数f(x)=ln(x+1)-的零点.∵f(x)在(0,+∞)上是图象连续的,且f(1)=ln 2-1<0,f(2)=ln 3->0,∴f(x)的零点所在区间为(1,2).故选B.4.C解析:因为函数f(x)=2x--a在区间(1,2)上单调递增,又函数f(x)=2x--a的一个零点在区间(1,2)内,所以f(1)·f(2)<0,所以(-a)(4-1-a)<0,即a(a-3)<0.所以0<a<3.5.C解析:由已知可得f(x0)=-,则f(x0)=-1,f(-x0)=1,故-x0一定是y=e x f(x)-1的零点.6.D解析:画出函数f(x)的图象如图所示,观察图象可知,若方程f(x)-a=0有三个不同的实数根,则函数y=f(x)的图象与直线y=a有三个不同的交点,此时需满足0<a<1,故选D.7.B解析:∵f(x)=x3+ax2+bx+1,∴f(x+1)-1=(x+1)3+a(x+1)2+b(x+1)+1-1=x3+(3+a)x2+(3+2a+b)x+1+b+a.∵函数y=f(x+1)-1为奇函数,∴a=-3,b=2.∴f(x)=x3-3x2+2x+1.∴f'(x)=3x2-6x+2=3(x-1)2-1=3.经分析可知f(x)在内是增函数,在内是减函数,在内是增函数,且f>0,f>0,∴函数f(x)的零点个数为1,故选B.8.C解析:作出函数y=2 016x和y=-log2 016x的图象如图所示,可知函数f(x)=2 016x+log2 016x在x∈(0,+∞)内存在一个零点.∵f(x)是定义在R上的奇函数,∴f(x)在x∈(-∞,0)内只有一个零点.又f(0)=0,∴函数f(x)的零点个数是3,故选C.9.D解析:由f(x-1)=f(x+1),可知函数f(x)的周期T=2.∵x∈[0,1]时,f(x)=x,又f(x)是偶函数,∴f(x)的图象与y=的图象如图所示.由图象可知f(x)=在区间[0,4]上解的个数是4.故选D.10.(0,1)解析:因为函数g(x)=f(x)-m有3个零点,所以f(x)-m=0有3个根,所以y=f(x)的图象与直线y=m有3个交点.画出函数y=f(x)的图象,由抛物线顶点为(-1,1),可知实数m的取值范围是(0,1).11.-2(0,1]解析:f(f(-1))=f=log2=-2;令g(x)=0,得f(x)=k,等价于y=f(x)的图象和直线y=k有两个不同的交点,在平面直角坐标系中画出y=f(x)的图象,如图所示,要使得两个函数图象有2个不同交点,需0<k≤1.则实数k 的取值范围是(0,1].12.(-∞,2ln 2-2]解析:∵f(x)=e x-2x+a,∴f'(x)=e x-2.当x∈(-∞,ln 2)时,f'(x)<0;当x∈(ln 2,+∞)时,f'(x)>0;故f(x)min=f(ln 2)=2-2ln 2+a.因为f>0,所以f(x)有零点当且仅当2-2ln 2+a≤0,所以a≤2ln 2-2.13.C解析:令t=g(x),x∈[0,1],则g'(x)=2x ln 2-2x.可知存在x0∈(0,1),使g'(x0)=0,则函数g(x)在[0,x0]上单调递增,在[x0,1]上单调递减.故g(x)在x∈[0,1]上的值域为[1,g(x0)],且g(x0)=.故f(g(x))≥0可转化为f(t)≥0,即a≥t2-3t.又当x0∈[0,1]时,g(x0)=<2,因为φ(t)=t2-3t在[1,2]上的最大值为φ(1)=φ(2),所以φ(t)在[1,g(x0)]上的最大值为φ(1).所以φmax(t)=φ(1)=1-3=-2.所以a≥-2.故选C.14.B解析:∵定义在R上的奇函数f(x)满足f(x-4)=-f(x),∴f(x)=f(x+8),f(4-x)=f(x),f(0)=0.∴函数图象关于直线x=2对称,且函数的周期为8.∵f(x)在区间[0,2]上为增函数,∴f(x)在区间[-2,0]上为增函数,综上条件得函数f(x)的示意图如图所示.由图看出,四个交点中两个交点的横坐标之和为2×(-6),另两个交点的横坐标之和为2×2,故x1+x2+x3+x4=-8,故选B.15.A解析:由题意,知f'(x)=e x+1>0在x∈R上恒成立,故函数f(x)在R上单调递增.而f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)的零点a∈(0,1);由题意,知g'(x)=+1>0在x∈(0,+∞)内恒成立,故函数g(x)在(0,+∞)内单调递增.又g(1)=ln 1+1-2=-1<0,g(2)=ln 2+2-2=ln 2>0,所以函数g(x)的零点b∈(1,2).综上,可得0<a<1<b<2.因为f(x)在R上是单调递增的,所以f(a)<f(1)<f(b).故选A.16.解析:作出函数y1=和y2=k(x-2)+3的图象如图所示,函数y1的图象是圆心在原点,半径为2且在x轴上方的半圆(包括端点),函数y2的图象是过定点P(2,3)的直线.因为点A(-2,0),则k P A=.设直线PB是圆的切线,由圆心到直线的距离等于半径,得=2,得k PB=.由图可知,当k PB<k≤k P A时,两个函数图象有两个交点,即原方程有两个不等实根.故<k≤.17.8解析:∵f(x+1)=-f(x),∴f(x+2)=f(x).又x∈[-1,1]时,f(x)=x2,∴f(x)的图象如图所示,在同一平面直角坐标系中作出函数g(x)的图象,可见y=f(x)(-5≤x≤5)与y=2x(x≤1)有5个交点,y=f(x)(-5≤x≤5)与y=log3(x-1)(x>1)的图象有3个交点,故共有8个交点.18.C解析:∵f(x)=x2-2x+a(e x-1+e-x+1),∴f(2-x)=(2-x)2-2(2-x)+a[e2-x-1+e-(2-x)+1]=x2-4x+4-4+2x+a(e1-x+e x-1)=x2-2x+a(e x-1+e-x+1),∴f(2-x)=f(x),即直线x=1为f(x)图象的对称轴.∵f(x)有唯一零点,∴f(x)的零点只能为1,即f(1)=12-2×1+a(e1-1+e-1+1)=0,解得a=.。

相关文档
最新文档