TPS79433DGNT中文资料

合集下载

TPS79333DBVRG4,TPS793475DBVRG4, 规格书,Datasheet 资料

TPS79333DBVRG4,TPS793475DBVRG4, 规格书,Datasheet 资料

OUTPUT SPECTRAL NOISE DENSITY vs FREQUENCY
0.3 VI = 3.8 V Co = 2.2 µF C(byp) = 0.1 µF
0.25 0.2
Output Spectral Noise Density −
0.15
IO = 1 mA
0.1 IO = 200 mA 0.05
芯天下--/
TPS79301-Q1, TPS79318-Q1, TPS79325-Q1 TPS79328-Q1, TPS793285-Q1, TPS79330-Q1 TPS79333-Q1, TPS793475-Q1
SGLS162G – APRIL 2003 – REVISED SEPTEMBER 2011
APPLICATIONS
• • • VCOs RF Bluetooth™
DBV PACKAGE (TOP VIEW) IN GND EN 1 2 3 4 BYPASS 5 OUT
• • •
2
• • • • • • •
Fixed Option DBV PACKAGE (TOP VIEW) IN GND EN 1 2 3 6 5 4 OUT FB BYPASS
1
FEATURES
Qualified For Automotive Applications 200-mA Low-Dropout Regulator With EN Available in 1.8-V, 2.5-V, 2.8-V, 2.85-V, 3-V, 3.3-V, 4.75-V, and Adjustable Options High PSRR (70 dB at 10 kHz) Ultralow Noise (32 μ V) Fast Start-Up Time (50 μ s) Stable With a 2.2-μ F Ceramic Capacitor Excellent Load/Line Transient Very Low Dropout Voltage (112 mV at Full Load, TPS79330) 5-Pin SOT23 (DBV) Package

ZSPM4013AA1W33中文资料(ZMDI)中文数据手册「EasyDatasheet - 矽搜」

ZSPM4013AA1W33中文资料(ZMDI)中文数据手册「EasyDatasheet - 矽搜」

该ZSPM4013采用电流模式反馈 正常调节PWM模式.当稳压 被禁用(EN为低电平)时,设备将小于 10uA静态电流.
该ZSPM4013集成多种防护护电路,包括: 输入欠压锁定,输出电压软启动,限流和热关断.
该ZSPM4013包括通过PG(电源良好)开漏输出 监管报告接口等组成系统.
特征
· 固定输出电压:1.5V,1.8V,2.5V,3.3V, 并用5V +/- 2%输出容差
· ZSPM1000:5A单相,单轨,真 数字PWM控制器(24引脚4×4 QFN)
提供支持
· 评估套件 · 数据表
物理特性
· 结工作温度-40°C至125°C · 包装在一个16针QFN(3×3)
ZSPM4013应用电路
可调输出
ZSPM4013
固定输出 VCC
VOUT
ZSPM4013
EN
PG
芯片中文手册,看全文,戳
2 典型性能特性................................................................................................................... 9 3 电路说明......................................................................................................................................... 12
5 引脚配置和包装......................................................................................................................... 15 5.1.标记图& Pin-out......................................................................................................................... 16 5.2.引脚说明为16引脚3x3 QFN封装....................................................................................................... 17 5.3.详细引脚说明............................................................................................................................. 17 5.3.1.未经稳压输入,VCC(引脚#2,3)....................................... .................................................. ........... 17 5.3.2.引导控制,BST(引脚#10) ......................................................................................................... 17 5.3.3.检测反馈,FB(引脚#5) ............................................................................................................... 17 5.3.4.开关量输出,VSW(引脚#12,13)....................................... .................................................. ......... 18 5.3.5.接地,GND(引脚#4) .......................................................................................................................... 18 5.3.6.电源接地,防护护接地(引脚#14,15)....................................... .................................................. .......... 18 5.3.7.启用,高电压,EN(管脚#9) ........................................................................................................ 18 5.3.8. PG输出,PG(引脚#8) ....................................................................................................................... 18

TPS79613DRBT资料

TPS79613DRBT资料

FEATURESDESCRIPTIONAPPLICATIONS123456GNDDCQ PACKAGE SOT223-6(TOP VIEW)NR/FBOUT GND IN EN 1KTT (DDPAK) PACKAGE(TOP VIEW)2345EN IN GND OUT NR/FB0.00.10.20.30.40.50.60.7Frequency (Hz)10010k100k1kO u t p u t S p e c t r a l N o i s e D e n s i t y − µV /√H zTPS79630OUTPUT SPECTRAL NOISE DENSITYvsFREQUENCY01020304050607080Frequency (Hz)110k 10M1kR i p p l e R e j e c t i o n − d BTPS79630RIPPLE REJECTIONvsFREQUENCY10100100k1MEN NC GND NR8765IN IN OUT OUT 1234DRB PACKAGE 3mm x 3mm SON (TOP VIEW)TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006ULTRALOW-NOISE,HIGH PSRR,FAST,RF,1A LOW-DROPOUT LINEAR REGULATORS•1A Low-Dropout Regulator With Enable The TPS796xx family of low-dropout (LDO)low-power linear voltage regulators features high •Available in Fixed and Adjustable (1.2V to power supply rejection ratio (PSRR),ultralow-noise,5.5V)Versionsfast start-up,and excellent line and load transient •High PSRR (53dB at 10kHz)responses in small outline,3×3SON,SOT223-6,•Ultralow-Noise (40µV RMS ,TPS79630)and DDPAK-5packages.Each device in the family is stable with a small 1µF ceramic capacitor on the •Fast Start-Up Time (50µs)output.The family uses an advanced,proprietary •Stable With a 1µF Ceramic Capacitor BiCMOS fabrication process to yield extremely low •Excellent Load/Line Transient Response dropout voltages (e.g.,250mV at 1A).Each device achieves fast start-up times (approximately 50µs with •Very Low Dropout Voltage (250mV at Full a 0.001µF bypass capacitor)while consuming very Load,TPS79630)low quiescent current (265µA typical).Moreover,•3×3SON,SOT223-6,and when the device is placed in standby mode,the DDPAK-5Packagessupply current is reduced to less than 1µA.The TPS79630exhibits approximately 40µV RMS of output voltage noise at 3.0V output,with a 0.1µF bypass •RF:VCOs,Receivers,ADCs capacitor.Applications with analog components that are noise sensitive,such as portable RF electronics,•Audiobenefit from the high PSRR,low noise features,and •Bluetooth™,Wireless LANthe fast response time.•Cellular and Cordless Telephones •Handheld Organizers,PDAsPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.Bluetooth is a trademark of Bluetooth SIG,Inc.All other trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date.Copyright ©2002–2006,Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.ABSOLUTE MAXIMUM RATINGSPACKAGE DISSIPATION RATINGSTPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006This integrated circuit can be damaged by ESD.Texas Instruments recommends that all integrated circuits be handled with appropriate precautions.Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure.Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.ORDERING INFORMATION (1)PRODUCT V OUT (2)TPS796xx yyy zXX is nominal output voltage (for example,28=2.8V,01=Adjustable).YYY is package designator.Z is package quantity.(1)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TI web site at .(2)Output voltages from 1.3V to 4.9V in 100mV increments are available;minimum order quantities may apply.Contact factory for details and availability.over operating temperature range (unless otherwise noted)(1)UNITV IN range –0.3V to 6V V EN range –0.3V to V IN +0.3V V OUT range 6VPeak output current Internally limited ESD rating,HBM 2kV ESD rating,CDM500VContinuous total power dissipation See Dissipation Ratings Table Junction temperature range,T J –40°C to +150°C Storage temperature range,T stg –65°C to +150°C(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.PACKAGE BOARD R θJC R θJA DDPAK High-K (1)2°C/W 23°C/W SOT223Low-K (2)15°C/W 53°C/W 3×3SONHigh-K (1)1.2°C/W40°C/W(1)The JEDEC high-K (2s2p)board design used to derive this data was a 3-inch ×3-inch (7,5-cm ×7,5-cm),multilayer board with 1-ounce internal power and ground planes and 2-ounce copper traces on top and bottom of the board.(2)The JEDEC low-K (1s)board design used to derive this data was a 3-inch ×3-inch (7,5-cm ×7,5-cm),two-layer board with 2-ounce copper traces on top of the board.2Submit Documentation FeedbackELECTRICAL CHARACTERISTICSTPS796xx SLVS351I–SEPTEMBER2002–REVISED MAY2006over recommended operating temperature range(TJ =–40°C to+125°C),VEN=VIN,,VIN=VOUT(nom)+1V(1),IOUT=1mA,COUT =10µF,and CNR=0.01µF,unless otherwise noted.Typical values are at+25°C.PARAMETER TEST CONDITIONS MIN TYP MAX UNITV IN Input voltage(1) 2.7 5.5VV FB Internal reference(TPS79601) 1.200 1.225 1.250VI OUT Continuous output current01AOutputvoltage TPS79601 1.225 5.5–V DD VrangeTPS79601(2)0µA≤I OUT≤1A,V OUT+1V≤V IN≤5.5V(1)0.98V OUT V OUT 1.02V OUT V Outputvoltage Fixed0µA≤I OUT≤1A,V OUT+1V≤V IN≤5.5V(1)–2.0+2.0% Accuracy V OUT<5VFixed0µA≤I OUT≤1A,V OUT+1V≤V IN≤5.5V(1)–3.0+3.0% V OUT=5VOutput voltage line regulationV OUT+1V≤V IN≤5.5V0.050.12%/V (∆V OUT%/V IN)(1)Load regulation(∆V OUT%/∆I OUT)0µA≤I OUT≤1A5mV TPS79628I OUT=1A270365TPS79628DRB I OUT=250mA5290Dropout voltage(3)TPS79630I OUT=1A250345mV (V IN=V OUT(nom)–0.1V)TPS79633I OUT=1A220325TPS79650I OUT=1A200300Output current limit V OUT=0V 2.4 4.2AGround pin current0µA≤I OUT≤1A265385µA Shutdown current(4)V EN=0V,2.7V≤V IN≤5.5V0.071µA FB pin current V FB=1.225V1µAf=100Hz,I OUT=10mA59f=100Hz,I OUT=1A54Power-supply rippleTPS79630dB rejection f=10Hz,IOUT=1A53f=100Hz,I OUT=1A42C NR=0.001µF54C NR=0.0047µF46BW=100Hz to100kHz,Output noise voltage(TPS79630)µV RMSI OUT=1A CNR=0.01µF41C NR=0.1µF40C NR=0.001µF50Time,start-up(TPS79630)R L=3Ω,C OUT=1µF C NR=0.0047µF75µsC NR=0.01µF110EN pin current V EN=0V–11µAHigh-level enable input voltage 2.7V≤V IN≤5.5V 1.7V IN V Low-level enable input voltage 2.7V≤V IN≤5.5V00.7V(1)Minimum V IN=V OUT+V DO or2.7V,whichever is greater.TPS79650is tested at V IN=5.5V.(2)Tolerance of external resistors not included in this specification.(3)V DO is not measured for TPS79618and TPS79625because minimum V IN=2.7V.(4)For adjustable version,this applies only after V IN is applied;then V EN transitions high to low.3Submit Documentation FeedbackGND ENINGND ENNRINOUTTPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSIONFUNCTIONAL BLOCK DIAGRAM—FIXED VERSIONTable 1.Terminal FunctionsTERMINALDESCRIPTIONNAME ADJ FIXED NR N/A 5Connecting an external capacitor to this pin bypasses noise generated by the internal bandgap.This improves power-supply rejection and reduces output noise.EN 11Driving the enable pin (EN)high turns on the regulator.Driving this pin low puts the regulator into shutdown mode.EN can be connected to IN if not used.FB 5N/A This terminal is the feedback input voltage for the adjustable device.GND 3,Tab 3,Tab Regulator groundIN 22Unregulated input to the device.OUT44Output of the regulator.4Submit Documentation FeedbackTYPICAL CHARACTERISTICS2.952.962.972.982.993.003.013.023.033.043.050.00.20.40.60.81.0V O U T (V )I OUT (A)V O U T (V )T J (°C)290300310320330340350−40−25−105203550658095110125I G N D (µA )T J (°C)0.00.10.20.30.40.50.60.7Frequency (Hz)10010k100k1kO u t p u t S p e c t r a l N o i s e D e n s i t y − µV //H z0.00.10.20.30.40.50.6Frequency (Hz)10010k 100k1k O u t p u t S p e c t r a l N o i s e D e n s i t y − µV//H z0.00.51.01.52.02.5Frequency (Hz)10010k 100k1kO u t p u t S p e c t r a l N o i s e D e n s i t y − µV //H zTPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006TPS79630TPS79628TPS79628OUTPUT VOLTAGEOUTPUT VOLTAGEGROUND CURRENTvsvsvsOUTPUT CURRENTJUNCTION TEMPERATUREFigure 1.Figure 2.Figure 3.TPS79630TPS79630TPS79630OUTPUT SPECTRAL NOISEOUTPUT SPECTRAL NOISEOUTPUT SPECTRAL NOISEDENSITYDENSITYDENSITYvsvsvsFREQUENCYFREQUENCYFREQUENCYFigure 4.Figure 5.Figure 6.5Submit Documentation FeedbackV D O (m V )T J (_C)102030405060R M S − R o o t M e a n S q u a r e d O u t p u t N o i s e − µV R M SC NR (µF)0.001 µF0.01 µF0.1 µF0.0047 µF01020304050607080Frequency (Hz)110k 10M1k R i p p l e R e j e c t i o n − d B10100100k 1M t (m s)V O U T (V )01020304050607080Frequency (Hz)110k 10M1kR i p p l e R e j e c t i o n− d B10100100k1M01020304050607080Frequency (Hz)110k 10M1kR i p p l e R e j e c t i o n − dB10100100k1MV I N (V )t (µs)∆V O U T (m V )t (µs)V I N (V )∆V O U T (m V )t (µs)I O U T (A )∆V O U T (m V )TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006TYPICAL CHARACTERISTICS (continued)TPS79630ROOT MEAN SQUARED OUTPUTTPS79628TPS79630NOISE DROPOUT VOLTAGERIPPLE REJECTIONvsvsvsBYPASS CAPACITANCEJUNCTION TEMPERATUREFREQUENCYFigure 7.Figure 8.Figure 9.TPS79630TPS79630RIPPLE REJECTIONRIPPLE REJECTIONvsvsFREQUENCYFREQUENCYSTART-UP TIMEFigure 10.Figure 11.Figure 12.TPS79618TPS79630TPS79628LINE TRANSIENT RESPONSELINE TRANSIENT RESPONSELOAD TRANSIENT RESPONSEFigure 13.Figure 14.Figure 15.6Submit Documentation Feedback5010015020025030035001002003004005006007008009001000V D O (m V )I OUT (mA)0501001502002503002.53.03.54.04.55.0V D O (m V )V IN (V)200 µs/Div500 m V /D i vE S R − E q u i v a l e n t S e r i e s R e s i s t a n c e − ΩI OUT (mA)E S R − E q u i v a l e n t S e r i e s R e s i s t a n c e − ΩI OUT (mA)E S R − E q u i v a l e n t S e r i e s R e s i s t a n c e − ΩI OUT (mA)TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006TYPICAL CHARACTERISTICS (continued)TPS79630TPS79601DROPOUT VOLTAGEDROPOUT VOLTAGETPS79625vsvsPOWER UP/POWER DOWNOUTPUT CURRENTINPUT VOLTAGEFigure 16.Figure 17.Figure 18.TPS79630TPS79630TPS79630TYPICAL REGIONS OF STABILITY TYPICAL REGIONS OF STABILITY TYPICAL REGIONS OF STABILITY EQUIVALENT SERIES RESISTANCEEQUIVALENT SERIES RESISTANCEEQUIVALENT SERIES RESISTANCE(ESR)(ESR)(ESR)vsvsvsOUTPUT CURRENTOUTPUT CURRENTOUTPUT CURRENTFigure 19.Figure 20.Figure 21.7Submit Documentation FeedbackAPPLICATION INFORMATIONBoard Layout Recommendation to ImproveV V OUTFExternal Capacitor RequirementsRegulator MountingProgramming the TPS79601Adjustable LDOVOUT +V REFǒ1)R1R2Ǔ(1)TPS796xxSLVS351I–SEPTEMBER2002–REVISED MAY2006The TPS796xx family of low-dropout(LDO)For example,the TPS79630exhibits40µV RMS of regulators has been optimized for use in output voltage noise using a0.1µF ceramic bypass noise-sensitive equipment.The device features capacitor and a10µF ceramic output capacitor.Note extremely low dropout voltages,high PSRR,ultralow that the output starts up slower as the bypass output noise,low quiescent current(265µA typically),capacitance increases due to the RC time constant and enable input to reduce supply currents to less at the bypass pin that is created by the internal than1µA when the regulator is turned off.250kΩresistor and external capacitor.A typical application circuit is shown in Figure22.PSRR and Noise PerformanceTo improve ac measurements like PSRR,outputnoise,and transient response,it is recommendedthat the board be designed with separate groundplanes for V IN and V OUT,with each ground planeconnected only at the ground pin of the device.In Figure22.Typical Application Circuit addition,the ground connection for the bypasscapacitor should connect directly to the ground pin ofthe device.Although not required,it is good analog designpractice to place a0.1µF—2.2µF capacitor near theThe tab of the SOT223-6package is electrically input of the regulator to counteract reactive inputconnected to ground.For best thermal performance, sources.A 2.2µF or larger ceramic input bypassthe tab of the surface-mount version should be capacitor,connected between IN and GND andsoldered directly to a circuit-board copper area. located close to the TPS796xx,is required forIncreasing the copper area improves heat stability and improves transient response,noisedissipation.rejection,and ripple rejection.A higher-value inputcapacitor may be necessary if large,fast-rise-time Solder pad footprint recommendations for the load transients are anticipated and the device is devices are presented in an application bulletin located several inches from the power source.Solder Pad Recommendations for Surface-MountDevices,literature number AB-132,available for Like most low dropout regulators,the TPS796xxdownload from the TI web site(). requires an output capacitor connected betweenOUT and GND to stabilize the internal control loop.The minimum recommended capacitor is1µF.AnyRegulator1µF or larger ceramic capacitor is suitable.The output voltage of the TPS79601adjustable The internal voltage reference is a key source ofregulator is programmed using an external resistor noise in an LDO regulator.The TPS796xx has andivider as shown in Figure28.The output voltage is NR pin which is connected to the voltage referencecalculated using Equation1:through a250kΩinternal resistor.The250kΩinternal resistor,in conjunction with an externalbypass capacitor connected to the NR pin,creates alow-pass filter to reduce the voltage reference noisewhere:and,therefore,the noise at the regulator output.Inorder for the regulator to operate properly,the•VREF = 1.2246V typ(the internal referencecurrent flow out of the NR pin must be at a minimum,voltage)because any leakage current creates an IR dropResistors R1and R2should be chosen for across the internal resistor,thus creating an outputapproximately40µA divider current.Lower value error.Therefore,the bypass capacitor must haveresistors can be used for improved noise minimal leakage current.The bypass capacitorperformance,but the device wastes more power. should be no more than0.1µF in order to ensure thatHigher values should be avoided,as leakage current it is fully charged during the quickstart time providedat FB increases the output voltage error.by the internal switch shown in the functional blockdiagram.8Submit Documentation FeedbackRegulator Protection R1+ǒV OUT V REF*1ǓR2(2)C1+(3x10–7)x(R1)R2)(R1x R2)(3)OUTPUT VOLTAGEPROGRAMMING GUIDEOUTPUTVOLTAGE R1R2C1 V V OUT1.8 V3.6V14.0 kΩ57.9 kΩ30.1 kΩ30.1 kΩ33 pF15 pFTPS796xxSLVS351I–SEPTEMBER2002–REVISED MAY2006The recommended design procedure is to chooseR2=30.1kΩto set the divider current at40µA,C1=The TPS796xx PMOS-pass transistor has a built-in 15pF for stability,and then calculate R1usingback diode that conducts reverse current when the Equation2:input voltage drops below the output voltage(e.g.,during power-down).Current is conducted from theoutput to the input and is not internally limited.Ifextended reverse voltage operation is anticipated,external limiting might be appropriate.In order to improve the stability of the adjustableversion,it is suggested that a small compensation The TPS796xx features internal current limiting and capacitor be placed between OUT and FB.The thermal protection.During normal operation,the approximate value of this capacitor can be calculated TPS796xx limits output current to approximately as Equation3: 2.8A.When current limiting engages,the outputvoltage scales back linearly until the overcurrentcondition ends.While current limiting is designed toprevent gross device failure,care should be taken The suggested value of this capacitor for several not to exceed the power dissipation ratings of the resistor ratios is shown in the table below(see package.If the temperature of the device exceeds Figure23).If this capacitor is not used(such as in a approximately+165°C,thermal-protection circuitry unity-gain configuration)then the minimum shuts it down.Once the device has cooled down to recommended output capacitor is2.2µF instead of below approximately+140°C,regulator operation 1µF.resumes.Figure23.TPS79601Adjustable LDO Regulator Programming9Submit Documentation FeedbackTHERMAL INFORMATIONT J+T A )P D max x ǒR θJC )R θCS )RθSAǓP D max +ǒV IN(avg)*V OUT(avg)Ǔ I OUT(avg))V IN(avg) I (Q)T JAR θJCT CBR θCST AC R θSA (a)(b)DDPAK PackageSOT223 PackageCIRCUIT BOARD COPPER AREAATPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006dissipation.The temperature rise is computed by The amount of heat that an LDO linear regulator multiplying the maximum expected power dissipation generates is directly proportional to the amount of by the sum of the thermal resistances between the power it dissipates during operation.All integrated junction and the case (R θJC ),the case to heatsink circuits have a maximum allowable junction (R θCS ),and the heatsink to ambient (R θSA ).Thermal temperature (T J max)above which normal operation resistances are measures of how effectively an is not assured.A system designer must design the object dissipates heat.Typically,the larger the operating environment so that the operating junction device,the more surface area available for power temperature (T J )does not exceed the maximum dissipation and the lower the object's thermal junction temperature (T J max).The two main resistance.environmental variables that a designer can use to improve thermal performance are air flow and Figure 24illustrates these thermal resistances for (a)external heatsinks.The purpose of this information is a SOT223package mounted in a JEDEC low-K to aid the designer in determining the proper board,and (b)a DDPAK package mounted on a operating environment for a linear regulator that is JEDEC high-K board.operating at a specific power level.Equation 5summarizes the computation:In general,the maximum expected power (P D(max))consumed by a linear regulator is computed as Equation 4:(5)The R θJC is specific to each regulator as determined (4)by its package,lead frame,and die size provided in the regulator's data sheet.The R θSA is a function of where:the type and size of heatsink.For example,black •V IN(avg)is the average input voltage.body radiator type heatsinks can have R θCS values •V OUT(avg)is the average output voltage.ranging from 5°C/W for very large heatsinks to 50°C/W for very small heatsinks.The R θCS is a •I OUT(avg)is the average output current.function of how the package is attached to the •I (Q)is the quiescent current.heatsink.For example,if a thermal compound is For most TI LDO regulators,the quiescent current is used to attach a heatsink to a SOT223package,insignificant compared to the average output current;R θCS of 1°C/W is reasonable.therefore,the term V IN(avg)×I (Q)can be neglected.The operating junction temperature is computed by adding the ambient temperature (T A )and the increase in temperature due to the regulator's powerFigure 24.Thermal Resistances10Submit Documentation FeedbackRθJAmax +(125*55)°C ń2.5W +28°C ńW(9)T J +T A )P D max x R θJA (6)R θJA +T J –T AP Dmax(7)Copper Heatsink Area − cm 2− T h e r m a l R e s i s t a n c e − θJ A R C /W°DDPAK PowerDissipation2 oz. Copper Solder Pad Diameter , 1,5 mm PitchP D max +(5*2.5)V x 1A + 2.5W (8)TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006Even if no external black body radiator type heatsink is attached to the package,the board on which the regulator is mounted provides some heatsinking From Figure 25,DDPAK Thermal Resistance vsthrough the pin solder connections.Some packages,Copper Heatsink Area,the ground plane needs to be like the DDPAK and SOT223packages,use a 1cm 2for the part to dissipate 2.5W.The operating copper plane underneath the package or the circuit environment used in the computer model to construct board's ground plane for additional heatsinking to Figure 25consisted of a standard JEDEC High-K improve their thermal puter-aided board (2S2P)with a 1-oz.internal copper plane and thermal modeling can be used to compute very ground plane.The package is soldered to a 2-oz.accurate approximations of an integrated circuit's copper pad.The pad is tied through thermal vias to thermal performance in different operating the 1-oz.ground plane.Figure 26shows the side environments (e.g.,different types of circuit boards,view of the operating environment used in the different types and sizes of heatsinks,and different computer model.air flows,etc.).Using these models,the three thermal resistances can be combined into one thermal resistance between junction and ambient (R θJA ).This R θJA is valid only for the specific operating environment used in the computer model.Equation 5simplifies into Equation 6:Rearranging Equation 6gives Equation 7:Using Equation 6and the computer model generated curves shown in Figure 25and Figure 28,a designer can quickly compute the required heatsink thermal resistance/board area for a given ambient temperature,power dissipation,and operating environment.Figure 25.DDPAK Thermal Resistance vs CopperHeatsink AreaThe DDPAK package provides an effective means of managing power dissipation in surface mount applications.The DDPAK package dimensions are provided in the Mechanical Data section at the end of the data sheet.The addition of a copper plane directly underneath the DDPAK package enhances the thermal performance of the package.To illustrate,the TPS72525in a DDPAK package was chosen.For this example,the average input voltage is 5V,the output voltage is 2.5V,the average output current is 1A,the ambient temperature 55°C,the air flow is 150LFM,and the operating environment is the same as documented below.Neglecting the quiescent current,the maximum Figure 26.DDPAK Thermal Resistance average power is calculated as Equation 8:From the data in Figure 27and rearranging Substituting T J max for T J into Equation 6gives Equation 6,the maximum power dissipation for a Equation 9:different ground plane area and a specific ambient temperature can be computed.11Submit Documentation FeedbackPCB Copper Area − in 2− T h e r m a l R e s i s t a n c e − θJ A R C /W°Copper Heatsink Area − cm 2P D M a x i m u m (W )SOT223Power DissipationP D max +(3.3*2.5)V x 1A +800mW (10)R θJAmax +(125*55)°C ń800mW +87.5°C ńW T A (°C)P D M a x i m u m (W )TPS796xxSLVS351I–SEPTEMBER 2002–REVISED MAY 2006Figure 28.SOT223Thermal Resistance vs PCBFigure 27.Maximum Power Dissipation vsArea Copper Heatsink AreaFrom the data in Figure 28and rearranging Equation 6,the maximum power dissipation for a different ground plane area and a specific ambient The SOT223package provides an effective means temperature can be computed (see Figure 29).of managing power dissipation in surface mount applications.The SOT223package dimensions are provided in the Mechanical Data section at the end of the data sheet.The addition of a copper plane directly underneath the SOT223package enhances the thermal performance of the package.To illustrate,the TPS72525in a SOT223package was chosen.For this example,the average input voltage is 3.3V,the output voltage is 2.5V,the average output current is 1A,the ambient temperature 55°C,no air flow is present,and the operating environment is the same as documented below.Neglecting the quiescent current,the maximum average power is calculated as Equation 10:Substituting T J max for T J into Equation 6gives Equation 11:(11)Figure 29.SOT223Power DissipationFrom Figure 28,R θJA vs PCB Copper Area,the ground plane needs to be 0.55in 2for the part to dissipate 800mW.The operating environment used to construct Figure 28consisted of a board with 1-oz.copper planes.The package is soldered to a 1-oz.copper pad on the top of the board.The pad is tied through thermal vias to the 1-oz.ground plane.12Submit Documentation FeedbackIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements, improvements,and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right,or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use anynon-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetworkMicrocontrollers Security /securityLow Power /lpw Telephony /telephonyWirelessVideo&Imaging /videoWireless /wirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2007,Texas Instruments Incorporated。

低压差稳压器

低压差稳压器

低压差稳压器单路固定输出LDO(低压差稳压器)REG104FA-2.5KTTT:DMOS1000mA低压差稳压器REG113EA-3.3/250:DMOS400mA低压差稳压器REG113EA-3/250:DMOS400mA低压差稳压器REG113EA-5/250:DMOS400mA低压差稳压器TL750L05CLP:5V,低压差pnp,小电流稳压器TL750L08CLP:8V,低压差pnp,小电流稳压器TL750L12CLP:12V,低压差pnp,小电流稳压器TPS71025D:极低压差PMOS稳压器TPS71025P:极低压差PMOS稳压器TPS7133QD:极低压差PMOS稳压器TPS7133QP:极低压差PMOS稳压器TPS7148QP:极低压差PMOS稳压器TPS7150QD:极低压差PMOS稳压器TPS7150QP:极低压差PMOS稳压器TPS72118DBVT:微功耗,极低压差PMOS稳压器TPS72218DBVR:微功耗,极低压差PMOS稳压器TPS7233QP:微功耗,极低压差PMOS稳压器TPS7248QP:微功耗,极低压差PMOS稳压器TPS7250QD:微功耗,极低压差PMOS稳压器TPS7250QDR:微功耗,极低压差PMOS稳压器TPS7250QP:微功耗,极低压差PMOS稳压器TPS72518KTT:微功耗,极低压差PMOS稳压器TPS72618KTT:微功耗,极低压差PMOS稳压器TPS7330QD:单输出低压差稳压器TPS7330QP:单输出低压差稳压器TPS7333QD:单输出低压差稳压器TPS7333QDR:单输出低压差稳压器TPS7333QP:单输出低压差稳压器TPS7348QP:单输出低压差稳压器TPS7350QD:单输出低压差稳压器TPS7350QDR:单输出低压差稳压器TPS7350QP:单输出低压差稳压器TPS75133QPWP:快速瞬态响应1.5A低压差稳压器TPS75233QPWP:快速瞬态响应2A低压差稳压器TPS75318QPWP:单输出低压差稳压器TPS75333QPWP:单输出低压差稳压器TPS75433QPWP:快速瞬态响应2A低压差稳压器TPS75518KC:1.8V,5A带输出电压检测的极低压差稳压器TPS75533KTT:3.3V,5A带输出电压检测的极低压差稳压器TPS75533KTTT:3.3V,5A带输出电压检测的极低压差稳压器TPS75718KC:1.8V,3A带输出电压检测的极低压差稳压器TPS75818KTTT:3A,快速响应低压差稳压器TPS75833KC:3A快速瞬态响应3.3V低压差稳压器TPS75833KTT:3A快速瞬态响应3.3V低压差稳压器TPS75833KTTT:3A快速瞬态响应3.3V低压差稳压器TPS76030DBVR:低功耗50mA低压差3.0V线性稳压器TPS76030DBVT:低功耗50mA低压差3.0V线性稳压器TPS76033DBVR:低功耗50mA低压差3.3V线性稳压器TPS76033DBVT:低功耗50mA低压差3.3V线性稳压器TPS76038DBVR:低功耗50mA低压差3.8V线性稳压器TPS76038DBVT:低功耗50mA低压差3.8V线性稳压器TPS76050DBVR:低功耗50mA低压差5.0V线性稳压器TPS76050DBVT:低功耗50mA低压差5.0V线性稳压器TPS76130DBVT:低功耗100mA低压差3.0V线性稳压器TPS76133DBVR:低功耗100mA低压差3.3V线性稳压器TPS76133DBVT:低功耗100mA低压差3.3V线性稳压器TPS76150DBVT:低功耗100mA低压差5.0V线性稳压器TPS76318DBVR:低功耗,150mA低压差线性稳压器TPS76318DBVT:低功耗,150mA低压差线性稳压器TPS76325DBVR:低功耗,150mA低压差线性稳压器TPS76325DBVT:低功耗,150mA低压差线性稳压器TPS76330DBVR:低功耗,150mA低压差线性稳压器TPS76330DBVT:低功耗,150mA低压差线性稳压器TPS76333DBVR:低功耗,150mA低压差线性稳压器TPS76333DBVT:低功耗,150mA低压差线性稳压器TPS76350DBVR:低功耗,150mA低压差线性稳压器TPS76350DBVT:低功耗,150mA低压差线性稳压器TPS76430DBVT:低功耗低噪声150mA低压差3.0V线性稳压器TPS76433DBVT:低功耗低噪声150mA低压差3.3V线性稳压器TPS76630D:超低静态电流250mA低压差稳压器TPS76633D:超低静态电流250mA低压差稳压器TPS76650D:超低静态电流250mA低压差稳压器TPS76718QD:单输出低压差稳压器TPS76733QD:单输出低压差稳压器TPS76750QD:单输出低压差稳压器TPS767D318PWP:双输出低压差3.3V/1.8V电压稳压器TPS767D325PWP:双输出低压差3.3V/2.5V电压稳压器TPS76830QD:快速瞬态响应1A低压差3.0V线性稳压器TPS76833QD:快速瞬态响应1A低压差3.3V线性稳压器TPS76833QPWP:快速瞬态响应1A低压差3.3V线性稳压器TPS76850QD:快速瞬态响应1A低压差5.0V线性稳压器TPS76850QPWP:快速瞬态响应1A低压差5.0V线性稳压器TPS76928DBVT:超低功耗100mA低压差2.8V线性稳压器TPS76930DBVT:超低功耗100mA低压差3.0V线性稳压器TPS76933DBVT:超低功耗100mA低压差3.3V线性稳压器TPS76950DBVT:超低功耗100mA低压差5.0V线性稳压器TPS77030DBVT:超低功耗50mA低压差3.0V线性稳压器TPS77133DGK:快速瞬态响应150mA低压差3.3V稳压器,带上电复位TPS77333DGK:快速瞬态响应250mA低压差3.3V稳压器,带上电复位TPS77350DGK:快速瞬态响应250mA低压差5.0V稳压器,带上电复位TPS77516D:500mA带低电压复位输出的极低压差稳压器TPS77516PWP:5A带输出电压检测的极低压差稳压器TPS77525D:500mA带低电压复位输出的极低压差稳压器TPS77533D:500mA带低电压复位输出的极低压差稳压器TPS77533PWP:5A带输出电压检测的极低压差稳压器TPS77618PWP:快速瞬态响应500mA低压差线性稳压器TPS77628D:快速瞬态响应500mA低压差线性稳压器TPS77628PWP:快速瞬态响应500mA低压差线性稳压器TPS77633D:快速瞬态响应500mA低压差3.3V线性稳压器TPS77633PWP:快速瞬态响应500mA低压差3.3V线性稳压器TPS77833D:快速瞬态响应750mA低压差电压稳压器TPS77833PWP:快速瞬态响应750mA低压差电压稳压器TPS78618KTTT:低噪声,高PSRR,1.5A的低压差稳压器TPS78625KTTT:低噪声,1.5A的低压差稳压器TPS78628KTTT:低噪声,1.5A的低压差稳压器TPS78630KTTT:低噪声,1.5A的低压差稳压器TPS78633DCQ:低噪声低压差稳压器TPS78633KTTT:低噪声低压差稳压器TPS78825DBVT:2.5V150mA低噪声低压差稳压器,带可编程浪涌电流控制TPS78833DBVT:3.3V150mA低噪声低压差稳压器,带可编程浪涌电流控制TPS78930DBVT:超低功耗低噪声100mA低压差3.0V线性稳压器TPS79030DBVT:超低功耗,低噪声50mA低压差3.0V线性稳压器TPS79133DBVT:低噪声,高PSRRTPS79228DBVT:超低噪声,高PSRR,高电平使能,100mA低压差稳压器TPS79318DBVR:单输出低压差稳压器TPS79330DBVR:超低噪声,高PSRR,快速RF200mA低压差稳压器TPS79330DBVT:超低噪声,高PSRR,快速RF200mA低压差稳压器TPS79333DBVR:超低噪声,高PSRR,快速RF200mA低压差稳压器TPS79430DCQ:超低噪声,高PSRR快速RF低压差稳压器TPS79433DCQ:超低噪声,高PSRR快速RF低压差稳压器TPS79525DCQ:500mA,2.5V微功耗LDOTPS79533DCQ:500mA,3.3V微功耗LDOTPS79633DCQ:超低噪声,高PSRR快速RF低压差稳压器TPS79718DCK:10-mA,1.8-V微功耗低压差稳压器TPS79718DCKT:10-mA,1.8-V微功耗低压差稳压器TPS79730DCK:10-mA,3.0-V微功耗低压差稳压器TPS79730DCKT:10-mA,3.0-V微功耗低压差稳压器TPS79733DCK:10-mA,3.3-V微功耗低压差稳压器TPS79733DCKT:10-mA,3.3-V微功耗低压差稳压器单/双路可调输出LDO (低压差稳压器)REG1117-3.3:800mA低压差稳压器,输出固定REG1117-5:800mA和1A低压差稳压器,输出固定/可调TPS70102PWP:双输出低压差稳压器带上电次序控制TPS70702PWP:双输出低压差稳压器TPS70802PWP:双输出低压差稳压器TPS7101QD:低压差PMOS稳压器TPS7101QP:低压差PMOS稳压器TPS71501DCKR:高输入电压微功耗50mA低压差稳压器TPS7201QD:微功耗,极低压差PMOS稳压器TPS7201QDR:微功耗,极低压差PMOS稳压器TPS7301QD:带电压监测的PMOS低压差稳压器TPS7301QDR:带电压监测的PMOS低压差稳压器TPS7301QP:带电压监测的低压差PMOS稳压器TPS73HD301PWP:极低压差,3.3V/可调双输出稳压器TPS75101QPWP:快速瞬态响应1.5A低压差稳压器TPS75201QPWP:快速瞬态响应2A低压差稳压器TPS75301QPWP:单输出低压差稳压器TPS75401QPWP:快速瞬态响应2A低压差稳压器TPS75525KC:单输出低压差稳压器TPS76301DBVR:低功耗,150mA低压差线性稳压器TPS76301DBVT:低功耗,150mA低压差线性稳压器TPS76601D:超低静态电流250mA低压差线性稳压器TPS76701QD:单输出低压差稳压器TPS767D301PWP:双输出低压差3.3V/可调稳压器TPS76801QD:快速瞬态响应1A低压差线性稳压器TPS76901DBVT:超低功耗100mA低压差线性稳压器TPS77001DBVT:超低功耗50mA低压差线性稳压器TPS77101DGK:快速瞬态响应,150mA,带上电复位的低压差稳压器TPS77301DGK:快速瞬态响应低压差稳压器, 带上电复位TPS77601D:快速瞬态响应低压差稳压器TPS77801D:快速瞬态响应低压差稳压器TPS79301DBVR:超低噪声,高PSRR快速RF, 200mA双输出低压差稳压器TPS79401DCQ:超低噪声,高PSRR快速RF低压差稳压器TPS79401DGNT:超低噪声,高PSRR快速RF低压差稳压器TPS79418DCQ:超低噪声,高PSRR快速RF低压差稳压器TPS79418DGNT:超低噪声,高PSRR快速RF低压差稳压器TPS79425DCQ:超低噪声,高PSRR快速RF低压差稳压器TPS79425DGNT:超低噪声,高PSRR快速RF低压差稳压器TPS79428DCQ:超低噪声,高PSRR快速RF低压差稳压器TPS79428DGNT:超低噪声,高PSRR快速RF低压差稳压器TPS79430DGNT:超低噪声,高PSRR快速RF低压差稳压器TPS79433DGNT:超低噪声,高PSRR快速RF低压差稳压器TPS79501DCQ:单输出低压差稳压器TPS79601KTTT:超低噪声,高PSRR快速RF低压差稳压器TPS79618KTTT:超低噪声,高PSRR快速RF低压差稳压器TPS79625KTTT:超低噪声,高PSRR快速RF低压差稳压器TPS79628KTTT:超低噪声,高PSRR快速RF低压差稳压器TPS79630KTTT:超低噪声,高PSRR快速RF低压差稳压器TPS79633KTTT:超低噪声,高PSRR快速RF低压差稳压器双路固定输出LDO(低压差稳压器)TPS70148PWP:双输出低压差稳压器TPS70151PWP:双输出低压差稳压器TPS70158PWP:双输出低压差稳压器TPS70348PWP:双输出低压差稳压器TPS70351PWP:双输出低压差稳压器TPS70358PWP:双输出低压差稳压器TPS70445PWP:双输出(3.3V/1.2V)低压差稳压器,带双允许和供电电压监测TPS70448PWP:双输出(3.3V/1.5V)低压差稳压器,带双允许和供电电压监测TPS70451PWP:双输出(3.3V/1.8)低压差稳压器,带双允许和供电电压监测TPS70458PWP:双输出(3.3V/2.5V)低压差稳压器,带双允许TPS70745PWP:双输出低压差稳压器TPS70748PWP:双输出低压差稳压器TPS70751PWP:双输出低压差稳压器TPS70758PWP:双输出低压差稳压器TPS70845PWP:双输出低压差稳压器TPS70848PWP:双输出低压差稳压器TPS70851PWP:双输出低压差稳压器TPS70858PWP:双输出低压差稳压器TPS73HD318PWP:极低压差,3.3V/1.8V双输出稳压器TPS73HD325PWP:极低压差,3.3V/2.5V双输出稳压器ON 安森美低压差稳压器:单路固定/可调输出LDO ,双路固定/可调输出LDO ,多路固定/可调输出LDO单路固定/可调输出LDO(低压差稳压器)CS52015-1GDP3:1.5A可调输出低压差稳压器CS5203-1GDP3:3A可调输出低压差稳压器CS5204-1GDP3:4A可调输出低压差稳压器CS5205A-1GDP3:5A可调输出低压差稳压器CS5206-1GT3:6A可调输出低压差稳压器CS5207A-1GT3:7A可调输出低压差稳压器CS5208-1GT3:8A可调输出低压差稳压器CS5231-3GDF8:0.5A,3.3V输出低压差稳压器CS5231-3GDP5:0.5A,3.3V输出低压差稳压器CS5233-3GDF8:0.5A,3.3V输出低压差稳压器CS5233-3GDP5:1.5A,3.3V输出低压差稳压器CS5253-1GDP5:3A,可调输出低压差稳压器CS5253B-1GDP5:3A,可调输出低压差稳压器CS5253B-8GDP5:3A,2.5V输出低压差稳压器CS5257A-1GDP5:可调输出低压差稳压器CS5257A-1GT5:可调输出低压差稳压器CS5258-1GT5:可调输出低压差稳压器CS8101YDWFR20G:100mA输出电流,带看门狗、复位输出、唤醒低压差稳压器CS8120YD14:300mA带使能端和复位输出端低压差5V线性稳压器CS8120YDP5:300mA带使能端和复位输出端低压差5V线性稳压器CS8122YT5G:750mA输出电流,带复位输出低压差稳压器CS8122YTHA5:750mA带有复位延时的5V低压差线性稳压器CS8122YTHA5G:750mA输出电流,带复位输出低压差稳压器CS8122YTVA5:750mA带有复位延时的5V低压差线性稳压器CS8126-1YDPS7:750mA带有复位延时的5V低压差线性稳压器CS8126-1YTHA5G:750mA输出电流,带复位输出低压差稳压器CS8129YT5G:750mA输出电流,带复位输出低压差稳压器CS8140YDW24:500mA带有使能端,复位端和看门狗的5V低压差稳压器CS8140YDWR24:500mA带有使能端,复位端和看门狗的6V低压差稳压器CS8140YN14:500mA带有使能端,复位端和看门狗的7V低压差稳压器CS8141YDPS7:500mA带有使能端,复位端和看门狗的8V低压差稳压器CS8151CGN8G:100mA输出电流,带看门狗、复位输出、唤醒低压差稳压器CS8151YDPS7:100mA带有看门狗,复位端以及唤醒功能的5V低压差稳压器CS8151YNF16:100mA带有看门狗,复位端以及唤醒功能的5V低压差稳压器CS8161YT5G:两路输出,带使能控制低压差稳压器CS8161YTHA5G:两路输出,带使能控制低压差稳压器CS8182YDF8:微功耗200mA低压差跟踪稳压器/线驱动器CS8182YDFR8G:200mA输出电流,带跟踪, 低压差稳压器CS8183YDWF20:双微功耗200mA低压差跟踪稳压器/线驱动器CS8321YDPR3G:150mA输出电流低压差稳压器CS8321YT3G:150mA输出电流低压差稳压器CS8363YDPS7:3V双微功耗带使能和复位端的低压差稳压器CS8371ET7:8V/1A,5V/250mA双路带有输出使能端的低压差稳压器CS8481YDP5:3.3V/250mA,5V/100mA带有使能端的微功耗低CS9201YDF8:微功耗100mA无需外部电容的5.0V低压差线性CS9202YDF8:微功耗100mA无需外部电容的3.3V低压差线性CS9202YDFR8G:100mA输出电流,不需要输出电容低压差稳压器L4949DG:100mA输出电流,带上电复位低压差稳压器L4949DR2G:100mA输出电流,带上电复位低压差稳压器L4949NG:100mA输出电流,带上电复位低压差稳压器LM2931ACDR2G:100mA可调输出带有60V负载保护低压差稳压器LM2931AD2T-5.0G:100mA/5V输出,带有60V负载保护LM2931AD-5.0R2:100mA可调输出带有60V负载保护低压差稳压器LM2931AD-5.0R2G:100mA可调输出带有60V负载保护低压差稳压器LM2931AT-5.0G:100mA可调输出带有60V负载保护低压差稳压器LM2931AZ-5.0:100mA可调输出带有60V负载保护LM2931AZ-5.0RAG:100mA可调输出带有60V负载保护低压差稳压器LM2931CDR2:100mA可调输出带有60V负载保护LM2931CDR2G:100mA可调输出带有60V负载保护LP2950ACDT-5RKG:100mA低压差稳压器LP2950ACZ-3.3G:100mA低压差稳压器LP2950ACZ-3.3RAG:100mA低压差稳压器LP2950ACZ-5.0RAG:100mA低压差稳压器LP2950CDT-3.0G:100mA低压差稳压器LP2950CDT-3.0RKG:100mA低压差稳压器LP2950CDT-3.3RKG:100mA低压差稳压器LP2950CDT-5.0RK:100mA低压差稳压器LP2950CDT-5.0RKG:100mA低压差稳压器LP2950CZ-3.3G:100mA低压差稳压器LP2950CZ-3.3RAG:100mA低压差稳压器LP2950CZ-5.0RAGLP2950CZ-5.0RPG:100mA低压差稳压器LP2951ACDMR2G:低功耗100mA,3.3V或可调输出,具有错误标志LP2951ACDR2G:低功耗100mA,3.3V或可调输出,具有错误标志LP2951CDG:LP2951CDR2:低功耗100mA,3.3V或可调输出,具有错误标志LP2951CDR2G:低功耗100mA,3.3V或可调输出,具有错误标志MC33160PG:内置低压检测复位,可编程的滞回比较器MC33269D-3.3G:800mA低压差稳压器MC33269DR2-3.3G:800mA低压差稳压器MC33269DR2-5.0G:800mA低压差稳压器MC33269DR2G:800mA低压差稳压器MC33269DT-3.3G:800mA低压差稳压器MC33269DTG:800mA低压差稳压器MC33269DTRK-012G:800mA低压差稳压器MC33269DTRK-3.3G:800mA低压差稳压器MC33269DTRK-5.0G:800mA低压差稳压器MC33269DTRKG:800mA低压差稳压器MC33269ST-3.3T3G:800mA低压差稳压器MC33269T-3.3G:800mA低压差稳压器MC33269T-5.0G:800mA低压差稳压器MC33269TG:800mA低压差稳压器MC33275D-2.5R2G:300mA低压差稳压器MC33275D-3.3R2G:300mA低压差稳压器MC33275DT-2.5RKG:300mA低压差稳压器MC33275DT-3.0RKG:300mA低压差稳压器MC33275DT-3.3RKG:300mA低压差稳压器MC33275DT-5.0G:300mA低压差稳压器MC33275MN-5.0R2G:300mA低压差稳压器MC33275ST-3.0T3G:300mA低压差稳压器MC33275ST-3.3T3G:300mA低压差稳压器MC33275ST-5.0T3G:300mA低压差稳压器MC33375D-2.5R2G:300mA低压差稳压器,带开/关控制MC33375D-3.3R2G:300mA低压差稳压器,带开/关控制MC33375ST-2.5T3G:300mA低压差稳压器,带开/关控制MC33565D:200mA用于PCI/NIC卡应用的小型低压差稳压器MC33566D2T-001:1.5A用于PCI/NIC卡应用的小型低压差稳压器MC33761SNT1-030G:超低噪声超低压差,带1.0V开/关控制MC34160PG:内置低压检测复位,可编程的滞回比较器MC78PC28NTRG:低噪声150MA低压差稳压器MC78PC33NTRG:150mA,低噪声低压差稳压器NCP1086D2T-33R4:1.5A,低功耗低压差稳压器NCP1086D2T-33R4G:1.5A,低功耗低压差稳压器NCP1086D2TADJR4G:1.5A快速响应低压差稳压器NCP1086ST-33T3G:1.5A,低功耗低压差稳压器NCP1086ST-ADJT3G:1.5A,低功耗低压差稳压器NCP1086T-033G:1.5A,低功耗低压差稳压器NCP1086T-ADJG:1.5A,低功耗低压差稳压器NCP1117DT12RKG:1.0A,低功耗低压差稳压器NCP1117DT15RKG:1.0A,低功耗低压差稳压器NCP1117DT18RK:1A输出电流NCP1117DT18RKG:1.0A,低功耗低压差稳压器NCP1117DT25G:1A输出电流NCP1117DT25RKG:1.0A,低功耗低压差稳压器NCP1117DT285RKG:1.0A,低功耗低压差稳压器NCP1117DT33G:1.0A,低功耗低压差稳压器NCP1117DT33RK:1A输出电流NCP1117DT33RKG:1.0A,低功耗低压差稳压器NCP1117DT50RK:1A输出电流NCP1117DT50RKG:1.0A,低功耗低压差稳压器NCP1117DTAG:1.0A,低功耗低压差稳压器NCP1117DTARKG:1.0A,低功耗低压差稳压器NCP1117DTAT5G:1A输出电流NCP1117ST12T3G:1A输出电流NCP1117ST15T3G:1.0A,低功耗低压差稳压器NCP1117ST18T3G:1.0A,低功耗低压差稳压器NCP1117ST20T3G:1.0A,低功耗低压差稳压器NCP1117ST25T3G:1.0A,低功耗低压差稳压器NCP1117ST285T3G:1.0A,低功耗低压差稳压器NCP1117ST33T3:1A输出电流NCP1117ST33T3G:1.0A,低功耗低压差稳压器NCP1117ST50T3G:1.0A,低功耗低压差稳压器NCP1117STAT3G:1.0A,低功耗低压差稳压器NCP3335ADM330R2G:500mA, 低静态电流,高精度低压差稳压器NCP3335ADMADJR2G:500mA, 低静态电流,高精度低压差稳压器NCP3335AMN500R2G:500mA, 低静态电流,高精度低压差稳压器NCP3335DMR2330G:500mA, 低静态电流,高精度低压差稳压器NCP500SN18T1G:150mA,低功耗低压差稳压器NCP500SN25T1G:150mA,低功耗低压差稳压器NCP500SN27T1G:150mA,低功耗低压差稳压器NCP500SN28T1G:150mA,低功耗低压差稳压器NCP500SN30T1:低噪声,使能控制,快速启动20μsecNCP500SN30T1G:150mA,低功耗低压差稳压器NCP500SN33T1:低噪声,使能控制,快速启动20μsecNCP500SN33T1G:150mA,低功耗低压差稳压器NCP500SN50T1:低噪声,使能控制,快速启动20μsecNCP500SQL27T1G:150mA,低功耗低压差稳压器NCP500SQL50T1G:150mA,低功耗低压差稳压器NCP511SN15T1G:150mA,低功耗低压差稳压器NCP511SN18T1:小静态电流,使能控制NCP511SN18T1G:150mA,低功耗低压差稳压器NCP511SN25T1G:150mA,低功耗低压差稳压器NCP511SN28T1G:150mA,低功耗低压差稳压器NCP511SN30T1:小静态电流,使能控制NCP511SN30T1G:150mA,低功耗低压差稳压器NCP511SN33T1:小静态电流,使能控制NCP511SN33T1G:150mA,低功耗低压差稳压器NCP511SN50T1:小静态电流,使能控制NCP511SN50T1G:小静态电流,使能控制NCP512SQ15T1G:80mA,低功耗低压差稳压器NCP512SQ18T1G:80mA,低功耗低压差稳压器NCP512SQ25T1G:80mA,低功耗低压差稳压器NCP512SQ28T1G:80mA,低功耗低压差稳压器NCP512SQ30T1G:80mA,低功耗低压差稳压器NCP512SQ33T1G:80mA,低功耗低压差稳压器NCP5501DT50RKG:500mA线性稳压器NCP551SN15T1G:150mA,低功耗低压差稳压器NCP551SN18T1G:150mA,低功耗低压差稳压器NCP551SN25T1G:150mA,低功耗低压差稳压器NCP551SN28T1G:150mA,低功耗低压差稳压器NCP551SN30T1G:150mA,低功耗低压差稳压器NCP551SN33T1G:150mA,低功耗低压差稳压器NCP551SN50T1G:150mA,低功耗低压差稳压器NCP561SN15T1G:150mA,低功耗低压差稳压器NCP561SN18T1:150mA COMS 低静态电流低压差稳压器NCP561SN18T1G:150mA,低功耗低压差稳压器NCP561SN25T1G:150mA,低功耗低压差稳压器NCP561SN28T1G:150mA,低功耗低压差稳压器NCP561SN30T1G:150mA,低功耗低压差稳压器NCP561SN33T1G:150mA,低功耗低压差稳压器NCP562SQ18T1:小静态电流,使能控制NCP562SQ28T1G:80mA,低功耗低压差稳压器NCP562SQ30T1:小静态电流,使能控制NCP562SQ33T1:小静态电流,使能控制NCP562SQ33T1G:80mA,低功耗低压差稳压器NCP562SQ50T1:小静态电流,使能控制NCP562SQ50T1G:80mA,低功耗低压差稳压器NCP563SQ15T1G:80mA,低功耗低压差稳压器NCP563SQ18T1G:80mA,低功耗低压差稳压器NCP565D2T:1.5A瞬间响应LDO线性调节器NCP565D2T12G:1.5A, 低功耗低压差稳压器NCP565D2T12R4G:1.5A, 低功耗低压差稳压器NCP565D2TR4G:1.5A, 低功耗低压差稳压器NCP5661DT12RKG:1.0A, 低功耗低压差稳压器NCP5661DTADJRKG:1.0A, 低功耗低压差稳压器NCP5661MN12T2G:1.0A输出带使能快速响应LDO NCP5661MNADJT2G:1.0A输出带使能快速响应LDO NCP5662DS15R4G:2.0A输出带使能快速响应LDO NCP5662DS33R4G:2.0A输出带使能快速响应LDO NCP5662DSADJR4G:2A,快速响应带使能的低压差稳压器NCP5663DS15R4G:3.0A, 低功耗低压差稳压器NCP5663DSADJR4G:3.0A, 低功耗低压差稳压器NCP580SQ30T1G:120mA, 低功耗低压差稳压器NCP582LSQ30T1G:150mA,高速, 低噪声低压差稳压器NCP583SQ28T1G:150mA,超低静态电流低压差稳压器NCP583SQ30T1G:150mA输出,带使能断的低压差稳压器NCP583XV18T2G:150mA,超低静态电流低压差稳压器NCP583XV28T2G:150mA,超低静态电流低压差稳压器NCP583XV30T2G:150mA,超低静态电流低压差稳压器NCP583XV33T2G:150mA,超低静态电流低压差稳压器NCP584HSN12T1G:200mA,低静态电流低压差稳压器NCP584HSN25T1G:200mA,超低静态电流低压差稳压器NCP585DSN125T1G:200mA,超低静态电流低压差稳压器NCP585DSN12T1G:300mA,低静态电流低压差稳压器NCP585DSN18T1G:300mA,低静态电流低压差稳压器NCP585DSN33T1G:300mA,超低静态电流低压差稳压器NCP585HSN18T1G:300mA,低静态电流低压差稳压器NCP585LSN18T1G:300mA,低静态电流低压差稳压器NCP600SN300T1G:高性能,低功耗,带使能低压差稳压器NCP600SNADJT1G:高性能,低功耗,带使能低压差稳压器NCP612SQ18T1G:100mA,低静态电流低压差稳压器NCP612SQ28T1G:100mA,低静态电流低压差稳压器NCP612SQ30T1G:100mA,低静态电流低压差稳压器NCP612SQ33T1G:100mA,低静态电流低压差稳压器NCP623DM-33R2G:150mA,低静态电流低压差稳压器NCP630AD2T:3.0A可调输出带有负载保护低压差稳压器NCP630AD2TR4G:3.0A可调输出带有负载保护低压差稳压器NCV1117DT20RKG:1A,低压差稳压器NCV1117DT33T5G:1000mA,低压差稳压器NCV1117DT50RKG:1000mA,低压差稳压器NCV1117DTARKG:1000mA,低压差稳压器NCV1117ST15T3G:1000mA,低压差稳压器NCV1117ST20T3G:1000mA,低压差稳压器NCV1117ST25T3G:1000mA,低压差稳压器NCV1117ST33T3G:1000mA,低压差稳压器NCV1117STAT3G:1000mA,低压差稳压器NCV2951ACDR2G:100mA,低功耗低压差稳压器NCV4269D1R2G:5.0V,150mA低压差稳压器,带延时可调复位及提前报警NCV4269D2R2G:5.0V,150mA低压差稳压器,带延时可调复位及提前报警(内部上拉) NCV4274ADT50RKG:5.0V ,400mA低压差2%输出精度稳压器NCV4275DSR4G:450mA,低功耗低压差稳压器NCV4275DTRKG:450mA, 低功耗低压差稳压器NCV4276ADSADJR4G:5.0V/3.3V/2.5V/1.8V,400mA低压差2%输出精度带使能稳压器NCV4276ADT33RKG:5.0V/3.3V/2.5V/1.8V,400mA低压差2%输出精度带使能稳压器NCV4276DS33R4G:5.0V/3.3V/2.5V/1.8V,400mA低压差4%输出精度带使能稳压器NCV4276DS50R4G:5.0V/3.3V/2.5V/1.8V,400mA低压差4%输出精度带使能稳压器NCV4276DSADJR4G:5.0V/3.3V/2.5V/1.8V,400mA低压差4%输出精度带使能稳压器NCV4276DT33RKG:5.0V/3.3V/2.5V/1.8V,400mA低压差4%输出精度带使能稳压器NCV4276DT50RKG:5.0V/3.3V/2.5V/1.8V,400mA低压差4%输出精度带使能稳压器NCV4279D1R2G:5.0V,150mA低压差稳压器,带延时可调复位及提前报警NCV4279D2R2G:5.0V ,150mA低压差稳压器,带延时可调复位NCV4299D1R2G:150mA, 低功耗低压差稳压器NCV4949DR2G:5.0V ,100mA低压差稳压器,带上电复位NCV551SN15T1G:150 mA CMOS 低静态电流LDONCV551SN18T1G:150 mA CMOS 低静态电流LDONCV551SN25T1G:150 mA CMOS 低静态电流LDONCV551SN32T1G:150 mA CMOS 低静态电流LDONCV551SN33T1G:150 mA CMOS 低静态电流LDONCV551SN50T1G:150 mA CMOS 低静态电流LDONCV8184D:微功耗(70mA)LDONCV8501D50R2G:150mA,低压差稳压器,带使能,延时复位NCV8501DADJ:150mALDO调节器NCV8502D33R2G:微功耗150 mA LDO带DELAY,可调RESET功能NCV8502DADJ:150mALDO调节器NCV8503PW33R2G:微功耗400 mA LDO带DELAY,可调RESET功能NCV8504PW33R2G:微功耗400 mA LDO带DELAY,可调RESET功能NCV8508DW50:250mALDO调节器NCV8508DW50G:5.0V, 250 mA LDO 带看门狗和RESETNCV8508DW50R2G:5.0V, 250 mA LDO 带看门狗和RESETNCV8509PDW18:线性LDO双电压调节器双路固定/可调输出LDO(低压差稳压器)MC33567D-1R2G:双超低躁声LDO控制器NCP5504DTRKG:双输出250mA, 低静态电流低压差稳压器多路固定/可调输出LDO(低压差稳压器)MC33765DTBG:低压差, 低躁声,5路输出NCP4523G1T1G:CMOS, 3路输出LDOSipex 公司LDO 低压差线性稳压器Sipex 公司LDO 低压差线性稳压器SP6200EM5-L-2.85:电源管理器件(LDOs+RESET)SP6200ER-L-3.3/TR:SP6200ER-L-3.3/TRSP6201EM5/TR:电源管理器件(LDOs+RESET)SP6201EM5-2.85:SP6201EM5-2.85SP6201EM5-2.85/TR:SP6201EM5-2.85/TRSP6201EM5-3.0/TR:SP6201EM5-3.0/TRSP6201EM5-L-1.8/TR:SP6201EM5-L-1.8/TRSP6201EM5-L-2.85:SP6201EM5-L-2.85SP6201EM5-L-3.0:SP6201EM5-L-3.0SP6201EM5-L-3.3/TR:SP6201EM5-L-3.3/TRSP6201EM5-L-5.0/TR:SP6201EM5-L-5.0/TRSP6205EM5-2.5:电源管理器件(LDOs)SP6205EM5-L:SP6205EM5-LSP6205EM5-L-3.0:SP6205EM5-L-3.0SP6205ER-L-3.0:SP6205ER-L-3.0SP6213EC5-L-2.85/TR:电源管理器件(LDOs)SP6213EC5-L-3.0/TR:SP6213EC5-L-3.0/TRSP6231CN-3.3:电源管理器件(LDOs) 500mA 3.3V调节器,带有辅助备份开关SP6231EN-3.3:SP6231EN-3.3SP6231ER-3.3/TR:SP6231ER-3.3/TRSPX1117M3/TR:电源管理器件(LDOs)SPX1117M3-L/TR:SPX1117M3-L/TRSPX1117M3-L-1.8/TR:SPX1117M3-L-1.8/TRSPX1117M3-L-2.5:SPX1117M3-L-2.5SPX1117M3-L-2.5/TR:SPX1117M3-L-2.5/TRSPX1117M3-L-3.3/TR:SPX1117M3-L-3.3/TRSPX1117M3-L-5.0/TR:SPX1117M3-L-5.0/TRSPX1117R-1.8/TR:SPX1117R-1.8/TRSPX1117R-L-1.5:SPX1117R-L-1.5SPX1117R-L-1.8:SPX1117R-L-1.8SPX1117R-L-2.5:SPX1117R-L-2.5SPX1117T-L-2.85:SPX1117T-L-2.85SPX1117U:SPX1117USPX1117U-2.5:SPX1117U-2.5SPX1117U-L-3.3:SPX1117U-L-3.3SPX1121M3-5.0/TR:电源管理器件(LDOs) SPX1129M3-5.0:电源管理器件(LDOs)SPX1129U-5.0:SPX1129U-5.0SPX1580T5:电源管理器件(LDOs)SPX1580U5:SPX1580U5SPX1581T5-2.5:电源管理器件(LDOs)SPX1581T5-L/TR:SPX1581T5-L/TRSPX1585AT-L/TR:电源管理器件(LDOs)SPX1585AT-L-3.3/TR:SPX1585AT-L-3.3/TR SPX1585AU-2.5:SPX1585AU-2.5SPX1585AU-3.3:SPX1585AU-3.3SPX1585AU-L-2.5:SPX1585AU-L-2.5SPX1585AU-L-3.3:SPX1585AU-L-3.3SPX1587AT-L/TR:电源管理器件(LDOs)SPX1587AT-L-1.5:SPX1587AT-L-1.5SPX1587AT-L-2.5/TR:SPX1587AT-L-2.5/TR SPX1587AT-L-3.3/TR:SPX1587AT-L-3.3/TR SPX1587AU-2.5:SPX1587AU-2.5SPX1587AU-3.3:SPX1587AU-3.3SPX1587AU-5.0:SPX1587AU-5.0SPX1587AU-L-2.5:SPX1587AU-L-2.5SPX1587AU-L-3.3:SPX1587AU-L-3.3SPX2808AM1-3.3:电源管理器件(LDOs) SPX2808AM3-3.3:SPX2808AM3-3.3SPX2810AM3-2.5:电源管理器件(LDOs) SPX2810M3-3.3:SPX2810M3-3.3SPX2815AT-L/TR:电源管理器件(LDOs) SPX2815AU-3.3:SPX2815AU-3.3SPX29150T-3.3/TR:电源管理器件(LDOs) SPX29150T-5.0/TR:SPX29150T-5.0/TRSPX29150T-L-1.8:SPX29150T-L-1.8SPX29150T-L-2.5/TR:SPX29150T-L-2.5/TR SPX29150T-L-3.3:SPX29150T-L-3.3SPX29150T-L-3.3/TR:SPX29150T-L-3.3/TR SPX29150T-L-5.0/TR:SPX29150T-L-5.0/TR SPX29151T5-L-5.0/TR:电源管理器件(LDOs) SPX2920U-5.0:电源管理器件(LDOs+RESET) SPX2920U-L-5.0:SPX2920U-L-5.0SPX29300T-L-2.5/TR:电源管理器件(LDOs) SPX29300U-3.3:SPX29300U-3.3SPX29300U-5.0:SPX29300U-5.0SPX29300U-L-2.5:SPX29300U-L-2.5SPX29300U-L-3.3:SPX29300U-L-3.3SPX29301T5-1.8:电源管理器件(LDOs)SPX29301T5-3.3:SPX29301T5-3.3SPX29301T5-L-1.8:SPX29301T5-L-1.8SPX29301T5-L-3.3:SPX29301T5-L-3.3SPX29302T5:电源管理器件(LDOs)SPX29302T5-L/TR:SPX29302T5-L/TRSPX2940T-2.5:电源管理器件(LDOs)SPX2940U-3.3:SPX2940U-3.3SPX2940U-5.0:SPX2940U-5.0SPX2945U-L-3.3:电源管理器件(LDOs+RESET)SPX29500U-3.3:电源管理器件(LDOs)SPX29500U-L-5-0:SPX29500U-L-5-0SPX29502U5:电源管理器件(LDOs)SPX29502U5:SPX29502U5SPX2951ACS-5.0:电源管理器件(LDOs+RESET)SPX2954N-5.0:电源管理器件(LDOs+RESET)SPX2954S-L-5.0/TR:SPX2954S-L-5.0/TRSP2996BEN-L/TR:Sipex 公司LDO 低压差线性稳压器SP317J-L:3-Terminal 1 Amp Adjustable Voltage Regulator SPX3819M5/TR:电源管理器件(LDOs)SPX3819M5-2.5/TR:SPX3819M5-2.5/TRSPX3819M5-L/TR:SPX3819M5-L/TRSPX3819M5-L-1.2/TR:SPX3819M5-L-1.2/TRSPX3819M5-L-1.8/TR:SPX3819M5-L-1.8/TRSPX3819M5-L-2.5/TR:SPX3819M5-L-2.5/TRSPX3819M5-L-3.3/TR:SPX3819M5-L-3.3/TRSPX3819S-2.5/TR:SPX3819S-2.5/TRSPX3819S-L-2.5/TR:SPX3819S-L-2.5/TRSPX5205M5-1.8:电源管理器件(LDOs)SPX5205M5-2.8/TR:SPX5205M5-2.8/TRSPX5205M5-5.0/TR:SPX5205M5-5.0/TRSPX5205M5-L-1.8/TR:SPX5205M5-L-1.8/TRSPX5205M5-L-2-8:SPX5205M5-L-2-8SPX5205M5-L-3.3/TR:SPX5205M5-L-3.3/TRSPX5205M5-L-5.0:SPX5205M5-L-5.0SPX5205M5-L-5.0/TR:SPX5205M5-L-5.0/TR。

TPS77233DGKG4中文资料

TPS77233DGKG4中文资料

PACKAGING INFORMATIONOrderableDevice Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)TPS77101DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77101DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77101DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77101DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77115DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77115DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77115DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77115DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77118DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77118DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77118DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77118DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77127DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77127DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77127DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77127DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77128DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77128DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77128DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77128DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77133DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77133DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77133DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77133DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77150DGKACTIVEMSOPDGK880Green (RoHS &no Sb/Br)CU NIPDAULevel-1-260C-UNLIM6-Aug-2007Orderable Device Status (1)Package Type Package Drawing Pins Package Qty Eco Plan (2)Lead/Ball Finish MSL Peak Temp (3)TPS77150DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77150DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77150DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77201DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77201DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77201DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77201DGKRG4ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77215DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77215DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77215DGKRG4ACTIVE MSOP DGK 8TBD Call TI Call TITPS77218DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77218DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77218DGKRG4ACTIVE MSOP DGK 8TBD Call TI Call TITPS77227DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77227DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77227DGKRG4ACTIVE MSOP DGK 8TBD Call TI Call TI TPS77228DGKG4ACTIVE MSOP DGK 8TBD Call TI Call TI TPS77228DGKRG4ACTIVE MSOP DGK 8TBD Call TI Call TITPS77233DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77233DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77233DGKRG4ACTIVE MSOP DGK 8TBD Call TI Call TITPS77250DGK ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77250DGKG4ACTIVE MSOP DGK 880Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77250DGKR ACTIVE MSOP DGK 82500Green (RoHS &no Sb/Br)CU NIPDAU Level-1-260C-UNLIM TPS77250DGKRG4ACTIVEMSOPDGK82500Green (RoHS &no Sb/Br)CU NIPDAULevel-1-260C-UNLIM(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.6-Aug-2007(2)Eco Plan -The planned eco-friendly classification:Pb-Free (RoHS),Pb-Free (RoHS Exempt),or Green (RoHS &no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free (RoHS):TI's terms "Lead-Free"or "Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all 6substances,including the requirement that lead not exceed 0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free (RoHS Exempt):This component has a RoHS exemption for either 1)lead-based flip-chip solder bumps used between the die and package,or 2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free (RoHS compatible)as defined above.Green (RoHS &no Sb/Br):TI defines "Green"to mean Pb-Free (RoHS compatible),and free of Bromine (Br)and Antimony (Sb)based flame retardants (Br or Sb do not exceed 0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annualbasis.6-Aug-2007TAPE AND REELINFORMATION4-Aug-2007DevicePackage Pins SiteReel Diameter (mm)Reel Width (mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant TPS77101DGKR DGK 8HNT 33012 5.3 3.4 1.4812NONE TPS77115DGKR DGK 8HNT 33012 5.3 3.4 1.4812NONE TPS77118DGKR DGK 8HNT 33012 5.3 3.4 1.4812NONE TPS77127DGKR DGK 8HNT 33012 5.3 3.4 1.4812NONE TPS77128DGKR DGK 8HNT 33012 5.3 3.4 1.4812NONE TPS77133DGKRDGK 8HNT 33012 5.3 3.4 1.4812NONE TPS77150DGKR DGK 8HNT 33012 5.3 3.4 1.4812NONE TPS77201DGKR DGK 8HNT 33012 5.3 3.4 1.4812NONE TPS77250DGKRDGK8HNT330125.33.41.4812NONETAPE AND REEL BOX INFORMATIONDevice Package Pins Site Length (mm)Width (mm)Height (mm)TPS77101DGKR DGK 8HNT 358.0335.035.0TPS77115DGKR DGK 8HNT 358.0335.035.0TPS77118DGKR DGK 8HNT 358.0335.035.0TPS77127DGKR DGK 8HNT 358.0335.035.0TPS77128DGKR DGK 8HNT 358.0335.035.0TPS77133DGKR DGK 8HNT 358.0335.035.0TPS77150DGKR DGK 8HNT 358.0335.035.0TPS77201DGKR DGK 8HNT 358.0335.035.0TPS77250DGKRDGK8HNT358.0335.035.04-Aug-20074-Aug-2007IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements, improvements,and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right,or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use anynon-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetworkMicrocontrollers Security /securityRFID Telephony /telephonyLow Power /lpw Video&Imaging /videoWirelessWireless /wirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2007,Texas Instruments Incorporated。

Owon TAO3074、TAO3104、TAO3074A、TAO3104A 四通道数字波形测试仪参

Owon TAO3074、TAO3104、TAO3074A、TAO3104A 四通道数字波形测试仪参
Bus Decoding Trigger Mode
Automatic Measurement
Waveform Math
Waveform Storage Communication Interface
Frequency Counter BAT
Dimension (W x H x D)
TAO3074
TAO3104
全国免费服务热线:4006-909-365 .……..….….……..…..……..…..……..…..……..…..……..…..……..…....…..…..…..…..………………………………………
…………………………………………
TAO3000 Series Four-channel Handheld Digital Storage Oscilloscope
1MΩ ± 2%, in parallel with 15pF ± 5pF
1MΩ ≤ 300Vrms;
0.001X - 1000X, step by 1 - 2 - 5
±10ppm
DC, AC, GND
1mV/div - 10V/div (at input) Edge, Video, Pulse, Slope, Runt, Windows, Timeout, Nth Edge, Logic, I2C, SPI, RS232,
TAO3074A
TAO3104A
70MHz
100MHz
70MHz
100MHz
1GS/s
8 bits
8bits/12bits/14 bits
40M
45,000 wfms/s
2ns/div - 1000s/div, step by 1 - 2 - 5

奇冠四位代码诊断电脑故障传统诊断与稳定性测试卡

奇冠四位代码诊断电脑故障传统诊断与稳定性测试卡

奇冠四位代码诊断电脑故障传统诊断与稳定性测试卡WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】电脑故障传统诊断、奇冠诊断与稳定性测试卡使用说明书(适用于台式机和笔记本电脑)全球唯一,用卡必读中国发明专利号:专利证书号:208776侵权必究中国·广东·奇冠电子有限公司研制非常感谢您选择奇冠公司的传奇稳(传统诊断——BIOS POST代码、奇冠诊断、奇冠稳定性测试,简称“传奇稳”E-mail本卡采用大规模IC集成模块,结构紧凑,稳定可靠,确保产品品质符合高标准要求。

内部资源更丰富,抗干扰性能更优越,自身故障率极低。

无须用户安装软件,软件全部内置,我们将前沿科技与使用者行为科学相结合,进行了人性化功能设计,使用非常方便。

本公司是一家专业研发、生产诊断卡的企业,生产的新一代、准确王、二合一卡系列及传奇稳系列产品已获CE认证并受中国国家专利保护(专利号:),侵权必究。

我公司已不再生产传统诊断卡,请广大用户在购买时认准“奇冠”字样商标及防伪标识。

本用户手册所提到的产品规格及资讯仅供参考,实际内容亦会随时更新,恕不另行通知。

如果您要了解最新产品资讯,请访问我公司网站。

本说明书不断改进,欢迎用户向我司多提意见和建议。

免责声明:对使用本卡给用户造成的损失,本公司恕不承担。

欢迎访问广州奇冠电子公司网一、用户必读(一)传统诊断部分1.诊断卡显示一系列代码后,BIOS代码停在“FF”或“00”,则表示主板自检已通过。

若加电BIOS代码即出现“no”,且不变,则为主板没有运行,详见:第十章第6条《诊断卡显示“no”时的处理方法》。

2.有些主板明明存在故障,但诊断卡却显示正常,此原因可能是:您在CMOS中设置为不提示错,则遇到非致命性故障时,诊断卡的BIOS代码不会正常显示错误代码,而一直走到“00”或“FF”等OK码。

解决方法:更改CMOS设置,改为提示所有错误,更改设置后再开机,此时,遇到非致命性故障时,诊断卡即停止走码,提示错误代码,用户可根据此错误代码进行排错;或按住诊断卡的代码翻查开关,查看前一个BIOS代码是否为故障代码。

数字调功器减少能源损耗

数字调功器减少能源损耗

使用Spang 853型数字式可功硅功率控制器有 效 减 少 制 造 过 程 中 的 电 能 消 耗在美国,数字式可控硅调功器的广泛使用,为工业加热领域的用户节省了大量电能费用,这些对数字化设备的投资所增加的费用可以在一到两个月的运行中所节省的电费中收回。

这里的例子是,数字式可控硅功率控制技术成功地在玻璃镀膜这类深加工项目中得到使用。

在一个由两台新电炉组成的镀膜玻璃设备的扩建项目中使用了数字化技术,直接导致每月电费成本节省超过2000美元。

数字式可控硅功率控制器使用过零控制模式带变压器从而驱动加热元件。

传统设计中为了避免因为变压器的磁饱和损坏变压器,只能使用移相控制模式为加热元件供电。

背景说明Signature 真空系统公司得到的一个合同中,要为用户的扩建工程项目建造两台真空电炉。

为了最大限度地节约电能,Signature 真空系统公司决定采用过零触发的功率控制器来控制电炉的热量输入。

控制器选择了世邦电力电子公司制造的853型三相数字式交流功率控制器 (见Fig.1).选择Spang 公司的853型数字式功率控制器的原因之一是它能够任意选择使用移相点火或过零点火模式以及自动组合峰值功率优化。

这样的选择可以保证在开始时使用(传统的)移相点火方式,以后再改为过零点火方式工作。

这种灵活性让我们很容易对不同的控制模式产生的系统电气参数和最终的电费进行对比。

用户已经习惯了过去的移相控制的系统。

采用多模式的853型数字式功率控制器,电炉控制系统允许操作人员使用习惯的移相控制模式,也可以任意切换到过零点火控制模式。

这种转换可以通过Modbus 串行接口的本地控制器或在控制室中通过总线连接的软件实现。

这中灵活性让电炉操作人员能够读取移相控制模式下的电流,电压值,然后再切换到过零控制模式,看到减小了的电流,电压值,充分理解节能的效果。

电炉加热区的额定规格如下:• 输入电压: 480 V AC• 输出电压: 45 V AC• 输出电流: 2,566 A AC• 额定功率: 200kW 使用镍鉻合金加热元件 三套加热系统的 交流动力中心图1. Spang 853系列数字式可控硅调功器每台电炉包括两套200KW 的加热回路,两台电炉共4套加热系统合计总功率800 kW. 电炉运行时,大多数运行时间的实际功率消耗约为额定功率的50%. 这种电炉每个加热区使用一个独立的动力系统。

793D 产品介绍

793D 产品介绍

10.传感器
11.电子控制燃油喷嘴
机械传动系统—卡特设计, 卡特制造
• • • 大排量、高扭矩储备发动机 锁定功能的液力变矩器 集成的电子控制 • • 高速、低扭矩变速箱 双级减速终传动
• •
卡特是唯一一个自行设计、制造和支持自己传动系统的卡车制造公司 传动系统占矿用卡车总拥有和操作成本的 40%
维修
6速、行星传动、动力换档变速箱
• 换向管理功能在换向过程中控制发动机转速,防止因高速换向而发 生破坏
禁止频繁换档功能,防止车速时快时慢并进可能减少换档次数


• • •
防止在车斗未完全落下的情况下的高档位换档
防止倒档状态时实现车斗操作 可编程的最高档位 过速保护(禁止降档)功能,不允许在发动机转速到达降档点时降 低档位,防止发动机过速 电子技师(ET)工具,快速便捷的为诊断服务提供数据
P A Y L O A D I N D E X J I H G F E D C B A 1
UNACCEPTABLE RANGE不能接受

ACCEPTABLE RANGE可以接受
2 3 4 5 6 7 8 9 10
HAUL ROAD CONDITION INDEX
Cat ET
13.
14. 15.
集成制动控制 (IBC) 模块
变速箱/底盘控制 (TCC) 模块 道路分析控制 (RAC) 模块 (选择件)
重要信息管理系统(VIMS )
• 简化故障排除,减低操作成本
• • 通过监测结构件的压力精确确定载荷的大小 在避免过载的前提下,最大限度的提高作业生产率
• 生产量管理功能,优化卡车和装载设备的作业生产率
• 所有的焊工都受过培训和认证

七段锁存器实验报告

七段锁存器实验报告

七段锁存器实验报告
锁存器的介绍:锁存器---对脉冲电平敏感,在时钟脉冲的电平作用下改变状态。

锁存器是电平触収的存储单元,数据存储的动作叏决于输入时钟,或者使能信号的电平值,当锁存器处于使能状态时,输出才会随着数据输入发生变化。

简单地说:它有两个输入分别是一个有效信号EN,一个输入数据信号DATA_IN 它有一个输出Q它的功能就是在EN有效的时候把DATA_IN的值传给Q也就是锁存的过程,基于传输门和反相器的D锁存器。

锁存器的原理分析:锁存器就是把单片机的输出的数先存起来,可以让单片机继续做其它事,比如74HC373就是一种锁存器。

它的LE为高的时候,数据就可以通过它。

当为低时,它的输出端就会被锁定,即为刚才通过的数据,这样,就可以保持这个状态。

74HC373是CMOS电路,74LS373是TTL电路,都是七段锁存器。

拓普康NET-G3A说明书-中文

拓普康NET-G3A说明书-中文

NET-G3A 使用手册目录前言 (6)使用条款 (6)手册约定 (9)第 1 章产品介绍 (11)工作原理 (12)GNSS概述 (12)计算绝对位置 (14)计算差分位置 (14)定位质量的基本要素 (15)结论 (17)接收机概述 (17)认识接收机 (19)NET-G3A接收机 (20)MINTER (20)数据和电源接口 (25)CF卡槽 (27)固定孔 (28)电缆线和电源部件 (28)其他附件 (33)选项授权文件(OAF) (34)第 2 章测量前的准备工作 (35)参考站系统站点设计 (36)NET-G3A用于参考站系统的几点考虑 (36)检测NET-G3A 参考站点 (37)安装T OPCON软件 (39)安装PC-CDU (39)安装FLoader (41)安装CF卡 (42)接收机供电 (43)检查电源状态 (44)开/关接收机 (45)采集星历 (45)连接接收机与计算机 (46)用RS-232数据线连接 (47)用USB数据线连接 (47)用以太网络连接 (48)用PC-CDU设置以太网连接 (49)PC-CDU连接参数 (52)电源管理 (55)第3 NET-G3A设置与测量 (56)接收机设置 (57)MINTER设置 (64)构建天线电缆系统 (72)接收机设置为临时参考站 (73)第一步:架设接收机 (73)第二步:测量天线高度 (75)第三步:采集数据 (77)停止数据记录 (78)参考站静态测量 (78)MINTER操作 (79)信噪比分析 (82)和外接设备配套作业 (83)第 4 章接收机文件管理 (84)从接收机存储卡下载数据文件到计算机 (84)从存储卡下载数据文件到计算机 (87)从接收机存储卡删除文件 (89)管理接收机内存 (91)管理接收机选项 (92)查看接收机的功能选项 (92)装载选项授权文件 (94)复位接收机 (95)清除NVRAM (96)用MINTER清除NVRAM (97)用PC-CDU清除NVRAM (97)切换接收机工作模式 (98)扩展信息模式 (98)休眠模式 (100)上装新的固件 (100)第 5 章常见问题 (104)先做检查 (104)常见问题列表 (105)电源问题 (106)接收机问题 (106)获取技术支持 (110)电话 (110)电子邮件 (111)网站 (112)附录 A 技术规格 (113)NET-G3A尺寸 (114)NET-G3A接收机性能指标 (115)常规性能 (115)接收机主板性能 (121)接口器件规格 (123)电源接口 (123)串口C-RS-232接口 (124)USB接口 (127)以太网接口 (128)GPS天线接口 (129)1PPS接口 (129)事件标志接口 (131)外接频率接口 (132)NET-G3A兼容的CF卡 (133)附录B 安全注意事项 (135)一般注意事项 (135)接收机使用注意事项 (136)附录 C 法规信息 (137)符合FCC的规定 (137)符合欧盟的规定 (138)WEEE指导 (138)附录 D 保修条例 (139)前言感谢您购买拓普康的产品。

MT7933规格书

MT7933规格书

描述
MT7933 是一个单级、高功率因数,原边控制交 流转直流 LED 驱动芯片。MT7933 集成片上功率 因数校正(PFC)功能,在临界导通模式下运行, 实现了高功率因数并减少功率 MOS 管开关损耗。 利用美芯晟科技特有的控制技术(已申请专利) , 无需光耦及副边感应器件就可以精确地调制 LED 电流。 MT7933 同时实现了各种保护功能,包括过流保 护 (OCP) 、 过压保护 (OVP), 短路保护 (SCP) 和过热保护(OTP)等,以确保系统可靠的工作。
产品 MT7933
封装类型 SOT23-6
每卷的数量 3000
产品标签 7933
管脚排列图
管脚描述
管脚名称 COMP GND CS DRV VDD DSEN 管脚号 1 2 3 4 5 6 描述 内部误差放大器的输出。连接一个对地的电容进行频率补偿 接地 电流感应脚 外部功率 MOS 管栅极驱动 电源脚 辅助绕组的反馈电压。通过一个电阻分压器连接到辅助绕组来反应输出电压
Copyright © 2013 Maxic Technology Corporation
Page 3
MT7933
Maximizing IC Performance
单级高功率因数 AC-DC LED 驱动
功率因数校正
在外部 MOS 管的导通时间内, 原边电流会从 0mA 线性增加到峰值, 该电流通过感应电阻由 CS 脚检 测。当原边电流达到阀值极限, MT7933 会立即 关闭 MOS 管。当副边电流耗尽时,MT7933 会再 次开启 MOS 管。通过美芯晟科技的专有技术,峰 值电流的阀值会跟踪整流后的母线电压的正弦波 形。因此,电感电流的包络也是正弦波形,因而可 实现高功率因数。

固定输出三端稳压器

固定输出三端稳压器

固定输出三端稳压器(宁武.全国大学生电子设计竞赛基本技能指导.电子工业出版社2009.5 p104~107)串联型线性集成稳压器是将分立元器件构成的串联型稳压电路部分或全部集成在一块硅片上,加以封装后引出管脚做成集成芯片。

常见的线性集成稳压器以三端稳压器居多,三端稳压器有两种,一种输出电压固定的称为固定输出三端稳压器,另一种输出电压可调的称为可调三端稳压器,它们的基本组成及工作原理都相同,均采用晶体管串联型的稳压电路。

如固定正电压输出的有78XX系列,固定负电压输出的有79XX系列等。

固定输出三端稳压器的78XX,79XX系列中的XX表示固定电压输出的数值。

如7805、7806、7809、7812、7815、7818、7824等,是指输出电压是+5V、+6V、+9V、+12V、+15V、+18V、+24V,79 XX系列也与之对应,只不过是负电压输出。

如图1所示为78XX系列集成稳压器构成的稳压电路,其输出电压由集成稳压器决定,若选择的是7812,则输出电压为12V。

为了保证电路能够正常工作,要求输入电压至少应大于输出电压2.5V以上。

电路中C1的作用为消除输人端引线的电感效应,防止集成稳压器自激振荡,还可以抑制输人侧的高频脉冲干扰,一般选择0.1~1μF的陶瓷电容器;输出端电容C2为高频去耦电容,用于消除高频噪声,一般选择0.1~1μF的陶瓷电容器,在实际布线时尽可能的将C1、C2放置在集成稳压器附近;输出端电容C3用于改善稳压电路输出端的负载瞬态响应,根据负载变化情况进行选择,一般选用100~1000μF的电解电容器。

VD1是保护二极管,用来防止在输出端电压高于输人端电压时,防止电流逆向通过稳压器而损坏器件。

图1 固定输出78XX基本应用电路固定负电压输出的79XX系列连线与78XX系列基本相同,如图3所示,需要注意的是引脚连接顺序,78XX和79 XX的引脚TO-220封装的排列顺序如图2所示。

Digitech GNX3中文说明书

Digitech GNX3中文说明书

Digitech GNX3 中文说明使用说明Digitech GNX3是同类吉他效果器中最先进的一款。

由于有了由GeNetXTM公司提供的最先进的技术以及Audio DNATM DSP引擎所具备的强大功能,你现在就拥有了可以创造出完全属于你自己的吉他放大器和音箱模拟模式的工具。

所有这些强大的功能使你能够作出一个真正属于自己的音色。

GNX3内建的8轨数码录音机在你构思和编排音乐时可以起到超乎你想象的作用,并且它自身还带有一个具备录音室品质的绝妙的效果库。

直观的用户操作界面使你的编辑工作简单到只需调整效果器上的一个钮而已。

当然,你还是得花一定的时间读完你面前的这本GNX3用户手册。

配件列表请检查并确定在你购买的商品中是否包含了下列配件:PSS3 电源变压器产品质量保证书GenEditTM Editor/Librarian软件Sonic FoundryTM Loop Sampler软件在你的GNX3的制作和包装上,我们已竭尽所能保证其质量,因此你所购买的商品中应包含了以上所有配件,并且它们都能够正常地工作。

但是,如果你发现缺少了任何配件,请马上与厂家联系。

请用一点时间填写你的产品质量保证书,这会在GNX3出现任何意外问题时使你的权益得到保障。

快速入门快速入门部分是为那些想先使用,后看说明书的人编写的。

连接将你的乐器连接到效果器背板的INPUT(输入)插孔。

将LEFT/RIGHT OUTPUTS(左/右输出)孔与你的放大器、音箱或混音器的输入孔用连接线进行连接。

电源将GNX3效果器背板上的OUTPUT LEVEL (输出电平)钮朝逆时针方向旋转直到关到最小。

将PSS3电源连接到GNX3的POWER(电源)插孔。

将PSS3电源的另一端连接到插座。

打开GNX3的POWER开关。

打开你的音箱开关,调节到一个正常的弹奏音量,并逐渐旋开GNX3的OUTPUT LEVEL (输出音量)。

选择一种普通输出模式按下UTILITY(功能)键。

湖南三德科技热值分析系列产品说明书

湖南三德科技热值分析系列产品说明书

官方微信官方网站目 录SDAC6000(u)量热仪SDACM4000量热仪SDACM3100量热仪SDC712量热仪SDC715量热仪01-05热值分析系列020*********-11元素分析系列SDCHN536碳氢氮元素分析仪SDCH536红外碳氢仪SDH536红外测氢仪SDS350红外定硫仪SDS820自动定硫仪SDS720自动定硫仪SDS-V 定硫仪SDFCl3000自动氟氯分析仪SDFCl1000(a)氟氯分析仪070707080909101111SDTGA8000(a)工业分析仪SDTGA6000工业分析仪SDTGA6000A 工业分析仪SDTGA6000V 工业分析仪SDTGA5000a 工业分析仪SDTGA520(a)水分测试仪SDTGA500光波水分测试仪SDIMF200智能马弗炉SDMF300马弗炉SDIDB413智能干燥箱SDDH315通氮鼓风干燥箱SDDH323鼓风干燥箱SDDH313鼓风干燥箱SDDH306鼓风干燥箱12-22成分分析系列1314151516171819202121222222SDAF105(a /b )灰熔融性测试仪SDAF4000灰熔融性测试仪SDHG60a 哈氏可磨性指数测定仪23-26物理特性分析系列242526S DUC3150(D )联合制样机S DHD150t 锤式破碎缩分机S DHC锤式破碎机S DJC颚式破碎机S DRC对辊破碎机S DHCW400×260湿煤破碎机S DPP制样粉碎机S DMD16自动机械缩分器S DNS300环保振筛机S DNS200a标准振筛机S DRD二分器采制样辅助工具30-38样品制备系列313232333334343535353637-38激光盘料仪系列SDLM200便携式激光盘料仪SDLM1250固定式激光盘料仪39-41404142-43公司简介44发展历程45运维服务2829S DVD25风透 式快速除湿干燥系统S DVD3mm 风透 干燥机27-29风透 式低温快速除湿干燥系列热值分析系列适用范围符合标准GB/T213-2008GB/T384-1981 GB/T30727-2014ASTM D5865-2007ISO 1928-2009 JC/T1005-2006《煤的发热量测定方法》《石油产品热值测定法》《固体生物质燃料发热量测定方法》《煤与焦炭总热值的标准试验方法》《固体矿物燃料-氧弹式量热计测定总值并计算净热值》《水泥黑生料发热量测定方法》三德科技是中国第一台自动量热仪(1996年)的发明者,先后自主研发出6代量热仪,缔造了2个“国家重点新产品”。

具有多条反馈路径的反馈控制器[发明专利]

具有多条反馈路径的反馈控制器[发明专利]

专利名称:具有多条反馈路径的反馈控制器专利类型:发明专利
发明人:吴值伟,王一涛,邝国权
申请号:CN200880000003.8
申请日:20080110
公开号:CN101542898A
公开日:
20090923
专利内容由知识产权出版社提供
摘要:一种反馈控制器包括第一和第二反馈电路。

第一反馈电路被连接在输入点和输出点之间,并有一个误差点。

第一反馈电路包括一个反馈放大器,用来比较反馈信号和基准信号并提供一个误差信号,以及一个比较器,用来比较误差信号和第二基准信号并提供一个输出信号。

第二反馈电路被连接在输入点和误差点之间,并包括一个连接到误差点的电流源和一个连接到输入点的控制器,用来控制电流源以响应一个高于或低于阈值的反馈信号值。

申请人:香港应用科技研究院有限公司
地址:中国香港新界沙田香港科学园科技大道西二号生物资讯中心三楼
国籍:CN
代理机构:深圳创友专利商标代理有限公司
代理人:江耀纯
更多信息请下载全文后查看。

监视器AV视频信号输入输出环通电路[实用新型专利]

监视器AV视频信号输入输出环通电路[实用新型专利]

专利名称:监视器AV视频信号输入输出环通电路专利类型:实用新型专利
发明人:罗斯根,唐凡,黄煊煜,吴绪锦
申请号:CN200520063719.6
申请日:20050826
公开号:CN2826871Y
公开日:
20061011
专利内容由知识产权出版社提供
摘要:本实用新型一种监视器AV视频信号输入输出环通电路,该电路包含有多通路的输入输出端,继电器,放大器,隔离器,以实现在监视器开机时进行实时监控和录像,在监视器关机时进行录像,确保视频信号不失真的传输。

该电路结构实现了视频输入输出信号在关机和开机状态下的环通通道,尤其是继电器和多路选通开关的配合作用,不仅可以实现两路和两路以上视频信号的环通,而且结合放大器电路,巧妙的隔离了视频输入输出信号阻抗及监视器视频处理模块之间的相互影响,确保视频信号不失真的传输。

申请人:深圳TCL新技术有限公司
地址:518067 广东省深圳市蛇口工业大道中5号
国籍:CN
代理机构:深圳市永杰专利商标事务所
代理人:王志强
更多信息请下载全文后查看。

794认证测试项

794认证测试项

794认证测试项一、概述794认证测试是指对某一产品或系统进行验证,并评估其是否符合794认证标准的测试过程。

本文将介绍794认证测试的相关测试项和测试方法。

二、测试项1. 产品功能测试产品功能测试是验证产品是否按照794认证标准要求的功能进行设计和实现的测试项。

测试人员将测试每个功能是否按照要求运行,并记录测试结果。

常见的产品功能测试包括:(1)启动和关闭功能测试:验证产品正常启动和关闭是否符合要求。

(2)数据传输功能测试:验证产品的数据传输过程是否稳定可靠。

(3)用户界面功能测试:验证产品的用户界面是否友好、易于操作。

(4)安全功能测试:验证产品的安全功能是否能够有效保护用户的信息安全。

2. 性能测试性能测试是评估产品在不同负载条件下的工作状态和表现的测试项。

通过模拟不同用户数、数据量等情况,测试人员能够评估产品的性能指标,并判断产品是否符合794认证标准。

常见的性能测试包括:(1)响应时间测试:验证产品在不同负载情况下的响应时间是否符合要求。

(2)并发用户测试:验证产品对并发用户的支持能力,评估系统是否能够稳定运行。

(3)压力测试:测试产品在大负载情况下的稳定性和可靠性。

(4)容量测试:测试产品的容量上限,判断产品能否满足大规模用户的需求。

3. 兼容性测试兼容性测试是验证产品与不同操作系统、平台、硬件等环境相容性的测试项。

通过测试产品在不同环境下的性能和稳定性,评估产品是否能够在不同条件下正常工作。

常见的兼容性测试包括:(1)操作系统兼容性测试:验证产品在不同操作系统上的安装和运行情况。

(2)硬件兼容性测试:验证产品与不同硬件设备的兼容性,如打印机、扫描仪等。

(3)平台兼容性测试:验证产品在不同平台上的表现,如Windows、MacOS等。

4. 安全性测试安全性测试是评估产品的安全性能指标并检测产品是否存在安全风险的测试项。

测试人员通过模拟黑客攻击、漏洞扫描等手段,评估产品的安全强度,并提出相应的改进建议。

LMV794资料

LMV794资料

August 2007 LMV793/LMV79488 MHz, Low Noise, 1.8V CMOS Input, Decompensated Operational AmplifiersGeneral DescriptionThe LMV793 (single) and the LMV794 (dual) CMOS input operational amplifiers offer a low input voltage noise density of 5.8 nV/ while consuming only 1.15 mA (LMV793) of quiescent current. The LMV793/LMV794 are stable at a gain of 10 and have a gain bandwidth product (GBW) of 88 MHz. The LMV793/LMV794 have a supply voltage range of 1.8V to 5.5V and can operate from a single supply. The LMV793/ LMV794 each feature a rail-to-rail output stage capable of driving a 600Ω load and sourcing as much as 60 mA of cur-rent.The LMV793/LMV794 provide optimal performance in low voltage and low noise systems. A CMOS input stage, with typical input bias currents in the range of a few femto-Am-peres, and an input common mode voltage range, which includes ground, make the LMV793/LMV794 ideal for low power sensor applications where high speeds are needed. The LMV793/LMV794 are manufactured using National’s ad-vanced VIP50 process. The LMV793 is offered in either a 5-Pin SOT23 or an 8-Pin SOIC package. The LMV794 is offered in either the 8-Pin SOIC or the 8-Pin MSOP.Features(Typical 5V supply, unless otherwise noted)■Input referred voltage noise 5.8 nV/√Hz ■Input bias current100 fA ■Gain bandwidth product88 MHz ■Supply current per channel—LMV793 1.15 mA —LMV794 1.30 mA ■Rail-to-rail output swing—@ 10 kΩ load25 mV from rail —@ 2 kΩ load45 mV from rail ■Guaranteed 2.5V and 5.0V performance■Total harmonic distortion0.04% @1 kHz, 600Ω■Temperature range−40°C to 125°C Applications■ADC interface■Photodiode amplifiers■Active filters and buffers■Low noise signal processing■Medical instrumentation■Sensor interface applicationsTypical Application20216369 Photodiode Transimpedance Amplifier20216339 Input Referred Voltage Noise vs. Frequency© 2007 National Semiconductor LMV793/LMV794 88 MHz, Low Noise, 1.8V CMOS Input, Decompensated Operational AmplifiersAbsolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.ESD Tolerance (Note 2) Human Body Model 2000V Machine Model200V V IN Differential±0.3V Supply Voltage (V + – V −) 6.0VInput/Output Pin Voltage V + +0.3V, V − −0.3VStorage Temperature Range −65°C to 150°CJunction Temperature (Note 3)+150°CSoldering Information Infrared or Convection (20 sec)235°C Wave Soldering Lead Temp (10 sec)260°COperating Ratings(Note 1)Temperature Range (Note 3)−40°C to 125°C Supply Voltage (V + – V −) −40°C ≤ T A ≤ 125°C 2.0V to 5.5V 0°C ≤ T A ≤ 125°C1.8V to 5.5V Package Thermal Resistance (θJA (Note 3)) 5-Pin SOT23180°C/W 8-Pin SOIC 190°C/W 8-Pin MSOP236°C/W2.5V Electrical Characteristics(Note 4)Unless otherwise specified, all limits are guaranteed for T A = 25°C, V + = 2.5V, V − = 0V, V CM = V +/2 = V O . Boldface limits apply at the temperature extremes.Symbol ParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)UnitsV OS Input Offset Voltage 0.1±1.35±1.65mV TC V OS Input Offset Average Drift (Note 7)LMV793 −1.0 μV/°CLMV794−1.8 I BInput Bias CurrentV CM = 1.0V (Notes 8, 9)−40°C ≤ T A ≤ 85°C 0.05125pA−40°C ≤ T A ≤ 125°C0.051100I OS Input Offset Current(Note 9)10 fA CMRR Common Mode Rejection Ratio 0V ≤ V CM ≤ 1.4V 807594 dBPSRRPower Supply Rejection Ratio2.0V ≤ V + ≤ 5.5V, V CM = 0V 8075100dB1.8V ≤ V + ≤ 5.5V, V CM = 0V8098 CMVR Input Common-Mode Voltage RangeCMRR ≥ 60 dB CMRR ≥ 55 dB −0.3-0.31.51.5VA VOLOpen Loop GainV OUT = 0.15V to 2.2V,R L = 2 k Ω to V +/2LMV793858098 dBLMV794827892 V OUT = 0.15V to 2.2V,R L = 10 k Ω to V +/28884110 V OUTOutput Swing HighR L = 2 k Ω to V +/2 257582mV from railR L = 10 k Ω to V +/2206571Output Swing LowR L = 2 k Ω to V +/2 307578R L = 10 k Ω to V +/2156567I OUTOutput Short Circuit CurrentSourcing to V −V IN = 200 mV (Note 10)352847 mA Sinking to V +V IN = –200 mV (Note 10)75152L M V 793/L M V 794I SSupply Current Per Amplifier LMV793 0.95 1.301.65mALMV7941.1 1.501.85SR Slew RateA V = +10, Rising (10% to 90%) 32 V/μs A V = +10, Falling (90% to 10%)24 GBWP Gain Bandwidth Product A V = +10, R L = 10 k Ω 88 MHz e n Input-Referred Voltage Noise f = 1 kHz 6.2 nV/i n Input-Referred Current Noise f = 1 kHz0.01 pA/THD+NTotal Harmonic Distortion +Noisef = 1 kHz, A V = 1, R L = 600Ω0.01%5V Electrical Characteristics(Note 4)Unless otherwise specified, all limits are guaranteed for T A = 25°C, V + = 5V, V − = 0V, V CM = V +/2 = V O . Boldface limits apply at the temperature extremes.Symbol ParameterConditionsMin (Note 6)Typ (Note 5)Max (Note 6)UnitsV OS Input Offset Voltage 0.1±1.35±1.65mV TC V OS Input Offset Average Drift (Note 7)LMV793 −1.0 μV/°CLMV794−1.8 I BInput Bias CurrentV CM = 2.0V (Notes 8, 9)−40°C ≤ T A ≤ 85°C 0.1125pA−40°C ≤ T A ≤ 125°C0.11100I OS Input Offset Current(Note 9)10 fA CMRR Common Mode Rejection Ratio 0V ≤ V CM ≤ 3.7V 8075100 dBPSRRPower Supply Rejection Ratio2.0V ≤ V + ≤ 5.5V, V CM = 0V 8075100dB1.8V ≤ V + ≤ 5.5V, V CM = 0V8098 CMVR Input Common-Mode Voltage RangeCMRR ≥ 60 dB CMRR ≥ 55 dB −0.3-0.344V A VOLOpen Loop GainV OUT = 0.3V to 4.7V,R L = 2 k Ω to V +/2LMV793858097 dBLMV794827889 V OUT = 0.3V to 4.7V,R L = 10 k Ω to V +/28884110 V OUTOutput Swing HighR L = 2 k Ω to V +/2LMV793 357582mV from railLMV794357582R L = 10 k Ω to V +/2256571Output Swing LowR L = 2 k Ω to V +/2LMV793 427578LMV794458083R L = 10 k Ω to V +/2206567LMV793/LMV794I OUTOutput Short Circuit CurrentSourcing to V −V IN = 200 mV (Note 10)453760 mASinking to V +V IN = –200 mV (Note 10)10621 I SSupply Current per Amplifier LMV7931.15 1.401.75mALMV794 per Channel1.30 1.702.05SR Slew RateA V = +10, Rising (10% to 90%) 35 V/μs A V = +10, Falling (90% to 10%) 28 GBWP Gain Bandwidth Product A V = +10, R L = 10 k Ω 88 MHz e n Input-Referred Voltage Noise f = 1 kHz 5.8 nV/i n Input-Referred Current Noise f = 1 kHz0.01 pA/THD+NTotal Harmonic Distortion +Noisef = 1 kHz, A V = 1, R L = 600Ω0.01%Note 1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics Tables.Note 2:Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).Note 3:The maximum power dissipation is a function of T J(MAX), θJA . The maximum allowable power dissipation at any ambient temperature is P D = (T J(MAX) - T A )/θJA . All numbers apply for packages soldered directly onto a PC Board.Note 4:Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that T J = T A . No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where T J >T A .Note 5:Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.Note 6:Limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlations using the statistical quality control (SQC) method.Note 7:Offset voltage average drift is determined by dividing the change in V OS by temperature change.Note 8:Positive current corresponds to current flowing into the device.Note 9:Input bias current and input offset current are guaranteed by designNote 10:The short circuit test is a momentary test, the short circuit duration is 1.5 ms. 4L M V 793/L M V 794Connection Diagrams5-Pin SOT23 (LMV793)20216301Top View8-Pin SOIC (LMV793)20216385Top View8-Pin SOIC/MSOP (LMV794)20216302Top ViewOrdering InformationPackage Part Number Package MarkingTransport Media NSC Drawing5-Pin SOT23LMV793MF AS4A 1k Units Tape and Reel MF05ALMV793MFX 3k Units Tape and Reel8-Pin SOICLMV793MALMV793MA 95 Units/Rail M08A LMV793MAX 2.5k Units Tape and ReelLMV794MA LMV794MA 95 Units/Rail LMV794MAX2.5k Units Tape and Reel 8-Pin MSOPLMV794MM AN4A1k Units Tape and Reel MUA08A LMV794MMX3.5k Units Tape and ReelLMV793/LMV794Typical Performance CharacteristicsUnless otherwise specified, T A = 25°C, V – = 0, V + = Supply Voltage= 5V, V CM = V +/2.Supply Current vs. Supply Voltage (LMV793)20216305Supply Current vs. Supply Voltage (LMV794)20216381V OS vs. V CM 20216309V OS vs. V CM20216351V OS vs. V CM 20216311V OS vs. Supply Voltage20216312 6L M V 793/L M V 794Slew Rate vs. Supply Voltage20216352Input Bias Current vs. V CM20216362Input Bias Current vs. V CM20216387Sourcing Current vs. Supply Voltage20216320Sinking Current vs. Supply Voltage 20216319Sourcing Current vs. Output Voltage20216350LMV793/LMV794Sinking Current vs. Output Voltage 20216354Positive Output Swing vs. Supply Voltage20216317Negative Output Swing vs. Supply Voltage 20216315Positive Output Swing vs. Supply Voltage20216316Negative Output Swing vs. Supply Voltage 20216314Positive Output Swing vs. Supply Voltage20216318 8L M V 793/L M V 794Negative Output Swing vs. Supply Voltage 20216313Input Referred Voltage Noise vs. Frequency20216339Overshoot and Undershoot vs. C LOAD20216330THD+N vs. Frequency20216326THD+N vs. Frequency20216304THD+N vs. Peak-to-Peak Output Voltage (V OUT )20216374LMV793/LMV794THD+N vs. Peak-to-Peak Output Voltage (V OUT )20216375Open Loop Gain and Phase20216306Closed Loop Output Impedance vs. Frequency20216332Small Signal Transient Response, A V = +1020216353Large Signal Transient Response, A V = +1020216355Small Signal Transient Response, A V = +1020216357 10L M V 793/L M V 794Large Signal Transient Response, AV= +1020216363PSRR vs. Frequency20216370CMRR vs. Frequency20216356Input Common Mode Capacitance vs. VCM20216376LMV793/LMV794Application InformationADVANTAGES OF THE LMV793/LMV794Wide Bandwidth at Low Supply CurrentThe LMV793/LMV794 are high performance op amps that provide a GBW of 88 MHz with a gain of 10 while drawing a low supply current of 1.15 mA. This makes them ideal for pro-viding wideband amplification in data acquisition applications.With the proper external compensation the LMV793/LMV794can be operated at gains of ±1 and still maintain much faster slew rates than comparable unity gain stable amplifiers. The increase in bandwidth and slew rate is obtained without any additional power consumption over the LMV796.Low Input Referred Noise and Low Input Bias Current The LMV793/LMV794 have a very low input referred voltagenoise density (5.8 nV/at 1 kHz). A CMOS input stage en-sures a small input bias current (100 fA) and low input referred current noise (0.01 pA/). This is very helpful in maintain-ing signal integrity, and makes the LMV793/LMV794 ideal for audio and sensor based applications.Low Supply VoltageThe LMV793 and LMV794 have performance guaranteed at 2.5V and 5V supply. These parts are guaranteed to be oper-ational at all supply voltages between 2.0V and 5.5V, for ambient temperatures ranging from −40°C to 125°C, thus uti-lizing the entire battery lifetime. The LMV793/LMV794 are also guaranteed to be operational at 1.8V supply voltage, for temperatures between 0°C and 125°C optimizing their usage in low-voltage applications.RRO and Ground SensingRail-to-rail output swing provides the maximum possible dy-namic range. This is particularly important when operating at low supply voltages. An innovative positive feedback scheme is used to boost the current drive capability of the output stage. This allows the LMV793/LMV794 to source more than 40 mA of current at 1.8V supply. This also limits the perfor-mance of these parts as comparators, and hence the usage of the LMV793 and the LMV794 in an open-loop configuration is not recommended. The input common-mode range in-cludes the negative supply rail which allows direct sensing at ground in single supply operation.Small SizeThe small footprint of the LMV793 and the LMV794 package saves space on printed circuit boards, and enables the design of smaller electronic products, such as cellular phones,pagers, or other portable systems. Long traces between the signal source and the op amp make the signal path more susceptible to noise pick up.The physically smaller LMV793/LMV794 packages, allow the op amp to be placed closer to the signal source, thus reducing noise pickup and maintaining signal ING THE DECOMPENSATED LMV793Advantages of Decompensated Op AmpsA unity gain stable op amp, which is fully compensated, is designed to operate with good stability down to gains of ±1.The large amount of compensation does provide an op amp that is relatively easy to use; however, a decompensated op amp is designed to maximize the bandwidth and slew rate without any additional power consumption. This can be very advantageous.The LMV793/LMV794 require a gain of ±10 to be stable.However, with an external compensation network (a simple RC network) these parts can be stable with gains of ±1 and still maintain the higher slew rate. Looking at the Bode plots for the LMV793 and its closest equivalent unity gain stable op amp, the LMV796, one can clearly see the increased band-width of the LMV793. Both plots are taken with a parallel combination of 20 pF and 10 k Ω for the output load.20216322FIGURE 1. LMV793 A VOL vs. Frequency20216323FIGURE 2. LMV796 A VOL vs. FrequencyFigure 1 shows the much larger 88 MHz bandwidth of the LMV793 as compared to the 17 MHz bandwidth of the LMV796 shown in Figure 2. The decompensated LMV793has five times the bandwidth of the LMV796.What is a Decompensated Op Amp?The differences between the unity gain stable op amp and the decompensated op amp are shown in Figure 3. This Bode plot assumes an ideal two pole system. The dominant pole of the decompensated op amp is at a higher frequency, f 1, as com-pared to the unity-gain stable op amp which is at f d as shown in Figure 3. This is done in order to increase the speed capa-bility of the op amp while maintaining the same power dissi-pation of the unity gain stable op amp. The LMV793/LMV794have a dominant pole at 8.6 Hz. The unity gain stable LMV796/LMV797 have their dominant pole at 1.6 Hz.12L M V 793/L M V 79420216324FIGURE 3. Open Loop Gain for Unity-Gain Stable Op Ampand Decompensated Op Amp Having a higher frequency for the dominate pole will result in:1.The DC open-loop gain (A VOL ) extending to a higherfrequency.2. A wider closed loop bandwidth.3.Better slew rate due to reduced compensationcapacitance within the op amp.The second open loop pole (f 2) for the LMV793/LMV794 oc-curs at 45 MHz. The unity gain (f u ’) occurs after the second pole at 51 MHz. An ideal two pole system would give a phase margin of 45° at the location of the second pole. The LMV793/LMV794 have parasitic poles close to the second pole, giving a phase margin closer to 0°. Therefore it is necessary to op-erate the LMV793/LMV794 at a closed loop gain of 10 or higher, or to add external compensation in order to assure stability.F or the LMV796, the gain bandwidth product occurs at 17MHz. The curve is constant from f d to f u which occurs before the second pole.For the LMV793/LMV794, the GBW = 88 MHz and is constant between f 1 and f 2. The second pole at f 2 occurs before A VOL = 1. Therefore f u ’ occurs at 51 MHz, well before the GBW frequency of 88 MHz. For decompensated op amps the unity gain frequency and the GBW are no longer equal. G min is the minimum gain for stability and for the LMV793/LMV794 this is a gain of 10 or 20 dB.Input Lead-Lag CompensationThe recommended technique which allows the user to com-pensate the LMV793/LMV794 for stable operation at any gain is lead-lag compensation. The compensation components added to the circuit allow the user to shape the feedback function to make sure there is sufficient phase margin when the loop gain is as low as 0 dB and still maintain the advan-tages over the unity gain op amp. Figure 4 shows the lead-lag configuration. Only R C and C are added for the necessary compensation.20216325FIGURE 4. LMV793 with Lead-Lag Compensation forInverting ConfigurationTo cover how to calculate the compensation network values it is necessary to introduce the term called the feedback factor or F. The feedback factor F is the feedback voltage V A -V B across the op amp input terminals relative to the op amp out-put voltage V OUT .From feedback theory the classic form of the feedback equa-tion for op amps is:A is the open loop gain of the amplifier and AF is the loop gain.Both are highly important in analyzing op amps. Normally AF >>1 and so the above equation reduces to:Deriving the equations for the lead-lag compensation is be-yond the scope of this datasheet. The derivation is based on the feedback equations that have just been covered. The in-verse of feedback factor for the circuit in Figure 4 is:(1)where 1/F's pole is located at(2)1/F's zero is located at(3)(4)LMV793/LMV794The circuit gain for Figure 4 at low frequencies is −R F /R IN , but F , the feedback factor is not equal to the circuit gain. The feedback factor is derived from feedback theory and is the same for both inverting and non-inverting configurations. Yes,the feedback factor at low frequencies is equal to the gain for the non-inverting configuration.(5)From this formula, we can see that•1/F's zero is located at a lower frequency compared with 1/F's pole.•1/F's value at low frequency is 1 + R F /R IN .•This method creates one additional pole and one additional zero.•This pole-zero pair will serve two purposes:—To raise the 1/F value at higher frequencies prior to its intercept with A, the open loop gain curve, in order to meet the G min = 10 requirement. For the LMV793/LMV794 some overcompensation will be necessary for good stability.—To achieve the previous purpose above with no additional loop phase delay.Please note the constraint 1/F ≥ G min needs to be satisfied only in the vicinity where the open loop gain A and 1/F inter-sect; 1/F can be shaped elsewhere as needed. The 1/F pole must occur before the intersection with the open loop gain A.In order to have adequate phase margin, it is desirable to fol-low these two rules:Rule 11/F and the open loop gain A should intersect at thefrequency where there is a minimum of 45° of phase margin. When over-compensation is required the in-tersection point of A and 1/F is set at a frequency where the phase margin is above 45°, therefore in-creasing the stability of the circuit.Rule 21/F’s pole should be set at least one decade belowthe intersection with the open loop gain A in order to take advantage of the full 90° of phase lead brought by 1/F’s pole which is F’s zero. This ensures that the effect of the zero is fully neutralized when the 1/F and A plots intersect each other.Calculating Lead-Lag Compensation for LMV793/LMV794Figure 5 is the same plot as Figure 1, but the A VOL and phase curves have been redrawn as smooth lines to more readily show the concepts covered, and to clearly show the key pa-rameters used in the calculations for lead-lag compensation.20216348FIGURE 5. LMV793/LMV794 Simplified Bode Plot To obtain stable operation with gains under 10 V/V the open loop gain margin must be reduced at high frequencies to where there is a 45° phase margin when the gain margin of the circuit with the external compensation is 0 dB. The pole and zero in F, the feedback factor, control the gain margin at the higher frequencies. The distance between F and A VOL is the gain margin; therefore, the unity gain point (0 dB) is where F crosses the A VOL curve.For the example being used R IN = R F for a gain of −1. There-fore F = 6 dB at low frequencies. At the higher frequencies the minimum value for F is 18 dB for 45° phase margin. From Equation 5 we have the following relationship:Now set R F = R IN = R. With these values and solving for R C we have R C = R/5.9. Note that the value of C does not affect the ratio between the resistors. Once the value of the resistors are set, then the position of the pole in F must be set. A 2 k Ω resistor is used for R F and R IN in this design. Therefore the value for R C is set at 330Ω, the closest standard value for 2 k Ω/5.9.Rewriting Equation 2 to solve for the minimum capacitor value gives the following equation:C = 1/(2πf p R C )The feedback factor curve, F , intersects the A VOL curve at about 12 MHz. Therefore the pole of F should not be any larger than 1.2 MHz. Using this value and R c = 330Ω the min-imum value for C is 390 pF. Figure 6 shows that there is too much overshoot, but the part is stable. Increasing C to 2.2 nF did not improve the ringing, as shown in Figure 7. 14L M V 793/L M V 79420216303FIGURE 6. First Try at Compensation, Gain = −120216307FIGURE 7. C Increased to 2.2 nF, Gain = −1Some over-compensation appears to be needed for the de-sired overshoot characteristics. Instead of intersecting the A VOL curve at 18 dB, 2 dB of over-compensation will be used,and the A VOL curve will be intersected at 20 dB. Using Equa-tion 5 for 20 dB, or 10 V/V, the closest standard value of R C is 240Ω. The following two waveforms show the new resistor value with C = 390 pF and 2.2 nF. Figure 9 shows the final compensation and a very good response for the 1 MHz square wave.20216308FIGURE 8. R C = 240Ω and C = 390 pF, Gain = −120216310FIGURE 9. R C = 240Ω and C = 2.2 nF, Gain = −1To summarize, the following steps were taken to compensate the LMV793 for a gain of −1:1.Values for R c and C were calculated from the Bodie plotto give an expected phase margin of 45°. The values were based on R IN = R F = 2 k Ω. These calculations gave R c = 330Ω and C = 390 pF.2.To reduce the ringing C was increased to 2.2 nF whichmoved the pole of F, the feedback factor, farther away from the A VOL curve.3.There was still too much ringing so 2 dB of over-compensation was added to F. This was done by decreasing R C to 240Ω.The LMV796 is the fully compensated part which is compa-rable to the LMV793. Using the LMV796 in the same setup,but removing the compensation network, provide the re-sponse shown in Figure 10 .20216321FIGURE 10. LMV796 ResponseFor large signal response the rise and fall times are dominat-ed by the slew rate of the op amps. Even though both parts are quite similar the LMV793 will give rise and fall times about 2.5 times faster than the LMV796. This is possible because the LMV793 is a decompensated op amp and even though it is being used at a gain of −1, the speed is preserved by using a good technique for external compensation.LMV793/LMV794Non-Inverting CompensationFor the non-inverting amp the same theory applies for estab-lishing the needed compensation. When setting the inverting configuration for a gain of −1, F has a value of 2. For the non-inverting configuration both F and the actual gain are the same, making the non-inverting configuration more difficult to compensate. Using the same circuit as shown in Figure 4, but setting up the circuit for non-inverting operation (gain of +2)results in similar performance as the inverting configuration with the inputs set to half the amplitude to compensate for the additional gain. Figure 11 below shows the results.20216382FIGURE 11. R C = 240Ω and C = 2.2 nF, Gain = +220216383FIGURE 12. LMV796 Response Gain = +2The response shown in Figure 11 is close to the response shown in Figure 9. The part is actually slightly faster in the non-inverting configuration. Decreasing the value of R C to around 200Ω can decrease the negative overshoot but will have slightly longer rise and fall times. The other option is to add a small resistor in series with the input signal. Figure 12shows the performance of the LMV796 with no compensation.Again the decompensated parts are almost 2.5 times faster than the fully compensated op amp.The most difficult op amp configuration to stabilize is the gain of +1. With proper compensation the LMV793/LMV794 can be used in this configuration and still maintain higher speeds than the fully compensated parts. Figure 13 shows the gain =1, or the buffer configuration, for these parts.20216384FIGURE 13. LMV793 with Lead-Lag Compensation forNon-Inverting Configuration Figure 13 is the result of using Equation 5 and additional ex-perimentation in the lab. R P is not part of Equation 5, but it is necessary to introduce another pole at the input stage for good performance at gain = +1. Equation 5 is shown below with R IN = ∞.Using 2 k Ω for R F and solving for R C gives R C = 2000/6.9 =290Ω. The closest standard value for R C is 300Ω. After some fine tuning in the lab R C = 330Ω and R P = 1.5 k Ω were choosen as the optimum values. R P together with the input capacitance at the non-inverting pin inserts another pole into the compensation for the LMV793/LMV794. Adding this pole and slightly reducing the compensation for 1/F (using a slight-ly higher resistor value for R C ) gives the optimum response for a gain of +1. Figure 14 is the response of the circuit shown in Figure 13. Figure 15 shows the response of the LMV796 in the buffer configuration with no compensation and R P = R F =0.20216388FIGURE 14. R C = 330Ω and C = 10 nF, Gain = +1 16L M V 793/L M V 79420216389FIGURE 15. LMV796 Response Gain = +1With no increase in power consumption the decompensated op amp offers faster speed over the compensated equivalent part. These examples used R F = 2 k Ω. This value is high enough to be easily driven by the LMV793/LMV794, yet small enough to minimize the effects from the parasitic capacitance of both the PCB and the op amp.Note: When using the LMV793/LMV794, proper high fre-quency PCB layout must be followed. The GBW of these parts is 88 MHz, making the PCB layout significantly more critical than when using the compensated counterparts which have a GBW of 17 MHz.TRANSIMPEDANCE AMPLIFIERAn excellent application for either the LMV793 or the LMV794is as a transimpedance amplifier. With a GBW product of 88MHz these parts are ideal for high speed data transmission by light. The circuit shown on the front page of the datasheet is the circuit used to test the LMV793/LMV794 as tran-simpedance amplifiers. The only change is that VB is tied to the V CC of the part, thus the direction of the diode is reversed from the circuit shown on the front page.Very high speed components were used in testing to check the limits of the LMV793/LMV794 in a transimpedance con-figuration. The photo diode part number is PIN-HR040 from OSI Optoelectronics. The diode capacitance for this part is only about 7 pF for the 2.5V bias used (V CC to virtual ground).The rise time for this diode is 1 nsec. A laser diode was used for the light source. Laser diodes have on and off times under 5 nsec. The speed of the selected optical components al-lowed an accurate evaluation of the LMV793 as a tran-simpedance amplifier. Nationals Evaluation Board for decom-pensated op amps, PN 551013271-001 A, was used and only minor modifications were necessary and no traces had to be cut.20216361FIGURE 16. Transimpedance AmplifierFigure 16 is the complete schematic for a transimpedance amplifier. Only the supply bypass capacitors are not shown.C D represents the photo diode capacitance which is given on its datasheet. C CM is the input common mode capacitance of the op amp and, for the LMV793 it is shown in the last drawing of the Typical Performance Characteristics section of this datasheet. In Figure 16 the inverting input pin of the LMV793is kept at virtual ground. Even though the diode is connected to the 2.5V line, a power supply line is AC ground, thus C D is connected to ground.Figure 17 shows the schematic needed to derive F, the feed-back factor, for a transimpedance amplifier. In this figure C D + C CM = C IN . Therefore it is critical that the designer knows the diode capacitance and the op amp input capacitance. The photo diode is close to an ideal current source once its ca-pacitance is included in the model. What kind of circuit is this?Without C F there is only an input capacitor and a feedback resistor. This circuit is a differentiator! Remember, differen-tiator circuits are inherently unstable and must be compen-sated. In this case C F compensates the circuit.20216364FIGURE 17. Transimpedance Feedback ModelLMV793/LMV794。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FEATURES DESCRIPTIONAPPLICATIONSOUT12345DCQ PACKAGENROUTGNDINENNCFBNRINNCENGNDSOT223-6(TOP VIEW)DGN PACKAGEMSOP PowerPADRippleRejection(dB)Frequency (Hz)TPS79433RIPPLE REJECTIONvs0.050.100.150.200.250.300.35TPS79428OUTPUT SPECTRAL NOISE DENSITYvsFrequency (Hz)6GND O u tputSpectralNoiseDensity(µV/√Hz)TPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER2001–REVISED OCTOBER2004 ULTRALOW-NOISE,HIGH PSRR,FAST RF250-mA LOW-DROPOUT LINEARREGULATORS•250-mA Low-Dropout Regulator With Enable The TPS794xx family of low-dropout(LDO)linearvoltage regulators features high power-supply rejec-•Available in1.8V,2.5V,2.8V,3V,3.3V,andtion ratio(PSRR),ultralow-noise,fast start-up,and Adjustable(1.2V to5.5V)excellent line and load transient responses in small •High PSRR(60dB at10kHz)outline,MSOP-8PowerPAD™and SOT223-6pack-•Ultralow Noise(32µVrms,TPS79428)ages.Each device in the family is stable with a small2.2-µF ceramic capacitor on the output.The family•Fast Start-Up Time(50µs)uses an advanced,proprietary BiCMOS fabrication •Stable With a2.2-µF Ceramic Capacitorprocess to yield extremely low dropout voltages(e.g.,•Excellent Load/Line Transient Response155mV at250mA).Each device achieves faststart-up times(approximately50µs with a0.001-µF •Very Low Dropout Voltage(155mV at Fullbypass capacitor)while consuming low quiescent Load)current(170µA typical).Moreover,when the device •Available in MSOP-8and SOT223-6Packagesis placed in standby mode,the supply current isreduced to less than1µA.The TPS79428exhibitsapproximately32µV RMS of output voltage noise at •RF:VCOs,Receivers,ADCs 2.8V output with a0.1-µF bypass capacitor.Appli-cations with analog components that are •Audionoise-sensitive,such as portable RF electronics,•Bluetooth™,Wireless LANbenefit from the high PSRR and low noise features as •Cellular and Cordless Telephoneswell as the fast response time.•Handheld Organizers,PDAsPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this data sheet.Bluetooth is a trademark of Bluetooth SIG,Inc.PowerPAD is a trademark of Texas Instruments.All other trademarks are the property of their respective owners.PRODUCTION DATA information is current as of publication date.Copyright©2001–2004,Texas Instruments Incorporated Products conform to specifications per the terms of the TexasInstruments standard warranty.Production processing does notnecessarily include testing of all parameters.元器件交易网 TPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER2001–REVISED OCTOBER2004This integrated circuit can be damaged by ESD.Texas Instruments recommends that all integratedcircuits be handled with appropriate precautions.Failure to observe proper handling and installationprocedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure.Precisionintegrated circuits may be more susceptible to damage because very small parametric changes couldcause the device not to meet its published specifications.ORDERING INFORMATIONTRANSPORT MEDIA, PRODUCT VOLTAGE PACKAGE T J SYMBOL PART NUMBERQUANTITYTPS79401DGNR Tape and Reel,2500MSOP-8AXLTPS79401DGNT Tape and Reel,250 TPS79401AdjustableTPS79401DCQR Tape and Reel,2500SOT223-6PS79401TPS79401DCQ Tube,78TPS79418DGNR Tape and Reel,2500MSOP-8AXMTPS79418DGNT Tape and Reel,250 TPS79418 1.8VTPS79418DCQR Tape and Reel,2500SOT223-6PS79418TPS79418DCQ Tube,78TPS79425DGNR Tape and Reel,2500MSOP-8AYBTPS79425DGNT Tape and Reel,250 TPS79423 2.5VTPS79425DCQR Tape and Reel,2500SOT223-6PS79425TPS79425DCQ Tube,78-40°C to125°CTPS79428DGNR Tape and Reel,2500MSOP-8AYCTPS79428DGNT Tape and Reel,250 TPS79428 2.8VTPS79428DCQR Tape and Reel,2500SOT223-6PS79428TPS79428DCQ Tube,78TPS79430DGNR Tape and Reel,2500MSOP-8AYDTPS79430DGNT Tape and Reel,250 TPS794303VTPS79430DCQR Tape and Reel,2500SOT223-6PS79430TPS79430DCQ Tube,78TPS79433DGNR Tape and Reel,2500MSOP-8AYETPS79433DGNT Tape and Reel,250 TPS79433 3.3VTPS79433DCQR Tape and Reel,2500SOT223-6PS79433TPS79433DCQ Tube,78 2元器件交易网ABSOLUTE MAXIMUM RATINGSPACKAGE DISSIPATION RATINGSθJA SOT223SOT2234in 2 Top Side Only 0.5in 2 Top Side Only53°C/W 110°C/W12CONDITIONSPACKAGEPCB AREA T A (°C)P D (W )TPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004over operating temperature range unless otherwise noted (1)VALUEV IN range -0.3V to 6V V EN range -0.3V to V IN +0.3VV OUT range -0.3V to 6V Peak output current Internally limitedESD rating,HBM 2kV ESD rating,CDM500VContinuous total power dissipation See Dissipation Ratings TableJunction temperature range,T J -40°C to 150°C Storage temperature range,T stg -65°C to 150°C(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.AIR FLOW T A ≤25°C T A =70°C T A =85°C PACKAGER θJC (°C/W)R θJA (°C/W)(CFM)POWER RATINGPOWER RATINGPOWER RATING8.4755.09 2.27W 1.45W 1.18W DGN1508.2149.97 2.50W 1.60W 1.30W 2508.2048.102.60W1.66W1.35WFigure 1.SOT223Power Dissipation3元器件交易网ELECTRICAL CHARACTERISTICSTPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004Over recommended operating temperature range (T J =-40°C to 125°C),V EN =V IN ,V IN =V OUT(nom)+1V (1),I OUT =1mA,C OUT =10µF,C NR =0.01µF,unless otherwise noted.Typical values are at 25°C.PARAMETERTEST CONDITIONSMIN TYPMAX UNIT V IN Input voltage (1)2.7 5.5V I OUT Continuous output current 0250mA V FBInternal reference TPS79401T J =25°C1.220 1.225 1.230V V OUT Output voltage rangeTPS79401V FB 5.5-V DOV Accuracy (1)V OUT +1V ≤V IN ≤5.5V 0mA ≤I OUT ≤250mA-3.0+3.0%Output voltage line regulation V OUT +1V <V IN ≤5.5V 0.050.12%/V (∆V OUT %/∆V IN )(1)Load regulation (∆V OUT %/∆I OUT )0µA <I OUT <250mA 10mVTPS79428I OUT =250mA 155210Dropout voltage (2)TPS79430I OUT =250mA 155210mVV IN =V OUT(nom)-0.1V TPS79433I OUT =250mA 145200Output current limit V OUT =0V925mA Ground pin current 0µA <I OUT <250mA 170220µA Shutdown current (3)V EN =0V 2.7V <V IN <5.5V 0.071µA FB pin current V FB =1.8V 1µA f =100Hz I OUT =250mA 65Power-supply ripple TPS79428f =10kHz I OUT =250mA 60dBrejectionf =100kHz I OUT =250mA 40C NR =0.001µF55C NR =0.0047µF 36BW =100Hz to 100Output noise voltage (TPS79428)µV RMS kHz,I OUT =250mAC NR =0.01µF 33C NR =0.1µF 32C NR =0.001µF50Time,start-up (TPS79428)R L -14Ω,C OUT =1µF C NR =0.0047µF 70µs C NR =0.01µF100High-level enable input voltage 2.7V <V IN <5.5V 1.7V IN V Low-level enable input voltage 2.7V <V IN <5.5V 00.7V EN pin current V EN =011µA UVLO threshold V CC rising2.252.65V UVLO hysteresis100mV (1)Minimum V IN is 2.7V or V OUT +V DO ,whichever is greater.(2)Dropout is not measured for the TPS79418and TPS79425since minimum V IN =2.7V.(3)For adjustable versions,this applies only after V IN is applied;then V EN transitions high to low.4元器件交易网INGND ENINGND ENOUTNRTPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSIONFUNCTIONAL BLOCK DIAGRAM—FIXED VERSIONTerminal FunctionsTERMINALDESCRIPTIONDGN DCQ NAME (MSOP)(SOT223)NR 45Connecting an external capacitor to this pin bypasses noise generated by the internal bandgap.This improves power-supply rejection and reduces output noise.EN 61The EN terminal is an input which enables or shuts down the device.When EN goes to a logic high,the device will be enabled.When the device goes to a logic low,the device is in shutdown mode.FB 35This terminal is the feedback input voltage for the adjustable device.GND 5,PAD 3Regulator ground.IN 82Unregulated input to the device.NC 2,7No internal connection.OUT14Output of the regulator.5元器件交易网TYPICAL CHARACTERISTICST J (°C)I G N D (µA )3.2503.2553.2603.2653.2703.2753.2803.2853.290050100200250(V )V O U T I OUT (mA)T J (°C)(V )V O UT Frequency (Hz)O u t p u t S p e c t r a l N o i s e D e n s i t y (µV /√H z)00.050.100.150.200.250.300.35Frequency (Hz)O u t p u t S p e c t r a l N o i s e D e n s i t y (µV /H z )Frequency (Hz)O u t p u t S p e c t r a l N o i s e D e n s i t y (µV /√H z)0.0010.00470.1C NR (µF)0.01R M S O u t p u t N o i s e (µV R M S )T J (°C)V D O (m V )Frequency (Hz)Z O , O u t p u t I m p e d a n c e (Ω)TPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004TPS79433OUTPUT VOLTAGETPS79428OUTPUT VOLTAGETPS79428GROUND CURRENTvsvsvsOUTPUT CURRENTJUNCTION TEMPERATUREJUNCTION TEMPERATUREFigure 2.Figure 3.Figure 4.TPS79428OUTPUT SPECTRALTPS79428OUTPUT SPECTRALTPS79428OUTPUT SPECTRALNOISE DENSITYNOISE DENSITYNOISE DENSITYvsvsvsFREQUENCYFREQUENCYFREQUENCYFigure 5.Figure 6.Figure 7.TPS79428ROOT MEAN SQUAREDOUTPUT NOISETPS79433OUTPUT IMPEDANCETPS79428DROPOUT VOLTAGEvs vsvsC NRFREQUENCYJUNCTION TEMPERATUREFigure 8.Figure 9.Figure 10.6元器件交易网Frequency (Hz)R i p p l e R e j e c t i o n (d B)R i p p l e R e j e c t i o n (d B )Frequency (Hz)Frequency (Hz)R i p p l e R e j e c t i o n (d B )Time (µs)I O U T (m A )∆V O U T (m V )Time (µs)V O UT , V E N (V)Time (µs)V I N (V )∆V O U T (m V )I OUT (mA)V D O (m V )V IN (V)V D O (m V )P o w e r -U p (500 m V /d i v )t (ms)TPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004TYPICAL CHARACTERISTICS (continued)TPS79433RIPPLE REJECTIONTPS79433RIPPLE REJECTIONTPS79433RIPPLE REJECTIONvsvsvsFREQUENCYFREQUENCYFREQUENCYFigure 11.Figure 12.Figure 13.TPS79433OUTPUT VOLTAGE,ENABLE VOLTAGEvsTPS79433TPS79433TIME (START-UP)LINE TRANSIENT RESPONSELOAD TRANSIENT RESPONSEFigure 14.Figure 15.Figure 16.TPS79433DROPOUT VOLTAGETPS79401DROPOUT VOLTAGETPS79425vsvsPOWER-UP/POWER-DOWNOUTPUT CURRENTINPUT VOLTAGEFigure 17.Figure 18.Figure 19.7元器件交易网I OUT (mA)E S R , E q u i v a l e n t S e r i e s R e s i s t a n c e (Ω)I OUT (mA)E S R , E q u i v a l e n t S e r i e s R e s i s t a n c e (Ω)TPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004TYPICAL CHARACTERISTICS (continued)TPS79428TYPICAL REGIONS OF TPS79428TYPICAL REGIONS OF STABILITY EQUIVALENT SERIESSTABILITY EQUIVALENT SERIESRESISTANCE (ESR)RESISTANCE (ESR)vsvsOUTPUT CURRENTOUTPUT CURRENTFigure 20.Figure 21.8元器件交易网APPLICATION INFORMATIONV V OUTExternal Capacitor RequirementsTPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004The TPS794xx family of low-dropout (LDO)regulators has been optimized for use in noise-sensitive equipment.The device features extremely low dropout voltages,high PSRR,ultralow output noise,low quiescent current,and enable input to reduce supply currents to less than 1µA when the regulator is turned off.A typical application circuit is shown in Figure 22.Figure 22.Typical Application CircuitA 0.1-µF or larger ceramic input bypass capacitor,connected between IN and GND and located close to the TPS794xx,is required for stability.It improves transient response,noise rejection,and ripple rejection.A higher-value input capacitor may be necessary if large,fast-rise-time load transients are anticipated or the device is located several inches from the power source.Like most low dropout regulators,the TPS794xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop.The minimum recommended capacitance is 2.2µF.Any 2.2µF or larger ceramic capacitor is suitable.The internal voltage reference is a key source of noise in an LDO regulator.The TPS794xx has an NR pin which is connected to the voltage reference through a 250-k Ωinternal resistor.The 250-k Ωinternal resistor,in conjunction with an external bypass capacitor connected to the NR pin,creates a low-pass filter to reduce the voltage reference noise and,therefore,the noise at the regulator output.In order for the regulator to operate properly,the current flow out of the NR pin must be at a minimum,because any leakage current creates an IR drop across the internal resistor thus creating an output error.Therefore,the NR capacitor must have minimal leakage current.The bypass capacitor should be no more than 0.1µF to ensure that it is fully charged during the quickstart time provided by the internal switch shown in the functional block diagram.For example,the TPS79428exhibits only 32µV RMS of output voltage noise using a 0.1-µF ceramic NR capacitor and a 2.2-µF ceramic output capacitor.Note that the output starts up slower as the bypass capacitance increases due to the RC time constant at the NR pin that is created by the internal 250-k Ωresistor and external capacitor.9元器件交易网Board Layout Recommendation to Improve PSRR and Noise PerformancePCB Copper Area − inT h e r m a l R e s i s t a n c e −THERMAL RESISTANCEvsJ A θC /W°()SOT223 Surface-Mount PackagePower and Dissipation and Junction TemperatureP D(max)+T Jmax *TA RθJA(1)P D +ǒVIN*VOUTǓ I OUT(2)Regulator MountingTPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004To improve ac measurements like PSRR,output noise,and transient response,it is recommended that the board be designed with separate ground planes for V IN and V OUT ,with each ground plane connected only at the ground pin of the device.In addition,the ground connection for the bypass capacitor should connect directly to the ground pin of the device.Figure 23.Thermal Resistance vs PCB Area for the SOT223-6.Specified regulator operation is assured to a junction temperature of 125°C;the maximum junction temperature should be restricted to 125°C under normal operating conditions.This restriction limits the power dissipation the regulator can handle in any given application.To ensure the junction temperature is within acceptable limits,calculate the maximum allowable dissipation,P D(max),and the actual dissipation,P D ,which must be less than or equal to P D(max).The maximum-power-dissipation limit is determined using the following equation:where:•T J max is the maximum allowable junction temperature.•R θJA is the thermal resistence juntion-to-ambient for the package.See the power dissipation table andFigure 1•T A is the ambient temperature.The regulator dissipation is calculated using:Power dissipation resulting from quiescent current is negligible.Excessive power dissipation triggers the thermal protection circuit.The tab of the SOT223-6package is electrically connected to ground.For best thermal performance,the tab of the surface-mount version should be soldered directly to a circuit-board copper area.Increasing the copper area improves heat dissipation.Solder pad footprint recommendations for the devices are presented in an application bulletin Solder Pad Recommendations for Surface-Mount Devices ,literature number AB-132,available from the TI web site ().10元器件交易网Programming the TPS79401Adjustable LDO RegulatorV OUT+VREFǒ1)R1R2Ǔ(3)R1+ǒVOUT VREF*1ǓR2(4)C1+(3x 10–7)x (R1)R2)(R1x R2)(5)22 pF 15 pF 15 pFOUTPUT VOLTAGE PROGRAMMING GUIDEOUTPUT VOLTAGER1R22.5 V 3.3 V 3.6 VC131.6 k Ω49.9 k Ω59 k Ω30.1 k Ω30.1 k Ω30.1 k Ω†Not Available on the DCQ package.V V OUT FRegulator ProtectionTPS79401,TPS79418TPS79425,TPS79428TPS79430,TPS79433SLVS349D–NOVEMBER 2001–REVISED OCTOBER 2004The output voltage of the TPS79401adjustable regulator is programmed using an external resistor divider as shown in Figure 24.The output voltage is calculated using:where:•V REF =1.2246V typ (the internal reference voltage).Resistors R1and R2should be chosen for approximately 40-µA divider current.Lower value resistors can be used for improved noise performance,but the device wastes more power.Higher values should be avoided as leakage current at FB increases the output voltage error.The recommended design procedure is to choose R2=30.1k Ωto set the divider current at 40µA,C1=15pF for stability,and then calculate R1using:In order to improve the stability of the adjustable version,it is suggested that a small compensation capacitor be placed between OUT and FB.For voltages <1.8V,the value of this capacitor should be 100pF.For voltages >1.8V,the approximate value of this capacitor can be calculated as:The suggested value of this capacitor for several resistor ratios is shown in the table below.If this capacitor isnot used (such as in a unity-gain configuration)or if an output voltage <1.8V is chosen,then the minimum recommended output capacitor is 4.7µF instead of 2.2µF.Figure 24.TPS79401Adjustable LDO Regulator ProgrammingThe TPS794xx PMOS-pass transistor has a built-in back diode that conducts reverse current when the input voltage drops below the output voltage (e.g.,during power-down).Current is conducted from the output to the input and is not internally limited.If extended reverse voltage operation is anticipated,external limiting might be appropriate.The TPS794xx features internal current limiting and thermal protection.During normal operation,the TPS794xx limits output current to approximately 925mA.When current limiting engages,the output voltage scales back linearly until the overcurrent condition ends.While current limiting is designed to prevent gross device failure,care should be taken not to exceed the power dissipation ratings of the package or the absolute maximum voltage rating of the device.If the temperature of the device exceeds approximately 165°C,thermal-protection circuitry shuts it down.Once the device has cooled down to below approximately 140°C,regulator operation resumes.元器件交易网IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. T esting and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. T o minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers Audio /audioData Converters Automotive /automotiveDSP Broadband /broadbandInterface Digital Control /digitalcontrolLogic Military /militaryPower Mgmt Optical Networking /opticalnetwork Microcontrollers Security /securityTelephony /telephonyVideo & Imaging /videoWireless /wirelessMailing Address:Texas InstrumentsPost Office Box 655303 Dallas, Texas 75265Copyright 2004, Texas Instruments Incorporated。

相关文档
最新文档