Ch1-引言
CH1 图形及数字处理
数字图像处理
CHAPTER
1 Images and Digital Processing
数字图像处理
ห้องสมุดไป่ตู้
CHAPTER 1 Images and Digital Processing
1.4 Digital image processing in practice 数字图像处理的 实践
Functional Requirements for Digital Image Processing
数字图像处理
CHAPTER 1 Images and Digital Processing 1.1.2 Development 发展 1920’s
20世纪20年代 Bartlane电缆图片传输系统 5个 灰度级gray level。 1929年 15个灰度级
1960’s
20世纪60年代 大型计算机出现 1964年 美国加利福尼亚的喷射推进实验室 (J.P.L Jet Propulsion Lab)用计算机处理了一副由 “旅行者7号”(Ranger 7)卫星传送的月球图像。 校正航天器上的电视摄像机中各种类型的图像畸 变。
CHAPTER 1 Images and Digital Processing 1.1.3 Impetus for development 推动发展的因素
low-cost hardware microprocessors 微处理器
charge-coupled devices display systems CCD电耦合器件 显示系统
数字图像处理
CHAPTER 1 Images and Digital Processing
1.1.1 Introduction引言
ch1引言
17
§1.2 CAD系统构成
一、CAD硬件系统 CAD硬件系统的组成
计算机中央处理机 图形输入设备 图形显示设备 图形输出设备 存储设备
18
本课程的性质和任务
先修课:建筑制图、计算机技术基 础、钢筋混凝土基本构件设计、钢 结构、房屋建筑学
任务:介绍CAD基本原理,学习有 助于专业应用的系统软件和应用软 件的使用方法。强调实践,立足于 应用。
2
教学内容与要求
绪论(结构CAD 基本概念) 天正结构(Tasd)绘图软件 PMCAD软件 PK软件、TAT软件
二、CAD软件系统 1. 计算机系统软件
计算机控制程序(即操作系统) 2. 语言处理软件 3. 计算机支撑软件
它是指为应用软件开发者提供一 系列服务的开发工具,从而减少软 件开发的工作量,缩短开发周期。 4. 应用软件
§1.3 AutoCAD及其在结构工程的应用
AutoCAD的概述 AutoCAD的基本操作 AutoCAD 绘制建筑结构施工图实例
27
2) 交互式设计方式 这种方式需要在工程师不断干预下,以人—
机对话方式的交互作业来完成施工图的绘制。 最基本的交互式设计方式就是完全利用
AutoCAD基本命令来完成每个实体的绘制工作, 最终形成施工图。
目前工程设计人员的日常工作方法。
28
(二)建筑结构施工图常用表达方法
依照结构施工图绘制对象来划分有: 砖混结构 钢筋混凝土结构 钢结构
CAD技术的优点:
易学易用 设计周期短 、便于多次修改 降低CAD的发展历史(自学)
CH1绪论
导波光学(摘自李玉全编著的「光波导理论与技术」一书的部分章节)第一章绪论当今社会是信息社会,信息技术正在改变着人类社会。
在各种各样的信息技术中,光信息技术的地位越来越重要,作用也越来越突出。
在信息的产生、采集、显示、传输、存储以及处理的各个环节中,光技术都扮演着重要的角色。
20世纪60年代激光器的出现,导致了半导体电子学、导波光学、非线性光学等一系列新学科的涌现。
20世纪70年代,由于半导体激光器和光纤技术的重要突破,导致了以光导纤维通信、光信息处理、光纤传感、光信息存储与显示等为代表的光信息科学技术的蓬勃发展,导波光学(包括集成光学和纤维光学两个分支)已成为光信息技术与科学的基础。
光通信是20世纪70年代以后发展起来的新的通信技术。
光通信被认为是通信发展史上一次革命性的进步,它对人类由工业化社会向信息化社会的进步,有着不可估量的推动作用,而光波导理论和光通信器件则是光通信技术的基础。
鉴于教学学时的限制,本教材仅对光波导的基本理论、以及它在光通信系统中的应用予以概括性的技术介绍。
在介绍具体的光波导理论及应用之前,我们首先简单介绍一下光通信的发展过程。
本教材论述了导波光学的主要理论基础和应用技术。
1.1 通信历史的回顾通信的发展历史总是与人类文明的发展历史紧密相关的。
可以认为,人类早期的长途通信手段____烽火台报警通信就是光通信。
烽火台通信是现代接力通信的雏形,每个烽火台就是一个通信中继站。
当边关有战事时,烽火台点起烽烟,一级接一级地往下传,很快即可将信息送达目的地。
当然这种光通信并非现代意义下的光通信,可以称它是目视光通信。
这种通信方式的优点是快速,主要缺点是能传输的信息量太小,烽火无法表达边关战事的具体情况。
到了中世纪这种烽火台通信又得到了改进,人们用不同颜色的烽烟组合来传递较为复杂的信息。
目视光通信在19世纪达到了它的顶峰。
18世纪末,法国人夏布(Chappe)发明了扬旗式通信机(又称旗语通信机)。
Ch1 Introduction
Virus: Virus, Viroids and Prions
Woese system
Comparing of the Three Domains
The size of things
Scale of Microbes
2. Five Common Characteristics of Microorganisms 2.1 Small volume, large surface area 2.2 Fast absorption and conversion 2.3 Rapid duplication and growth 2.4 Strong adaptability 2.5 Widespread distribution and diversified species
What are Eukaryotic Microorganisms?
• Eukaryotes (= true nucleus, i.e. nucleus surrounded by nuclear membrane) include algae, protozoa, fungi • PROTOZOA: Unicellular animals. • MICROALGAE: Unicellular plants. Chlorophyll (叶绿素) is contained in chloroplasts.
The main groups of microorganisms
Viruses (病毒) Non-cell microbes Bacteria (细菌) Prokaryotes (原核生物) Archaea (古菌) Fungi: yeast and mould Eukaryotes (真菌:酵母、霉菌) (真核生物) • Algae (真核微藻) • Protozoa (原生动物) • • • •
ch1-introduction(3)
Understand Master Skillfully
Relational Model
Database Language
SQL
Master Skillfully
Database Programming
Embedded SQL
Relational Databases
Database Design Data Storage and Querying
Transaction Management
Database Architecture Database Users and Administrators
JAVA Program m Checking account
Banking Application
Chapter1 Introduction 13
Purpose of Database Systems
Drawbacks of using file system
Cont.
Cont.
Difficulty in accessing data
Introduction to Database
Software College
2018.3
Course Information
Course
Introduction to Database (数 据库概论) Teacher
Name:
Name:
Huang Liping(黄利萍) E-mail: huanglp@
Need
to write a new program to carry out each new task
ch1-前言及配位化学基础
新型材料储氢比固态氢更紧密
MOF-74结构中存储着管状的重氢分子。
灰色代表碳原子,蓝色代表锌离子,绿色代表重氢(氘)分子。
新型材料存储甲烷能力创新纪录
新型MOFs超多孔晶体材料中的一个纳米笼子。 在一定温度和压力下,存储甲烷能力超过美能源部标准28%
原子导线 (atomic wires)
C60
B12
Graphene — 2004 found — 2010 Nobel Prize
p.900
辉钼或代替硅成为新半导体材料
瑞士洛桑联邦理工学院纳米电子学与结构实验室,用一种名为辉钼( MoS2)的单分子层材料制造半导体,或用来制造更小、能效更高的电子芯 片,在下一代纳米电子设备领域,将比传统的硅材料或富勒烯更有优势。 研究论文发表在2011年1月30日的《自然—纳米技术》杂志上。
H2C NH3 H3N NH3 H2N Cu2+ H2N NH3 NH3 NH2 CH2 NH2 CO CO
Co3+
H3N
OC
Fe CO
CO
H2C
CH2
配合物化学式的书写原则: ① 对含有配离子的配合物而言,阳离子放在阴离 子之前; ② 对配位个体(内界)而言,先写中心原子的元 素符号,再依次列出阴离子配体,然后是中性 配体分子; ③ 同类配体(同为阴离子或同为中性分子)以配 位原子元素符号英文字母的先后排序。
Classification of the Elements
Iron pyrite
(fool’s gold)
FeS2 Black galena PbS Yellow orpiment As2S3
Zinc Porphyrin-containing Assembled Array Formed Using Tris(pyridylaceto-acetato)aluminium(III) as a Template
燃烧学-ch1
主要内容
1.1 燃烧和火焰 1.1.1 燃烧 1.1.2 火焰 1.1.3 火焰的类型 1.2 燃烧的基本特点 1.3 燃烧学的发展 1.4 燃烧学的主要任务 参考文献
学习提示
为什么要学习燃烧学? 学什么? 如何学?
为什么学习燃烧学
社会发展需要、学科发展需要 火是人类文明的标志 燃烧现象与人类生存密不可分 燃烧是化学发展的主线 燃烧是大气环境污染的主要来源
燃烧的基本过程
气体燃料: 预混火焰、扩散火焰 液体燃料:存在蒸发—扩散 的过程。液体在预热阶段变 为蒸汽,并与氧化剂(空气) 混合形成可燃混合气,然后 着火燃烧。 固体燃料:更复杂 固体在预热阶段因热解、升 华或熔化蒸发也会释放出气 体组分,与氧化剂(空气) 混合形成可燃混合气并着火 燃烧;与此同时,随着温度 继续升高,固体可燃物固态 部分也同时燃烧。
学习提示
燃烧学研究对象
燃烧学
燃烧科学技术
燃烧基本理论 燃烧化学 燃烧物理
燃烧技术及控制技术
燃烧器 新能源 环保与防灾 热传递
化学热力学
化学动力学
动量传递
质量传递
燃烧学研究方法
实验研究:外部效应 发热:温度、热辐射 发光:气体热辐射光谱带:CO2,H2O,0.75um~0.1mm 化学发光辐射:来自电子激发态的各种组分,CH, OH, CC等自由基 固体烟粒、碳粒:发射连续光谱,增强火焰辐射 物质转化:中间物质和平衡物质——种类和浓度,生存期 流动:速度、温度、密度、压力 火焰传播:宏观表征 理论研究:燃烧现象——物理化学模型——数学模型(分析解) 化学反应动力学模型(燃烧模型) 流体动力学模型 数值研究:数学模型——数值格式,计算技术 基础数据,数值方法,计算编程——计算效率和精度
ch1 Introduction
Chapter1IntroductionContents1.1History of UWB (1)1.2Preview of the Book (7)References (10)At the end of XIX century,Maxwell’s work about electromagnetic waves opened a new era in human history.Heinrich Hertz,a German physicist,was the first to prove Maxwell mathematical theory.In1894,an Italian scientist,Guglielmo Marconi,obsessed by the idea of a wireless connected-world,started to work in his under-roof laboratory,building up the first radio-communication apparatus.Besides the first radio links operating in Marconi’s estate,located nearby a small city in Italy,Bologna,the first UWB communication system was started in London and was linking two post offices at a distance greater than one mile.In a short while,spark gap became obsolete and,following the invention of the vacuum tube first,and transistors later,continuous wave transmissions faced on the scene.The interest in UWB was renewed after the Second World War,when subnanosecond instruments became to be available.Since the last two decades of the millennium,continuous research activity in the fields of analog and digital electronics and antennas made possible commercial viable UWB systems to be delivered.At the end of this chapter,after the historical background of UWB technology,a preview of the book is provided.1.1History of UWBUWB history is generally perceived to start after1960with the development of Linear Time Invariant System description via impulse stimula.On the con-trary,UWB transmissions history is much longer and goes back to the end of XIX century.At that time,telegraphy was already wide-spread but it was suffering because of the long wired connections which were difficult to be built and maintained,especially in case a river crossing was needed.Transatlantic H.Nikookar,R.Prasad,Introduction to Ultra Wideband for Wireless1 Communications,Signals and Communication Technology,DOI10.1007/978-1-4020-6633-7_1,ÓSpringer ScienceþBusiness Media B.V.200921Introduction cables were settled down using gutta-percha insulation but the maintenance was expensive and time consuming.The history of wireless communications can be considered to start at the end of XIX century with the work carried by Guglielmo Marconi.First wireless transmitters were exploiting spark gaps,resulting in very large bandwidth radio-frequency signals.From the end of XIX century until nowadays,three eras can be devised in the history of development of UWB systems development:pioneering erasubnanosecond eracontemporary standardization and commercialization era.Today,deep technical research is by no means extinguished,especially in the field of efficient receivers and position estimation techniques.We report major dates discussed in the following as well as in Table1.1.Table1.1UWB ErasPioneering Era1886Hertz proofs Maxwell equations,first spark gap transmission1894Guglielmo Marconi starts his first laboratory in Italy1893–1896Righi develops spark oscillators later used by Marconi1896Marconi meets Sir William Preece,first UWB one-mile rooftop link in London 1898Sir Oliver Lodge,biconical antenna190112th December,Guglielmo Marconi reports first Transatlantic wirelesstransmission1902Valdemar Poulsen invented the Poulsen Arc Transmitter1906Lee De Forest invents the‘‘Audion’’,the first vacuum tube.Spark gaptransmissions will be quickly replaced by continuos wave radios. Subnanosecond Impulses Era1939Philip Carter,conical monopole antenna1941Nils E.Lindeblad,Coaxial Horn Element antenna1960Henning F.Harmuth,Gerald F.Ross,Kenneth W.Robbins,Paul Van Etten started experimentation with Impulse UWB1962Hewlett-Packard,sampling oscilloscope commercialized1962Georges Robert Pierre Marie,wideband slot antenna1972Kenneth W.Robbins,short pulse Coherent processing tunnel diode ultra wideband receiver replaces sampling oscilloscope1973Gerald F.Ross,US Patent3,728,632:‘‘Transmission and reception system for generating and receiving base-band pulse duration pulse signals withoutdistortion for short base-band communication system’’1985Henning F.Harmuth,large Current Radiator1989U.S.Department of Defense(DoD),Ultra Wide Band term was used for the first time1994T.E.McEwan,‘‘Micropower Impulse Radar’’(MIR),operating at ultralow power Standardization and Commercialization Era1998Time Domain Corporation,Commercial Time Modulated Impulse UWB system2000Mark A.Barnes,UWB slot antenna1.1History of UWB3Table1.1(continued)2002February,US FCC,UWB regulation for data communication,safety and radar applications200624th March,CEPT,ECC Decision of24March2006amended6July2007on the harmonised conditions for devices using UWB technology in bands below10.6GHz20061st December,CEPT ECC Decision of1December2006on the harmonise conditions for devices using Ultra-Wideband(UWB)technology with LowDuty Cycle(LDC)in the frequency band3.4–4.8GHz200731August,IEEE802.15.4a-2007IEEE Standard for Information Technology–Telecommunications and information exchange between systems–Local andmetropolitan area networks–specific requirement Part15.4:Wireless MediumAccess Control(MAC)and Physical Layer(PHY)Specifications for Low-RateWireless Personal Area Networks(WPANs)During the Pioneering Era,late nineteenth century,wireless world was about to start.In1873James Clerk Maxwell published his pioneering‘‘Treatise on Electricity and Magnetism’’reporting the basis equation for the travelling of the electromagnetic waves.In1886the German physicist Heinrich Rudolf Hertz proved Maxwell’s concept.UWB history starts when Hertz solved Maxwell’s equation,exactly in1886. Hertz realized two spark gap generators,each one coupled with an antenna. Producing a spark on the first,a gap was created also on the second generator which was at a certain distance.As a physicist,he was only interested in proving Maxwell’s concept and he did not realize the enormous potential of spark gap transmissions.When Hertz died at the age of37,his obsession of having a world commu-nicating through wireless links passed to a young Italian boy,Guglielmo Marconi.Born on April25th1874in Bologna,he died in Rome on July20th 1937.In1909he was awarded with the Nobel Prize in Physics thanks to his fundamental contributions to the development of wireless telegraphy.Marconi,the first wireless communication engineer in the history,got thun-dered while reading Hertz biography on holiday on Italian Alps in the summer of1894at the age of20.He was really obsessed by the idea of building a wireless communication system with Hertzian waves.As soon he was back to Villa Grifone estate near Bologna, with the help of his brother,he started a two room laboratory under the roof.Figure1.1shows the first Marconi transmitter.Marconi used this equipment for the first wireless transmission experiment in1895.The antenna was made by a metal plate and the radiation efficiency was very low.The distance achieved was in the order of hundreds of meters.The radiation was induced by a spark.Marconi’s initial work was based on Righi’s spark gap oscillator which is visible in Fig.1.2.Righi was an Italian physicist who,between1893and1896, developed Hertz’s work building a new oscillator able to generate electromag-netic waves which wave-length was just a few centimeters long.Fig.1.1Marconi’s firsttransmitter used for the firstwireless experiments in 1895.(Working replica.MarconiMuseum,Bigazzi collection.Pontecchio,Italy)Fig.1.2Four spheres Righioscillator 41Introduction1.1History of UWB5Marconi’s system was based on the following components:a spark producing radio transmitter,originally designed by Righia wire or capacity area placed at a height above the grounda coherer receiver with a Marconi antenna(a vertical dipole over a groundplane)The receiver was an upgraded version of Edouard Branly’s original device.The signal sent was created by a telegraph key sending short and long pulses, corresponding to the dots-and-dashes of the Morse code.The received signal was recorded on a paper tape.Years later,in his memories,Marconi reported:‘‘My chief trouble was that the idea was so elementary,so simple in logic,that it seemed difficult for me to believe that no one else had thought of putting it into practice.Surely,I argued, there must be much more mature scientists than myself who had followed the same line of thought and arrived at an almost similar conclusion’’.By1896,Marconi had already built a very efficient apparatus that he could apply for a first patent and seek for funds.Local government shortseeing was not convinced by his invention;Marconi went to England where he got funds by the British Post Office.At the age of22,Marconi had a meeting with Sir William Preece,the chief telegraph engineer in Britain and one of the most influencing people in the world in the field of communication networks.Preece,which was sixty years old at that time,understood immediately and fully the enormous potential of spark gap transmissions.In two weeks Marconi set up a rooftop link with spark gap transmitters,from General Post Office building in St.Martin’s-le-Grand to a second post office building in Queen Victoria Street about one mile away.Marconi took spark gap transmission from a physicist laboratory to the real world:the first operating UWB radio link was operating in June1896.Early history of UWB transmission went ahead with the famous‘‘S’’trans-mission across the Atlantic on12th December1901.This first transmission proved the feasibility of the transatlantic wireless link.It was not until1907that a reliable wireless link could be set up.In the first decade of XX century,wireless apparatus started to be quite common and the first problems arose.Spark gap transmission was occupying large part of the radio spectrum,no syntony circuits were available and two stations could not operate at the same time in the same geographical locations.Spark trans-mitters were heavy and consuming a big amount of energy.Better spark gap generators were under research in those years.An important step ahead was achieved by Valdemar Poulsen(1869–1942),a Danish electrical engineer and inventor of the Poulsen Arc Transmitter in1902.Until then,high voltage spark gap transmission was the unique way to generate Hertzian waves.After that,the achievements in the field of vacuum tubes(stemming from ‘‘Audion’’vacuum tube invention by the American inventor Lee De Forest in 1906)communications were dominated by continuous wave radio transmissions.A new interest in UWB technology started again with contributions in the late1960s with works by Henning F.Harmuth at Catholic University of61Introduction America,Paul van Etten at the Air Development Center in Rome and Ross and Robbins at Sperry Rand Corporation.In1962,Ross begun to describe the response of some microwave networks for the transient regime through their response at an impulse stimulus.At that time,Linear Time-Invariant(LTI)systems where characterised by the more conventional mean of a swept frequency response(i.e.,amplitude and phase measurements versus frequency).Ross started to describe an LTI system in terms of its response to an impulsive excitation:h(t).The output signal y(t)to any input x(t)with arbitrary waveform could be uniquely determined via the convolution integral of the input with the impulsive response.Impulsive technique,however,did not have easy life in that time since the impulse input was not easy to realize due to very quick time requirements.It was not until the advent of the sampling oscilloscope(1962)and the development of subnanosecond pulse generation that the impulse response could be measured and observed directly with sufficient accuracy.In short time,it became evident that short pulse radar and communications systems could be developed within the same framework used for characterizing LTI system with the impulse stimuli.Harmuth papers and books published during the years between1969and 1984exposed to the public the basics for UWB transmitters and receivers.During almost the same period(from1972to1987)and in an independent way,Ross and Robbins started to file patents.They pioneered the use of UWB signals for various applications not only related to communication apparatus, but also concerning radar and sensing applications.However,UWB communication systems were still lacking sensible receivers.A key turning point was the invention of a short pulse receiver(Robbins1972) to replace the time-domain oscilloscopes that were large and heavy.Ross filed a milestone patent to the US Patent office on17th April1973, number US3,728,632:‘‘Transmission and reception system for generating and receiving base-band pulse duration pulse signals without distortion for short base-band communication system’’.The first modern UWB communication system was born.Impulse measurement techniques were applied to the design of wideband radiating antenna elements(Ross1968)and at the Sperry Research Center Ross applied these techniques to various applications in radar and communications (Bennett&Ross1978).During the1980s,UWB technology was referred alternately to as impulse, carrier-free or baseband.The term‘‘UltraWideBand’’was first coined by the U.S.Department of Defense in1989.At that time,UWB theory and many hardware apparatus had experienced almost30years of development.Before 1989,Sperry had filed over50patents in the field covering UWB receivers, transmitter and pulse generation.Applications covered ranged from radars, communications systems to positioning systems,liquid level sensing,altimetry, vehicle collision avoidance and positioning systems.1.2Preview of the Book7In1994,T.E.McEwan built the‘‘Micro power Impulse Radar’’(MIR).This was the first application operating at ultra low power(9V cell operated).It was extremely compact and inexpensive.The radar used quite sophisticated signal detection and reception methods(McEwan,1994,2000).In parallel,fervent research activities have been conducted in the field of UWB antennas.Chapter3is specifically dedicated to an analysis of antennas design with ultra-wide bandwidth for short range applications.Antennas are in fact coupling devices between guided waveforms and the free space propaga-tion;new design techniques had to be developed in order to obtain a good performance over a very large bandwidth.In Table1.1some important mile-stones about antenna developments are also reported.After the great technical developments related to subnanosecond pulses in the years from the sixties until the end of the century[1–7],another rush started with the world-wide activities for technology standardization.Nowadays,UWB signals can be generated following various paradigms going over the original time-domain Impulse Radio(IR-UWB)transceivers. Cross-pollinated from other research fields in the communication arena,var-ious UWB transmission techniques are illustrated in the following chapters. MultiCarrier UWB(MC-UWB),Orthogonal Frequency Division Multiplexing (OFDM)UWB and Frequency Modulation UWB(FM-UWB)are the stron-gest candidates for future UWB communication systems.A major missed milestone in the standardization process was in year2006. After nearly three years of wrangling over which physical layer should form the basis of an IEEE standard(802.15.3a),the involved parties have given up.At a meeting in Hawaii on January19,2006,the IEEE committee802.15.3a,which was tasked with developing a standard,voted unanimously to disband.The two opposing groups issued a joint statement on January20where they agreed to let the market decide which UWB Physical(PHY)layer will become the‘‘de facto’’standard.One group(UWB Forum)is proposing the direct-sequence UWB while a second,WiMedia Alliance proposes MC-UWB.However some important standardization activities did not disband and produced their final output and the following were published:IEEE 802.15.4aUWB–Low-Rate Wireless Personal Area Networks(WPANs), Standard ECMA-368High Rate Ultra Wideband PHY and MAC Standard, Standard ECMA-369MAC-PHY Interface for ECMA-368,Standard ISO/ IEC26907:2007,Standard ISO/IEC26908:2007.1.2Preview of the BookIn this first chapter,a background from an historical point was discussed. UWB can be considered as the oldest form of radio-communication that was implemented in the history.UWB technology we face today is the results of81Introduction multi-decade research in sub-nanosecond signal processing,front-end transcei-vers and antennas design.In Chapter2the use of ultra wideband technique for wireless communica-tions is motivated.Various topics related to the applicability of UWB to wireless systems including the definition of UWB signals,the FCC radiation mask for the UWB transmission,different UWB pulse shapes that can be used as well as the major features of UWB,which are remarkable for wireless communications applications,are studied.In Chapter3,UWB antennas for wireless communication are studied.The design and development of antennas for UWB wireless communication is a key research area.The huge bandwidth of UWB systems poses unique research challenges which have to be dexterously addressed.In this chapter a brief introduction to the application of UWB antennas especially for wireless communications is provided.In order to ensure effective transmission of UWB signals it is important to understand and develop a model of the channel that adequately describes the UWB environment.Developing of a channel model for the UWB environ-ments is very challenging,particularly so because of the very large bandwidth of UWB transmission.The knowledge of the channel helps to a huge extent in the proper design of wireless communication system and evaluation of performance.Chapter4focuses on the UWB wireless channel.The impor-tant parameters including amplitude fading,time delay,RMS delay spread, based on which the channel models are devised,are explained.The material and results of this chapter are important to the designer of UWB commu-nication system to predict the signal coverage,to estimate the maximum achievable data rate,to determine optimum location for antennas,to design efficient modulation schemes and to study associated signal processing algorithms.Due the huge bandwidth of the UWB transmission,the degradation in performance of UWB communication because of interference from co-existing services is a major issue.The focus of the Chapter5is to study the effects of interference to and from UWB systems.In this chapter,first the general method of signal to interference calculation is explained.Then,in addition to interfer-ence of UWB to narrowband systems,the effects of UWB interference on the BER performance of WLAN OFDM system as well as WiMax system are studied and analyzed.Further in this chapter,the effect of narrowband and wideband interferences on the victim UWB system is studied and methods to mitigate the interference are discussed.In Chapter6various modulation schemes of impulse radio UWB are presented.This includes UWB data and multiple access modulations,reception techniques such as Rake and Transmit-Reference receivers.Special emphasis is given to the performances of M-ary pulse amplitude modulation and Pulse position modulation.In Chapter7technologies for UWB transmission are studied.Basically, there are two competing technologies for the UWB wireless communications,1.2Preview of the Book9 namely:Impulse Radio and Multi-band OFDM(MB-OFDM).In this chapter these technologies are discussed in more detail and major characteristics of each technique are contemplated.Further in this chapter,the two technologies are compared from different aspects such as channel,interference,performance and complexity point of view.UWB technology is especially suited for radio locationing because of its huge bandwidth which provides a fine accuracy in ranging.UWB provides low-power and low-cost communication and positioning in one technology. These features allow a new range of applications,including logistics,secur-ity applications,medical applications as well as military applications.In Chapter8we study various radio localization techniques giving significant emphasis to UWB wireless locationing.These techniques are based on one or more measurement types such as angle of arrival,time of arrival or time difference of arrival and received signal strength.In this chapter special attention is paid to coherent time of arrival technique(such as ESPRIT, CLEAN,Inverse Filtering,super resolution)as well as the non-coherent method.The problem of multipath propagation and non-line-of-sight loca-tion error is explained and the locationing capability of OFDM technique is studied.The UWB technology can spawn a wide range of interesting wireless applications.In Chapter9we list and give a brief account of few of the UWB wireless applications.The key properties of UWB that prompt their applic-ability to diverse requirements are:high data rate communication,robustness against fading,immunity to multipath,multiple access capability,low cost transceivers and accurate positioning.In Chapter10we see the efforts of various regulatory bodies across the globe to establish standards and norms towards UWB spectrum usage.In this chapter we discuss how the regulations,established as‘‘mask’’,set out upper limits on the amount of power that can be radiated at any particular frequency,both within and outside the core band of3.1–10.6GHz.Further in this chapter it is emphasized that devising a generic regulatory standard that caters to all markets across the globe will be one of the goals of the future for the UWB communications.At the end of the book,in Chapter11,we report the major European projects that have been working intensively on UWB system for Personal Area Networks(PANs).Integrated with other wireless technologies,UWB will be a key factor to support a seamless connectivity of the mobile user. Main objective was to define the best Physical Layer(PHY)solution for PAN in terms of performance and interference to existing wireless systems. The reader can go through this chapter and find technical analysis of the PHY solutions presented in the previous chapters.These projects clearly show that UWB is ready to make the entrance in the wireless technologies arena for low-medium and high data rate for medium and short connection ranges.101Introduction References1.C.L.Bennett and G.F.Ross,‘‘Time-Domain Electromagnetics and Its Applications(Invited Paper)’’,Proceedings of the IEEE,vol.66,no.3,pp.299–318,March1978.2.M.Z.Win and R.A.Scholtz,‘‘Impulse radio:how it works’’,Communications Letters,IEEE.Feb1998.3.J.F.M.Gerrits,M.H.L.Kouwenhoven,P.R.van der Meer,J.R.Farserotu and J.R.Long,‘‘Principles and Limitations of Ultra-Wideband FM Communications Systems’’,EURASIP Journal on Applied Signal Processing,Special Issue on UWB-STATE OF THE ART,vol.2005,no.3,pp.382–396,1March2005.4.I.Oppermann,M.Hamalainen and J.Iinatti,UWB Theory and Applications,Wiley,2004.5.K.Siwiak,D.McKeown,‘‘Ultra-Wideband Radio Technology’’,Wiley,2004.6.W.P.Siriwongpairat,K.J.R.Liu,‘‘Ultra-Wideband Communications Systems:MultibandOFDM Approach’’,Wiley,2007.7.M.-G.Di Benedetto,T.Kaiser,A.F.Molisch,I.Oppermann,C.Politano,and D.Porcino,‘‘UWB Communication Systems A Comprehensive Overview’’,EURASIP Book Series on Signal Processing and Communications,vol.5,2006.。
CH1绪论新2
Ⅲ(高水分):体相水被截留或自由的
水加入到含少量水的干物质 改变原有水分子(↑流动性,↓停留时间) 水加到完全或近乎完全的水合壳的材料中
对原有水分子无显著影响
*食品试样中最流动的水决定着它们的稳定 性
不同物质的MSI具有不同的形状。 S形是大多数食品的特征
§1-3 食品化学在食品科学中 的作用和地位
食品科学是一门次级学科 食品科学应用于食品加工和保藏
——食品工艺(技术) 食品科学的几个专门化:
食品化学 物理食品学 结构食品学 环境食品学 食品加工学
§1-4 食品中主要的化学变化概述
(表1-1) (表1-2) (表1-3) (图1-1) (表1-4)
离子改变水的净结构的能力与它的极化力 (电荷/半径)或电场强度紧密相关
四、水与具有氢键结合能力的中性基团的作用
蛋白质、淀粉、果胶、纤维素等 形成水桥
五、水与非极性物质的相互作用
烃、稀有气体以及脂肪酸、氨基酸和蛋白质 笼状水合物:一种象冰那样的包合物, “主人”物质—水—通过氢键形成一个像笼子的
结 构,将一种“客人”物质即小疏水分子以物理方
§1-5 食品化学的研究方法
区别于一般化学的研究方法: 把食品的化学组成、理化性质及变化的研 究同食品的品质和安全性研究联系起来
食品化学实验包括:理化实验和感官实验
§1-6 食品化学在食品工业技术 发展中的作用
CH2 水分
§2-1 引言
水在食品中的作用
§2-2 水和冰的物理性质
五、水分活度和食品稳定性 P28—图2-22
所有反应在解吸过程 中首次出现最低反应 速度是在等温线区Ⅰ 和区Ⅱ边界
Ch1 引言
第一章 引言
19
NU DT
1.4.4 计算机网络应用
文件传输; 电子邮件; IP电话/IPTV; 网络聊天; 网络游戏; 网络教学; 网络购物; 网络定票; 网上医疗; 网络银行; 网上证券交易……
第一章 引言
20
NU DT
1.5 网络体系结构
由于计算机网络功能越来越强,结构越来越复杂,给设计者 带来很大的难度,必须规范之。
国际标准: ISO/OSI(International Standard Organization/Open System Interconnection) ,开放系统互联参考模型,简称OSI参考模型,1982;
OSI/RM是一种概念网络模型,规定了7个层次的体系结构的框架; 描述了每层做什么但未规定应该怎样做; 太复杂,几乎没有与之完全符合的网络。 TCP/IP(Transmission Control Protocol / Internetwork Protocol ),1983;
第一章 பைடு நூலகம்言
1, 2, 3, 6
1,3, 4 5, 6 2,4 7,8 2,6 9 13-1,5,6 16-5, 6 18-3, 18-4
3
NU DT
第一章 引言
1.0 什么叫计算机网络 1.1 计算机网络的产生和发展 1.2 计算机网络的功能 1.3 计算机网络分类 1.4 网络体系结构 1.5 ISO/OSI参考模型
搜索网站:,
第一章 引言
1
教学日历(46学时+4学时)
NU DT
课时 1 2 3 4
日 期 2007/03/05 2007/03/05 2007/03/07 2007/03/12
完整word版,《算法导论》复习大纲DOC
《算法设计与分析》复习提纲2014.7.51 引言(ch1)1.什么是算法及其特征算法(Algorithm)是通过一个有限的指令序列集合对特定问题进行求解的一种计算执行描述。
算法特征:(1)输入:一个算法具有零个或多个取自指定集合的输入值;(2)输出:对每一次输入,算法具有一个或多个与输入值相联系的输出值;(3)确定性:算法的每一个指令步骤都是明确的;(4)有限性:对每一次输入,算法都必须在有限步骤(即有限时间)内结束;(5)正确性:对每一次输入,算法应产生出正确的输出值;(6)通用性:算法的执行过程可用于所有同类求解问题,而不仅适用于特殊输入。
2.问题实例和问题规模问题实例是指需要计算同一个结果的问题的所有输入。
问题规模是指输入实例的大小,而输入实例是指问题的具体计算例子2 算法初步(ch2)1.插入排序算法1)算法步骤:从左到右扫描数据A,扫描到一个元素,将A[j]与其左边的元素从右到左依次比较,若比之小,则将其之前元素后移,插入A【j】,直至A【j】比他前面的元素大,扫描A中的下一个元素2)伪代码:InsertSort(A){for j=2 to A.length //第一层循环{Key=A[j]i=j-1While i>0 and a[i]>key //第二层循环{A[i+1]=A[i]}i=i-1A[i+1]=key}}2.算法复杂性及其度量(1)时间复杂性和空间复杂性;(2)最坏、最好和平均情形复杂性;顺序情况下B(n)=O(n)、倒序情况下W(n)=O(n2)、A(n)=O(n2)<W(n)空间复杂性:需要常数个额外的临时空间存储临时数据2.插入排序的最坏、最好和平均时间最坏O(n2)、最好O(n)和平均时间O(n2),空间复杂度是O(1),稳定排序3.归并排序算法及其时间复杂性-时间Θ(n log n))1)算法步骤分解:分解待排序的n个元素的序列为各具n/2个元素的两个子序列解决:适用归并排序递归的排序2个子序列合并:从左到有遍历2个子序列,比较最前面的元素,将较小的元素移出子序列合并到上级序列的末尾,循环进行上2步,直接所有元素都被合并到上级序列,公进行r-p+1次;2)伪代码:MERGE-SORT(A,p,r){if p<rq=向下取整(p+r)/2MERGE-SORT(A,p,q);MERGE-SORT(A,q+1,r)MERGE(A,p,q,r)}MERGE(A,p,q,r){N1=q-p+1N2=r-q将A拆成长度分别为N1、n2的2个子数组L,RL,R的末尾元素的后一个元素取值无穷大,作为哨兵;i=1,j=1for k=p to rif L[i]<=R[j]A[k]=L[i]i=i+1elseA[k]=R[j]j=j+1}3函数增长率(ch3)1.渐近记号O、Ω、θ的定义及其使用1)O渐进上界:0<=f(n)<=C(g(n))当n->∞, f(n)的阶小与g(n)的阶2)Ω渐进下界:0<=C(g(n)) <=f(n)当n->∞, f(n)的阶大与g(n)的阶3)Θ渐紧界:0<=C1(g(n)) <=f(n) <=C2(g(n))当n->∞, f(n)的阶与g(n)的阶相等2.标准复杂性函数及其大小关系(1)多项式时间阶的大小O(1) < O(log n) < O(n) < O(n*log n) < O(n²) < O(n3)(2)指数时间阶的大小O(2n) <O(n!) < O(n n)3.和式界的证明方法1)数学归纳法猜测解->证明2)对象限界最大最小项限界;几何级数限界;3)和式分解简单的一分为二;更复杂的划分;积分近似;4)Knuth求和:使用数学归纳法;使用摄动法;使用递归;使用积分;使用二重求和;使用有限演算;使用母函数。
ch01
第一章引论程序设计语言是给人以及计算机描述计算过程的记号。
如我们所知,这个世界依赖于程序设计语言,因为在所有计算机上运行的所有软件都是用某种程序设计语言书写的。
但是,在一个程序可以运行之前,它首先需要被翻译成一种能够被计算机执行的形式。
完成这个翻译工作的软件系统被称为编译器。
这本书讲的是设计和实现编译器的方法。
我们将揭示可被用于构建面向多种不同语言和机器的翻译器的一些基本思想。
编译器设计的原理和技术还可以被用于编译器设计之外的众多领域。
因此,这些原理技术通常会在一个计算机科学家的职业生涯中多次被用到。
研究编译器的编写将涉及到程序设计语言,计算机体系结构,形式语言理论,算法,和软件工程。
在这个序言章节,我们介绍了语言翻译器的不同形式,在高层次上概述一个典型编译器的结构,并讨论了程序设计语言和硬件体系结构的发展趋势。
这些趋势将影响编译器的形式。
我们还给出了关于编译器设计和计算机科学理论的关系的一些事实,并列出了编译技术在编译之外的一些应用。
最后,我们简单地列出了在我们研究编译器时需要用到的重要的程序设计语言概念。
1.1 语言处理器简单地说,一个编译器就是这样的一个程序,它可以阅读以某一种语言——源语言——书写的程序,并把该程序翻译成为一个等价的、用另一种语言——目标语言——书写的程序;见图1.1。
编译器的重要任务之一是报告它在翻译过程中检测到的源程序中的所有错误。
如果目标程序是一个可执行的机器语言程序,那么它就可以被用户调用,处理输入并产生输出。
见图1.2。
解释器是另一种常见的语言处理器。
它并不通过翻译的方式生成目标程序。
从用户的角度看,一个解释器直接在用户提供的输入之上执行源程序中指定的指令。
见图1.3。
在把用户输入映射成为输出的过程中,由一个编译器产生的机器语言目标程序通常要比一个解释器快很多。
然而,一个解释器通常可以比编译器给出更好的错误诊断信息,因为它逐个语句地执行源程序。
例子1.1:Java语言处理器结合了编译和解释过程,如图1.4所示。
操作系统-ch1分析
1.1.2 OS的作用
3. OS实现了对计算机资源的抽象
完全无软件的计算机——裸机。“裸机”难于 使用。
覆盖了软件的机器称为扩充机或虚拟机。 裸机上覆盖了OS后,便获得一台功能显著增强、
使用极为方便的多层扩充机(或多层虚拟机)。 OS不仅增强了系统的功能,还隐藏了对硬件操
作的具体细节。
虚拟性是OS的基本特征之一
方便性 有效性 可扩展性 开放性
5
1.方便性
可使计算机系统更容易使用
2.有效性
有效提高CPU和I/O设备利用率 合理地组织计算机的工作流程,从
而改善资源的利用率和提高系统的 吞吐量
方便性和有效性是设计OS的两个最重要的目标
6
3.可扩展性
计算机硬件和体系结构的发展,对OS提出了更 高的功能和性能要求
16
1.2.1 无OS的计算机系统
这一时期有两种操作方式:
人工操作方式 脱机输入/输出(Off-Line I/O)方式
(20世纪50年代末 )
17
1.人工操作方式
程序员将事先已穿孔(对应于程序和数据) 的纸带(或卡片)装入纸带输入机(或卡片 输入机);
再启动输入机将程序和数据输入计算机; 然后启动计算机运行。 当程序运行完毕并取走计算结果后,才让下
1.1.3 推动OS发展的主要动力
1.不断提高计算机资源利用率。 2.方便用户 3.器件的不断更新换代 4.计算机体系结构的不断发展 5.不断提出新的应用需求
15
1.2 OS的发展过程
20世纪50年代中期,第一个简单的批处 理系统
60年代中期,多道程序批处理系统,随 后出现分时系统
80-90年代,微型机、多处理机、计算机 网络大发展年代→微机OS、多处理机OS 和网络OS的形成和大发展年代。
ch1引论_赖志柱
x3 x5 x 7 3! 5! 7!
当 | x | 较小( | x | 1 )时,用前三项作为 sin x 的近似值,其截断误差的绝对 值不超过
| x |7 。 7! y dy 近似导数 产生的误差也是截断误差。 x dx
例 1.2 用差商 例 1.3 e 1
1 1 1 1 1 , en 1 , e en 1! 2! 1! 2! n!
1
数值分析教案
赖志柱
一个与数学模型构建、 定量分析方法以及利用计算机来分析和解决科学问题相关 的研究领域,它使用数学、统计与计算器的技术,借助计算机高速计算的能力, 来解决现代科学、工程、经济或人文中的复杂问题。 狭义的科学计算是针对某些特定的数学问题,设计有效的计算方法来求解, 亦即数值分析、数值计算、计算方法。 科学计算是一门工具性、方法性、整合性(边缘性)的新学科,是各种科学 与工程计算领域(如气象、地震、核能技术、石油探勘、航天工程、 密码解译 等)中不可缺少的工具。 随着计算机的高速发展, 数值计算方法已深入到各个科学研究领域,计算性 交叉学科不断涌现,如计算力学、计算物理、计算化学、计算生物学、计算经济 学等。 随着计算机技术的发展, 科学计算与科学理论、 科学实验一并被称为近代科 学研究的三大基本手段。 使用计算机进行科学计算、 数据处理及分析已成为人类科技活动的主要方法 之一。熟练地使用计算机进行科学计算,已成为科技工作者的一项基本技能。 计算数学是科学计算的核心与基础。 1.1.3 计算方法与计算机 数值分析也称计算方法,它与计算工具的发展密切相关。 计算工具:算筹、算盘、算图、算表、算尺、手摇及电动计算机、电子计算 机等。 只是在计算机出现以后, 才使计算方法迅速发展并形成数学科学的一个独立 分支——计算数学。 当今计算能力的大幅度提高既来自计算机的进步,也来自计算方法的进步, 两种发展相辅相成又相互促进。 1.1.4 数值问题与算法 能用计算机计算的“数值问题”是指输入数据(即问题中的自变量与原始数 据)与输出数据(结果)之间函数关系的一个确定而无歧义的描述,输入输出数 据可用有限维向量表示。 算法是指把对数学问题的解法归结为只有加、减、乘、除等基本运算,并确 定运算次序的完整而准确的描述。 一般情况下,算法可以如下分类: 分类方法 1:若算法只包含一个进程则称其为串行算法,否则为并行算法。 分类方法 2:从算法执行所花费的时间角度来讲,若算术运算占绝大多数时 间则称其为数值算法,否则为非数值算法。 分类方法 3:按算法的内部特征分为确定型算法与非确定型算法。 通常的科学计算是实现确定型算法, “确定型”是指计算机在执行算法时, 做完每一步都精确地知道下一步该怎么做。 智能计算是实现非确定型算法,这是一类基于选择的算法,计算机在执行这 种算法时, 存在不能精确地知道下一步该做什么而必须在几种可能方案中选择一 种去执行的情况。 分类方法 4:精确算法与近似算法 精确算法是指在没有运算舍入误差的假设下, 能在确定的运算次数内获得数
失效模式与后果分析
项目/功能
潜在 失效模式
失效 潜在后果
严 重 度
等 级
潜在失效 起因/机理
频 度
现行的 设计控制
预防 探测
探R 测 P 建议措施 度N
责任与 措施执行结果
目标 完成日期
严
采取措施 重
度
频 度
探 测 度
R P N
当实施一项措施后,简要记录具体的措施和生效日 期,包括措施的证据资料的索引等
项目/功能
FMEA:是通过对可能发生的(和/或已经发生的)失 效模式进行分析与判断其可能造成的后果而产生的 风险程度的一种量化的定性分析计算方法,并根据 风险的大小,采取有针对性的改进,从而了解产品 设计和制造过程设计能力,达成一种事先预防并实 施改进措施的方法工具。
3.对FMEA的作用
预见风险,防止失败,促进提升 周全考虑,应变风险,事半功倍
责任工程师应确认建议的措施已被执行或评估, FMEA是一份动态的文件,必须是最新的状况,以 及最新的相关活动,包括在开始生产后才发生的 活动。
相对“动态”
9. FMEA实施措施后追踪
责任工程师有多种方式来确认建议的措施是否实施 ,它们包含但不限于下列: 评审设计、制程、图面以确认建议的措施是否已 实施; 确认各项的设计、制程、组装的变更是否已整合 到相关的文件中; 评审设计FMEA 、过程FMEA,系统FMEA的应用以 及控制计划。
主要内容
CH1 引言 CH2 FMEA基础知识 CH2 DFMEA应用与实施 CH3 PFMEA应用与实施
1. FMEA的理解
FMEA是一组系统化的活动,其目的是: 发现、评价产品/过程中潜在的失效及其后果 找到能够避免或减少这些潜在失效发生的措施 书面总结上述过程
ch1引论_(张素琴)
词法分析—第一步识别单词
英文句子由单词构成 This line is a longer sentence. 句子开头的单词第一个字母要大写 空格是单词分隔符 句点是句子结尾 单词是字母组成的有含义的最小成分 ist his linealo gerse nte nce.
词法分析
从左至右扫描字符流的源程序、分解构成 源程序的字符串,识别出(拼)一个个的 单词(符号) 单词符号是语言中具有独立意义的最基 本结构。多数程序语言中,单词符号一 般包括 —各类型的常数、保留字、标识 符、运算符、界符等等。
rate * 60 /* warning */;
Program p(); Var rate:real; Var initial :real; Var position :real ; … position := initial + rate * 60 /*warning*/
语义分析(处理)
课程架构:
理论和实践并重的课程 理论部分的题目出现于书面练习,课堂小测和 期中、末考试 实践题目(Project) – Project1: 用高级语言(C或Pascal)实现扩 充的PL/0编译程序 各部分权重 – 作业 10% – 实验 10% – 期中考试10% – 期末考试 70%
语义分析
进一步分析语法结构正确的程序是否符合源程序 的上下文约束、运算相容性等规定。
审查静态语义 – 使用的变量声明了吗? – 允许操作运算对象吗? – 类型正确吗? –… 例: Program p(); Var rate:real; procedure initial; … position := initial + /* error */ /* error */ …
船舶在波浪中的运动-ch1_引论
刚体平台摇荡运动:
纵荡(surge)、横荡(sway)、垂荡(heave);
横摇(roll)、纵摇(pitch)、首摇(yaw)。
高频振荡:源自波浪的非线性效应和随机风浪的高频谐波。
高频运动基于平台的垂荡、纵摇和横荡的谐振,对平台所属的
细长结构产生“击振”和“弹振”,分别形成瞬态效应和稳态的高频振
动。如TLP系泊锚链的振荡周期为2-4s。
Theory of Ship Motions in Waves
11
§1.1 概述
——波浪中的运动
风浪下的船舶运动
摇荡运动(oscillation); 摇荡运动之动态效应:
速度、加速度、晕船; 增阻(increase of resistance)与失速(speed loss); 飞溅(spray)、甲板上浪(Green Water); 首底砰击(Slamming); 舱液晃荡(sloshing)等。
Theory of Ship Motions in Waves
12
MOTION DEMONSTRATION FOR FLOATING STRUCTURES
§1.1 概述
——波浪中的运动
船舶常规作业耐波性衡准 (NORDFORSK,1987)
项目 横摇(RMS值) 首柱垂向加速度(RMS值) 桥楼垂向加速度(RMS值) 砰击(概率) 上浪(概率)
存在不足:粘性效应为主的试验结果换算有困难甚至不准; 深水系泊材料与边界条件的相似关系; 环境模拟有限——风浪、流速。
实物试验:有必要的补充与实证测试。
Theory of Ship Motions in Waves
17
§1.2 船舶运动预报解决方案概述
——基本理论与技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
−1
∫
1
0
e x dx < e e ∫ x dx
x n n 0
−1 1
1
−1
n +1
n→∞
0
1 n +1
误差的分析与度量(3)
% 我们通过误差知识来分析,初值I0的误差 E0 = I 0 − I
% % E1 = I1 − I 1 = 1 − I 0 − 1 + I 0 = − E0
E2
( ) % % = I − I = (1 − 2 − 1 + 2 I ) % = 2 ( I − I ) = 2*1*(−1) E
(2) − (1) ÷10−5
1.00×10 x +1.00y =1.00 ⇒ x* = 0.00, y* =1.00 y =1.00 错.为什么,怎么办?
−5
2.避免两个相近数相减
例7 求解x 2 − 16 x + 1 = 0.
7 1 ) 例8 计算A = 10( − cos 2。.
又如:当x, y接近时, x − lg y = ? lg x +1 − x = ? 当x, x * 接近时, ( x) − f ( x*) = ? f
*
*
x
m
*
反 , − x = x εr 之x
* * m
*
≤ 0.5×10
m−n+1
a1 ×10
1 −n+1 = ×10 2a1
1 −(n−1) < (a1 +1)×10 × ×10 2(a1 +1) 1 m−n+1 = ×10 2
例2 下面的数字取几位有效数字能使 相对误差限小于0.1% (※)
• 已知sqrt(3)=1.732050807568877293527… • 要确定几个量:a1、er
2 k -1
(−1) 1 −4 R 7 = e − 0.3679 ≤ < ×10 8! 2
8 -1
从理论上讲,截断误差的范围是可行的
误差的分析与度量(2)
从理论上分析算法并不坏,由于
e x < e x < e x , x ∈ (0,1)
0 n x n 1 n
因而有 1
e e
e
−1 0
x dx < e ∫
* r
(2.1)
其中a1 ≠ 0 .若x * 具有n位有效数字,则其相对误差限为
1 反之, x *的相对误差限为 ε ≤ 若 × 10− ( n −1),则x * 2( a1 + 1)
* r
至少具有n位有效数字.
定理1的证明(※)
因为,a1 ×10 ≤ x ≤ (a1 + 1) ×10
m * m
此时,ε r = x − x
1.00×10−5 x +1.00y = 1.00 −105 = 1.00001 x= 1−105 1.00x +1.00y = 2.00 2−105 = 0.9999899 y= −5 1−105 1.00×10 x +1.00y = 1.00 解: x得, 消 (1.00−1.00×105) y = (2.00−1.00×105)
I 0 = 0.6321, ( A) I n = 1 − nI n −1 , n = 1,2, L.
误差的分析与度量(1)
由于e计算有误差
(−1) (−1) +L + e ≈ 1 + (−1) + , k = 7, 取 4位 2! k! -1 则得到 e ≈ 0.3679 那么,截断误差
误差分析简介 概率分析法 向后误差分析法
x = g (a1 ,L, an ), x fl = g (a1 + ε1 ,L, an + ε n ).
区间分析法
x ∈ [α − δα , α + δα ], y ∈ [ β − δβ , β + δβ ], ⇒ xy ∈ L
一、病态问题与条件数
考虑计算函数值问题,
x* = ±10m × ( a1 + a2 ×10−1 + ⋅⋅⋅ + an × 10− ( n −1) )
ai ≠ 0, i = 1, ⋅⋅⋅, n
共计n位
其中,误差限 x* − x ≤ 1 ×10m− n +1 2
例1 判断如下两个数有几位有效数字
• 已知g=9.80365…m/s2,现有两个近似值 g1≈9.80m/s2, g1 ≈ 0.00980km/s2,说明g1、 g2的有效数字。
课外阅读材料
• 《计算方法——算法设计及其MATLAB实 现》p1~15(王能超,高等教育出版社) • Numerical Analysis Notes Using Matlab (David I. Wilson) 电子版
其他计算问题也要考虑条件数,考虑是否病态.
二、算法的数值稳定性(※) 算法的数值稳定性( 考虑初始数据误差在计算中的传播问题. .
例5
−1 1 n x 计算I n = e ∫ x e dx, n = 0,1,L, 并估计误差. 0 I n = 1 − nI n −1 , n = 1,2, L , I 0 = 1 − e −1.
* * * * ε ( x1 ± x2 ) = ε ( x1 ) + ε ( x2 ), * * * * * * ε ( x1 x2 ) ≈| x1 | ε ( x2 )+ | x2 | ε ( x1 ), * * * * | x1 | ε ( x2 ) + | x2 | ε ( x1 ) * * ε ( x1 / x2 ) ≈ . * 2 | x2 | 一元函数f ( x),x为准确值, x * 为近似值,由Taylor公式
∂f * ε ( xk ). ε ( f *) ≈ ∑ ∂xk k =1
n
*
例4 场地面积:s = ld ∂s ∂s ε ( s*) ≈ ε (l*) + ε (d *). ∂l ∂d
* *
§1.3 误差定性分析、避免误差危害 误差定性分析、
f ( x) − f ( x*) = f ′( x*)( x − x*) +
f ′′(ξ ) ( x − x*)2 , 2
ξ在x, x * 之间,
得f ( x*)的误差限 ε ( f ( x*)) ≈| f ′( x*) | ε ( x*).
* * 多元函数f ( x1 ,L, xn ),x1 ,L, xn为准确值x1 ,L, xn的近似值, * * 同理得f ( x1 ,L, xn )的误差限
1 g − 9.80 ≤ ×10−2 , 因为 2 所以有效数字nห้องสมุดไป่ตู้3
而 m= 0, m−n+1=−2
同样对g2,有 m=−3, m−n+1=−5 ⇒ 有效数字n=3
相对误差.vs.绝对误差(※)
对g1、g2来说 虽然绝对误差、绝对误差限根本就不在同一数 量级上 但是相对误差、相对误差限限却是相等的。 P7结论 量纲的解释:“表达物理量的单位”(P6)
f ( x*)− f ( x ) f ( x) ∆x x
≈
xf ′( x ) f ( x)
= Cp,
C p 称为计算函数值问题的条件数.
例如f ( x) = x10 , C p = 10, f (1) = 1, f (1.02) ≈ 1.24,自变量相对 误差为2%,函数值相对误差为24%.
一般C p ≥ 10认为是病态.
Pn ( x) = an x n + an−1 x n−1 + L + a1 x + a0 .
秦九韶算法: 秦九韶算法
S n = an , S k = xS k +1 + ak , (k = n-1,L,0) P ( x) = S . n 0
(3.4)
作业
P18~19, 2,3, 9,10,11,12.
En
*
%* ⇒ = In − I n 1 * = En n!
初值
E0
定义3 定义3 一个算法若输入数据有 误差, 而在计算过程中舍入 误差不增长 , 则称此算法是数值稳定 的, 否则是不稳定的 .
0.6
0.4
0.2
5
10
15
20
- 0.2
三、避免误差危害的若干原则
除了分清问题是否病态和算法是否数值稳定外,还要 考虑避免误差危害和防止有效数字损失的如下原则. 1.避免‘大数’除以‘小数’ 例6 仿计算机,采用3位十进制,用消元法求解方程组
1 × 10m − n +1 x −x ≤ 2
*
N与绝对误 差限的关系
1.2.2.3 有效数字与相对误差限(※)
定理1 定理1 设近似数x * 表示为
x* = ±10m × (a1 + a2 × 10−1 + L + al × 10− ( l −1) ) 1 ε ≤ × 10− ( n −1); 2a1
3.防止‘大数’吃‘小数’ 例9 仿计算机在3位十进制下, 100 100 项 6444 项 44 74 8 644474448 123 + 0.01 + 0.01 + L + 0.01 ≠ 0.01 + 0.01 + L + 0.01 + 123
4.减少运算次数 减少运算次数可以不但节省时间,而且减少舍入误差. 例10 计算多项式的值
1 由ε ≤ ×10− ( n −1) , 而a1 = 1 2(a1 + 1)
* r
Attention
1 − ( n −1) −3 ∴ ×10 < 10 ,即至少n = 4才行 4 1 要把 ×10− ( n −1) 作为上确界 2(a1 + 1)