2020九年级数学下册 第二十七章 相似 27.1 图形的相似课时训练 (新版)新人教版
九年级数学下册第27章相似27.1图形的相似习题课件新人教版
方程是: 45 2x 30 2 2 ,
45
30
解得:x=3.
【总结提升】相似图形的判定及性质 1.判断两个图形是否相似,应从两方面进行考虑:一是看对应角 是否相等,二是看对应边的比是否相等,二者缺一不可. 2.相似比是对应线段的比值,与之有关的计算常应用方程的思想.
题组一:相似图形的判断 1.(2012·柳州中考)小张用手机拍摄得到甲图,经放大后得到 乙图,甲图中的线段AB在乙图中的对应线段是 ( )
A.正方形与矩形
B.正方形与菱形
C.菱形与菱形
D.正五边形与正五边形
【解析】选D.A.正方形与矩形,对应角相等,对应边不一定成比 例,不符合相似的定义,故不符合题意;B.正方形与菱形,对应边成 比例,对应角不一定相等,不符合相似的定义,故不符合题意;C.菱 形与菱形,对应边比值相等,但是对应角不一定相等,不符合相似 的定义,故不符合题意;D.正五边形与正五边形,对应角相等,对应 边一定成比例,符合相似的定义,故符合题意.
【想一想错在哪?】如图,已知矩形ABCD中,AB=12cm,BC=16cm, E,F分别是AB,CD上的点,且AE=DF=8cm.两动点N,M分别从C,F两 点出发沿CB,FE且都以每秒2cm的速度向B,E运动,当矩形CFMN与 矩形AEFD相似时,M,N运动了多长时间?
谢谢 观看
15 50 5
∴四条线段__成__比__例__.
【互动探究】除应用例题中的方法之外,还可以怎样判断四条 线段成比例? 提示:四个数据从小到大排列后,第一、四两个数的积等于第二、 三两个数的积,则四条线段成比例,否则不成比例.例 如,12,15,40,50. ∵12×50=15×40,∴这四条线段成比例.
2.在比例尺为1∶16 000 000的江苏省地图上,某条道路的长为
人教版数学九年级下册 第二十七章 相似 习题练习(附答案)
人教版数学九年级下册第二十七章相似习题练习(附答案)一、选择题1.如果一个直角三角形的两条边分别是6和8,另一个与它相似的直角三角形边长分别是3,4及x,那么x的值()A.只有一个B.可以有2个C.可以有3个D.无数个2.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA·OC=OB·OD;③OC·G=OD·F1;④F=F1.其中正确的说法有()A. 1个B. 2个C. 3个D. 4个3.如图,AD是直角三角形ABC斜边上的中线,AE⊥AD交CB延长线于E,则图中一定相似的三角形是()A.△AED与△ACBB.△AEB与△ACDC.△BAE与△ACED.△AEC与△DAC4.如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A 出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是()A . 6米B . 8米C . 10米D . 12米5.如图所示格点图中,每个小正方形的边长均为1,△ABC 的三个顶点均在格点上,以原点O 为位似中心,相似比为12,把△ABC 缩小,则点C 的对应点C ′的坐标为( )A . (1,32)B . (2,6)C . (2,6)或(-2,-6)D . (1,32)或(-1,−32)6.如图,AD ∥BC ,∠D =90°,AD =2,BC =5,DC =8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( )A . 1个B . 2个C . 3个D . 4个7.志远要在报纸上刊登广告,一块10 cm×5 cm 的长方形版面要付广告费180元,他要把该版面的边长都扩大为原来的3倍,在每平方厘米版面广告费相同的情况下,他该付广告费( )A . 540元B . 1 080元C . 1 620元D . 1 800元8.△ABC 的三边之比为3∶4∶5,与其相似的△DEF 的最短边是9 cm ,则其最长边的长是( ) A . 5 cm B . 10 cm C . 15 cm D . 30 cm9.如图,已知AB ∥CD ∥EF ,那么下列结论中正确的是( )A .CD EF =AD AFB .AB CD =BC ECC.ADBC =AFBED.CEBE =AFAD10.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()A. 4∶9B. 2∶5C. 2∶3D.√2∶√311.若a5=b7=c8,且3a-2b+c=3,则2a+4b-3c的值是()A. 14 B. 42 C. 7 D.14312.一个数与3、4、6能组成比例,这个数是()A. 2或8B. 8 或4.5C. 4.5 或2D. 2,8或4.513.两个相似三角形的面积比为1∶4,那么它们的周长比为()A. 1∶√2B. 2∶1 C. 1∶4 D. 1∶2二、填空题14.如图,已知△ABC中,D为BC中点,E,F为AB边三等分点,AD分别交CE,CF于点M,N,则AM∶MN∶ND等于____________.15.如图所示,已知∠DAB=∠CAE,再添加一个条件就能使△ADE∽△ABC,则这个条件可能是________________.(写出一个即可)16.如图,AD =DF =FB ,DE ∥FG ∥BC ,则S Ⅰ∶S Ⅱ∶S Ⅲ=__________.17.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为______________.18.某同学用一等边三角形木板制作一些相似的直角三角形.如图,其方法是:过C 点作CD 1⊥AB 于D 1,再过D 1作D 1D 2⊥CA 于D 2,再过D 2作D 2D 3⊥AB 于D 3,…,若△ABC 的边长为a ,则CD 1=√32a ,D 1D 2=√34a ,D 2D 3=√38a ,依此规律,则D 5D 6的长为________.19.如图是测量玻璃管内径的示意图,点D 正对“10 mm”刻度线,点A 正对“30 mm”刻度线,DE ∥AB .若量得AB 的长为6 mm ,则内径DE 的长为____________ mm.三、解答题20.如图,△ABC 在方格纸中.(1)请建立平面直角坐标系.使A 、C 两点的坐标分别为(2,3)、C (5,2),求点B 的坐标.(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′.(3)计算△A ′B ′C ′的面积S .21.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.22.如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B 的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP 的周长为____________.23.△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC 的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC 的长.图①图②答案解析1.【答案】B【解析】∵一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形的边长分别是3和4及x,∴x可能是斜边或4是斜边,∴x=5或√7.∴x的值可以有2个.故选B.2.【答案】D【解析】∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴OCOD =OBOA1,由旋转的性质,得OB=OB1,OA=OA1,∴OA·OC=OB·OD,故②正确;由杠杆平衡原理,OC·G=OD·F1,故③正确;∴F1G =OCOD=OB1OA1=OBOA是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选D.3.【答案】C【解析】∵斜边中线长为斜边的一半,∴AD=BD=CD,∴∠C=∠DAC,∵∠BAE+∠BAD=90°,∠DAC+∠BAD=90°,∴∠BAE=∠DAC,∴∠C=∠BAE,∵∠E=∠E,∴△BAE∽△ACE.故选C.4.【答案】B【解析】∵∠APB =∠CPD ,∠ABP =∠CDP ,∴△ABP ∽△CDP ,∴AB CD =BP PD, 即1.4CD =2.112,解得CD =8米.故选B.5.【答案】D【解析】∵以原点O 为位似中心,相似比为12,把△ABC 缩小,∴点C 的对应点C ′的坐标(1,32)或(-1,−32).故选D.6.【答案】C【解析】∵AD ∥BC ,∠D =90°,∴∠C =∠D =90°,∵DC =8,AD =2,BC =5,设PD =x ,则PC =8-x .①若PD ∶PC =AD ∶BC ,则△PAD ∽△PBC ,则x 8−x =25,解得x =167;②若PD ∶BC =AD ∶PC ,则△PAD ∽△BPC ,则x 5=28−x ,解得PD =4±√6,所以这样的点P 存在的个数有3个.故选C.7.【答案】C【解析】∵一块10 cm×5 cm 的长方形版面要付广告费180元, ∴每平方厘米的广告费为180÷50=185元, ∴把该版面的边长都扩大为原来的3倍后的广告费为30×15×185=1 620元故选C.8.【答案】C【解析】∵△ABC 和△DEF 相似,∴△DEF 的三边之比为3∶4∶5,∴△DEF 的最短边和最长边的比为3∶5,设最长边为x ,则3∶5=9∶x ,解得x =15,∴△DEF 的最长边为15 cm ,故选C.9.【答案】C【解析】∵AB ∥CD ∥EF ,∴AD AF =BC BE ,A 错误;AD DF =BC EC ,B 错误;AD AF =BC BE ,∴AD BC =AF BE ,C 正确;CE BE =DF AF ,D 错误,故选C.10.【答案】A【解析】∵四边形ABCD 和A ′B ′C ′D ′是以点O 为位似中心的位似图形,OA ∶OA ′=2∶3, ∴DA ∶D ′A ′=OA ∶OA ′=2∶3,∴四边形ABCD 与四边形A ′B ′C ′D ′的面积比为(23)2=49, 故选A.11.【答案】D【解析】设a =5k ,则b =7k ,c =8k ,又3a -2b +c =3,则15k -14k +8k =3,得k =13,即a =53,b =73,c =83,所以2a +4b -3c =143.故选D.12.【答案】D【解析】设这个数是x ,则3x =4×6或4x =3×6或6x =3×4, 解得x =8或x =4.5或x =2,所以,这个数是2,8或4.5.故选D.13.【答案】D【解析】∵两个相似三角形的面积比为1∶4,∴它们的相似比为1∶2,∴它们的周长比为1∶2.故选D.14.【答案】5∶3∶2【解析】如图,作PD ∥BF ,QE ∥BC ,∵D 为BC 的中点,∴PD ∶BF =1∶2,∵E ,F 为AB 边三等分点,∴PD ∶AF =1∶4,∴DN ∶NA =PD ∶AF =1∶4,∴ND =15AD ,AQ ∶AD =QE ∶BD =AE ∶AB =1∶3, ∴AQ =13AD ,QM =14QD =14×23AD =16AD , ∴AM =AQ +QM =12AD ,MN =AD -AM -ND =310AD ,∴AM ∶MN ∶ND =5∶3∶2.15.【答案】∠D =∠B【解析】这个条件可能是∠D =∠B ;理由如下: ∵∠DAB =∠CAE ,∴∠DAB +∠BAE =∠CAE +∠BAE ,即∠DAE =∠BAC ,又∵∠D =∠B ,∴△ADE ∽△ABC .16.【答案】1∶3∶5【解析】∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∵AD =DF =FB ,∴AD ∶AF ∶AB =1∶2∶3,∴S △ADE ∶S △AFG ∶S △ABC =1∶4∶9,∴S Ⅰ∶S Ⅱ∶S Ⅲ=1∶3∶5.17.【答案】113°或92°【解析】∵△BCD ∽△BAC ,∴∠BCD =∠A =46°,∵△ACD 是等腰三角形,∠ADC >∠BCD ,∴∠ADC >∠A ,即AC ≠CD ,①当AC =AD 时,∠ACD =∠ADC =12(180°-46°)=67°,∴∠ACB =67°+46°=113°,②当DA =DC 时,∠ACD =∠A =46°,∴∠ACB =46°+46°=92°. 18.【答案】√364a 【解析】CD 1=√32a =√321a , D 1D 2=√34a =√322a , D 2D 3=√38a =√323a , 则D 5D 6的长为√326a =√364a , 19.【答案】2【解析】由题意可得DE ∥AB ,∴△CDE ∽△CAB ,∴DE AD =DC AC , 即DE 6=1030,解得DE =2,20.【答案】解 (1)如图画出原点O ,x 轴、y 轴,建立直角坐标系,可知B 的坐标为(2,1);(2)如(1)中图,画出图形△A ′B ′C ′,即为所求;(3)S △A ′B ′C ′=12×4×6=12.【解析】(1)根据A ,C 点坐标进而得出原点位置,进而得出B 点坐标;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用三角形面积求法得出答案.21.【答案】解在△ABC与△AMN中,ACAB =3054=59,AMAN=1?0001?800=59,∴ACAB=AMAN,又∵∠A=∠A,∴△ABC∽△AMN,∴BCMN =ACAM,即45MN=301?000,解得MN=1 500米,答:M、N两点之间的直线距离是1 500米;【解析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.22.【答案】解(1)如图所示:点B的坐标为(-2,-5);故答案为(-2,-5);(2)如图所示:△AB2C2,即为所求;(3)如图所示:P点即为所求,P点坐标为(-2,1),四边形ABCP的周长为√42+42+√22+42+√22+22+√22+42=4√2+2√5+2√2+2√5=6√2+4√5.故答案为6√2+4√5.【解析】(1)直接利用已知点位置得出B点坐标即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.23.【答案】(1)证明∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,∵{BE=CE,∠B=∠C,BP=CQ,∴△BPE≌△CQE(SAS);(2)解连接PQ,∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴BPCE =BECQ,∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3√2,∴BC=6√2【解析】。
人教版 九年级数学下册 第27章 相似 课时作业(含答案)
人教版九年级数学下册第27章相似课时作业一、选择题1. 如图,在平面直角坐标系中,以原点O为中心,将△ABO扩大到原来的2倍,得到△A′B′O.若点A的坐标是(1,2),则点A′的坐标是()A.(2,4) B.(-1,-2)C.(-2,-4) D.(-2,-1)2. 已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为() A.3 B.2 C.4 D.53. (2020·绍兴)如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2︰5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm4. (2020·河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B 的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为( )A. (32,2) B. (2,2) C. (114,2) D. (4,2)5. (2020·云南)如图,平行四边形ABCD的对角线AC,BD相交于点O,E 是CD的中点.则△DEO与△BCD的面积的比等于()A .B .C .D .6. (2020·重庆B 卷)如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA :OD =1:2,则△ABC 与△DEF 的面积比为( ) A .1:2 B .1:3 C .1:4 D .1:57. (2020·嘉兴)如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD ,则点C 坐标为( )A .(﹣1,﹣1)B .(4,13--) C .(41,3--) D .(﹣2,﹣1)8. (2020•丽水)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连结EG ,BD 相交于点O 、BD 与HC 相交于点P .若GO =GP ,则ABCD EFGHS S 正方形正方形的值是( )A .12B .22+C .52-D .154二、填空题9. (2020·吉林)如图,////AB CD EF .若12=AC CE ,5BD =,则DF =______.10. (2019•百色)如图,ABC △与A'B'C'△是以坐标原点O 为位似中心的位似图形,若点()22A ,, ()34B ,,()61C ,,()68B',,则A'B'C'△的面积为__________.11. (2019•吉林)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时同地测得一栋楼的影长为90m ,则这栋楼的高度为__________m .12.(2020·临沂)如图,在ABC ∆中,D ,E 为边AB 的三等分点,////EF DG AC ,H 为AF 与DG 的交点.若6AC =,则DH =_________.13. (2020·东营)如图,P为平行四边形ABCD 边BC 边上一点,E 、F 分别为PA 、PD 上的点,且PA=3PE ,PD=3PF ,△PEF 、△PDC 、△PAB 的面积分别记为S 、1S 、2S ,若S =2,则1S +2S = .14. 在由边长均为1的小正方形组成的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图27-Y -7,已知Rt △ABC 是6×6网格图形中的格点三角形,则该图中所有与Rt △ABC 相似的格点三角形中,面积最大的三角形的斜边长是________.15. 如图,直线y =-34x -3交x 轴于点A ,交y 轴于点B ,P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是________________.16. (2020·长沙)如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合)PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F . (1)PMPEPQ PF +=____________. (2)若MN PM PN •=2,则NQMQ=____________.FEQ NOMP三、解答题17. 在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A′B′C.(1)如图①,当AB∥CB′时,设A′B′与CB相交于点D.证明:△A′CD是等边三角形;(2)如图②,连接A′A、B′B,设△ACA′和△BCB′的面积分别为S△ACA′和S△BCB′.求证:S△ACA′∶S△BCB′=1∶3;(3)如图③,设AC中点为E,A′B′中点为P,AC=a,连接EP,当θ=________°时,EP长度最大,最大值为________.图①图②图③18. 如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.(1)写出图中两对相似三角形,并证明其中的一对;(2)请连接FG,如果α=45°,AB=42,AF=3,求FG的长.19.(2020·达州)如图,在梯形ABCD 中,//AB CD ,90B ∠=︒,6AB cm =,2CD cm =.P 为线段BC 上的一动点,且和B 、C 不重合,连接PA ,过点P 作PE PA ⊥交射线CD 于点E .聪聪根据学习函数的经验,对这个问题进行了研究:BD PAC E E(1)通过推理,他发现△ABP ∽△PCE ,请你帮他完成证明.(2)利用几何画板,他改变BC 的长度,运动点P ,得到不同位置时,CE 、BP 的长度的对应值:当6BC cm =时,得表1:当8BC cm =时,得表2:这说明,点P 在线段BC 上运动时,要保证点E 总在线段CD 上,BC 的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP 和CE 的长度这两个变量中,______的长度为自变量,______的长度为因变量;②设BC mcm =,当点P 在线段BC 上运动时,点E 总在线段CD 上,求m 的取值范围.人教版 九年级数学下册 第27章 相似 课时作业-答案一、选择题1. 【答案】C 解析:根据以原点O 为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A 的坐标是(1,2),则点A ′的坐标是(-2,-4).2. 【答案】A3. 【答案】A【解析】本题考查了相似三角形的性质.相似三角形的对应边之比等于相似比,所以8︰(投影三角形的对应边长)=2︰5,则投影三角形的对应边长是20 cm.因此本题选A.4. 【答案】B【解析】∵点A,B的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7,∴BC=9,正方形的边长为2.将正方形OCDE沿x轴向右平移,当点E落在AB边上时,设正方形与x轴的两个交点分别为G、F,∵EF⊥x轴,EF=GF=DG=2,∴EF∥AC,D,E两点的纵坐标均为2,∴EF BF ACBC,即269BF,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D点的横坐标为2,∴点D的坐标为(2,2).5. 【答案】B.【解析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD 的中点可得出线段OE为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平分,即可求出△DEO与△BCD的面积的比为1:4.6. 【答案】C【解析】本题考查了相似三角形的性质,∵△ABC与△DEF位似,且1=2OAOD,∴211=24ABCDEFSS⎛⎫=⎪⎝⎭,因此本题选C.7. 【答案】B【解析】本题考查了在坐标系中,位似图形点的坐标.在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(–kx,–ky).由A(4,3),位似比k=13,可得C(413,--)因此本题选B.8. 【答案】C【解析】∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,又∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP =∠BG =90°,BG =BG ,∴△BPG ≌△BCG ,∴PG =CG .设OG =PG =CG =x ,∵O 为EG ,BD 的交点,∴EG =2x ,FG =.∵四个全等的直角三角形拼成“赵爽弦图”,∴BF =CG =x , ∴BG =x ,∴BC2=BG2+CG2(22221)4x x x =+=+,∴(22422ABCD EFGHx S S x +==正方形正方形D .二、填空题 9. 【答案】10【解析】∵////AB CD EF ,∴AC BDCE DF=, 又∵12=AC CE ,5BD =,∴512DF =,∴10DF =,故答案为:10.10. 【答案】18【解析】∵ABC △与A'B'C'△是以坐标原点O 为位似中心的位似图形,若点()34B ,,()68B',,∴位似比为31=62, ∵()22A ,,()61C ,, ∴()()44122A'C',,,, ∴A'B'C'△的面积为:1116824662818222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:18.11. 【答案】54【解析】设这栋楼的高度为h m ,∵在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m ,同时测得一栋楼的影长为60 m ,∴1.8390h=,解得h =54(m).故答案为:54.12. 【答案】1【解析】 ∵D 、E 为边AB 的三等分点, ∴BE=ED=AD=13AB.∵////EF DG AC ,∴123EF AC ==∴112DH EF ==.13. 【答案】18【解析】本题考查了相似三角形的判定、性质,三角形的面积,解题的关键是根据已知条件推出相似三角形,并由相似比得到面积比.∵PA=3PE ,PD=3PF ,∠APD =∠EPF ,∴△PEF ∽△PAD ,相似比为1︰3, ∵△PEF 的面积为S =2,∴PAD S ∆=9S=9×2=18,∴1S +2S =PAD S ∆=18.14. 【答案】5 2 [解析] ∵在Rt △ABC 中,AC =1,BC =2,∴AB =5,AC ∶BC =1∶2,∴与Rt △ABC 相似的格点三角形的两直角边的比值为1∶2.若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6 2,∴画不出端点都在格点且长为8的线段,故最短直角边长应小于4.在图中尝试,可画出DE =10,EF =2 10,DF =5 2的格点三角形. ∵101=2 102=5 25=10, ∴△ABC ∽△DFE ,∴∠DEF =∠C =90°,∴此时△DEF 的面积为10×2 10÷2=10,△DEF 为面积最大的三角形,其斜边长为5 2.15. 【答案】(-73,0)或(-173,0)[解析] 如图,依题意可知A (-4,0),B (0,-3),∴OA =4,OB =3,∴AB =OA 2+OB 2=5.设⊙P 与直线AB 相切于点D ,连接PD ,则PD ⊥AB ,PD =1.易得△APD ∽△ABO ,∴PD OB =AP AB ,即13=AP 5, ∴AP =53,∴OP =73或OP =173, ∴点P 的坐标是(-73,0)或(-173,0).16. 【答案】1;215- 【解析】本题考查了圆的基本性质,角平分线性质,平行相似,相似判定与性质,(1)作EH ⊥MN ,又∵MN 是直径,NE 平分∠MNP ,PQ ⊥MN ,∴易证出PE =EH =HF =PF ,EH ∥PQ ,∴△EMH ∽△PMQ ,∴PQPF PQ EH PM ME ==,∴1=+=+PM PE PM ME PM PE PQ PF ; (2)由相似基本图射影型得:解得MN QN PN •=2又∵MN PM PN •=2,∴QN =PM ,设QN =PM =a ,MQ =b ,由相似基本图射影型得:解得MN MQ PM •=2,∴()b a b a +=2解得()251a b +-=或()251a b --=(舍去)∴215-==a b NQ MQ ; 因此本题答案为1;215-.三、解答题17. 【答案】(1)证:∵AB ∥CB ′,∴∠BCB ′=∠ABC =30°,∴∠ACA ′=30°;又∵∠ACB =90°,∴A ′CD =60°,又∠CA ′B ′=∠CAB =60°.∴△A ′CD 是等边三角形.(2)证:∵AC =A ′C ,BC =B ′C ,∴AC BC =A ′C B ′C. 又∠ACA ′=∠BCB ′,∴△ACA ′∽△BCB ′.∵AC BC =tan30°=33,∴S △ACA ′∶S △BCB ′=AC 2∶BC 2=1∶3.(3)120,3a 2.18. 【答案】解:(1)△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM等.(写出两对即可)以下证明△AMF∽△BGM.由题知∠A=∠B=∠DME=α,而∠AFM=∠DME+∠E,∠BMG=∠A+∠E,∴∠AFM=∠BMG,∴△AMF∽△BGM.(2)当α=45°时,可得AC⊥BC且AC=BC,∵M为AB中点,∴AM=BM=2 2.由△AMF∽△BGM得,AF·BG=AM·BM,∴BG=8 3.又AC=BC=42cos45°=4,∴CG=4-83=43,CF=4-3=1,∴FG=(43)2+12=53.19. 【答案】(1)∵AB∥CD,∠B=90°,∴∠C=90°,∵PE⊥PA,∠B=90°,∴∠APB+∠EPC=90°,∠APB+∠PAB=90°,∴∠PAB=∠EPC,在△APB和△EPC中,∠PAB=∠EPC,∠B=∠C=90°,∴△APB∽△EPC. (2)①BP;CE;②∵△APB∽△EPC,∴,∵CD=2,∴CE的最大值为2,,即BP·CP=12,由表格可知:当BP=2时,CE=2,此时CP=6,BC=BP+CP=8,∴BC的最大值为8,即0<m<8.。
2020年人教版九年级数学下《第27章相似》专项训练含答案
2020年第27章相似专项训练专训1 证比例式或等积式的技巧名师点金:证比例式或等积式,若所遇问题中无平行线或相似三角形,则需构造平行线或相似三角形,得到成比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.构造平行线法1.如图,在△ABC中,D为AB的中点,DF交AC于点E,交BC的延长线于点F,求证:AE·CF=BF·EC.(第1题)2.如图,已知△ABC的边AB上有一点D,边BC的延长线上有一点E,且AD=CE,DE交AC于点F,试证明:AB·DF=BC·EF.(第2题)三点找三角形相似法3.如图,在▱ABCD中,E是AB延长线上的一点,DE交BC于F.求证:DCAE=CFAD.(第3题)4.如图,在△ABC中,∠BAC=90°,M为BC的中点,DM⊥BC交CA的延长线于D,交AB于E.求证:AM2=MD·ME.(第4题)构造相似三角形法5.如图,在等边三角形ABC中,点P是BC边上任意一点,AP的垂直平分线分别交AB,AC于点M,N.求证:BP·CP=BM·CN.(第5题)等比过渡法6.如图,在△ABC中,AB=AC,DE∥BC,点F在边AC上,DF与BE相交于点G,且∠EDF=∠ABE.求证:(1)△DEF∽△BDE;(2)DG·DF=DB·EF.(第6题)7.如图,CE是Rt△ABC斜边上的高,在EC的延长线上任取一点P,连接AP,作BG⊥AP于点G,交CE于点D.求证:CE2=DE·PE.(第7题)两次相似法8.如图,在Rt△ABC中,AD是斜边BC上的高,∠ABC 的平分线BE交AC于E,交AD于F.求证:BFBE=ABBC.(第8题)9.如图,在▱ABCD中,AM⊥BC,AN⊥CD,垂足分别为M,N.求证:(1)△AMB∽△AND;(2)AMAB=MNAC.(第9题)等积代换法10.如图,在△ABC中,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F.求证:AEAF=ACAB.(第10题)等线段代换法11.如图,等腰△ABC中,AB=AC,AD⊥BC于点D,点P是AD上一点,CF∥AB,延长BP交AC于点E,交CF 于点F,求证:BP2=PE·PF.(第11题)12.已知:如图,AD平分∠BAC,AD的垂直平分线EP交BC的延长线于点P.求证:PD2=PB·PC.(第12题)专训2 巧用“基本图形”探索相似条件名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图:1.平行线型.2.相交线型.3.子母型.4.旋转型.平行线型1.如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE·BC=BD·AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.(第1题)相交线型2.如图,点D,E分别为△ABC的边AC,AB上的点,BD,CE交于点O,且EOBO=DOCO,试问△ADE与△ABC相似吗?请说明理由.(第2题)子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:ABAC =DFAF .(第3题)旋转型4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE∽△ABC;(2)ADAE=BDCE.(第4题)专训3 利用相似三角形巧证线段的数量和位置关系名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.证明两线段的数量关系类型1:证明两线段的相等关系1.如图,已知在△ABC中,DE∥BC,BE与CD交于点O,直线AO与BC边交于点M,与DE交于点N.求证:BM=MC.(第1题)2.如图,一直线和△ABC的边AB,AC分别交于点D,E,和BC的延长线交于点F,且AE CE=BF CF.求证:AD=DB.(第2题)类型2:证明两线段的倍分关系3.如图,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,∠A=60°,求证:DE=12 BC.(第3题)4.如图,AM为△ABC的角平分线,D为AB的中点,CE∥AB,CE交DM的延长线于E.求证:AC=2CE.(第4题)证明两线段的位置关系类型1:证明两线段平行5.如图,已知点D为等腰直角三角形ABC的斜边AB 上一点,连接CD,DE⊥CD,DE=CD,连接CE,AE.求证:AE∥BC.(第5题)6.在△ABC中,D,E,F分别为BC,AB,AC上的点,EF∥BC,DF∥AB,连接CE和AD,分别交DF,EF于点N,M.(1)如图①,若E为AB的中点,图中与MN平行的直线有哪几条?请证明你的结论;(2)如图②,若E不为AB的中点,写出与MN平行的直线,并证明.(第6题)类型2:证明两线垂直7.如图,在△ABC中,D是AB上一点,且AC2=AB·AD,BC2=BA·BD,求证:CD⊥AB.(第7题)8.如图,已知矩形ABCD ,AD =13AB ,点E ,F 把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.(第8题)专训4 相似三角形与函数的综合应用名师点金:解涉及相似三角形与函数的综合题时,由于这类题的综合性强,是中考压轴题重点命题形式之一,因此解题时常结合方程思想、分类讨论思想进行解答.相似三角形与一次函数1.如图,在平面直角坐标系xOy 中,直线y =-x +3与x 轴交于点C ,与直线AD 交于点A ⎝ ⎛⎭⎪⎫43,53,点D 的坐标为(0,1).(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当△BOD 与△BCE 相似时,求点E 的坐标.(第1题)相似三角形与二次函数2.如图,直线y=-x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A,B,C(1,0)三点.(1)求抛物线对应的函数解析式;(2)若点D的坐标为(-1,0),在直线y=-x+3上有一点P,使△ABO与△ADP相似,求出点P的坐标.(第2题)3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把△AOB沿y轴翻折,点A落到点C,过点B的抛物线y=-x2+bx+c与直线BC交于点D(3,-4).(1)求直线BD和抛物线对应的函数解析式;(2)在第一象限内的抛物线上,是否存在一点M,作MN 垂直于x轴,垂足为点N,使得以M,O,N为顶点的三角形与△BOC相似?若存在,求出点M的坐标;若不存在,请说明理由.(第3题)相似三角形与反比例函数4.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=kx(x>0)经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB 对应的函数解析式.(第4题)专训5 全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3 cm,6 cm,7 cm,9 cmB.2 cm,5 cm,0.6 dm,8 cmC.3 cm,9 cm,1.8 dm,6 cmD.1 cm,2 cm,3 cm,4 cm2.有一块三角形的草地,它的一条边长为25 m,在图纸上,这条边的长为5 cm,其他两条边的长都为4 cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.(第3题)概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.(第4题)2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?(第5题)性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE ⊥BC,DE与BA相交于点E,EC与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.(第6题)1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB 上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE∽△OCD.(第7题)8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△PAC∽△PDF;(2)若AB=5,=,求PD的长.(第8题)2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?(第9题)应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.(第10题)1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O为位似中心,把△ABC 缩小为原来的一半(不改变方向),画出△ABC的位似图形.(第11题)1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q.(1)求∠PAQ的度数;(2)若点M为PQ的中点,求证:PM2=CM·BM.(第12题)答案专训1(第1题)1.证明:如图,过点C作CM∥AB交DF于点M. ∵CM∥AB,∴△CMF∽△BDF.∴BFCF =BD CM.又∵CM∥AD,∴△ADE∽△CME.∴AEEC=ADCM.∵D为AB的中点,∴BDCM =ADCM.∴BFCF=AEEC,即AE·CF=BF·EC.2.证明:过点D作DG∥BC,交AC于点G,∴△DGF∽△ECF,△ADG∽△ABC.∴EFDF=CEDG,ABBC=ADDG.∵AD=CE,∴CEDG =ADDG.∴ABBC=EFDF,即AB·DF=BC·EF.点拨:过某一点作平行线,构造出“A”型或“X”型的基本图形,通过相似三角形转化线段的比,从而解决问题.3.证明:∵四边形ABCD是平行四边形.∴AE∥DC,∠A=∠C.∴∠CDF=∠E,∴△DAE∽△FCD,∴DCAE=CFAD.4.证明:∵DM⊥BC,∠BAC=90°,∴∠B+∠BEM=90°,∠D+∠DEA=90°.∵∠BEM=∠DEA,∴∠B=∠D.又∵M为BC的中点,∠BAC=90°,∴BM=AM. ∴∠B=∠BAM.∴∠BAM=∠D.又∵∠AME=∠DMA.∴△AME∽△DMA.∴AMMD=MEAM.∴AM2=MD·ME.(第5题) 5.证明:如图,连接PM,PN. ∵MN是AP的垂直平分线,∴MA=MP,NA=NP.∴∠1=∠2,∠3=∠4.又∵△ABC是等边三角形,∴∠B=∠C=∠1+∠3=60°.∴∠2+∠4=60°.∴∠5+∠6=120°.又∵∠6+∠7=180°-∠C=120°. ∴∠5=∠7.∴△BPM∽△CNP.∴BPCN =BMCP,即BP·CP=BM·CN.6.证明:(1)∵AB=AC,∴∠ABC=∠ACB.∵DE∥BC,∴∠ABC+∠BDE=180°,∠ACB+∠CED=180°,∴∠CED=∠BDE.又∵∠EDF=∠ABE,∴△DEF∽△BDE.(2)由△DEF∽△BDE得DEBD=EFDE,∴DE2=DB·EF.又由△DEF∽△BDE,得∠BED=∠DFE.∵∠GDE=∠EDF,∴△GDE∽△EDF.∴DG DE=DE DF,∴DE 2=DG ·DF ,∴DG ·DF =DB ·EF.7.证明:∵BG ⊥AP ,PE ⊥AB , ∴∠AEP =∠BED =∠AGB =90°.∴∠P +∠PAB =90°,∠PAB +∠ABG =90°. ∴∠P =∠ABG.∴△AEP ∽△DEB. ∴AE DE =PE BE,即AE ·BE =PE ·DE.又∵CE ⊥AB ,∴∠CEA =∠BEC =90°,∴∠CAB +∠ACE =90°.又∵∠ACB =90°,∴∠CAB +∠CBE =90°. ∴∠ACE =∠CBE.∴△AEC ∽△CEB.∴AE CE =CEBE,即CE 2=AE ·BE.∴CE 2=DE ·PE. 8.证明:易得∠BAC =∠BDF =90°. ∵BE 平分∠ABC ,∴∠ABE =∠DBF , ∴△BDF ∽△BAE ,得BD AB =BFBE.∵∠BAC =∠BDA =90°,∠ABC =∠DBA. ∴△ABC ∽△DBA ,得AB BC =BD AB ,∴BF BE =ABBC.9.证明:(1)∵四边形ABCD 为平行四边形.∴∠B =∠D.∵AM⊥BC,AN⊥CD,∴∠AMB=∠AND=90°,∴△AMB∽△AND.(2)由△AMB∽△AND得AMAN=ABAD,∠BAM=∠DAN.又AD=BC,∴AMAN=ABBC.∵AM⊥BC,AD∥BC,∴∠AMB=∠MAD=90°. ∴∠B+∠BAM=∠MAN+∠NAD=90°,∴∠B=∠MAN.∴△AMN∽△BAC,∴AMAB=MNAC.10.证明:∵AD⊥BC,DE⊥AB,∴∠ADB=∠AED=90°.又∵∠BAD=∠DAE,∴△ADE∽△ABD,得AD2=AE·AB,同理可得AD2=AF·AC,∴AE·AB=AF·AC,∴AEAF=ACAB.11.证明:连接PC,如图.∵AB=AC,AD⊥BC,∴AD垂直平分BC,∠ABC=∠ACB,∴BP=CP,∴∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4.∵CF∥AB,∴∠3=∠F,∴∠4=∠F.又∵∠CPF=∠CPE,∴△CPF∽△EPC,∴CPPE=PFCP,即CP2=PF·PE.∵BP=CP,∴BP2=PE·PF.(第11题)(第12题)12.证明:如图,连接PA,则PA=PD,∴∠PDA=∠PAD.∴∠B+∠BAD=∠DAC+∠CAP.又∵AD平分∠BAC,∴∠BAD=∠DAC.∴∠B=∠CAP.又∵∠APC=∠BPA,∴△PAC∽△PBA,∴PAPB=PCPA,即PA2=PB·PC,∴PD2=PB·PC. 专训21.(1)证明:∵ED ∥BC ,∴△ADE ∽△ABC.∴AE AC=DE BC.∵BE 平分∠ABC ,∴∠DBE =∠EBC. ∵ED ∥BC ,∴∠DEB =∠EBC. ∴∠DBE =∠DEB.∴DE =BD.∴AE AC =BD BC ,即AE ·BC =BD ·AC.(2)解:设h △ADE 表示△ADE 中DE 边上的高, h △BDE 表示△BDE 中DE 边上的高, h △ABC 表示△ABC 中BC 边上的高.∵S △ADE =3,S △BDE =2,∴S△ADE S△BDE=h △ADEh△BDE=32. ∴h △ADE h△ABC=35.∵△ADE∽△ABC,∴DEBC=h△ADEh△ABC=35.∵DE=6,∴BC=10.2.解:相似.理由如下:因为EOBO=DOCO,∠BOE=∠COD,∠DOE=∠COB,所以△BOE∽△COD,△DOE∽△COB.所以∠EBO=∠DCO,∠DEO=∠CBO.因为∠ADE=∠DCO+∠DEO,∠ABC=∠EBO+∠CBO.所以∠ADE=∠ABC.又因为∠A=∠A,所以△ADE∽△ABC.3.证明:∵∠BAC=90°,AD⊥BC于点D,∴∠BAC=∠ADB=90°.又∵∠CBA=∠ABD(公共角),∴△ABC∽△DBA.∴ABAC=DBDA,∠BAD=∠C.∵AD⊥BC于点D,E为AC的中点,∴DE=EC. ∴∠BDF=∠CDE=∠C.∴∠BDF=∠BAD.又∵∠F=∠F,∴△DBF∽△ADF.∴DBAD=DFAF.∴ABAC=DFAF.(第3题)点拨:当所证等积式或比例式运用“三点定型法”不能定型或能定型而不相似,条件又不具备成比例线段时,可考虑用中间比“搭桥”,称为“等比替换法”,有时还可用“等积替换法”,例如:如图,在△ABC中,AD⊥BC于点D,DE⊥AB于点E,DF⊥AC于点F,求证:AE·AB=AF·AC.可由两组“射影图”得AE·AB=AD2,AF·AC=AD2,∴AE·AB=AF·AC.4.证明:(1)∵∠DAB=∠EAC,∴∠DAE=∠BAC.又∵∠ADE=∠ABC,∴△ADE∽△ABC.(2)∵△ADE∽△ABC,∴ADAE=ABAC.∵∠DAB=∠EAC,∴△ADB∽△AEC.∴ADAE=BDCE.专训31.证明:∵DE∥BC.∴△NEO∽△MBO.∴NEMB=ONOM.同理可得DNMC=ONOM.∴DNMC=NEBM.∴DNNE=MCBM.∵DE∥BC,∴△ANE∽△AMC.∴ANAM=NEMC.同理可得ANAM=DNBM,∴DNBM=NEMC.∴DNNE=BMMC.∴MCBM=BMMC.∴MC2=BM2.∴BM=MC.(第2题) 2.证明:如图,过C作CG∥AB交DF于G点.∵CG∥AB,∴ADCG=AECE,BDCG=BFCF,∵AECE=BFCF,∴ADCG=BDCG,∴AD=BD.3.证明:∵BD⊥AC,CE⊥AB,∠A=60°,∠ABD=∠ACE=30°,∴ADAB=12,AEAC=12,∴ADAB=AEAC.又∠A=∠A,∴△ADE∽△ABC,∴DEBC=ADAB=12,∴DE=12BC.4.证明:如图,延长CE,交AM的延长线于F.∵AB∥CF,∴∠BAM=∠F,△BDM∽△CEM,△BAM∽△CFM,∴BD CE=BMMC,BACF=BMMC,∴BDCE=BACF.又∵BA=2BD,∴CF=2CE.又AM平分∠BAC,∴∠BAM=∠CAM,∴∠CAM=∠F,∴AC=CF,∴AC=2CE.(第4题)(第5题)5.证明:如图,过点C作CO⊥AB于点O.∵DE=CD,DE⊥CD,∴∠ECD=∠CED=45°.∵△ABC是等腰直角三角形,∴∠CAB=∠B=45°.∴∠CAB=∠CED.又∵∠AOC=∠EDC=90°,∴△ACO∽△ECD.∴ACCO=ECCD.又∵∠ACE+∠ECO=∠OCD+∠ECO=45°,∴∠ACE=∠OCD.∴△ACE∽△OCD.∴∠CAE=∠COD=90°.又∵∠ACB=90°,∴∠CAE+∠ACB=180°.∴AE∥BC.6.解:(1)MN∥AC∥ED.证明如下:∵EF∥BC,∴△AEM∽△ABD,△AMF∽△ADC,∴EMBD=AMAD=MFDC.∵E为AB的中点,EF∥BC,∴F为AC的中点.又∵DF∥AB,∴D为BC的中点,∴EM=MF.∵F为AC的中点,FN∥AE,∴N为EC的中点,从而MN∥AC.又∵D为BC的中点,E为AB的中点,∴ED∥AC,∴MN∥AC∥ED.(2)MN∥AC.证明如下:∵EF∥BC,∴△AEM∽△ABD,△AMF∽△ADC,∴EMBD=AMAD=MFDC,∴EMMF=BDDC.又∵DF∥AB,∴BDDC=ENNC,∴EMMF=ENNC,∴EMEF=ENEC.又∵∠MEN=∠FEC,∴△MEN∽△FEC.∴∠EMN=∠EFC.∴MN∥AC.7.证明:∵AC2=AB·AD,∴ACAD=ABAC.又∵∠A=∠A,∴△ACD∽△ABC.∴∠ADC=∠ACB.又∵BC2=BA·BD,∴BCBD=BABC.又∵∠B=∠B,∴△BCD∽△BAC.∴∠BDC=∠BCA.∴∠ADC=∠BDC.∵∠BDC+∠ADC=180°,∴∠ADC=∠BDC=90°. ∴CD⊥AB.8.证明:∵AD=13AB,点E,F把AB三等分,∴设AE=EF=FB=AD=k,则AB=CD=3k. ∵CD∥AB,∴∠DCG=∠FAG,∠CDG=∠AFG.∴△AFG∽△CDG,∴FGDG=AFCD=23.设FG=2m,则DG=3m,∴DF=FG+DG=2m+3m =5m.在Rt△AFD中,DF2=AD2+AF2=5k2,∴DF=5k.∴5m=5k.∴m=55k.∴FG=255k.∴AFFG=2k255k=5,DFEF=5kk= 5.∴AFFG=DFEF.又∠AFD=∠GFE,∴△AFD∽△GFE. ∴∠EGF=∠DAF=90°.∴EG⊥DF.专训41.解:(1)设直线AD 的解析式为y =kx +b(k ≠0)将D(0,1) A ⎝ ⎛⎭⎪⎫43,53代入解析式得:⎩⎪⎨⎪⎧b =153=43k +b 解得⎩⎪⎨⎪⎧b =1k =12∴直线AD 的解析式为y =12x +1.(2)直线AD 的解析式为y =12x +1.令y =0,得x =-2.得B(-2,0),即OB =2. 直线AC 为y =-x +3. 令y =0,得∴x =3. 得C(3,0),即BC =5设E ⎝ ⎛⎭⎪⎫x ,12x +1①当E 1C ⊥BC 时,如图,∠BOD =∠BCE 1=90°,∠DBO =∠E 1BC.∴△BOD ∽△BCE 1.此时点C 和点E 1的横坐标相同. 将x =3代入y =12x +1,解得y =52.∴E 1⎝ ⎛⎭⎪⎫3,52.②当CE 2⊥AD 时,如图,∠BOD =∠BE 2C =90°,∠DBO =∠CBE 2, ∴△BOD ∽△BE 2C.过点E 2作EF ⊥x 轴于点F ,则∠E 2FC =∠BFE 2=90°. 又∵∠E 2BF +∠BE 2F =90°, ∠CE 2F +∠BE 2F =90°. ∴∠E 2BF =∠CE 2F.∴△E 2BF ∽△CE 2F ,则E 2F BF =CFE 2F.即E 2F 2=CF ·BF.⎝ ⎛⎭⎪⎫12x +12=(3-x)(x +2)解得:x 1=2,x 2=-2(舍去) ∴E 2(2,2)当∠EBC =90°时,此情况不存在.综上所述:E 1⎝ ⎛⎭⎪⎫3,52或E 2(2,2).(第1题)(第2题)2.解:(1)由题意得A(3,0),B(0,3),∵抛物线经过A ,B ,C 三点,∴把A(3,0),B(0,3),C(1,0)三点的坐标分别代入y =ax 2+bx +c ,得方程组⎩⎪⎨⎪⎧9a +3b +c =0,c =3,a +b +c =0,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3,∴抛物线对应的函数解析式为y =x 2-4x +3. (2)如图,由题意可得△ABO 为等腰直角三角形.若△ABO ∽△AP 1D ,则AO AD =OB DP 1,∴DP 1=AD =4,∴P 1(-1,4);若△ABO ∽△ADP 2,过点P 2作P 2M ⊥x 轴于M ,∵△ABO 为等腰直角三角形,∴△ADP 2是等腰直角三角形,由三线合一可得DM =AM =2=P 2M ,即点M 与点C 重合,∴P 2(1,2),∴点P 的坐标为(-1,4)或(1,2).3.解:(1)易得A(-1,0),B(0,2),C(1,0). 设直线BD 对应的函数解析式为y =kx +m. 把B(0,2),C(1,0)的坐标分别代入y =kx +m ,得⎩⎪⎨⎪⎧m =2,k +m =0,解得⎩⎪⎨⎪⎧k =-2,m =2.∴直线BD 对应的函数解析式为y =-2x +2. ∵抛物线对应的函数解析式为y =-x 2+bx +c. ∴把B(0,2),D(3,-4)的坐标分别代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧c =2,-9+3b +c =-4,解得⎩⎪⎨⎪⎧b =1,c =2.∴抛物线对应的函数解析式为y =-x 2+x +2.(2)存在,①如图①,当△MON ∽△BCO 时,ON CO =MN BO ,即ON 1=MN 2,∴MN =2ON.设ON =a ,则M(a ,2a),∴-a 2+a +2=2a ,解得a 1=-2(不合题意,舍去),a 2=1,∴M(1,2);②如图②,当△MON ∽△CBO 时,ON BO =MN CO,即ON2=MN1,∴MN =12ON.设ON =n ,则M ⎝ ⎛⎭⎪⎫n ,12n ,∴-n 2+n +2=n2,解得n 1=1-334(不合题意,舍去),n 2=1+334,∴M(1+334,1+338).∴存在这样的点M(1,2)或⎝ ⎛⎭⎪⎫1+334,1+338.(第3题)4.解:(1)在矩形OABC 中,∵点B 的坐标为(2,3),∴BC 边的中点D 的坐标为(1,3).∵双曲线y =kx 经过点D(1,3),∴3=k1,∴k =3,∴y =3x .∵点E 在AB 上,∴点E 的横坐标为2.又∵双曲线y =3x 经过点E ,∴点E 的纵坐标为y =32,∴点E 的坐标为⎝ ⎛⎭⎪⎫2,32.(2)易得BD =1,BE =32,CB =2.∵△FBC ∽△DEB ,∴BDCF=BE CB ,即1CF =322,∴CF =43,∴OF =53,即点F 的坐标为⎝ ⎛⎭⎪⎫0,53.设直线FB 对应的函数解析式为y =k 1x +b ,而直线FB 经过B(2,3),F ⎝ ⎛⎭⎪⎫0,53,∴k 1=23,b =53,∴直线FB 对应的函数解析式为y =23x +53.专训5 1.C 2.203.解:四边形ABCD 与四边形A ′B ′C ′D ′相似.由已知条件知,∠DAB =∠D ′A ′B ′,∠B =∠B ′,∠BCD =∠B ′C ′D ′,∠D =∠D ′,且AB A ′B ′=BC B ′C ′=CD C ′D ′=DAD ′A ′=56,所以四边形ABCD与四边形A ′B ′C ′D ′相似.4.解:如图,过点B 作BM ⊥x 轴于点M ,过点B ′作B ′N ⊥x 轴于点N ,则△CBM ∽△CB ′N.所以MC NC =BMB ′N =BC B ′C.又由已知条件知NC =a +1,B ′N =-b ,BCB ′C =12,所以MC(a +1)=BM (-b)=12.所以MC =12(a +1),BM =-b2.所以MO =12(a +1)+1=a +32.所以点B 的坐标为⎝⎛⎭⎪⎫-a +32,-b 2.(第4题)5.解:(1)∵DE ∥BC ,∴AD AB =AE AC ,∴8-2x 8=y6,∴y =-32x +6(0≤x ≤4). (2)∵S △BDE =12·2x ·y =12·2x ·⎝ ⎛⎭⎪⎫6-32x =-32(x -2)2+6,∴当x =2时,S △BDE 有最大值,最大值为6.6.(1)证明:如图,∵D 是BC 边上的中点,DE ⊥BC , ∴EB =EC ,∴∠B =∠1.又∵AD =AC ,∴∠ACD =∠2,∴△ABC ∽△FCD. (2)解:如图,过点A 作AM ⊥CB 于点M. ∵D 是BC 边上的中点,∴BC =2CD.由(1)知△ABC ∽△FCD ,∴S△ABC S△FCD=⎝ ⎛⎭⎪⎫BC CD 2=41. 又∵S △FCD =5,∴S △ABC =20.∵S △ABC =12BC ·AM ,∴AM =2S△ABCBC=2×2010=4.∵DE ⊥BC ,AM ⊥BC ,∴DE ∥AM , ∴△BDE ∽△BMA.∴DE AM=BD BM.由AD =AC ,AM ⊥BC ,知DM =12CD =14BC =52.∴DE 4=55+52,∴DE =83.点拨:从复杂的图形中分析线段的特点和联系,找到切入点是解较复杂问题的关键.(第6题)7.证明:∵△ACB为等腰直角三角形,AB为斜边,∴∠CAB=45°.∵CO⊥AB.∴∠AOC=90°.又∵DE⊥CD,DE=CD,∴∠CED=45°,∠CDE=90°.∴∠CAO=∠CED,∠AOC=∠EDC.∴△ACO∽△ECD.∴∠ACO=∠ECD,ACCO =CE CD.∴∠ACE=∠OCD.∴△ACE∽△OCD.8.(1)证明:由四边形APCB内接于圆O,得∠FPC=∠B.又∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,所以∠APD=∠FPC,所以∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.又∠PAC=∠PDC,所以△PAC∽△PDF.(2)解:由(1)知△PAC∽△PDF,所以∠PCA=∠PFD.又∠PAC=∠CAF,所以△PAC∽△CAF,所以△CAF∽△PDF,所以PDAC=DFAF,则PD·AF=AC·DF.由AB=5,AC=2BC,∠ACB=90°,知BC=5,AC =2 5.由OE⊥CD,∠ACB=90°知CB2=BE·AB,CE=DE.所以BE=CB2AB=55=1.所以AE=4,CE=CB2-BE2=5-1=2,所以DE=2.又=,∠AFD=∠PCA,所以∠AFD=∠PCA=45°. 所以FE=AE=4,AF=42,所以PD=AC·DFAF=25×(4+2)42=3102.9.解:(方法一:作延长线)延长AD,与地面交于点M,如图①.(第9题)由AM∥FH知∠AMB=∠FHG.又因为AB⊥BG,FG⊥BG,DC⊥BG,所以△ABM∽△DCM∽△FGH,所以ABBM=CDCM=FGGH.因为CD=2 m,FG=1.2 m,GH=2 m,所以2CM=1.22,解得CM=103m.因为BC=4 m,所以BM=BC+CM=4+103=223(m).所以AB223=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.(方法二:作垂线)过点D作DM⊥AB于点M,如图②.所以AMDM=FGGH.而DM=BC=4 m,AM=AB-CD=AB-2(m),FG =1.2 m,GH=2 m,所以AB-24=1.22,解得AB=4.4 m.故这棵树的高度是4.4 m.10.解:如图,过点A作AF⊥DE,垂足为F,并延长交BC于点G.∵DE∥BC,∴△ADE∽△ABC.∵AF⊥DE,DE∥BC,∴AG⊥BC,∴AFAG=DEBC,∴30AG=2460.解得AG=75,∴FG=AG-AF=75-30=45,即河的宽度为45 m.(第10题)(第11题)11.思路导引:本题位似中心为O,先连接CO,因为要把原三角形缩小为原来的一半,可确定C′O=12CO,由其确定出C′的位置,再根据同样的方法确定出另外两个点.解:画出图形,如图中的△A′B′C′即为所求作的图形.点拨:抓住位似图形的性质,根据位似中心与三角形对应点的关系及位似比的大小确定所画位似图形的对应点,再画出图形.12.思路导引:(1)由角平分线的定义及∠BAD为平角直接可得.(2)由于线段PM,CM,BM在同一条直线上,所以必须把某条线段转化为另一相等的线段,构造相似三角形,因此可证PM=AM,从而证明△ACM与△ABM相似即可.(1)解:∵AP平分∠BAC,∴∠PAC=12∠BAC.又∵AQ平分∠CAD,∴∠CAQ=12∠CAD.∴∠PAC+∠CAQ=12∠BAC+12∠CAD=12(∠BAC+∠CAD).又∵∠BAC+∠CAD=180°,∴∠PAC+∠CAQ=90°,即∠PAQ=90°.(2)证明:由(1)知∠PAQ=90°,又∵M是线段PQ的中点,∴PM=AM,∴∠APM=∠PAM.∵∠APM=∠B+∠BAP,∠PAM=∠CAM+∠PAC,∠BAP=∠PAC,∴∠B=∠CAM.又∵∠AMC=∠BMA,∴△ACM∽△BAM.∴CMAM =AMBM,∴AM2=CM·BM,即PM2=CM·BM.点拨:本题运用了转化思想,在证明等积式时,常把它转化成比例式,寻找相似三角形进行求解.。
九年级数学下册第二十七章相似27.2相似三角形27.2.1相似三角形的判定同步练习新版新人教版
相似三角形的判定一、基础题目1.如图,△ADE ∽△ACB ,∠AED =∠B ,那么下列比例式成立的是( ) A.AD AC =AE AB =DE BC B.AD AB =AE AC C.AD AE =AC AB =DE BC D.AE EC =DE BC2.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD =2AD ,则( ) A.AD AB =12 B.AE EC =12 C.AD EC =12 D.DE BC =123.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若AB BC =12,则DEEF=( ) A.13 B.12 C.23D .1第1题图 第2题图 第3题图4. 如果△ABC ∽△A′B′C′,△ABC 与△A′B′C′的相似比为2,那么△A′B′C′与△ABC 的相似比为 .5.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,那么BCCE 的值等于 .6.如图,AB 、CD 相交于点O ,OC =2,OD =3,AC ∥BD.EF 是△ODB 的中位线,且EF =2,则AC 的长为 . 7.如图,在△ABC 中,DE ∥BC ,且AD =2,DB =3,则DEBC= .第5题图 第6题图 第7题图 8.如图,EG ∥BC ,GF ∥CD ,AE =3,EB =2,AF =6,求AD 的值.二、训练题目9.如图,△ABC 中,DE ∥BC ,EF ∥AB ,则图中相似三角形的对数是( ) A .1对 B .2对 C .3对 D .4对10.如图,在▱ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF ∶FC 等于( ) A .3∶2 B .3∶1 C .1∶1 D .1∶211.如图,在ABC ∆中,DE ∥BC ,3,2AD BD ==,则ADE ∆和ABC ∆的相似比是 ;若6DE =,则BC =第9题图 第10题图 第11题图12.一个三角形的三边长分别为8 cm,6 cm,12 cm,另一个与它相似的三角形的最短边为3 cm ,则其余两边长为______________.13.如图,在ABC ∆中,DE ∥BC ,DE 分别与,AB AC 相交于D E 、,若4AD =,2DB =,求:DE BC 的值。
九年级数学下册 第二十七章27.2.1 第1课时 平行线分线段成比例的基本事实课时训练
27.2 相似三角形27.2.1 相似三角形的判定第1课时 平行线分线段成比例的基本事实关键问答①两条直线被一组平行线所截,对应线段是什么?②两个三角形都和第三个三角形相似,这两个三角形相似吗?理由是什么? 1.①如图27-2-1,如果AB ∥CD ∥EF ,那么下列结论正确的是( )图27-2-1A.AC AE=BD DFB.AC BD =DFCEC.AC CE=BD BFD.CE AE=DF BF2.如图27-2-2,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ,直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点G .若DE =2,EG =1,GF =3,则下列结论正确的是( )图27-2-2A.AB BC =23B.AG GC =23C.CG AC =23D.BC AC =233.②如图27-2-3,在△ABC 中,DE ∥BC ,DF ∥AC ,则图中相似三角形的对数是( )图27-2-3A.1 B.2 C.3 D.44.如图27-2-4,P是▱ABCD的边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有( )图27-2-4A.0对B.1对C.2对D.3对命题点1 相似三角形的有关概念[热度:89%]5.③已知△ABC∽△A′B′C′,且相似比为3,则下列结论正确的是( )A.AB是A′B′的3倍B.A′B′是AB的3倍C.∠A是∠A′的3倍D.∠A′是∠A的3倍易错警示③相似比是有顺序的.方法点拨6.④如图27-2-5,△ABC与△ADE相似,∠ADE=∠B,则下列比例式正确的是( )图27-2-5A .AE BE =AD DCB .AE AB =AD AC C .AD AC =DE BC D .DE BC =AD AB④相似三角形中,找对应边、对应角有以下规律:①公共角、对顶角是对应角;②最大(小)边与最大(小)边是对应边;③最大(小)角与最大(小)角是对应角;④对应角的对边是对应边,对应边的对角是对应角.7.如图27-2-6,点C ,D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB ,求∠APB 的度数.图27-2-6命题点 2 利用平行线分线段成比例的基本事实计算 [热度:93%]8.2018·嘉兴如图27-2-7,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .已知AB AC =13,则EFDE等于( )图27-2-7A .3B .2 C.12 D.139.⑤如图27-2-8,四条平行直线l 1,l 2,l 3,l 4被直线l 5,l 6所截,AB ∶BC ∶CD =1∶2∶3,若FG =3,则线段EF 和线段GH 的长度之和是( )图27-2-8A .5B .6C .7D .8 方法点拨⑤在成比例的四条线段中,若已知其中三条线段的长,则可求出第四条线段的长. 10.如图27-2-9,直线l 1∥l 2∥l 3,等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则ABBD的值为( )图27-2-9A.4 25B.345 C.5 28 D.20 22311.如图27-2-10,在△ABC 中,点M 在边AB 上,过点M 作MN ∥BC 交AC 于点N ,过点N 作DN ∥MC 交AB 于点D .已知AB =4,AM =3,则AD 的长为________.图27-2-1012.⑥如图27-2-11,已知AB ∥CD ∥EF ,AF 与BE 相交于点O ,若AF =9,BO =2,OC =1,CE =4,求DF 和OD 的长.图27-2-11易错警示⑥本题易把对应线段弄混,从而产生错误.命题点 3 利用平行线判定两个三角形相似 [热度:95%]13.如图27-2-12,DE ∥BC ,AD ∶DB =2∶1,那么△ADE 与△ABC 的相似比为( )图27-2-12A.12B.23C.14D .2 14.如图27-2-13,在▱ABCD 中,EF ∥AB ,DE ∶EA =2∶3,EF =4,则CD 的长为( )图27-2-13A.163B .8C .10D .16 15.⑦2018·南充如图27-2-14,在△ABC 中,DE ∥BC ,BF 平分∠ABC ,交DE 的延长线于点F .若AD =1,BD =2,BC =4,则EF =________.图27-2-14模型建立⑦过角平分线上一点作角一边的平行线,与角的另一边围成一个等腰三角形. 16.⑧如图27-2-15,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,点E 在AB 上,且EO ∥BC ,若已知AD =3,BC =6,AB =4,求AE 的长.图27-2-15方法点拨⑧从图形“”或“”中可得到两个三角形相似.17.⑨如图27-2-16所示,已知AB∥EF∥CD,若AB=6,CD=9,求EF的长.图27-2-16模型建立⑨这个基本图形存在关系式:1AB+1CD=1EF.18.⑩如图27-2-17,已知EC∥AB,∠EDA=∠ABF. 求证:(1)四边形ABCD是平行四边形;(2)OA2=OE·OF.图27-2-17解题突破⑩OA,OE是哪个“A”字形中的对应线段?OA,OF是哪个“A”字形中的对应线段?命题点4 探究性问题[热度:89%]19.⑪已知MN∥EF∥BC,A,D为直线MN上的两动点,AD=a,BC=b,AE∶BE=m∶n.(1)当点A,D重合,即a=0时(如图27-2-18(a)),试求EF的长(用含m,n,b的代数式表示).(2)请直接应用(1)的结论解决下列问题:若点A,D不重合,即a≠0,①如图(b)这种情况时,试求EF的长(用含a,b,m,n的代数式表示);②如图(c)这种情况时,试猜想EF与a,b,m,n之间有何种数量关系,并证明你的猜想.图27-2-18模型建立⑪本题第(1)问可以由平行于三角形一边的直线所截得的三角形与原三角形相似得到一个模型:EF =AEAB·BC .20.⑫如图27-2-19,在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O .某学生在研究这一问题时,发现了如下的事实:(1)当AE AC =12=11+1时,有AO AD =23=22+1(如图①);(2)当AE AC =13=11+2时,有AO AD =24=22+2(如图②);(3)当AE AC =14=11+3时,有AO AD =25=22+3(如图③).在图当AEAC =11+n时,参照上述研究结论,请你猜想用n 表示AO AD的一般结论,并给出证明(其中n 是正整数).图27-2-19解题突破⑫通过作平行线,构建图形“”或“”来解决.详解详析1.D 2.D 3.C 4.D5.A [解析] 由相似三角形的性质,对应边成比例,对应角相等,可得AB A ′B ′=3,∠A=∠A ′,所以选A.6.D [解析] 此题中的DE 与BC 不平行,且已知∠ADE =∠B ,所以AE 与AC ,AD 与AB ,DE 与BC 分别是对应边,故可得比例式DE BC =ADAB.故选D .7.解:∵△PCD 是等边三角形, ∴∠PCD =∠CPD =60°,∴∠ACP =120°,∠A +∠APC =60°. ∵△ACP ∽△PDB ,∴∠BPD =∠A , ∴∠BPD +∠APC =60°,∴∠APB =∠BPD +∠APC +∠CPD =60°+60°=120°. 8.B [解析] ∵ABAC =13,∴BC AB =2.∵l 1∥l 2∥l 3,∴EF DE =BCAB=2.9.B [解析] 由l 1∥l 2∥l 3∥l 4,得AB ∶BC ∶CD =EF ∶FG ∶GH =1∶2∶3.∵FG =3,∴EF =32,GH =92,∴EF +GH =6.10.A [解析] 如图,过点B 作BF ⊥l 3,过点A 作AE ⊥l 3,垂足分别为F ,E ,AE 交l 2于点G.由题意知AG =1,BF =3.∵∠ACB =90°, ∴∠BCF +∠ACE =90°. 又∵∠BCF +∠CBF =90°, ∴∠ACE =∠CBF.在△ACE 和△CBF 中,⎩⎪⎨⎪⎧∠CEA =∠BFC ,∠ACE =∠CBF ,AC =BC ,∴△ACE ≌△CBF ,∴CE =BF =3,CF =AE =4, ∴BG =EF =CF +CE =7, ∴AB =BG 2+AG 2=52.∵l 2∥l 3,∴DG CE =AG AE =14,∴DG =14CE =34,∴BD =BG -DG =7-34=254,∴ABBD =5 2254=4 25.故选A . 11.94 [解析] ∵MN ∥BC ,∴AM AB =AN AC . ∵DN ∥MC ,∴ADAM =AN AC,∴AM AB =AD AM ,即34=AD 3,解得AD =94. 12.解:由AB ∥CD ∥EF 可得BECE =AFDF.又∵BE =BO +OC +CE =7,CE =4,AF =9, ∴DF =367.又CD ∥EF ,∴OD DF =OC CE ,∴OD =97.13.B [解析] ∵AD ∶DB =2∶1,∴AD AB =23.∵DE ∥BC ,∴△ADE ∽△ABC ,∴△ADE 与△ABC 的相似比=AD AB =23.14.C [解析] 由EF ∥AB 可得△DEF ∽△DAB ,∴DEDA =EFAB .∵DE ∶EA =2∶3,∴DE ∶DA=2∶5,∴AB =4×52=10.∵四边形ABCD 是平行四边形,∴CD =AB =10.15.23 [解析] ∵DE ∥BC ,AD =1,BD =2,BC =4,∴AD AB =DE BC ,即13=DE4,解得DE =43.∵BF 平分∠ABC ,∴∠ABF =∠FBC.又∵DE ∥BC ,∴∠FBC =∠F ,∴∠ABF =∠F ,∴DF =BD =2.∵DF =DE +EF ,∴EF =2-43=23.16.解:∵AD ∥BC ,∴△AOD ∽△COB , ∴AO OC =AD BC. ∵AD =3,BC =6,∴AO OC =36=12,∴AO AC =13.∵EO ∥BC ,∴△AEO ∽△ABC , ∴AE AB =AO AC ,即AE 4=13,∴AE =43. 17.解:∵AB ∥EF ,∴△CEF ∽△CAB ,∴EF AB =CFBC. ∵EF ∥CD ,∴△BEF ∽△BDC ,∴EF CD =BF BC ,∴EF AB +EF CD =CF BC +BFBC =1, ∴1AB +1CD =1EF . 又∵AB =6,CD =9, ∴EF =185.18.证明:(1)∵EC ∥AB ,∴∠C =∠ABF. 又∵∠EDA =∠ABF ,∴∠C =∠EDA , ∴DA ∥CF.又∵EC ∥AB ,∴四边形ABCD 是平行四边形. (2)∵DA ∥CF ,∴△OBF ∽△ODA , ∴OA OF =OD OB. ∵EC ∥AB ,∴△OAB ∽△OED ,∴OEOA =OD OB ,∴OA OF =OEOA ,即OA 2=OE ·OF. 19.解:(1)∵EF ∥BC , ∴△AEF ∽△ABC ,∴EF BC =AEAB .∵AE BE =m n ,∴AE AB =m m +n. 又∵BC =b ,∴EF b =m m +n ,∴EF =mb m +n.(2)①如图①,连接BD ,与EF 交于点H.由(1)知HF =mbm +n ,EH =nam +n .∵EF =EH +HF ,∴EF =mb +nam +n .②猜想:EF =mb -nam +n.证明:如图②,连接DE 并延长,交BC 于点G.由已知,得BG =na m ,EF =mGCm +n .∵GC =BC -BG ,∴EF =mm +n (BC -BG)=mm +n (b -na m )=mb -nam +n .20.解:猜想:AO AD =22+n.证明:如图,过点D 作DF ∥BE 交AC 于点F , ∴AO AD =AE AF.∵D 为BC 边的中点, ∴CF =EF =12EC.∵AE AC =11+n , ∴AEAE +2EF =11+n, ∴AE EF =2n ,∴AE AF =22+n ,∴AO AD =22+n .【关键问答】①一组平行线截一条直线所得到的线段与截另一条直线所得到的线段是对应线段. ②相似.理由:由已知条件可以得到这两个三角形的对应边成比例,对应角相等.。
九年级数学下册第27章相似27.1图形的相似同步练习新版新人教版
图形的相似基础题1.以下各组图形相似的是()12.将左图中的箭头减小到本来的2,获得的图形是()3.将一个直角三角形三边扩大 3 倍,获得的三角形必定是()A.直角三角形 B .锐角三角形C.钝角三角形 D .以上三种状况都有可能4.以下各线段的长度成比率的是()A. 2 cm, 5 cm ,6 cm, 8 cmB. 1 cm, 2 cm ,3 cm, 4 cmC. 3 cm, 6 cm ,7 cm, 9 cmD. 3 cm, 6 cm ,9 cm, 18 cm5.两个相似多边形一组对应边分别为 3 cm , 4.5 cm ,那么它们的相似比为() 2349A. 3B.2C. 9D.46. ( 莆田中考 ) 以下四组图形中,必定相似的是()A.正方形与矩形 B .正方形与菱形C.菱形与菱形 D .正五边形与正五边形7.在比率尺为1∶200 的地图上,测得A, B 两地间的图上距离为 4.5 cm ,则 A,B 两地间的实质距离为______m.8.在一张复印出来的纸上,一个多边形的一条边由原图中的 2 cm 变为了 6 cm,此次复印的放缩比率是________.9.以以以下图是两个相似四边形,求边x、 y 的长和∠α的大小.中档题10.以下说法:①放大 ( 或减小 ) 的图片与原图片是相似图形;②比率尺不一样样的中国地图是相似形;③放大镜下的五角星与本来的五角星是相似图形;④放电影时胶片上的图象和它照耀到屏幕上的图象是相似图形;⑤平面镜中,你的形象与你自己是相似的.此中正确的说法有()A.2个B.3个C.4个D.5个11. ( 重庆中考 ) 如图,△ ABC与△ DEF 相似,相似比为1∶2, BC的对应边是EF,若 BC= 1,则 EF的长是 ()A. 1 B . 2C. 3 D . 412.某机器部件在图纸上的长度是21 mm,它的实质长度是630 mm,则图纸的比率尺是 ()A . 1∶20B .1∶30C. 1∶40 D .1∶ 5013.如图,正五边形FGHMN与正五边形 ABCDE相似,若AB∶FG=2∶3,则以下结论正确的是 ()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F14 .以以以下图,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应边平行,且对应边之间的距离都相等,那么两个图形不相似的一组是()15.以以以下图,它们是两个相似的平行四边形,依据条件可知,∠α=________ , m=________ .16.如图,左侧格点图中有一个四边形,请在右侧的格点图中画出一个与该四边形相似的图形,要求大小与左侧四边形不一样样.17.为了铺设一矩形场所,特意选择某地砖进行密铺,为了使每一部分都铺成以以以下图的形状,且由 8 块地砖构成,问:(1)每块地砖的长与宽分别为多少?(2)这样的地砖与所铺成的矩形地面能否相似?试明你的结论.综合题18.如图:矩形ABCD的长AB=30,宽BC=20.(1) 如图 1,若沿矩形 ABCD 周围有宽为 1 的环形地域,图中所形成的两个矩形 ABCD 与A ′B ′C ′D ′相似吗?请说明原由;(2) 如图 2, x 为多少时,图中的两个矩形 ABCD 与 A ′B ′C ′D ′相似?参照答案 1.∶39. ∵两个四边形相似,ADBCAB46 7∴A ′D ′=B ′C ′ =A ′B ′ ,即16= x =y.∴ x = 24,y = 28. ∵∠ B =∠ B ′= 73°,∴∠α= 360 °-∠ A -∠ D -∠ B = 83°.11. B 12. B 13. B 14. B15. 125°1216. 图略.17.(1) 设矩形地砖的长为 a cm ,宽为 b cm ,由题图可知 4b = 60,即 b = 15.由于 a + b = 60,因此 a = 60- b = 45,因此矩形地砖的长为45 cm ,宽为 15 cm.(2) 不相似.原由:由于所铺成矩形地面的长为2a =2×45= 90(cm) ,宽为 60 cm ,长 90 3 a 45 3 3 3因此==,而==,≠,宽 60 2 b 15 1 2 1即所铺成的矩形地面的长与宽和地砖的长与宽不能够比率.因此它们不相似.28 1818.(1) 不相似, AB = 30, A ′B ′= 28, BC = 20, B ′ C ′= 18,而 30≠ 20,故矩形 ABCD 与矩 形 A ′B ′C ′D ′不相似.A ′B ′ B ′C ′ A ′B ′ B ′C ′ . 则: 30-2x (2) 矩形 ABCD 与 A ′B ′C ′D ′相似,则 = BC 或 = =AB BC AB 30 20- 2 30- 2x 20- 220 ,或 20 = 30 , 解得 x = 或 9,故当 x = 1.5 或 9 时,矩形 ABCD 与 A ′B ′C ′D ′相似.。
人教版九年级下《27.1图形的相似》课时练习含答案解析
人教版数学九年级下册27.1图形的相似课时练习一、单选题(共15题)1.已知2x =5y (y≠0),则下列比例式成立的是( ) A.25x y = B.52x y= C.25x y = D.52x y =答案:B知识点:比例的性质 解析:解答:∵2x=5y ,知识点: 比例的性质 解析:解答: 由3a =2b ,得出23a b =于是可设a =2k ,则b =3k ,代入a b a-=232k kk -=12- 故选:A .分析: 本题考查了比例的基本性质,是基础题3. 不为0的四个实数a 、b ,c 、d 满足ab=cd ,改写成比例式错误的是( )A . a dc b = B . c b ad =C .d b a c =D .a c b d=答案:D知识点: 比例的性质. 解析:解答: A 、a dc b=ab cd ⇒=故A 正确B、c ba d=ab cd⇒=故B正确C、d ba c=ab cd⇒=故C正确D、a cb d=ad bc⇒=故D错误故选:D.分析: 本题考查了比例的性质,利用了比例的性质:分子分母交叉相乘,乘积相等.4. 如果a=3,b=2,且b是a和c的比例中项,那么c=()A.23±B.23C.43D.43±答案:C知识点: 比例线段解析:解答: 根据题意,可知a:b=b:c,b2=ac,当a=3,b=2时22=3c,3c=4,c=4 3故选:C.分析: 比例中项,也叫“等比中项”,即如果a、b、c三个量成连比例,即a:b=b:c,则b叫做a和c的比例中项.据此代数计算得解.5. 比例尺为1:1000的图纸上某区域面积400cm2,则实际面积为()A.4×105m2 B.4×104m2 C.1.6×105m2D.2×104 m2答案:B知识点:比例线段解析:解答: 设实际面积为x cm2,则400:x=(1:1000)2,解得x=4×108.4×108cm2=4×104m2.故选B.分析: 根据面积比是比例尺的平方比,列比例式求得该区域的实际面积.6、如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A.2B.C.D2答案:D知识点:比例线段.解析:解答: 连接AC,设AO=x,则BO=x,CO=x,故x,x∴线段AP与AB:22故选:D.分析: 利用已知表示出AC的长,即可得出AP以及AB的长,即可得出答案.7. 下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm答案:D知识点:比例线段.解析:解答:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.分析: 四条线段成比例,根据线段的长短关系,从小到大排列,判断中间两项的积是否等于两边两项的积,相等即成比例.8. 已知C 是线段AB 的黄金分割点(AC >BC ),则AC :AB=( )A .1):2B .1):2C .(3:2-D .(3:2+ 答案:A知识点: 黄金分割.解析:解答: 根据黄金分割的定义,知AC :AB=1):2故选A .分析: 此题主要考查了黄金分割比的概念.9. 若P 是线段AB 的黄金分割点(PA >PB ),设AB=1,则PA 的长约为( ) A .0.191 B .0.382 C .0.5 D .0.618 答案:D知识点: 黄金分割.解析:解答: 由于P 为线段AB=1的黄金分割点, 且PA >PB ,则PA=0.618×1=0.618. 故选D .分析: 根据黄金分割点的定义,知PA 是较长线段;则PA=0.618AB ,代入数据即可. 10. 主持人站在舞台的黄金分割点处最自然得体,如果舞台AB 长为20米,一个主持人现站在舞台AB 的黄金分割点点C 处,则下列结论一定正确的是( ) ∴AB :AC=AC :BC ; ∴AC≈6.18米;∴AC =1)米;∴BC =米或米. A .∴∴∴∴ B .∴∴∴ C .∴∴ D .∴ 答案:D知识点: 黄金分割.解析:解答: AB 的黄金分割点为点C 处,若AC >BC ,则AB :AC=AC :BC ,所以∴不一定正确;AC≈0.618AB≈12.36或AC≈20-12.36=7.64,所以②错误;若AC 为较长线段时,AC=12AB=10),BC=10(BC 为较长线段时,BC=12AB=10-1),AC=10(),所以③不一定正确,④正确. 故选D .分析:根据黄金分割的定义和AC 为较长线段或较短线段进行判断.11. 等腰∴ABC 中,AB=AC ,∴A=36°,D 是AC 上的一点,AD=BD ,则以下结论中正确的有( )∴∴BCD 是等腰三角形;∴点D 是线段AC 的黄金分割点;∴∴BCD∴∴ABC ;∴BD 平分∴ABC .A .1个B .2个C .3个D .4个 答案:D知识点: 黄金分割;等腰三角形的性质;相似三角形的判定与性质. 解析:解答: ∴AB=AC , ∴∴ABC=∴C=12(180°-∴A )=12(180°-36°)=72°, ∴AD=BD , ∴∴DBA=∴A=36°, ∴∴BDC=2∴A=72°, ∴∴BDC=∴C ,∴∴BCD 为等腰三角形,所以∴正确; ∴∴DBC=∴ABC-∴ABD=36°, ∴∴ABD=∴DBC ,∴BD 平分∴ABC ,所以∴正确; ∴∴DBC=∴A ,∴BCD=∴ACB , ∴∴BCD∴∴ABC ,所以∴正确; ∴BD :AC=CD :BD , 而AD=BD ,∴AD:AC=CD:AD,∴点D是线段AC的黄金分割点,所以∴正确.分析: 先根据等腰三角形的性质和三角形内角和定理计算出∴ABC=∴C=1 2(180°-∴A)=72°,再计算出∴BDC=72°,∴DBC=36°,则可对∴∴∴进行判断;利用∴BCD∴∴ABC得BD:AC=CD:BD,而AD=BD,则AD:AC=CD:AD,于是根据黄金分割的定义可对∴进行判断.12. 用一个2倍放大镜照一个△ABC,下面说法中错误的是()A.△ABC放大后,是原来的2倍B.△ABC放大后,各边长是原来的2倍C.△ABC放大后,周长是原来的2倍D.△ABC放大后,面积是原来的4倍答案:A知识点:相似图形解析:解答: ∴放大前后的三角形相似,∴放大后三角形的内角度数不变,面积为原来的4倍,周长和边长均为原来的2倍.故本题选A.分析: 用2倍的放大镜放大一个△ABC,得到一个与原三角形相似的三角形;根据相似三角形的性质:相似三角形的面积比等于相似比的平方,周长比等于相似比.可知:放大后三角形的面积是原来的4倍,边长和周长是原来的2倍,而内角的度数不会改变13. 对一个图形进行放缩时,下列说法中正确的是()A.图形中线段的长度与角的大小都保持不变B.图形中线段的长度与角的大小都会改变C.图形中线段的长度保持不变、角的大小可以改变D.图形中线段的长度可以改变、角的大小保持不变答案:D知识点:相似图形解析:解答:根据相似多边形的性质:相似多边形的对应边成比例,对应角相等,∴对一个图形进行收缩时,图形中线段的长度改变,角的大小不变,故选D.分析: 根据相似图形的性质得出相似图形的对应边成比例,对应角相等,即可得出答案.(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1 个B.2个C.3个D.4个答案: C解析:解答:(1)所有菱形的对应角不一定相等,故菱形不一定都相似;(2)等腰直角三角形都相似,正确;(3)正方形都相似,正确;(4)矩形对应边比值不一定相等,不矩形不一定都相似;(5)正六边形都相似,正确,故符合题意的有3个.故选:C.分析: 利用相似图形的性质分别判断得出即可.15. 下列说法不一定正确的是()A.所有的等边三角形都相似B.所有的等腰直角三角形都相似C.所有的菱形都相似D.所有的正方形都相似答案:C知识点:相似图形解析:解答:A、所有的等边三角形都相似,正确;B、所有的等腰直角三角形都相似,正确;C、所有的菱形不一定都相似,故错误;D、所有的正方形都相似,正确.故选C.分析: 利用“对应角相等,对应边的比也相等的多边形相似”进行判定即可.二、填空题(共5题)1. 给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有( )(填序号).答案: ①②④⑤知识点:相似图形解析:解答: 下列几何图形:∴两个圆;∴两个正方形;∴两个矩形;∴两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有①②④⑤.故答案为:①②④⑤.2. 在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是()答案: 1:3知识点:相似图形.解析:解答: 由题意可知,相似多边形的边长之比=相似比=2:6=1:3,故答案为:1:3分析:本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比.3. 若用一个2倍放大镜去看△ABC,则∠A的大小();面积大小为()答案:不变,4倍知识点:相似图形.解析:解答: ∵放大后的三角形与原三角形相似∴∠A的度数不变∵放大前后,两相似三角形的相似比为1:2∴它们的面积比为1:4即放大后面积为原来的4倍.分析: 本题考查相似三角形的性质:相似三角形的对应角相等,面积比等于相似比的平方.4、如果图形甲与图形乙相似,图形乙与图形丙相似,那么图形甲与图形丙()答案:相似知识点:相似图形.解析:解答:∵图形甲与图形乙相似,图形乙与图形丙相似,∴图形甲与图形丙相似.故答案为:相似分析:本题考查了相似图形,熟记相似图形具有传递性是解题的关键.5. 已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=()答案:2知识点:比例线段解析:解答:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.分析:根据比例中项的定义可得b2=ac,从而易求b.三、解答题(共5题)1. 如图,在△ABC中,若DE∥BC,12ADDB=,DE=4cm,求BC的长答案:12cm知识点:平行线分线段成比例解析:解答: 解:∵DE∥BC,∴DE ADBC AB=,又∵12ADDB=∴13ADAB=,∴413BC=∴BC=12cm.故答案为:12cm.分析:本题考查了平行线分线段成比例定理,找出图中的比例关系是解题的关键.2. 如图,已知AB∴CD∴EF,它们依次交直线l1、l2于点A、D、F和点B、C、E,如果AD=6,DF=3,BC=5,求BE的长答案:7.5知识点:平行线分线段成比例.解析:解答:∵AB∥CD∥EF,答案:m=2n+1知识点:平行线分线段成比例;旋转的性质.分析:本题考查了平行线分线段成比例定理的应用,解此题的关键是能根据定理得出比例式,注意:一组平行线截两条直线,所截得的线段对应成比例.也考查了旋转的性质和等腰三角形的性质.4.有一块三角形的草地,它的一条边长为25m.在图纸上,这条边的长为5cm,其他两条边的长都为4cm,求其他两边的实际长度答案:都是20m.知识点:比例线段即其他两边的实际长度都是20m.分析: 设其他两边的实际长度分别为x m、y m,然后根据相似三角形对应边成比例列式求解即可.5.如图,直线y=3x+3与x轴交于点A,与y轴交于点B.过B点作直线BP与x轴正半轴交于点P,取线段OA、OB、OP,当其中一条线段的长是其他两条线段长度的比例中项时,求P点的坐标。
人教版数学九年级下册课时练 第二十七章 相似 27.1 图形的相似
人教版数学九年级下册第二十七章相似27.1图形的相似1.( 2019·甘肃定西期中)观察下列每组图形,属于相似图形的是(D)2.(2019·河北沧州月考)下列图形不是相似图形的是(C)A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜看到的放大图案和原有图案C.某人的侧身照片和正面照片D.课本里的中国地图和教室里悬挂的中国地图3.下列各组线段中,成比例的是(D)A.5 cm,6 cm,7 cm,8 cmB.3 cm,6 cm,2 cm,5 cmC.2 cm,4 cm,6 cm,8 cmD.12 cm,8 cm,15 cm,10 cm4.(2019·广东揭阳期末)四条线段a,b,c,d成比例,其中b=3 cm,c=8 cm,d=12 cm,则a=(A)A.2 cm B.4 cmC.6 cm D.8 cm5.(2018·甘肃白银中考)已知a2=b3(a≠0,b≠0),下列变形错误的是(B)A.ab=23B.2a=3bC.ba=32D.3a=2b6.(2019·江苏镇江月考)如果在比例尺为1∶2 000 000的地图上,测得A,B两地的图上距离是3.4 cm,那么A,B两地的实际距离是__68__km.7.(2019·上海青浦区一模)下列图形中,一定相似的是(A)A.两个正方形B.两个菱形C.两个直角三角形D.两个等腰三角形8.两个相似多边形的一组对应边分别为3 cm,4.5 cm,那么它们的相似比为(A)A.23 B.32 C.49 D.949.(2019·广东梅州期末)如图所示的三个矩形中,其中相似的是(B)A.甲与乙B.乙与丙C.甲与丙D.以上都不对10.(教材P26,例改编)(2019·江苏苏州期中)如图,四边形ABCD与四边形A′B′C′D′相似,则x=__12__,y=__332__,α=__83°__.11.(教材P28,习题27.1,T6改编)如图,一个矩形广场的长为100 m,宽为80 m,广场内两条纵向小路的宽均为1.5 m,如果设两条横向小路的宽都为x m,那么当x为多少时,小路内外边缘形成的两个矩形相似?解:当小路内外边缘形成的两个矩形相似时,它们的对应边成比例,即100-3100=80-2x80,解得x=1.2.答:当x为1.2时,小路内外边缘形成的两个矩形相似.易错点顺序不确定时,忽视分类讨论造成漏解12.(2019·安徽合肥瑶海区期中)已知三个数2,4,8,请你再添上一个数,使它们成比例,求出所有符合条件的数.解:设添加的数为x.由题意,得①当2×4=8x时,x=1;②当2×8=4x时,x=4;③当4×8=2x时,x=16.所以可以添加的数有1,4,16.13.(2019·四川雅安中考)若a∶b=3∶4,且a+b=14,则2a-b的值是(A)A.4 B.2 C.20 D.1414.如图,在正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为F,G,则正方形FBGE与正方形ABCD的相似比为__2∶2__.15.在下列两组图形中,每组的两个三角形相似,m表示已知数,试分别确定α,x的值.解:在图1中,∵△ABC与△A′B′C′相似,∴ACA′C′=BCB′C′,∠C=∠C′,即18x=2mm,α=40°,∴x=9.在图2中,∠D=180°-65°-70°=45°.∵△ABO与△CDO相似,∴AOOC=ABCD,∠B=∠D,即35=xm,α=45°,∴x=35m.16.(2019·山西太原期中)如图,在矩形ABCD中,AB=4,点E,F分别在AD,BC边上,且EF⊥BC.若矩形ABFE与矩形DEFC相似,且相似比为1∶2,求AD的长.解:∵矩形ABFE与矩形DEFC相似,且相似比为1∶2,∴ABDE=AEDC=12.∵四边形ABCD为矩形,∴CD=AB=4,∴4DE=AE4=12,∴DE=8,AE=2,∴AD=AE+DE=2+8=10.17.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AC=3,BC=4.线段AD,CD,CD,BD是成比例线段吗?写出你的理由.解:线段AD,CD,CD,BD是成比例线段.理由如下:∵∠ACB=90°,AC=3,BC=4,∴AB=5.∵CD⊥AB,∴S△ABC =12AB·CD=12AC·BC,∴CD=AC·BCAB=3×45=2.4.在Rt△ADC中,AD=AC2-CD2=1.8,∴BD=3.2. ∵AD∶CD=1.8∶2.4=3∶4,CD∶BD=2.4∶3.2=3∶4,∴AD∶CD=CD∶BD,∴线段AD,CD,CD,BD是成比例线段.18.如图,矩形ODEF 的一边落在矩形ABCO 的一边上,且矩形ODEF 与矩形ABCO 相似,其相似比为1∶4,矩形ABCO 的边AB =4,BC =4 3.将矩形ODEF 绕点O 逆时针旋转一周,连接EC ,EA ,AC ,整个旋转过程中△ACE 的最大面积为多少?解:连接OE ,如图.∵矩形ODEF 与矩形ABCO 相似,其相似比为1∶4,AB =4,BC =43,∴OF =3,OD =1,∴OE =OF 2+OD 2=(3)2+12=2, ∴点E 的轨迹是以点O 为圆心,以2为半径的圆. 设点O 到AC 的距离为h .∵AC =AB 2+BC 2=42+(43)2=8,∴8h =4×43,解得h =23,∴当点E 到AC 的距离为23+2时,△ACE 的面积有最大值,S 最大值=12×8×(23+2)=83+8.。
九年级数学下册27、1图形的相似第2课时相似多边形习题新版新人教版 (1)
7.【教材P27练习T3变式】一个多边形的边长依次为2,3, 4,5,6,另一个和它相似的多边形的最长边长为24,则 另一个多边形的最短边长为( B ) A.6 B.8 C.10 D.12
8.【教材P57复习题T4改编】【中考·重庆】制作一块3 m×2 m的长方形广告牌的成本是120元,在每平方米制
∴AEDF=FADB,即1x=x-1 1,解得 x1=1+2 5,x2=1-2 5(舍去).
经检验,x=1+2 5是原方程的解且符合题意.
∴AD=1+2
5 .
11.【教材P28习题T6变式】如图,矩形ABCD的长AB=30, 宽BC=20.
(1)如图①,若在矩形ABCD的内部沿四周有宽为1的环形区 域,则矩形A′B′C′D′与矩形ABCD相似吗?请说明理由.
5.相似多边形的对应角__相__等______,对应边__成__比__例____, 对应边的比叫做___相__似__比___.
6.如图,正五边形FGHMN和正五边形ABCDE相似.若 AB∶FG=2∶3,则下列结论中正确的是( B ) A.2DE=3MN B.3DE=2MN C.3∠A=2∠F D.2∠A=3∠F
(1)每块矩形地砖的长与宽分别为多少? 解:设每块矩形地砖的长为a cm,宽为b cm, 由题图可知4b=60,即b=15. ∵a+b=60,∴a=60-b=45. ∴每块矩形地砖的长为45 cm,宽为15 cm.
(2)这样的地砖与所铺成的每一部分矩形是否相似?试说 明理由.
解:不相似.理由如下: ∵所铺成的每一部分矩形的长为2×45=90(cm),宽为60 cm, ∴长宽=9600=32. 而地地砖砖的的长宽=4155=31,32≠31, 即所铺成的每一部分矩形的长与宽和地砖的长与宽不成比例, ∴它们不相似.
初中数学人教版九年级下册第二十七章 相似27.1 图形的相似-章节测试习题(3)
章节测试题1.【题文】如图,矩形ABCD是一幅长3m,宽2m的国画,它的四周镶上宽度相等的一条金边.(1)金边宽度为10cm时,矩形ABCD与矩形EFGH是否相似?为什么?(2)是否存在装的金边宽度,使得矩形ABCD与矩形EFGH相似?如果存在,求出金边宽度;如果不存在,请说明理由.【答案】(1)不相似.理由见解答;(2)不存在装的金边宽度,使得矩形ABCD与矩形EFGH相似,理由见解答.【分析】本题考查的是相似多边形的判定、矩形的性质,熟练掌握相似多边形的判定方法是解题的关键.(1)求出,得出矩形ABCD与矩形EFGH不相似;(2)设金边宽度为x cm,若,则,解得x=0,即可得出结论.【解答】(1)不相似.理由如下:∵矩形ABCD中,AB=2 m,AD=3 m,金边宽度为10 cm=0.1 m,∴EF=2+2×0.1=2.2 m,EH=3+2×0.1=3.2 m,∴,∴,∴矩形ABCD与矩形EFGH不相似;(2)不存在装的金边宽度,使得矩形ABCD与矩形EFGH相似,理由如下:设金边宽度为x cm,若,则,解得x=0,∴不存在装的金边宽度,使得矩形ABCD与矩形EFGH相似.2.【答题】若某个直角三角形的两直角边之比为2:3,则确定了该三角形的()A. 形状B. 周长C. 面积D. 斜边【答案】A【分析】本题考查相似三角形的性质.【解答】∵直角三角形的两直角边之比为2:3,∴虽不能确定两直角边的值,但能确定其比值,∴能确定该直角三角形的形状,选A.3.【答题】下列图形中一定是相似形的是()A. 两个等边三角形B. 两个菱形C. 两个矩形D. 两个直角三角形【答案】A【分析】本题考查相似多边形的判定.【解答】∵等边三角形的对应角相等,对应边的比相等,∴两个等边三角形一定是相似形,又∵直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,∴两个直角三角形、两个菱形、两个矩形都不一定是相似形,选A.4.【答题】下列命题中,真命题是()A. 邻边之比相等的两个平行四边形一定相似B. 邻边之比相等的两个矩形一定相似C. 对角线之比相等的两个平行四边形一定相似D. 对角线之比相等的两个矩形一定相似【答案】B【分析】本题考查相似多边形的判定.【解答】A.邻边之比相等的两个平行四边形不一定相似,∴A选项错误;B.邻边之比相等,则四条边对应成比例,又四个角都是直角,∴两矩形相似,故本选项正确;C.对角线之比相等的两个平行四边形不一定相似,∴C选项错误;D.对角线之比相等的两个矩形不一定相似,∴D选项错误;选B.5.【答题】若两个相似多边形的面积之比为4:9,则这两个多边形的周长之比为()A. B. 2:3 C. 4:9 D. 16:81【答案】B【分析】本题考查相似多边形的性质.【解答】∵两个相似多边形的面积之比为4:9,∴两个相似多边形的对应边的比为2:3,∴两个相似多边形的周长的比为2:3,选B.6.【答题】下列四组图形中,不是相似图形的是()A. B.C. D.【答案】D【分析】本题考查相似多边形的判定.【解答】A.形状相同,但大小不同,符合相似形的定义,故不符合题意;B.形状相同,但大小不同,符合相似形的定义,故不符合题意;C.形状相同,但大小不同,符合相似形的定义,故不符合题意;D.形状不相同,不符合相似形的定义,故符合题意;选D.7.【答题】若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的______倍.【答案】5【分析】本题考查相似多边形的性质.【解答】∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为5.8.【答题】某课外活动小组的同学在研究某种植物标本(如图所示)时,测得叶片①最大宽度是8 cm,最大长度是16 cm;叶片②最大宽度是7 cm,最大长度是14 cm;叶片③最大宽度约为6.5 cm,请你用所学数学知识估算叶片③的完整叶片的最大长度,结果约为______cm.【答案】13【分析】本题考查相似多边形的性质.【解答】根据叶片①②的最大长度和宽度,可得出这种植物的叶片的最大宽度:最大长度=1:2.由此可得出完整的叶片③的最大长度应是6.5×2=13 cm.故答案为13.9.【答题】如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形AB n C n C n﹣1的面积为______.【答案】【分析】本题考查相似多边形的性质.【解答】∵四边形ABCD是矩形,∴AD⊥DC,∴AC,∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2,∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,∵矩形ABCD的面积=2×1=2,∴矩形AB1C1C的面积,依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4,∴矩形AB2C2C1的面积,∴矩形AB3C3C2的面积,按此规律第n个矩形的面积为,故答案为.10.【答题】一个多边形的边长依次为1,2,3,4,5,6,与它相似的另一个多边形的最大边长为8,那么另一个多边形的周长是______.【答案】28【分析】本题考查相似多边形的性质.【解答】设另一个多边形的周长是x.依题意,有x:(1+2+3+4+5+6)=8:6,解得x=28.故另一个多边形的周长是28.11.【答题】若两个相似多边形的相似比是2:3,则它们的面积比等于______.【答案】4:9【分析】本题考查相似多边形的性质.【解答】∵两个相似多边形的相似比为2:3,∴它们的面积比=22:32=4:9.故答案为4:9.12.【答题】若一个矩形截去两个以短边长为边长的正方形后得到的矩形与原矩形相似,则这个矩形的长与宽之比为______.【答案】1【分析】本题考查相似多边形的性质.【解答】设矩形的长是a,宽是b,则AE=EH=b,DH=a﹣2b,∵矩形ABCD∽矩形HDCG,∴,即,整理得a2﹣2ab﹣b2=0,两边同除以b2,得()21=0,解得或(舍去)∴长与宽的比为1,故答案为1.13.【题文】如图,一个矩形广场的长为100 m,宽为80 m,广场外围两条纵向小路的宽均为1.5 m,如果设两条横向小路的宽都为x m,那么当x为多少时,小路内、外边缘所围成的两个矩形相似.【答案】1.2.【分析】本题考查相似多边形的性质.【解答】当(100+3):100=(80+2x):80时,小路内、外边缘所围成的两个矩形相似.解得x=1.2.答:当x为1.2时,小路内、外边缘所围成的两个矩形相似.14.【题文】如图,四边形ABCD∽四边形A′B′C′D′.(1)α=______;(2)求边x、y的长度.【答案】(1)83°;(2)x=12,y.【分析】本题考查相似多边形的性质.【解答】(1)∵四边形ABCD∽四边形A′B′C′D′,∴∠A=∠A′=62°,∠B=∠B′=75°,∴α=360°﹣62°﹣75°﹣140°=83°,故答案为83°;(2)∵四边形ABCD∽四边形A′B′C′D′,∴,解得x=12,y.15.【答题】若两个相似多边形的面积之比为1:4,则它们的周长之比为()A. 1:4B. 1:2C. 2:1D. 1:16【答案】B【分析】本题考查相似图形的性质.【解答】∵两个相似多边形面积比为1:4,∴周长之比为1:2.选B.16.【答题】沿一张矩形纸较长两边的中点将纸一分为二,所得两张矩形与原来的矩形纸相似,那么原来那张纸的长和宽的比是()A. B. C. D.【答案】A【分析】本题考查相似图形的性质.【解答】设原来矩形的长为x,宽为y,则对折后的矩形的长为y,宽为,∵得到的两个矩形都和原矩形相似,∴x:y=y:,解得x:y:1.选A.17.【答题】下列说法正确的是()A. 所有菱形都相似B. 所有矩形都相似C. 所有正方形都相似D. 所有平行四边形都相似【答案】C【分析】本题考查相似图形的判定.【解答】∵相似多边形的对应边成比例,对应角相等,∴所有正方形都是相似多边形,选C.18.【答题】如图所示,长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下矩形与原矩形相似,那么剩下矩形的面积是()A. 28cm2B. 27cm2C. 21cm2D. 20cm2【答案】B【分析】本题考查相似图形的性质.【解答】依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,则,设DF=x cm,得到,解得x=4.5,则剩下的矩形面积是4.5×6=27cm2.选B.19.【答题】矩形的两边长分别为x和6(x<6),把它按如图方式分割成三个全等的小矩形,每一个小矩形与原矩形相似,则x的值为()A. B. C. D. 2.5【答案】B【分析】本题考查相似图形的性质.【解答】∵原矩形的长为6,宽为x,∴小矩形的长为x,宽为2,∵小矩形与原矩形相似,∴,解得x=2,选B.20.【答题】若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A. 增加了10%B. 减少了10%C. 增加了(1+10%)D. 没有改变【答案】D【分析】本题考查相似图形的性质.【解答】∵△ABC的每条边长增加各自的10%得△A′B′C′,∴△ABC与△A′B′C′的三边对应成比例,∴△ABC∽△A′B′C′,∴∠B′=∠B.选D.。
九年级数学下册第二十七章相似27.1图形的相似习题3新版新人教版(含参考答案)
九年级数学下册第二十七章相似:图形的相似1.对于四条线段A.B.C.d,如果其中两条线段的比(即它们长度的比)与另两条线段的比相等,如a cb d(即ad=bc),我们就说这四条线段________.2.(1)相似多边形的性质:相似多边形的________相等,________成比例;(2)相似多边形的判定:如果两个多边形满足________相等,________成比例,那么这两个多边形相似.3.相似多边形________的比叫做相似比.如果五边形ABCDE与五边形A′B′C′D′E′的相似比为k,那么五边形A′B′C′D′E′与五边形ABCDE的相似比为________.4.下列四组图形中,一定相似的是( )A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形5.下列各组线段(单位:cm)中,成比例的线段是( )A.1、2、3、4B.1、2、2、4C.3、5、9、13D.1、2、2、36.下列各组图形中,相似的是( )A.①②③B.②③④C.①③④D.①②④7.已知线段A.B.C.d成比例,且a=6cm,b=3cm,32dcm,则线段c的长度为________.8.在中国地理地图册上,连接上海、香港、台湾三地构成一个三角形,用刻度尺测得它们之间的距离如图所示,飞机从台湾直飞上海的距离约为620km,那么飞机从台湾绕道香港再到上海的飞行距离约为多少千米?9.如图,四边形模板ABCD和EFGH相似,求这两块模板中∠α、∠β的度数和x、y、z的值.10.在比例尺为1︰40000的工程示意图上,一段铁路的长度约为54.3cm,它的实际长度约为( )A.0.2172kmB.2.172kmC.21.72kmD.217.2km11.两个相似多边形,一组对应边的长分别为3cm和4.5cm,则这两个多边形的相似比可能是( )A.34B.56C.1 2D.3 212.已知四边形ABCD与四边形A′B′C′D′相似,且AB︰BC︰CD︰DA=20︰15︰9︰8.若四边形A′B′C′D′的周长为26,则A′B′的长为( )A.6B.10C.7.5D.813.(1)(2014·柳州)若12ab=,则________a bb+=;(2)若23a ba-=,则________ab=.14.已知三条线段的长度分别为1、2、3,请你再添一条线段,使这四条线段的长度能构成一个比例式,则可添加的线段长度为________.15.如图,将矩形ABCD沿线段AE翻折,使点B恰好落在边AD上的点F处,再沿边EF将矩形ABCD剪开,所得的另一个矩形ECDF和原来的矩形相似,则原来的矩形ABCD的宽AB与长AD的比值为________.16.如图,在矩形ABCD和矩形A′B′C′D′中,AB=16,AD=10,A′D′=6,矩形A′B′C′D′的面积为57.6,那么这两个矩形相似吗?17.(2014·南通)如图,E是菱形ABCD的对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG与菱形ABCD相似,连接EB.GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,3AG ,求GD的长.18.如图,在矩形ABCD中,AB=2AD.线段EF=10,在EF上取一点M,分别以EM、MF为一边作矩形EMNH和矩形MFGN,使矩形MFGN与矩形ABCD相似,令MN=x.当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?参考答案1.成比例2.(1)对应角对应边(2)对应角对应边3.对应边1 k4.D 5.B 6.B 7.3cm8.设飞机从台湾绕道香港再到上海的飞行距离约为xkm .由题意,得553 3.6 5.46201010x +=⨯,解得x =1860.∴飞机从台湾绕道香港再到上海的飞行距离约为1860km9.∠α=90°,∠β=60°,x =10.5,y =3,z =1210.C11.D12.B13.(1)32(2)314或15.16.∵矩形A′B′C′D′的面积为57.6,A′D′=6,∴A′B′=9.6.∴1659.63AB A B ==''.根据矩形的性质,知53DC AB D C A B ==''''.同理,10563BC AD B C A D ===''''∴53AB AD DC BC A B A D D C B C ====''''''''.又∵矩形的各内角都是90°,∴矩形ABCD 与矩形A′B′C′D′相似17.(1)∵菱形AEFG 与菱形ABCD 相似,∴∠GAE =∠DAB .∴∠GAE +∠GAB =∠DAB +∠GAB ,即∠EAB =∠OAD .又∵四边形AEFG 和ABCD 是菱形,∴AE =AG ,AB =AD .∴△ABE ≌△ADG .∴EB =GD(2)连接BD 交AC 于点O .∵四边形ABCD 是菱形,∴AD =AB =2,BO ⊥AC ,1302OAB DAB ∠=∠=︒.在Rt △AOB 中,112BO AB==.∴AO ==EO AE AO AG AO =+=+=.在Rt △BOE 中,BE===GD BE ==18.∵矩形MFGN与矩形ABCD相似,∴MN MFAD AB=.又∵AB=2AD,MN=x,∴MF=2x.∴EM=EF-MF=10-2x.∴22525(102)2102()22S x x x x x=-=-+=--+.∴当52x=时,S有最大值,最大值是25 2.。
九年级数学下册 第二十七章 相似 27.1 图形的相似 第1课时 相似图形同步练习 (新版)新人教版
课时作业(六)第1课时相似图形]一、选择题1.观察图K-6-1中各组图形,其中相似的图形有()图K-6-1A.3组 B.4组C.5组 D.6组2.在图K-6-2(b)中,由图K-6-2(a)放大或缩小而得到的图形有()图K-6-2A.0个 B.1个C.2个 D.3个3.图K-6-4中与图K-6-3相似的图形是听课例题归纳总结()图K-6-3图K-6-44.下列关于相似图形的说法错误的是()A.相似图形的形状一定相同,大小不一定相同B.全等图形是一种特殊的相似图形C.同一个人在平面镜和在哈哈镜中的形象是相似图形D.若甲与乙是相似图形,乙与丙是相似图形,则甲与丙是相似图形二、填空题5.图K-6-5②~⑥中,与图①相似的图形有________(填图形的序号).听课例题归纳总结图K-6-56.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)三、解答题7.如图K-6-6是用相似图形设计的图案.图K-6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).如何将图K-6-7中的图形ABCDE放大,使新图形的各个顶点仍在格点上?图K-6-7详解详析[课堂达标]1.[解析] B 由观察知(a)(b)(c)(e)中的图形是相似图形.故选B.2.[解析] B 由观察知图(b)中的第3个图形与图(a)相似.应选B.[点评] 注意相似的要求是形状相同,这是判断两个图形是不是相似图形的根本标准.3.D5.③⑤⑥6.[答案] 是不是[解析] 放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不是相似图形.7.解:(1)各个图案的基本图形分别是直角三角形、正方形、正五边形.(2)答案不唯一,只要是用相似图形做的,都符合要求.如图:[素养提升][解析] 相似图形只要求形状相同,而与位置无关,这样同学们可以有不同的画法,下图中的图形A′B′C′D′E′只是其中的一种.解:答案不唯一,如图所示.[点评]各个顶点在方格图中的位置,然后再依次连接构成新图形.。
九年级数学下册 第二十七章 相似 27.1 图形的相似课时训练 (新版)新人教版-(新版)新人教版初
27.1 图形的相似关键问答①判断图形是否相似的主要方法是什么?②对于形状相同的两个图形,从数学角度怎么做阐述?③判断四条线段是否成比例的方法是什么?④由相似多边形的定义可以推出什么?1.①下列图形中相似的有()(1)放大镜下的图片与原来的图片;(2)放电影时胶片上的图象和它映射到屏幕上的图象;(3)天空中两朵白云的照片;(4)卫星上拍摄的长城照片与用相机拍摄的长城照片.A.4组 B.3组 C.2组 D.1组2.②如果两个相似多边形的一组对应边的长分别为3 cm,4.5 cm,那么它们的相似比为()A.23B.32C.49D.943.③下列各组中的四条线段成比例的是()A.a=1,b=3,c=2,d=4 B.a=4,b=6,c=5,d=10C.a=5,b=10,c=7,d=14 D.a=2,b=3,c=4,d=14.④如图27-1-1所示,四边形ABCD和四边形A′B′C′D′相似,求未知边x的长度和未知角α的度数.图27-1-1命题点 1 图形相似的判断[热度:98%]5.下面各组图形中,不是相似图形的是()图27-1-26.⑤观察图27-1-3中的图形,指出图(1)~(8)中的图形有没有与给出的图形(a)(b)(c)形状相同的?图27-1-3方法点拨⑤可考虑图形之间的水平长与竖直宽是否同时扩大或缩小.命题点 2 识别成比例线段[热度:90%]7.下列长度的线段成比例的是()A.2 cm,5 cm,6 cm,8 cm B.1 cm,2 cm,3 cm,4 cmC.3 cm,6 cm,7 cm,9 cm D.3 cm,6 cm,9 cm,18 cm8.⑥若线段a,b,c,d成比例,其中a=3 cm,b=6 cm,c=2 cm,则d=________ cm.解题突破⑥若线段a ,b ,c ,d 成比例,则有a b =c d.9.⑦已知三条线段a =1 cm ,b =2 cm ,c =3 cm ,若第四条线段与它们成比例,则这样的线段共有几条?它们分别为多长?易错警示⑦在没有明确成比例线段的顺序时,需分情况进行讨论. 命题点 3 比例尺 [热度:90%]10.在比例尺为1∶5000的地图上,量得甲、乙两地的距离为25 cm ,则甲、乙两地的实际距离是()A .1250 kmB .125 kmC .12.5 kmD .1.25 km11.⑧如图27-1-4是小明同学在体育课上跳远后留下的脚印,则他的跳远成绩约是________m(比例尺为1∶300).图27-1-4解题突破⑧跳远成绩指落地时身体距起跳线最近的落点到起跳线的垂线段的长. 命题点 4 识别相似多边形 [热度:92%] 12.下列图形中一定相似的是() A .有一个角相等的两个平行四边形 B .有一个角相等的两个等腰三角形 C .有一个角相等的两个菱形D .有一组邻边对应成比例的两个平行四边形13.⑨如图27-1-5,矩形ABCD的长AB=30,宽BC=20.(1)如图①,若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形,即矩形ABCD与矩形A′B′C′D′相似吗?请说明理由;(2)如图②,当x为多少时,图中的矩形ABCD与矩形A′B′C′D′相似?图27-1-5方法点拨⑨判定相似多边形的条件是对应角相等,对应边成比例,欲说明两个多边形不相似,只需说明对应边不成比例或对应角不相等即可.命题点 5 相似多边形的性质[热度:95%]14.如图27-1-6,已知六边形ABCDEF与六边形GHIJKL相似,点A,B,C,D,E,F 的对应点分别是点G,H,I,J,K,L.若它们的相似比为2∶1,则下列结论中正确的是()图27-1-6A.∠E=2∠K B.∠K=2∠EC.BC=2HI D.六边形ABCDEF的周长=六边形GHIJKL的周长15.如图27-1-7,在矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F处.若四边形EFDC与矩形ABCD相似,则AD的长为()图27-1-7A.5B .1+5C .4D .2 316.如图27-1-8,E 是菱形ABCD 的对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接EB ,GD .(1)求证:EB =GD ; 方法点拨⑩添加辅助线,构造直角三角形,利用勾股定理求解.⑩(2)若∠DAB =60°,AB =2,AG =3,求GD 的长.图27-1-817.平面图形相似的概念可以推广到空间立体图形.例如:任意两个球体都是相似的;任意两个正方体都是相似的.立体相似图形也有与平面相似图形相类似的性质.(1)猜想性质:棱长为1的正方体的体积V 1=1,棱长为2的正方体的体积V 2=8,棱长为3的正方体的体积V 3=27,…,可得V 1V 2=18=(12)3,V 1V 3=127=(13)3,V 2V 3=827=(23)3,…,由此猜想立体相似图形具有下列性质:立体相似图形的体积之比等于对应线段之比的________;解题突破⑪买哪种鱼合算可以转化成比较单位体积的鱼的价格大小.⑪(2)问题解决:星期天,小强帮妈妈去超市买鱼,正赶上超市促销.超市里有一种“竹荚鱼”都长得非常相似,按大小有两种不同的价钱,如图27-1-9所示,鱼长10 cm 的每条10元,鱼长13 cm 的每条15元.买哪种鱼合算呢?图27-1-9详解详析1.C4.解:由题意,得1612=24x ,解得x =18.∵∠C ′=360°-(63°+129°+78°)=90°, 四边形ABCD 和四边形A ′B ′C ′D ′相似, ∴∠C =∠C ′=90°,即α=90°. 5.B6.解:(a)与(4)(8);(b)与(6);(c)与(5)形状相同.7.D[解析] A 项中,25≠68;B 项中,12≠34;C 项中,36≠79;D 项中,36=918=12,所以选项D 中的四条线段成比例.故选D.8.4[解析] 由线段a ,b ,c ,d 成比例,可得a b =c d ,即36=2d,解得d =4(cm).9.解:设第四条线段的长是x cm. 当x ≥3时,有12=3x,解得x =6;当2≤x <3时,有12=x 3,解得x =32(不符合要求,舍去);当1≤x <2时,有1x =23,解得x =32;当x <1时,有x 1=23,解得x =23.所以这样的线段共有3条,它们的长分别为6 cm ,32 cm 和23cm.10.D[解析] 设甲、乙两地的实际距离为x km ,有15000=错误!,解之得x =1.25.11. [解析×300=450(cm)=4.5 m.12.C[解析] 由菱形的四条边都相等,结合已知条件可得有一个角相等的两个菱形是相似的.13.解:(1)不相似.理由:由题意得AB =30,A ′B ′=28,BC =20,B ′C ′=18,而2830≠1820,故矩形ABCD 与矩形A ′B ′C ′D ′不相似. (2)若矩形ABCD 与矩形A ′B ′C ′D ′相似,则A ′B ′AB =B ′C ′BC 或A ′B ′BC =B ′C ′AB,即30-2x 30=20-220或30-2x 20=20-230,解得x =或x =9. 14.C[解析] 根据相似多边形的对应角相等可得A ,B 错误.根据相似多边形对应边的比等于相似比可得C 正确.根据相似多边形的对应边的比等于相似比,可知周长比也等于相似比,D 选项也是错误的.15.B[解析] ∵沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处,∴四边形ABEF 是正方形.已知AB =2,设AD =x ,则FD =x -2,EF =2. ∵四边形EFDC 与矩形ABCD 相似, ∴EF FD =ADAB ,即2x -2=x 2, 解得x 1=1+5,x 2=1-5(舍去),经检验,x 1=1+5是原方程的解且符合题意. ∴AD 的长为1+ 5.16.解:(1)证明:∵菱形AEFG ∽菱形ABCD , ∴∠EAG =∠BAD ,∴∠EAG +∠GAB =∠BAD +∠GAB , 即∠EAB =∠GAD .∵四边形AEFG 与四边形ABCD 都是菱形, ∴AE =AG ,AB =AD , ∴△AEB ≌△AGD ,∴EB =GD .(2)如图,连接BD 交AC 于点P ,则BP ⊥AC . ∵∠DAB =60°, ∴∠PAB =30°,∴BP =12AB =1,AP =AB 2-BP 2= 3.∵AE =AG =3,∴EP =2 3, ∴EB =EP 2+BP 2=13, ∴GD =13. 17.解:(1)立方(2)设长度为13 cm 和10 cm 的鱼的体积分别是V 1 cm 3,V 2 cm 3.∵两种鱼相似,∴V 1V 2=(1310)3=2.197.∵101>152.197,∴购买13 cm 长的鱼更合算. 【关键问答】①主要看图形的形状是否相同,即将一个图形放大或缩小后得到的图形和原图形是相似的.②形状相同的两个图形,指的是对应角相等,对应边成比例的两个图形,即相似的两个图形.③答案不唯一,如:将四条线段中长度最小的与最大的相乘,另外两条相乘,看它们的积是否相等,若相等,则是成比例线段,若不相等,则不是成比例线段.④相似多边形的对应角相等,对应边成比例.。
人教版 九年级下册 第二十七章 相似 课时训练(含答案)
ACB=90°,AC=3, BC=4,由勾股定理,得 AB=5.CD⊥AB,由三角形的面
积,得 CD= AC BC = 12 .易得△ ABC∽△ACD∽△CBD,由相似三角形对应
AB
5
边成比例,得 AD= AC AC = 9 ,BD= BC BC = 16 .过点 E 作 EG∥AB 交 CD
A
E
B
D
C
A. 3 5
B. 2 3
C. 4 5
D. 3 2
5. (2020·河北) 在图5所示的网格中,以点O为位似中心,四边形ABCD的位似
图形是
A.四边形NPMQ
B.四边形NPMR
C.四边形NHMQ
D.四边形NHMR
6. (2020·重庆 B 卷)如图,△ABC 与△ DEF 位似,点 O 为位似中心.已知
AB
5
AB
5
于点 G,由平行线分线段成比例,得 DG= 1 CD= 6 ,EG= 8 ,所以 DF AD ,
2
5
5
GF EG
9
即
6
DF DF
5 8
,所以
DF=,故答案为
54 85
.
5
5
B
E FD
G
C
A
三、解答题
16. 【答案】 解:(1)证明:∵DE∥AC, ∴∠DEB=∠FCE. ∵EF∥AB,∴∠DBE=∠FEC, ∴△BDE∽△EFC. (2)①∵EF∥AB,
2
12. (2020·郴州)在平面直角坐标系中,将 AOB以点 O 为位似中心, 2 为位似 3
比作位似变换,得到 A1OB1 .已知 A(2,3) ,则点 A1 的坐标是
九年级数学下册 第二十七章 相似 27.2 相似三角形 27.2.2 相似三角形的性质课时训练 (新版)新人教版
.2.2 相似三角形的性质关键问答①怎样识别对应中线?②△RPQ与△ABC的相似比是多少?③相似三角形周长的比与对应角平分线的比之间有什么关系?1.①已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为( )A.34B.43C.916D.1692.2018·内江已知△ABC与△A1B1C1相似,且相似比为1∶3,则△ABC与△A1B1C1的面积比为( )A.1∶1 B.1∶3 C.1∶6 D.1∶93.②如图27-2-51,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的( )图27-2-51A.甲 B.乙C.丙 D.丁4.③如果两个相似三角形的周长的比为1∶4,那么周长较小的三角形与周长较大的三角形对应角平分线的比为________.5.④已知:如图27-2-52,△ABC∽△A′B′C′,AD,BE分别是△ABC的高和中线,A′D′,B′E′分别是△A′B′C′的高和中线,且AD=4,A′D′=3,BE=6,则B′E′的长为( )图27-2-52A.32B.52C.72D.92解题突破④利用相似三角形对应中线的比、对应高的比都等于相似比来解决.6.已知△OAB各顶点的坐标分别为O(0,0),A(2,4),B(4,0),若得到与△OAB形状相同的△OA′B′,已知点A′的坐标为(6,12),那么点B′的坐标可能为( ) A.(4,0) B.(2,0) C.(16,0) D.(12,0)7.⑤如果△ABC与△DEF相似,△ABC的三边长之比为3∶4∶6,△DEF的最长边长是10 cm,那么△DEF的最短边长是________ cm.方法点拨⑤两个相似三角形中,最长边之比与最短边之比都等于相似比.8.如图27-2-53,已知△ABC∽△A1B1C1,相似比为k(k>1),且△ABC的三边长分别为a,b,c(a>b>c),△A1B1C1的三边长分别为a1,b1,c1.(1)若c=a1,求证:a=kc;(2)若c=a1,试给出符合条件的一对△ABC和△A1B1C1,使得a,b,c和a1,b1,c1都是正整数,并加以说明;⑥(3)若b=a1,c=b1,是否存在△ABC和△A1B1C1使得k=2?请说明理由.图27-2-53方法点拨⑥对于存在性问题,总是先假设存在,然后由已知条件和所学知识进行推导,如果推出矛盾,那么假设不成立.9.两个相似三角形的对应边分别是15 cm和23 cm,它们的周长相差40 cm,则这两个三角形的周长分别是( )A.75 cm,115 cm B.60 cm,100 cmC.85 cm,125 cm D.45 cm,85 cm10.如图27-2-54,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE 的面积为( )图27-2-54A.3 B.5 C.6 D.811.⑦如图27-2-55,在正方形网格中有△A1B1C1和△A2B2C2,若两个三角形的顶点均在网格的格点上,则△A1B1C1和△A2B2C2的面积比为( )图27-2-55A.2∶1 B.1∶2 C.4∶1 D.1∶4方法点拨⑦判定网格图中的两三角形相似,通常利用“两边对应成比例且夹角相等的两个三角形相似”或“三边对应成比例的两个三角形相似”的判定定理.12.⑧如图27-2-56,D,E分别是△ABC的边AB,BC上的点,DE∥AC,若S△BDE∶S△CDE =1∶3,则S△DOE∶S△AOC的值为( )图27-2-56A.13B.14C.19D.116方法点拨⑧当两个三角形有一边在同一条直线上,且这边所对的顶点是同一点时,这两个三角形同高不同底,它们的面积比等于底边长的比.13.如图27-2-57,在矩形ABCD中,E为AD边的中点,F为BC边的中点;G,H为AB边的三等分点,I,J为CD边的三等分点.连接AF,CE,AJ,GI,HC.试写出S四边形ANML与S四边形ABCD之间的数量关系,并说明理由.图27-2-5714.⑨操作:小明准备制作棱长为1 cm 的正方体纸盒,现选用一些废弃的纸片进行如下设计:说明:方案一:图形中的圆过点A ,B ,C ; 方案二:直角三角形的两直角边与展开图左下角的正方形的两条边重合,斜边经过两个正方形的顶点.纸片利用率=展开图的面积纸板的总面积×100%.发现:(1)方案一中的点A ,B 恰好为该圆一直径的两个端点. 你认为小明的这个发现是否正确?请说明理由.(2)小明通过计算,发现方案一中的纸片利用率仅约为38.2%. 请帮忙计算方案二中的纸片利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的纸片利用率.(精确到0.1%)说明:方案三中的每条边均过其中两个正方形的顶点.图27-2-58解题突破⑨借助相似三角形的性质、正方形的相关性质,先求部分线段的长,再求和得到纸板的两条直角边的长,最后求三角形的面积.详解详析1.A2.D [解析] 已知△ABC 与△A 1B 1C 1相似,且相似比为1∶3,则△ABC 与△A 1B 1C 1的面积比为1∶9.3.B 4.1∶45.D [解析] 由△ABC ∽△A ′B ′C ′,可得AD A ′D ′=BE B ′E ′,可求得B ′E ′=92. 6.D7.5 [解析] 设△DEF 的最短边长为x cm ,△ABC 的三边长分别为3a cm ,4a cm ,6a cm , ∵△ABC 与△DEF 相似,∴3a ∶x =6a ∶10,解得x =5, 即△DEF 的最短边长是5 cm.8.解:(1)证明:∵△ABC ∽△A 1B 1C 1,且相似比为k (k >1),∴a a 1=k ,∴a =ka 1. 又∵c =a 1,∴a =kc .(2)答案不唯一,如取a =8,b =6,c =4,同时取a 1=4,b 1=3,c 1=2,此时a a 1=b b 1=c c 1=2,∴△ABC ∽△A 1B 1C 1,相似比为2且c =a 1.(3)不存在这样的△ABC 和△A 1B 1C 1使得k =2.理由如下: 若k =2,则a =2a 1,b =2b 1,c =2c 1.又∵b =a 1,c =b 1,∴a =2a 1=2b =4b 1=4c , ∴b =2c ,∴b +c =2c +c <4c ,4c =a , 即b +c <a ,实际应该是b +c >a ,故不存在这样的△ABC 和△A 1B 1C 1使得k =2.9.A [解析] 设小三角形的周长为x cm ,则大三角形的周长为(x +40)cm. ∵这两个相似三角形的对应边的比为15∶23,∴xx +40=1523, 解得x =75.经检验,x =75是原方程的解且符合题意,则x +40=115. 故这两个三角形的周长分别是75 cm ,115 cm. 10.D [解析] 由DE ∥BC ,DB =2AD ,得△ADE ∽△ABC ,AD AB =13,∴S △ADE S △ABC =19.∵S △ADE =1,∴S △ABC =9,∴S 四边形DBCE =S △ABC -S △ADE =8.故选D.11.C [解析] 由网格图可得∠B 1A 1C 1=∠B 2A 2C 2=135°,A 1B 1A 2B 2=A 1C 1A 2C 2=2,所以△A 1B 1C 1∽△A 2B 2C 2,所以△A 1B 1C 1和△A 2B 2C 2的面积比为4∶1.12.D [解析] ∵S △BDE ∶S △CDE =1∶3, ∴BE ∶EC =1∶3,∴BE ∶BC =1∶4. ∵DE ∥AC ,∴△BDE ∽△BAC ,∴DE AC =BE BC =14. ∵DE ∥AC ,∴△DOE ∽△COA , ∴S △DOE ∶S △AOC =⎝ ⎛⎭⎪⎫DE AC 2=116.13.解:S 四边形ANML =15S 四边形ABCD .理由:如图,延长CE 交BA 的延长线于点T ,连接DN ,设S △AEN =a .∵AT ∥CD , ∴∠T =∠ECD .∵∠AET =∠CED ,AE =ED , ∴△AET ≌△DEC ,∴AT =CD . ∵AT ∥CJ ,∴AN NJ =AT CJ =32,∴S △ADN S △DNJ =32,可得S △DNJ =43a , ∴S △ADJ =2a +43a =103a =16S 四边形ABCD ,∴S 四边形ABCD =20a ,∴S 四边形AECF =10a ,∴S 四边形ANML =12(S 四边形AECF -2S △AEN )=12(10a -2a )=4a ,∴S 四边形ANML =15S 四边形ABCD .14.解:发现:(1)小明的这个发现正确. 理由:解法一:如图①,连接AC ,BC ,AB . ∵AC =BC =10 cm ,AB =2 5 cm ,∴AC 2+BC 2=AB 2,∴∠BCA =90°, ∴AB 为该圆的直径.解法二:如图②,连接AC ,BC ,AB . 易证△AMC ≌△CNB , ∴∠ACM =∠CBN .又∵∠BCN +∠CBN =90°, ∴∠BCN +∠ACM =90°, 即∠BCA =90°, ∴AB 为该圆的直径.(2)如图③,∵DE ∥FH , ∴∠A ′ED =∠EFH .又∵∠A ′DE =∠EHF =90°,DE =FH , ∴△A ′DE ≌△EHF (ASA),∴A ′D =EH =1 cm ,∴A ′C ′=4 cm.∵DE ∥B ′C ′,∴△A ′DE ∽△A ′C ′B ′, ∴A ′D A ′C ′=DE C ′B ′,即14=2C ′B ′, ∴C ′B ′=8 cm ,∴S △A ′C ′B ′=12×4×8=16(cm 2).∴该方案的纸片利用率=616×100%=37.5%.探究:(3)如图④,过点C 1作C 1D ⊥EF 于点D ,延长LM 交A 1B 1于点G ,过点G 作GH ∥A 1C 1,交B 1C 1于点H ,设A 1P =a .∵PQ ∥EK ,易得△A 1PQ ∽△KQE ,△C 1EF 是等腰三角形,△GHL 是等腰三角形, ∴A 1P ∶A 1Q =QK ∶EK =1∶2,∴A 1Q =2a ,PQ =5a ,∴EQ =5a .∵EC 1∶ED =QE ∶QK ,∴EC 1=52a ,∴PG =5a +52a =152a ,GL =5 52a ,∴GH =258a .∵GH A 1C 1=GB 1A 1B 1, ∴258a 2a +5a +52a =GB 1GB 1+152a +a,解得GB 1=256a ,∴A 1B 1=383a ,A 1C 1=192a ,∴S △A 1B 1C 1=12A 1B 1·A 1C 1=3616a 2.∵S 展开图=6×5a 2=30a 2, ∴该方案的纸片利用率=S 展开图S △A 1B 1C 1=180361×100%≈49.9%.【关键问答】①对应边上的中线是对应中线. ②相似比为2.③相似三角形周长的比与对应角平分线的比相等,都等于相似比.。
人教版9年级数学下册第27章《相似》课时练+测试题
目 录第二十七章 相似 (1)测试1 图形的相似............................................... 1 测试2 相似三角形............................................... 3 测试3 相似三角形的判定......................................... 6 测试4 相似三角形应用举例...................................... 10 测试5 相似三角形的性质........................................ 13 测试6 位 似.................................................. 16 第二十七章 相似全章测试. (18)第二十七章 相似测试1 图形的相似学习要求1.理解相似图形、相似多边形和相似比的概念. 2.掌握相似多边形的两个基本性质.3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.课堂学习检测一、填空题1.________________________是相似图形.2.对于四条线段a ,b ,c ,d ,如果____________与____________(如),那么称这四条线段是成比例线段,简称__________________.3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k ,则乙多边形与甲多边形的相似比为____________.5.相似多边形的两个基本性质是____________,____________.6.比例的基本性质是如果不等于零的四个数成比例,那么___________.反之亦真.即______(a ,b ,c ,d 不为零).7.已知2a -3b =0,b ≠0,则a ∶b =______.8.若则x =______. 9.若则______. 10.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两dcb a =⇔=d cb a ,571=+x x ,532z y x ===-+x zy x 2地实际距离为______m.二、选择题11.在下面的图形中,形状相似的一组是( )12.下列图形一定是相似图形的是( )A.任意两个菱形B.任意两个正三角形C.两个等腰三角形D.两个矩形13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm,60cm,80cm,三角形框架乙的一边长为20cm,那么,符合条件的三角形框架乙共有( )A.1种B.2种C.3种D.4种三、解答题14.已知:如图,梯形ABCD与梯形A′B′C′D′相似,AD∥BC,A′D′∥B′C′,∠A =∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)D′C′∶DC.综合、运用、诊断15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.拓展、探究、思考17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?测试2 相似三角形学习要求1.理解相似三角形的有关概念,能正确找到对应角、对应边.2.掌握相似三角形判定的基本定理.课堂学习检测一、填空题1.△DEF∽△ABC表示△DEF与△ABC______,其中D点与______对应,E点与______对应,F点与______对应;∠E=______;DE∶AB=______∶BC,AC∶DF=AB∶______.2.△DEF∽△ABC,若相似比k=1,则△DEF______△ABC;若相似比k=2,则______,______. 3.若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______. 4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_____ ____________与原三角形______. 5.已知:如图,△ADE 中,BC ∥DE ,则①△ADE ∽______; ②③二、解答题6.已知:如图所示,试分别依下列条件写出对应边的比例式. (1)若△ADC ∽△CDB ; (2)若△ACD ∽△ABC ; (3)若△BCD ∽△BAC .综合、运用、诊断7.已知:如图,△ABC 中,AB =20cm ,BC =15cm ,AD =12.5cm ,DE ∥BC .求DE 的长.=AC DF =EFBC;)(,)(BC AB AD AE AB AD ==⋅==CABA BD AE DB AD )(,)(8.已知:如图,AD ∥BE ∥CF .(1)求证:(2)若AB =4,BC =6,DE =5,求EF .9.如图所示,在△APM 的边AP 上任取两点B ,C ,过B 作AM 的平行线交PM 于N ,过N 作MC 的平行线交AP 于D .求证:PA ∶PB =PC ∶PD .拓展、探究、思考10.已知:如图,E 是□ABCD 的边AD 上的一点,且,CE 交BD 于点F ,BF =15cm ,求DF 的长.;DFDEAC AB=23=DEAE11.已知:如图,AD 是△ABC 的中线.(1)若E 为AD 的中点,射线CE 交AB 于F ,求; (2)若E 为AD 上的一点,且,射线CE 交AB 于F ,求测试3 相似三角形的判定学习要求1.掌握相似三角形的判定定理.2.能通过证三角形相似,证明成比例线段或进行计算.课堂学习检测一、填空题1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似. 2.如果两个三角形的______对应边的______,那么这两个三角形相似. 3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相 似. 4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似. 5.在△ABC 和△A ′B ′C ′中,如果∠A =56°,∠B =28°,∠A ′=56°,∠C ′=28°,那么这两个三角形能否相似的结论是______.理由是________________. 6.在△ABC 和△A 'B ′C ′中,如果∠A =48°,∠C =102°,∠A ′=48°,∠B ′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC 和△A 'B ′C ′中,如果∠A =34°,AC =5cm ,AB =4cm ,∠A ′=34°,A 'C ′=2cm ,A ′B ′=1.6cm ,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC 和△DEF 中,如果AB =4,BC =3,AC =6;DE =2.4,EF =1.2,FD =1.6,那么这两个三角形能否相似的结论是____________,理由是__________________. 9.如图所示,△ABC 的高AD ,BE 交于点F ,则图中的相似三角形共有______对.BFAFkED AE 1=⋅BFAF9题图10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有______对.10题图二、选择题11.如图所示,不能判定△ABC∽△DAC的条件是( )A.∠B=∠DACB.∠BAC=∠ADCC.AC2=DC·BCD.AD2=BD·BC12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5B.8.2C.6.4D.1.813.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )三、解答题14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:(1)OD∶OA=OE∶OB;(2)△ODE∽△OAB;(3)△ABC∽△DEF.综合、运用、诊断16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC相切于E点.求证:AB·CD=BE·EC.18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD·BC=OB·BD.19.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.求证:CB2=CF·CE.拓展、探究、思考20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.21.已知:如图,在△ABC 中,∠BAC =90°,AH ⊥BC 于H ,以AB 和AC 为边在Rt△ABC 外作等边△ABD 和△ACE ,试判断△BDH 与△AEH 是否相似,并说明理由.22.已知:如图,在△ABC 中,∠C =90°,P 是AB 上一点,且点P 不与点A 重合,过点P 作PE ⊥AB 交AC 于E ,点E 不与点C 重合,若AB =10,AC =8,设AP =x ,四边形PECB 的周长为y ,求y 与x 的函数关系式.测试4 相似三角形应用举例学习要求能运用相似三角形的知识,解决简单的实际问题.课堂学习检测一、选择题1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .2.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .B .C .D .m 310m 711m 710m 79m 233.如图所示阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐距地面的距离BC=1m,EC=1.2m,那么窗户的高AB为( )第3题图A.1.5m B.1.6m C.1.86m D.2.16m 4.如图所示,AB是斜靠在墙壁上的长梯,梯脚B距离墙角1.6m,梯上点D距离墙1.4m,BD长0.55m,则梯子长为( )第4题图A.3.85m B.4.00m C.4.40m D.4.50m二、填空题5.如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,则树AB的高度为______m.第5题图6.如图所示,有点光源S在平面镜上面,若在P点看到点光源的反射光线,并测得AB =10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.第6题图三、解答题7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?综合、运用、诊断9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)测试5 相似三角形的性质学习要求掌握相似三角形的性质,解决有关的计算或证明问题.课堂学习检测一、填空题1.相似三角形的对应角______,对应边的比等于______.2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______.3.相似三角形的周长比等于______.4.相似三角形的面积比等于______.5.相似多边形的周长比等于______,相似多边形的面积比等于______.6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______.8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______.9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______.10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______.11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______.12.在比例尺1∶1000的地图上,1cm 2所表示的实际面积是______. 二、选择题13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )A .9∶4B .4∶9C .3∶2D .81∶1614.如图所示,在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于点Q ,若△DQE 的面积为9,则△AQB 的面积为( )A .18B .27C .36D .4515.如图所示,把△ABC 沿AB 平移到△A ′B ′C ′的位置,它们的重叠部分的面积是△ABC 面积的一半,若,则此三角形移动的距离AA '是( )A.B .C .1D .三、解答题16.已知:如图,E 、M 是AB 边的三等分点,EF ∥MN ∥BC .求:△AEF 的面积∶四边形EMNF 的面积∶四边形MBCN 的面积.综合、运用、诊断17.已知:如图,△ABC 中,∠A =36°,AB =AC ,BD 是角平分线.(1)求证:AD 2=CD ·AC ; (2)若AC =a ,求AD .2=AB 12-222118.已知:如图,□ABCD 中,E 是BC 边上一点,且相交于F 点. (1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S △BEF =6cm 2,求△AFD 的面积S △AFD .19.已知:如图,Rt △ABC 中,AC =4,BC =3,DE ∥AB .(1)当△CDE 的面积与四边形DABE 的面积相等时,求CD 的长; (2)当△CDE 的周长与四边形DABE 的周长相等时,求CD 的长.拓展、探究、思考20.已知:如图所示,以线段AB 上的两点C ,D 为顶点,作等边△PCD .(1)当AC ,CD ,DB 满足怎样的关系时,△ACP ∽△PDB . (2)当△ACP ∽△PDB 时,求∠APB .AE BD EC BE ,,2121.如图所示,梯形ABCD中,AB∥CD,对角线AC,BD交于O点,若S△AOD∶S△DOC=2∶3,求S△AOB∶S△COD.22.已知:如图,梯形ABCD中,AB∥DC,∠B=90°,AB=3,BC=11,DC=6.请问:在BC上若存在点P,使得△ABP与△PCD相似,求BP的长及它们的面积比.测试6 位似学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.2.能用坐标表示位似变形下图形的位置.课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB 进行位似变换得到△CDE ,记△AOB 与△CDE 对应边的比为k ,则位似中心的坐标和k 的值分别为( )A .(0,0),2B .(2,2),C .(2,2),2D .(2,2),3综合、运用、诊断3.已知:如图,四边形ABCD 的顶点坐标分别为A (-4,2),B (-2,-4),C (6,-2),D (2,4).试以O 点为位似中心作四边形A 'B 'C 'D ′,使四边形ABCD 与四边形A ′B ′C ′D ′的相似比为1∶2,并写出各对应顶点的坐标.4.已知:如下图,是由一个等边△ABE 和一个矩形BCDE 拼成的一个图形,其B ,C ,D 点的坐标分别为(1,2),(1,1),(3,1).21(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?拓展、探究、思考5.在已知三角形内求作内接正方形.6.在已知半圆内求作内接正方形.第二十七章相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则的值为( )第1题图A .B .C .D .2.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )第2题图A .B .C .D .3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )第3题图A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,,AC =3,则CD 长为( )BCDE3241312121=BC DE 21=∆∆的周长的周长ABC ADE 的面积的面积ABC ADE ∆∆31=的周长的周长ABC ADE ∆∆31=6=BC第4题图A .1B .C .2D .5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )第6题图A .B .C .D .7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )第7题图A .PA ·AB =PC ·PB B .PA ·PB =PC ·PD C .PA ·AB =PC ·CD D .PA ∶PB =PC ∶PD 8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件第8题图①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个D .0个二、填空题2325BC DEDB AD =ADEFBC BF =FCBFEC AE =BCDEAB EF=9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且,射线CF 交AB 于E 点,则等于______.第10题图11.如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.第11题图12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______.三、解答题13.已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长.61EB AE FDAF14.已知:如图,AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,求CB 的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC 的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD·CE.18.已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE =45°.(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值; (2)若设试求y 与x 之间的函数关系式及x 的取值范围.20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.,,y SS x AD ='=21.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒.(1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似?(3)当t 为何值时,△APQ 的面积为个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .524(1)求证:△BEF∽△CEG;(2)求用x表示S的函数表达式,并写出x的取值范围;(3)当E点运动到何处时,S有最大值,最大值为多少?。
九年级数学下册第二十七章相似图形的相似作业新版新人教版
第二十七章相似27.1图形的相似第1课时认识相似图形知识要点基础练知识点1相似图形的概念1.“相似的图形”是(A)A.形状相同的图形B.大小不相同的图形C.能够重合的图形D.大小相同的图形2.下列说法正确的是(D)A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的知识点2相似图形的放大与缩小3.下列各组图形其中的一个可以看作是另一个放大或缩小得到的是(B)4.从放大镜里看一个等腰三角形,以下说法错误的是(B)A.看到的三角形还是一个等腰三角形B.看到的三角形各个角的度数都增大了C.看到的三角形各个角的度数保持不变D.看到的三角形各边长都增大了综合能力提升练5.下列四组图形中,一定相似的是(D)A.正方形与矩形B.正方形与菱形C.菱形与菱形D.正五边形与正五边形【变式拓展】下列说法:①所有长方形都相似;②所有正方形都相似;③所有菱形都相似;④所有等边三角形都相似.其中正确的有(B)A.1个B.2个C.3个D.4个6.观察下列图形,其中相似图形有(D)A.1对B.2对C.3对D.4对7.在一张由复印机复印出来的纸上,一个多边形的一条边由原来的1 cm变成了4 cm,那么这个多边形的另一条边由原来的4 cm变成了(C)A.4 cmB.8 cmC.16 cmD.32 cm8.如图的各组图形中,相似的是(B)A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)9.如图是两个相似圆柱,它们的底面半径和高的尺寸如图所示,求它们的体积之比.解:小圆柱的体积是(2a)2π·2b=8πa2b,大圆柱的体积是(3a)2π·3b=27πa2b,所以小圆柱与大圆柱的体积之比为8∶27.拓展探究突破练10.某课外活动小组的同学在研究某种植物标本(如图)时,测得叶片①最大宽度是8 cm,最大长度是16 cm;叶片②最大宽度是7 cm,最大长度是14 cm;叶片③最大宽度约为6.5 cm,请你用所学数学知识估算叶片③的完整叶片的最大长度约为多少.解:根据叶片①②的最大长度和宽度,可得出这种植物的叶片的最大宽度∶最大长度=1∶2.由此可得出完整的叶片③的最大长度应是6.5×2=13 cm.第2课时相似多边形的特征知识要点基础练知识点1成比例线段1.若四条线段a,b,c,d成比例,且a=3 cm,b=2 cm,c=9 cm,则线段d的长为(C)A.4 cmB.5 cmC.6 cmD.8 cm2.湖南地图出版社首发的竖版《中华人民共和国地图》,将南海诸岛与中国大陆按比例尺1∶6700000表示出来,使读者能够全面、直观地认识我国版图,若在这种地图上量得我国南北的图上距离是82.09厘米,则我国南北的实际距离大约是5500千米.(结果精确到1千米)知识点2相似多边形的概念3.下列多边形一定相似的是(D)A.两个平行四边形B.两个菱形C.两个矩形D.两个正方形4.四边形ABCD的四条边长分别为54 cm,48 cm,45 cm,63 cm,另一个和它相似的四边形最短边长为15 cm,则这个四边形的最长边长为(C)A.18 cmB.16 cmC.21 cmD.24 cm综合能力提升练5.下列各组线段的长度成比例的是(D)A.1 cm,2 cm,3 cm,4 cmB.2 cm,3 cm,4 cm,5 cmC.0.3 m,0.6 m,0.5 m,0.9 mD.20 cm,15 cm,36 cm,27 cm6.如图中的三个矩形相似的是(A)A.甲和丙B.甲和乙C.乙和丙D.甲、乙和丙7.有一个多边形的边长分别是4 cm,5 cm,6 cm,4 cm,5 cm,和它相似的一个多边形最长边为8 cm,那么这个多边形的周长是(C)A.12 cmB.18 cmC.32 cmD.48 cm8.已知a,b,c,d四条线段依次成比例,其中a=3 cm,b=(x-1) cm,c=5 cm,d=(x+1) cm,则x= 4.9.如图,已知矩形纸片ABCD中,AB=1,剪去正方形ABEF,得到的矩形ECDF与矩形ABCD相似,.则AD的长为√5+12拓展探究突破练10.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m-n|,于是|m-n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a-b|,于是|a-b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.解:(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a-b|却不相等.合理定义方法不唯一.如定义为bb ,bb越小,矩形越接近于正方形;bb越大,矩形与正方形的形状差异越大;当bb=1时,矩形就变成了正方形,即只有矩形的bb越接近1,矩形才越接近正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27.1 图形的相似关键问答①判断图形是否相似的主要方法是什么?②对于形状相同的两个图形,从数学角度怎么做阐述?③判断四条线段是否成比例的方法是什么?④由相似多边形的定义可以推出什么?1.①下列图形中相似的有( )(1)放大镜下的图片与原来的图片;(2)放电影时胶片上的图象和它映射到屏幕上的图象;(3)天空中两朵白云的照片;(4)卫星上拍摄的长城照片与用相机拍摄的长城照片.A.4组 B.3组 C.2组 D.1组2.②如果两个相似多边形的一组对应边的长分别为3 cm,4.5 cm,那么它们的相似比为( )A.23B.32C.49D.943.③下列各组中的四条线段成比例的是( )A.a=1,b=3,c=2,d=4 B.a=4,b=6,c=5,d=10C.a=5,b=10,c=7,d=14 D.a=2,b=3,c=4,d=14.④如图27-1-1所示,四边形ABCD和四边形A′B′C′D′相似,求未知边x的长度和未知角α的度数.图27-1-1命题点 1 图形相似的判断[热度:98%]5.下面各组图形中,不是相似图形的是( )图27-1-26.⑤观察图27-1-3中的图形,指出图(1)~(8)中的图形有没有与给出的图形(a)(b)(c)形状相同的?图27-1-3方法点拨⑤可考虑图形之间的水平长与竖直宽是否同时扩大或缩小. 命题点 2 识别成比例线段 [热度:90%] 7.下列长度的线段成比例的是( )A .2 cm ,5 cm ,6 cm ,8 cmB .1 cm ,2 cm ,3 cm ,4 cmC .3 cm ,6 cm ,7 cm ,9 cmD .3 cm ,6 cm ,9 cm ,18 cm 8.⑥若线段a ,b ,c ,d 成比例,其中a =3 cm ,b =6 cm ,c =2 cm ,则d =________ cm. 解题突破⑥若线段a ,b ,c ,d 成比例,则有a b =c d.9.⑦已知三条线段a =1 cm ,b =2 cm ,c =3 cm ,若第四条线段与它们成比例,则这样的线段共有几条?它们分别为多长?易错警示⑦在没有明确成比例线段的顺序时,需分情况进行讨论. 命题点 3 比例尺 [热度:90%]10.在比例尺为1∶5000的地图上,量得甲、乙两地的距离为25 cm ,则甲、乙两地的实际距离是( )A .1250 kmB .125 kmC .12.5 kmD .1.25 km11.⑧如图27-1-4是小明同学在体育课上跳远后留下的脚印,则他的跳远成绩约是________m(比例尺为1∶300).图27-1-4解题突破⑧跳远成绩指落地时身体距起跳线最近的落点到起跳线的垂线段的长.命题点 4 识别相似多边形[热度:92%]12.下列图形中一定相似的是( )A.有一个角相等的两个平行四边形B.有一个角相等的两个等腰三角形C.有一个角相等的两个菱形D.有一组邻边对应成比例的两个平行四边形13.⑨如图27-1-5,矩形ABCD的长AB=30,宽BC=20.(1)如图①,若沿矩形ABCD四周有宽为1的环形区域,图中所形成的两个矩形,即矩形ABCD与矩形A′B′C′D′相似吗?请说明理由;(2)如图②,当x为多少时,图中的矩形ABCD与矩形A′B′C′D′相似?图27-1-5方法点拨⑨判定相似多边形的条件是对应角相等,对应边成比例,欲说明两个多边形不相似,只需说明对应边不成比例或对应角不相等即可.命题点 5 相似多边形的性质[热度:95%]14.如图27-1-6,已知六边形ABCDEF与六边形GHIJKL相似,点A,B,C,D,E,F 的对应点分别是点G,H,I,J,K,L.若它们的相似比为2∶1,则下列结论中正确的是( )图27-1-6A.∠E=2∠K B.∠K=2∠EC.BC=2HI D.六边形ABCDEF的周长=六边形GHIJKL的周长15.如图27-1-7,在矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使点B 落在AD 上的点F 处.若四边形EFDC 与矩形ABCD 相似,则AD 的长为( )图27-1-7A. 5 B .1+ 5 C .4 D .2 316.如图27-1-8,E 是菱形ABCD 的对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接EB ,GD .(1)求证:EB =GD ; 方法点拨⑩添加辅助线,构造直角三角形,利用勾股定理求解.⑩(2)若∠DAB =60°,AB =2,AG =3,求GD 的长.图27-1-817.平面图形相似的概念可以推广到空间立体图形.例如:任意两个球体都是相似的;任意两个正方体都是相似的.立体相似图形也有与平面相似图形相类似的性质.(1)猜想性质:棱长为1的正方体的体积V 1=1,棱长为2的正方体的体积V 2=8,棱长为3的正方体的体积V 3=27,…,可得V 1V 2=18=(12)3,V 1V 3=127=(13)3,V 2V 3=827=(23)3,…,由此猜想立体相似图形具有下列性质:立体相似图形的体积之比等于对应线段之比的________;解题突破⑪买哪种鱼合算可以转化成比较单位体积的鱼的价格大小.⑪(2)问题解决:星期天,小强帮妈妈去超市买鱼,正赶上超市促销.超市里有一种“竹荚鱼”都长得非常相似,按大小有两种不同的价钱,如图27-1-9所示,鱼长10 cm 的每条10元,鱼长13 cm 的每条15元.买哪种鱼合算呢?图27-1-9详解详析1.C 2.A 3.C4.解:由题意,得1612=24x,解得x =18.∵∠C ′=360°-(63°+129°+78°)=90°, 四边形ABCD 和四边形A ′B ′C ′D ′相似, ∴∠C =∠C ′=90°,即α=90°. 5.B6.解:(a)与(4)(8);(b)与(6);(c)与(5)形状相同.7.D [解析] A 项中,25≠68;B 项中,12≠34;C 项中,36≠79;D 项中,36=918=12,所以选项D 中的四条线段成比例.故选D.8.4 [解析] 由线段a ,b ,c ,d 成比例,可得a b =c d ,即36=2d,解得d =4(cm).9.解:设第四条线段的长是x cm. 当x ≥3时,有12=3x,解得x =6;当2≤x <3时,有12=x 3,解得x =32(不符合要求,舍去);当1≤x <2时,有1x =23,解得x =32;当x <1时,有x 1=23,解得x =23.所以这样的线段共有3条,它们的长分别为6 cm ,32 cm 和23 cm.10.D [解析] 设甲、乙两地的实际距离为x km ,有15000=0.00025x,解之得x =1.25. 11.4.5 [解析] 1.5×300=450(cm)=4.5 m.12.C [解析] 由菱形的四条边都相等,结合已知条件可得有一个角相等的两个菱形是相似的.13.解:(1)不相似.理由:由题意得AB =30,A ′B ′=28,BC =20,B ′C ′=18,而2830≠1820,故矩形ABCD 与矩形A ′B ′C ′D ′不相似. (2)若矩形ABCD 与矩形A ′B ′C ′D ′相似,则A ′B ′AB =B ′C ′BC 或A ′B ′BC =B ′C ′AB,即30-2x 30=20-220或30-2x 20=20-230,解得x =1.5或x =9. 14.C [解析] 根据相似多边形的对应角相等可得A ,B 错误.根据相似多边形对应边的比等于相似比可得C 正确.根据相似多边形的对应边的比等于相似比,可知周长比也等于相似比,D 选项也是错误的.15.B [解析] ∵沿AE 将△ABE 向上折叠,使点B 落在AD 上的点F 处,∴四边形ABEF 是正方形.已知AB =2,设AD =x ,则FD =x -2,EF =2. ∵四边形EFDC 与矩形ABCD 相似,∴EF FD =AD AB ,即2x -2=x 2, 解得x 1=1+5,x 2=1-5(舍去),经检验,x 1=1+5是原方程的解且符合题意. ∴AD 的长为1+ 5.16.解:(1)证明:∵菱形AEFG ∽菱形ABCD , ∴∠EAG =∠BAD ,∴∠EAG +∠GAB =∠BAD +∠GAB , 即∠EAB =∠GAD .∵四边形AEFG 与四边形ABCD 都是菱形, ∴AE =AG ,AB =AD ,∴△AEB ≌△AGD ,∴EB =GD .(2)如图,连接BD 交AC 于点P ,则BP ⊥AC . ∵∠DAB =60°, ∴∠PAB =30°,∴BP =12AB =1,AP =AB 2-BP 2= 3.∵AE =AG =3,∴EP =2 3,∴EB =EP 2+BP 2=13, ∴GD =13.17.解:(1)立方(2)设长度为13 cm 和10 cm 的鱼的体积分别是V 1 cm 3,V 2 cm 3.∵两种鱼相似,∴V 1V 2=(1310)3=2.197.∵101>152.197,∴购买13 cm 长的鱼更合算. 【关键问答】①主要看图形的形状是否相同,即将一个图形放大或缩小后得到的图形和原图形是相似的.②形状相同的两个图形,指的是对应角相等,对应边成比例的两个图形,即相似的两个图形.③答案不唯一,如:将四条线段中长度最小的与最大的相乘,另外两条相乘,看它们的积是否相等,若相等,则是成比例线段,若不相等,则不是成比例线段.④相似多边形的对应角相等,对应边成比例.。