现代材料分析方法 期末考试 要点总结

合集下载

材料分析测试技术期末考试重点知识点归纳

材料分析测试技术期末考试重点知识点归纳

材料分析测试技术复习参考资料1、透射电子显微镜其分辨率达10-1 nm,扫描电子显微镜其分辨率为1nm。

透射电子显微镜放大倍数大。

第一章x射线的性质2、X射线的本质:X射线属电磁波或电磁辐射,同时具有波动性和粒子性特征,波长较为可见光短,约与晶体的晶格常数为同一数量级,在10-8cm左右。

其波动性表现为以一定的频率和波长在空间传播;粒子性表现为由大量的不连续的粒子流构成。

即电磁波。

3、X射线的产生条件:a产生自由电子;b使电子做定向高速运动;c在电子运动的路径上设置使其突然减速的障碍物。

X射线管的主要构造:阴极、阳极、窗口。

4、对X射线管施加不同的电压,再用适当的方法去测量由X射线管发出的X射线的波长和强度,便会得到X射线强度与波长的关系曲线,称为X射线谱。

在管电压很低,小于某一值(Mo阳极X射线管小于20KV)时,曲线变化时连续变化的,称为连续谱。

在各种管压下的连续谱都存在一个最短的波长值λo,称为短波限,在高速电子打到阳极靶上时,某些电子在一次碰撞中将全部能量一次性转化为一个光量子,这个光量子便具有最高的能量和最短的波长,这波长即为λo。

λo=1.24/V。

5、X射线谱分连续X射线谱和特征X射线谱。

*6、特征X射线谱:概念:在连续X射线谱上,当电压继续升高,大于某个临界值时,突然在连续谱的某个波长处出现强度峰,峰窄而尖锐,改变管电流、管电压,这些谱线只改变强度而峰的位置所对应的波长不变,即波长只与靶的原子序数有关,与电压无关。

因这种强度峰的波长反映了物质的原子序数特征、所以叫特征x射线,由特征X射线构成的x射线谱叫特征x射线谱,而产生特征X射线的最低电压叫激发电压。

产生:当外来的高速度粒子(电子或光子)的动aE足够大时,可以将壳层中某个电子击出去,或击到原于系统之外,或使这个电子填到未满的高能级上。

于是在原来位置出现空位,原子的系统能量因此而升高,处于激发态。

这种激发态是不稳定的,势必自发地向低能态转化,使原子系统能量重新降低而趋于稳定。

材料现代分析方法知识点汇总

材料现代分析方法知识点汇总

材料现代分析方法知识点汇总1.基础分析技术:材料现代分析方法常用的基础分析技术包括光学显微镜、电子显微镜、X射线衍射、扫描电子显微镜等。

这些技术可以用于材料样品的形态、结构和成分的分析和表征。

2.元素分析方法:材料中元素的分析是材料研究中的重要内容。

现代元素分析方法包括原子吸收光谱、原子发射光谱、原子荧光光谱、质谱等。

通过这些方法可以获取样品中各个元素的含量和分布情况。

3.表面分析技术:材料的表面性质对其性能有着重要影响。

表面分析技术包括扫描电子显微镜、原子力显微镜、拉曼光谱等。

这些技术可以用于研究材料表面形貌、结构和成分,以及表面与界面的性质。

4.结构分析方法:材料的结构对其性能有着决定性的影响。

结构分析方法包括X射线衍射、中子衍射、电子衍射等。

这些方法可以用于确定材料的晶体结构、非晶态结构和纳米结构,从而揭示材料的物理和化学性质。

5.磁学分析方法:材料的磁性是其重要的性能之一、磁学分析方法包括霍尔效应测量、磁化率测量、磁滞回线测量等。

这些方法可以用于研究材料的磁性基本特性,如磁场效应、磁滞行为和磁相互作用。

6.热学分析方法:材料的热性质对其在高温、低温等条件下的应用具有重要意义。

热学分析方法包括热重分析、差示扫描量热法、热导率测量等。

这些方法可以用于研究材料的热稳定性、相变行为和导热性能。

7.分子分析技术:材料中分子结构的分析对于研究其化学性质具有重要意义。

分子分析技术包括红外光谱、拉曼光谱、核磁共振等。

通过这些技术可以确定材料的分子结构、键合方式和功能性分子的存在情况。

8.表征方法:材料的表征是指对其特定性能的评估和描述。

表征方法包括电阻率测量、粘度测量、硬度测量等。

这些方法可以用于研究材料的电学、力学和流变学性质。

总之,材料现代分析方法是一门综合应用各种科学技术手段对材料样品进行分析与表征的学科。

掌握这些现代分析方法的知识,可以帮助科学家和工程师更好地了解材料的性质和特点,为材料设计和应用提供科学依据。

现代材料分析测试考试总结

现代材料分析测试考试总结

现代材料分析测试考试重点总结1、X射线产生的条件:①用某种方法得到一定量的自由电子;②使这些自由电子在一定方向上做高速运动;③在电子运动的轨迹上设置一个能急剧阻止其运动的障碍物。

2、连续谱:在不同管压下都存在的、曲线呈丘包状的X射线谱成为连续谱。

3、连续辐射:大量电子击靶所辐射出的X射线光量子的波长必然是按统计规律连续分布,覆盖着一个很大的波长范围,故这种辐射成为连续辐射。

4、特征辐射:波长值能够反映出原子序数特征,而与原子所处的物理、化学状态无关的辐射成为特征辐射。

5、特征X射线谱:因X射线强度峰的波长反映了物质的原子序数特征,所以叫特征X射线,由特征X射线构成的X射线谱称为特征X射线谱。

6、Kα线:K层电子逸出后,电子由L→K跃迁,辐射出来的是K系特征谱线中的Kα线。

7、Kβ线:K层电子逸出后,电子由M→K跃迁,辐射出来的是K系特征谱线中的Kβ线。

8、相干散射:X射线的散射中含有与入射线束波长一致的线束,此种波长不变的散射称为相干散射。

9、非相干散射:X射线的散射中出现了随散射角增大散射线束波长增大的现象,这种移向长波的散射称为非相干散射。

10、二次特征辐射:为区别于电子击靶时产生的特征辐射,称由X射线激发产生的特征辐射为二次特征辐射。

11、倒易点阵的定义:如果用a、b、c表示晶体点阵的基本矢量;用a*、b*、c*来表示倒易点阵的基本平移矢量。

相对倒易点阵而言,把晶体点阵称为正点阵,则倒易点阵与正点阵的基本对应关系为:a* b=a* c=b* a=b* c=c* a=c* b=0; a* a=b* b=c* c=1。

12、倒易点阵的性质:①倒易矢量r*垂直于正点阵中的HKL面;②倒易矢量r*的长度等于HKL晶面间距d hkl的倒数13、劳厄方程的优缺点及应用:用途:解释了衍射现象;解决了衍射线的方向的问题;确定晶体结构。

优点:从本质上告诉我们如何获得衍射缺点:用劳厄方程描述X射线对晶体的衍射现象时,入射线、衍射线与晶轴的六个夹角不易决定,用该方程组求点阵常数比较困难,使用不方便。

材料现代分析技术考试要点(可缩印)1

材料现代分析技术考试要点(可缩印)1

1、下图为金属镁粉的X射线衍射图谱(注:X射线源为Kα辐射,其平均波长为 1.5418 埃)。

查衍射卡片得知镁的(112)晶面间距为1.3663埃,问图中哪个峰是镁(112)晶面的衍射峰,计算过程。

图中高角度衍射峰有劈裂,为何?Kα辐射的波长为λ=1.5418 埃。

根据布拉格方程2d θ = λ知道:晶面间距 1.3663埃; 所以:θ=λ/20.4057; 所以θ=34.346; 所以2θ=68.69,可以知道2θ=68.7对应的衍射峰是(112)晶面的衍射峰。

劈裂是因为波长包含两个所致。

2、比较X射线光电子、特征X射线与俄歇电子的概念。

X射线光电子是电子吸收X光子能量后逸出样品所形成的光电子。

特征X射线是处于激发态的电子跃迁到低能级释放出的能量以X射线形式释放。

俄歇电子是激发态电子跳到基态释放的能量传递给相邻电子,导致相邻同能级电子逸出样品形成俄歇电子。

3、在透射电镜中,电子束的波长主要取决于什么?多晶电子衍射花样与单晶电子衍射花样有何不同?多晶电子衍射花样是如何形成的,有何应用?明场像和暗场像有何不同?简述透射电镜样品制备方法。

电子束的波长主要取决于电子加速电压或电子能量。

单晶电子衍射花样由规则排列的衍射斑点构成。

多晶衍射花样由不同半径的衍射环组成。

多晶中晶粒随机排列取向,相当于倒易点阵在空间绕某点旋转,而在倒易空间形成一组圆球,圆球的一定截面形成圆环。

应用可用于确定晶格常数。

明场像是直射电子形成的像;暗场像是散射电子形成的像。

间接样品的制备:将样品表面的浮凸复制于某种薄膜而获得的。

直接样品的制备:(1)初减薄-制备厚度约100-200的薄片;(2)、从薄片上切取直径3的圆片;(3)预减薄—从圆片的一侧或两侧将圆片中心区域减薄至数;(4)终减薄。

4、简述用于扫描电镜成像的常用信号电子种类。

波、能谱仪的工作原理是什么?比较两种谱仪进行微区成分分析时的优缺点。

1、背散射电子;是指被固体样品中的原子核反弹回来的一部分入射电子。

材料现代分析方法复习要点总汇

材料现代分析方法复习要点总汇

X射线衍射束的强度1.粉未多晶的衍射线强度2.影响衍射线强度的因素1.粉未多晶的衍射线强度布拉格方程是产生衍射的必要条件,但不是充分条件,描述衍射几何的布拉格定律是不能反映晶体中原子的种类和它们在晶体中的坐标位置的。

这就需要强度理论。

1.衍射线的绝对强度与相对强度①绝对强度(积分强度、累积强度)是指某一组面网衍射的X射线光量子的总数。

②相对强度用某种规定的标准去比较各个衍射线条的强度而得出的强度。

2.粉未多晶的衍射强度I相对=P·F2··e-2M·A衍射线的强度•相对强度: I相对=F2P(1+cos22θ/ sin2θcosθ)e-2M 1/u式中:F——结构因子;P——多重性因子;分式为角因子,其中θ为衍射线的布拉格角;e-2M——温度因子;1/u-吸收因子。

以下重点介绍结构因子F§2 影响衍射线强度的其它因素1. 多重性因子P指同一晶面族{hkl}的等同晶面数。

晶体中面间距相等的晶面称为等同晶面。

根据布拉格方程,在多晶体衍射中,等同晶面的衍射线将分布在同一个圆锥面上,因为这些晶面对应的衍射角2θ都相等。

多晶体某衍射环的强度与参与衍射的晶粒数成正比,因此,在其他条件相同的情况下,多晶体中某种晶面的等同晶面数目愈多,这种晶面获得衍射的几率就愈大,对应的衍射线也必然愈强。

2. 角因子(1+Cos22θ)/Sin2θCosθ3.温度因子(第84页)e-2M )由于原子热振动使点阵中原子排列的周期性部份破坏,因此晶体的衍射条件也部份破坏,从而使衍射强度减弱。

晶体的中原子的热振动,衍射强度受温度影响,温度因子表示为e-2M。

4. 吸收因子A因为试样对X射线的吸收作用,使衍射线强度减弱,这种影响称吸收因子。

晶体的X射线吸收因子取决于所含元素种类和X射线波长,以及晶体的尺寸和形状。

思考题•系统消光P78•五个因子的定义、表达•体心立方和面心立方结构点阵消光规律的推导多晶体X射线衍射分析方法X射线衍射的方法和仪器粉晶德拜照相法粉晶衍射仪法多晶—粉末法λ不变θ变化德拜法、衍射仪法单晶—λ变化θ不变劳厄法λ不变θ变化周转晶体法§1 粉晶德拜照相法定义:利用X射线的照相效应,用底片感光形式来记录样品所产生的衍射花样。

现代材料分析技术期末总结

现代材料分析技术期末总结

现代材料分析技术期末总结一、引言现代材料分析技术是指应用各种先进的科学和技术手段来对材料进行分析和研究的过程。

随着科学技术的不断发展,材料分析技术也取得了巨大的进展,涵盖了物理、化学、生物等多个领域。

本文将对现代材料分析技术进行总结,从光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射、质谱仪、红外光谱仪、核磁共振仪和热分析等技术进行详细介绍。

二、光学显微镜光学显微镜是一种常用的材料分析技术,通过可见光对材料进行观察和测量。

使用透射光和反射光来照射样品,通过目镜和物镜将图像放大到人眼可以识别的范围。

该技术可以观察材料的形貌、颗粒分布和晶粒结构等。

光学显微镜广泛应用于金属材料、生物材料和无机材料等研究领域。

三、扫描电子显微镜扫描电子显微镜是一种可以高分辨率地观察样品表面形貌和组织结构的技术。

通过束缚电子的扫描和检测,得到样品的二维和三维图像。

扫描电子显微镜可以观察到样品微观结构的细节,如晶体缺陷、晶界和纳米颗粒等。

该技术对金属材料、半导体材料和生物材料等的分析具有重要意义。

四、透射电子显微镜透射电子显微镜是一种可以观察材料内部的高分辨率分析技术。

通过将电子束通过样品,利用电子的衍射和透射来观察材料的晶体结构和原子成分。

透射电子显微镜可以观察到样品的晶体结构、晶界和位错等,可以分析材料的化学成分和晶态状态。

透射电子显微镜在材料科学、纳米材料和生物材料等研究领域具有重要的应用价值。

五、X射线衍射X射线衍射是一种分析材料晶体结构的技术。

通过用X射线照射样品,利用X射线与样品的晶胞相互作用来得到样品的衍射图像。

可以通过衍射图像来确定材料的晶胞参数、晶体结构和晶面取向等。

X射线衍射技术广泛应用于材料科学、金属材料和矿物材料等领域。

六、质谱仪质谱仪是一种通过分析样品中的离子和分子来测定其化学成分和结构的技术。

通过将样品中的分子或原子离子化并加速到一个高速运动状态,利用它们在磁场和电场中的行为,来分析它们的质量和相对丰度。

材料分析方法期末总结

材料分析方法期末总结

材料分析方法期末总结一、材料分析方法的基本步骤(一)收集材料:材料分析的第一步是收集与研究对象相关的材料。

这些材料可以通过文献研究、场地调查、访谈、问卷调查等方式获得。

(二)整理归类:将收集到的材料进行整理和归类,以便于后续的分析和解读。

可以根据材料的性质、内容、时间顺序等进行分类,使用标签、索引或数据库等工具进行管理。

(三)提取关键信息:在整理归类的基础上,将材料中的关键信息提取出来。

可以使用摘要、注释、标记等方式进行标记和记录,以便于后续的分析和比较。

(四)分析解读:根据研究的目的和问题,选择适当的分析方法进行材料的解读。

常见的分析方法包括:内容分析、比较分析、语境分析、符号分析等。

通过对材料中的信息进行分析和解读,可以发现其中的规律、关系和意义。

(五)总结归纳:在分析解读的基础上,对材料分析的结果进行总结和归纳。

可以从多个角度和维度出发,提炼出材料中的共性、差异和趋势。

确保总结归纳的结果能够回答研究问题,并对研究对象提出相应的结论。

二、材料分析方法的技巧和注意事项(一)注重材料的质量和可信度:在进行材料分析时,需要注重材料的质量和可信度。

应该选择权威的、可靠的和有代表性的材料进行分析,避免不合理偏见和无根据的推测。

(二)注重材料的多样性和综合性:材料分析应该尽量采用多种来源、多种类型、多个角度的材料进行分析。

通过综合分析不同类型的材料,可以获得更全面、准确和全面的研究结果。

(三)注重材料的背景和语境:在进行材料分析时,需要考虑材料的背景和语境。

包括作者的身份、时代背景、社会环境等因素,这些因素会对材料的解读和理解产生重要影响。

(四)注重材料的内外联系:对于同一研究对象的不同材料,应该注重它们之间的内在联系和外在联系。

内在联系指的是不同材料之间的关联和互动,而外在联系指的是材料与研究对象之间的关系。

通过分析内外联系,可以深入理解研究对象的本质和特点。

(五)注重材料的深度和广度:材料分析应该注重深度和广度的平衡。

期末考试:现代材料测试分析方法及答案

期末考试:现代材料测试分析方法及答案

期末考试:材料现代测试分析法及答案一、考试说明本次期末考试主要考察学生对材料现代测试分析法的理解和掌握程度。

考试内容涵盖各种现代测试分析方法的基本原理、测试步骤、数据处理及结果分析等方面。

二、考试内容1. X射线衍射分析法(XRD)基本原理: XRD是一种利用X射线在晶体中的衍射效应来分析晶体结构的方法。

测试步骤:样品准备、X射线发生与检测、数据收集与处理。

答案: XRD主要用于分析材料的晶体结构、相组成、晶粒大小等。

2. 扫描电子显微镜(SEM)基本原理: SEM利用电子束扫描样品表面,通过探测器收集信号,从而获得样品的形貌和成分信息。

测试步骤:样品制备、电子束聚焦与扫描、信号采集与处理。

答案: SEM适用于观察材料的微观形貌、表面成分和晶体结构等。

3. 透射电子显微镜(TEM)基本原理: TEM利用电子束透过样品,通过电磁透镜聚焦和放大,观察样品内部的微观结构。

测试步骤:样品制备、电子束聚焦与传输、图像采集与处理。

答案:TEM适用于研究材料内部的晶体结构、界面、缺陷等。

4. 能谱分析法(EDS)基本原理: EDS利用高能电子束激发样品,产生二次电子、特征X射线等,通过能量色散分析这些信号,获取样品成分信息。

测试步骤:样品制备、电子束激发、信号检测与分析。

答案: EDS用于分析材料的元素组成和化学成分。

5. 原子力显微镜(AFM)基本原理: AFM利用原子力探针扫描样品表面,通过检测探针与样品间的相互作用力,获得样品表面的形貌和力学信息。

测试步骤:样品准备、原子力探针扫描、信号采集与处理。

答案: AFM适用于观察材料表面的形貌、粗糙度、力学性质等。

三、考试要求1. 掌握各种现代测试分析方法的基本原理。

2. 熟悉相关测试设备的操作步骤和注意事项。

3. 能够对测试数据进行处理和结果分析。

四、考试形式本次考试采用闭卷形式,包括选择题、填空题、简答题和计算题。

五、考试时间120分钟。

六、答案解析1. XRD主要用于分析材料的晶体结构、相组成、晶粒大小等。

期末考试:现代材料测试分析方法及答案

期末考试:现代材料测试分析方法及答案

期末考试:现代材料测试分析方法及答案一、引言本文旨在介绍现代材料测试分析方法,并提供相关。

现代材料测试分析方法是材料科学与工程领域的重要内容之一,它帮助我们了解材料的性质和特性,为材料的设计和应用提供依据。

本文将首先介绍几种常见的现代材料测试分析方法,然后给出相应的。

二、现代材料测试分析方法1. 机械性能测试方法机械性能是材料的重要指标之一,它包括材料的强度、硬度、韧性等方面。

常见的机械性能测试方法包括拉伸试验、压缩试验、冲击试验等。

这些测试方法通过施加外力或载荷,测量材料在不同条件下的变形和破坏行为,从而评估材料的机械性能。

2. 热性能测试方法热性能是材料在高温或低温条件下的表现,它包括热膨胀性、热导率、热稳定性等方面。

常见的热性能测试方法包括热膨胀试验、热导率测试、热分析等。

这些测试方法通过加热或冷却材料,测量其在不同温度下的性能变化,从而评估材料的热性能。

3. 化学性能测试方法化学性能是材料在不同化学环境中的表现,它包括耐腐蚀性、化学稳定性等方面。

常见的化学性能测试方法包括腐蚀试验、酸碱浸泡试验等。

这些测试方法通过将材料置于不同的化学介质中,观察其在化学环境下的变化,从而评估材料的化学性能。

三、1. 机械性能测试方法的应用机械性能测试方法广泛应用于材料工程领域。

例如,在汽车工业中,拉伸试验可以评估材料的抗拉强度和延伸性,从而选择合适的材料制造汽车零部件。

在建筑工程中,压缩试验可以评估材料的抗压强度,确保建筑结构的稳定性和安全性。

在航空航天领域,冲击试验可以评估材料的抗冲击性能,确保飞机在遭受外力冲击时不会破坏。

2. 热性能测试方法的意义热性能测试方法对于材料的设计和应用非常重要。

通过热膨胀试验,我们可以了解材料在高温条件下的膨胀性,从而避免热膨胀引起的构件变形和破坏。

通过热导率测试,我们可以评估材料的导热性能,为热传导设备的设计提供依据。

通过热分析,我们可以了解材料在不同温度下的热行为,为材料的热稳定性评估提供依据。

材料现代分析方法知识点

材料现代分析方法知识点

材料现代分析方法知识点1.光谱学分析方法:包括紫外可见吸收光谱、红外光谱、拉曼光谱、荧光光谱等。

光谱学分析方法通过材料对不同波长的光的吸收、散射和发射来研究材料的内部结构和性质。

2.质谱分析方法:质谱分析是一种根据材料中不同元素或分子的质量比例来确定其组成和结构的方法。

常见的质谱技术包括质谱仪、傅里叶变换质谱仪、气相色谱质谱联用技术等。

3.微观结构分析方法:包括电子显微镜、透射电子显微镜、扫描电子显微镜等。

这些方法可以观察和分析材料的微观结构、晶体结构以及元素的分布情况。

4.表界面分析方法:包括扩散反射红外光谱、X射线光电子能谱等。

通过表界面分析方法可以了解材料的表面组成、性质和反应过程,对材料的表面修饰和表面改性提供指导。

5.热物理分析方法:包括热重分析、差示扫描量热法等。

这些方法可以研究材料的热稳定性、热分解过程以及热性能等。

6.X射线衍射分析方法:通过测量材料对入射X射线的衍射图样,可以了解材料的晶体结构、晶格常数和晶体取向等信息。

7.分子动力学模拟方法:分子动力学模拟是一种适用于研究材料微观结构和动力学行为的计算方法。

通过建立材料的原子和分子模型,并运用分子力场等方法,可以模拟和预测材料的结构演化、热力学和动力学行为。

8.电化学分析方法:电化学分析是一种通过材料与电解质溶液之间的相互作用来研究材料电学性质和电化学反应机理的方法。

常见的电化学分析方法包括电化学阻抗谱、循环伏安法、线性扫描伏安法等。

9.磁学分析方法:磁学分析是一种研究材料磁性和磁性行为的方法。

常见的磁学分析方法包括磁化率测量、磁滞回线测量等。

10.输运性质分析方法:输运性质分析是一种研究材料的传导性能(如电导率、热导率等)的方法。

常见的输运性质分析方法包括四探针法、热电力学性质测量等。

以上是材料现代分析方法的一些知识点。

这些方法可以用于分析材料的组成、结构、性能和行为等方面,并为材料的研究和应用提供基础数据和理论依据。

同时,随着科学技术的不断发展,新的分析方法也不断涌现。

材料现代分析方法重点笔记

材料现代分析方法重点笔记

材料现代分析方法重点笔记一、材料X射线衍射分析1、X射线的性质、产生及谱线种类及机理2、X射线与物质的相互作用:几种现象及机理3、X射线衍射方向:布拉格方程及推导,X射线衍射方法4、X射线衍射强度:多晶体衍射图相的形成过程,衍射强度影响因数及积分强度公式5、多晶体分析方法:X射线衍射仪的构造及各部件的作用,实验参数的选择6、物相分析及点阵常数精确测定二、x衍射线知识点1、X射线的本质一种电磁波(波长短:0.01-10nm)2、X射线产生原理由高速运动着的带电粒子与某种物质相撞击后淬然减速,且与该物质中的内层电子相作用而产生的。

3、X射线产生的几个基本条件(1)产生自由电子;(2)使电子作定向高速运动:(3)在电子运动的路径上设置使其突然减速的障碍物4、旋转阳极(用于大功率转靶XRD仪)工作原理:因阳极不断旋转,电子束轰击部位不断改变,故提高功率也不会烧熔靶面。

目前有100kW的旋转阳极,其功率比普通X射线管大数十倍。

5、X射线谱X射线强度与波长的关系曲线6、连续x射线谱管压很低时,例如小于20kv,X射线谱曲线是连续变化的。

7、形成连续x射线谱两种理论解释:1.经典物理学理论:一个带负电荷的电子作加速运动时,电子周围的电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。

由于极大数量的电子射到阳极上的时间和条件不可能相8/同,因而得到的电磁波将具有连续的各种波长,形成连续X 射线谱。

量子力学概念:当能量为ev的电子与靶的原子整体碰撞时,电子失去自己的能量,其中一部分以光子的形式辐射出去,每碰撞一次,产生一个能量为hv的光子,即“韧致辐射”。

大量的电子在到达靶面的时间、条件均不同,而且还有多次碰撞,因而产生不同能量不同强度的光子序列,即形成连续谱。

8、特征(标识)X射线谱当管电压等于或高于20KV时,则除连续X射线谱外,位于一定波长处还叠加有少数强谱线,它们即特征X射线谱。

9、形成特征X射线谱的理论解释:原子结构的壳层模型:特征X射线的产生机理与靶物质的原子结构有关。

材料分析期末考试知识点总结

材料分析期末考试知识点总结

第一章(1)德国物理学家伦琴发现X射线(1895年)(2)X射线的本质为电磁波。

(3)为什么在电磁波谱中,X射线的波长与γ射线和紫外线重叠的原因:X射线是由外层电子跃迁到内层电子,紫外线是外层电子跃迁,γ射线是原子核的能级跃迁。

波长相同,但特征量不同。

(4)X射线的产生条件:①有电子发射装置(钨丝,热发射,针尖,场发射)ξ=hv②有定向加速装置(加速电场)③有阻挡电子束运动装置(阳极靶)(5)连续X射线谱的定义:X射线强度随波长连续变化的谱称为连续X射线谱(6)连续X射线谱的产生机制:从阴极发射出的大量电子,在加速电场的作用下获得极大的动能,受到阳极靶中原子的阻碍,电子会经过一系列碰撞而损失能量,并转化为一系列波长不同的电磁脉冲,从而形成波长连续变化的连续谱。

短波限的产生机制:从阴极发射出的大量电子,在加速电场的作用下获得极大的动能,受到阳极靶中原子的阻碍,电子会经过一系列碰撞而损失能量,并转化为一系列波长不同的电磁脉冲,从而形成波长连续变化的连续谱。

当电子经过一次碰撞而损失了全部能量,则产生光子能量最高,波长最短的电磁脉冲,即短波限eU=hVmax=hc/λswl(7)特征X射线谱:当加于X射线管两端的电压增高到与阳极靶材料相应的某一特征值Uk 时,在连续谱的某些特定的波长位置上,会出现一系列强度很高、波长范围很窄的线状光谱,它们的波长对一定材料的阳极靶有严格恒定的数值,此波长可作为阳极靶材的标志或特征,故称为特征谱或标识谱特征X射线谱产生机制:冲向阳极的电子若具有足够能量,将内层电子击出而成为自由电子,此时原子处于高能的不稳定状态,必然自发的稳态过渡,处于高能态的原子必然由较外层跃迁来一个电子填补内层空位,所释放的能量转化为光子(电磁脉冲)及特征X射线(X射线是原子内层电子跃迁产生的)。

(8)莫塞莱定律:特征谱的波长只和阳极靶的原子序数有关。

表明阳极靶材的原子序数越大,同一线系的特征谱波长越短。

材料现代分析方法归纳总结

材料现代分析方法归纳总结

材料现代分析方法归纳总结材料分析是研究和了解材料性质、组成以及结构的过程。

而随着科学技术的发展,材料现代分析方法不断丰富和完善,因此,本文将对常用的材料现代分析方法进行归纳总结。

通过这些方法,我们可以更加准确地了解材料的性质和特点,为材料研究和应用提供有力的支持。

一、X射线衍射分析方法1. X射线衍射仪原理X射线衍射是利用材料晶体对入射的X射线产生衍射现象,进而得到材料结构信息的方法。

X射线衍射仪包括X射线发生器、样品支架、衍射仪和探测器等组成。

2. X射线衍射应用范围X射线衍射广泛应用于材料相结构、晶体学、应力分析等领域。

通过X射线衍射分析,可以确定材料中存在的晶体结构、相变行为以及晶格常数等关键信息。

二、质谱分析方法1. 质谱仪原理质谱是一种通过分析样品中离子的质量和相对丰度,来确定样品组成的分析技术。

质谱仪包括进样系统、离子源、质谱分析器等组成。

2. 质谱分析应用领域质谱分析方法在有机物组成分析、无机元素分析以及分子结构分析等方面具有广泛的应用。

通过对样品分子离子的质量的检测和分析,可以获得样品化学成分以及分子结构等信息。

三、扫描电子显微镜(SEM)分析方法1. SEM原理扫描电子显微镜是利用电子束与样品表面相互作用产生的信号来获得样品表面形貌以及成分信息的一种显微镜。

SEM主要由电子光源、样品台、扫描控制系统、成像系统等部分构成。

2. SEM应用范围SEM广泛应用于材料表面形貌分析、晶体缺陷研究以及纳米材料分析等领域。

通过SEM技术,可以观察到材料表面的形貌、孔隙结构、晶体形态等微观特征。

四、透射电子显微镜(TEM)分析方法1. TEM原理透射电子显微镜是将电子束透射到样品上,通过电子束和样品发生相互作用产生的影像来获得样品内部的结构信息。

TEM主要由电子源、样品台、成像系统等部分构成。

2. TEM应用范围TEM主要应用于材料的内部结构分析,例如纳米材料的晶体结构、界面特性等。

通过TEM技术,可以观察到材料的晶体结构、晶界、缺陷以及纳米颗粒等细微结构。

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结

材料现代分析测试方法知识总结现代分析测试方法是指在材料研究和应用过程中,通过各种仪器和设备对材料进行精确分析和测试的方法。

这些方法包括物理测试方法、化学测试方法和电子显微镜技术等。

以下是对现代分析测试方法的一些知识的总结。

一、物理测试方法:1.X射线衍射:通过X射线的衍射绘制出材料的结晶结构,确定材料的晶格常数、晶胞参数和晶体的相位等。

2.热重分析:通过加热材料并测量其重量的变化,判断其热稳定性、热分解性和可能的热分解产物。

3.红外光谱:通过测量材料在红外波段的吸收光谱,推断材料的分子结构、官能团以及物质的存在状态和纯度。

4.核磁共振:通过测量核磁共振信号,确定物质的结构、官能团和化学环境。

二、化学测试方法:1.光谱分析:包括紫外可见光谱、原子吸收光谱和发射光谱等,通过测量材料吸收或发射的光的波长和强度,确定材料的化学成分和浓度。

2.色谱分析:包括气相色谱、液相色谱和超高效液相色谱等,通过物质在固定相和流动相之间的相互作用,分离并测定材料中的组分。

3.原子力显微镜:通过测量微米和亚微米级尺寸范围内的力的作用,观察材料表面的形貌和物理特性。

4.微量元素分析:通过原子吸收光谱、荧光光谱和电感耦合等离子体发射光谱等方法,测量材料中的微量元素浓度。

三、电子显微镜技术:1.扫描电子显微镜:通过扫描电子束和样品表面之间的相互作用,观察材料表面的形貌、组成和结构。

2.透射电子显微镜:通过电子束穿透样品并与样品内部的原子发生相互作用,观察材料的晶格结构、晶格缺陷和界面等微观结构。

以上是现代材料分析测试方法的一些知识总结。

通过这些方法,我们可以准确地了解材料的组成、结构和性能,为材料的研究、设计和应用提供有力的支持。

材料现代分析方法期末总结

材料现代分析方法期末总结

材料现代分析方法期末总结一、引言现代分析方法是化学分析领域的一门重要学科,通过对样品进行原理分析、方法选择、仪器选择和实验操作以及结果评价等步骤的综合研究,来解决实际问题。

本学期的现代分析方法课程,深入学习了现代分析方法的基本理论和应用方法,通过实验操作和文献研究,对各种分析方法的原理、优缺点、应用范围和示例进行了深入的学习和研究。

通过此门课程的学习,对现代分析方法有了更为全面的认识和了解。

二、常见分析方法在学习期间,我了解了许多常见的分析方法,如光谱分析、电化学分析、色谱分析、质谱分析、核磁共振分析等。

这些方法在实际应用中具有广泛的应用,可以用于分析各种样品中的成分和结构信息。

通过对这些方法的学习和了解,我不仅了解了它们的基本原理和工作原理,还了解了它们在不同领域的应用。

例如,光谱分析广泛应用于实验室的质量控制、环境监测和食品安全等方面;电化学分析常用于药物分析和生物分析等领域;色谱分析广泛应用于药物分析、环境分析和食品安全检测等方面;质谱分析则广泛应用于生物医学研究、环境监测和新材料的研究等。

三、实验操作与操作技巧在课程中,我还学习了现代分析方法的实验操作和操作技巧。

例如,在进行溶剂萃取操作时,我学会了选择适当的溶剂,控制好溶剂的用量和溶液的酸碱度,避免产生杂质和误差。

在进行色谱分析时,我学会了调整流速和流量,选择适合的检测器和柱,控制好温度和压力等因素,以获得准确和可靠的分析结果。

此外,我还学会了使用电化学分析仪器,如电位计和pH计进行测量,以及使用光谱仪器,如红外光谱仪和紫外光谱仪进行分析。

通过这些实验操作和操作技巧的学习,我提高了实验操作的能力和技巧,并且能够熟练地操作各种仪器设备,运用不同的操作方法进行分析。

四、文献研究与报告撰写在课程学习中,我还进行了文献研究和报告撰写。

通过查阅相关文献和研究资料,我了解了各种分析方法的研究进展和应用领域。

在报告撰写过程中,我按照科学论文的写作格式,系统地阐述了所选分析方法的原理和应用,并对其优缺点进行了分析和评价。

(完整版)材料分析办法期末考试总结

(完整版)材料分析办法期末考试总结

(完整版)材料分析办法期末考试总结材料分析办法1.x射线是一种波长非常短的电磁波,具有波粒二相性,粒子性往往表现突出,故x射线也可视为一束具有一定能量的光量子流。

X射线有可见光无可比拟的穿透能力,可使荧光物质发光,可使气体或其它物质电离等。

2.相干散射:亦称经典散射,物质中的电子在X射线电场的作用下,产生强迫振动。

如此每个电子在各方向产生与入射X射线同频率的电磁波。

新的散射波之间发生的干涉现象称为相干散射。

3.别相干散射:亦称量子散射,X射线光子与束缚力别大的外层电子,或自由电子碰撞时电子获得一部分动能成为反冲电子,X射线光子离开原来方向,能量减小,波长增加。

4.汲取限:物质原子序数越大,对X射线的汲取能力越强;对一定的汲取体,X射线的波长越短,穿透能力越强,表现为汲取系数的下落,但随着波长的的落低,质量汲取系数并非呈延续的变化,而是在某些波长位置上忽然升高,浮现了汲取限。

5.荧光辐射:由入射X射线所激发出来的特征X射线称为荧光辐射(荧光X 射线,二次X射线)。

6.俄歇效应:由于光电效应而处于激发态的原子还有一种释放能量的方式,及俄歇效应。

原子中一具K层电子被入射光量子击出后,L层一具电子跃入K层填补空位,此刻多余的能量别以辐射X光量子放出,而是以另一具L层电子活的能量跃出汲取体,如此的一具K层空位被两个L层空位代替的过程称为俄歇效应,跃出的L层电子称为俄歇电子。

7.光电子:当入射光量子的能量等于或大于汲取体原子某壳体层电子的结合能时,此光量子就非常容易被电子汲取,获得能量的电子从内层溢出,成为自由电子,称为光电子。

原子则处于激发态,这种原子被入射辐射电离的现象即光电效应。

8.滤波片的作用:滤波片是利用汲取限两侧汲取系数差非常大的现象制成的,用以汲取别需要的辐射而得到基本单XXX的光源。

9.布拉格方程不过获得衍射的必要条件而非充分条件。

10.晶面(hkl)的n级反射面(nh nk nl),用符号(HKL)表示,称为反射面或干涉面。

材料分析测试技术期末考试重点知识点归纳

材料分析测试技术期末考试重点知识点归纳

材料分析测试技术复习参考资料1、 透射电子显微镜 其分辨率达10-1 nm ,扫描电子显微镜 其分辨率为Inmo 透射电子显微镜放大倍数大。

第一章x 射线的性质2、 X 射线的本质:X 射线属电磁波或电磁辐射,同时具有波动性和粒子性特征,波长较为可见光短,约与 晶体的晶格常数为同一数量级,在 10-8cm 左右。

其波动性表现为以一定的频率和波长在空间传播;粒子性表现为由大量的不连续的粒子流构成。

即电磁波。

3、 X 射线的产生条件:a 产生自由电子;b 使电子做定向高速运动;c 在电子运动的路径上设置使其突然减 速的障碍物。

X 射线管的主要构造:阴极、阳极、窗口。

4、 对X 射线管施加不同的电压,再用适当的方法去测量由 X 射线管发出的X 射线的波长和强度,便会得到X 射线强度与波长的关系曲线,称为X 射线谱。

在管电压很低,小于某一值( Mo 阳极X 射线管小于20KV )时,曲线变化时连续变化的,称为连续谱。

在各种管压下的连续谱都存在一个最短的波长值入o ,称为短波限,在高速电子打到阳极靶上时,某些电子在一次碰撞中将全部能量一次性转化为一个光量子,这个光量 子便具有最高的能量和最短的波长,这波长即为入0。

入o=1.24/V 。

5、 X 射线谱分连续X 射线谱和特征X 射线谱。

*6、特征X 射线谱:概念:在连续X 射线谱上,当电压继续升高,大于某个临界值时,突然在连续谱的某个波长处出现强度峰, 峰窄而尖锐,改变管电流、管电压,这些谱线只改变强度而峰的位置所对应的波长不变,即波长只与靶的 原子序数有关,与电压无关。

因这种强度峰的波长反映了物质的原子序数特征、所以叫特征 x 射线,由特征X 射线构成的x 射线谱叫特征x 射线谱,而产生特征 X 射线的最低电压叫激发电压。

产生:当外来的高速度粒子(电子或光子)的动aE 足够大时,可以将壳层中某个电子击出去,或击到原于系 统之外,或使这个电子填到未满的高能级上。

材料现代分析方法期末总结

材料现代分析方法期末总结

材料分析方法习题1、晶带定律:凡是属于[uvw]晶带的晶面,它的晶面指数(hkl)都必须符合hu+kv+lw=0,通常把这种关系式称为晶带定律。

2、暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑参与成像的方法,称为暗场成像,所得图象为暗场像。

3、中心暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑参与成像的方法,称为暗场成像,所得图象为暗场像。

如果物镜光阑处于光轴位置,所得图象为中心暗场像。

4、衍射衬度:入射电子束和薄晶体样品之间相互作用后,样品内不同部位组织的成像电子束在像平面上存在强度差别的反映。

衍射衬度主要是由于晶体试样满足布拉格反射条件程度差异以及结构振幅不同而形成电子图象反差。

5、背散射电子:入射电子被样品原子散射回来的部分;它包括弹性散射和非弹性散射部分;背散射电子的作用深度大,产额大小取决于样品原子种类和样品形状。

6、吸收电子:入射电子进入样品后,经多次非弹性散射,能量损失殆尽(假定样品有足够厚度,没有透射电子产生),最后被样品吸收。

吸收电流像可以反映原子序数衬度,同样也可以用来进行定性的微区成分分析。

7、特征X射线:原子的内层电子受到激发以后,在能级跃迁过程中直接释放的具有特征能量和波长的一种电磁波辐射。

利用特征X射线可以进行成分分析。

8、二次电子:二次电子是指被入射电子轰击出来的核外电子。

二次电子来自表面50-100 Å的区域,能量为0-50 eV。

它对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。

9、俄歇电子:如果原子内层电子能级跃迁过程中释放出来的能量不以X射线的形式释放,而是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇电子。

俄歇电子信号适用于表层化学成分分析。

简答题1. 什么叫“相干散射”答:相干散射,物质中的电子在X射线电场的作用下,产生强迫振动。

这样每个电子在各方向产生与入射X射线同频率的电磁波。

现代材料分析方法 期末考试 要点总结

现代材料分析方法 期末考试 要点总结

1.X 射线与物质的相互作用?光电效应?莫塞莱定律?作用:(1)宏观效应----X 射线强度衰减 (2)微观机制----X 射线被散射,吸收.1散射---相干散射,康谱顿散射2吸收---产生光电子,二次荧光,俄歇电子光电效应:原子中的电子处在不同的能级上,当入射光子的能量超过内层电子的轨道结合能,就可以发生光电离过程,产生光电子2.X 射线衍射的充分必要条件?极限条件?简单点阵的消光规律必要条件:满足布拉格方程充分条件:满足消光规律极限条件:能够被晶体衍射的电磁波的波长必须小于参加反射的晶面中最大面间距的二倍 λ <2d3.X 射线衍射的方法及其特点?SAXS ?如果试样具有不同电子密度的非周期性结构(晶区和非晶区),则X 射线不被相干散射,有波长的改变,并在小角度上测定,称为小角X 射线散射(SAXS ) 4.XRD 的应用?晶粒度的测定公式?1、固体结构分析2、物相定性分析3、物相定量分析4、晶粒大小分析5、非晶态结构分析,结晶度分析6、宏观应力与微观应力分析7、择优取向分析5 XRD 定性分析的原理?1各种物质都有自己特定的结构参数(点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等),结构参数不同则X 射线衍射花样也就各不相同。

2当多种物质同时衍射时,其衍射花样也是各种物质自身衍射花样的机械叠加。

它们互不干扰,相互独立,逐一比较就可以在重叠的衍射花样中剥离出各自的衍射花样,分析标定后即可鉴别出各自物相。

6 电磁透镜?TEM 成像原理?TEM 分辨率及其影响因素?景深及其影响因素?衍射方法 λ θ 适用试样劳埃法 变 不变 单晶 转晶法 不变 变 单晶 德拜-谢乐法 不变 变 多晶 粉末法 不变 变 多晶电磁透镜:在电子显微镜中由电磁线圈产生的磁场所构成的透镜,用以将电子枪的束斑缩小TEM成像原理:透射电镜是以电子束透过样品经过聚焦与放大后所产生的物像,投射到荧光屏上或照相底片上进行观察。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.X 射线与物质的相互作用?光电效应?莫塞莱定律?作用:(1)宏观效应----X 射线强度衰减 (2)微观机制----X 射线被散射,吸收.1散射---相干散射,康谱顿散射2吸收---产生光电子,二次荧光,俄歇电子光电效应:原子中的电子处在不同的能级上,当入射光子的能量超过内层电子的轨道结合能,就可以发生光电离过程,产生光电子2.X 射线衍射的充分必要条件?极限条件?简单点阵的消光规律必要条件:满足布拉格方程充分条件:满足消光规律极限条件:能够被晶体衍射的电磁波的波长必须小于参加反射的晶面中最大面间距的二倍 λ <2d3.X 射线衍射的方法及其特点?SAXS ?如果试样具有不同电子密度的非周期性结构(晶区和非晶区),则X 射线不被相干散射,有波长的改变,并在小角度上测定,称为小角X 射线散射(SAXS ) 4.XRD 的应用?晶粒度的测定公式?1、固体结构分析2、物相定性分析3、物相定量分析4、晶粒大小分析5、非晶态结构分析,结晶度分析6、宏观应力与微观应力分析7、择优取向分析5 XRD 定性分析的原理?1各种物质都有自己特定的结构参数(点阵类型、晶胞大小、晶胞中原子或分子的数目、位置等),结构参数不同则X 射线衍射花样也就各不相同。

2当多种物质同时衍射时,其衍射花样也是各种物质自身衍射花样的机械叠加。

它们互不干扰,相互独立,逐一比较就可以在重叠的衍射花样中剥离出各自的衍射花样,分析标定后即可鉴别出各自物相。

6 电磁透镜?TEM 成像原理?TEM 分辨率及其影响因素?景深及其影响因素?衍射方法 λ θ 适用试样劳埃法 变 不变 单晶 转晶法 不变 变 单晶 德拜-谢乐法 不变 变 多晶 粉末法 不变 变 多晶电磁透镜:在电子显微镜中由电磁线圈产生的磁场所构成的透镜,用以将电子枪的束斑缩小TEM成像原理:透射电镜是以电子束透过样品经过聚焦与放大后所产生的物像,投射到荧光屏上或照相底片上进行观察。

(阿贝成像原理)1平行光(电子束)透过物后产生的衍射光,经透镜后在其后焦面上形成衍射图样。

2这些衍射图上的每一点可看作是相干的次波源,这些次波源发出的光(电子束)在像平面上相干迭加,形成物体的几何像.分辨率:对微区成分分析而言,是指能分析的最小区域;对成像而言,是指能分辨两点之间的最小距离。

分辨本领为2-3 埃。

影响因素:衍射效应,像差,球差,像散,色差,景深是指一个透镜对高低不平的试样各部位能同时聚焦成像的一个能力范围。

电子束孔径角是决定扫描电镜景深的主要因素7 TEM的主要部件?成像方式及其特点?光栏(阑)的作用?通常透射电镜由电子光学系统、电源系统、真空系统、循环冷却系统和控制系统组成,其中电子光学系统是电镜的主要组成部分。

照明系统:电子枪,聚光镜成像系统:物镜,中间镜(1、2个),投影镜(1、2个)光阑作用:挡掉发散电子,保证电子束的相干性和照射区域物镜光栏:光阑孔越小,被挡去的电子越多,图像的衬度就越大。

在后焦面上套取衍射束的斑点(即副焦点)成像,这就是所谓暗场像选区光栏:使电子束仅通过光栏限定的微区。

第二聚光镜光栏:限制照明孔径角。

8 电子衍射原理及其与XRD的异同点?选区电子衍射?原理:布拉格定律:2dsinθ=λ;λ≤2d通常的透射电镜的加速电压为100-200kv,即电子波的波长为10-2-10-3nm数量级,而常见晶体的晶面间距为0.1-1nm数量级,于是sinθ=λ/2d≈10-2;θ=10-2rad<1°相同点:1都以满足布拉格方程为必要条件2衍射花样特征大致相似不同点:1衍射角:电子衍射为10-2rad,X衍射可达0.5π2尺寸效应:薄样品倒易阵点沿厚度方向延伸成杆状,增加了倒易阵点与爱瓦尔德球的相交机会。

即使略偏离布拉格条件的电子束也可以衍射3分析方便:电子衍射的衍射斑大致分布在二维倒易截面内,使晶体产生的衍射花样可直观的反映晶体内各晶面的取向4曝光时间短5当晶体厚且完整时,可得由非弹性散射效应而生成的菊池衍射花样6电子衍射强度适于研究薄膜,大块物体表面及小颗粒的单晶选区电子衍射:如果在物镜的像平面处加入一个选区光阑,只有A’B’范围内的成像电子能通过选区光阑,并最终在荧光屏上形成衍射花样, 这一部分花样实际上是由样品上AB区域提供的,所以在像平面上放置选区光阑的作用等同于在物平面上放置一个光阑。

9电子衍射的基本公式?菊池花样?在恒定的实验条件下,L λ 是一个常数,称为衍射常数菊池花样:透射电镜操作过程中,如果样品晶体比较厚,样品内缺陷的密度较低,就经常会看到在其衍射花样中除了规则的斑点外,还常常出现一些亮暗成对的平行线条,10 SEM 成像原理?成像种类及其特点?SEM 的样品制备?成像原理:利用聚焦的非常细的高能电子束在试样上扫描激发出二次电子、背反射电子、X 射线等各种物理信息,通过对这些信息的接收放大和显示成像,获得对试样表面形貌的观察。

成像种类及特点:①二次电子像,电子像的明暗程度取决于电子束的强弱,分辨率比较高;②背散射电子像,监测深度比二次电子大,但由于只有面向探测器的背散射电子能够为监测器吸收,故而背散射电子像具有较大的反差,而且背散射电子像与样品成分有着密切的关系;③吸收电子像,对样品中原子序数敏感的一种物理信号;④透射电子像,它与样品的密度和厚度有着密切的关系;⑤电子通道花样,在反射的情况下,所得到的衍射花样满足Bragg 公式,并且都对晶体的取向非常敏感,它与样品的晶面指数、晶面间距和布拉格角有关。

样品制备:对金属和陶瓷等块状样品,只需将它们切割成大小合适的尺寸,用导电胶将其粘接在电镜的样品座上即可直接进行观察。

对于非导电样品如塑料、矿物等,在电子束作用下会产生电荷堆积,影响入射电子束斑和样品发射的二次电子运动轨迹,使图像质量下降。

因此这类试样在观察前要喷镀导电层进行处理,通常采用二次电子发射系数较高的金银或碳膜做导电层,膜厚控制在20nm 左右。

常用金属镀膜法和组织导电法。

11 OM 成像原理?光学显微镜的成像研究和设计,是以人眼可见光光线(人们常说的:可见光)的物理现象为基础进行的。

通过玻璃透镜将可见光束聚焦成像。

光学显微镜的分辨力受可见光波长的限制,质量较好的光学显微镜的分辨极限约为0.2μm 。

小于光波波长的物体因衍射而不能成像。

12 红外光谱的产生原理和选律?表示方法?提供的信息?制样方法?原理:红外光谱又称分子振动转动光谱,属分子吸收光谱。

样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,记录百分透过率T%对波数或波长的曲线,即红外光谱。

选律:使分子偶极矩发生改变的振动是红外活性的.表示方法:横坐标---波数(cm-1)。

纵坐标--吸收率A 或透射比T : I0是入射光强度,I 是透射光强度。

从谱图可得信息:吸收峰的位置(吸收频率)、吸收峰的强度 ,常用vs(very strong),s(strong),m(medium),w(weak),vw(very weak),b(broad),sh(sharp),v(variable)表示、吸收峰的形状(尖峰、宽峰、肩峰)。

制样方法:样品要求:1 试样应为“纯物质”(>98%),通常在分析前,样品需要纯化 2 试样不含水(水能强吸收且侵蚀盐窗) 3试样浓度或厚度应适当,以使T 在合适范围。

液体或溶液试样:(1)沸点低易挥发的样品:液体池法。

(2)高沸点的样品:液膜法(夹于两盐片之间)。

(3)固体样品可溶于CS2或CCl4等无强吸收的溶液中。

固体试样:(1)压片法:1~2mg 样+200mg KBr ——干燥处理——研细:粒度小于 2 µm(散射小)——混合压成透明薄片——直接测定;(2)石蜡糊法:试样——磨细——与液体石蜡混合——夹于盐片间;石蜡为高碳数饱和烷烃,因此该法不适于研究饱和烷烃。

(3)薄膜法:高分子试样——加热熔融——涂制或压制成膜;高分子试样——溶于低沸点溶剂——涂渍于0/I I T盐片——挥发除溶剂;样品量少时,采用光束聚光器并配微量池。

13 拉曼散射和拉曼位移?拉曼光谱的产生原理、选律及其表示方法?拉曼光谱的特点?直读光谱仪中“通道” 的概念?拉曼散射:碰撞过程中,光子与分子之间发生能量交换,光子不仅改变运动方向,而且改变频率拉曼位移:斯托克斯线或反斯托克斯线与入射光频率之差(△v )产生原理:分子和光相互作用的散射光的频率与入射光不同。

斯托克斯线和反斯托克斯线统称为拉曼谱线。

入射光的能量 stokes 线的能量Anti-Stokes 线的能量 由于在通常情况下,分子绝大多数处于振动能级基态,所以斯托克斯线的强度远远强于反斯托克斯线选律:拉曼散射光谱也同红外吸收光谱一样,遵守ΔE=h ν的光谱选律。

表示方法:纵坐标--相对强度,横坐标--波数(表示拉曼位移值) 拉曼光谱的特点:(1)一些在红外光谱中为弱吸收的谱带,在拉曼光谱中可能为强谱带,从而有利于这些基团的检出。

(2)拉曼光谱低波数方向的测定范围宽,有利于提供重原子的振动信息。

(3)对于结构的变化,拉曼光谱有可能比红外光谱更敏感。

(4)特别适合于研究水溶液体系。

(5)比红外光谱有更好的分辨率。

(6)固体样品可直接测定,无需制样。

直读光谱仪中“通道” 的概念 发射光通过入射狭缝进入光室经过光栅的分光把不同波长的光分开,不同波长的光经出射狭缝进入光电倍增管接受光信号然后转换成电信号,电信号经过AD数据处理机转换成数字信号,数字信号通过PC机处理再连接打印机打印出数据.一个波长的发射光对应一个通道仪器有多少个“通道”即可测量多少个元素。

但是对于用CCD (电荷耦合传感器)检测器的直读光谱仪而言,没有“通道”可言,通常指在多少波长谱线内可有效测量多少个元素(由检出限而定)。

14 电子跃迁的类型?紫外可见光谱的产生原理?朗伯-比尔定律?电子跃迁的类型:(1)σ- σ*跃迁:比如甲烷分子,只有C-H 键,因此只能产生σ- σ*跃迁,在紫外光谱图上在125nm 处有最大吸收。

(2)π -π*跃迁:分子中含有不饱和基团。

(3)n -π*跃迁:分子中含有不饱和基团。

(4) n - σ*跃迁:含有孤对电子的饱和化合物,可以产生n -π*跃迁,吸收波长位于150-250nm 。

表示方法:横坐标--波长λ(nm ),纵坐标--吸光度A 或吸收系数ε产生原理: 利用某些物质的分子中生色团及助色团吸收200~800nm 光谱区的辐射来进行分析测定,这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级间的跃迁,广泛用于有机和无机物质的定性和定量测定。

相关文档
最新文档