二次函数前4节复习
二次函数小结与复习教案
二次函数小结与复习教案一、教学目标1. 理解二次函数的定义、性质及图象特征。
2. 掌握二次函数的解析式、顶点式及标准式之间的转换。
3. 能够运用二次函数解决实际问题,提高解决问题的能力。
4. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 二次函数的定义与性质1.1 二次函数的定义:一般式为y=ax^2+bx+c(a≠0)1.2 二次函数的性质:开口方向、对称轴、顶点、单调性等。
2. 二次函数的图象特征2.1 开口方向:a>0时,开口向上;a<0时,开口向下。
2.2 对称轴:x=-b/(2a)2.3 顶点:(-b/(2a), c-b^2/(4a))2.4 与y轴的交点:x=0时,y=c。
3. 二次函数的解析式3.1 一般式:y=ax^2+bx+c3.2 顶点式:y=a(x-h)^2+k3.3 标准式:y=a(x-α)^2+β4. 二次函数的转换4.1 一般式与顶点式的转换:4.2 顶点式与标准式的转换:5. 实际问题中的应用5.1 抛物线与坐标轴的交点问题5.2 实际问题转化为二次函数问题,求最值等。
三、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质及图象特征。
2. 利用数形结合法,让学生直观地理解二次函数的图象与性质之间的关系。
3. 运用小组合作探究法,培养学生的团队协作能力和解决问题的能力。
4. 结合实际例子,让学生感受二次函数在生活中的应用。
四、教学准备1. PPT课件:二次函数的性质、图象、实际应用等。
2. 练习题:涵盖本节课的主要知识点。
3. 小组讨论:分组安排。
五、教学过程1. 导入:复习一次函数和反比例函数,引出二次函数。
2. 讲解:介绍二次函数的定义、性质、图象特征等。
3. 演示:利用PPT展示二次函数的图象,让学生直观地感受开口方向、对称轴等。
4. 练习:让学生完成一些简单的练习题,巩固所学知识。
5. 小组讨论:布置一道实际问题,让学生分组讨论,运用二次函数解决问题。
2023年高考数学总复习第二章 函数概念与基本初等函数第4节:幂函数与二次函数(教师版)
2023年高考数学总复习第二章函数概念与基本初等函数第4节二次函数性质的再研究与幂函数考试要求 1.了解幂函数的概念;结合函数y=x,y=x2,y=x3,y=x 12,y=1x的图像,了解它们的变化情况;2.理解二次函数的图像和性质,能用二次函数、方程、不等式之间的关系解决简单问题.1.幂函数(1)幂函数的定义如果一个函数,底数是自变量x,指数是常量α,即y=xα,这样的函数称为幂函数.(2)常见的五种幂函数的图像(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图像都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图像都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式一般式:f(x)=ax2+bx+c(a≠0).顶点式:f(x)=a(x-m)2+n(a≠0),顶点坐标为(m,n).零点式:f(x)=a(x-x1)(x-x2)(a≠0),x1,x2为f(x)的零点.(2)二次函数的图像和性质1.二次函数的单调性、最值与抛物线的开口方向和对称轴及给定区间的范围有关.2.若f (x )=ax 2+bx +c (a ≠0),>0,<0时,恒有f (x )>0;<0,<0时,恒有f (x )<0.3.(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限;(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点.1.思考辨析(在括号内打“√”或“×”)(1)函数y =2x 13是幂函数.()(2)当α>0时,幂函数y =x α在(0,+∞)上是增函数.()(3)二次函数y =ax 2+bx +c (a ≠0)的两个零点可以确定函数的解析式.()(4)二次函数y=ax2+bx+c(x∈[a,b])的最值一定是4ac-b24a.()答案(1)×(2)√(3)×(4)×解析(1)由于幂函数的解析式为f(x)=xα,故y=2x 13不是幂函数,(1)错误.(3)确定二次函数的解析式需要三个独立的条件,两个零点不能确定函数的解析式.(4)对称轴x=-b2a,当-b2a不在给定定义域内时,最值不是4ac-b24a,故(4)错误.2.(2021·全国甲卷)下列函数中是增函数的为()A.f(x)=-xB.f(x)C.f(x)=x2D.f(x)=3x答案D解析取x1=-1,x2=0,对于A项有f(x1)=1,f(x2)=0,所以A项不符合题意;对于B项有f(x1)=32,f(x2)=1,所以B项不符合题意;对于C项有f(x1)=1,f(x2)=0,所以C项不符合题意.故选D.3.(易错题)若函数y=mx2+x+2在[3,+∞)上是减函数,则m的取值范围是________.答案-∞,-16解析当m=0时,函数在给定区间上是增函数;当m≠0时,二次函数的对称轴为直线x=-12m,<0,-12m≤3,∴m≤-16.4.(易错题)已知幂函数f(x)=x-12,若f(a+1)<f(10-2a),则a的取值范围是________.答案(3,5)解析∵幂函数f(x)=x-12在定义域(0,+∞)上单调递减,∴由f(a+1)<f(10-2a),a +1>0,10-2a >0,a +1>10-2a ,∴3<a <5.5.(2018·上海卷)已知α-2,-1,-12,12,1,2,3若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=______.答案-1解析由y =x α为奇函数,知α取-1,1,3.又y =x α在(0,+∞)上递减,∴α<0,取α=-1.6.已知函数f (x )=-2x 2+mx +3(0≤m ≤4,0≤x ≤1)的最大值为4,则m 的值为________.答案22解析f (x )=-2x 2+mx +3=-x m 4+m 28+3,∵0≤m ≤4,∴0≤m4≤1,∴当x =m4时,f (x )取得最大值,∴m 28+3=4,解得m =2 2.考点一幂函数的图像和性质1.若幂函数y =f (x )的图像过点(4,2),则幂函数y =f (x )的大致图像是()答案C解析设幂函数的解析式为y =x α,因为幂函数y =f (x )的图像过点(4,2),所以2=4α,解得α=12.所以y=x,其定义域为[0,+∞),且是增函数,当0<x<1时,其图像在直线y =x的上方,对照选项,C正确.2.若幂函数f(x)=(2b-1)x a2-10a+23(a,b∈Z)为偶函数,且f(x)在(0,+∞)上是减函数,则a,b的值分别为()A.2,1B.4,1C.5,1D.6,1答案C解析由幂函数的定义得2b-1=1,∴b=1.又∵a2-10a+23=(a-5)2-2,函数f(x)为偶函数且在(0,+∞)上为减函数,∴(a-5)2-2<0,故a=4,5,6.又(a-5)2-2为偶数,∴a=5.3.如图是①y=x a;②y=x b;③y=x c在第一象限的图像,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.a<c<b答案D解析由幂函数的图像和单调性可知a<0,b>1,0<c<1,∴a<c<b.4.(2021·郑州质检)幂函数f(x)=(m2-3m+3)x m的图像关于y轴对称,则实数m=________.答案2解析由幂函数定义,知m2-3m+3=1,解得m=1或m=2,当m=1时,f(x)=x的图像不关于y轴对称,舍去,当m=2时,f(x)=x2的图像关于y轴对称,因此m =2.5.若(a +1)-13<(3-2a )-13,则实数a 的取值范围是________.答案(-∞,-1)23,32解析不等式(a +1)-13<(3-2a )-13等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得a <-1或23<a <32.感悟提升1.对于幂函数图像的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x =1,y =1,y =x 所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.3.在区间(0,1)上,幂函数中指数越大,函数图像越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图像越远离x 轴.考点二二次函数的解析式例1已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定该二次函数的解析式.解法一(利用“一般式”)设f (x )=ax 2+bx +c (a ≠0).4a +2b +c =-1,a -b +c 1,4ac -b24a=8,a =-4,b =4,c =7.∴所求二次函数的解析式为f (x )=-4x 2+4x +7.法二(利用“顶点式”)设f (x )=a (x -m )2+n (a ≠0).因为f (2)=f (-1),所以抛物线的对称轴为x =2+(-1)2=12,所以m =12.又根据题意,函数有最大值8,所以n =8,所以y=f(x)=+8.因为f(2)=-1,所以+8=-1,解得a=-4,所以f(x)=-+8=-4x2+4x+7.法三(利用“零点式”)由已知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.又函数有最大值8,即4a(-2a-1)-(-a)24a=8.解得a=-4或a=0(舍).故所求函数的解析式为f(x)=-4x2+4x+7.感悟提升求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:训练1(1)已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)=________.(2)已知二次函数f(x)的图像经过点(4,3),在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.答案(1)x2+2x+1(2)x2-4x+3解析(1)设函数f(x)的解析式为f(x)=a(x+1)2=ax2+2ax+a,由已知f(x)=ax2+bx+1,所以a=1,b=2a=2,故f(x)=x2+2x+1.(2)因为f(2-x)=f(2+x)对x∈R恒成立,所以y=f(x)的图像关于x=2对称.又y=f(x)的图像在x轴上截得的线段长为2,所以f(x)=0的两根为2-22=1或2+22=3.所以二次函数f(x)与x轴的两交点坐标为(1,0)和(3,0).因此设f(x)=a(x-1)(x-3).又点(4,3)在y=f(x)的图像上,所以3a=3,则a=1.故f(x)=(x-1)(x-3)=x2-4x+3.考点三二次函数的图像和性质角度1二次函数的图像例2(1)二次函数y=ax2+bx+c的图像如图所示.则下列结论正确的是______(填序号).①b2>4ac;②c>0;③ac>0;④b<0;⑤a-b+c<0.(2)设函数f(x)=x2+x+a(a>0),若f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0答案(1)①②⑤(2)C解析(1)由题图知,a<0,-b2a>0,c>0,∴b>0,ac<0,故②正确,③④错误.又函数图像与x轴有两交点,∴Δ=b2-4ac>0,故①正确;又由题图知f(-1)<0,即a-b+c<0,故⑤正确.(2)因为f(x)的对称轴为x=-12,f(0)=a>0,所以f(x)的大致图像如图所示.由f(m)<0,得-1<m<0,所以m+1>0>-1 2,所以f(m+1)>f(0)>0.角度2二次函数的单调性与最值例3(1)函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]答案D解析当a=0时,f(x)=-3x+1在[-1,+∞)上单调递减,满足题意.当a≠0时,f(x)的对称轴为直线x=3-a 2a,由f(x)在[-1,+∞)a<0,3-a2a≤-1,解得-3≤a<0.综上,a的取值范围为[-3,0].(2)(2021·西安模拟)已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.解①当a=0时,f(x)=-2x在[0,1]上递减,∴f(x)min=f(1)=-2.②当a>0时,f(x)=ax2-2x图像开口方向向上,且对称轴为x=1 a .(ⅰ)当1a≤1,即a≥1时,f(x)=ax2-2x图像的对称轴在[0,1]内,∴f(x)在0,1a上递减,在1a,1上递增.∴f(x)min=1a=1a-2a=-1a.(ⅱ)当1a>1,即0<a<1时,f(x)=ax2-2x图像的对称轴在[0,1]的右侧,∴f(x)在[0,1]上递减.∴f(x)min=f(1)=a-2.③当a<0时,f(x)=ax2-2x的图像的开口方向向下,且对称轴x=1a<0,在y轴的左侧,∴f(x)=ax2-2x在[0,1]上递减.∴f(x)min=f(1)=a-2.综上所述,f(x)min-2,a<1,-1a,a≥1.感悟提升 1.闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图像,根据函数的单调性及分类讨论的思想求解.2.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图像的对称轴与区间的位置关系,当含有参数时,要依据图像的对称轴与区间的位置关系进行分类讨论.角度3二次函数中的恒成立问题例4(1)已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围是________.(2)函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则实数a的最大值为________.答案(2)2解析(1)由题意知2ax2+2x-3<0在[-1,1]上恒成立,当x=0时,-3<0,符合题意,a∈R;当x≠0时,a-1 6,因为1x∈(-∞,-1]∪[1,+∞),所以当x=1时,不等号右边式子取最小值1 2,所以a<1 2 .综上,实数a∞(2)令a x=t,因为a>1,x∈[-1,1],所以1a≤t≤a,原函数化为g(t)=t2+3t-2,t∈1a,a,显然g(t)在1a,a上单调递增,所以f(x)≤8恒成立,即g(t)max=g(a)≤8成立,所以有a2+3a-2≤8,解得-5≤a≤2,又a>1,所以1<a≤2,所以a的最大值为2.感悟提升由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a≥f(x)恒成立⇔a≥f(x)max,a≤f(x)恒成立⇔a ≤f(x)min.训练2(1)(2021·长春五校联考)已知二次函数f(x)满足f(3+x)=f(3-x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)(2)(2022·泰安调研)当x∈(0,+∞)时,ax2-3x+a≥0恒成立,则实数a的取值范围是________.答案(1)B(2)32,+∞解析(1)设f(x)=ax2+bx+c(a,b,c∈R,且a≠0),∵f(3+x)=f(3-x),∴a(3+x)2+b(3+x)+c=a(3-x)2+b(3-x)+c,∴x(6a+b)=0,∴6a+b=0,∴f(x)=ax2-6ax+c=a(x-3)2-9a+c.又∵f(x)在区间[3,+∞)上单调递减,∴a<0,∴f(x)的图像是以直线x=3为对称轴,开口向下的抛物线,∴由f(m)≥f(0)恒成立,得0≤m≤6,∴实数m的取值范围是[0,6].(2)由ax2-3x+a≥0,得a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当x=1时等号成立,∴y=3x+1x≤32,故a≥32.(3)设函数f(x)=x2-2x+2,x∈[t,t+1],t∈R,求函数f(x)的最小值.解f(x)=x2-2x+2=(x-1)2+1,x∈[t,t+1],t∈R,函数图像的对称轴为x=1.当t+1≤1,即t≤0时,函数图像如图(1)所示,函数f(x)在区间[t,t+1]上为减函数,所以最小值为f(t+1)=t2+1;当t<1<t+1,即0<t<1时,函数图像如图(2)所示,在对称轴x=1处取得最小值,最小值为f(1)=1;当t≥1时,函数图像如图(3)所示,函数f(x)在区间[t,t+1]上为增函数,所以最小值为f(t)=t2-2t+2.综上可知,当t≤0时,f(x)min=t2+1,当0<t<1时,f(x)min=1,当t≥1时,f(x)min=t2-2t+2.1.若f (x )是幂函数,且满足f (4)f (2)=3,则()A.3B.-3C.13D.-13答案C解析设f (x )=x α,则4α2α=2α=3,∴=13.2.若函数f (x )=(m 2-m -1)x m 是幂函数,且其图像与坐标轴无交点,则f (x )()A.是偶函数B.是定义域内的减函数C.是定义域内的增函数D.在定义域内没有最小值答案D解析幂函数f (x )=(m 2-m -1)x m 的图像与坐标轴无交点,可得m 2-m -1=1,且m ≤0,解得m =-1,则函数f (x )=x -1是奇函数,在定义域上不是减函数,且无最值.3.(2021·河南名校联考)函数y =1-|x -x 2|的图像大致是()答案C解析∵当0≤x ≤1时,y =x 2-x +1+34,又当x >1或x <0时,y =-x 2+x +1+54,因此,结合图像,选项C 正确.4.(2021·西安检测)已知函数f (x )=x -3,若a =f (0.60.6),b =f (0.60.4),c =f (0.40.6),则a ,b ,c 的大小关系是()A.a <c <bB.b <a <cC.b <c <aD.c <a <b答案B解析∵0.40.6<0.60.6<0.60.4,又y =f (x )=x -3在(0,+∞)上是减函数,∴b <a <c .5.若二次函数y =kx 2-4x +2在区间[1,2]上是单调递增函数,则实数k 的取值范围是()A.[2,+∞)B.(2,+∞)C.(-∞,0)D.(-∞,2)答案A解析二次函数y =kx 2-4x +2图像的对称轴为直线x =2k,当k >0时,要使函数y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2;当k <0时,2k <0,此时抛物线的对称轴在区间[1,2]的左侧,则函数y =kx 2-4x +2在区间[1,2]上是减函数,不符合要求.综上可得实数k 的取值范围是[2,+∞).6.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一组美丽的曲线(如图),设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x a ,y =x b 的图像三等分,即有BM =MN =NA ,那么a -1b=()A.0B.1C.12D.2答案A解析BM =MN =NA ,点A (1,0),B (0,1),所以将两点坐标分别代入y =x a ,y =x b ,得a =log 1323,b =log 2313,∴a -1b =log 1323-1log 2313=0.7.已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.答案-22,解析因为函数图像开口向上,(m )=m 2+m 2-1<0,(m +1)=(m +1)2+m (m +1)-1<0,解得-22<m <0.8.(2021·青岛联考)已知函数f (x )=x 2-2ax +b (a >1)的定义域和值域都为[1,a ],则b =________.答案5解析f (x )=x 2-2ax +b 的图像关于x =a 对称,所以f (x )在[1,a ]上为减函数,又f (x )的值域为[1,a ],(1)=1-2a +b =a ,(a )=a 2-2a 2+b =1.消去b ,得a 2-3a +2=0,解得a =2(a >1),从而得b =3a -1=5.9.设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 的值都有f (x )>0,则实数a的取值范围为________.答案解析由题意得a >2x -2x2对1<x <4恒成立,又2x -2x2=-+12,14<1x<1,max=12,∴a >12.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图像过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[3,5]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a .因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0.所以4a 2-4a =0,所以a =1,b =2.所以f (x )=x 2+2x +1.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1+1.由g (x )的图像知,要满足题意,则k -22≥5或k -22≤3,即k ≥12或k ≤8,所以所求实数k 的取值范围为(-∞,8]∪[12,+∞).11.已知二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)当x ∈[-1,1]时,函数y =f (x )的图像恒在函数y =2x +m 的图像的上方,求实数m 的取值范围.解(1)设f (x )=ax 2+bx +c (a ≠0),由f (x +1)-f (x )=2x ,得2ax +a +b =2x .所以,2a =2且a +b =0,解得a =1,b =-1,又f (0)=1,所以c =1.因此f(x)的解析式为f(x)=x2-x+1.(2)因为当x∈[-1,1]时,y=f(x)的图像恒在y=2x+m的图像上方,所以在[-1,1]上,x2-x+1>2x+m恒成立;即x2-3x+1>m在区间[-1,1]上恒成立.所以令g(x)=x2-3x+1-5 4,因为g(x)在[-1,1]上的最小值为g(1)=-1,所以m<-1.故实数m的取值范围为(-∞,-1).12.已知在(-∞,1]上递减的函数f(x)=x2-2tx+1,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,则实数t的取值范围是()A.[-2,2]B.[1,2]C.[2,3]D.[1,2]答案B解析由于f(x)=x2-2tx+1的图像的对称轴为x=t,又y=f(x)在(-∞,1]上是减函数,所以t≥1.则在区间[0,t+1]上,f(x)max=f(0)=1,f(x)min=f(t)=t2-2t2+1=-t2+1,要使对任意的x1,x2∈[0,t+1],都有|f(x1)-f(x2)|≤2,只需1-(-t2+1)≤2,解得-2≤t≤ 2.又t≥1,∴1≤t≤ 2.13.(2022·太原调研)对于问题:当x>0时,均有[(a-1)x-1](x2-ax-1)≥0,求实数a的所有可能值.几位同学提供了自己的想法.甲:解含参不等式,其解集包含正实数集;乙:研究函数y=[(a-1)x-1](x2-ax-1);丙:分别研究两个函数y1=(a-1)x-1与y2=x2-ax-1;丁:尝试能否参变量分离研究最值问题.你可以选择其中某位同学的想法,也可以用自己的想法,可以得出的正确答案为______.答案3 2解析选丙.画出y2=x2-ax-1的草图,y2=x2-ax-1过定点C(0,-1).∴y2=x2-ax-1与x轴有两个交点,且两交点在原点两侧,又y1=(a-1)x-1也过定点C(0,-1),故直线y1=(a-1)x-1只有过点A,C才满足题意,∴a-1>0,即a>1,令y1=0得x=1a-1,y2=x2-ax-1,-aa-1-1=0,解得a=0(舍)或a=3 2 .14.已知函数f(x)=x2+(2a-1)x-3.(1)当a=2,x∈[-2,3]时,求函数f(x)的值域;(2)若函数f(x)在[-1,3]上的最大值为1,求实数a的值.解(1)当a=2时,f(x)=x2+3x-3,x∈[-2,3],函数图像的对称轴为直线x=-32∈[-2,3],∴f(x)min==94-92-3=-214,f(x)max=f(3)=15,∴f(x)的值域为-214,15.(2)函数图像的对称轴为直线x=-2a-12.①当-2a-12≤1,即a≥-12时,f(x)max=f(3)=6a+3,∴6a+3=1,即a=-13,满足题意;②当-2a-12>1,即a<-12时,f(x)max=f(-1)=-2a-1,∴-2a-1=1,即a=-1,满足题意.综上可知,a=-13或-1.。
二次函数小结与复习教案
二次函数小结与复习教案一、教学目标1. 知识与技能:(1)理解二次函数的定义、性质和图像;(2)掌握二次函数的求解方法,包括配方法、公式法、图像法;(3)能够运用二次函数解决实际问题。
2. 过程与方法:(2)培养学生运用二次函数解决实际问题的能力;(3)培养学生合作学习、讨论交流的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养其自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生团队协作、分享的品质。
二、教学内容1. 复习二次函数的定义:函数式y = ax^2 + bx + c(a ≠0);2. 复习二次函数的性质:开口方向、对称轴、顶点、单调性等;3. 复习二次函数的图像:开口向上/向下的抛物线,顶点式、对称轴式等;4. 复习二次函数的求解方法:配方法、公式法、图像法;5. 运用二次函数解决实际问题:长度、面积、最大值、最小值等问题。
三、教学重点与难点1. 教学重点:(1)二次函数的定义、性质和图像;(2)二次函数的求解方法;(3)运用二次函数解决实际问题。
2. 教学难点:(1)二次函数的图像分析;(2)运用二次函数解决实际问题。
四、教学过程1. 导入:通过提问方式引导学生回顾二次函数的相关知识,激发学生的学习兴趣;2. 讲解:根据教材,系统讲解二次函数的定义、性质、图像和求解方法,让学生清晰地理解二次函数的基本概念;3. 案例分析:分析实际问题,引导学生运用二次函数解决问题,培养学生运用知识的能力;4. 练习:布置课堂练习题,让学生巩固所学知识,并及时给予解答和指导;五、课后作业1. 复习二次函数的定义、性质、图像和求解方法;2. 完成课后练习题,巩固所学知识;3. 选择一个实际问题,运用二次函数解决,并将解题过程和答案写在作业本上。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生完成的课后作业,评估其对二次函数知识的掌握程度;3. 练习题:分析学生完成的练习题,了解其在二次函数求解方法和实际问题解决方面的能力;4. 小组讨论:评估学生在小组讨论中的表现,了解其合作学习、交流分享的能力。
22.1.2第4节二次函数y=a(x-h)2的图象与性质(教案)
一、教学内容
22.1.2第4节二次函数y=a(x-h)^2的图象与性质
1.二次函数y=a(x-h)^2的图象特点
- a>0时,抛物线开口向上;a<0时,抛物线开口向下
- h为抛物线的对称轴,即x=h
-抛物线顶点为(h, 0)
2.二次函数y=a(x-h)^2的性质
(2)强调对称轴(x=h)和顶点((h, k))的概念,解释它们与函数最值、单调性的关系,并通过具体例子进行说明。
(3)详细讲解图象的平移变换,使学生掌握左加右减、上加下减的变换规律,并能运用到具体问题中。
(4)结合实际情境,如物体抛掷、经济模型等,展示二次函数的应用,强调数学知识在实际问题中的运用。
1.提供更多具有代表性的案例,让学生在实际问题中运用所学知识。
2.加强对学生的引导和启发,提高他们在解决问题时的独立思考能力。
3.优化问题设计,使学生在讨论过程中能够更加聚焦主题。
4.针对不同学生的掌握程度,进行有针对性的辅导和答疑。
2.掌握二次函数图象变换方法,提高学生数学建模、数学运算的能力。
-通过图象变换,培养学生建立数学模型,解决实际问题的能力。
-在变换过程中,锻炼学生准确进行数学运算,提高解题效率。
3.培养学生运用二次函数知识解决实际问题的意识,提升数学应用、数据分析的核心素养。
-结合实例分析,引导学生运用所学知识解决生活中与二次函数相关的问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
人教版数学九年级上册必备书序第一部分第三章第4节-课件
中考考点精讲精练
考点1 二次函数的图象和性质[5年4考:2014年(选择 题和解答题)、2015年(解答题)、2016年(解答题)、2017 年(解答题)]
典型例题
1. (2017金华)对于二次函数y=-(x-1)2+2的图象与性质,下列
说法正确的是
( B)
A. 对称轴是直线x=1,最小值是2
B. 对称轴是直线x=1,最大值是2
x1=-1,x2=3; ③3a+c>0;
④当y>0时,x的取值范围是-1≤x<3;
⑤当x<0时,y随x增大而增大.
其中结论正确的个数是( B )
A. 4个
B. 3个
C. 2个
D. 1个
7. 在同一平面直角坐标系中,函数y=ax+b与y=ax2-bx的图象
可能是
( C)
8. 在平面直角坐标系xOy中,二次 函数y=ax2+bx+c的图象如图1-3-4-5 所示,下列说法正确的是 ( B ) A. abc<0,b2-4ac>0 B. abc>0,b2-4ac>0 C. abc<0,b2-4ac<0 D. abc>0,b2-4ac<0
则下列结论正确的是
(C )
A. a>0 B. c<0 C. 3是方程ax2+bx+c=0的一个根 D. 当x<1时,y随x的增大而减小
6. 抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一
个交点坐标为(-1,0),其部分图象如图1-3-4-4所示,下列
结论:
①4ac<b2;
②方程ax2+bx+c=0的两个根是
∴如答图1-3-4-1,连接AP,连接
BC与x=2交于点P,则点P即为所求.
二次函数教案(全)
二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
中考数学 考点系统复习 第三章 函数 第四节 二次函数的图象与性质
整理得 a(x1-x2)(x1+x2-2t)<0. ∵x1<x2,即 x1-x2<0, 又∵a>0,∴x1+x2-2t>0,∴t<x1+2 x2.
3 ∵对于 x1+x2>3,都有 y1<y2,∴t<2.
14.★(2021·资阳)已知 A,B 两点的坐标分别为(3,-4),(0,-2),
-12x+m 上的点,则
( B)
A.y3<y2<y1
B.y3<y1<y2
C.y2<y3<y1
D.y1<y3<y2
4.(2021·陕西)下表中列出的是一个二次函数的自变量 x 与函数 y 的几
组对应值:
x … -2 0 1 3 …
y … 6 -4 -6 -4 …
下列各选项中,正确的是
( C)
A.这个函数的图象开口向下
9.(2021·新疆)已知抛物线 y=ax2-2ax+3(a≠0). (1)求抛物线的对称轴; (2)把抛物线沿 y 轴向下平移 3|a|个单位,若抛物线的顶点落在 x 轴上, 求 a 的值; (3)设点 P(a,y1),Q(2,y2)在抛物线上,若 y1>y2,求 a 的取值范围.
解:(1)由题意可得,抛物线的对称轴为:
正确结论的序号都填上)
④
12.(2021·温州)已知抛物线 y=ax2-2ax-8(a≠0)经过点(-2,0). (1)求抛物线的函数解析式和顶点坐标; (2)直线 l 交抛物线于点 A(-4,m),B(n,7),n 为正数. 若点 P 在抛物 线上且在直线 l 下方(不与点 A,B 重合),分别求出点 P 横坐标与纵坐标 的取值范围.
(1)解:由题意,易得函数的解析式为 y=x2-2x+1. 函数图象的顶点坐标为(1,0). (2)解:例如 a=1,b=3,此时 y=x2+3x+1. ∵b2-4ac=5>0, ∴函数 y=x2+3x+1 的图象与 x 轴有两个不同的交点.
中考数学 精讲篇 考点系统复习 第三章 函数 第四节 大中小二次函数的图像与性质
详见“本书 P52 第三章第四节考点梳理特训”
1.★(2020·齐齐哈尔)如图,抛物线 y=ax2+bx+c(a≠0) 与 x 轴交于点(4,0),其对称轴为直线 x=1,结合图象给出 下列结论:①ac<0;②4a-2b+c>0;③当 x>2 时,y 随 x 的 增大而增大;④关于 x 的一元二次方程 ax2+bx+c=0 有两 个不相等的实数根.其中正确的结论有 A.1 个 B.2 个 C.3 个 D.4 个
42
【考情分析】湖南近 3 年主要考查:1.二次函数的图象与性质:二次函 数图象的增减性、顶点坐标、与坐标轴的交点坐标、对称轴、自变量的 取值范围;2.二次函数图象与系数 a,b,c 的关系;3.二次函数解析式 的确定,一般在压轴题第一问考查.
命题点 1:二次函数的图象与性质(2021 年考查 3 次,2020 年考查 7 次, 2019 年考查 9 次) 1.(2018·岳阳第 4 题 3 分)抛物线 y=3(x-2)2+5 的顶点坐标是( C ) A.(-2,5) B.(-2,-5) C.(2,5) D.(2,-5)
( C)
重难点 2:二次函数图象的平移
将抛物线 y=-5x2+1 向左平移 1 个单位长度,再向下平移 2 个单位
长度,所得抛物线为
( A)
A.y=-5(x+1)2-1
B.y=-5(x-1)2-1
C.y=-5(x+1)2+3
D.y=-5(x-1)2+3
【思路点拨】方法一:平移前抛物线的顶点坐标为(0,1)→平移后抛物 线的顶点坐标为(-1,-1) 利用顶点式,a=-5 平移后抛物线的 解析式为 y=-5(x+1)2-1.方法二:直接利用“上加下减常数项,左加 右减自变量”的平移规律求出平移后抛物线的解析式,即 y=-5x2+1 左移,自变量加1;下移,常数项减2y=-5(x+1)2+1-2.
高考数学复习:一元二次方程、不等式
A.(-∞,2]
B.(-∞,-2]
1
C.[ ,+∞)
2
D.[2,+∞)
解析 设 t=log2x,则 t∈[2,3],
原命题等价于:任意 t∈[2,3],使 t -mt-3≤0 为真命题,所以
2
设
3
g(t)=t- ,则
3
m≥t- ,
g(t)在[2,3]上的最大值为 g(3)=2,故 m≥2,故选 D.
解析 原不等式可化为 a≤ +1 ,设 f(x)= +1 ,
(+1)2 -2-2+4
4
4
则 f(x)=
=x+1++1-2≥2 ( + 1)·+1-2=2,
+1
4
当且仅当 x+1=+1,即 x=1 时,函数 f(x)有最小值为 2,
因为 a≤f(x)恒成立,所以 a≤2,故选 C.
[对点训练 3](2024·福建宁德模拟)已知命题 p:任意 x∈[4,8],使 lo22 x-m·log2x-3≤0
4
2
≥2
4,故选 A.
4
2
· =4,当且仅当
2
4
b = 2 ,即 b2=2 时,等号成立,
2
规律方法
“三个二次”之间的关系及其应用
(1)一元二次方程的根就是相应二次函数的零点,也就是相应一元二次不等
式解集的端点值;
(2)对 于 不 等 式 ax2 +bx +c>0,若 其 解 集 为(-∞,m)∪(n,+∞),则a>0且方程
二次函数知识点总结最新8篇
二次函数知识点总结最新8篇高中二次函数知识点总结篇一1、按部就班,环环相扣数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
所以,平时学习不应贪快,要一章一章过关,不要轻易留下自己不明白或者理解不深刻的问题,一定要把每一个环节都学牢。
2、概念记清,基础夯实千万不要忽视最基本的概念、公理、定理和公式,每新学一个定理或者定义的时候,都要在理解的基础上去深挖每一个字眼,有时候少说一两个字,都可能导致结果的不同。
要在刚开始学概念的时候就弄清楚,通过读一读、抄一抄加深印象,特别是容易混淆的概念更要彻底搞清,不留隐患。
3、适当做题,巧做为主学习数学是不能缺少训练的,平时多做一些难度适中的练习,当然莫要陷入死钻难题的误区,要熟悉中考的题型,训练要做到有的放矢。
有的同学埋头题海苦苦挣扎,辅导书做掉一大堆却鲜有提高,这就是陷入了做题的误区。
数学需要实践,需要大量做题,但要“埋下头去做题,抬起头来想题”,在做题中关注思路、方法、技巧,要“苦做”更要“巧做”。
考试中时间最宝贵,掌握了好的思路、方法、技巧,不仅解题速度快,而且也不容易犯错。
4、记录错题,避免再犯俗话说,“一朝被蛇咬,十年怕井绳”,可是同学们常会一次又一次地掉入相似甚至相同的“陷阱”里。
因此,建议大家在平时的做题中就要及时记录错题,更重要的是还要想一想为什么会错、以后要特别注意哪些地方,这样就能避免不必要的失分。
毕竟,中考或者在平时考试当中是“分分必争”,一分也失不得。
这样复习时,这个错题本也就成了宝贵的复习资料。
5、集中兵力,攻下弱点每个人都有自己的“软肋”,如果试题中涉及到你的薄弱环节,一定会成为你的最痛。
因此一定要通过短时间的专题学习,集中优势兵力,打一场漂亮的歼灭战,避免变成“瘸腿”。
初中二次函数知识点总结篇二教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
北师版高考总复习一轮理科数精品课 第2章 函数的概念与性质 第4节 幂函数与二次函数
1
a= ,所以
9
1
f(x)= (x+2)2-1,即
9
1 2 4 5
f(x)= x + x- .
9
9 9
考点三
二次函数的图像与性质(多考向探究)
考向1.二次函数的图像
典例突破
例3.如图是二次函数y=ax2+bx+c(a≠0)图像的一部分,
图像过点A(-3,0),对称轴为直线x=-1.给出下面四个结论:
选项符合题意,故选C.
考向2.二次函数的单调性与最值
典例突破
例4.(2021新疆乌鲁木齐模拟)若定义在R上的二次函数f(x)的值域为[-4,
+∞),且满足f(1+x)=f(1-x),f(2)=-3.
(1)求函数f(x)的解析式;
(2)求f(x)在[t,t+1]上的最小值g(t).
解:(1)由于f(1+x)=f(1-x),则二次函数f(x)的图像关于直线x=1对称,因为二次
衍生考点
核心素养
1.幂函数的图像与性质
2.二次函数的解析式
3.二次函数的图像
4.二次函数的性质
5.三个“二次”之间的关
系
1.数学抽象
2.直观想象
3.数学运算
4.逻辑推理
强基础 增分策略
1.幂函数
(1)幂函数的定义
一般地,函数 y=xα
叫作幂函数,其中x是自变量,α是常数.
微点拨幂函数的特点:①自变量x处在幂底数的位置,幂指数α为常数;②xα图像上的一些特殊
点,如函数图像与y轴的交点,与x轴的交点等.
从这三方面入手,能准确地判断出二次函数的图像,反之,也能从图像中得
第2章 二次函数知识点
第二章 二次函数第1节 二次函数所描述的关系1、二次函数的定义:一般地,形如的二次函数。
的函数叫做是常数,x a c b a c bx ax y )0,,(2≠++= 2、列函数关系式(重点):因变量&自变量第2节 结识抛物线1、 二次函数=y 2ax 的图象的画法(重点):描点法:列表——描点——连线2、 二次函数=y 2ax 的图象的性质(难点)对称图形,对称轴是y 轴,顶点是原点(0,0)——顶点是指对称轴与抛物线的交点。
当a >0时,开口向上,在y 轴左边,下降趋势;在y 轴右边,上升趋势。
顶点处取得最小值0。
当a <0时,开口向下,在y 轴左边,上升趋势;在y 轴右边,下降趋势。
顶点处取得最大值0。
第3节 刹车距离与二次函数1、二次函数2ax y =中的a 的作用:(1)a 的符号决定抛物线的开口方向(2)a 的值决定抛物线的形状和开口大小2、比较)0()0(22≠+=≠=a c ax y a ax y 与的图象的异同(难点)二次函数)0(2≠+=a c ax y 的图象是一条抛物线,它的对称轴是y 轴,顶点坐标是(0,c )。
对于)0(2≠=a ax y 和)0(2≠+=a c ax y 的图象,形状相同,只是位置不同。
)0(2≠+=a c ax y 可以看做是把)0(2≠=a ax y 的图象向上(c>0)或向下(c<0)平移|c|个单位长度得到的。
第4节 二次函数c bx ax y ++=2的图象1、二次函数c bx ax y ++=2的图象的平移(1)二次函数k ax y +=2的图象可由抛物线2ax y =向上(或向下)平移而得到。
(2)二次函数2)(h x a y -=的图象可由抛物线2ax y =向左(或向右)平移而得到。
(3)二次函数k h x a y +-=2)(的图象可由抛物线2ax y =向左(或向右)平移再向上(或向下)平移|k|个单位而得到。
中考数学专题复习(有答案)二次函数的图象与性质
第4节二次函数的图象与性质A组1.(2020无锡)请写出一个函数表达式,使其图象的对称轴为y轴:y=x2(答案不唯一) .2.(2020上海)如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是y =x2+3 .3.(2020泰安)已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如下表:下列结论:①a>0(-8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=-5有两个不相等的实数根.其中,正确结论的序号是①③④.(把所有正确结论的序号都填上)4.(2020临沂改编)已知抛物线y=ax2-2ax-3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式.解:(1)∵抛物线y=ax2-2ax-3+2a2=a(x-1)2+2a2-a-3.∴这条抛物线的对称轴为直线x=1.(2)∵抛物线的顶点在x轴上,∴2a2-a-3=0.解得a1=32,a2=-1.∴抛物线的解析式为y=32-3x+32或y=-x2+2x-1.2xB组5.(2020深圳)二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-1,n),其部分图象如图所示.以下结论错误的是(C)A.abc>0B.4ac-b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根6.(2020鹤岗)如图,已知二次函数y=-x2+(a+1)x-a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C,已知△ABC的面积是6.(1)求a的值;(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在,请求出P坐标;若不存在,请说明理由.解:(1)令x=0,得y=-a.∴C(0,-a).令y=0,即-x2+(a+1)x-a=0,解得x1=a,x2=1.由图象知,a<0,∴A(a,0),B(1,0).∵S△ABC=6,∴12(1-a)(-a)=6.解得a=-3或a=4(舍去).(2)∵a=-3,∴C(0,3).∵S△ABP=S△ABC,∴点P的纵坐标为±3,把y=3代入y=-x2-2x+3得-x2-2x+3=3,解得x1=-2,x2=0(与C重合,舍去).把y=-3代入y=-x2-2x+3得-x2-2x+3=-3,解得x1=-1+7,x2=-1-7.∴点P的坐标为(-2,3),(-1+7,-3),(-1-7,-3).C组7.(2020枣庄改编)如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y 轴交于点C ,连接AC ,BC .M 为线段OB 上的一个动点,过点M 作PM ⊥x 轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN ⊥BC ,垂足为点N .设点M 的坐标为M (m ,0),请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?解:(1)将点A ,B 的坐标代入y =ax 2+bx +4,得⎩⎪⎨⎪⎧9a -3b +4=0,16a +4b +4=0.解得⎩⎨⎧a =-13,b =13.∴抛物线的表达式为y =-13x 2+13x +4.(2)令x =0,得y =4,∴点C (0,4).设直线BC 的函数表达式为y =kx +b ,将点B ,C 坐标代入,得直线BC 的表达式为y =-x +4.∵M (m ,0),∴点P ⎝⎛⎭⎫m ,-13m 2+13m +4,点Q (m ,-m +4). ∴PQ =-13m 2+13m +4+m -4=-13m 2+43m .∵OB =OC ,∴∠ABC =∠OCB =45°. ∴∠PQN =∠BQM =45°. ∴PN =PQ sin45°=22⎝⎛⎭⎫-13m 2+43m =-26(m -2)2+223. ∵-26<0,∴当m =2时,PN 有最大值,最大值是223.。
人教版九年级数学上册第22章《二次函数》知识小结与复习
解:(1)∵抛物线过点(3,8),(-1,0),(0,5),
8 则 0
9a 3b c, a b c,
解得
a b
1, 4,
5 c.
c 5.
∴该二次函数关系式为y=-x2+4x+5
(2)顶点M的坐标为(2,9), 对称轴为直线x=2,则B点坐标为(5,0), 过M作MN⊥AB于N,则
S四边形ABMD =S△AOD+S梯形DONM +S△MNB
教学反思
本课时是对本章知识点的全面总结,教学 时,教师注重引导学生回忆知识点并构建知识 结构框图,同时辅以典型例题,复习和巩固所 学知识点,最后教师详细讲解解题思路和分析 过程.
4.已知抛物线y
1 2
x
2
3
x
5 2
.
(1)求抛物线的开口方向、对称轴及顶点坐标;
(2)求抛物线与x轴、y轴的交点坐标;
解:(1)
y
1 2
x
2
3
x
5 2
.
1 2
(
x
3)2
7.
开口:向上,
对称轴:x=3,
顶点坐标:(3,-7).
(2)
0
1 2
(x轴的交点:
(3 14,0),(3 14,0).
ab<0;②b2-4ac>0;③9a-3b+c<0;④b-4a=0;
⑤方程ax2+bx=0的两个根为x1=0, x2=-4. y 其中正确的结论有( B )
A.①③④ B.②④⑤
-4 -2 O
x
C.①②⑤ D.②③⑤
专题训练四 二次函数与一元二次方程的关系
(黑龙江牡丹江中考)已知二次函数y=kx2+(2k-1)x-1与x轴
数学一轮复习第二章2.4二次函数与幂函数学案理含解析
第四节二次函数与幂函数【知识重温】一、必记2个知识点1.幂函数(1)定义:形如①________________的函数称为幂函数,其中底数x是自变量,α为常数.常见的五类幂函数为y=x,y=x2,y=x3,y =12x,y=x-1.(2)性质(ⅰ)幂函数在(0,+∞)上都有定义;(ⅱ)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(ⅲ)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.二次函数(1)二次函数解析式的三种形式(ⅰ)一般式:f(x)=②________________________;(ⅱ)顶点式:f(x)=③________________________;(ⅲ)零点式:f(x)=④________________________。
(2)二次函数的图象和性质(-∞,+∞)(-∞,+∞)二、必明2个易误点1.研究函数f(x)=ax2+bx+c的性质,易忽视a的取值情况的讨论而盲目认为f(x)为二次函数.2.形如y=xα(α∈R)才是幂函数,如y=123x不是幂函数.【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)函数y=132x是幂函数.()(2)当n〉0时,幂函数y=x n在(0,+∞)上是增函数.()(3)二次函数y=ax2+bx+c(x∈R)不可能是偶函数.()(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.()(5)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是错误!。
()二、教材改编2.已知幂函数y=f(x)的图象过点(2,错误!),则函数y=f(x)的解析式为________.3.函数y=ax2-6x+7a(a≠0)的值域为[-2,+∞),则a 的值为()A.-1 B.-错误!C.1 D.2三、易错易混4.函数y=2x2-6x+3,x∈[-1,1],则y的最小值是() A.-1 B.-2 C.1 D.25.若四个幂函数y=x a,y=x b,y=x c,y=x d在同一坐标系中的图象如图所示,则a,b,c,d的大小关系是()A.d>c〉b>a B.a>b〉c〉dC.d〉c〉a〉b D.a〉b〉d〉c四、走进高考6.[2020·江苏卷]已知y=f(x)是奇函数,当x≥0时,f(x)=23x,则f(-8)的值是________.考点一幂函数的图象及性质[自主练透型]1.已知点错误!在幂函数f(x)的图象上,则f(x)是()A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数2.幂函数y=xm2-2m-3(m∈Z)的图象如图所示,则m 的值为()A.-1 B.0C.1 D.23.[2021·江西九江联考]已知a=0.40.3,b=0.30。
2024届新高考一轮复习北师大版 第2章 第4节 幂函数与二次函数 课件(54张)
返回导航
2.一元二次不等式恒成立的条件
若 f(x)=ax2+bx+c(a≠0),则当aΔ><00, 时恒有 f(x)>0,当aΔ<<00, 时,
恒有 f(x)<0.
返回导航
[思考辨析] 判断下列结论是否正确(请在括号中打“√”或“×”) (1) 二 次 函 数 y = ax2 + bx + c(a≠0) , x ∈ [m , n] 的 最 值 一 定 是 4ac-b2 4a .( ) (2)在 y=ax2+bx+c(a≠0)中,a 决定了图象的开口方向和在同一直角 坐标系中的开口大小.( )
B.(-∞,-210 )
C.(210 ,+∞)
D.(-210 ,0)
C 由题意知aΔ><00 即a1>-020a<0 ,解得 a>210 .故选 C.
返回导航
3.幂函数 f(x)=xa2-10a+23(a∈Z)为偶函数,且 f(x)在区间(0,+∞)
上是减函数,则 a 等于( )
A.3
B.4
C.5
返回导航
(3)函数
是幂函数.( )
(4)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (5)当 n<0 时,幂函数 y=xn 是定义域上的减函数.( )
答案:(1)× (2)√ (3)× (4)√ (5)×
返回导航
[对点查验]
1.若幂函数的图象经过点2,14 ,则它的单调递增区间是(
)
A.(0,+∞)
B.[0,+∞)
C.(-∞,+∞)
D.(-∞,0)
D 设 f(x)=xα,则 2α=14 ,α=-2,即 f(x)=x-2,它是偶函数,单
调递增区间是(-∞,0).故选 D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向 上
向 下
(0,0) 对称轴左 对称轴左 侧y随x增 侧y随x增 Y 大而减小,大而增大, 轴 对称轴右 对称轴右 (0,k) 侧y随x增 侧y随x增 大而增大;大而减小。
说出下列二次 函数的开口方向、 对称轴及顶点坐标 2 向上,y轴 (0, 0) (1) y=5x (2) y=-3x2 +2 向下,y轴 (0, 2) (3) y=8x2+6 向上,y轴 (0, 6) (4) y= -x2-4 向下,y轴 (0, - 4)
Y 轴 Y 轴
顶点坐标
(0,0) (0,k)
y=ax2+k(a>0)
y=ax2(a<0) y=ax2+k(a<0)
向下
向下
Y 轴
Y 轴
(0,0)
(0,k)
复习
1.二次函数y=ax2和y=ax2+k的图象是什么形状? 二次函数y=ax2和y=ax2+k的图象是一条抛物线。 2.二次函数y=ax2的性质是什么? 开口方向 解析式 a>0 a<0 y = ax2 ﹙a≠0﹚ y = ax2+k ﹙a≠0﹚ 对 称 轴 顶点 坐标 函数的增减性 a>0 a<0
1、把抛物线y=-2x2向左平移3个单位长度,得 y=-2(x+3)2 到的抛物线是
2、把抛物线y=-x2向右平移5个单位,得到的 抛物线是 y=-(x2-5)2 3、一条抛物线向左平移6个单位后得到抛物 y=4(x+7)2 2,原抛物线是 线y=4(x+1) 4、分别说下列抛物线的开口方向,对称轴、顶 点坐标。 (1)y= -(x-2)2
-4
-2 -2
2
4
-4
-6
襄阳市第三十一中学
杜鑫
复习
1.用描点法画出y=-2x2的图象,并指出 它的开口方向、对称轴以及顶点坐标。
二次函数
y ax
2
的图象和性质
y
y 2x
y x2
2
4
3
2
1 2 y x 2
x
1
-3
-2
-1
0
1
2
3
抛物线 y 3x 2 的图象是_____,开口方向 1、函数 下 y ___,对称轴是___轴。顶点坐标____,x<0时, (0,0) 函数值y随增大而__ 增大 ,x>0时,函数值随增大而 0 大 0 __减小 ___时,有最__值是___。 ,x=
-4
-2 -2
2
4
y=- 1 ﹙x+1﹚2 2
y=- 1 ﹙x-1﹚2 2
-4 -6
1 2 可以看出,抛物线 y x 1的开口向下,对称轴是 2
经过点(-1,0)且与x轴垂直的直线,我们把它记住直线
1 2 x=-1,顶点是(-1,0);抛物线 y x 1 的开 2 下 口向_________,对称轴是_直线_______________,顶点是 x=1 (1,0) _________________.
练习
在同一直角坐标系内画出下列二 次函数的图象: 1 2 1 2 y x 2 y x 2
2
2
1 2 y x 2
观察三条抛物线的相互关系,并分别指 出它们的开口方向、对称轴及顶点.
1、y= -3(x+2)2展开是y=-3x2-12x-12 2、今天学的y=a(x-h)2是y=ax2+bx+c 中变形(提、配、合、乘)为y=a(x-h)2 的情况,变形为y=a(x-h)2+k的情况后面 学。 例如:y=-3x2-12x-12和y=-3x2-12x-14
x
y=-1/2(x+1)2 y=-1/2(x-1)2
... ...
...
...
-3 -2 -1 -2 -0.5 0 -4.5 -2
x=-1
0 -0.5 -0.5
x=1
1 -2 0
2 -4.5 -0.5
3
...
...
...
... -2 画出下列函数的图象
1 y ( x 1) 2 2
1 y ( x 1) 2 2
二次函数y=a(x-h)2的性质
y=a(xh)2 a>0 a<0
图象
开口向上 开口向下
开口
对称性 顶点 增减性
a的绝对值越大,开口越小 关于x=h对称 (h,0) 顶点是最低点 顶点是最高点 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减
小 结
抛物线
y=ax2(a>0)
2
...
y=x2-1
小结
1 2 (1) y x 2 答:形状相同,位置不同。 想一想:三条抛物线 1 2 三个图象之间通过沿y轴平 ( 2) y 有什么关系?x 2 移可重合。 2 1 2 (3) y x 2 2 动画演示
小结
抛物线
y=ax2(a>0)
开口方向
向上 向上
对称轴
可以发现,把抛物线 y
线 y
1 2 x 1 . 2
-4
-2 -2
2
4
1 2 y x 1 2
-4 -6
y
1 x 12 2
1 y x2 2
上下平移时:上加下减(抛物线上移,高度 变高,要使y变大,则需要加;类似的抛物线 下移,高度变低,要使y变小,则需要减。) 左右平移时:左加右减(抛物线左移,高度 不变,左移后x变小了,要使y不变,则需要 加;类似的抛物线右移,高度不变,右移后x 变大了,要使y不变,则需要x 减。)
15:12:39
(2)y=4(x+3)2
(3)y=-5(x-6)2
(3)y=-7(x+8)2
4 .对于任何实数h,抛物线 2与抛物线y=x2 y=(x-h) 的方向,大小相同 5 .将抛物线y= -2x2向左平移一 个单位,再向右平移3个单位 2 y= - 2(x – 2). 得抛物线解析式为 6.抛物线y=3(x-8)2最小值为 0 .
探究
的图象,
·· ·
-3
·· ·
·· ·
-2
-2 1 2
-1
0
-8 -4.5 -2
0 1 2 1 2
1
2
3
·· ·
-2 -4.5 -8 0
1 2
·· ·
·· ·
-2
-4
-2 -2 -4
2
4
y=- 1 ﹙x+1﹚2 -6 2
y=- 1 ﹙x-1﹚2 2
1 1 2 例题2:参照下表画出函数y = - (x + 1) 与y = - (x - 1)2 的 图象 2 2
7.抛物线y= -3(x+2)2与x轴y轴 的交点坐标分别为( - 2, 0) (0, - 12) . .8已知二次函数y=8(x -2)2 当 x≥2 时,y随x的增大而增大, 当 x﹤2 时,y随x的增大而减 小.
9.二次函数y=a(x-h)2的图像是
以 X=h 为对称轴的抛物线 , 顶点坐标为 (h, 0) .
1 2 1 1 2 y x 1 与抛物线 y x 2 抛物线 y x 1 2 2 2
有什么关系?
1 2 x 向左平移1个单位,就得到抛物 2 1 1 2 y x 2 向右平移1个单位,就得到抛物 线 y x 1 ;把抛物线 2 2
观察他们的位置关系 说出它们的开口方向 对称轴、顶点的位置 能说出抛物线 y 的开口方向及对称轴 顶点的位置吗?
y
1 2 x 2
小结
答:形状相同,位置不同。 想一想:三条抛物线 三个图象之间通过沿x轴平 有什么关系? 移可重合。
1 2 (1) y x 2 1 (2) y ( x 2) 2 2 1 (3) y ( x 2) 2 2
中考语录
中考是一场跳高 比赛,取胜关键在 于你起跳时对大地 用力多少!
开口方向 对称轴
向上
向上 Y轴 X=h Y轴
顶点坐标
(0,0) (h,0)
y=a(x-h)2(a>0)
y=ax2(a<0) y=a(x+h)2(a<0)
向下
向下
(0,0)
(-h,0)
X = -h
归纳与小结
二次函数y = a﹙x-h﹚2的性质:
(1)开口方向:当a>0时,开口向上; 当a<0时,开口向下; (2)对称轴: 对称轴直线x=h; (3)顶点坐标: 顶点坐标是(h,0) (4)函数的增减性: 当a>0时, 对称轴左侧(x ﹤ h时)y随x增大而减小, 对称轴右侧(x ≥ h时)y随x增大而增大; 当a<0时, 对称轴左侧y随x增大而增大, 对称轴右侧y随x增大而减小。 (5)最值
x ... ...
... ... ... -3 -2 -1 2 5 3 0 0 1 -1 1 2 0
y=x2+1
y=x2+1 y=x2-1 ...
10 8
... ... 2 3 5 ... 10 画出下列函数的图象, ...
观察他们的位置关系, 3 ... 8 说出它们的开口方向、 对称轴、顶点的位置。 1 能说出抛物线 y 2 x k 的开口方向及对称轴、 顶点的位置吗?
下面,我们探究二次函数 y = a﹙x-h﹚2的图 像和性质,以及与y=ax2的联系与区别.
1 1 2 2 画出二次函数 y x 1 , y x 1 2 2
并考虑它们的开口方向、对称轴和顶点.