高中数学3.2一元二次不等式及其解法第二课时一元二次不等式及其解法习题课练习人教A版必修5
高中数学 第三章 3.2 一元二次不等式及其解法 第二课时 一元二次不等式的应用课件 新人教A版必修5
6 ∴只需 m<7即可.
本例中,是否存在实数m,使f(x)≥0恒成立? 解:假设存在实数m,使f(x)≥0恒成立.
∵f(x)=mx2-mx-1,且 f(x)≥0 恒成立,
m>0, ∴ Δ≤0. m>0, 即 2 m +4m≤0, m>0, ∴ -4≤m≤0,
1 -3+2 b 1 1 5 -c= c = 1 = 1 +2=-2, -3×2 -3 a 1 ∴x1= 1 =-3,x2=2, -3 ∴不等式 cx2+bx+a<0(c>0)的解集为 1 {x|-3<x<2}. 1
b -a
[研一题]
[例2] (2011· 抚顺六校联考)设函数f(x)=mx2-mx-1.
b 5 ∴a=-3. c 2 又a=-3, 5 2 ∴b=-3a,c=-3a. 2 2 5 ∴不等式变为(-3a)x +(-3a)x+a<0,
即 2ax2+5ax-3a>0. 又∵a<0,∴2x2+5x-3<0, 1 所求不等式的解集为{x|-3<x<2}.
1 b 1 c 法二: 由已知得 a<0 且(-3)+2=-a, (-3)×2=a知 c>0, 设方程 cx2+bx+a=0 的两根分别为 x1,x2, b a 则 x1+x2=- c,x1· x2= c, a 其中 c= 1 3 =-2, 1 -3×2
1 2 1 所以不等式 qx +px+1>0 即为-6x +6x+1>0,整理
2
得 x2-x-6<0,解得-2<x<3. 即不等式 qx2+px+1>0 的解集为{x|-2<x<3}.
[悟一法]
求一般的一元二次不等式ax2+bx+c>0(a>0)或ax2+bx
高中数学《3.2一元二次不等式及其解法》评估训练2 新人教A版必修5
第2课时 一元二次不等式的应用双基达标 限时20分钟1.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ). A .M ∩NB .M ∪NC .∁R (M ∩N )D .∁R (M ∪N )解析x +3x -1<0⇔(x +3)(x -1)<0,故集合M 可化为{x |-3<x <1},将集合M 和集合N 在数轴上表示出来(如图),易知答案.答案 D2.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( ).A .100台B .120台C .150台D .180台解析 y -25x =-0.1x 2-5x +3 000≤0, ∴x 2+50x -30 000≥0,x ≥150. 答案 C3.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是 ( ).A .{a |0<a <4}B .{a |0≤a <4}C .{a |0<a ≤4}D .{a |0≤a ≤4}解析 若a =0时符合题意,a >0时,相应二次方程中的Δ=a 2-4a ≤0,得{a |0<a ≤4},综上得{a |0≤a ≤4},故选D. 答案 D4.不等式2-x4+x >0的解集是________.解析 原不等式可化为(2-x )(4+x )>0,即(x -2)(x +4)<0,解得-4<x <2. 答案 {x |-4<x <2}5.关于x 的不等式ax 2-2ax +2a +3>0的解集为R ,则实数a 的取值范围为________.解析 当a ≠0时,由题意得⎩⎪⎨⎪⎧a >0Δ<0,即⎩⎪⎨⎪⎧a >04a 2-4a 2a +3<0,解得a >0.当a =0时,恒有3>0,不等式也成立. 故a 的取值范围是[0,+∞). 答案 [0,+∞) 6.解不等式 (1)x -1x -2≥0; (2)2x -13-4x>1. 解 (1)原不等式等价于⎩⎪⎨⎪⎧x -1x -2≥0x -2≠0,解得x ≤1或x >2,∴原不等式的解集为{x |x ≤1或x >2}. (2)原不等式可改写为2x -14x -3+1<0,即6x -44x -3<0,∴(6x -4)(4x -3)<0,∴23<x <34.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪23<x <34. 综合提高 限时25分钟7.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为 ( ). A .1B .-1C .-3D .3解析 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立, 又f (x )=x 2-4x 在(0,1]上为减函数, ∴f (x )min =f (1)=-3,∴m ≤-3. 答案 C8.(2011·泰安高二检测)在R 上定义运算:A B =A (1-B ),若不等式(x -a )(x +a )<1对任意的实数x ∈R 恒成立.则实数a 的取值范围为 ( ).A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析 (x -a )(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,∴-x 2+x +a 2-a <1,即x 2-x -a 2+a +1>0对x ∈R 恒成立. ∴Δ=1-4(-a 2+a +1)=4a 2-4a -3<0, ∴(2a -3)(2a +1)<0,即-12<a <32.答案 C9.(2011·济南高二检测)不等式x 2-2x +3≤a 2-2a -1在R 上的解集是∅,则实数a 的取值范围是________.解析 ∵x 2-2x -(a 2-2a -4)≤0的解集为∅, ∴Δ=4+4(a 2-2a -4)<0, ∴a 2-2a -3<0,∴-1<a <3. 答案 (-1,3)10.关于x 的方程x 2+(a 2-1)x +a -2=0的两根满足(x 1-1)(x 2-1)<0,则a 的取值范围是________.解析 (x 1-1)(x 2-1)<0⇔一根大于1,一根小于1. 令f (x )=x 2+(a 2-1)x +a -2, 则f (1)<0⇒-2<a <1. 答案 -2<a <111.国家为了加强对烟酒生产的宏观管理,实行征收附加税政策.现知某种酒每瓶70元,不加附加税时,每年大约产销100万瓶,若政府征收附加税,每销售100元要征税k 元(叫做税率k %),则每年的产销量将减少10k 万瓶.要使每年在此项经营中所收取附加税金不少于112万元,问k 应怎样确定?解 设产销量为每年x 万瓶,则销售收入每年70x 万元,从中征收的税金为70x ·k %万元,其中x =100-10k .由题意,得70(100-10k )k %≥112,整理得k 2-10k +16≤0,解得2≤k ≤8.因此,当2≤k ≤8(单位:元)时,每年在此项经营中所收附加税金不少于112万元. 12.(创新拓展)已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围; (2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围. 解 (1)不等式化为:(x -1)p +x 2-2x +1>0,令f (p )=(x -1)p +x 2-2x +1,则f (p )的图象是一条直线.又因为|p |≤2,所以-2≤p ≤2,于是得:⎩⎪⎨⎪⎧f -2>0,f 2>0.即⎩⎪⎨⎪⎧x -1·-2+x 2-2x +1>0,x -1·2+x 2-2x +1>0.即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0.∴x >3或x <-1.故x 的取值范围是x >3或x <-1. (2)不等式可化为(x -1)p >-x 2+2x -1, ∵2≤x ≤4,∴x -1>0. ∴p >-x 2+2x -1x -1=1-x .由于不等式当2≤x ≤4时恒成立, 所以p >(1-x )max .而2≤x ≤4,所以(1-x )max =-1, 于是p >-1.故p 的取值范围是p >-1.。
2020高二数学人教A必修5练习:3.2 一元二次不等式及其解法 Word版含解析
课时训练16一元二次不等式及其解法一、一元二次不等式的解法1.不等式-x2-5x+6≤0的解集为()A.{x|x≥6或x≤-1}B.{x|-1≤x≤6}C.{x|-6≤x≤1}D.{x|x≤-6或x≥1}答案:D解析:由-x2-5x+6≤0得x2+5x-6≥0,即(x+6)(x-1)≥0,∴x≥1或x≤-6.2.(2015福建厦门高二期末,12)不等式-的解集是.答案:{x|x<2或x>3}解析:因为指数函数y=2x是增函数,所以-化为x2-5x+5>-1,即x2-5x+6>0,解得x<2或x>3.所以不等式的解集为{x|x<2或x>3}.3.解不等式:-2<x2-3x≤10.解:原不等式等价于不等式组---①②不等式①为x2-3x+2>0,解得x>2或x<1.不等式②为x2-3x-10≤0,解得-2≤x≤5.故原不等式的解集为[-2,1)∪(2,5].二、三个二次之间的关系4.(2015山东威海高二期中,8)不等式ax2+bx+2>0的解集是-,则a-b的值为()A.14B.-14C.10D.-10答案:D解析:不等式ax 2+bx+2>0的解集是 - ,可得- 是一元二次方程ax 2+bx+2=0的两个实数根,∴- =- ,- ,解得a=-12,b=-2. ∴a-b=-12-(-2)=-10.故选D .5.如果ax 2+bx+c>0的解集为{x|x<-2或x>4},那么对于函数f (x )=ax 2+bx+c ,f (-1),f (2),f (5)的大小关系是 .答案:f (2)<f (-1)<f (5)解析:由ax 2+bx+c>0的解集为{x|x<-2或x>4}知a>0,且-2,4是方程ax 2+bx+c=0的两实根,所以 - - - 可得 - -所以f (x )=ax 2-2ax-8a=a (x+2)(x-4).因为a>0,所以f (x )的图象开口向上.又对称轴方程为x=1,f (x )的大致图象如图所示,由图可得f (2)<f (-1)<f (5).6.(2015山东潍坊四县联考,11)不等式x 2-ax-b<0的解集是(2,3),则不等式bx 2-ax-1>0的解集是 .答案: - -解析:∵不等式x 2-ax-b<0的解集为(2,3), ∴一元二次方程x 2-ax-b=0的根为x 1=2,x 2=3.根据根与系数的关系可得: -所以a=5,b=-6.不等式bx 2-ax-1>0,即不等式-6x 2-5x-1>0,整理,得6x 2+5x+1<0,即(2x+1)(3x+1)<0,解之得- <x<-. ∴不等式bx 2-ax-1>0的解集是 - - .三、含参不等式的解法7.不等式(x+1)(x-a )<0的解集为{x|-1<x<2},则不等式- >1的解集为 .答案:{x|x<-2或x>1}解析:由已知不等式(x+1)(x-a )<0的解集为{x|-1<x<2}得x=2是(x+1)(x-a )=0的一个根, ∴a=2.∴不等式 - >1可化为 - >1,移项通分得 ->0, ∴(x+2)(x-1)>0,解得x<-2或x>1.∴所求解集为{x|x<-2或x>1}.8.解关于x 的不等式2x 2+ax+2>0.解:对于方程2x 2+ax+2=0,其判别式Δ=a 2-16=(a+4)(a-4).①当a>4或a<-4时,Δ>0,方程2x 2+ax+2=0的两根为:x 1= (-a- - ),x 2= (-a+ - ).∴原不等式的解集为- - - 或 - - . ②当a=4时,Δ=0,方程有两个相等实根,x 1=x 2=-1;当a=-4时,Δ=0,方程有两个相等实根,x 1=x 2=1.∴原不等式的解集为{x|x ≠±1}.四、不等式恒成立问题9.若一元二次不等式x 2-ax+1>0恒成立,则a 的取值范围是 .答案:-2<a<2解析:由Δ=a 2-4<0,解得-2<a<2.10.已知关于x 的不等式(m 2+4m-5)x 2-4(m-1)x+3>0对一切实数x 恒成立,求实数m 的取值范围. 解:(1)当m 2+4m-5=0,即m=1或m=-5时,显然m=1符合条件,m=-5不符合条件;(2)当m 2+4m-5≠0时,由二次函数对一切实数x 恒为正数,得 - - - -解得1<m<19.综合(1)(2)得,实数m的取值范围为[1,19).(建议用时:30分钟)1.不等式-6x2-x+2≤0的解集是()A.-B.-或C.D.-答案:B解析:原不等式等价于6x2+x-2≥0.方程6x2+x-2=0的两根为-,可得原不等式的解集为-,或x≥.2.函数y=--+log2(x+2)的定义域为()A.(-∞,-1)∪(3,+∞)B.(-∞,-1]∪[3,+∞)C.(-2,-1]D.(-2,-1]∪[3,+∞)答案:D解析:要使函数有意义,x的取值需满足解得-2<x≤-1或x≥3.3.已知0<a<1,关于x的不等式(x-a)->0的解集为()A.或B.{x|x>a}C.或D.答案:A解析:∵0<a<1,∴>1,即a<,∴不等式的解集为或.4.在R上定义运算=ad-bc,若-成立,则x的取值范围是()A.{x|x<-4或x>1}B.{x|-4<x<1}C.{x|x<-1或x>4}D.{x|-1<x<4}答案:B解析:由已知-=x2+3x,=4,∴x2+3x<4,即x2+3x-4<0,解得-4<x<1.5.若关于x的不等式ax-b>0的解集为(1,+∞),则关于x的不等式->0的解集为()A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(1,2)D.(-∞,-2)∪(1,+∞)答案:B解析:因为关于x的不等式ax-b>0的解集为(1,+∞),所以a>0,且=1,即a=b,所以关于x的不等式->0可化为->0,其解集是(-∞,-1)∪(2,+∞).6.已知二次方程ax2+bx+c=0的两个根是-2,3,若a>0,那么ax2-bx+c>0的解集是. 答案:{x|x<-3或x>2}解析:由题意知---∴b=-a,c=-6a.∴不等式ax2-bx+c>0,化为ax2+ax-6a>0,又∵a>0,∴x2+x-6>0,而方程x2+x-6=0的根为-3和2,∴不等式的解集是{x|x<-3或x>2}.7.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是. 答案:(0,8)解析:由题意得,Δ=(-a)2-4×2a<0.即a2-8a<0,∴0<a<8.8.设0≤α≤π,不等式8x2-(8sin α)x+sin α≥0的解集为R,则α的取值范围是. 答案:πππ解析:由已知不等式的解集为R,∴Δ=64sin2α-32sin α≤0,解得0≤sin α≤.∴由y=sin x的图象知,当0≤α≤π时,解得0≤α≤π或π≤α≤π.9.已知不等式x2-2x-3<0的解集为A,不等式x2+4x-5<0的解集为B,(1)求A∪B;(2)若不等式x2+ax+b<0的解集是A∪B,求ax2+x+b<0的解集.解:(1)解不等式x2-2x-3<0,得A={x|-1<x<3}.解不等式x2+4x-5<0,得B={x|-5<x<1}.∴A∪B={x|-5<x<3}.(2)由x2+ax+b<0的解集为{x|-5<x<3},∴-解得-∴2x2+x-15<0.∴不等式解集为-.。
高二数学必修五第三章《不等式》3.2一元二次不等式及其解法
2
O
x1
x1=x2
x2
x
a x b x c 0的 解
2
Hale Waihona Puke 25金太阳教育网
判别式 △=b2- 4ac
品质来自专业 函数 、方程、不等式之间的关系 信赖源于诚信
△>0 y x1 O
y>0
△=0
△<0
y>0
y=ax2+bx+c 的图象
y
y
y>0
(a>0)
ax2+bx+c=0 (a>0)的根
⑴
当
1 a
6, 即a
1 6
时
1 解集为 : x x 或x 6 a
⑵ 当 ⑶
1
6, 即a
1
时
①当a<0时, a
②当a>0时, a
0,
1 解集为 x 6 x a 1
0
解集为 : x x R或x 6 1 1 当 6, 即0 a 时 a 6
(a-2)x2 + (a-2)x +1 ≥ 0恒成立, 试求a的取值范围.
解:由题意知: ①当a -2=0,即a =2时,不等式化为 1 ≥ 0,它恒成立,满足条件. ②当a -2≠0,即a ≠2时,原题等价于
a 2 0 2 (a 2) 4(a 2) 0
a 2 即 2 a 6 a 2 即 (a 2)(a 6) 0
解集为:
5 x x R且x a 2 ;
5
3.当⊿=25a2-24<0,
一元二次不等式及其解法(习题课)
∴原不等式解集为x|x<-12或x>13. 答案:A
2.若集合 A={x|-1≤2x+1≤3},B=x|x-x 2≤0,则 A∩B=(
)
A.{x|-1≤x<0}
B.{x|0<x≤1}
C.{x|0≤x≤2}
D.{x|0≤x≤1}
解析:∵A={x|-1≤x≤1},B={x|0<x≤2},
∴A∩B={x|0<x≤1}.
即
m>-16. 3
- b =-2m>2 2a 2
m<-2
解得-16<m≤-4. 3
总结:
设关于 x 的一元二次方程 ax2+bx+c=0(a>0)对应的二次函数为: f(x)=ax2+bx+c(a>0),结合二次函数的图象的开口方向、对称轴位 置,以及区间端点函数值的正负,可以得到以下几类方程根的分布问 题(此时Δ=b2-4ac).
∴7m-6<0,解得 m<67. ∴0<m<6.
7
∴m<0.
综上所述,m
的取值范围为
-∞,6 7
.
探究二 不等式中的恒成立问题
[典例 2] 设函数 f(x)=mx2-mx-1.
(2)对于 x∈[1,3],f(x)<-m+5 恒成立,求 m 的取值范围.
法二:f(x)<-m+5 恒成立, 即 m(x2-x+1)-6<0 恒成立.
Δ≥0, (1)方程 f(x)=0 在区间(k,+∞)内有两个实根的条件是- fk2ba>>0k. ,
(2)方程 f(x)=0 有一根大于 k,另一根小于 k 的条件是 f(k)<0.
(3) 方 程 f(x) = 0 在 区 间 (k1 , k2) 内 有 两 个 实 根 的 条 件 是
高中数学第3章不等式3.2一元二次不等式第2课时一元二次不等式及其解法(二)应用案巩固提升数学
第十八页,共二十三页。
4.(选做题)某种商品在 30 天内每件的销售价格 P(元)与时间 t(天)的函数关系用图中的两条线段表示.该商品在 30 天内日 销售量 Q(件)与时间 t 的关系式为 Q(t)=-t+40.
(1)根据提供的图象,写出商品每件的销售价格 P 与时间 t 的函 数关系式; (2)求该商品的日销售金额的最大值,并指出日销售金额最大的 一天是 30 天中的第几天.
12/8/2021
第六页,共二十三页。
7.关于 x 的方程xm2+x+m-1=0 有一个正实数根和一个负实 数根,则实数 m 的取值范围是________. 解析:若方程xm2+x+m-1=0 有一个正实根和一个负实根, 则有mm>-01,<0或mm<-01,>0, 所以 0<m<1. 答案:(0,1)
1 设全集 I 是实数集 R.M={x|x2>4}与 N=xx-2 1≥1
都是 I 的子集(如图所示),则阴影部分所表示的集合为 ________. 解析:全集 I 是实数集 R.M={x|x2>4}= (-∞,-2)∪(2,+∞),∁IM=[-2,2],N=xx-2 1≥1= (1,3],阴影部分所表示的集合为 N∩∁IM={x|1<x≤2}. 答案:{x|1<x≤2}
12/8/2021
第十二页,共二十三页。
[B 能力提升] 1.设 a≠0,对于函数 f(x)=log3(ax2-x+a),若定义域为 R, 则实数 a 的取值范围为________. 解析:若函数 f(x)的定义域为 R,则不等式 ax2-x+a>0 对任 意 x∈R 均成立. 所以aΔ>=0,1-4a2<0,解得 a>12. 所以 a 的取值范围为12,+∞. 答案:12,+∞
一元二次不等式及其解法练习及同步练习题(含答案)
一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。
一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。
高中数学第三章不等式3.2第二课时一元二次不等式的解法及其应用(习题课)高一5数学
解决不等式恒成立问题的2种思路 (1)转化成含有参数的不等式,借助对应函数图象,找到满 足题目要求的条件,构造含参数的不等式(组),求得参数范围; (2)分离参数,通过求函数的最值,进而确定参数的范围.
12/13/2021
(2)当a=1时,2=2a,原不等式解集为{x|x≠2};
(3)当a>1时,两根的大小顺序为2>
2 a
,原不等式的解集为
xx<2a或x>2
.
综上所述,
当0<a<1时,原不等式解集为xx>2a或x<2
;
当a=1时,原不等式解集为{x|x≠2};
当a>1时,原不等式解集为xx<2a或x>2
.
12/13/2021
12/13/2021
不等式的恒成立问题 [典例] 对任意x∈R,函数f(x)=x2+(m-4)x+4-2m的值总 为非负,则m的取值范围为________. [解析] 由题意知Δ=(m-4)2-4(4-2m)≤0,得m=0. [答案] {0}
12/13/2021
[一题多变] 1.[变条件]对任意x∈R,函数f(x)=mx2+(m-4)x+4-2m的值恒
解:由题意知(x-2)m+x2-4x+4>0,(x-2)m>-x2+4x
-4,因为x∈[-1,1],所以x-2<0,所以m<
-x2+4x-4 x-2
=-(x-2),所以m<1.即m的取值范围为(-∞,1).
12/13/2021
3.[变条件、变设问]对任意m∈[-1,1],函数f(x)=x2+(m-4)x+ 4-2m的值恒大于零,求x的取值范围. 解:由f(x)=x2+(m-4)x+4-2m=(x-2)m+x2-4x+4,令g(m) =(x-2)m+x2-4x+4. 由题意知在[-1,1]上,g(m)的值恒大于零, 所以gg- 1=1=x-x- 2×2× 1+-x2-1+4xx+2-4>40x,+4>0, 解得x<1或x>3. 故当x<1或x>3时,对任意的m∈[-1,1],函数f(x)的值恒大于零.
高一数学一元二次不等式及其解法2
课堂练习
2. 某台风中心从A处以20km/h的速 度向东北方向移动,离台风中心 30km以内(含30km)的地区为危险区. 城市B在A处的正东方向40km处,那 么城市B处于台风危险区内的持续时 间是几小时? C 持续时间是1小时.
A B
课堂小结
1.解决一元二次不等式的应用性问 题,关键在于构造一元二次不等式 模型.其基本思路是:将题中的某个 主变量设为x→用x表示其他相关变 量→根据题中的不等关系列出不等 式→解不等式得结论.
小结作业
2.解一元二次不等式的应用性问题 时,要注意结果必须有实际意义, 并对问题作出相应回答.
布置作业
P80习题3.2A组:1,5,6. B组: 4.
;东森注册 东森注册 ;
开控制着十二天干仙阵,开始探向了这团佛门神念."轰轰轰."佛门神念虽然被困住,可哪里会这么容易就范,还在不断の挣扎,发出震天动地の力量,惊得整个孤独之城都在不断の碎裂.十二天干仙阵,已经将它给困在方圆壹千里の范围内了,仙阵无法再进行压缩了,因为之前の阵眼布置の较 多,现在这是最小の范围了.控制起来也是最难の,万壹能量被突破了,就有可能被这团魂识给冲出来.不过好在根汉还有几大神器,九龙珠环,黑铁,寒冰王座,血炉,以及至尊剑,还有他の清风神剑,都在这里围着这团魂识.这几大神器,也个个不弱,等级最低の要属清风神剑.而其它の几件神兵, 最差の应该也是至尊之兵,所以这团魂识纵然强可媲美准至尊,但还是弱了壹截,被这几大神器の神威给压得死死の.虽然还能反抗,不时の发出壹阵阵狂怒,却还是无法挣开,逃不出去了."你不是有两大神树吗,将神树放出来,这东西马上就乖了."小紫倩想到了根汉乾坤世界中の两大神树,那 东西可是佛家神树,只要放出来,这团魂识肯定就老实了."对呀."根汉这才想起
高中数学《一元二次不等式及其解法习题课》课件
(1)求矩形 ABCD 的面积 S 关于 x 的函数解析式;
(2)要使仓库占地 ABCD 的面积不少于 144 平方米,则
AB 的长度应在什么范围内?
30
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
解
(1)根据题意,得△NDC
与△NAM
相似,所以DC= AM
ND,即 x =20-AD,解得 NA 30 20
∵x∈[-2,2],x-212+34max=7,
∴x2-6x+1min=67,∴m<67.
25
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
拓展提升
有关不等式恒成立问题的等价转化方式
(1)不等式 ax2+bx+c>0 的解集是全体实数(或恒成立)
的条件是当 a=0 时,b=0,c>0;
23
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(2)将 f(x)<-m+5 变换成关于 m 的不等式:m(x2-x+ 1)-6<0.则命题等价于:m∈[-2,2]时,g(m)=m(x2-x+1) -6<0 恒成立.
∵x2-x+1>0,∴g(m)在[-2,2]上单调递增. ∴只要 g(2)=2(x2-x+1)-6<0,即 x2-x-2<0, ∴-1<x<2.∴x 的取值范围为-1<x<2.
①式的解集为 x≤-2 或 0≤x≤3.由②式知 x≠3, ∴原不等式的解集为{x|x≤-2 或 0≤x<3}.
18
课前自主预习
课堂互动探究
2020学年高中数学3.2一元二次不等式及其解法第2课时一元二次不等式及其解法习题课练习人教A版必修5
第2课时 一元二次不等式及其解法习题课1.不等式2x +1x≤0的解集为A.⎝ ⎛⎦⎥⎤-12,0B.⎣⎢⎡⎭⎪⎫-12,0 C.⎝⎛⎭⎪⎫-∞,-12∪[0,+∞)D.⎝⎛⎦⎥⎤-∞,-12∪[0,+∞) 解析 原不等式等价于⎩⎪⎨⎪⎧(2x +1)x ≤0x ≠0, 即⎩⎪⎨⎪⎧-12≤x ≤0x ≠0,即-12≤x <0.故原不等式的解集为⎣⎢⎡⎭⎪⎫-12,0. 答案 B2.若不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 均成立,则实数a 的取值范围是 A.(-2,2] B.[-2,2] C.(2,+∞)D.(-∞,2]解析 当a -2=0,即a =2时,符合题意;当a -2≠0时,需满足a -2<0且Δ=4(a -2)2+4(a -2)×4<0,即-2<a <2,故选A.答案 A3.已知集合P ={0,m },Q ={x |2x 2-5x <0,x ∈Z},若P ∩Q ≠∅,则m 等于 A.1 B.2 C.1或25D.1或2解析 因为Q =⎩⎨⎧⎭⎬⎫x |0<x <52,x ∈Z )={1,2},所以m =1或2. 答案 D4.若关于x 的不等式x 2-4x ≥m 对任意x ∈[0,1]恒成立,则实数m 的取值范围是________.解析 设f (x )=x 2-4x =(x -2)2-4, 所以f (x )在x ∈[0,1]上单调递减,所以当x =1时,函数f (x )取得最小值f (1)=-3. 所以要使x 2-4x ≥m 对于任意x ∈[0,1]恒成立, 则需m ≤-3. 答案 (-∞,-3]5.某商品每件成本价80元,售价为100元,每天售出100件,若售价降x 成,售出商品数量就增加850x ,且售价不低于成本价.(1)设该商店一天营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解析 (1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x ,因售价不低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,所以y =20(10-x )(50+8x ), 定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134,所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.不等式x -43-2x<0的解集是A.⎩⎨⎧⎭⎬⎫x |32≤x <4) B.{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x |x <32或x >4)D.⎩⎨⎧⎭⎬⎫x |32<x <4) 解析 不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,∴不等式的解集是⎩⎨⎧⎭⎬⎫x |x <32或x >4).答案 C2.若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是 A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)解析 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.答案 C3.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +bx -2>0的解集是A.(-∞,0)∪(1,+∞)B.(-1,2)C.(1,2)D.(-∞,-1)∪(2,+∞)解析 ∵ax -b >0的解集为(1,+∞), ∴a =b >0,∴ax +b x -2>0⇔a (x +1)x -2>0, ∴x <-1或x >2. 答案 D4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是 A.{a |0<a <4} B.{a |0≤a <4} C.{a |0<a ≤4}D.{a |0≤a ≤4}解析 ∵集合A ={x |ax 2-ax +1<0}=∅, ∴不等式ax 2-ax +1<0的解集为∅. 若a =0,则ax 2-ax +1<0⇔1<0, 其解集为∅,符合题意.若a ≠0,则⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解之得:0<a ≤4. 综上0≤a ≤4. 答案 D5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3 000+20x -0.1x 2(0<x <240,x ∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是A.100台B.120台C.150台D.180台解析 3 000+20x -0.1x 2≤25x ⇔x 2+50x -30 000≥0,解得x ≤-200(舍去)或x ≥150. 答案 C6.(能力提升)对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是A.(1,3)B.(-∞,1)∪(3,+∞)C.(1,2)D.(-∞,1)∪(2,+∞)解析 f (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4. 令g (a )=(x -2)a +x 2-4x +4. 当a ∈[-1,1]时,其图象是一条线段. 由题意当a ∈[-1,1]时,g (a )>0恒成立,故⎩⎪⎨⎪⎧g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0, 解之,得x >3或x <1. 答案 B二、填空题(每小题5分,共15分)7.不等式x +5(x -1)2≥2的解为________.解析 原不等式可化为⎩⎪⎨⎪⎧2(x -1)2≤x +5,x ≠1,即⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1, 解之,得-12≤x <1或1<x ≤3.答案 ⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 8.已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为________. 解析 由题意,知Δ=4-4×1×(k 2-1)<0,即k 2>2, ∴k >2或k <- 2.答案 (-∞,-2)∪(2,+∞)9.(能力提升)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解析 由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0,解得-22<m <0. 答案 ⎝ ⎛⎭⎪⎫-22,0 三、解答题(本大题共3小题,共35分)10.(11分)不等式(m 2-2m -3)x 2-(m -3)x -1<0对一切x ∈R 恒成立,求实数m 的取值范围.解析 若m 2-2m -3=0,则m =-1或m =3,当m =-1时,原不等式为4x -1<0对一切x ∈R 不恒成立,不合题意;当m =3时,原不等式为-1<0对一切x ∈R 恒成立,符合题意.若m 2-2m -3≠0,设f (x )=(m 2-2m -3)x 2-(m -3)x -1,由题意得⎩⎪⎨⎪⎧m 2-2m -3<0,Δ=[-(m -3)]2+4(m 2-2m -3)<0, 解得-15<m <3,综上所述,实数m 的取值范围是-15<m ≤3.11.(12分)已知f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.解析 设函数f (x )=x 2+ax +3-a 在x ∈[-2,2]时的最小值为g (a ),则(1)当对称轴x =-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,解得a ≤73,与a >4矛盾,不符合题意.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=3-a -a 24≥0,解得-6≤a ≤2,此时-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,解得a ≥-7,此时-7≤a <-4. 综上,a 的取值范围为-7≤a ≤2.12.(12分)(能力提升)某摩托车生产企业,上年度生产车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆,本年度为适应市场需要,计划提高产品档次,适度增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x ,同时预计年销量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 之间的关系式;(2)为使本年度的利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解析 (1)每辆车投入成本增加的比例为x ,则每辆车投入成本为1×(1+x )万无,出厂价为 1.2×(1+0.75x )万元,年销量为 1 000×(1+0.6x )辆.所以y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x ), 即y =-60x 2+20x +200(0<x <1). (2)欲保证本年度的利润比上年度有所增加,则⎩⎪⎨⎪⎧y -(1.2-1)×1 000>0,0<x <1, 即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1. 所以0<x <13.即为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应在⎝ ⎛⎭⎪⎫0,13范围内.。
§3.2一元二次不等式及其解法(二)
1第三章 §3.2.一元二次不等式及其解法(2)学习目标:①掌握含参数的一元二次不等式中参数的求值及范围问题; ②掌握一元二次不等式恒成立问题的解法。
③掌握用分类讨论方法解含参数的一元二次不等式的思路。
探究问题(一)含参数的求值问题例1.已知不等式02>++c bx x 的解集为{}1或3-<>x x x ,求b 与c 。
变式练习1:不等式022>++bx ax 的解集是⎭⎬⎫⎩⎨⎧<<-3121x x ,试求a,b 的值。
例2.不等式02>++c bx ax 的解集为{}1或3-<>x x x ,求02>++a bx cx 的解集。
变式练习2:不等式02<++c bx ax 的解集为{}32<<-x x 试求02>++c ax bx探究问题(二) 含参数一元二次不等式的解法在解含有参数的一元二次不等式时,往往要对参数进行分类讨论,为了做到分类“不重不漏”,一般从如下三个方面进行考虑:(1)关于不等式类型的讨论:二次项的系数a >0,a =0,a <0.(2)关于不等式对应的方程的根的讨论:两根(Δ>0),一根(Δ=0),无根(Δ<0). (3)关于不等式对应的方程的根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x 2. 例3.解不等式x 2+5ax+6>0变式练习3. x 2+5ax+6a 2 >0变式练习4. ax 2+(6a+1)x+6 >0小结:解形如ax 2+bx+c>0的不等式时分类讨论的标准有:1、讨论a 与0的大小;2、讨论⊿与0的大小;3、讨论两根的大小;探究问题(二) 含参数不等式恒成立问题例4:已知关于x 的不等式(a-2)x 2 + (a-2)x +1 ≥ 0恒成立,试求a 的取值范围.知识概要:(1)二次不等式ax 2+bx+c >0(a ≠0)恒成立⎩⎨⎧<-=>⇔0402ac b a Δ (2)二次不等式ax 2+bx+c <0恒成立(a ≠0)⎩⎨⎧<-=<⇔0402ac b a Δ(3)二次不等式ax 2+bx+c≥0恒成立⎩⎨⎧≤-=>⇔0402ac b a Δ (4)二次不等式ax 2+bx+c≤0恒成立 ⎩⎨⎧≤-=<⇔0402ac b a Δ 例5 若关于x 的不等式0222>++x ax 对于一切x 都成立,求实数a 的取值范围.变式练习5: 不等式022>+-kx kx 对于一切x 都成立,求实数k 的取值范围.2课后思考: 已知函数4222+-+=x a x y )(,(1)对于任意[]013<-∈y x ,,恒成立,求a 的取值范围 (2)对于任意[]013<-∈y a ,,恒成立,求x 的取值范围。
3.2一元二次不等式及其解法_第2课时
综上所述:当
1 a<0,解集为xx< ,或x>1 a
;
当 a=0 时,解集为{x|x>1}; 当 0<a<1
1 时,解集为 x 1<x< a ; .
课前探究学习
课堂讲练互动
活页规范训练
-a=1+2, b=1×2, a=-3, 即 b=2,
(6 分)
∴不等式 bx2+ax+1>0,就是 2x2-3x+1>0. 1 由于 2x -3x+1>0⇔(2x-1)(x-1)>0⇔x< 或 x>1. 2
2
(10 分) (12 分)
活页规范训练
∴bx +ax+1>0
(iii)当 a<0 时,原不等式可化为(-ax+2)(x-2)<0,对应方程 2 2 的两个根为 x1= ,x2=2,则 <2,所以原不等式的解集为 a a
2 x <x<2 a
活页规范训练
题型三
三个“二次”间对应关系的应用
【例3】 已知关于x的不等式x2+ax+b<0的解集为(1,2),试求 关于x的不等式bx2+ax+1>0的解集. 审题指导 可知1,2是方程x2+ax+b=0的两根,故由根与 系数的关系可求出a,b的值,从而得解. [规范解答] 由根与系数的关系,可得
2 xx> ,或x<2 a ;
2 ②当 a=1 时, =2,所以原不等式的解集为{x|x≠2}; a
课前探究学习 课堂讲练互动 活页规范训练
2 ③当 a>1 时, <2,所以原不等式的解集为 a
(完整版)一元二次不等式及其解法练习及同步练习题(含答案)
13.2 一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y (2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃(二)、检测题一、选择题1、不等式11023x x ⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭的解集为 ( ) A 、11|32x x ⎧⎫<<⎨⎬⎩⎭ B 、1|2x x ⎧⎫>⎨⎬⎩⎭ C 、1|3x x ⎧⎫<⎨⎬⎩⎭ D 、11|32x x x ⎧⎫<>⎨⎬⎩⎭或 2、在下列不等式中,解集为φ的是 ( )A 、22320x x -+>B 、2440x x ++>C 、2440x x --<D 、22320x x -+->3、函数()2log 3y x =+的定义域为 ( )A 、()(),13,-∞-⋃+∞B 、()3,1--C 、(][),13,-∞-⋃+∞D 、(][)3,13,--⋃+∞4、若2230x x -≤,则函数()21f x x x =++ ( ) A 、有最小值34,无最大值 B 、有最小值34,最大值1 C 、有最小值1,最大值194 D 、无最小值,也无最大值2 5、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2-6、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .14-B .14C .10-D .10 二、填空题8、设()21f x x bx =++,且()()13f f =,则()0f x >的解集为 。
高中数学新人教A版必修5第三章 3.2 第二课时 一元二次不等式及其解法(习题课)
第二课时 一元二次不等式及其解法(习题课)解简单的分式不等式[典例] 解下列不等式: (1)x +23-x ≥0;(2)2x -13-4x>1. [解] (1)原不等式等价于⎩⎪⎨⎪⎧(x +2)(3-x )≥0,3-x ≠0,即⎩⎪⎨⎪⎧(x +2)(x -3)≤0,x ≠3⇒-2≤x <3. ∴原不等式的解集为{x |-2≤x <3}. (2)原不等式可化为2x -13-4x -1>0,即3x -24x -3<0.等价于(3x -2)(4x -3)<0. ∴23<x <34. ∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <34.(1)解分式不等式时,要注意先移项,使右边化为零,要注意含等号的分式不等式的分母不为零.(2)分式不等式的4种形式及解题思路 ①f (x )g (x )>0⇔f (x )g (x )>0; ②f (x )g (x )<0⇔f (x )g (x )<0; ③f (x )g (x )≥0⇔f (x )g (x )≥0且g (x )≠0⇔f (x )g (x )>0或f (x )=0; ④f (x )g (x )≤0⇔f (x )g (x )≤0且g (x )≠0⇔f (x )g (x )<0或f (x )=0. (3)不等式与不等式组的同解关系①f (x )g (x )≥0⇔⎩⎪⎨⎪⎧ f (x )≥0,g (x )≥0或⎩⎪⎨⎪⎧ f (x )≤0,g (x )≤0, ②f (x )g (x )≤0⇔⎩⎪⎨⎪⎧f (x )≥0,g (x )≤0或⎩⎪⎨⎪⎧f (x )≤0,g (x )≥0, ③f (x )g (x )>0⇔⎩⎪⎨⎪⎧ f (x )>0,g (x )>0或⎩⎪⎨⎪⎧ f (x )<0,g (x )<0,④f (x )g (x )<0⇔⎩⎪⎨⎪⎧ f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0.[活学活用]1.若集合A ={x |-1≤2x +1≤3},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}解析:选B ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2}, ∴A ∩B ={x |0<x ≤1}.2.已知关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式ax -bx -2>0的解集是( )A.{}x |x <-1或x >2B.{}x |-1<x <2C.{}x |1<x <2D.{}x |x >2解析:选A 依题意,a >0且-ba =1. ax -b x -2>0⇔(ax -b )(x -2)>0⇔⎝⎛⎭⎫x -ba (x -2)>0, 即(x +1)(x -2)>0⇒x >2或x <-1.不等式中的恒成立问题2取值范围.[解] 由题意可知,只有当二次函数f (x )=x 2+2(a -2)x +4的图象与直角坐标系中的x 轴无交点时,才满足题意,则其相应方程x 2+2(a -2)x +4=0此时应满足Δ<0,即4(a -2)2-16<0,解得0<a <4.故a 的取值范围是(0,4).对于x ∈[a ,b ],f (x )<0(或>0)恒成立,应利用函数图象.1.已知f (x )=x 2+2(a -2)x +4,是否存在实数a ,使得对任意x ∈[-3,1],f (x )<0恒成立.若存在求出a 的取值范围;若不存在说明理由.解:若对任意,x ∈[-3,1],f (x )<0恒成立,则满足题意的函数f (x )=x 2+2(a -2)x +4的图象如图所示.由图象可知,此时a 应该满足⎩⎪⎨⎪⎧ f (-3)<0,f (1)<0,即⎩⎪⎨⎪⎧25-6a <0,1+2a <0,解得⎩⎨⎧a >256,a <-12.这样的实数a 是不存在的,所以不存在实数a 满足:对任意x ∈[-3,1],f (x )<0恒成立. 对此类问题,要弄清楚哪个是参数,哪个是自变量.2.已知函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立,试求x 的取值范围.解:原函数可化为g (a )=2xa +x 2-4x +4,是关于a 的一元一次函数. 要使对任意a ∈[-3,1],y <0恒成立,只需满足⎩⎪⎨⎪⎧ g (1)<0,g (-3)<0,即⎩⎪⎨⎪⎧x 2-2x +4<0,x 2-10x +4<0.因为x 2-2x +4<0的解集是空集,所以不存在实数x ,使函数y =x 2+2(a -2)x +4,对任意a ∈[-3,1],y <0恒成立.(1)解决恒成立问题一定要搞清谁是自变量,谁是参数.一般地,知道谁的范围,谁就是自变量,求谁的范围,谁就是参数.分离参数法是解决不等式恒成立问题的一种行之有效的方法.a ≥f (x )恒成立⇔a ≥f (x )max (f (x )存在最大值); a ≤f (x )恒成立⇔a ≤f (x )min (f (x )存在最小值).(2)对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定区间上全部在x 轴下方.一元二次不等式的实际应用[典例] 某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?[解] (1)由题意,得y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x )(0<x <1),整理得y =-60x 2+20x +200(0<x <1).(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎪⎨⎪⎧ y -(1.2-1)×1 000>0,0<x <1,即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1,解不等式组,得0<x <13,所以为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 的范围为⎝⎛⎭⎫0,13.用一元二次不等式解决实际问题的步骤(1)理解题意,搞清量与量之间的关系;(2)建立相应的不等关系,把实际问题抽象为数学中的一元二次不等式问题; (3)解这个一元二次不等式,得到实际问题的解.[活学活用]某校园内有一块长为800 m ,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.解:设花卉带的宽度为x m(0<x <600),则中间草坪的长为(800-2x )m ,宽为(600-2x )m.根据题意可得(800-2x )(600-2x )≥12×800×600,整理得x 2-700x +600×100≥0,即(x -600)(x -100)≥0,所以0<x ≤100或x ≥600,x ≥600不符合题意,舍去.故所求花卉带宽度的范围为(0,100]m.层级一 学业水平达标1.不等式x -1x ≥2的解集为( )A .[-1,+∞)B .[-1,0)C .(-∞,-1]D .(-∞,-1]∪(0,+∞)解析:选B 不等式x -1x ≥2,即x -1x -2≥0,即-x -1x ≥0,所以x +1x ≤0,等价于x (x +1)≤0且x ≠0,所以-1≤x <0.2.不等式4x +23x -1>0的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >13或x <-12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <13 C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >13 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12 解析:选A4x +23x -1>0⇔(4x +2)(3x -1)>0⇔x >13或x <-12,此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >13或x <-12.3.若不等式x 2+mx +m2>0恒成立,则实数m 的取值范围是( )A .(2,+∞)B .(-∞,2)C .(-∞,0)∪(2,+∞)D .(0,2)解析:选D ∵不等式x 2+mx +m2>0,对x ∈R 恒成立,∴Δ<0即m 2-2m <0,∴0<m <2.4.某商品在最近30天内的价格f (t )与时间t (单位:天)的函数关系是f (t )=t +10(0<t ≤20,t ∈N);销售量g (t )与时间t 的函数关系是g (t )=-t +35(0<t ≤30,t ∈N),则使这种商品日销售金额不小于500元的t 的范围为( )A .[15,20]B .[10,15]C .(10,15)D .(0,10]解析:选B 由日销售金额为(t +10)(-t +35)≥500, 解得10≤t ≤15.5.若关于x 的不等式x 2-4x -m ≥0对任意x ∈(0,1]恒成立,则m 的最大值为( ) A .1 B .-1 C .-3D .3解析:选C 由已知可得m ≤x 2-4x 对一切x ∈(0,1]恒成立,又f (x )=x 2-4x 在(0,1]上为减函数,∴f (x )min =f (1)=-3,∴m ≤-3. 6.不等式5-x x +4≥1的解集为________.解析:因为5-x x +4≥1等价于1-2x x +4≥0,所以2x -1x +4≤0,等价于⎩⎪⎨⎪⎧(2x -1)(x +4)≤0,x +4≠0,解得-4<x ≤12.答案:⎝⎛⎦⎤-4,12 7.若不等式x 2-4x +3m <0的解集为空集,则实数m 的取值范围是________. 解析:由题意,知x 2-4x +3m ≥0对一切实数x 恒成立,所以Δ=(-4)2-4×3m ≤0,解得m ≥43.答案:⎣⎡⎭⎫43,+∞8.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意的实数x 都成立,则a 的取值范围是________.解析:根据定义得(x -a )⊗(x +a )=(x -a )[1-(x +a )]=-x 2+x +a 2-a ,又(x -a )⊗(x +a )<1对任意的实数x 都成立,所以x 2-x +a +1-a 2>0对任意的实数x 都成立,所以Δ<0,即1-4(a +1-a 2)<0,解得-12<a <32.答案:⎝⎛⎭⎫-12,32 9.已知f (x )=-3x 2+a (5-a )x +b .(1)当不等式f (x )>0的解集为(-1,3)时,求实数a ,b 的值; (2)若对任意实数a ,f (2)<0恒成立,求实数b 的取值范围. 解:(1)由f (x )>0,得-3x 2+a (5-a )x +b >0, ∴3x 2-a (5-a )x -b <0. 又f (x )>0的解集为(-1,3),∴⎩⎪⎨⎪⎧ 3+a (5-a )-b =0,27-3a (5-a )-b =0,∴⎩⎪⎨⎪⎧ a =2,b =9或⎩⎪⎨⎪⎧a =3,b =9.(2)由f (2)<0,得-12+2a (5-a )+b <0, 即2a 2-10a +(12-b )>0.又对任意实数a ,f (2)<0恒成立, ∴Δ=(-10)2-4×2(12-b )<0,∴b <-12,∴实数b 的取值范围为⎝⎛⎭⎫-∞,-12. 10.某工厂生产商品M ,若每件定价80元,则每年可销售80万件,税务部门对市场销售的商品要征收附加税.为了既增加国家收入,又有利于市场活跃,必须合理确定征收的税率.据市场调查,若政府对商品M 征收的税率为P %(即每百元征收P 元)时,每年的销售量减少10P 万件,据此,问:(1)若税务部门对商品M 每年所收税金不少于96万元,求P 的范围;(2)在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,应如何确定P 值;(3)若仅考虑每年税收金额最高,又应如何确定P 值. 解:税率为P %时,销售量为(80-10P )万件, 即f (P )=80(80-10P ),税金为80(80-10P )·P %, 其中0<P <8.(1)由⎩⎪⎨⎪⎧80(80-10P )·P %≥96,0<P <8,解得2≤P ≤6. 故P 的范围为[2,6].(2)∵f (P )=80(80-10P )(2≤P ≤6)为减函数, ∴当P =2时,厂家获得最大的销售金额, f (2)=4 800(万元). (3)∵0<P <8,g (P )=80(80-10P )·P %=-8(P -4)2+128, ∴当P =4时,国家所得税金最高,为128万元.层级二 应试能力达标1.不等式x +5(x -1)2≥2的解是( )A.⎣⎡⎦⎤-3,12 B.⎣⎡⎦⎤-12,3 C.⎣⎡⎭⎫12,1∪(1,3]D.⎣⎡⎭⎫-12,1∪(1,3] 解析:选D x +5(x -1)2≥2⇔⎩⎪⎨⎪⎧x +5≥2(x -1)2,x -1≠0⇔⎩⎪⎨⎪⎧-12≤x ≤3,x ≠1,∴x ∈⎣⎡⎭⎫-12,1∪(1,3]. 2.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ) A .M ∩N B .M ∪N C .∁R (M ∩N ) D .∁R (M ∪N )解析:选Dx +3x -1<0⇔(x +3)(x -1)<0,故集合M 可化为{x |-3<x <1},将集合M 和集合N 在数轴上表示出来(如图),易知答案.3.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(1,2)D .(-∞,1)∪(2,+∞)解析:选B 设g (a )=(x -2)a +(x 2-4x +4),g (a )>0恒成立且a ∈[-1,1]⇔⎩⎪⎨⎪⎧ g (1)=x 2-3x +2>0,g (-1)=x 2-5x +6>0⇔⎩⎪⎨⎪⎧x <1或x >2,x <2或x >3⇔x <1或x >3. 4.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范围是( )A .[15,30]B .[12,25]C .[10,30]D .[20,30]解析:选C 设矩形的另一边长为y m ,则由三角形相似知,x 40=40-y40,∴y =40-x ,∵xy ≥300,∴x (40-x )≥300,∴x 2-40x +300≤0,∴10≤x ≤30.5.若函数f (x )=log 2(x 2-2ax -a )的定义域为R ,则a 的取值范围为________. 解析:已知函数定义域为R ,即x 2-2ax -a >0对任意x ∈R 恒成立. ∴Δ=(-2a )2+4a <0. 解得-1<a <0. 答案:(-1,0)6.现有含盐7%的食盐水200克,生产上需要含盐5%以上、6%以下的食盐水,设需要加入含盐4%的食盐水为x 克,则x 的取值范围是________.解析:5%<x ·4%+200·7%x +200<6%,解得x 的范围是(100,400). 答案:(100,400)7.已知不等式mx 2-2x +m -2<0.(1)若对于所有的实数x 不等式恒成立,求m 的取值范围;(2)设不等式对于满足|m |≤2的一切m 的值都成立,求x 的取值范围.解:(1)对所有实数x ,都有不等式mx 2-2x +m -2<0恒成立,即函数f (x )=mx 2-2x +m -2的图象全部在x 轴下方.当m =0时,-2x -2<0,显然对任意x 不能恒成立; 当m ≠0时,由二次函数的图象可知有⎩⎪⎨⎪⎧m <0,Δ=4-4m (m -2)<0,解得m <1-2, 综上可知,m 的取值范围是(-∞,1-2).(2)设g (m )=(x 2+1)m -2x -2,它是一个以m 为自变量的一次函数,由x 2+1>0,知g (m )在[-2,2]上为增函数,则只需g (2)<0即可,即2x 2+2-2x -2<0,解得0<x <1. 故x 的取值范围是(0,1).8.已知函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求a 的取值范围.解:(1)f (x )≥a 恒成立,即x 2+ax +3-a ≥0恒成立,必须且只需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0,∴-6≤a ≤2.∴a 的取值范围为[-6,2]. (2)f (x )=x 2+ax +3=⎝⎛⎭⎫x +a 22+3-a 24. ①当-a2<-2,即a >4时,f (x )min =f (-2)=-2a +7, 由-2a +7≥a ,得a ≤73,∴a ∈∅.②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =3-a 24,由3-a 24≥a ,得-6≤a ≤2.∴-4≤a ≤2.③当-a2>2,即a <-4时,f (x )min =f (2)=2a +7,由2a +7≥a ,得a ≥-7,∴-7≤a <-4. 综上,可得a 的取值范围为[-7,2].。
高中数学必修5(人教A版)第三章不等式3.2知识点总结含同步练习及答案
(2)因为
为整式不等式
解得 x <
3 或 x > 4,所以原不等式的解集为 2 3 ∣ {x ∣ x < 或x > 4} . ∣ 2
4.高次不等式的解法 描述: 高次不等式的解法 解一元高次不等式一般利用数轴穿根法(或称根轴法)求解,其步骤是: (1)将 f (x) 最高次项系数化为正数; (2)将 f (x) 分解为若干个一次因式的乘积或二次不可分因式的乘积; (3)求出各因式的零点,并在数轴上依次标出; (4)从最右端上方起,自右至左依次通过各根画曲线,遇到奇次重根要一次穿过,遇到偶次重根 要穿而不过; (5)记数轴上方为正,下方为负,根据曲线显现出的 f (x) 的值的符号变化规律,写出不等式 的解集. 例题: 解不等式 (x + 2)(x + 1)2 (x − 1)3 (x − 2) < 0 . 解:不等式中各因式的实数根为 −2,−1,1 ,2 . 利用根轴法,如图所示.
2 )(x − a) ⩽ 0 . a 2 2 ① 当 < a ,即 a > √2 时,原不等式的解集为 {x| ⩽ x ⩽ a}. a a 2 2 ② 当 > a ,即 0 < a < √2 时,原不等式的解集为 {x|a ⩽ x ⩽ }. a a 2 ③ 当 = a ,即 a = √2 时,原不等式的解集为 {x|x = √2 } . a 2 (3)当 a < 0 时,原不等式化为 (x − )(x − a) ⩾ 0 . a 2 2 ① 当 < a ,即 −√2 < a < 0 时,原不等式的解集为 {x|x ⩽ 或x ⩾ a} . a a 2 2 ② 当 > a ,即 a < −√2 时,原不等式的解集为 {x|x ⩽ a或x ⩾ }. a a 2 ③ 当 = a ,即 a = −√2 时,原不等式的解集为 R. a
(完整)一元二次不等式及其解法练习及同步练习题(含答案),推荐文档
y=3000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为 25 万元,则生产者不亏本(销售收入不
小于总成本)时的最低产量是( )
A.100 台
B.120 台
C.150 台
D.180 台
二、填空题
m
7.不等式 x2+mx+ 2 >0 恒成立的条件是________. 2-x
8.(2010 年高考上海卷)不等式x+4>0 的解集是________. 9.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该 公司年初以来累积利润 s(万元)与销售时间 t(月)之间的关系(即前 t 个月的利润总和与 t 之间的关系)式为 1
D、 3, 13,
4、若 2x2 3x 0 ,则函数 f x x2 x 1 ( )
3
A、有最小值 ,无最大值
4 19
C、有最小值 1,最大值
4
3
B、有最小值 ,最大值 1
4
D、无最小值,也无最大值
1
5、若不等式 x2 mx 1 0 的解集为 R ,则 m 的取值范围是( )
A. R
B. 2, 2
。
4
12、二次函数 y ax2 bx c x R的部分对应值如下表:
x
3
2
1
0
1
2
3
4
y
6
0
4
6
6
4
0
6
则不等式 ax2 bx c 0 的解集是____________________________.
13、已知不等式 x2 px q 0 的解集是 x 3 x 2 ,则 p q ________.
D、 x | x 1 或 x 1
高中数学第3章不等式3.2一元二次不等式第2课时一元二次不等式及其解法(二)数学
12/13/2021
第二十八页,共三十四页。
(1)若在①处忽视对二次项系数的讨论,则会漏掉 k=0 的情况, 从而错填(0,1]. (2)二次项系数含参数时要分系数为正、系数为零、系数为负三 种情况进行讨论,尤其是当系数为零时,一元一次不等式要注 意单独验证.如本例中当 k=0 时,不等式为 3≥0,成立.因 此,k=0 符合题目要求.
12/13/2021
第六页,共三十四页。
3. 在如图所示的锐角三角形空地中, 欲建一个面积不小于 300 m2 的内接矩形花园(阴影部分), 则其边长 x(单位:m)的取 值范围是________.
12/13/2021
第七页,共三十四页。
解析:设矩形高为 y,由三角形相似得: 4x0=404-0 y,且 x>0,y>0,x<40,y<40,xy≥300, 整理得 y+x=40, 将 y=40-x 代入 xy≥300, 整理得 x2-40x+300≤0, 解得 10≤x≤30. 答案:[10,30]
12/13/2021
第三十一页,共三十四页。
3.若产品的总成本 y(万元)与产量 x(台)之间的函数关系式是 y =3 000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为 25 万元,则生产者不亏本(销售收入不小于总成本)时的最低产 量是________台. 解析:y-25x=-0.1x2-5x+3 000≤0, 所以 x2+50x-30 000≥0,得 x≤-200(舍去)或 x≥150, 又因为 0<x<240,x∈N,所以 150≤x<240,x∈N. 答案:150
12/13/2021
第八页,共三十四页。
简单的分式不等式的解法 (1)不等式2xx-+11≤0 的解集为________. (2)不等式x+x 1≤3 的解集是________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时一元二次不等式及其解法习题课1.一元二次不等式ax2+bx+1>0的解集为{x|-1<x<},则ab的值为( D )(A)-5 (B)5 (C)-6 (D)6解析:由已知得-1,是一元二次方程ax2+bx+1=0的两根,且a<0,由根与系数的关系得解得所以ab=6.故选D.2.已知不等式ax2-5x+b>0的解集为{x|x<-或x>},则不等式bx2-5x+a>0的解集为( C )(A){x|-<x<} (B){x|x<-或x>}(C){x|-3<x<2} (D){x|x<-3或x>2}解析:因为ax2-5x+b>0的解集为{x|x<-或x>},所以ax2-5x+b=0的解是x1=-,x2=,由根与系数的关系,得x1+x2=-+=,x1x2=-×=,解得a=30,b=-5.则不等式bx2-5x+a>0⇔-5x2-5x+30>0,即x2+x-6<0,解得-3<x<2.故选C.3.已知不等式ax2-bx-1≥0的解集是[-,-],则不等式x2-bx-a<0的解集是( A )(A)(2,3)(B)(-∞,2)∪(3,+∞)(C)(,)(D)(-∞,)∪(,+∞)解析:依题意知a<0且方程ax2-bx-1=0的两根是-和-.所以解得则不等式x2-bx-a<0即为x2-5x+6<0,故其解集为{x|2<x<3}.故选A.4.不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的大致图象为( C )解析:由题意得解得a=-1,c=-2.则函数y=f(-x)=-x2+x+2,故选C.5.已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x ∈[-1,1]时,f(x)>0恒成立,则b的取值范围是( C )(A)(-∞,-1)(B)(2,+∞)(C)(-∞,-1)∪(2,+∞)(D)(-∞,-2)∪(1,+∞)解析:由f(1-x)=f(1+x),知f(x)的对称轴为x==1,故a=2.又f(x)开口向下,所以当x∈[-1,1]时,f(x)为增函数,f(x)min= f(-1)=-1-2+b2-b+1=b2-b-2,f(x)>0对x∈[-1,1]恒成立,即f(x)min=b2-b-2>0恒成立,解得b<-1或b>2.故选C.6.一元二次方程x2+(a2+1)x+a-2=0,有一个根比1大,另一个根比-1小,则a的取值范围是( C )(A){a|-3<a<1} (B){a|-2<a<0}(C){a|-1<a<0} (D){a|0<a<2}解析:令f(x)=x2+(a2+1)x+a-2,则f(1)<0且f(-1)<0,即解得-1<a<0.故选C.7.不等式x2-2x+5≥a2-3a对任意实数x恒成立,则实数a的取值范围为( A )(A)[-1,4] (B)(-∞,-2]∪[5,+∞)(C)(-∞,-1]∪[4,+∞) (D)[-2,5]解析:因为x2-2x+5=(x-1)2+4的最小值为4,所以要使x2-2x+5≥a2-3a对任意实数x恒成立,只需a2-3a≤4,解得-1≤a≤4.故选A.8.某产品的总成本y(万元)与产量x(台)之间的函数关系式为y= 3 000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( C )(A)100台 (B)120台 (C)150台 (D)180台解析:由3 000+20x-0.1x2≤25x得x2+50x-30 000≥0,解得x≥150或x≤-200(舍去).故选C.9.若关于x的不等式>0的解集为(-∞,-1)∪(4,+∞),则实数a= .解析:注意到>0等价于(x-a)(x+1)>0,而解为x<-1或x>4,从而a=4.答案:410.不等式(x+2)(x2-x-12)>0的解集为 .解析:法一原不等式等价于或即或解得x>4或-3<x<-2.故原不等式的解集为{x|x>4或-3<x<-2}.法二原不等式可化为(x+3)(x+2)(x-4)>0.方程(x+3)(x+2)(x-4)=0的实数根为x1=-3,x2=-2,x3=4.将-3,-2,4标在数轴上,然后用一条光滑的曲线从x轴右端的上方起,依次穿过这些点,则不等式(x+3)(x+2)(x-4)>0的解即为曲线在x轴上方对应的x值,如图.故原不等式的解集为{x|-3<x<-2或x>4}.答案:(-3,-2)∪(4,+∞)11.若不等式x2-kx+k-1>0对x∈(1,2)恒成立,则实数k的取值范围是.解析:设f(x)=x2-kx+k-1,当x∈(1,2)时,不等式x2-kx+k-1>0恒成立,则①或②.解不等式组①得,k≤2;解不等式组②,无解.故k的取值范围是k≤2.答案:(-∞,2]12.设函数f(x)=mx2-mx-1,对于x∈[1,3],f(x)<-m+5有解,求m的取值范围.解:要使f(x)<-m+5在x∈[1,3]上有解,即m(x2-x+1)<6在x∈[1,3]上有解.于是问题转化为m<()max,当x∈[1,3]时,(x2-x+1)min=1,()max=6,所以只需m<6即可.综上,m的取值范围是(-∞,6).13.已知一元二次不等式x2+px+q<0的解集为,求不等式qx2+px+1>0的解集.解:因为x2+px+q<0的解集为,所以x1=-与x2=是方程x2+px+q=0的两个实数根.由根与系数的关系得解得所以不等式qx2+px+1>0即为-x2+x+1>0,整理得x2-x-6<0,解得-2<x<3.即不等式qx2+px+1>0的解集为{x|-2<x<3}.14.已知函数f(x)=kx2+kx+2(k∈R).(1)若k=-1,求不等式f(x)≤0的解集;(2)若不等式f(x)>0的解集为R,求实数k的取值范围.解:(1)若k=-1,则f(x)=-x2-x+2≤0,x2+x-2≥0,即x≤-2或x≥1,所以不等式的解集为(-∞,-2]∪[1,+∞).(2)当k=0时,f(x)=2>0,显然恒成立,解集为R;当k≠0时,要使f(x)=kx2+kx+2>0的解集为R,则k>0且Δ=k2-8k<0,即0<k<8.综上所述,k∈[0,8).15.若实数α,β为方程x2-2mx+m+6=0的两根,则(α-1)2+(β-1)2的最小值为( A )(A)8 (B)14 (C)-14 (D)-解析:因为Δ=(-2m)2-4(m+6)≥0,所以m2-m-6≥0,所以m≥3或m≤-2.(α-1)2+(β-1)2=α2+β2-2(α+β)+2=(α+β)2-2αβ-2(α+β)+2=(2m)2-2(m+6)-2(2m)+2=4m2-6m-10=4(m-)2-,因为m≥3或m≤-2,所以当m=3时,(α-1)2+(β-1)2取最小值8.选A.16.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是( C )(A)(-∞,-2] (B)[-2,2](C)[-2,+∞) (D)[0,+∞)解析:令t=|x|,则t≥0,所以t2+at+1≥0对t≥0恒成立,当a≥0时,显然不等式恒成立.当a<0时,y=t2+at+1在[0,+∞)上的最小值为1-,由题意得1-≥0,解得-2≤a≤2,所以-2≤a<0,综上a≥-2,故选C.17.已知关于x的不等式ax+b>0的解集为(-∞,-),则关于x的不等式bx2-a>0的解集为.解析:因为ax+b>0的解集为(-∞,-),所以-a+b=0且a<0;故a=2b<0,故bx2-a>0可化为x2-2<0,故-<x<.答案:(-,)18.已知当-1≤a≤1时,x2+(a-4)x+4-2a>0恒成立,则实数x的取值范围是.解析:设g(a)=(x-2)a+(x2-4x+4),由于x2+(a-4)x+4-2a>0恒成立,所以g(a)>0恒成立,因此整理得解得x<1或x>3.答案:(-∞,1)∪(3,+∞)19.某地区上年度电价为0.8元/千瓦时,年用电量为a千瓦时.本年度计划将电价降价到0.55元/千瓦时至0.75元/千瓦时之间,而用户期望电价为0.4元/千瓦时.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.3元/千瓦时.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时仍可保证电力部门的收益比上年度至少增长20%?注:收益=实际用电量×(实际电价-成本价)解:(1)设下调后的电价为x元/千瓦时,依题意知,用电量增至+a,电力部门的收益为y=(+a)(x-0.3)(0.55≤x≤0.75).(2)依题意,有整理,得解此不等式,得0.60≤x≤0.75.所以当电价最低定为0.60元/千瓦时时,仍可保证电力部门的收益比上年度至少增长20%.。