代数式意义与代数式求值专题练习一

合集下载

初中数学《代数式求值》中考专项练习(含答案解析》

初中数学《代数式求值》中考专项练习(含答案解析》


【分析】先将代数式化简为 a2﹣a,再由 2a2﹣7=2a 可得 a2﹣a= ,即可求解.
【解答】解:原式=( ﹣
)×

×
=a(a﹣1) =a2﹣a, ∵2a2﹣7=2a, ∴2a2﹣2a=7, ∴a2﹣a= ,
∴代数式的值为 ,
故答案为: .
3.(2022•邵阳)已知x2﹣3x+1=0,则3x2﹣9x+5= 2 . 【分析】原式前两项提取3变形后,把已知等式变形代入计算即可求出值. 【解答】解:∵x2﹣3x+1=0, ∴x2﹣3x=﹣1, 则原式=3(x2﹣3x)+5 =﹣3+5 =2. 故答案为:2.
【解答】解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣ (2×2)2, 第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2, 第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2, 第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2, 第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2, 故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;
4.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2, 求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1= 3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数 式4a2+4ab+b2+4a+2b﹣1的值是 14 . 【分析】根据x=2是关于x的一元一次方程ax+b=3的解,可得:b=3﹣2a,直接代 入所求式即可解答.

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

初中数学竞赛代数专题讲义之代数式求值含例题习题及详解

代数式求值由数与字母经有限次代数运算(加、减、乘、除、乘方、开方)所组成的表达式叫做代数式。

已知一个代数式,把式中的字母用给定数值代替后,运算所得结果叫做在字母取给定数值时代数式的值。

一、专题知识1.基本公式(1)立方和公式:2233()()a b a ab b a b +-+=+(2)立方差公式:2233()()a b a ab b a b-++=-(3)完全立方和:33223()33a b a a b ab b +=+++(4)完全立方差:33223()33a b a a b ab b -=-+-2.基本结论(1)33322()33a b a b a b ab +=+--(2)33322()33a b a b a b ab -=-+-(3)22()()4a b a b ab-=+-二、经典例题例题1已知y z x z x yx y z+++==求代数式y z x +的值。

【解】(1)0x y z ++≠,由等比性质得2()2x y z y zx y z x+++==++;(2)0x y z ++=,则y z x +=-,所以1y zx+=-。

例题2已知234100x y +-=,求代数式y x x y xy y x x 65034203152223--++++的值。

【解】32221532043506x x y xy y x x y++++--322222215205034103410105(3410)(3410)(3410)1010x xy x x y y y x y x x y y x y x y =+-++-++-+=+-++-++-+=例题3实数,,a b c满足条件:231224a b ab -=+=-,求代数式2a b c ++的值。

【解】22222442318224a b a ab b ab c ab ⎧-=⇒-+=⎪⎨+=-⇒+=-⎪⎩两式相加得,()2220a b ++=只有2=0a b +且0c =,所以20a b c ++=。

代数式求值经典题型1-(含详细答案)

代数式求值经典题型1-(含详细答案)

.

已知 x-y=2
10

求代数式 x3-6xy-y3
.
. .
.

x3-6xy-y3
=2(x-y)² . 把 x-y=2 代入上式 .
=( x3 - y3)-6xy
=2(2)²

=(x-y)(x2+xy+y2)-6xy
=2×4
10

. 把 x-y=2 代入上式 .
=8
=2(x2+xy+y2)-6xy
第 6
1
4
=10×(x² + x²)------(1)

【第 2 步】
已知 x² -2x -2=0,两边同时除以 x,得
2 x -2 - x =0 把-2 移到等号右边,得
.
2 x - x =2,两边同时平方,得
4 x² - 4 + x² =4,把-4 移到等号右边,
4 x² + x² = 8--------(2)
. 把-6xy 移到括号里 .
=2(x2+xy+y2-3xy) =2(x2-2xy+y2)
答案: 8
.
.

11
已知 3x²-x-1 =0,

求代数式 6x3+7x²-5x-2018
.
. .
.
思考
已知 3x²-x-1 =0 故 3x²-x=1 ,
=2x+9x2-5x-2018 =9x2-3x-2018
7y² x=2x+5y 两边同时乘以 2x+5

13
2x²+5xy=7y²,把 7y²移到等号左边,

代数式求值(习题及答案)

代数式求值(习题及答案)

代数式求值(习题)➢ 例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简➢ 巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx +-的值是10,则当5x =时,代数式25ax bx ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.➢ 思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】➢巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b➢思考小结-11。

代数式练习题及答案

代数式练习题及答案

代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究的是数的运算和代数式的性质。

代数式是由数、字母和运算符号组成的表达式,它可以用来表示数的关系和运算。

在学习代数的过程中,练习题是必不可少的一环,通过解答练习题,可以帮助我们巩固知识,提高解题能力。

本文将介绍一些常见的代数式练习题及其答案。

一、简单的代数式求值题1. 求代数式a + b + c,其中a = 2,b = 3,c = 4。

答案:a + b + c = 2 + 3 + 4 = 9。

2. 求代数式3a - 2b,其中a = 5,b = 7。

答案:3a - 2b = 3 × 5 - 2 × 7 = 15 - 14 = 1。

3. 求代数式(a + b) × c,其中a = 2,b = 3,c = 4。

答案:(a + b) × c = (2 + 3) × 4 = 5 × 4 = 20。

二、代数式的展开和化简题1. 展开代数式(x + y)^2。

答案:(x + y)^2 = x^2 + 2xy + y^2。

2. 化简代数式2x + 3x - 4x。

答案:2x + 3x - 4x = x。

3. 展开代数式(a - b)^2。

答案:(a - b)^2 = a^2 - 2ab + b^2。

三、代数式的因式分解题1. 将代数式x^2 - 4x + 4分解因式。

答案:x^2 - 4x + 4 = (x - 2)^2。

2. 将代数式x^2 - 9分解因式。

答案:x^2 - 9 = (x - 3)(x + 3)。

3. 将代数式x^2 + 4x + 4分解因式。

答案:x^2 + 4x + 4 = (x + 2)^2。

四、代数式的方程求解题1. 解方程2x + 3 = 7。

答案:2x + 3 = 7,化简得2x = 4,再除以2得x = 2。

2. 解方程3(x - 4) = 15。

答案:3(x - 4) = 15,化简得3x - 12 = 15,再加上12得3x = 27,最后除以3得x = 9。

初中数学代数式求值经典练习题及答案

初中数学代数式求值经典练习题及答案

初中数学代数式求值经典练习题及答案根据已知,求下列代数式的值。

,求代数式x3的值;1、已知已知x>0,且x2=10+2√214的值;2、已知x2 +4x2= 5 ,xy=1,求代数式xx3、已知2x+1·3x= 24,2x·3x+1= 54,求代数式√(x+y)xx的值;4、已知x2= x+1,x2= y+1,且x≠y,求求代数式√x5+x5+5的值;= 4 ,求代数式x7−14x5+x3的值;5、已知x + 1x的的值;6、已知x2= √234x +1 ,求代数式x2 + 1x27、已知(x+y)3-2(x+y)2-3xy(x+y) +3xy +2(x+y) -1= 0,求代数式x+y的值;8、已知13x·9x= 4 ,求代数式1x+ 1x的值;9、已知(x2+2x)(x+y)=60,且x2 +3x+y=19,求代数式 x-y 的值;10、已知x2+2x+4=0,求代数式x4 +1的值。

参考答案1、已知已知x>0,且x2=10+2√214,求代数式x3的值。

解:x2=10+2√214x2=7 +2√21+34x2=(√7)2+ 2√21+ (√3)222x2=(√7 + √32)2因为x>0,所以 x = √7 + √32x3=x2·x= 10+2√214·√7 + √32x3= 10√7 + 10√3 + 14√3 + 6√78x3= 16√7 + 24√38x3= 2√7 +3√3故代数式x3的值是:2√7 +3√3。

2、已知x2 +4x2= 5 ,xy=1,求代数式xx的值。

解:x2 +4x2= 5可将5写为:5×1,所以上式为x2 +4x2= 5 ×1又xy=1,将式中的1用xy代替,则有x2 +4x2= 5xyx2-5xy+ 4x2=0等式两边同时除以x2,得(xy )2-5·xx+ 4 =0(xx -4)(xx-1)=0当xx -4=0 时,xx= 4当xx -1=0 时,xx= 1故代数式x3的值是:4或1。

代数式求值(精选初一七年级上代数式求值32道题)(可编辑修改word版)

代数式求值(精选初一七年级上代数式求值32道题)(可编辑修改word版)

a c +ab c9212112代数式求值专题12 2 2 10:5ab- a b+ a b-ab-a b-5,其中 a=1,b=-2;2 2 41:已知:m= ,n=-1,求代数式 3(m n+mn)-2(m n-mn)-m n 的值52 2 111:(3a -ab+7)-(5ab-4a +7),其中 a=2,b= ;31 1212:已知:x+ =3,求代数式(x+ ) +x+6+ 的值x x x 1 121 12212:x-2(x- y )+3(-x+ y ),其中x=-2,y=-;3:已知当 x=7 时,代数式 ax5+bx-8=8,求x=7 时,ax5+bx + 8 的值.2 3 2 9 32 22 21213:-5abc-{2a b-[3abc-2(2ab - a b)]},其中 a=-2,b=-1,c=32x y z x - 2 y + 3z4:已知= = ,则代数式2 3 4 xy + 2 y z + 3yz14:证明多项式 16+a-{8a-[a-9-3(1-2a)]}的值与字母 a 的取值无关.5:已知 a=3b,c=4a 求代数式2a - 9b + 2c的值5a + 6b -c6:已知 a,b 互为相反数,c,d 互为倒数,x 的绝对值等于 1,求代数式 a+b+x2-cdx 的值15:由于看错了符号,某学生把一个代数式减去 x2+6x-6 误当成了加法计算,结果得到 2x2-2x+3,正确的结果应该是多少?16:当x = 2, y =1 时,求代数式 1 x2+xy +y2+1 的值。

2 27:设a+b+c=0,abc>0,求b +c+ +a +b的值2 2 2 117:已知x 是最大的负整数,y 是绝对值最小的有理数,求代数式2x3+ 5x2y - 3xy2-15 y3的值9:5a -4a +a-9a-3a -4+4a,其中a=-;2。

18:已知 x = ⎛- 1 ÷ ⎝ 1 ⨯ 3 ⨯ 2 1 ⎫3 ⎪ 6 ⎭,求代数式 x 1999 + x 1998 + x 1997 + + x + 1 的值。

代数式及代数的值专题训练

代数式及代数的值专题训练

整式的加减⑴复习内容: 列代数式,求代数式的值. (一)代数式的有关知识1、代数式是用 (加、减、乘、除以及乘方)把数和表示数的字母连结而成的式子.▲ 单独一个 或一个 也是代数式. 2、代数式的书写格式:①若是数字与数字相乘,仍然用“×”号;若是字母与字母相乘,通常省略乘号,且按字母的顺序排列.例如b ×a 应写成ab .②数字与字母相乘,或数字与小括号相乘时,乘号可省略不写,但数字要写在 面.例如4×a 应写成4a ;3×(m+n)应写成3(m+n).③代数式中出现除法运算时,应写成 的形式.例如y x 2应写成yx 2④代数式中出现带分数与字母相乘时,应把带分数化成 .如b a 225不能写成b a 2212.⑤代数式的最后运算是加减运算时,如需注明单位的必须用 把整个式子括起来.如(a-b)元不能写成a-b 元. 3、列代数式:一般是根据“先读先写”的原则来列代数式. 【练习1】⑴“m 的431倍与b 的一半的差”用代数式表示为 .⑵“比x 的2倍的倒数小4的数”用代数式表示为 . ⑶若甲数为x ,甲数是乙数的3倍,则乙数为( ). (A) x 3 (B) x +3 (C) x 31 (D) x -3⑷产量由m 千克增长10%,就达到 千克. (二)代数式的值 1、方法与步骤:⑴用数值代替代数式中的字母,简称“代入”.⑵按照代数式指定的运算顺序计算出结果,简称“求值”.说明:代数式的值是由代数式中的字母所取的值决定的.因此,在代入前, 必须先写“当……时”.2、方法:⑴、直接代入法:例练:当a=1/2,b=3时求代数式2a 2+6b-3ab 的值 ⑵、整体代入例练:已知:x+x 1=3,求代数式(x+x 1)2+x+6+x1的值 例练:已知当x=7时,代数式ax 5+bx-8=8,求x=7时,8225++x b x a 的值.⑶、设元代入 例练:已知2x =3y =4z,则代数式yz yz xy z y x 3223222+++-⑷、归一代入例练:已知a=3b,c=4a 求代数式cb a cb a -++-65292的值⑸、利用性质代入例练:已知a,b 互为相反数,c,d 互为倒数,x 的绝对值等于1,求代数式a+b+x 2-cdx 的值 ⑹、取特殊值代入例练:设a+b+c=0,abc >0,求a c b ++b a c ++cba +的值是 A -3 B 1 C 3或-1 D-3或-1例练: 已知()0122101011111212621a x a x a x a x a x a x x ++++++=+- ,求0281012a a a a a +++++ 的值。

初中《代数式求值》精选练习题及答案

初中《代数式求值》精选练习题及答案

初中《代数式求值》精选练习题及答案根据已知,求代数式的值:1、已知:x=√3 + √3 ,求代数式(x+1)(x-1)的值;2、已知x 2 +1= x ,求代数式x 1001 -x 1000的值;3、已知m =√493 +√563 +√643,求代数式 m - 1m 2 的值;4、已知a 2 = √2 √1+a 2 -1,求代数式a 2024 + a −2024的值;5、已知t ≠0,且 1t - t =1,求代数式t 3 +2t 2 +3003的值;6、已知9x2 +30x+23=0,求代数式(3x +4)2 + 1(3x+4)2 的值;7、已知m 2 -13m =n ,n 2 -13n =m ,求代数式√m 2+n 2+1 的值;8、已知2t +√2 =√3 ,求代数式t 6 -2t 4的值;9、已知3m 2 +5m -11=0,求代数式(4m+7)(2m-5)+m (m+21)+3 的值;10、已知x+√3 =2,求代数式4x 2-〔6x-(5x-8)-x 2〕+3x-〔5x-2(2x-1)〕的值。

参考答案1、已知:x=√3+√3,求代数式(x+1)(x-1)的值;解:已知x=√3+√3=√3+ √33=4√33那么x2=(4√33)2= 163----------①代数式(x+1)(x-1)=x2 -1将①代入= 163-1= 1332、已知x2 +1=x,求代数式x1001 -x1000的值;解:已知x2 +1=x变换一下,得x2-x= -1----------①再变换,得x2 =x -1------------②又x3=x2·x将②代入x3=(x -1)·x=x2-x将①代入故:x3= -1------------③代数式x1001 -x1000=x999+2 -x999+1=x999·x2 -x999·x=x 999(x 2 -x )将①代入=x 999·(-1)= -x 999= -(x 3)333将③代入= -(−1)333 = -(-1)= 13、已知m =√493 +√563 +√643,求代数式 m - 1m 2 的值; 解:m =√493 +√563 +√643m=(√73)2 +√73 √83 + (√83)2-------------------① 将①等号两边同时取分母为1,得 m 1 =(√73)2 +√73 √83 + (√83)21等号右边分子分母同时乘以√83 -√73,得m 1 =[(√73)2 +√73 √83 + (√83)2](√83 −√73)√83 −√73m 1 = √83)3√73)3√83 −√73 = √83 −√73 = √83 −√73 等号两边同时取倒数所以:1m = √83 -√73故: 1m 2 = (√73)2 -2√73 √83 + (√83)2-----------② 由① -②,得m - 1m 2 = 3√73 √833·2= 3√73=6√74、已知a2=√2√1+a2 -1,求代数式a2024+ a−2024的值;解:已知a2=√2√1+a2 -1变换一下,得a2+1=√2√1+a2等号两边同时平方,得a4+2a2+1= 2(1+a2)a4+2a2+1= 2+2a2化简,得a4=1代数式a2024+ a−2024=a4×506+ a4×(−506)=(a4)506+(a4)−506将a4=1代入= 1506+ 1−506=1+1=25、已知t≠0,且1- t =1,求代数式t3 +2t2 +3003的值;t解:已知t≠01- t =1t等号两边同时乘以t,得1 -t2=t变换一下,得t2=1 - t---------------------①代数式t3 +2t2 +3003=t2·t +2t2 +3003将①待入=(1 - t)·t +2(1 - t)+3003 =t -t2 +2-2t +3003再将①待入=t -(1- t) +2-2t +3003= t -1 +t +2 -2t +3003=(t +t -2t)+(-1 +2 +3003)=30046、已知9x2+30x+23=0,求代数式(3x+4)2+1(3x+4)2的值;解:设3x+4 =t则x= 13(t -4)---------------①已知9x2+30x+23=0将①代入9×[13(t−4)]2+30×[ 13(t−4)]+23=0(t−4)2+10(t -4)+23=0t2 -8t +16 +10t -40 +23=0 t2 +2t -1=0等号两边同时除以t,得t +2 - 1t=0变化一下,得1t- t =2等号两边同时平方,得1t2-2 + t2=4整理,得1t2+ t2= 6因为3x+4 =t故:(3x+4)2+1(3x+4)2=67、已知m2 -13m =n,n2 -13n =m,求代数式√m2+n2+1的值;解:m2 -13m=n,n2 -13n=m则变换一下,得m2 =13m +n----------------①n2 =m +13n----------------②① -②,得m2 -n2 =12(m-n)(m +n)(m -n)=12(m-n)(m +n)(m -n)-12(m-n)=0(m -n)〔(m +n)-12〕=0则有:m -n =0,或(m +n)-12=0即:m = n 或m +n =12(1)当m = n时已知m2 =13m +nm2 =13m +m=14m解得m=0,或m=14第一种情况:m=n=0代数式√m2+n2+1将m=n=0代入=√1=1第二种情况:m=n=14代数式√m2+n2+1将m=n=0代入=√142+142+1=√393(2)当m +n =12时① +②,得m2 +n2 =14(m+n)=14×12代数式√m2+n2+1=√14×12+1=√(13+1)(13−1)+1= √132−1+1=138、已知2t +√2=√3,求代数式t6 -2t4的值;解:2t +√2=√3t = √3−√22所以:t2= 5−2√64----------------①①两边同时平方,得t4= 49−20√616------------------------②代数式t6 -2t4=t4(t2 -2)将①,②代入= 49−20√616(5−2√64-2)= 49−20√616×−3−2√64=−3×49+(−20√6)×(−2√6)+(60√6−98√6)64= 93−38√6649、已知3m2 +5m -11=0,求代数式(4m+7)(2m-5)+m(m+21)+3 的值;解:3m2 +5m -11=0变换一下,得3m2 +5m =11------------①代数式(4m+7)(2m-5)+m(m+21)+3=8m2 -20m+14m -35 +m2 +21m+3=9m2 +15m -32=3(3m2 +5m)-32将①代入=3×11-32=110、已知x+√3=2,求代数式4x2-〔6x-(5x-8)-x2〕+3x-〔5x-2(2x-1)〕的值。

代数式规律题与代数式求值(原卷版)--中考数学重难点专题训练

代数式规律题与代数式求值(原卷版)--中考数学重难点专题训练

回归教材重难点01代数式规律题与代数式求值本考点是中考三星高频考点,难度中等偏上,在全国部分地市的中考试卷中也多次考查。

(2022年广州卷第10题)如图,用若干根相同的小木棒拼成图形,拼第1个图形需要6根小木棒,拼第2个图形需要14根小木棒,拼第3个图形需要22根小木棒……若按照这样的方法拼成的第n个图形需要2022根小木棒,则n的值为()A.252B.253C.336D.337【分析】根据图形特征,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,得出第n个图形需要的小木棒根数即可.【解答】解:由题意知,第1个图形需要6根小木棒,第2个图形需要6×2+2=14根小木棒,第3个图形需要6×3+2×2=22根小木棒,按此规律,第n个图形需要6n+2(n﹣1)=(8n﹣2)根小木棒,当8n﹣2=2022时,解得n=253,故选:B.【点评】本题主要考查了图形的变化规律,解决问题的关键是由特殊找到规律:第n个图形需要(8n﹣2)根小木棒是解题的关键.代数式规律题是代数式章节衍生出的一类经典题型,可以说是贯穿整个初中的学习。

而代数式求值问题也是初中数学中比较重要的内容,代数式包含整式、分式、根式三大部分,考察较多的是整式的求值。

在解决代数式求值问题时,常用到的思想方法有整体思想、转化思想、方程思想等,个别综合性较高的问题对学生的逻辑思维能力要求也较高。

因此,在复习代数式规律题和代数式求值问题时,一是要熟悉对应题型,掌握对应解决办法,二是要融合各思想方法,提高对综合题目的逻辑理解力。

本考点是中考四星高频考点,难度中等或偏上,在全国部分地市的中考试卷中也多次考查。

技法01:周期型规律题常见处理办法:①.找出第一周期的几个数,确定周期数②.算出题目中的总数和待求数③.用总数÷周期数=m……n(表示这列数中有m个整周期,最后余n个)④.最后余几,待求数就和每周期的第几个一样;技法02:推理型规律题常见处理办法:①依题意推出前3~4项规律的表达式;②类推第N项表达式技法03:代数式求值问题常用处理办法:①变形已知条件,使其符合待求式中含字母部分的最简组合形式②将待求式变形,使其成为含有上面最简组合式的表达式,③代入未知最简组合形式部分的值,求出最后结果代数式规律题【中考真题练】1.(2022•济宁)如图,用相同的圆点按照一定的规律拼出图形.第一幅图4个圆点,第二幅图7个圆点,第三幅图10个圆点,第四幅图13个圆点……按照此规律,第一百幅图中圆点的个数是()A.297B.301C.303D.4002.(2022•牡丹江)观察下列数据:,﹣,,﹣,,…,则第12个数是()A.B.﹣C.D.﹣3.(2022•玉林)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF的顶点A处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是()A.4B.2C.2D.04.(2022•恩施州)观察下列一组数:2,,,…,它们按一定规律排列,第n个数记为a n,且满足+=.则a4=,a2022=.5.(2022•大庆)观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是.6.(2022•泰安)将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是.【中考模拟练】1.(2023•云南模拟)有一组按规律排列的多项式:a﹣b,a2+b3,a3﹣b5,a4+b7,…,则第2023个多项式是()A.a2023+b4047B.a2023﹣b4047C.a2023+b4045D.a2023﹣b40452.(2023•德城区一模)已知整数a1,a2,a3,a4,……满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……依此类推,则a2023的值为()A.﹣1011B.﹣1010C.﹣2022D.﹣20233.如图,被称为“杨辉三角”或“贾宪三角”.其规律是:从第二行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和,表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n.则a100的值为()A.100B.199C.5050D.100004.(2023春•硚口区月考)我国宋朝时期的数学家杨辉,曾将大小完全相同的圆弹珠逐层堆积,形成“三角垛”.如图,第1个图有1颗弹珠;第2个图有3颗弹珠;第3个图有6颗弹珠;第4个图有10颗弹珠;…;用a n表示第n个图的弹珠数,若…+=,则n的值是()A.1012B.2022C.2023D.20245.(2023•涟源市一模)如图,下列是一组有规律的图案,它们由边长相同的小正方形组成,按照这样的规律,第n个图案中涂有阴影的小正方形的数量是个.(用含有n的式子表示)代数式求值【中考真题练】1.(2022•郴州)若=,则=.2.(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.3.(2022•邵阳)已知x2﹣3x+1=0,则3x2﹣9x+5=.4.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.5.(2022•苏州)已知3x2﹣2x﹣3=0,求(x﹣1)2+x(x+)的值.6.(2022•安徽)观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.7.(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?【中考模拟练】1.(2023•新华区模拟)已知a+2b﹣3=0,则2a+4b+6的值是()A.8B.12C.18D.242.(2023•香洲区校级一模)若,则=.3.(2023•化州市模拟)已知﹣2m+3n2+7=0,则代数式﹣12n2+8m+4的值等于.4.(2023•沭阳县模拟)按如图所示的运算程序,输入x的值为1时,则输出y值为.5.(2023•汉中一模)在数学活动课上,同学们利用如图所示的程序进行计算,计算按箭头指向循环进行.如,当初始输入5时,即x=5,第1次计算结果为16,第2次计算结果为8,第3次计算结果为4,…(1)当初始输入1时,第1次计算结果为;(2)当初始输入4时,第3次计算结果为;(3)当初始输入3时,依次计算得到的所有结果中,有个不同的值,第20次计算结果为.。

代数式知识点及专项训练(含答案解析)

代数式知识点及专项训练(含答案解析)

代数式知识点及分类训练(含答案解析)知识点一:代数式的定义1. 用基本的运算符号把数或表示数的字母连接而成的式子叫做代数式。

如:16n ,2a+3b ,34 ,n,(a+b)2等式子;代数式不含有等号或不等号,单独的2一个数或一个字母也是代数式。

知识点二:代数式的规范书写1. 数字与数字相乘用“×”;数字与字母、字母与字母相乘乘号, 通常用“·”表示或省略不写;2. 字母与数字相乘,数字因式应放在字母因式之前(之前/之后),带分数与字母相乘,带分数要化为假分数3. 代数式中的除号一般用“分数线”表示;4. 几个字母相乘时,一般按字母顺序排列。

5. 如果字母前面的数字是1,通常省略不写.知识点三:列代数式在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.1.重点:用字母表示数与数之间的关系;2.比谁的几倍多(少)几的问题;3.比谁的几分之几多(少)几的问题;4.折扣问题:例:八折是乘0.8,八五折是乘0.855.提价与降价问题:例:一个商品原价a,先提价20%,在降价20%,即a(1+20%)(1-20%)6.路程问题:掌握公式:s=vt7.出租车计费问题:分类讨论思想,将总路程切割成不同的段(例:前三公里收费7元,之后每公里1.6元,公里数x,总费用y)y={7 x≤3 1.6(x−3)+7 x>38.已知各数位上的数字,表示数的问题:字母乘10表示在十位上,乘100表示在百位上。

9.特定字母的意义:C:周长 S:面积 V:体积 r:半径 d:直径s:路程 t:时间 v:速度n:正整数知识点三:代数式的值1. 用数值代表代数式里的字母,按照代数式中的运算关系计算得出的结果叫做代数式的值。

2. 代数式的值的求解步骤:一是代入,二是计算。

在过程中一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.3. 求代数式的值的方法3.1 直接代入法:将字母的值直接代入代数式中求值3.2 转换代入法:按指定的程序代入计算3.3 整体代入法:即整体思想:把“整体”看作一个新字母代入计算【知识点1:代数式的概念】1. 下列式子中,符合代数式书写格式的是( )A .813a 2b 3B .−y xC .xy ·5D .−1c【答案】B【解析】选项A 正确的书写格式是253a 2b 3,选项B 的书写格式是正确的,选项C 正确的书写格式是5xy ,选项D 正确的书写格式是-c.故选:B .2. 下列式子中,不属于代数式的是( )A .a+3B .mn 2C .√6D .x >y 【答案】D .【解析】A 、是代数式,故本选项错误;B 、是代数式,故本选项错误;C 、是代数式,故本选项错误;D 、不是代数式,故本选项正确;故选D .3. 下列各式符合代数式书写规范的是( )A .a bB . a×3C . 2m ﹣1个D . 125m 【答案】A .【解析】A 、符合代数式的书写,故A 选项正确;B 、a×3中乘号应省略,数字放前面,故B 选项错误;C 、2m ﹣1个中后面有单位的应加括号,故C 选项错误;D 、125m 中的带分数应写成假分数,故D 选项错误.4. 判断下列各式中哪些是代数式,哪些不是代数式?0,10x−1,F =ma ,m+2>m ,2x 2﹣3x+11,112,13≠12,6x 2+y 23,﹣y ,6π. 【答案】代数式的有:0,10x−1,2x2﹣3x+11,112,6x 2+y 23,﹣y ,6π.不是代数式的有:F =ma ,m+2>m ,13≠12.【解析】根据代数式的概念选择5. 指出下列各式哪些是代数式,哪些不是代数式?①0;②a+b=3;③b;④x+2>4;⑤1x ;⑥2mn;⑦1+x;⑧x 3.【答案】①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式【解析】②a+b=3,④x+2>4中的“=”“>” 它们不是运算符号,因此②④都不是代数式;①0,③b,都是代数式,因为单个数字和字母是代数式;⑤1x ,⑦1+x,⑧x3,都是除、加、乘方等运算符号连接起来的,因此是代数式;综上,①、③、⑤、⑥、⑦、⑧是代数式,②、④不是代数式.6. 下列哪些是代数式?哪些不是代数式?(1)3x+y ;(2)a ≠0;(3)s=πr 2;(4)ab a+b ;(5)-1>-2;(6)65;(7)m.【答案】代数式有(1),(4),(6),(7);不是代数式的有(2),(3),(5).【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.代数式有:3x+y ,ab a+b ,65,m.不是代数式的有:a ≠0,s=πr 2,-1>-2.7. 指出下列各式中,哪些是代数式,哪些不是代数式?(1)2x-1;(2)a=1;(3)S=πR 2;(4)π;(5)72;(6)12>13.【答案】(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【解析】根据代数式的概念,用运算符号把数字与字母连接而成的式子叫做代数式.单独的一个数或一个字母也是代数式.解:(2)(3)是等式不是代数式;(6)不是等式不是代数式;(1)(4)(5)是代数式.【知识点2:列代数式】1.购买1个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为()A.(a+b)元B.3(a+b)元C.(3a+b)元D.(a+3b)元【答案】D.【解析】求购买1个面包和2瓶饮料所用的钱数,我们需要用一个面包的价钱加上3瓶饮料的价钱即可,即(a+3b)元,故选D.2.x减去y的平方的差,用代数式表示正确的是().A.(x-y)2B.x2-y2C.x2-yD.x-y2【答案】D【解析】本题主要考查了列代数式,关键是正确理解文字语言中的关键词;y的平方为y2,所以x减去y的平方的差为x-y2,故选D.3.根据题意列式:(1)x的平方的3倍与5的差,用代数式表示为 .(2)操作电脑时,甲4小时打x个字,乙3小时打y个字,甲乙两人每小时共打个字.【答案】(1)3x2-5 (2)(x4+y3)【解析】(1)本题主要考查了列代数式,关键是正确理解文字语言中的关键词;x的平方为x2,它的3倍为3x2,所以再与5的差为3x2-5;(2)已知甲4小时打x个字,则甲每小时打x4个字;乙3小时打y个字,则乙每小时打y3个字,所以甲、乙两人每小时共同打(x4+y3)个字4.校园里刚栽下1.8m高的小树苗,以后每年长0.3m,则n年后是 m.【答案】(0.3n+1.8);【解析】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系。

《代数式求值》专项练习

《代数式求值》专项练习

代数式求值一、选择题(共12 小题)1.已知 m=1,n=0,则代数式 m+n的值为()A.﹣ 1 B.1C.﹣ 2 D.22.已知 x2﹣ 2x﹣8=0,则 3x2﹣6x﹣ 18 的值为()A.54 B.6C.﹣ 10D.﹣ 183.已知 a2+2a=1,则代数式 2a2+4a﹣1 的值为()A.0B.1C.﹣ 1 D.﹣24.在数学活动课上,同学们利用如图的程序进行计算,发现不论x 取任何正整数,结果都会进入循环,下面选项必定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,15.当 x=1 时,代数式 4﹣3x 的值是()A.1B.2C.3D.46.已知 x=1,y=2,则代数式 x﹣y 的值为()A.1B.﹣1 C.2D.﹣37.已知 x2﹣ 2x﹣3=0,则 2x2﹣4x 的值为()A.﹣6 B.6C.﹣2或 6D.﹣2 或 308.按如图的运算程序,能使输出结果为 3 的 x,y 的值是()A.x=5, y=﹣2 B .x=3, y=﹣3 C. x=﹣4,y=2 D.x=﹣3,y=﹣99.若 m+n=﹣1,则( m+n)2﹣2m﹣2n 的值是()A.3B.0C.1D.210.已知 x﹣2y=3,则代数式 6﹣2x+4y 的值为()A.0B.﹣1 C.﹣ 3 D.311.当 x=1 时,代数式a x3﹣3bx+4 的值是 7,则当 x=﹣1 时,这个代数式的值是()A.7B.3C.1D.﹣712.如图是一个运算程序的表示图,若开始输入x 的值为 81,则第 2014 次输出的结果为()A.3B.27 C.9D.1二、填空题(共18 小题)13.若 4a﹣2b=2π,则 2a﹣ b+π=.14.若 2m﹣n2=4,则代数式 10+4m﹣2n2的值为.15.若 a﹣ 2b=3,则 9﹣2a+4b 的值为.16.已知 3a﹣2b=2,则 9a﹣ 6b=.17.若 a2﹣3b=5,则 6b﹣2a2 +2015=.18.依据如下图的操作步骤,若输入的值为3,则输出的值为.19.若 a﹣ 2b=3,则 2a﹣ 4b﹣5=.2220.已知 m﹣m=6,则 1﹣2m+2m=.21.当 x=1 时,代数式 x2 +1=.22.若 m+n=0,则 2m+2n+1=.23.按如下图的程序计算.若输入x 的值为 3,则输出的值为.24.依据如下图的操作步骤,若输入x 的值为 2,则输出的值为.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发了然一个魔术盒,当随意实数对( a,b)进入此中时,会获得一个新的实数:a2 +b﹣1,比如把( 3,﹣ 2)放入其中,就会获得 32+(﹣ 2)﹣ 1=6.现将实数对(﹣ 1,3)放入此中,获得实数m,再将实数对( m,1)放入此中后,获得实数是.26.假如 x=1 时,代数式 2ax3+3bx+4 的值是 5,那么 x=﹣1 时,代数式 2ax3 +3bx+4的值是.27.若 x2﹣2x=3,则代数式 2x2﹣4x+3 的值为.2228.若 m﹣2m﹣ 1=0,则代数式2m﹣4m+3的值为.29.已知 x(x+3)=1,则代数式 2x2+6x﹣5 的值为.30.已知 x2﹣2x=5,则代数式2x2﹣ 4x﹣1 的值为.参照答案与试题分析一、选择题(共12 小题)1.已知 m=1,n=0,则代数式 m+n的值为()A.﹣ 1 B.1C.﹣ 2 D.2【考点】代数式求值.【剖析】把 m、n 的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0 时, m+n=1+0=1.应选 B.【评论】本题考察了代数式求值,把m、 n 的值代入即可,比较简单.2.已知 x2﹣ 2x﹣8=0,则 3x2﹣6x﹣ 18 的值为()A.54 B.6C.﹣ 10D.﹣ 18【考点】代数式求值.【专题】计算题.【剖析】所求式子前两项提取 3 变形后,将已知等式变形后辈入计算即可求出值.【解答】解:∵ x2﹣ 2x﹣8=0,即 x2﹣ 2x=8,∴3x2﹣ 6x﹣18=3(x2﹣2x)﹣ 18=24﹣18=6.应选 B.【评论】本题考察了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知 a2+2a=1,则代数式 2a2+4a﹣1 的值为()A.0B.1C.﹣ 1 D.﹣2【考点】代数式求值.【专题】计算题.【剖析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵ a2+2a=1,∴原式 =2(a2+2a)﹣ 1=2﹣ 1=1,应选 B【评论】本题考察了代数式求值,利用了整体代入的思想,娴熟掌握运算法例是解本题的重点.4.在数学活动课上,同学们利用如图的程序进行计算,发现不论x 取任何正整数,结果都会进入循环,下面选项必定不是该循环的是()A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【剖析】把各项中的数字代入程序上当算获得结果,即可做出判断.【解答】解: A、把 x=4 代入得:=2 ,把 x=2 代入得:=1 ,本选项不合题意;B、把 x=2 代入得:=1 ,把 x=1 代入得: 3+1=4,把 x=4 代入得:=2 ,本选项不合题意;C、把 x=1 代入得: 3+1=4,把 x=4 代入得:=2 ,把 x=2 代入得:=1 ,本选项不合题意;D、把 x=2 代入得:=1 ,把 x=1 代入得: 3+1=4,把 x=4 代入得:=2 ,本选项切合题意,应选 D【评论】本题考察了代数式求值,弄清程序框图中的运算法例是解本题的重点.5.当 x=1 时,代数式 4﹣3x 的值是()A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【剖析】把 x 的值代入原式计算即可获得结果.【解答】解:当x=1 时,原式 =4﹣3=1,应选 A.【评论】本题考察了代数式求值,娴熟掌握运算法例是解本题的重点.6.已知 x=1,y=2,则代数式 x﹣y 的值为()A.1B.﹣1 C.2D.﹣3【考点】代数式求值.【剖析】依据代数式的求值方法,把x=1,y=2 代入 x﹣y,求出代数式 x﹣y 的值为多少即可.【解答】解:当x=1,y=2 时,x﹣y=1﹣ 2=﹣1,即代数式 x﹣y 的值为﹣ 1.应选: B.【评论】本题主要考察了代数式的求法,采纳代入法即可,要娴熟掌握,解答本题的重点是要明确:求代数式的值能够直接代入、计算.假如给出的代数式能够化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知 x2﹣ 2x﹣3=0,则 2x2﹣4x 的值为()A.﹣6 B.6C.﹣2或 6D.﹣2 或 30【考点】代数式求值.【剖析】方程两边同时乘以2,再化出 2x2﹣ 4x 求值.【解答】解: x2﹣2x﹣3=02×( x2﹣2x﹣3)=02×( x2﹣2x)﹣ 6=02x2﹣4x=6应选: B.【评论】本题考察代数式求值,解题的重点是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为 3 的 x,y 的值是()A.x=5, y=﹣2 B .x=3, y=﹣3 C. x=﹣4,y=2 D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【剖析】依据运算程序列出方程,再依据二元一次方程的解的定义对各选项剖析判断利用清除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5 时, y=7,故 A 选项错误;B、x=3 时, y=3,故 B 选项错误;C、x=﹣4 时, y=﹣11,故 C选项错误;D、x=﹣3 时, y=﹣9,故 D选项正确.应选: D.【评论】本题考察了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的重点.9.若 m+n=﹣1,则( m+n)2﹣2m﹣2n 的值是()A.3B.0C.1D.2【考点】代数式求值.【剖析】把( m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵ m+n=﹣1,∴( m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣ 1)2﹣2×(﹣ 1)=1+2=3.应选: A.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.10.已知 x﹣2y=3,则代数式 6﹣2x+4y 的值为()A.0B.﹣1 C.﹣ 3 D.3【考点】代数式求值.【剖析】先把 6﹣2x+4y 变形为 6﹣2(x﹣2y),而后把 x﹣ 2y=3 整体代入计算即可.【解答】解:∵ x﹣2y=3,∴6﹣ 2x+4y=6﹣ 2(x﹣2y)=6﹣ 2× 3=6﹣6=0应选: A.【评论】本题考察了代数式求值:先把所求的代数式依据已知条件进行变形,而后利用整体的思想进行计算.11.当 x=1 时,代数式a x3﹣3bx+4 的值是 7,则当 x=﹣1 时,这个代数式的值是()A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【剖析】把 x=1 代入代数式求出a、b 的关系式,再把 x=﹣1 代入进行计算即可得解.【解答】解: x=1 时,ax 3﹣ 3bx+4=a﹣ 3b+4=7,解得a﹣3b=3,3当 x= 1 ,ax3bx+4=a+3b+4= 3+4=1.【点】本考了代数式求,整体思想的利用是解的关.12.如是一个运算程序的表示,若开始入x 的 81,第 2014 次出的果()A.3B.27 C.9D.1【考点】代数式求.【】表型.【剖析】依据运算程序行算,而后获得律从第 4 次开始,偶数次运算出的果是 1,奇数次运算出的果是3,而后解答即可.【解答】解:第 1 次,× 81=27,第 2 次,×27=9,第 3 次,×9=3,第 4 次,×3=1,第 5 次, 1+2=3,第 6 次,×3=1,⋯,依此推,偶数次运算出的果是1,奇数次运算出的果是3,∵ 2014 是偶数,∴第 2014 次出的果1.故: D.【点】本考了代数式求,依据运算程序算出从第 4 次开始,偶数次运算出的果是 1,奇数次运算出的果是 3 是解的关.二、填空题(共18 小题)13.若 4a﹣2b=2π,则 2a﹣ b+π= 2π.【考点】代数式求值.【剖析】依据整体代入法解答即可.【解答】解:由于4a﹣ 2b=2π,因此可得 2a﹣b=π,把 2a﹣ b=π代入 2a﹣b+π =2π.【评论】本题考察代数式求值,重点是依据整体代入法计算.14.若 2m﹣n2=4,则代数式 10+4m﹣2n2的值为18.【考点】代数式求值.【剖析】察看发现4m﹣ 2n2是 2m﹣ n2的 2 倍,从而可得 4m﹣2n2=8,而后再求代数式10+4m﹣2n2的值.【解答】解:∵ 2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为: 18.【评论】本题主要考察了求代数式的值,重点是找出代数式之间的关系.15.若 a﹣ 2b=3,则 9﹣2a+4b 的值为3.【考点】代数式求值.【专题】计算题.【剖析】原式后两项提取﹣ 2 变形后,把已知等式代入计算即可求出值.【解答】解:∵ a﹣2b=3,∴原式 =9﹣2(a﹣2b)=9﹣6=3,故答案为: 3.【评论】本题考察了代数式求值,娴熟掌握运算法例是解本题的重点.16.已知 3a﹣2b=2,则 9a﹣ 6b= 6.【考点】代数式求值.【剖析】把 3a﹣ 2b 整体代入进行计算即可得解.【解答】解:∵ 3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为; 6.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.17.若 a2﹣3b=5,则 6b﹣2a2 +2015= 2005.【考点】代数式求值.【剖析】第一依据 a2﹣3b=5,求出 6b﹣2a2的值是多少,而后用所得的结果加上2015,求出算式 6b﹣2a2+2015 的值是多少即可.【解答】解: 6b﹣2a2+2015=﹣2(a2﹣ 3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为: 2005.【评论】本题主要考察了代数式的求值问题,采纳代入法即可,要娴熟掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.依据如下图的操作步骤,若输入的值为3,则输出的值为55.【考点】代数式求值.【专题】图表型.【剖析】依据运算程序列式计算即可得解.2【解答】解:由图可知,输入的值为 3 时,( 3 +2)× 5=(9+2)× 5=55.【评论】本题考察了代数式求值,读懂题目运算程序是解题的重点.19.若 a﹣ 2b=3,则 2a﹣ 4b﹣5= 1.【考点】代数式求值.【剖析】把所求代数式转变为含有(a﹣2b)形式的代数式,而后将a﹣2b=3 整体代入并求值即可.【解答】解: 2a﹣4b﹣5=2(a﹣2b)﹣ 5=2×3﹣5=1.故答案是: 1.【评论】本题考察了代数式求值.代数式中的字母表示的数没有明确见告,而是隐含在题设中,第一应从题设中获得代数式(a﹣2b)的值,而后利用“整体代入法”求代数式的值.2220.已知 m﹣m=6,则 1﹣2m+2m= ﹣11.【考点】代数式求值.【专题】整体思想.2【剖析】把 m﹣ m看作一个整体,代入代数式进行计算即可得解.2【解答】解:∵ m﹣ m=6,22∴ 1﹣ 2m+2m=1﹣ 2( m﹣m)=1﹣ 2× 6=﹣11.故答案为:﹣ 11.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.21.当 x=1 时,代数式 x2 +1= 2.【考点】代数式求值.【剖析】把 x 的值代入代数式进行计算即可得解.22故答案为: 2.【评论】本题考察了代数式求值,是基础题,正确计算是解题的重点.22.若 m+n=0,则 2m+2n+1= 1.【考点】代数式求值.【剖析】把所求代数式转变成已知条件的形式,而后整体代入进行计算即可得解.【解答】解:∵ m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为: 1.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.23.按如下图的程序计算.若输入x 的值为 3,则输出的值为﹣3.【考点】代数式求值.【专题】图表型.【剖析】依据 x 的值是奇数,代入下面的关系式进行计算即可得解.【解答】解: x=3 时,输出的值为﹣ x=﹣ 3.故答案为:﹣ 3.【评论】本题考察了代数式求值,正确选择关系式是解题的重点.24.依据如下图的操作步骤,若输入x 的值为 2,则输出的值为20.【考点】代数式求值.【专题】图表型.【剖析】依据运算程序写出算式,而后辈入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当 x=2 时,( x+3)2﹣5=( 2+3)2﹣ 5=25﹣ 5=20.故答案为: 20.【评论】本题考察了代数式求值,是基础题,依据图表正确写出运算程序是解题的重点.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发了然一个魔术盒,当随意实数对( a,b)进入此中时,会获得一个新的实数:a2 +b﹣1,比如把( 3,﹣ 2)放入其中,就会获得 32+(﹣ 2)﹣ 1=6.现将实数对(﹣ 1,3)放入此中,获得实数 m,再将实数对( m,1)放入此中后,获得实数是 9 .【考点】代数式求值.【专题】应用题.【剖析】察看可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:依据所给规则: m=(﹣ 1)2+3﹣1=3∴最后获得的实数是 32+1﹣1=9.【评论】依据规则,第一计算 m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.假如 x=1 时,代数式 2ax3+3bx+4 的值是 5,那么 x=﹣1 时,代数式 2ax3 +3bx+4的值是3.【考点】代数式求值.【剖析】将 x=1 代入代数式 2ax3 +3bx+4,令其值是 5 求出 2a+3b 的值,再将 x=﹣1代入代数式 2ax3 +3bx+4,变形后辈入计算即可求出值.【解答】解:∵ x=1 时,代数式 2ax3+3bx+4=2a+3b+4=5,即 2a+3b=1,∴ x=﹣1 时,代数式 2ax3+3bx+4=﹣2a﹣3b+4=﹣( 2a+3b)+4=﹣ 1+4=3.故答案为: 3【评论】本题考察了代数式求值,利用了整体代入的思想,是一道基本题型.27.若 x2﹣2x=3,则代数式 2x2﹣4x+3 的值为9.【考点】代数式求值.【专题】计算题.【剖析】所求式子前两项提取 2 变形后,将已知等式代入计算即可求出值.【解答】解:∵ x2﹣ 2x=3,∴2x2﹣ 4x+3=2( x2﹣2x) +3=6+3=9.故答案为: 9【评论】本题考察了代数式求值,利用了整体代入的思想,是一道基本题型.22.28.若 m﹣2m﹣ 1=0,则代数式 2m﹣4m+3的值为 5【考点】代数式求值.【专题】整体思想.【剖析】先求出2m﹣2m的值,而后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由22m﹣2m﹣ 1=0得 m﹣2m=1,22因此, 2m﹣4m+3=2(m﹣ 2m)+3=2×1+3=5.故答案为: 5.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.29.已知 x(x+3)=1,则代数式 2x2+6x﹣5 的值为﹣3.【考点】代数式求值;单项式乘多项式.【专题】整体思想.【剖析】把所求代数式整理出已知条件的形式,而后辈入数据进行计算即可得解.【解答】解:∵ x(x+3) =1,∴2x2+6x﹣ 5=2x(x+3)﹣ 5=2×1﹣5=2﹣ 5=﹣3.故答案为:﹣ 3.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.30.已知 x2﹣2x=5,则代数式 2x2﹣ 4x﹣1 的值为9.【考点】代数式求值.【专题】整体思想.【剖析】把所求代数式整理成已知条件的形式,而后辈入进行计算即可得解.【解答】解:∵ x2﹣ 2x=5,∴2x2﹣ 4x﹣1=2(x2﹣2x)﹣ 1,=2×5﹣1,=10﹣ 1,=9.故答案为: 9.【评论】本题考察了代数式求值,整体思想的利用是解题的重点.。

3.3《代数式求值》练习题

3.3《代数式求值》练习题

3.3 《代数式求值》练习题一、基础过关1.当2,1-==y x 时,求下列代数式的值.(1))2)(2(31y x y x -- (2)yx y x 33+- (3)22y x -2.笔记本每本0.8元,n 本笔记本 元,当n =12时,共计 元.3.当21-=x 时,代数式21342--x x = .4.华氏温度f 与摄氏温度c 的关系为:3259+=c f ,当人的体温为37.5摄氏度时,华氏温度为 度. 5.解答题:(1)当2=m 时,求代数式1322+-m m 的值.(2)当1-=x 时,代数式31953117234+-+-x x x x 的值是多少?(3)若22=-y x ,求x y x y y x 36)2(41)2(23-+---的值.二、能力提升 6.已知:4=+-ba b a ,求代数式)(3)(4)(2b a b a ba b a -+-+-的值.7.已知:311=+yx ,则yxy x y xy x +-++33的值.8.当3=x 时,代数式53-+bx ax 的值为3,当3-=x 时,代数式53++bx ax 的值为多少?9.(1)已知:0122333)1(a x a x a x a x +++=+,求0123a a a a +++的值.(2)已知:012233444)12(a x a x a x a x a x ++++=-,求01234a a a a a +-+-的值.10.某种型号的汽车,开始行驶时油箱里有油40升,每行驶1千米耗油0.08升, (1)当汽车行驶t 千米时,油箱里剩油量是多少升?(2)当汽车行驶200千米时,油箱里剩油量是多少升?(3)行驶n 千米时,油箱里剩油量是多少升?这箱油最多可行驶多少千米?11.大庆市电力公司为了鼓励居民节约用电,采用分段计费的方式计算电费,每月用电不超过100度时,按每度a 元计算,每月用电超过100度时,其中100度仍按原价收费,超过部分按每度b 元计算.(a <b )(1)小王家一月份共用了67度电,二月份用了120度电,则他家一、二月份分别交纳多少元电费? (2)如果a =0.49元,b =1.50元,则小王家一、二月份应分别交纳多少电费?(3)如果小王家三月份交纳76元电费,则他家三月份共用电多少度?三、聚沙成塔巧躲敲诈小芳下岗后去了一家搬运公司打工,公司的老板让她搬运瓷器.一天,小芳不小心将一箱瓷盘打碎了一些,老板要求小芳按100只瓷盘的价钱赔偿.小芳明知这是老板有意敲诈她,可是面对着一堆碎片,又不知道打碎了几只,怎么办呢?一旁的小李看不下去,走过来说:“我有办法知道打碎了几只瓷盘,只要你称一下碎瓷盘的重量,再称一下一只瓷盘的重量,用碎瓷盘的重量除以一只瓷盘的重量,就可以知道打碎了几只瓷盘.”小李的一番话,立即使小芳躲过了一次敲诈.从此她俩成了好朋友.。

代数式求值(习题及答案)-学习文档

代数式求值(习题及答案)-学习文档

代数式求值(习题)例题示范例1:若23a b -=,则代数式2(2)422000b a a b --++的值是_______.思路分析观察已知,发现字母a ,b 的值无法确定,所以考虑整体代入.对比已知及所求,把2a -b 当作一个整体,对所求式子进行变形.原式=2(2)2(2)2000a b a b ---+最后整体代入,化简巩固练习1. 关于x 的代数式222(28)4(21)x x kx x x ⎡⎤+---+⎣⎦,当k 为何值时,代数式的值是常数?2. 若关于x 的代数式2214(45)64x mx x x mx mx ⎛⎫+---+- ⎪⎝⎭的值与x 无关,求代数式2223(21)363m m m m ⎡⎤-+-+⎢⎥⎣⎦的值. 3. 若232a b a b -=+,则代数式2(2)15(2)22a b a b a b a b-+-+-+的值是_______. 4. 若代数式2346x x -+的值是9,则代数式2463x x -+的值是___________. 5. 若2x y =,则代数式45x y x y-+的值是___________. 6. 已知当5x =时,代数式25ax bx+-的值是10,则当5x =时,代数式25a x b x ++的值是____________.7. 已知当3x =-时,代数式535ax bx cx ++-的值是7,则当3x =时,代数式535ax bx cx ++-的值是__________.8. 若m 表示一个两位数, n 表示一个两位数,把m 放在n 的右边,则这个四位数可用代数式表示为_____________.9. 若a 表示一个一位数,b 表示一个两位数,c 表示一个三位数,把c 放在a的左边,b 放在a 的右边,组成一个六位数,则这个六位数可用代数式表示为__________________.思考小结1. 已知3240x x --=,则代数式3361x x -++的值是_______.通过本讲的学习,小明的做法:①把含有字母的项“32x x -”作为整体,则324x x -=;②在所求的代数式中找整体,对比系数解决:小刚的做法:①把最高次项“3x ”作为整体,则324x x =+;②在所求的代数式中找整体,对比系数解决:小聪的做法:①把“324x x --”作为整体;②在所求的代数式中找整体,对比系数解决:对比小明、小刚、小聪的做法,我们发现无论把“32x x -”, “3x ”还是“324x x --”作为整体,代入,目标都是把所求的代数式降次,这种转化的思想是“高次降次”.【参考答案】巩固练习1.当k=6时,代数式的值为常数2.m=-1,原式=-m-3,当m=-1时,原式=-23.114.75.16.207.-178.100n+m9. 1 000c+100a+b思考小结-11。

代数式的值练习题

代数式的值练习题

代数式的值练习题代数式的值练习题数学作为一门抽象而又精确的学科,代数是其中的重要分支之一。

代数式的值是代数学习中的基础概念之一,也是学习代数的关键。

在这篇文章中,我们将探讨一些代数式的值练习题,帮助读者更好地理解和掌握这一概念。

1. 求值练习题:(1) 已知a = 2,求代数式3a - 5的值。

解析:将a的值代入代数式中,得到3 * 2 - 5 = 6 - 5 = 1。

所以代数式3a - 5的值为1。

(2) 已知b = -3,求代数式2b^2 + 5b的值。

解析:将b的值代入代数式中,得到2 * (-3)^2 + 5 * (-3) = 2 * 9 - 15 = 18 - 15 = 3。

所以代数式2b^2 + 5b的值为3。

2. 求解方程练习题:(1) 求解方程2x + 3 = 9。

解析:首先将方程转化为代数式形式,得到2x + 3 - 9 = 0。

化简得到2x - 6 = 0。

然后移项得到2x = 6。

最后除以系数2,得到x = 3。

所以方程2x + 3 = 9的解为x = 3。

(2) 求解方程x^2 + 5x + 6 = 0。

解析:首先尝试因式分解,得到(x + 2)(x + 3) = 0。

根据乘积为零的性质,可以得到x + 2 = 0或者x + 3 = 0。

解得x = -2或者x = -3。

所以方程x^2 + 5x + 6 = 0的解为x = -2或者x = -3。

3. 运用代数式的值解决实际问题练习题:(1) 一个长方形的长是x + 3,宽是2x - 1,求其面积。

解析:长方形的面积等于长乘以宽,即(x + 3)(2x - 1)。

将代数式展开得到2x^2 + 5x - 3。

所以该长方形的面积为2x^2 + 5x - 3。

(2) 一个正方形的边长是2a + 1,求其周长。

解析:正方形的周长等于4倍边长,即4(2a + 1)。

将代数式展开得到8a + 4。

所以该正方形的周长为8a + 4。

通过以上的练习题,我们可以看到代数式的值在数学中扮演着重要的角色。

代数式以及代数式求值

代数式以及代数式求值

代数式以及代数式求值例题讲解:1.用字母表示数时,下面的式子符合书写要求的是( )A.3abB.y x 2513C.4ab D.12÷x 千克 2.在式子()xx a a y a y x 1,2,25,312,105,0,43,13++=++〈+-中,代数式有( ) A. 9个 B. 8 个 C. 7 个 D. 6个3.代数式1+b a 的意义是 ( ) A. a 除以b 加1 B. b 加1 除a C. b 与1的和除以aD. a 除以b 与1的和所得的商4.已知代数式()时,当1,24352=+++x dx x cx bx ax x 值为1,那当x=-1该代数式的值是( ) A. 1 B. -1 C. 0 D. 25.如果a 表示实数,那么a 的相反数表示为;a 的绝对值表示为;a 的倒数表示为;比a 大10%的数表示为;a 的相反数的平方与(-8)的差表示为6.已知代数式6432+-x x 的值为9.则代数式6342+-x x 的值为。

7.已知35,0152--=--m m m m 则的值为 。

8.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a 元后,再次下调20%,现在的收费标准是每分钟b 元,则元收费标准为9.已知的值求2221125a 2,013a a a a ++--=+- 10.已知的值)()(求b a b a b a b a b a +-+=-+3b -a -2,7 11.某市的出租车收费标准为;在3km 及以内收费a 元,之后每增加1km 加收b 元,如果某人乘坐出租车收费20元(a<20),求这个人乘坐出租车的路程为?若某人一共坐了m km ,则共付车费元?12.观察下列数的规律并填空:0,3,8,15,24...则它的2014个数是 第n 个数是(用含正整数n 的式子表示)13.一个三位数,它的十位上的数字是百位上数字的3倍,个位上的数字是百位上的数字的2倍,设这个三位数个位上的数字是x ,十位上的数字为y ,百位上的数字为z.(1)含x,y,z 的代数式表示这个三位数: ;(2)用含z 的代数式表示这个三位数: ;(3)写出所有满足题目条件的三位数.课堂练习以及课后作业1.用字母表示数,下列符合书写要求的是( )A.4xyB.x 211-C.y x 241 D.2÷xy 2.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价为( )A.aB.0.99aC.1.21aD.0.81a3. 下列叙述正确的是 ( )A. 5不是代数式B. 单独一个字母不是代数式C. X 的5倍与y 的41的差可表示为y x 41-5 D. 2r S π=是代数式 4.有下列式子:a x x a 、、、、、06-5yx 3121128<+=++,其中代数式有个 5.已知代数式221514x x -+的值是-9,则5462+-x 的值是 .6.已知 bc b a bc b bc a 543,62,142222-+-=-=+则= .7.已知444613256023,38422222-++=+=+n mn m n mn mn m ,那么的值为。

八年级数学上册综合算式专项练习题代数式求值

八年级数学上册综合算式专项练习题代数式求值

八年级数学上册综合算式专项练习题代数式求值在八年级数学上册中,综合算式是一个重要的考点。

其中,代数式求值是其中一种能力的重要体现。

本文将针对八年级数学上册综合算式专项练习题中的代数式求值问题展开论述,帮助学生更好地掌握这一知识点。

一、问题类型简介在八年级数学上册综合算式专项练习题中,代数式求值问题可以分为以下几个常见类型:1.一次代数式的求值2.二次代数式的求值3.分式代数式的求值4.根式代数式的求值以下将分别对这些类型进行详细阐述。

二、一次代数式的求值一次代数式的求值是指给定一个一次代数式,根据给定的变量值计算出式子的值。

例如,给定一个代数式为3x+4,当x取2时,要求计算出代数式的值。

在解决这类问题时,可以采用代入法,即将给定的变量值代入到代数式中,然后进行简单的计算求值。

例如,对于代数式3x+4,当x=2时,可以将x的值代入到代数式中,得到3*2+4=10。

因此,代数式的值为10。

三、二次代数式的求值二次代数式的求值是指给定一个二次代数式,根据给定的变量值计算出式子的值。

例如,给定一个代数式为2x^2+3x+1,当x取3时,要求计算出代数式的值。

在解决这类问题时,同样可以采用代入法。

将给定的变量值代入到二次代数式中,然后进行计算求值。

例如,对于代数式2x^2+3x+1,当x=3时,可以将x的值代入到代数式中,得到2*3^2+3*3+1=28。

因此,代数式的值为28。

四、分式代数式的求值分式代数式的求值是指给定一个分式代数式,根据给定的变量值计算出式子的值。

例如,给定一个代数式为(2x+3)/(x-1),当x取5时,要求计算出代数式的值。

在解决这类问题时,可以先计算分子和分母的值,然后再进行除法操作。

例如,对于代数式(2x+3)/(x-1),当x=5时,首先计算分子的值,即2*5+3=13,然后计算分母的值,即5-1=4。

最后进行除法操作,得到13/4=3.25。

因此,代数式的值为3.25。

八年级数学上册综合算式专项练习题代数式的简化与求值

八年级数学上册综合算式专项练习题代数式的简化与求值

八年级数学上册综合算式专项练习题代数式的简化与求值数学是一门基础学科,也是学生们非常重要的学科之一。

在八年级上册的数学课本中,综合算式是一个重要的知识点。

本文将主要讨论综合算式中的代数式的简化与求值问题。

一、代数式的简化代数式是由数字、字母、运算符号和括号组成的表达式。

简化代数式就是将一个复杂的代数式化简成一个简单的代数式。

简化代数式的关键是运用运算法则和代数性质。

1. 合并同类项合并同类项是将具有相同字母部分的项合并在一起。

例如,将3x + 2x中的同类项合并得到5x。

2. 拆分多项式拆分多项式是将多项式按照一定的规则进行分解。

例如,将2x^2 + 3x + 1拆分成x(2x + 3) + 1。

3. 提取公因数提取公因数是将一个代数式中的公因数提取出来。

例如,将2x^2 + 4x拆分成2x(x + 2)。

4. 乘法分配律乘法分配律是将一个代数式中的乘法运算进行分配。

例如,将2(x +2)拆分为2x + 4。

二、代数式的求值代数式的求值是指给代数式中的字母赋予具体的数值,计算出代数式的结果。

求值可以通过代入法或计算方法进行。

1. 代入法代入法是将代数式中的字母用具体的数值替代,然后根据数值进行计算。

例如,求值表达式2x^2 - 3x + 1在x = 2时的值,即代入x = 2,得到2(2)^2 - 3(2) + 1 = 9。

2. 计算方法除了代入法,还可以通过计算方法直接求得代数式的值。

例如,求解2x^2 - 3x + 1,在不代入具体数值的情况下,我们可以应用一些数学性质进行计算。

三、综合算式专项练习题为了帮助同学们更好地掌握代数式的简化与求值,以下是一些综合算式专项练习题。

通过解题,可以巩固所学的知识,并提高解决实际问题的能力。

1. 题目一:将代数式2a^2 + 3ab - 4b^2 - 2a + 3b - 1进行简化。

解答:首先合并同类项,得到2a^2 - 4b^2 + 3ab - 2a + 3b - 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章:用字母表示数 代数式意义与代数式求值专题练习一
一、精心选一选
1、某班数学兴趣小组共有a 人,其中女生占30%,那么男生人数是( )
A .30%a
B .(1-30%)a
C .
D .
2、百利商店进一批电脑,进货价为a 元,加上20%的利润后优惠8%出售,则出售价为( ) A .(20%+8%)a B .(1+20%)a·8%
C .(1+20%)(1-8%)a
D .(1+20%)a -8%
3、下列各式: (1)(2)a·30 (3)20%xy (4)a -b +c (5) (6)t -2℃ 其中符合代数式书写要求的个数有( )
A .5个
B .4个
C .3个
D .2个
4、关于代数式a 2-5b 2的意义,下列说法中正确的是( )
A .a 与5b 的平方差
B .a 的平方减5乘以b 的平方
C .a 的平方与b 的平方的5倍的差
D .a 与5b 的差的平方
5、用代数式表示“比x 的平方的少5的数”是( )
A .x 2+5
B .5-x 2
C .x 2-5
D .x 2-5×
6、下列去括号错误的共有( )
① a +(b +c)=ab +c ;② a -(b +c -d)=a -b -c +d ;③ a +2(b -c)=a +2b -c ;
④ a 2-[-(-a +b)]=a 2-a +b
A .1个
B .2个
C .3个
D .4个
7、a +b -c 的相反数是( )
A .c -a -b
B .-a +b -c
C .a +b +c
D .a -b +c
8、上等米每千克售价为x 元,次等米每千克售价为y 元,取上等米a 千克和次等米b 千克,混合后的大米每千克售价为( )
A 、 a b x y
++ B 、ax by ab + C 、ax by a b ++ D 、x y 2+ 9、若a>0,b<0时,化简|5-2b|-|2a -3b|+|b -2a|的结果是( )
A .5
B .5-4b
C .5+2b
D .5-4a +2b
10、已知a>0,b>0,c<0,d<0,则下列各式中值最大的是( )
A .a -(b +c -d)
B .a -(b -c +d)
C .a -(-b +c +d)
D .a +(b -c +d)
11、已知,则等于( ). (A ) (B )1 (C ) (D )0 12、a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( ). 3=x y x y x -3343
2
(A ) (B ) (C ) (D )
二、耐心填一填
1、一个三位数的百位上的数字为a ,十位上比百位上的数字多1,个位上的数字比十位上的数字多1,
则这个三位数为___________.
2、某市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每用户用水不超过12吨,按每吨
a 元收费;若超过12吨,则超过部分按每吨2a 元收费,没超过部分仍按每吨a 元收费,如果某用户9月份用水20吨,则应缴纳水费为___________元.
3、一个学生由于粗心,在计算35-a 的值时,误将“-”看成了“+”,结果是60,则35-a 的值应为
___________.
4、若x +3=7-y ,a 、b 互为倒数,则的值为___________.
5、 已知-4<x<2,则5-|x -2|+|x +4|=__________.
6、托运行李p 千克(p 为整数)的费用为c (元).已知托运第一个1千克需付2元,以后每增加1
千克(不足1千克按1千克计)需加费用5角,则用含p 的代数式表示托运行李费用c 的表达式是__________.
7、下列每个图是若干盒花组成的形如三角形的图案,每条边(包括三个顶点)有n (n>1)盒花,每
个图案花盒的总数是S.
(1)当n=9时,S=__________; (2)按此规律推断,S 与n 的关系是__________.
三、认真答一答
1、如图所示,
试化简:︱b-c ︱-︱a-b ︱+︱a+c ︱(6分)
3、(10分)已知a +1=b +2=c +3,求代数式(a -b)2+(b -c)2+(a -c)2的值.
4、(10分)设a 2+a -1=0,求2a 3+4a 2+1998的值.
5、(10分)三个队植树,第一队植树x 棵,第二队植的树比第一队植树的2倍少25棵,第三队植
的树比第一队植树的一半多42棵,三个队共植树多少棵?当x=100时,三个队共植树多少棵? a b +a b +10a b +100a b +1000。

相关文档
最新文档