2018届高考数学二轮复习不等式与线性规划学案含答案(全国通用)

合集下载

高考数学文(二轮复习)课件《不等式与线性规划》

高考数学文(二轮复习)课件《不等式与线性规划》

2.解不等式的四种策略 (1) 解一元二次不等式的策略:先化为一般形式 ax2 + bx + c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二 次不等式的解集. (2)解简单的分式不等式的策略:将不等式一边化为 0,再将 不等式等价转化为整式不等式(组)求解. (3)解含指、对数不等式的策略:利用指、对数函数的单调性 将其转化为整式不等式求解. (4)解含参数不等式的策略:根据题意确定参数分类的标准, 依次讨论求解.
2.(2014· 全国新课标Ⅱ)设集合 M={0,1,2},N={x|x2-3x+ 2≤0},则 M∩N=( A.{1} C.{0,1} ) B.{2} D.{1,2}
答案:D
解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又 M={0,1,2}, 所以 M∩N={1,2}.故选 D.
基础记忆
试做真题
基础要记牢,真题须做熟
基础知识不“背死” ,就不能“用活” ! 1.牢记四类不等式的解法 (1)一元二次不等式的解法. 先化为一般形式 ax2+bx+c>0(a≠0),再求相应一元二次方 程 ax2+bx+c=0(a≠0)的根, 最后根据相应二次函数图象与 x 轴 的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法.
a+b 2 (4)ab≤ 2 (a,b∈R).
(5)
a2+b2 a+b ≥ ≥ ab(a>0,b>0). 2 2
3.快速判断二元一次不等式表示的平面区域
不等式 B>0 Ax+By+ C>0 Ax+By+ C<0
区域 B<0
直线 Ax+By 直线 Ax+By+ +C=0 上方 C=0 下方
不等式与线性规划

高考数学二轮复习不等式

高考数学二轮复习不等式

(2)(2022·新高考全国Ⅱ改编)若x,y满足x2+y2-xy=1,则下列结论正确 的是__②__③____.(填序号) ①x+y≤1;②x+y≥-2;③x2+y2≤2;④x2+y2≥1.
由x2+y2-xy=1可变形为(x+y)2-1=3xy≤3x+2 y2, 解得-2≤x+y≤2, 当且仅当x=y=-1时,x+y=-2, 当且仅当x=y=1时,x+y=2,所以①错误,②正确; 由x2+y2-xy=1可变形为x2+y2-1=xy≤x2+2 y2, 解得x2+y2≤2,当且仅当x=y=±1时取等号,所以③正确; x2+y2-xy=1 可变形为x-2y2+34y2=1,
考点二
线性规划
核心提炼
1.截距型:形如z=ax+by,求这类目标函数的最值常将函数z=ax+by转
化为y=-abx+bz
(b≠0),通过求直线的截距
z b
的最值间接求出z的最值.
2.距离型:形如z=(x-a)2+(y-b)2,设动点P(x,y),定点M(a,b),则z
=|PM|2. 3.斜率型:形如z=yx- -ba (x≠a),设动点P(x,y),定点M(a,b),则z=kPM.
作出不等式组2x-3y-6≤0, x+2y+2≥0
表示的平面区域如图
中阴影部分(包括边界)所示,
函数z=(x+1)2+(y+2)2表示可行域内
的点与点(-1,-2)的距离的平方. 由图知, z= x+12+y+22的最小值为点(-1,-2)到直线 x+2y
+2=0 的距离,
即|-1-4+2|=3 5
C.[-1,3]
D.[-3,1]
作出约束条件的可行域,如图阴影部分(含边界)所示,
其中 A(1,0),B(0,1),C(2,3),z=22yx+-11=yx+-1212, 表示定点 M12,-12与可行域内点(x,y)连线的斜率,

2018年全国2卷省份高考模拟理科数学分类汇编--不等式与线性规划 (修复的)

2018年全国2卷省份高考模拟理科数学分类汇编--不等式与线性规划 (修复的)

2018年全国2卷省份高考模拟理科数学分类汇编——不等式与线性规划1. (海南模拟)已知实数,满足,则的最大值是__________.7【答案】7【解析】作出可行域,如图所示:当直线经过点B时,最大,即,故答案为:7点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.2. (海南模拟)已知集合,,则()DA. B. C. D.【答案】D【解析】由题意得:,∴故选:D3.(大庆市模拟)若满足,则的最大值为()A. 2B. 5C. 6D. 7【答案】B【解析】画出,满足约束条件,的平面区域,如图示:由,解得,由可知直线过时,最大,得,故选B.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4. (大庆市模拟)已知是定义在上的奇函数,当时,.若,则的大小关系为()A. B. C. D.【答案】C【解析】∵时,,∴在上单调递减,又∵是定义在上的奇函数,∴在上单调递减,由于,,,,∴的大小关系为,故选C.5.(大庆市模拟)若为奇函数,则的最小值为___.【解析】∵,∴,,,故,,当且仅当时等号成立,即的最小值为,故答案为...................6.(沈阳模拟) 设x y 、满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则12z x y =+的最大值是( )CA .-15B .-9 C.1 D .97.(辽宁实验中学模拟) 若满足约束条件,则的最大值是( )A.B. 0C. 2D. 4【答案】C【解析】作出不等式组对应的平面区域,如图(阴影部分),由图可知平移直线,当直线经过点时,直线的截距最小最大,所以,的最大值为故选C.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.(重庆模拟) 已知实数,x y 满足不等式组20x y x a x y +-≤⎧⎪≥⎨⎪≤⎩,且2z x y =-的最大值是最小值的2倍,则a =( )BA .34B .56 C. 65 D .439. (哈师大附中模拟)设满足约束条件,则的最小值为 .-210. (西北师大附中模拟)已知20350x y x y -≤⎧⎨-+≥⎩,且22x y +-的最大值为log 3a ,则a =.11. (黑龙江模拟)若x ,y 满足30300x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为12-,则k 的值为( )DA .12 B .12- C .14 D .14- 12.(黑龙江模拟)设'()f x 是函数()f x 的导函数,且'()2()()f x f x x R >∈,12f e ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式2(ln )f x x <的解集为( )B A .0,2e ⎛⎫ ⎪⎝⎭ B. C .1,2e e ⎛⎫ ⎪⎝⎭ D.2e ⎛ ⎝13.(黑龙江模拟)设函数()f x 在[1,)+∞上为增函数,(3)0f =,且()(1)g x f x =+为偶函数,则不等式(22)0g x -<的解集为 .(0,2)14.(吉林省实验中学模拟)已知,, B(A )(B )(C )(D )15.(吉林省实验中学模拟)如果实数x 、y 满足关系,则的最小值是 2,x y 21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩z x y =-3log 4.12a =3log 2.72b =a b c >>c a b >>a c b >>b a c >>⎪⎩⎪⎨⎧≥+-≤-≤-+044004y x y x y x 22(2)x y -+16. (呼和浩特模拟)已知实数x ,y 满足条件2221y xx y x ≤⎧⎪+≥⎨⎪≤⎩,则3y x +的最大值为 .1217. (银川一中模拟)已知实数x ,y 满足1,1,0,x y x y x -≤⎧⎪+≤⎨⎪>⎩则22x y x ++的最小值为 .418. (青海四、五、十四中学模拟)已知全集R U =,集合(){}{}13,01lg ≤=≤+=xx B x x A ,则()B AC U⋂等于( )CA. ()()+∞⋃∞-,00,B. ()+∞,0C. (]()+∞⋃-∞-,01,D.()+∞-,1 【解析】C. 全集U R =,集合(){}{}{}|lg 10|10,|31{|0}xA x x x xB x x x =+≤=-<≤=≤=≤,{}|10A B x x ⋂=-<≤.(){}01>-≤=⋂x x x B A C U 或19. (乌鲁木齐模拟)若x ,y 满足4,220,0,x y y x y +≤⎧⎪-+≤⎨⎪≥⎩则2z x y =+的最大值为( )CA .1B .4C .6D . 820.( 重庆七校联盟模拟)设满足,则的最大值是( )AA .16B .8C .4D .20y x ,⎪⎩⎪⎨⎧≤-+≥--≤+-07053013y x y x y x y x z 24-=。

2018年高考数学二轮复习 专题05 不等式与线性规划教学案 理

2018年高考数学二轮复习 专题05 不等式与线性规划教学案 理

专题05 不等式与线性规划与区域有关的面积、距离、参数范围问题及线性规划问题;利用基本不等式求函数最值、运用不等式性质求参数范围、证明不等式是高考热点.2018高考备考时,应切实理解与线性规划有关的概念,要熟练掌握基本不等式求最值的方法,特别注意“拆”“拼”“凑”等技巧方法.要特别加强综合能力的培养,提升运用不等式性质分析、解决问题的能力.1.熟记比较实数大小的依据与基本方法.①作差(商)法;②利用函数的单调性.2.特别注意熟记活用以下不等式的基本性质(1)乘法法则:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;(2)同向可加性:a>b,c>d⇒a+c>b+d;(3)同向可乘性:a>b>0,c>d>0⇒ac>bd;(4)乘方法则:a>b>0⇒a n>b n(n∈N,n≥2);3.熟练应用基本不等式证明不等式与求函数的最值.4.牢记常见类型不等式的解法.(1)一元二次不等式,利用三个二次之间的关系求解.(2)简单分式、高次不等式,关键是熟练进行等价转化.(3)简单指、对不等式利用指、对函数的单调性求解.5.简单线性规划(1)应用特殊点检验法判断二元一次不等式表示的平面区域.(2)简单的线性规划问题解线性规划问题,关键在于根据条件写出线性约束关系式及目标函数,必要时可先做出表格,然后结合线性约束关系式作出可行域,在可行域中求出最优解.考点一 不等式性质及解不等式例1、(1)不等式组⎩⎪⎨⎪⎧x x +>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:基本法:由x (x +2)>0得x >0或x <-2;由|x |<1得-1<x <1,所以不等式组的解集为{x |0<x <1},故选C.答案:C(2)设函数f (x )=ln(1+|x |)-11+x2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,1B.⎝ ⎛⎭⎪⎫-∞,13∪(1,+∞)C.⎝ ⎛⎭⎪⎫-13,13D.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫13,+∞速解法:令x =0,f (x )=f (0)=-1<0.f (2x -1)=f (-1)=ln 2-12=ln 2-ln e >0.不适合f (x )>f (2x -1),排除C. 令x =2,f (x )=f (2)=ln 3-15,f (2x -1)=f (3),由于f (x )=ln(1+|x |)-11+x2在(0,+∞)上为增函数 ∴f (2)<f (3),不适合.排除B 、D ,故选A. 答案:A考点二 基本不等式及应用例2、【2017山东,理7】若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以()221,01,1,log log 1,2a ba b a b ><<∴+= ()12112log a ba ab a a b b b+>+>+⇒+>+ ,所以选B. 【变式探究】(1)若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( ) A .2 B .3 C .4 D .5答案:C(2)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0).当x >0,y >0时,x ⊗y +(2y )⊗x的最小值为________.解析:基本法:x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22yx =2x 2-2y 2+4y 2-x 22xy =x 2+2y 22xy =x 2y +yx,∵x >0,y >0,∴x 2y +yx≥212=2, 当且仅当x 2y =yx,即x =2y 时等号成立,故所求最小值为 2.答案: 2考点三 求线性规划中线性目标函数的最值例3、【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A【解析】x 、y 满足约束条件2+330{2330 30x y x y y -≤-+≥+≥的可行域如图:【变式探究】(1)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:基本法:作出可行域,如图:由z =x +y 得y =-x +z ,当直线y =-x +z 过点A ⎝⎛⎭⎪⎫1,12时,z 取得最大值,z max =1+12=32.速解法:由⎩⎪⎨⎪⎧x -y +1=0x -2y =0得点(-2,-1),则z =-3由⎩⎪⎨⎪⎧ x -y +1=0x +2y -2=0得点(0,1),则z =1 由⎩⎪⎨⎪⎧x -2y =0x +2y -2=0得点⎝ ⎛⎭⎪⎫1,12则z =32. 答案:32(2)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-3解析:基本法:二元一次不等式组表示的平面区域如图所示,其中A ⎝ ⎛⎭⎪⎫a -12,a +12.平移直线x +ay =0,可知在点A ⎝⎛⎭⎪⎫a -12,a +12处,z 取得最小值,答案:B考点四 线性规划的非线性目标函数的最值例4、(1)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是( )A .[1,5]B .[2,6]C .[3,11]D .[3,10]答案:C(2)(2016·高考山东卷)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12解析:基本法:先作出不等式组表示的平面区域,再求目标函数的最大值.作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.答案:C1.【2017北京,理4】若x ,y 满足32x x y y x ≤⎧⎪+≥⎨⎪≤⎩,,, 则x + 2y 的最大值为(A )1 (B )3 (C )5 (D )9 【答案】D【解析】如图,画出可行域,2.【2017浙江,4】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则y x z 2+=的取值范围是A .[0,6]B .[0,4]C .[6,)∞+D .[4,)∞+【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .3.【2017山东,理7】若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B4.【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A【解析】x 、y 满足约束条件2+330{2330 30x y x y y -≤-+≥+≥的可行域如图:z =2x +y 经过可行域的A 时,目标函数取得最小值,y由3{2330y x y =--+= 解得A (−6,−3),则z =2x +y 的最小值是:−15. 故选:A.5.【2017山东,理4】已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6 【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C.6.【2017天津,理2】设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y=+的最大值为(A )23 (B )1(C )32(D )3 【答案】D1. 【2016高考新课标1卷】若101a b c >><<,,则( )(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c < 【答案】C【解析】用特殊值法,令3a =,2b =,12c =得112232>,选项A 错误,11223223⨯>⨯,选项B 错误,2313log 2log 22<,选项C 正确,3211log log 22>,选项D 错误,故选C . 2.【2016高考天津理数】设变量x ,y 满足约束条件20,2360,3290.x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩则目标函数25z x y =+的最小值为( )(A )4- (B )6 (C )10 (D )17【答案】B【解析】可行域为一个三角形ABC 及其内部,其中(0,2),(3,0),(1,3)A B C ,直线z 25x y =+过点B 时取最小值6,选B.3.【2016高考山东理数】若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12【答案】C4.【2016高考浙江理数】在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │=( ) A .2 B .4 C .3D .6【答案】C【解析】如图∆PQR 为线性区域,区域内的点在直线20x y +-=上的投影构成了线段''R Q ,即AB ,而''=R Q PQ ,由3400-+=⎧⎨+=⎩x y x y 得(1,1)-Q ,由20=⎧⎨+=⎩x x y 得(2,2)-R,===AB QR .故选C .5.【2016年高考北京理数】若x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值为( )A.0B.3C.4D.5 【答案】C6.【2016年高考四川理数】设p :实数x ,y 满足22(1)(1)2x y -+-≤,q :实数x ,y满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件【答案】A【解析】画出可行域(如图所示),可知命题q 中不等式组表示的平面区域ABC ∆在命题p 中不等式表示的圆盘内,故选A.7.【2016高考新课标3理数】若,x y 满足约束条件1020220x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩则z x y =+的最大值为_____________.【答案】328.【2016高考新课标1卷】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时.生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000【解析】设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元,那么1.50.5150,0.390,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩……………① 目标函数2100900z x y =+. 二元一次不等式组①等价于3300,103900,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩?…………② 作出二元一次不等式组②表示的平面区域(如图),即可行域.9.【2016高考江苏卷】已知实数,x y满足240220330x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩,则22x y+的取值范围是▲ .【答案】4 [,13] 51.【2015高考北京,理2】若x,y满足1x yx yx-⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y=+的最大值为()A.0 B.1 C.32D.2【答案】D【解析】如图,先画出可行域,由于2z x y =+,则1122y x z =-+,令0Z =,作直线12y x =-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取得最小值2.2.【2015高考广东,理6】若变量,满足约束条件则的最小值为( )A . B. 6 C. D. 4【答案】C【解析】不等式组对应的平面区域如图:由z=3x+2y 得y=﹣x+,平移直线y=﹣x+,则由图象可知当直线y=﹣x+,经过点A 时直线y=﹣x+的截距最小, 此时z 最小,由,解得,即A (1,),此时z=3×1+2×=,故选:B .x y ⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x y x z 23+=5315233.【2015高考天津,理2】设变量,x y满足约束条件2030230xx yx y+≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y=+的最大值为( )(A)3 (B)4 (C)18 (D)40【答案】C4.【2015高考陕西,理10】某企业生产甲、乙两种产品均需用A,B两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元 B.16万元 C.17万元 D.18万元【答案】D当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,故选D .5.【2015高考福建,理5】若变量,x y 满足约束条件20,0,220,x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩则2z x y =- 的最小值等于 ( )A .52-B .2-C .32- D .2 【答案】AxyBOA6.【2015高考山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a = ( )(A )3 (B )2 (C )-2 (D )-3【答案】B【解析】不等式组020x y x y y -≥⎧⎪+≤⎨⎪≥⎩在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y =+的最大值为4,则最优解可能为1,1x y == 或2,0x y == ,经检验,2,0x y ==是最优解,此时2a = ;1,1x y ==不是最优解.故选B.7.【2015高考新课标1,理15】若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则y x 的最大值为 .【答案】3【解析】作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故yx的最大值为3.8.【2015高考浙江,理14】若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 . 【答案】3.9.【2015高考新课标2,理14】若x,y满足约束条件1020,220,x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y=+的最大值为____________.【答案】3 2【考点定位】线性规划.xy–1–2–3–41234–1–2–3–41234DCBO10.【2015高考湖南,理4】若变量x ,y 满足约束条件1211x y x y y +≥-⎧⎪-≤⎨⎪≤⎩,则3z x y =-的最小值为( )A.-7B.-1C.1D.2 【答案】A.【解析】如下图所示,画出线性约束条件所表示的区域,即可行域,作直线l :30x y -=,平移l ,从而可知当2-=x ,1=y 时,min 3(2)17z =⨯--=-的最小值是7-,故选A.11.【2015高考四川,理9】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B12.【2015高考陕西,理9】设()ln ,0f x x a b =<<,若p f =,()2a bq f +=,1(()())2r f a f b =+,则下列关系式中正确的是( ) A .q r p =< B .q r p => C .p r q =<D .p r q =>【答案】C【解析】ln p f ==,()ln22a b a bq f ++==,11(()())ln 22r f a f b ab =+==()ln f x x =在()0,+∞上单调递增,因为2a b +>,所以()2a bf f +>,所以q p r >=,故选C . 1. 【2014高考安徽卷理第5题】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一...,则实数a 的值为( ) A,121-或 B.212或 C.2或1 D.12-或 【答案】D【考点定位】线性规划2. 【2014高考北京版理第6题】若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12D .12- 【答案】D【解析】若0≥k ,x y z -=没有最小值,不合题意;【考点定位】不等式组表示的平面区域,求目标函数的最小值3. 【2014高考福建卷第11题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则yx z +=3的最小值为________.x【答案】1【解析】依题意如图可得目标函数过点A 时截距最大.即min 1z =. 【考点定位】线性规划.4. 【2014高考福建卷第13题】要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元).【答案】88【解析】假设底面长方形的长宽分别为x ,4x. 则该容器的最低总造价是808020160y x x=++≥.当且仅当2x =的时区到最小值. 【考点定位】函数的最值.5. 【2014高考广东卷理第3题】若变量x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y=+的最大值和最小值分别为M 和m ,则M m -=( )A.8B.7C.6D.5 【答案】C【解析】作出不等式组11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩所表示的可行域如下图中的阴影部分所表示,Bl:z=2x+yOyx Ay=-1x+y=1y=x【考点定位】线性规划中线性目标函数的最值6. 【2014高考湖南卷第14题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤k y y x x y 4,且y x z +=2的最小值为6-,则____=k .【答案】2-【考点定位】线性规划7. 【2014辽宁高考理第16题】对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 . 【答案】2-【解析】法一:判别式法:令2a b t +=,则2b t a =-,代入到224240a ab b c -+-=中,得()()22422420a a t a t a c --+--=,即22241840a ta t c -+-=……①因为关于a 的二次方程①有实根,所以()2221842440t t c ∆=-⨯-≥,可得285ct ≤, 2a b +取最大值时,a b ⎧=⎪⎪⎨⎪=⎪⎩或a b ⎧=⎪⎪⎨⎪=⎪⎩,当a b ⎧=⎪⎪⎨⎪=⎪⎩时,22345522a b c c -+==-=-≥-,当a b ⎧=⎪⎪⎨⎪=⎪⎩时,345550a b c c c -+==>,综上可知当531,,242c a b ===时,min3452a b c ⎛⎫-+=- ⎪⎝⎭【考点定位】柯西不等式.8. 【2014全国1高考理第9题】不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是( )A .23,p pB .12,p pC .13,p pD .14,p p 【答案】Bxy –1–2–3–41234–1–2–3–41234OA【考点定位】线性规划、存在量词和全称量词.10. 【2014山东高考理第5题】已知实数y x ,满足)10(<<<a a a yx,则下面关系是恒成立的是( )A.111122+>+y x B.)1ln()1(ln 22+>+y x C.y x sin sin > D.33y x > 【答案】D【解析】由(01)xya a a <<<及指数函数的性质得,,x y >所以,33x y >,选D . 【考点定位】指数函数的性质,不等式的性质.11. 【2014山东高考理第9题】 已知,x y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值22a b +的最小值为( )D.2 【答案】B【解析】画出可行域(如图所示),由于0,0a b >>,所以,ax by z +=经过直线230x y --=与直【考点定位】简单线性规划的应用,二次函数的图象和性质.12. 【2014四川高考理第4题】若0a b >>,0x d <<,则一定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c< 4.若0a b >>,0c d <<,则一定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c< 【答案】D 【解析】110,0,0c d c d d c<<∴->->->->,又0,0,a b a ba b d c d c>>∴->->∴<.选D 【考点定位】不等式的基本性质.13. 【2014四川高考理第5题】执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为( )A .0B .1C .2D .3240,10,1,y y -≤-≤时,14ax y ≤+≤【解析】作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域,由14ax y ≤+≤得,由图可知,a≥,且在()1,0点取得最小值在()2,1取得最大值,故1a≥,214a+≤,故a取值范围为31,2⎡⎤⎢⎥⎣⎦.【考点定位】线性规划.15. 【2014天津高考理第2题】设变量x,y满足约束条件0,20,12,yx yyx+-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y=+的最小值为()最大值为 .【答案】5.【答案】【解析】222x y +≥==,当且仅当222x y =时等号成立. 【考点定位】基本不等式.18.【2014高考安徽卷第21题】设实数0>c ,整数1>p , *N n ∈. (1)证明:当1->x 且0≠x 时,px x p+>+1)1(;(2)数列{}n a 满足pc a 11>,p n n n a pc a p p a -++-=111,证明:p n n c a a 11>>+.【答案】(1)证明:当1->x 且0≠x 时,px x p+>+1)1(;(2)pn n c a a 11>>+.【解析】(1)证明:用数学归纳法证明 ①当2p =时,22(1)1212x x x x +=++>+,原不等式成立.②假设(2,*)p k k k N =≥∈时,不等式(1)1k x kx +>+成立.当1p k =+时,12(1)(1)(1)(1)(1)1(1)1(1)k k x x x x kx k x kx k x ++=++>++=+++>++所以1p k =+时,原不等式也成立.综合①②可得,当1->x 且0≠x 时,对一切整数1p >,不等式px x p +>+1)1(均成立.再由111(1)n p n n a ca p a +=+-可得11n na a +<,即1n n a a +<. 综上所述,11,*pn n a a c n N +>>∈.证法2:设111(),p p p cf x x x x c p p --=+≥,则p x c ≥,并且111'()(1)(1)0,p p p p c p cf x p x x c p p p x---=+-=->>.由此可得,()f x 在1[,)pc +∞上单调递增,因而,当1p x c >时,11()()p pf x f c c >=.①当1n =时,由110pa c >>,即1p a c >可知121111111[1(1)]p p p c c a a a a a p p p a --=+=+-<,并且121()p a f a c =>,从而112pa a c >>.故当1n =时,不等式11pn n a a c +>>成立.②假设(1,*)n k kk N =≥∈时,不等式11pk k a a c+>>成立,则当1n k =+时,11()()()pk k f a f a f c +>>,即有112pk k a a c ++>>.所以当1n k=+时,原不等式也成立.综合①②可得,对一切正整数n ,不等式11pnn a a c +>>均成立.【考点定位】数学归纳法证明不等式、构造函数法证明不等式.1.若点A (a ,b )在第一象限且在直线x +2y =4上移动,则log 2a +log 2b ( ) A .有最大值2 B .有最小值1 C .有最大值1 D .没有最大值和最小值解析:基本法:由题意,知a +2b =4(a >0,b >0),则有4=a +2b ≥22ab ,当且仅当a =2b ,即a =2,b =1时等号成立,所以0<ab ≤2,所以log 2a +log 2b =log 2ab ≤log 22=1,故选C.答案:C2.若2x+2y=1,则x +y 的取值范围是( ) A .[0,2] B .[-2,0]C .[-2,+∞) D.(-∞,-2]答案:D3.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]解析:基本法:如图所示,不等式组表示的平面区域是△ABC 内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4],故选B.答案:B4.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1x +1≥0x -y ≤1,则目标函数z =yx +2的取值范围为( )A .[-3,3]B .[-3,-2]C .[-2,2]D .[2,3]解析:基本法:(特殊点数形结合法)根据yx +2的几何意义,观察图形中点的位置作可行域如图阴影部分所示yx +2=y -0x --表示点(x ,y )与点(-2,0)连线的斜率.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解析:结合题意分段求解,再取并集. 当x <1时,x -1<0,ex -1<e 0=1≤2,∴当x <1时满足f (x )≤2. 当x ≥1时,x 13≤2,x ≤23=8,∴1≤x ≤8.综上可知x ∈(-∞,8]. 答案:(-∞,8]6.已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为________.速解法:数形结合作出y 1=x 2-4x 与y 2=x 的图象使y 1的图象在y 2图象的上部所对应的x 的范围.设y 1=f (x )=x 2-4x ,y 2=x (x >0). 令y 1=y 2,∴x 2-4x =x ,∴x =0或x =5. 作y 1=f (x )及y 2=x 的图象,则A (5,5),由于y 1=f (x )及y 2=x 都是奇函数,作它们关于(0,0)的对称图象,则B (-5,-5),由图象可看出当f (x )>x 时,x ∈(5,+∞)及(-5,0).答案:(-5,0)∪(5,+∞)7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y +1≤0,2x -y +2≥0.则z =3x +y 的最大值为________.解析:基本法:画出可行域,并分析z 的几何意义,平移直线y =-3x 求解. 画出可行域如图所示.∵z =3x +y , ∴y =-3x +z .∴直线y =-3x +z 在y 轴上截距最大时,即直线过点B 时,z 取得最大值.答案:4百度文库是百度发布的供网友在线分享文档的平台。

2018届二轮复习 高考第Ⅰ卷得分方略——同分异构体的数目及判断 教案(全国通用)

2018届二轮复习 高考第Ⅰ卷得分方略——同分异构体的数目及判断 教案(全国通用)

高频考点9同分异构体的数目及判断[考点概述]同分异构体数目的判断一直是新课标高考的必考题型,主要考查限定条件的同分异构体数目的判断,近年来有将同分异构体数目的确定与物质的性质结合起来考查,难度有所增加。

判断常见烃基的同分异构体的数目的方法:同分异构体的判断要牢牢抓住“等效氢”的概念进行判断。

判断方法是同一个碳原子上的氢原子被取代是等效的,判断烃基的同分异构体时可利用对应烃的等效氢进行判断,如丙烷有两种类型的氢原子,所以丙基有两种结构,同理丁基有4种,苯环上的氢原子被两个取代基取代时有三种结构,被相同的三个取代基取代时有三种结构。

[典题剖析]例1分子式为C5H10O2并能与饱和NaHCO3溶液反应放出气体的有机物有(不含立体异构)()A.3种B.4种C.5种D.6种【解析】分子式为C5H10O2并能与饱和NaHCO3溶液反应放出气体的有机物属于羧酸,其官能团为—COOH,将该有机物看作C4H9—COOH,而丁基(C4H9—)有4种不同的结构,分别为CH3CH2CH2CH2—、(CH3)2CHCH2—、(CH3)3C—、,从而推知该有机物有4种不同的分子结构。

【答案】 B例2下列化合物中同分异构体数目最少的是()A.戊烷B.戊醇C.戊烯D.乙酸乙酯【解析】A.戊烷有3种同分异构体:CH3CH2CH2CH2CH3、(CH3)2CHCH2CH3和(CH3)4C。

B.戊醇可看作C5H11—OH,而戊基(—C5H11)有8种结构,则戊醇也有8种结构,属于醚的还有6种。

C.戊烯的分子式为C5H10,属于烯烃类的同分异构体有5种:CH2===CHCH2CH2CH3、CH3CH===CHCH2CH3、CH2===C(CH3)CH2CH3、CH2===CHCH(CH3)2、,属于环烷烃的同分异构体有4种:、、、。

D.乙酸乙酯的分子式为C4H8O2,其同分异构体有6种:HCOOCH2CH2CH3、HCOOCH(CH3)2、CH3COOCH2CH3、CH3CH2COOCH3、CH3CH2CH2COOH、(CH3)2CHCOOH。

2018年浙江高考数学二轮复习练习:第2部分 必考补充专题 专题限时集训18 不等式与线性规划(含答案)

2018年浙江高考数学二轮复习练习:第2部分 必考补充专题 专题限时集训18 不等式与线性规划(含答案)

专题限时集训(十八) 不等式与线性规划(对应学生用书第153页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、基本不等式1.已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16B [由a +b =1a +1b,有ab =1,则1a +2b≥21a ×2b=2 2.]2.(2017·温州九校协作体高三期末联考)已知实数x >0,y >0,且满足x +y =1,则2x +xy的最小值为________.2+22 [因为x +y =1,所以2x +x y =2x +2y x +x y =2+2y x +xy≥2+22,当且仅当⎩⎪⎨⎪⎧2y x =x y ,x +y =1,即x =2-2,y =2-1时等号成立.]3.(2014·浙江高考)已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.63[因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63. 所以a max =63.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (f (-2))=________,f (x )的最小值是________.-12 26-6 [f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )min =0; 当x >1时,f (x )=x +6x-6.令f ′(x )=1-6x2=0,解得x =6(负值舍去).当1<x <6时,f ′(x )<0;当x >6时,f ′(x )>0, ∴f (x )的最小值为f (6)=6+66-6=26-6.综上,f (x )的最小值是26-6.] 二、线性规划问题5.(2017·浙江高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)D [作出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =-12x +z2过点A (2,1)时,z 取得最小值,即z min =2+2×1=4.所以z=x +2y 的取值范围是[4,+∞). 故选D.]6.(2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12C [作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.]7.(2016·浙江高考)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2 C.322D. 5B [根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 点且斜率为1的两条直线方程为x -y +1=0和x -y -1=0,由两平行线间的距离公式得距离为|1+1|2=2,故选B.]8.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z取得最小值,即z min =2×(-1)+3×(-1)-5=-10.] 9.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.216 000 [设生产A 产品x 件,B 产品y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).]10.(2015·浙江高考)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________.3 [满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部.f (x ,y )=|2x +y -2|+|6-x -3y |=|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2.直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝ ⎛⎭⎪⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x 和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.][B 组 “8+7”模拟题提速练]一、选择题1.已知a <b <0,则下列不等式成立的是( ) A .a 2<b 2B.a b<1 C .a <1-bD.1a <1bC [因为a <b <0,所以a 2>b 2,a b >1,1a >1b,a +b <1. 因此A ,B ,D 不正确,C 正确.]2.已知P (x ,y )为区域⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 内的任意一点,当该区域的面积为4时,z =2x -y 的最大值是( ) A .6 B .0 C .2 D .2 2A [由⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a作出可行域如图,易求得A (a ,-a ),B (a ,a ),由题意知S △OAB =12·2a ·a =4,得a =2.∴A (2,-2),当y =2x -z 过A 点时,z 最大,z max =2×2-(-2)=6.故选A.]3.(2015·浙江高考)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cx D .ay +bx +czB [令x =1,y =2,z =3,a =1,b =2,c =3. A 项:ax +by +cz =1+4+9=14; B 项:az +by +cx =3+4+3=10;C 项:ay +bz +cx =2+6+3=11;D 项:ay +bx +cz =2+2+9=13.故选B.]4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( )A.322B. 5C.92D .5D [作出不等式组对应的平面区域如图,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 最小. 由⎩⎪⎨⎪⎧y =1,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D.]5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥-1,4x +y ≤9,x +y ≤3,若目标函数z =y -mx (m >0)的最大值为1,则m的值是( ) 【导学号:68334156】 A .-209B .1C .2D .5B [作出可行域,如图所示的阴影部分.∵m >0,∴当z =y -mx 经过点A 时,z 取最大值,由⎩⎪⎨⎪⎧x =1,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B.]6.若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形,则其表示的区域面积为( ) A .1或14B.12或18 C .1或12D.12或14D [可行域由三条直线x =0,x +y =0,kx -y +1=0所围成,因为x =0与x +y =0的夹角为π4,所以x =0与kx -y +1=0的夹角为π4或x +y =0与kx -y +1=0的夹角为π4.当x =0与kx -y +1=0的夹角为π4时,可知k =1,此时等腰三角形的直角边长为22,面积为14;当x+y =0与kx -y +1=0的夹角为π4时,k =0,此时等腰三角形的直角边长为1,面积为12,所以选D.]7.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当z xy取得最小值时,x +2y -z 的最大值是( ) A .0 B.98 C .2D.94C [z xy =x 2-3xy +4y 2xy =x y -3+4yx≥2x y ·4y x -3=1,当且仅当x y =4yx,即x =2y 时等号成立. 此时z =x 2-3xy +4y 2=(2y )2-3·2y ·y +4y 2=2y 2.∴x +2y -z =2y +2y -2y 2=-2(y -1)2+2,∴当y =1,x =2,z =2时,x +2y -z 取最大值,最大值为2,故选C.]8.设m >1,x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1,且目标函数z =x +my 的最大值为2,则m 的取值为( ) A .2 B .1+ 2 C .3D .2+ 2B [因为m >1,由约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1作出可行域如图,直线y =mx 与直线x +y =1交于B ⎝ ⎛⎭⎪⎫1m +1,m m +1,目标函数z =x +my 对应的直线与直线y =mx垂直,且在B ⎝⎛⎭⎪⎫1m +1,m m +1处取得最大值,由题意可知1+m2m +1=2,又因为m >1,解得m =1+ 2.] 二、填空题9.(2017·浙江省名校新高考联盟高三第三次联考)过P (-1,1)的光线经x 轴上点A 反射后,经过不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域内某点(记为B ),则|PA |+|AB |的取值范围是________.[22,5] [由题意得点P (-1,1)关于x 轴的对称点为P 1(-1,-1),则|PA |+|PB |的取值范围等价于点P 1(-1,-1)与不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0,y ≥0表示的平面区域内的点的连线的长度的范围,如图,在平面直角坐标系内画出不等式组表示的平面区域(阴影区域,含边界),由图易得点P 1(-1,-1)到直线x +y -2=0的距离最小,最小值为|-1-1-2|12+12=22;点P 1(-1,-1)与点C (2,3)的距离最大,最大值为+2++2=5,所以|PA |+|PB |的取值范围为[22,5].]10.(2017·萧山中学高三仿真模拟)已知实数x ,y 满足|2x +y -2|≥|6-x -3y |且|x |≤4,则|3x -4y |的最大值为________.32 [∵实数x ,y 满足|2x +y -2|≥|6-x -3y |,且|x |≤4,∴⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≥0,x -2y +4≥0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≤0,x +3y -6≤0,x -2y +4≤0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≤0,3x +4y -8≥0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≤0,x +3y -6≥0,3x +4y -8≤0,-4≤x ≤4.∴可行域为如图中阴影部分(含边界)所示,其中A (-4,5),B (-4,0),C (0,2),D (4,4),E (4,-1).设目标函数z =3x -4y ,则当目标函数z =3x -4y 经过A (-4,5)时取得最小值z min =-32;当目标函数z =3x -4y 经过E (4,-1)时取得最大值z max =16,则|z |=|3x -4y |的最大值为32.]11.(2014·浙江高考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a的取值范围是________.⎣⎢⎡⎦⎥⎤1,32 [画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.]12.已知正数a ,b ,c 满足b +c ≥a ,则b c +ca +b的最小值为________.2-12[因为正数a ,b ,c 满足b +c ≥a , 所以b c +c a +b ≥b c +c 2b +c =⎝ ⎛⎭⎪⎫b c +12+c 2b +c -12=2b +c 2c +c 2b +c -12≥2-12. 当且仅当2b +c 2c =c2b +c时取等号.]13.已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >13,则f (e x)>0的解集为________.{x |x <-ln 3} [f (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13, 则由f (e x )>0得-1<e x<13,解得x <-ln 3,即f (e x)>0的解集为{x |x <-ln 3}.]14.(2017·宁波十校高三适应性考试 17)已知a ,b 均为正数,且a +b =1,c >1,则⎝ ⎛⎭⎪⎫a 2+12ab -1·c+2c -1的最小值为________. 3 2 [由题意知,∵a 2+12ab -1=a 2+a +b22ab -1=2a 2+b22ab≥2(当且仅当a =2-1,b =2-2时,等号成立),∴原式≥2c+2c-1=2⎝⎛⎭⎪⎫c-1+1c-1+2≥22+2=32(当且仅当c=2时,等号成立).]15.(2016·舟山调研)若log4(3a+4b)=log2ab,则a+b的最小值是________.7+43[由log4(3a+4b)=log2ab,得3a+4b=ab,且a>0,b>0,∴a=4bb-3,由a>0,得b>3.∴a+b=b+4bb-3=b+b-+12b-3=(b-3)+12b-3+7≥212+7=43+7,即a+b的最小值为7+4 3.]。

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三

高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第四讲 不等式教案 理-人教版高三

第四讲不等式年份卷别考查角度及命题位置命题分析2018Ⅰ卷线性规划求最值·T131.选择、填空题中的考查以简单的线性规划与不等式性质为主,重点求目标函数的最值,有时也与其他知识交汇考查.2.基本不等式求最值及应用在课标卷考试中是低频点,很少考查.3.不等式的解法多与集合、函数、解析几何、导数交汇考查.Ⅱ卷线性规划求最值·T142017Ⅰ卷线性规划求最值·T14Ⅱ卷线性规划求最值·T5Ⅲ卷线性规划求最值·T132016Ⅰ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T8线性规划的实际应用·T16Ⅱ卷一元二次不等式的解法、集合的并集运算·T2Ⅲ卷一元二次不等式的解法、集合的交集运算·T1不等式比较大小、函数的单调性·T6线性规划求最值·T13不等式性质及解法授课提示:对应学生用书第9页[悟通——方法结论]1.一元二次不等式ax2+bx+c>0(或<0)(a≠0,Δ=b2-4ac>0),如果a与ax2+bx+c 同号,那么其解集在两根之外;如果a与ax2+bx+c异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.[全练——快速解答]1.(2018·某某一模)a >b >0,c <0,以下不等关系中正确的是( ) A .ac >bcB .a c>b cC .log a (a -c )>log b (b -c )D.aa -c >bb -c解析:法一:(性质推理法)A 项,因为a >b ,c <0,由不等式的性质可知ac <bc ,故A 不正确;B 项,因为c <0,所以-c >0,又a >b >0,由不等式的性质可得a -c >b -c>0,即1a c >1bc >0,再由反比例函数的性质可得a c <b c,故B 不正确; C 项,假设a =12,b =14,c =-12,那么log a (a -c )=1=0,log b (b -c )=34>1=0,即log a (a -c )<log b (b -c ),故C 不正确;D 项,a a -c -bb -c =a (b -c )-b (a -c )(a -c )(b -c )=c (b -a )(a -c )(b -c ),因为a >b >0,c <0,所以a -c >b -c >0,b -a <0,所以c (b -a )(a -c )(b -c )>0,即a a -c -b b -c>0,所以aa -c >bb -c,故D 正确.综上,选D.法二:(特值验证法)由题意,不妨取a =4,b =2,c =-2. 那么A 项,ac =-8,bc =-4,所以ac <bc ,排除A ; B 项,a c =4-2=116,b c =2-2=14,所以a c <b c,排除B ;C 项,log a (a -c )=log 4(4+2)=log 4 6,log b (b -c )=log 2(2+2)=2,显然log 4 6<2,即log a (a -c )<log b (b -c ),排除C.综上,选D. 答案:D2.(2018·某某四校联考)不等式mx 2+nx -1m <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >2,那么m -n =( )A.12 B .-52C.52D .-1解析:由题意得,x =-12和x =2是方程mx 2+nx -1m =0的两根,所以-12+2=-n m 且-12×2=-1m 2(m <0),解得m =-1,n =32,所以m -n =-52. 答案:B 3.不等式4x -2≤x -2的解集是( ) A .(-∞,0]∪(2,4] B .[0,2)∪[4,+∞) C .[2,4)D .(-∞,2]∪(4,+∞)解析:①当x -2>0,即x >2时,不等式可化为(x -2)2≥4,所以x ≥4;②当x -2<0,即x <2时,不等式可化为(x -2)2≤4,所以0≤x <2.综上,不等式的解集是[0,2)∪[4,+∞).答案:B4.x ∈(-∞,1],不等式1+2x +(a -a 2)·4x>0恒成立,那么实数a 的取值X 围为( ) A.⎝⎛⎭⎪⎫-2,14B.⎝⎛⎦⎥⎤-∞,14C.⎝ ⎛⎭⎪⎫-12,32D.(]-∞,6解析:根据题意,由于1+2x+(a -a 2)·4x >0对于一切的x ∈(-∞,1]恒成立,令2x=t(0<t≤2),那么可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+tt2,故只要求解h (t)=-1+tt 2(0<t≤2)的最大值即可,h (t)=-1t 2-1t =-⎝ ⎛⎭⎪⎫1t +122+14,又1t ≥12,结合二次函数图象知,当1t =12,即t =2时,h (x )取得最大值-34,即a -a 2>-34,所以4a 2-4a -3<0,解得-12<a <32,故实数a 的取值X 围为⎝ ⎛⎭⎪⎫-12,32.答案:C5.设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,那么使得f (x )≤1成立的x 的取值X 围是________.解析:由⎩⎪⎨⎪⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎪⎨⎪⎧x <0,-x 3≤1得-1≤x <0,故使得f (x )≤1成立的x 的取值X 围是[-1,9].答案:[-1,9]1.明确解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. 2.掌握不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a . (2)f (x )>g (x )对一切x ∈I 恒成立⇔f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法,一定要搞清谁是自变量,谁是参数.一般地,知道谁的X 围,谁就是变量,求谁的X 围,谁就是参数.利用分离参数法时,常用到函数单调性、基本不等式等.基本不等式授课提示:对应学生用书第10页[悟通——方法结论]求最值时要注意三点:“一正〞“二定〞“三相等〞.所谓“一正〞指正数,“二定〞是指应用定理求最值时,和或积为定值,“三相等〞是指等号成立.[全练——快速解答]1.(2018·某某模拟)x >0,y >0,且4x +y =xy ,那么x +y 的最小值为( ) A .8B .9 C .12 D .16解析:由4x +y =xy 得4y +1x=1,那么x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx+1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=〞,应选B.答案:B2.(2017·高考某某卷)假设a ,b ∈R ,ab >0,那么a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab=4,当且仅当⎩⎪⎨⎪⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4.答案:43.(2017·高考某某卷)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,那么x 的值是________.解析:由题意,一年购买600x 次,那么总运费与总存储费用之和为600x×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30. 答案:30掌握基本不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:假设无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +Ag (x )+Bg (x )(A >0,B >0),g (x )恒正或恒负的形式,然后运用基本不等式来求最值.简单的线性规划问题授课提示:对应学生用书第10页[悟通——方法结论] 平面区域的确定方法解决线性规划问题首先要找到可行域,再注意目标函数表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.[全练——快速解答]1.(2017·高考全国卷Ⅲ)设x ,y 满足约束条件 ⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,那么z =x -y 的取值X 围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析:作出不等式组表示的可行域如图中阴影部分所示,作出直线l 0:y =x ,平移直线l 0,当直线z =x -y 过点A (2,0)时,z 取得最大值2,当直线z =x -y 过点B (0,3)时,z 取得最小值-3,所以z =x -y 的取值X 围是[-3,2].答案:B2.平面上的单位向量e 1与e 2 的起点均为坐标原点O ,它们的夹角为π3.平面区域D 由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12B. 3C.32D.34解析:建立如下图的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝ ⎛⎭⎪⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎪⎨⎪⎧x =λ+μ2,y =3μ2,即⎩⎪⎨⎪⎧λ=x -3y3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为34,应选D. 答案:D3.(2018·某某模拟)某工厂制作仿古的桌子和椅子,需要木工和漆工两道工序.生产一把椅子需要木工4个工作时,漆工2个工作时;生产一X 桌子需要木工8个工作时,漆工1个工作时.生产一把椅子的利润为1 500元,生产一X 桌子的利润为2 000元.该厂每个月木工最多完成8 000个工作时、漆工最多完成1 300个工作时.根据以上条件,该厂安排生产每个月所能获得的最大利润是________元.解析:设该厂每个月生产x 把椅子,y X 桌子,利润为z 元,那么得约束条件 ⎩⎪⎨⎪⎧4x +8y ≤8 000,2x +y ≤1 300,z =1 500x +2 000y .x ,y ∈N ,画出不等式组⎩⎪⎨⎪⎧x +2y ≤2 000,2x +y ≤1 300,x ≥0,y ≥0表示的可行域如图中阴影部分所示,画出直线3x +4y =0,平移该直线,可知当该直线经过点P 时,z 取得最大值.由⎩⎪⎨⎪⎧x +2y =2 000,2x +y =1 300,得⎩⎪⎨⎪⎧x =200,y =900,即P (200,900),所以z max =1 500×200+2 000×900=2 100 000.故每个月所获得的最大利润为2 100 000元.答案:2 100 000解决线性规划问题的3步骤[练通——即学即用]1.(2018·湘东五校联考)实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,那么(x +5)2+y 2的最小值为( )A .5B .3 C. 5D. 3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y ⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),∵直线y =k 过点A ,∴k =3.(x +5)2+y 2的几何意义是可行域内的点与D(-5,0)的距离的平方,数形结合可知,(-5,0)到直线x +2y =0的距离最小,可得(x +5)2+y 2的最小值为⎝⎛⎭⎪⎫|-5+2×0|12+222=5.应选A. 答案:A2.变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,2x +y ≤1,记z =4x +y 的最大值是a ,那么a =________.解析:如下图,变量x ,y 满足的约束条件的可行域如图中阴影部分所示.作出直线4x +y =0,平移直线,知当直线经过点A 时,z取得最大值,由⎩⎪⎨⎪⎧2x +y =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,所以A (1,-1),此时z =4×1-1=3,故a =3.答案:33.(2018·高考全国卷Ⅰ)假设x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,那么z =3x +2y 的最大值为________.解析:作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max=3×2+2×0=6.答案:6授课提示:对应学生用书第118页一、选择题1.互不相等的正数a ,b ,c 满足a 2+c 2=2bc ,那么以下等式中可能成立的是( ) A .a >b >c B .b >a >c C .b >c >aD .c >a >b解析:假设a >b >0,那么a 2+c 2>b 2+c 2≥2bc ,不符合条件,排除A ,D ; 又由a 2-c 2=2c (b -c )得a -c 与b -c 同号,排除C ;当b >a >c 时,a 2+c 2=2bc 有可能成立,例如:取a =3,b =5,c =1.应选B. 答案:B2.b >a >0,a +b =1,那么以下不等式中正确的是() A .log 3a >0B .3a -b<13C .log 2a +log 2b <-2D .3⎝ ⎛⎭⎪⎫b a +a b ≥6解析:对于A ,由log 3a >0可得log 3a >log 31,所以a >1,这与b >a >0,a +b =1矛盾,所以A 不正确;对于B ,由3a -b<13可得3a -b <3-1,所以a -b <-1,可得a +1<b ,这与b >a >0,a +b =1矛盾,所以B 不正确;对于C ,由log 2a +log 2b <-2可得log 2(ab )<-2=log 214,所以ab <14,又b >a >0,a +b =1>2ab ,所以ab <14,两者一致,所以C 正确;对于D ,因为b >a >0,a +b =1,所以3⎝ ⎛⎭⎪⎫b a +a b >3×2b a ×ab=6, 所以D 不正确,应选C. 答案:C3.在R 上定义运算:x y =x (1-y ).假设不等式(x -a )(x -b )>0的解集是(2,3),那么a +b =( )A .1B .2C .4D .8解析:由题知(x -a )(x -b )=(x -a )[1-(x -b )]>0,即(x -a )[x -(b +1)]<0,由于该不等式的解集为(2,3),所以方程(x -a )[x -(b +1)]=0的两根之和等于5,即a +b +1=5,故a +b =4.答案:C 4.a ∈R ,不等式x -3x +a≥1的解集为P ,且-2∉P ,那么a 的取值X 围为( ) A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:∵-2∉P ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案:D5.x ,y 满足⎩⎪⎨⎪⎧2x -y ≤0,x -3y +5≥0,x ≥0,y ≥0,那么z =8-x·⎝ ⎛⎭⎪⎫12y 的最小值为( )A .1 B.324C.116D.132解析:不等式组表示的平面区域如图中阴影部分所示,而z =8-x·⎝ ⎛⎭⎪⎫12y=2-3x -y,欲使z 最小,只需使-3x -y 最小即可.由图知当x =1,y =2时,-3x -y 的值最小,且-3×1-2=-5,此时2-3x -y最小,最小值为132.应选D.答案:D6.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0,x +6,x <0,那么不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞)B .(-3,1)∪(2,+∞)C .(-1,1)∪(3,+∞)D .(-∞,-3)∪(1,3)解析:由题意得,f (1)=3,所以f (x )>f (1),即f (xx <0时,x +6>3,解得-3<x <0;当x ≥0时,x 2-4x +6>3,解得x >3或0≤x <1.综上,不等式的解集为(-3,1)∪(3,+∞).答案:A7.实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =3x -2y 的最小值为0,那么实数m 等于( )A .4B .3C .6D .5解析:作出不等式组所表示的可行域如图中阴影部分所示,由图可知,当目标函数z =3x -2y 所对应的直线经过点A 时,z 取得最小值0.由⎩⎪⎨⎪⎧y =2x -1,x +y =m ,求得A ⎝ ⎛⎭⎪⎫1+m 3,2m -13.故z 的最小值为3×1+m 3-2×2m -13=-m 3+53,由题意可知-m 3+53=0,解得m =5.答案:D8.假设对任意正实数x ,不等式1x 2+1≤ax恒成立,那么实数a 的最小值为( ) A .1 B. 2 C.12 D.22解析:因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x≤12(当且仅当x =1时取等号),所以a ≥12.答案:C9.(2018·某某一模)实数x ,y 满足条件⎩⎪⎨⎪⎧3x +y +3≥0,2x -y +2≤0,x +2y -4≤0,那么z =x 2+y 2的取值X围为( )A .[1,13]B .[1,4]C.⎣⎢⎡⎦⎥⎤45,13D.⎣⎢⎡⎦⎥⎤45,4解析:画出不等式组表示的平面区域如图中阴影部分所示,由此得z =x 2+y 2的最小值为点O 到直线BC :2x -y +2=0的距离的平方,所以z min =⎝ ⎛⎭⎪⎫252=45,最大值为点O 与点A (-2,3)的距离的平方,所以z max =|OA |2=13,应选C.答案:C10.(2018·某某二模)假设关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),那么x 1+x 2+ax 1x 2的最小值是( ) A.63 B.233 C.433D.263解析:∵关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),∴Δ=16a 2-12a 2=4a 2>0,又x 1+x 2=4a ,x 1x 2=3a 2, ∴x 1+x 2+a x 1x 2=4a +a 3a 2=4a +13a ≥24a ·13a =433,当且仅当a =36时取等号.∴x 1+x 2+a x 1x 2的最小值是433. 答案:C11.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,那么租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元解析:设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,那么约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,x +y ≤21,y -x ≤7,x ,y ∈N ,作出可行域如图中阴影部分所示,可知目标函数过点A (5,12)时,有最小值z min =36 800(元).答案:C12.(2018·某某模拟)点P (x ,y )∈{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2},x ≥-2M (2,-1),那么OM →·OP→(O 为坐标原点)的最小值为( )A .-2B .-4C .-6D .-8解析:由题意知OM →=(2,-1),OP →=(x ,y ),设z =OM →·OP →=2x -y ,显然集合{(x ,y )|⎩⎪⎨⎪⎧y ≥x x +2y ≤2}x ≥-2对应不等式组⎩⎪⎨⎪⎧y ≥x x +2y ≤2x ≥-2所表示的平面区域.作出该不等式组表示的平面区域如图中阴影部分所示,由图可知,当目标函数z =2x -y 对应的直线经过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x =-2x +2y -2=0得A (-2,2),所以目标函数的最小值z min =2×(-2)-2=-6,即OM →·OP →的最小值为-6,应选C.答案:C二、填空题13.(2018·某某模拟)假设a >0,b >0,那么(a +b )·⎝ ⎛⎭⎪⎫2a +1b 的最小值是________.解析:(a +b )⎝ ⎛⎭⎪⎫2a +1b =2+2b a +a b +1=3+2b a +a b,因为a >0,b >0,所以(a +b )⎝ ⎛⎭⎪⎫2a +1b ≥3+22b a ×a b =3+22,当且仅当2b a =ab,即a =2b 时等号成立.所以所求最小值为3+2 2.答案:3+2 214.(2018·高考全国卷Ⅱ)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,那么z =x +y的最大值为________.解析:由不等式组画出可行域,如图(阴影部分),x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴z max =5+4=9. 答案:915.(2018·某某模拟)假设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤0,x -y ≤0,x 2+y 2≤4,那么z =y -2x +3的最小值为________.解析:作出不等式组表示的可行域如图中阴影部分所示,因为目标函数z =y -2x +3表示区域内的点与点P (-3,2)连线的斜率.由图知当可行域内的点与点P 的连线与圆相切时斜率最小.设切线方程为y -2=k (x +3),即kx -y +3k +2=0,那么有|3k +2|k 2+1=2,解得k =-125或k =0(舍去),所以z min =-125. 答案:-12516.a >b >1,且2log a b +3log b a =7,那么a +1b 2-1的最小值为________. 解析:令log a b =t ,由a >b >1得0<t<1,2log a b +3log b a =2t +3t =7,得t =12,即log a b=12,a =b 2,所以a +1b 2-1=a -1+1a -1+1≥2(a -1)·1a -1+1=3,当且仅当a =2时取等号. 故a +1b 2-1的最小值为3. 答案:3。

2018年高考数学(理)二轮复习练习第2部分 必考补充专题 第19讲 不等式与线性规划 Word版含答案

2018年高考数学(理)二轮复习练习第2部分 必考补充专题 第19讲 不等式与线性规划 Word版含答案

第讲不等式与线性规划(对应学生用书第页)一、选择题.(·山西吕梁二模)已知<<,且+=,则下列不等式中正确的是( ).> .-<.+<-.<[对于,由>得> ,即>,而由<<,且+=,得<,矛盾,故不正确.对于,由-<得-<-,即-<-,则+<,而由+=得+=->>,矛盾,故不正确.对于,当、>时,+<-⇔()<,即<,又由=+>可得<,故正确.对于,由<得+<,而由<<得+>,矛盾,故不正确.故选.].(·湖北四校联考)若变量,满足约束条件(\\(+-≥-+≥≤)),则=(-)+的最大值为( )【导学号:】....[=(-)+表示点(,)与点()间距离的平方.画出约束条件所表示的平面区域如图中阴影部分所示,易知()与()间的距离最大,因此=(-)+=.].(·广东五校协作体联考)不等式组(\\(+-≤-+≥-+≤))的解集记为,有下面四个命题::∀(,)∈+≥-;:∃(,)∈-≥-;:∀(,)∈,≤;:∃(,)∈,++≤.其中的真命题是( ).,.,.,.,[作出不等式组(\\(+-≤-+≥-+≤))表示的区域,如图中阴影部分所示,其中(),(-),由(\\(+=-+=))得(\\(==)),即(),对于,因为×(-)+≤-,故是假命题,排除;对于,将()代入-+=得到×-×+=,说明点()在-+=上,故是真命题,排除;对于,因为=>,故是假命题,排除,故选.].(·郑州二模)已知实数,满足(\\(≥++≤≥)),则=-+的最小值是( ) ....[法一:(数形结合法)作出不等式组(\\(≥++≤≥))所表示的平面区域,如图中阴影部分所示.由图易知≤≤,>,=(-)+=-+,即=+-,平移直线=可知,当直线经过点()时,取得最小值,最小值为.故选.法二:(特殊值验证法)作出不等式组(\\(≥++≤≥))所表示的平面区域,如图中阴影部分所示.由可行域的形状可知,=-+的最值必在顶点(),(),()处取到,分别代入=-+可得=或=或=,故选.].(·湘中名校模拟)若正数,满足:+=,则+的最小值为( )....+[由,为正数,且+=,得=>,所以->,所以+=+=+≥=,当且仅当=和+=同时成立,即==时等号成立,所以+的最小值为,故选.].(·石家庄模拟)已知函数()=(\\(-,<+,≥)),则(())<的解集为( ) .(-,+∞).(-∞,- ).(- ) .(+ )[因为当≥时,()=+≥,当<时,()=-<,所以(())<等价于()<,即-<,解得<-,所以(())<的解集为(-∞,- ),故选.].(·武昌区模拟)设,满足约束条件(\\(+≥-≤-)),且=+的最小值为,则=( ) .-..-或.或-[根据约束条件画出可行域如图中阴影部分所示:。

高考数学第二轮复习精品资料一 选择题 全国通用p

高考数学第二轮复习精品资料一 选择题   全国通用p

选择题的解法选择题是高考数学试卷中的三大题型之一.它的基本特点是:(1)知识覆盖面广,题型灵活多变,经常出现一些数学背景新颖的创新题.这些创新题目注重基础性,增强综合性,体现时代气息;在注重考查基础知识、技能、方法的同时,加大了对能力考查的力度,考潜能,考应用,体现着高考数学命题改革的导向作用.(2)绝大多数选择题题目属于低中档题.因为主要的数学思想和教学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次,解题方法的优劣选择,解题速度的快慢等),所以使之成为具备较佳区分度的基本题型之一.(3)选择题不要求书写解题过程,不设中间分,因此一步失误,就会造成错选,导致全题无分.(4)选择题的分数一般占总分的40%左右.选择题得分率的高低及解题速度的快慢直接影响着每位考生的情绪和全卷的成绩.因此,准确、快速是解选择题的策略.准确是解高考选择题的先决条件,这要求考生要仔细审题,认真分析,合理选择解题方法,正确推演或判断,谨防疏漏,确保准确;快速是结合高考数学单项选择题的结构,题目本身提供的条件、特征或信息,以及不要求书写解题过程的特点,灵活选用简单、合理的解法或特殊化法,避免繁琐的运算、作图或推理,避免“小题大做”,给解答题(特别是中高档题)留下充裕的时间,争取得高分.具体说来,就是要突出解题方向的探索、解题思路的分析、解题方法的选择以及解题思维过程的展示和解题回顾反思等环节;熟练掌握各种基本题型的一般解法,在此基础上逐步掌握解选择题的解题思路、常用方法、规律及相关技巧;注重提高口算、心算和笔算的能力,做到“基本概念理解透彻,基本联系脉络清晰,基本方法熟练掌握,基本技能准确无误”,达到“既然会解,就要解对”的地步,而且需要思维清晰、敏捷、通畅,解法合理、简捷.为此,研究和探索选择题的解题思路、常用方法与技巧就显得非常必要和重说明:因为有些试题可用多种解法,所以统计的分值有重复现象.其中表格为(全国卷):第一讲 直解对照法直解对照法是直接从题设的条件出发,利用已知条件、相关的概念、性质、公式、公理、定理、法则等知识,通过严谨推理、准确运算、合理验证,直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确选择支的方法. 【调研1】如果函数()y f x =的导函数...的图像如下图,给出下列判断: ① 函数()y f x =在区间1(3,)2--内单调递增;② 函数()y f x =在区间1(,3)2-内单调递减;③ 函数()y f x =在区间(4,5)内单调递增; ④ 当2x =时,函数()y f x =有极小值;⑤ 当12x =-时,函数()y f x =有极大值;则上述判断中正确的是( ) A. ① ③ B. ③ ④ C. ③ D. ① ③ ⑤ 答案:B解析:根据原函数()y f x =与导函数()y f x '=的图像间的关系,并列表得:【误点警示】本例是一道甄别个性品质的好题,具有较强的迷惑性,有利高校选拔.求解本例时,易出现审题偏差以及原函数与导函数的单调区间、极值等相混淆,误判命题②、⑤.求解这类题目最直接、最有效的方法是利用表格,分析整理相关信息.【调研2】已知第I 象限的点()P a b ,在直线210x y +-=上,则11a b+的最小值为( )A.3+B.4+C.D.2+答案:D分析:本例涉及不等式与直线以及初中数学等相关知识,具有一定的综合性.求解过程中,需去掉其数学形式,还原其数学本质:将本例转化为“已知21(0,0)a b a b +=>>,求11a b+的最小值”,转化为条件最值问题求解.解析:11112()(2)33b a a b a b a b a b +=++=++≥+=3+2b a a b =时取等号)【方法点拨】因导数工具的引入与广泛运用,利用均值不等式求最值的高考要求已大大降低;但若能掌握一些关于利用均值不等式求最值的技巧,对提高解题的速度与准确程度很有帮助.利用均值不等式求最值有以下四个常用技巧:技巧①:等分相拆 如求函数2(1)y x x =-(01x <<)的最大值时,要保证和为定值以及等号成立,2x 只能等分相拆....成11422x x ⨯⨯,而不能拆1613344x x ⨯⨯或912233x x ⨯⨯等形式; 技巧②:平方升次 如求函数2(1)y x x =-(01x <<)的最大值时,无法直接构造和为定值,但可以尝试两边平方后再构造和为定值;技巧③:分离常数 如求函数2101a S a =-(1a >)的最值时,可以先强行分离常数:2101a S a =-210(1)20(1)101a a a -+-+=-1010(1)201a a =+-+-,再利用均值不等式求解; 技巧④:常数活用 如本例中“活用常数1”:111111()1()(2)a b a b a b a b+=+⨯=++.(文科)【调研3】二次函数2(1)(21)1y a a x a x =+-++,当1a =,2,3,…,n ,…时,其图像在x 轴上截得的弦长依次为1d ,2d ,…,n d ,…,则12n d d d ++为( )A.1(1)n n ⋅+ B.(1)nn n ⋅+ C.11n + D.1n n +答案:D解析:设二次函数2(1)(21)1y a a x a x =+-++与x 轴的分布交点为1(,0)x ,2(,0)x ,则令0y =得2(1)(21)10a a x a x +-++=∴(1)[(1)1]0ax a x -+-=,解之得11x a =,211x a =+ ∴弦长1211||1a d x x a a =-=-+令1,2,3,a n =……,得 12111111(1)()()122311n d d d n n n +++=-+-++-=-++……=1nn +【方法探究】(理科)【调研3】二次函数2(1)(21)1y a a x a x =+-++,当1a =,2,3,…,n ,…时,其图像在x 轴上截得的弦长依次为1d ,2d ,…,n d ,…,则12lim()n n d d d →∞++的值是( )A.4B.3C.2D.1 答案:D分析:本例应先找出弦长表达式,再求和12n d d d ++,最后求极限,次序井然,不容马虎.解析:设二次函数2(1)(21)1y a a x a x =+-++与x 轴的分布交点为1(,0)x ,2(,0)x ,则令0y =得2(1)(21)10a a x a x +-++=∴(1)[(1)1]0ax a x -+-=,解之得11x a =,211x a =+ ∴弦长1211||1a d x x a a =-=-+ 令1,2,3,a n =……,得12111111(1)()()122311n d d d n n n +++=-+-++-=-++……∴121lim()lim(1)11n n n d d d n →∞→∞+++=-=+…. (文理科)【方法探究】本例求弦长很容易想到利用韦达定理,走“设而不求”的道路;但就本题而言直接求根的这种“原始手段”反而更为简便.至于何时用“设而不求”求弦长,何时直接求根再求弦长,这个问题比较辩证,应具体问题,具体分析.一般地说,方程根比较容易解出时,应首先考虑直接求根.1.我国的《洛书》记载着世界上最古老的一个幻方:将1,2,……,9填入33⨯的方格内,使三行、三列、二对角钱的三个数之和都等于15,如图所示:一般地,连续的正整数1,2,3,……,2n 填入n n ⨯个方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方. 记n 阶幻方的对角线上数的和为n N ,如上图的幻方记为315N =,那么10N 的值为( ) A.505 B.506 C.504 D.5072.在∆ABC 中,3sin 463cos 41A B A B +=+=cos sin ,,则∠C 的大小为( ) A.π6B.56πC.ππ656或 D.ππ323或 3.定义在R 上的偶函数)(x f 满足)()2(x f x f =-,且在[-3,-2]上是减函数,βα,是钝角三角形的两个锐角,则下列不等式关系中正确的是( )A.(sin )(cos )f f αβ> B.(cos )(cos )f f αβ< C.(cos )(cos )f f αβ> D.(sin )(cos )f f αβ< (文科)4.设命题p :在直角坐标平面内,点)cos ,(sin ααM 与(1,2)N αα+-(a R ∈),在直线02=-+y x 的异侧;命题q :若向量a ,b ,满足0>⋅,则与的夹角为锐角.以下结论正确的是( ).A.“q p 或”为真,“q p 且”为真 B.“q p 或”为真,“q p 且”为假”C.“q p 或”为假,“q p 且”为真D.“q p 或”为假,“q p 且”为假(理科)4.已知函数323,1()11,1x x x f x x ax x ⎧+->⎪=-⎨⎪+≤⎩在点1x =处连续,则[(1)]f f -=( ) A.11 B.3- C.3 D.11-【参考答案】1.答案: A解析: 由n 阶幻方的定义可知:十阶幻方是将1,2,3,……,100填入1010⨯表格中,每行、每列、每条对角线上的数的和相等故10100(1100)210N +=⨯=505.点评:本题看似复杂,关键在于善抓住有效信息:n 阶幻方的定义. 2.答案:A解析:由3sin 463cos 41A B A B +=+=⎧⎨⎩cos sin 平方相加得21)sin(=+B A又∵A ∠、B ∠、C ∠是△ABC 的内角,即()C A B π∠=-∠+∠∴1sin 2C =,即6C π=或56π. 若C =56π,则A B +=π6∵13cos 4sin 0A B -=> ∴1cos 3A <又∵1312< ∴3A π∠>,56C π∠≠ 故6C π∠= 点评:本题要注意充分挖掘题目条件,隐含条件cos A <13比较隐蔽,极易误选为C .3.答案:D 解析:∵()y f x =是偶函数,且在[3,2]--上是减函数 ∴()y f x =在[2,3]上是增函数 又∵(2)(2)()f x f x f x -=-= ∴()y f x =是以周期2T =的周期函数.故()y f x =在[0,1]上是增函数∵,αβ是钝角三角形的两个锐角 ∴2παβ+<,即022ππαβ<<-<∴sin sin()2παβ<- 即sin cos αβ<又∵0sin cos 1αβ<<< ∴(sin )(cos )f f αβ<(文科)4.答案:B解析:判断复合命题q p 或、q p 且的关键是准确判断命题p 与命题q 的真假.∵sin cos )24πααα+=+< ∴sin cos 20αα+-< 又∵||||||||||a b a b a b -≤±≤+ ∴1232αα++-≥>,即1220αα++-->故点)cos ,(sin ααM 与(1,2)N αα+-在直线02=-+y x 的异侧,命题p 为真命题.又∵向量a 和向量b 共线也有0a b ⋅> ∴命题q 为假命题. 从而有“q p 或”为真,“q p 且”为假”,所以本题的答案为B. (理科)4.答案:D解析:3322222323(1)(3)(1)3111x x x x x x x x x x x x x x x +--++--++-===++--- ∵ 函数3231()111x x x f x x ax x ⎧+->⎪=-⎨⎪+≤⎩在点1x =处连续∴ 11lim ()lim ()x x f x f x +-→→=,即51a =+ ∴4a =∴ (1)4(1)13f -=⨯-+=- [(1)]4(3)1f f -=⨯-+=-第二讲 概念辨析法从题设条件出发,通过对数学概念的辨析,少量运算或推理,直接选择出正确结论,我们称这种方法为概念辨析法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要同学们在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时需加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易掉入命题者设置的陷阱.【调研1】已知b a bx ax x f +++=3)(2是偶函数,定义域为[1,2]a a -,则1()2f =( ) A.1324a b +B.133122b + C.1312D.无法确定 答案:C分析:本例主要考查函数奇偶性概念,破题的关键在于明确函数定义域必须关于原点对称,从而确定a 的值.解析:∵b a bx ax x f +++=3)(2是偶函数∴0b =,且定义域为]2,1[a a -关于原点对称,即12a a -=- ∴ 13a =∴21()13f x x =+ 22[,]33x ∈- 故113()212f = 【技巧点拨】函数奇偶性是函数五大性质之一,求解与奇偶性相关的题目,注意以下结论,提高解题速度. ①.函数奇偶性是整体性质,其定义域必须关于原点对称,从而有函数定义域关于原点对称是函数具有奇偶性的必要但不充分条件.②.二次函数2()f x ax bx c =++为偶函数的充要条件是0b =,一次函数()f x ax b =+为奇函数的充要条件是0b =;③.若奇函数()y f x =在原点有定义,则其函数图像必过原点,即(0)0f =; ④.偶(奇)函数在对称区间单调性相同(反).【调研2】已知集合{ }M =长方体、{ }N =正四棱柱、{ }P =直四棱柱,下列式子正确的是 ( ) A.MN N = B.P M M = C.M N N = D.()M P N N =答案:C分析:本例涉及直四棱柱、正四棱柱以及长方体的概念,有一定的迷惑性.求解本例的关键是理清正四棱柱、长方体的内涵与外延,明确相互关系. 解析:四棱柱的概念如下图用集合语言表示为:{ }{ }⊆正四棱柱长方体{ }⊆直四棱柱,即N M P ⊆⊆ ∴M MN =、P M P =、()M P N M =,从而排除A、B、D.【方法探究】本例是以四棱柱相关概念为内核,以集合为形表,有一定的新颖性和迷惑性.集合与向量一样,都是重要的数学语言,在各省市高考卷和各地高考模拟卷中,常常出现以其他板块知识为内核,集合语言进行包装,改头换面,有一定的新意和灵活度.如以下两例分别是由集合和向量进行包装:①集合{()|22}M x y x y =-≤,,{()|1}P x y x y =-≥-,,{()|1}S x y x y =+≥,,若T=MP S ,点(,)E x y T ∈,则y x z 32+=的最大值为_ __.②已知在平面直角坐标系中,(0,0)O ,(2,1)M -,(1,1)N -,(1,1)Q ,(2,3)T ,动点(,)P x y 满足不等式2OP OM ⋅≤,1OP ON ⋅≥-,1OP OQ ⋅≥,则w OP OT =⋅的最大值为_____.以上两题看似毫不相干,但都是由线性规划“变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为__________”进行包装而来.求解这类题目的关键是“去掉数学形式、理解数学本质”.(文科)【调研3】如图, 已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( ) A.1213PP PP ⋅ B.1214PP PP ⋅ C.5121PP PP ⋅ D.1216PP PP ⋅ 答案:A 分析:求解本例的关键是中有理清各对向量的模长与夹角.解析:设边长为a ,在正六边形123456PP P P P P1315||||3PP PP a ==、 14||2PP a =、1213,6PP PP π<>=1214,3PP PP π<>=、1215,2PP PP π<>=和12162,3PP PP π<>=∴ 21213121312133||||cos ,cos62PP PP PP PP PP PP a a π⋅=⋅⋅<>=⨯=; 2121412141214||||cos ,2cos 3PP PP PP PP PP PP a a a π⋅=⋅⋅<>=⨯⨯= 121512151215||||cos ,2cos02PP PP PP PP PP PP a a π⋅=⋅⋅<>=⨯⨯=和2121612161216121621||||cos ,||||cos 032PP PP PP PP PP PP PP PP a π⋅=⨯⋅<>=⨯⨯=-< ∴数量积中最大的是1213PP PP ⋅. 【方法探究】本例主要考查向量夹角及数量积的概念,求解过程中注意利用正六边形的几何性质,同时注意向量的方向,准确找出相应向量的夹角.本例可以简化以上求解过程,由12162,3P P P P π<>=和1215,2PP PP π<>=直接排除C、D,只需比较1213PP PP ⋅与1214PP PP ⋅即可. (理科)【调研3】下列随机变量ξ的分布列不属于二项分布的是( )A.某事业单位有500名在职人员,人事部门每年要对他们进行年度考核,每人考核结论为优秀的概率是0.25.假设每人年度考核是相互独立的,ξ为考核结论为优秀的人数;B.某汽车总站附近有一个加油站,每辆车出汽车总站后,再进加油站加油的概率是0.12且每辆车是否加油是相互独立的.某天出汽车总站有50辆汽车,ξ为进站加油的汽车数;C.某射手射中目标的概率为p ,设每次射击是相互独立的.ξ为从开始射击到击中目标所需要的射击次数;D.某周内,每次下载某网站数据后被病毒感染的概率为0.5.ξ表示下载的n 次数据后被病毒感染的次数. 答案:C分析:如何识别二项分布?关键在于紧扣二项分布的概念,抓三点判断:①.每次实验只有两类对立的结果;②.n 次相同事件相互独立;③.每次实验的某一结果的概率是恒定的.解析:选项A:每人考核结论只有“优秀”、“不优秀”两个对立结果,且每人考核结论为优秀是相互独立,并且概率为常数0.25,所以随机变量ξ服从二项分布;选项B:每辆车出汽车总站后,只有进站加油和不进站两个结果,同时每辆车进站加油的概率为常数0.12,而且相互独立的,所以随机变量ξ服从二项分布;选项C:在一次又一次的射击中,第一次射中我们关注的事件A,随机变量ξ表示第一次击中目标时射击的次数,显然随机变量ξ服从几何分布,不服从二项分布.选项D:同选项A、B,可判断随机变量ξ服从二项分布.【技巧点拨】三类特殊分布及判定技巧二项分布、几何分布与正态分布是中学数学的三大特殊分布,在实际中有着广泛的应用.《2006年理科数学考试大纲》对这三种特殊分布仅要求到“了解”层次,但近年的高考试卷中多有涉及,甚至在2006(,)B n p,则(,)B n p,每次实验只有两类对立的结(2)n次相同事件,相互独1.若,,||||1a b R a b∈+>成立的充分不必要条件.......是()A.1||≥+ba B.11||||22a b≥≥且 C.1≥a D.1b<-2.有下列命题(1)若a b>,则22ac bc>;(2)直线10x y--=的倾斜角为045,纵截距为1;(3)直线1l11y k x b=+与直线2l11y k x b=+平行的充要条件是12k k=且12b b≠;(4)当0x>且1x≠时,1lg2lgxx+≥;(5)到坐标轴距离相等的点的轨迹方程为0x y-=;其中真命题的个数是()A.0 B.1 C.2 D.33.函数ln(1)(1)y x x =->的反函数是( )A.1()1()x f x e x R -=+∈B.1()101()x f x x R -=+∈C.1()101(1)x f x x -=+>D.1()1(1)x f x e x -=+>4.函数xx x xx x f cos sin 21)(24++++=的最大值为M ,最小值为m ,则m M +的值为( )A .1B .2C .3D .4 【参考答案】1.答案:D解析:根据充分不必要条件的概念知,本题等价于“,,a b R ∈||||1a b +>⇐( )”.2.答案:B 解析:(1)当C =0时,不等式22ac bc >不成立;(2)重点考查直线倾斜角、截距等概念,10x y --=的倾斜角为045,纵截距应为-1,这是易错点; (3)小题是教材结论,本命题为真命题; (4)小题考查均值不等式成立条件,1lg 2lg x x+≥的成立条件应为lg 0x >,即1x >; (5)小题是由教材第69页变化而来,显然为假命题. 3.答案:A 解法一 :回归概念∵ ln (1)y x =- ∴ 1yx e =+ 兑换x 、y 得1x y e =+又∵1x > ∴ln(1)y x =-的值域为R. ∴函数ln(1)(1)y x x =->的反函数为1()1()x f x e x R -=+∈. 解法二 :特值排除∵ 函数ln(1)(1)y x x =->过点(2,0)A ,1(1,1)B e+- ∴ 函数ln(1)(1)y x x =->的反函数1()y fx -=过点(0,2)A '、1(1,1)B e'-+,排除B 、C 、D.点拨:反函数问题是中学数学的重要概念,也是历届高考的热点.在求解以选择题的形态出现的“求某函数的反函数”问题时,注意运用结论“()f a b =⇔1()a f b -=” 快速求解. 4.答案:B解析:∵ xx x xx y cos sin 224+++=是奇函数,奇函数的最大值与最小值的和等于0∴x x x x x x f cos sin 21)(24++++=是由奇函数x x x xx y cos sin 224+++=的图象向上平移1个单位得到的 ∴xx x xx x f cos sin 21)(24++++=的最大值M 与最小值m 的和等于2 点拨:本题主要考查函数奇偶性的灵活运用,函数不具有奇偶性,但局部具有奇偶性时,再如求解“已知53()sin 5f x ax bx cx d x =++++(,,,a b c d 为常数)且30f =-,则(2f =__________”,可类比本题处理技巧,请同学们自己动手完成.。

高考数学二轮复习考点知识讲解与练习40---二元一次不等式(组)与简单的线性规划问题

高考数学二轮复习考点知识讲解与练习40---二元一次不等式(组)与简单的线性规划问题

高考数学二轮复习考点知识讲解与练习第40讲 二元一次不等式(组)与简单的线性规划问题考点知识:1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域111222112+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0. 3.线性规划的有关概念线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数达到最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.判定二元一次不等式表示的区域(1)若B(Ax+By+C)>0时,区域为直线Ax+By+C=0的上方.(2)若B(Ax+By+C)<0时,区域为直线Ax+By+C=0的下方.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)不等式Ax+By+C>0表示的平面区域一定在直线Ax+By+C=0的上方.( )(2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z=ax+by(b≠0)中,z的几何意义是直线ax+by-z=0在y轴上的截距.( )答案(1)×(2)√(3)√(4)×解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是z b.2.不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )答案 B解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B.3.已知x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y +1的最大值、最小值分别是( )A .3,-3B .2,-4C .4,-2D .4,-4 答案 C解析 不等式组所表示的平面区域如图所示.其中A (-1,-1),B (2,-1), C ⎝ ⎛⎭⎪⎫12,12, 画直线l 0:y =-2x ,平移l 0过B 时,z max =4,平移l 0过点A 时, z min =-2.4.(2022·浙江卷)若实数x ,y 满足约束条件⎩⎨⎧x -3y +1≤0,x +y -3≥0, 则z =x +2y 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[5,+∞)D .(-∞,+∞) 答案 B解析 画出可行域如图中阴影部分所示,作出直线x +2y =0,平移该直线,易知当直线经过点A (2,1)时,z 取得最小值,z min =2+2×1=4,再数形结合可得z =x +2y 的取值范围是[4,+∞).5.(2022·汉中质检)不等式组⎩⎨⎧x +y -2≤0,x -y -1≥0,y ≥0所表示的平面区域的面积等于________. 答案14解析 画出可行域如图中阴影部分(含边界)所示,通过上图,可以发现不等式组表示的平面区域以点A ⎝ ⎛⎭⎪⎫32,12,B (1,0)和C (2,0)为顶点的三角形区域(含边界),因此S △ABC =12×(2-1)×12=14.6.(2021·成都诊断)已知x ,y 满足⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3,若使得z =ax +y 取最大值的点(x ,y )有无数个,则a 的值为________. 答案 -1解析 先根据约束条件画出可行域,如图中阴影部分(含边界)所示,当直线z =ax +y 和直线AB 重合时,z 取得最大值的点(x ,y )有无数个,∴-a =k AB =1,∴a =-1.考点一 二元一次不等式(组)表示的平面区域1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7) B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞) 答案 B解析 根据题意知(-9+2-a )·(12+12-a )<0,即(a +7)(a -24)<0,解得-7<a <24. 2.在平面直角坐标系xOy 中,不等式组⎩⎨⎧1≤x +y ≤3,-1≤x -y ≤1表示图形的面积等于( )A .1B .2C .3D .4 答案 B解析 不等式组对应的平面区域如图,即对应的区域为正方形ABCD ,其中A (0,1),D (1,0),边长AD =2,则正方形的面积S =2×2=2.3.若不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域的形状是三角形,则a 的取值范围是()A.⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1] C.⎣⎢⎡⎦⎥⎤1,43 D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞答案 D解析作出不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域(如图中阴影部分表示).由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l :x +y =a 在l 1,l 2之间(包含l 2,不包含l 1)或l 3上方(包含l 3),故0<a ≤1或a ≥43.感悟升华 平面区域的形状问题主要有两种题型:(1)确定平面区域的形状,求解时先画满足条件的平面区域,然后判断其形状; (2)根据平面区域的形状求解参数问题,求解时通常先画满足条件的平面区域,但要注意对参数进行必要的讨论. 考点二 求目标函数的最值角度1 求线性目标函数的最值【例1】(2021·郑州模拟)设变量x ,y 满足约束条件⎩⎨⎧x ≥1,x -2y +3≥0,x -y ≥0,则目标函数z=2x -y 的最小值为( )A .-1B .0C .1D .3 答案 C解析 由约束条件可得可行域如图阴影部分(含边界)所示,将z =2x -y 变为y =2x -z ,当z 取最小值时,y =2x -z 在y 轴截距最大,由y =2x 图象平移可知,当y =2x -z 过点A 时,在y 轴截距最大,由⎩⎨⎧y =x ,y =x得A (1,1),∴z min =2×1-1=1,故选C.角度2 求非线性目标函数的最值【例2】(1)已知实数x ,y 满足⎩⎨⎧x -y +1≤0,x +2y -8≤0,x ≥1,则z =y x +2的取值范围是________.(2)(2022·景德镇模拟改编)若变量x ,y 满足约束条件⎩⎨⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为________. 答案 (1)⎣⎢⎡⎦⎥⎤23,76 (2)45解析 (1)作出不等式组⎩⎨⎧x -y +1≤0,x +2y -8≤0,x ≥1表示的平面区域如图中阴影部分所示,这是一个三角形区域(包含边界),三角形的三个顶点的坐标分别为B (1,2),C⎝ ⎛⎭⎪⎫1,72,D (2,3),y x +2的几何意义是可行域内任一点(x ,y )与点P (-2,0)连线的斜率,连接PB ,PC ,由于直线PB 的斜率为23,直线PC 的斜率为76,由图可知z =yx +2的取值范围是⎣⎢⎡⎦⎥⎤23,76. (2)画出约束条件⎩⎨⎧2x -y ≤0,x +y -3≤0,x ≥0表示的可行域,如图中阴影部分所示.设z =(x -1)2+y 2,则其几何意义是区域内的点到定点(1,0)的距离的平方,由图知点(1,0)到直线2x -y =0的距离最小,点(1,0)到直线2x -y =0的距离d =|2×1-0|22+(-1)2=25,则z min =d 2=45,所以(x -1)2+y 2的最小值为45.角度3 求参数值或取值范围【例3】(2021·太原调研)已知实数x ,y 满足⎩⎨⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( )A .1B .2C .4D .8 答案 B解析 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2.感悟升华 线性规划两类问题的解决方法(1)求目标函数的最值:画出可行域后,要根据目标函数的几何意义求解,常见的目标函数有: ①截距型:例如z =ax +by ;②距离型:形如z =(x -a )2+(y -b )2;③斜率型:形如z =y -b x -a. (2)求参数的值或范围:参数的位置可能在目标函数中,也可能在约束条件中.求解步骤为:①注意对参数取值的讨论,将各种情况下的可行域画出来;②在符合题意的可行域里,寻求最优解.【训练1】(1)(2021·昆明质检)设x ,y 满足约束条件⎩⎨⎧x -y -2≤0,2x -y +3≥0,x +y ≤0,则y +4x +6的取值范围是( )A.⎣⎢⎡⎦⎥⎤-13,1 B .[-3,1] C .(-∞,-3)∪(1,+∞) D .⎣⎢⎡⎦⎥⎤-37,1(2)若x ,y 满足条件⎩⎨⎧3x -5y +6≥0,2x +3y -15≤0,y ≥0,当且仅当x =y =3时,z =ax +y 取最大值,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-23,35 B .⎝ ⎛⎭⎪⎫-∞,-35∪⎝ ⎛⎭⎪⎫23,+∞C.⎝ ⎛⎭⎪⎫-35,23 D .⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫35,+∞答案 (1)B (2)C解析 (1)画出不等式组表示的平面区域如图阴影部分(含边界)所示,目标函数z =y +4x +6表示可行域内的点与点P (-6,-4)连线的斜率,数形结合可知目标函数在点A(-1,1)处取得最大值为1+4-1+6=1,目标函数在点B(-5,-7)处取得最小值为-7+4-5+6=-3,故目标函数的取值范围是[-3,1].故选B.(2)不等式组对应的平面区域如图,由图可知,当目标函数的斜率满足-23<-a<35,即-35<a<23时,z=ax+y仅在x=y=3时取得最大值,故选C.考点三实际生活中的线性规划问题【例4】(2022·安庆联考)某农户计划种植莴笋和西红柿,种植面积不超过30亩,投入资金不超过25万元,假设种植莴笋和西红柿的产量、成本和售价如下表:年产量/亩年种植成本/亩每吨售价莴笋5吨1万元0.5万元西红柿 4.5吨0.5万元0.4万元________万元.答案43解析设莴笋和西红柿的种植面积分别为x,y亩,一年的种植总利润为z万元.由题意可得⎩⎨⎧x +y ≤30,x +0.5y ≤25,x ≥0,y ≥0,z =0.5×5x +0.4×4.5y -(x +0.5y )=1.5x +1.3y , 作出不等式组表示的可行域,如图阴影部分(含边界)所示,当直线z =1.5x +1.3y 经过点A 时,z 取得最大值, 又⎩⎨⎧x +y =30,x +0.5y =25,解得x =20,y =10,即A (20,10),代入z =1.5x +1.3y 可得z =43. 感悟升华 1.解线性规划应用题的步骤.(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解——解这个纯数学的线性规划问题;(3)作答——将数学问题的答案还原为实际问题的答案.2.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件,写出目标函数,转化成线性规划问题.【训练2】 某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ) A .31 200元 B .36 000元 C .36 800元 D .38 400元 答案 C解析 设旅行社租用A 型客车x 辆,B 型客车y 辆,租金为z 元,则线性约束条件为⎩⎨⎧x +y ≤21,y -x ≤7,36x +60y ≥900,x ,y ∈N.目标函数为z =1 600x +2 400y . 画出可行域如图中阴影部分所示,可知目标函数过点N 时,取得最小值, 由⎩⎨⎧y -x =7,36x +60y =900,解得⎩⎨⎧x =5,y =12,故N (5,12),故z min =1 600×5+2 400×12=36 800(元).“隐性”的线性规划问题数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,用数学语言予以表征.近几年的高考及模拟考试中常出现一类隐性线性规划问题,即通过数量与数量的关系,抽象出线性规划问题,有时以解析几何、函数、数列为背景综合考查.【典例】 如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎢⎡⎦⎥⎤12,2上单调递减,则mn 的最大值为( )A .16B .18C .25D .812答案 B解析 f ′(x )=(m -2)x +n -8.由已知得:对任意的x ∈⎣⎢⎡⎦⎥⎤12,2,f ′(x )≤0,所以f ′⎝ ⎛⎭⎪⎫12≤0,f ′(2)≤0,所以⎩⎨⎧m ≥0,n ≥0,m +2n ≤18,2m +n ≤12.画出可行域,如图,令mn =t ,则当n =0时,t =0;当n ≠0时,m =t n.由线性规划的相关知识,只有当直线2m +n =12与曲线m =t n相切时,t 取得最大值.由⎩⎪⎨⎪⎧-t n 2=-12,6-12n =t n,解得n =6,t =18.所以(mn )max =18.素养升华 1.本例以函数为载体隐蔽“约束条件”,有效实现了知识模块的交汇,本例要求从题设中抓住本质条件,转化为关于“m ,n ”的约束条件.2.解题的关键是要准确无误地将已知条件转化为线性约束条件作出可行域,抓住可行域中所求点的相应几何意义.该题立意新颖,在注意基础知识的同时,提升了数学抽象核心素养,渗透了等价转化思想和数形结合思想,考查了学生的综合应用能力.【训练】 在等差数列{a n }中,已知首项a 1>0,公差d >0,a 1+a 2≤60,a 2+a 3≤100,则5a 1+a 5的最大值为________,取到最大值时d =________,a 1=________. 答案 200 20 20解析 由题意得点(a 1,d )满足⎩⎨⎧a 1>0,d >0,2a 1+d ≤60,2a 1+3d ≤100,画出可行域,又5a 1+a 5=6a 1+4d , 故经过B 点,即a 1=d =20时,5a 1+a 5取最大值200.A 级 基础巩固一、选择题1.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3) 答案 C解析 把各点的坐标代入可得(-1,3)不适合,故选C.2.(2021·合肥模拟)若实数x ,y 满足不等式组⎩⎨⎧x +2y -3≥0,2x +y -3≥0,x +y -3≤0,则2x +3y 的最小值为( )A .4B . 5C . 6D .7 答案 B解析 画出不等式组⎩⎨⎧x +2y -3≥0,2x +y -3≥0,x +y -3≤0表示的平面区域如图阴影部分(含边界)所示,令z =2x +3y ,则y =-23x +13z ,分析知,当x =1,y =1时,z 取得最小值, 且z min =2+3=5.故选B.3.设点(x ,y )满足约束条件⎩⎨⎧x -y +3≥0,x -5y -1≤0,3x +y -3≤0,且x ∈Z ,y ∈Z ,则这样的点共有( )A .12个B .11个C .10个D .9个 答案 A解析画出⎩⎨⎧x -y +3≥0,x -5y -1≤0,3x +y -3≤0表示的可行域如图阴影部分所示(含边界),由图可知,满足x ∈Z ,y ∈Z 的(x ,y )为(-4,-1),(-3,0),(-2,1),(-2,0),(-1,0),(-1,1),(-1,2),(0,0),(0,1),(0,2),(0,3),(1,0),共12个,故选A.4.设变量x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -y +2≥0,x ≥-1,y ≥-1,则目标函数z =-4x +y 的最大值为( )A .2B .3C .5D .6 答案 C解析 由约束条件作出可行域如图中阴影部分(含边界)所示.∵z =-4x +y 可化为y =4x +z ,∴作直线l 0:y =4x ,并进行平移,显然当l 0过点A (-1,1)时,z 取得最大值,z max =-4×(-1)+1=5.故选C.5.(2021·哈师大附中模拟)已知实数x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1,则z =2-2x+y的最大值为( )A.132 B .14 C .12D .2 答案 C解析 由实数x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1作出可行域如图,则z =2-2x +y 的最大值就是u =-2x +y 的最大值时取得.联立⎩⎨⎧x -y =0,y =1,解得A (1,1),化目标函数u =-2x +y 为y =2x +u ,由图可知,当直线y =2x +u 过点A 时,直线在y 轴上的截距最大,此时z 有最大值2-2+1=12.故选C. 6.(2019·全国Ⅲ卷)记不等式组⎩⎨⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D,2x +y ≥9;命题q :∀(x ,y )∈D,2x +y ≤12.下面给出了四个命题: ①p ∨q ;②綈p ∨q ;③p ∧綈q ;④綈p ∧綈q . 这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④ 答案 A解析 法一 画出可行域如图中阴影部分所示.目标函数z =2x +y 是一组平行移动的直线,且z 的几何意义是直线z =2x +y 的纵截距.显然,直线过点A (2,4)时,z min =2×2+4=8,即z =2x +y ≥8. ∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D,2x +y ≥9正确; 命题q :∀(x ,y )∈D,2x +y ≤12不正确. ∴①③真,②④假.法二 取x =4,y =5,满足不等式组⎩⎨⎧x +y ≥6,2x -y ≥0,且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假. ∴①③真,②④假.7.(2019·北京卷)若x ,y 满足|x |≤1-y ,且y ≥-1,则3x +y 的最大值为( ) A .-7 B .1 C .5 D .7 答案 C解析由|x |≤1-y ,且y ≥-1,得⎩⎨⎧x -y +1≥0,x +y -1≤0,y ≥-1.作出可行域如图阴影部分所示.设z =3x +y ,则y =-3x +z . 作直线l 0:y =-3x ,并进行平移.显然当l 0过点A (2,-1)时,z 取最大值,z max =3×2-1=5.故选C.8.(2021·全国大联考)设不等式组⎩⎨⎧x -y ≤0,2x -y +2≥0,x ≥1表示的平面区域为M ,则( )A .M 的面积为92B .M 内的点到x 轴的距离有最大值C .点A (x ,y )在M 内时,y x +2<2D .若点P (x 0,y 0)∈M ,则x 0+y 0≠2 答案 C解析 作出可行域,如图中阴影部分所示,由图可知,可行域为开放区域,所以选项A 、B 错误;由图可知点(1,1)在可行域内,而此时x +y =1+1=2,故选项D 错误;yx +2表示区域M 内的点(x ,y )与N (-2,0)连线的斜率,由图知⎝⎛⎭⎪⎫y x +2min =k NB =13,∴yx +2∈⎣⎢⎡⎭⎪⎫13,2,故选项C 正确,故选C. 二、填空题9.(2022·山西名校联考)设x ,y 满足约束条件⎩⎨⎧3x -2y -6≤0,x +y -2≥0,x -4y +8≥0,则z =x -2y 的最小值是________. 答案 -4解析 由约束条件画出可行域如图中阴影部分所示,将z =x -2y 化为y =12x -z2,可知z的最小值即为y =12x -z 2在y 轴上截距最大时z 的取值,由图可知,当y =12x -z2过点A 时,在y 轴上的截距最大,由⎩⎨⎧x +y -2=0,x -4y +8=0得A (0,2),∴z min =0-2×2=- 4.10.(2021·平顶山一模)已知O 为坐标原点,A (-1,-2),P 为平面区域M :⎩⎨⎧x +2y -2≤0,2x +y -2≤0,x ≥0,y ≥0内任意一点,则OA →·OP →的最小值为________.答案 -2解析 由题意可得,平面区域M (如图)是由点O (0,0),D (0,1),B (1,0),C ⎝ ⎛⎭⎪⎫23,23围成的四边形区域(包括边界),由数量积的坐标运算得OA →·OP →=-x -2y ,设z =-x -2y ,当直线z =-x -2y 平移到与DC 重合时,目标函数z =-x -2y 有最小值(此时点P 为线段DC 上任意一点),且最小值为-2.故OA →·OP →的最小值为-2.11.(2022·昆明诊断)已知x ,y 满足⎩⎨⎧x +3y ≤15,2x +y ≤12,x ∈N ,y ∈N ,则z =3x +2y 的最大值为________. 答案 19解析 根据条件画出可行域如图中阴影部分所表示的整点,由图可知z =3x +2y 在点M 处取得最大值,由⎩⎨⎧2x +y =12,x +3y =15得M ⎝ ⎛⎭⎪⎫215,185,但M 点的坐标不是整数,经过平移可知经过点(5,2)满足要求,且代入得z =19,故最大值为19.12.已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________. 答案 3解析 设P (x ,y ),且AB →=(2,1),AC →=(1,2), ∴OP →=OA →+AP →=(1,-1)+λ(2,1)+μ(1,2), ∴⎩⎨⎧x =1+2λ+μ,y =-1+λ+2μ⎩⎨⎧ 3μ=2y -x +3,3λ=2x -y -3,又1≤λ≤2,0≤μ≤1, ∴⎩⎨⎧0≤x -2y ≤3,6≤2x -y ≤9表示的可行域是平行四边形及内部.如图,点B (3,0)到直线x -2y =0的距离d =355.又|BN |= 5.∴区域D 的面积S =355×5=3. B 级 能力提升13.若函数y =2x图象上存在点(x ,y )满足约束条件⎩⎨⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A.12 B .1 C .32 D .2 答案 B解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎨⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示. 由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.14.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( )A .320千元B .360千元C .400千元D .440千元 答案 B解析 设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则⎩⎨⎧x ,y ∈N ,2x +3y ≤480,z =2x +y ,6x +y ≤960,作出不等式组表示的可行域如图中阴影部分所示的整点,作出直线2x +y =0,平移该直线,当直线z =2x +y 经过直线2x +3y =480与直线6x +y =960的交点(150,60)(满足x ∈N ,y ∈N)时,z 取得最大值,为360.故该企业每月利润的最大值为360千元.15.(2021·西安模拟)已知实数x ,y 满足(x +y -2)(x -2y +3)≥0,则x 2+y 2的最小值为________. 答案95解析 由(x +y -2)(x -2y +3)≥0,得 ⎩⎨⎧x +y -2≥0,x -2y +3≥0或⎩⎨⎧x +y -2≤0,x -2y +3≤0,不等式组表示的平面区域如图阴影部分(含边界)所示.x 2+y 2=(x -0)2+(y -0)2,表示平面区域内取一点到原点的距离的平方, 因为原点到x +y -2=0的距离为d =|0+0-2|2=2,原点到x -2y +3=0的距离为d =|0-2×0+3|5=35=355<2,所以,x 2+y 2的最小值为⎝ ⎛⎭⎪⎫3552=95. 16.(2021·九江联考)若x ,y 满足约束条件⎩⎨⎧4x -3y -6≤0,2x -2y +1≥0,x +2y -1≥0,则z =|x -y +1|的最大值为________. 答案2811解析 根据约束条件画出可行域如图中阴影部分,z =|x -y +1|=2|x -y +1|2表示可行域内的点到直线x -y +1=0的距离的2倍.由图可知点A 到直线x -y +1=0的距离最大.由⎩⎨⎧x +2y -1=0,4x -3y -6=0,解得A ⎝ ⎛⎭⎪⎫1511,-211,所以z max =2811.。

2018年全国各地高考数学试题及解答分类大全(不等式)

2018年全国各地高考数学试题及解答分类大全(不等式)

取得最大值, zmax 3 2 2 0 6 .
第 2页 (共 3页)
5.(2018
天津文、理)已知 a,b∈R,且
a–3b+6=0,则
2a+
1 8b
的最小值为__________.
5.【答案】 1 4
【解析】由 a 3b 6
0 可知 a
3b
6
,且 2a
1 8b
2a
2 3b
,因为对于任意
y y
4,
则目标函数
1,
z
3x
5
y
的最大值为
y 0,
()
(A)6 (B)19 (C)21 (D)45
2.【答案】C
【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标
函数在点
A
处取得最大值,联立直线方程:
x y x
5 y 1
,可得点
A
的坐标为
A
2,
3

据此可知目标函数的最大值为 zmax 3x 5 y 3 2 5 3 21 .故选 C.
二、填空
1.(2018 北京文)能说明“若 a b ,则 1 1 ”为假命题的一组 a , b 的值依次为_________. ab
1.【答案】1, 1 (答案不唯一)
第 1页 (共 3页)
【解析】使“若 a b ,则 1 1 ”为假命题,则“若 a b ,则 1 1 ”为真命题即可,只需取 a 1,b 1
x ,2x
0 恒成立,结
合均值不等式的结论可得: 2a 23b 2 2a 23b 2 26 1 . 4
当且仅当
2a
23b
a 3b 6

专题05 不等式与线性规划-2018年高考理数二轮复习精品资料(教师版)

专题05 不等式与线性规划-2018年高考理数二轮复习精品资料(教师版)

1.设0<a <b <1,则下列不等式成立的是( ) A .a 3>b 3B.1a <1bC .a b >1D .lg(b -a )<a解析:选D.∵0<a <b <1,∴0<b -a <1-a ,∴lg(b -a )<0<a ,故选D. 2.已知a ,b 是正数,且a +b =1,则1a +4b( )A .有最小值8B .有最小值9C .有最大值8D .有最大值93.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥-1,2x -y ≤1,y ≤1,则z =3x -y 的最小值为( )A .-7B .-1C .1D .2解析:选A.画出可行域如图中阴影部分所示,平移直线3x -y =0,可知直线z =3x -y 在点A (-2,1)处取得最小值,故z min =3×(-2)-1=-7,选A.4.不等式组⎩⎪⎨⎪⎧5x +3y ≤15,y ≤x +1,x -5y ≤3表示的平面区域的面积为( )A .7B .5C .3D .14解析:选A.作出可行域如图所示.可得A ⎝ ⎛⎭⎪⎫32,52,B (-2,-1),所以不等式组⎩⎪⎨⎪⎧5x +3y ≤15,y ≤x +1,x -5y ≤3表示的平面区域的面积为12×4×52+12×4×1=7,故选A.5.若a ,b ,c 为实数,则下列命题为真命题的是( ) A .若a >b ,则ac 2>bc 2 B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B.选项A 错,因为c =0时不成立;选项B 正确,因为a 2-ab =a (a -b )>0,ab -b 2=b (a -b )>0,故a 2>ab >b 2;选项C 错,应为1a >1b ;选项D 错,因为b a -a b =b 2-a 2ab=b +ab -aab<0,所以b a <ab.6.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元7.若ax 2+bx +c <0的解集为{x |x <-2,或x >4},则对于函数f (x )=ax 2+bx +c 应有( ) A .f (5)<f (2)<f (-1) B .f (5)<f (-1)<f (2) C .f (-1)<f (2)<f (5) D .f (2)<f (-1)<f (5)解析:选B.∵ax 2+bx +c <0的解集为{x |x <-2,或x >4},∴a <0,而且函数f (x )=ax 2+bx +c 的图象的对称轴方程为x =4-22=1,∴f (-1)=f (3).又∵函数f (x )在[1,+∞)上是减函数,∴f (5)<f (3)<f (2),即f (5)<f (-1)<f (2),故选B.8.若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( ) A .(-3,0) B .[-3,0) C .[-3,0] D .(-3,0]9.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x ≥1,y ≥x -1,x +3y -5≤0,那么点P 到直线3x -4y -13=0的距离的最小值为( )A.115 B .2 C.95D .1 解析:选B.在坐标平面内画出题中的不等式组表示的平面区域及直线3x -4y -13=0,结合图形(图略)可知,在该平面区域内所有的点中,到直线3x -4y -13=0的距离最近的点是(1,0).又点(1,0)到直线3x -4y -13=0的距离等于|3×1-4×0-13|5=2,即点P 到直线3x -4y -13=0的距离的最小值为2,选B.10.设实数x ,y 满足⎩⎪⎨⎪⎧y ≤2x +2,x +y -2≥0,x ≤2,则y -1x +3的取值范围是( )A. ⎝ ⎛⎦⎥⎤-∞,-15∪[1,+∞)B. ⎣⎢⎡⎦⎥⎤13,1 C.⎣⎢⎡⎦⎥⎤-15,13 D.⎣⎢⎡⎦⎥⎤-15,1解析:选D.作出不等式组⎩⎪⎨⎪⎧y ≤2x +2,x +y -2≥0,x ≤2,表示的区域如图所示,从图可看出,y -1x +3表示过点P (x ,y ),A (-3,1)的直线的斜率,其最大值为k AD =6-12+3=1,最小值为k AC =0-12+3=-15,故选D.11.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( ) A .(0,+∞) B.(-1,0)∪(2,+∞) C .(2,+∞) D.(-1,0)12.设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6, x ≥0,x +6, x <0,则不等式f (x )>f (1)的解集是( )A .(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞) C .(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)解析:选A.由题意得⎩⎪⎨⎪⎧ x ≥0,x 2-4x +6>3或⎩⎪⎨⎪⎧x <0,x +6>3,解得-3<x <1或x >3.13.设P (x ,y )是函数y =2x(x >0)图象上的点,则x +y 的最小值为________.解析:因为x >0,所以y >0,且xy =2.由基本不等式得x +y ≥2xy =22,当且仅当x =y 时等号成立.答案:2214.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥x ,3x +2y ≤15,则w =4x ·2y 的最大值是________.解析:作出可行域,w =4x ·2y =22x +y ,要求其最大值,只需求出2x +y =t 的最大值即可,由平移可知t =2x +y 在A (3,3)处取得最大值t =2×3+3=9,故w =4x ·2y 的最大值为29=512.答案:51215.已知函数f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x (x -2),则不等式xf (x )>0的解集为________.解析:当x >0时,由条件xf (x )>0得f (x )>0,即x (x -2)>0⇒x >2.因为f (x )为奇函数,图象关于原点对称,则当x <0时,由xf (x )>0得f (x )<0,则由图象(图略)可得x <-2.综上,xf (x )>0的解集为(-∞,-2)∪(2,+∞).答案:(-∞,-2)∪(2,+∞)16.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.答案:⎝⎛⎦⎥⎤-∞,-14∪[1,+∞)17.某饮料生产企业为了占有更多的市场份额,拟在2017年度进行一系列促销活动,经过市场调查和测算,饮料的年销售量x 万件与年促销费t 万元间满足x =3t +1t +1.已知2017年生产饮料的设备折旧,维修等固定费用为3万元,每生产1万件饮料需再投入32万元的生产费用,若将每件饮料的售价定为其生产成本的150%与平均每件促销费的一半之和,则该年生产的饮料正好能销售完. (1)将2017年的利润y (万元)表示为促销费t (万元)的函数; (2)该企业2017年的促销费投入多少万元时,企业的年利润最大?(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用) 解:(1)当年销量为x 万件时,成本为3+32x (万元). 饮料的售价为3+32x x ×150%+12×tx (万元/万件),所以年利润y =⎝⎛⎭⎫3+32x x×150%+12×t x x -(3+32x +t )(万元),把x =3t +1t +1代入整理得到y =-t 2+98t +352t +2,其中t ≥0.18.某企业生产A ,B 两种产品,生产每一吨产品所需的劳动力、煤和电如下表:已知生产每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦时,试问该企业如何安排生产,才能获得最大利润?解:设生产A ,B 两种产品分别为x 吨,y 吨,利润为z 万元, 依题意,得⎩⎪⎨⎪⎧3x +10y ≤300,9x +4y ≤360,4x +5y ≤200,x ≥0,y ≥0.目标函数为z =7x +12y . 作出可行域,如图所示.当直线7x +12y =0向右上方平行移动时,经过点M 时z 取最大值.所以该企业生产A ,B 两种产品分别为20吨和24吨时,才能获得最大利润.。

高考数学第3讲 不等式性质与线性规划、基本不等式

高考数学第3讲 不等式性质与线性规划、基本不等式
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
得 f(2a)-12(2a+2)2<f(12-a)-12(12-a+2)2, 即 g(2a)<g(12-a),所以 2a>12-a,所以 a>4, 又 2a>-2,12-a>-2,所以 4<a<14. 故选 B.
核心知识 核心考点 高考押题 限时规范训练
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
考点一 不等式性质及求解
——清楚条件,等价转化
(1)[考题打磨]设 a=2ln 3,b=2-0.1,c=ln 8,则 a,b,c
的大小关系是( A )
A.a>c>b
B.a>b>c
C.b>a>c
D.c>a>b
解析:选 A.a=2ln 3=ln 9>ln 8>1. b=2-0.1<1,∴a>c>b,选 A.
的最大值为 的最小值为
___2__S______.
核心知识 核心考点 高考押题 限时规范训练
大二轮复习 数学(文)
3.不等式 y>kx+b 表示直线 y=kx+b 上方的区域;y<kx+b 表示 直线 y=kx+b 下方的区域.
4.绝对值不等式:|x|>a(a>0)⇔ __x_>__a__或__x_<__-__a___, |x|<a(a>0)⇔ _-__a_<__x_<__a__.
(5)形如 y=ax+bx(a>0,b>0),x∈(0,+∞)取最小值时,ax=bx⇒x b
=______a_____,即“对号函数”单调变化的分界点;
__P2__2_(6_)_a_>_0_,_ ;b>若0,a若b =a
+b=P,当且仅当 S,当且仅当 a=
a b

2018届高考数学二轮复习极坐标、参数方程、直角坐标方程的互化课件(全国通用)

2018届高考数学二轮复习极坐标、参数方程、直角坐标方程的互化课件(全国通用)

【解析】 (1)曲线C 的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,将
代入方程
x2+y2-4x=0,化简得ρ =4cosθ .所以,曲线C的极坐标方程为ρ =4cosθ .
(2)∵直线l 的直角坐标方程为x+y-4=0,由 坐标为(2,2),(4,0),所以直线l被曲线C截得的弦长为 得直线l与曲线C的交点
.
【答案】
(θ 为参数) 【解析】 曲线C的直角坐标方程是 (θ 为参数).
(x-1)2+y2=1,其参数方程为
10.已知曲线C1的参数方程为 ( ρ =2cosθ +6sinθ .
θ 为参数),曲线C2的极坐标方程为
将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.
【解析】 由 (
θ 为参数),得(x+2)2+y2=10.∴曲线C1的普通方程为
(x+2)2+y2=10.∵ρ =2cosθ +6sinθ ,∴ρ 2=2ρ cosθ +6ρ sinθ .∴x2+y2=2x+6y,即(x1)2+(y-3)2=10.∴曲线C2的直角坐标方程为(x-1)2+(y-3)2=10.
7.参数方程(Βιβλιοθήκη 为参数)所表示的曲线的普通方程为
.
【答案】
y=-2x2+1(-1≤x≤1) 【解析】 由于cos2θ =1-2sin2θ ,故y=1-2x2,即
y=-2x2+1(-1≤x≤1).
9.(广东高考)已知曲线C的极坐标方程为ρ =2cosθ .以极点为原点,极轴为x轴的正半 轴建立直角坐标系,则曲线C的参数方程为

2018全国高考数学真题线性规划部分整理(附详细答案解析)

2018全国高考数学真题线性规划部分整理(附详细答案解析)

2018高考全国卷及自主招生数学高考真题线性规划专题真题整理(附答案解析)1.(18全国卷I,文数14,理数13题)若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为.解析:不等式组220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩所表示可行域如图中阴影部分所示。

目标函数32z x y =+可化为31y x z =-+,作3y x =-即320x y +=图象,32z x y =+的最大值点应为使3122y x z =-+的截距最大的点,由图易知为点(2,0)。

∴把(2,0)代入32z x y =+得max 32206z =⨯+⨯=。

答案:62.(18全国卷Ⅱ,文数、理数14)若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z x y =+的最大值为.解析:不等式组25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,表示的可行域如图中阴影部分所示。

目标函数z x y =+可化为y x z =-+,作y x =-即0x y +=的图象(虚线所示),易知z x y =+中z 取最大值的点应为使y x z =-+截距最大的点,为点()5,4A ,把()5,4A 坐标代入z x y =+中得max 549z =+=答案:93.(18全国卷Ⅲ,文数15)若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.解析:不等式组23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,所表示的可行域如右图中阴影部分所示,目标函数13z x y =+可化为33y x z =-+,作出函数3y x =-即30x y +=的图象(图中虚线所示),易知13z x y =+的最大值点为33y x z =-+在y 轴截距的最大值点,为点()2,3A ,把()2,3A 代入目标函数13z x y =+中,得max 12333z =+⨯=答案:34.(18年北京卷文数13、理数12)若x ,y 满足12x y x +≤≤,则2y x -的最小值是.解析:不等式12x y x +≤≤等价于12y x y x ≥+⎧⎨≤⎩,其可行域如图中阴影部分所示。

2018届高中数学高考二轮复习不等式与平面向量教案含答案(全国通用)

2018届高中数学高考二轮复习不等式与平面向量教案含答案(全国通用)

教学过程一、考纲解读不等式1.对本部分的考查,不等式性质常与简易逻辑结合考查选择填空题;2.不等式解法主要以一元二次不等式为主,兼顾简单分式不等式、含绝对值的不等式、指对数不等式、与分段函数有关的不等式,常与集合,导数相结合。

3.线性规划为必考且难度不大。

4.基本不等式求最值要引起足够的重视;5.不等式的恒成立问题也应当反复训练。

向量1.对本部分的考查,在选择填空中要重视向量的几何运算和代数运算;必须掌握向量共线、垂直、夹角、模、投影等;2.要重视在其它知识中的工具作用,主要在解析几何中。

二、复习预习不等式:(1)不等关系 (2)一元二次不等式(3)二元一次不等式组与简单线性规划问题 (4)基本不等式:()0,2>≥+b a ab ba ① 了解基本不等式的证明过程.② 会用基本不等式解决简单的最大(小)值问题. 平面向量(1)平面向量的实际背景及基本概念 (2)向量的线性运算(3)平面向量的基本定理及坐标表示 (4)平面向量的数量积 (5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题. 三、知识讲解 考点1 不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. (2)一元二次不等式① 会从实际情境中抽象出一元二次不等式模型.② 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. ③ 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图. (3)二元一次不等式组与简单线性规划问题 ① 会从实际情境中抽象出二元一次不等式组.② 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. ③ 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. (4)基本不等式:()0,2>≥+b a ab ba ① 了解基本不等式的证明过程. ② 会用基本不等式解决简单的最大(小)值问题.考点2 平面向量(1)平面向量的实际背景及基本概念 ①了解向量的实际背景.②理解平面向量的概念,理解两个向量相等的含义. ③理解向量的几何表示. (2)向量的线性运算① 掌握向量加法、减法的运算,并理解其几何意义. ② 掌握向量数乘的运算及其意义,理解两个向量共线的含义. ③ 了解向量线性运算的性质及其几何意义. (3)平面向量的基本定理及坐标表示 ① 了解平面向量的基本定理及其意义.② 掌握平面向量的正交分解及其坐标表示.③ 会用坐标表示平面向量的加法、减法与数乘运算.④ 理解用坐标表示的平面向量共线的条件. (4)平面向量的数量积① 理解平面向量数量积的含义及其物理意义.② 了解平面向量的数量积与向量投影的关系.③ 掌握数量积的坐标表达式,会进行平面向量数量积的运算.④ 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系. (5)向量的应用①会用向量方法解决某些简单的平面几何问题.②会用向量方法解决简单的力学问题与其他一些实际问题.四、例题精析例1 [2014全国1卷] 已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【规范解答】解法1.选A (演绎法)∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤, 解法2.选A (特值法)取元素2-,代入集合A 与集合B 验证,发现既在集合A 中,也在集合B 中,只有选项A 中含有元素2-,排除其它选项,选A【总结与反思】 (1)本题考查了一元二次不等式的解法与集合的交集运算,容易出错的地方是审错题目,把不等式的等号漏掉。

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

高考数学复习讲义:二元一次不等式(组) 与简单的线性规划问题

返回
[解析] (1)作出满足约束条 件的可行域如图中阴影部分所 示.由 z=3x+2y,得 y=-32x+2z.
作直线 l0:y=-32x. 平移直线 l0,当直线 y=-32x+2z过点(2,0)时, z 取最大值,zmax=3×2+2×0=6.
返回
(2)




x+1≤y, y≤2x,

x-y+1≤0, 2x-y≥0,
返回
[方法技巧]
解决求平面区域面积问题的方法步骤 (1)画出不等式组表示的平面区域; (2)判断平面区域的形状,并求得直线的交点坐标、图形 的边长、相关线段的长(三角形的高、四边形的高)等,若为规 则图形则利用图形的面积公式求解;若为不规则图形则利用 割补法求解. [提醒] 求面积时应考虑圆、平行四边形等图形的对称性.
x<2y 选项 B 所表示的区域,故选 B. 答案:B
返回
3x+y-6≥0, 2.(2019·河南豫北联考)关于 x,y 的不等式组x-y-2≤0,
x+y-4≤0
表示的平面区域的面积为
()
A.3
B.52
C.2
D.32
解析:平面区域为一个直角三角形 ABC,其中 A(3,1),
B(2,0),C(1,3),所以面积为12|AB|·|AC|=12× 2× 8=2,
-dc,-ba连线的斜率的ac倍的取值范围、最值等
返回
对形如 z=|Ax+By+C|型的目标函数,可先 点到直线 变形为 z= A2+B2·|Ax+A2B+y+B2C|的形式,将 距离型 问题化为求可行域内的点(x,y)到直线 Ax+
By+C=0 的距离的 A2+B2倍的最值
返回
考法三 线性规划中的参数问题

2018年高考数学理科山东专版二轮专题复习与策略课件:第2部分 突破点20 不等式与线性规划 精品

2018年高考数学理科山东专版二轮专题复习与策略课件:第2部分 突破点20 不等式与线性规划 精品
(5)a>0,b>0,则______a_2+_2_b_2_≥__a_+_2_b_≥___a_b_≥__1a_+_2_1b_____,___当__且__仅__当__a_=__b___ 时取等号.
利用基本不等式求最值
已知 a,b∈R,则(1)若___a_+__b_=__S___ (S 为定值),则___a_b_≤__a_+_2_b__2_=__S4_2 ____, __当__且__仅__当__a_=__b_时____,ab 取得___最__大__值__S4_2 _____;(2)若_a_b_=__T___ (T 为定值,且 T>0),则_a_+__b_≥__2___a_b_=__2__T_,_当__且__仅__当__a_=__b__时__,__a_+__b_取__得__最__小__值___2__T___.
(3) __ba_+__ab_≥__2_(a_,__b__同__号__且__均__不__为__零__)__,___当__且__仅__当__a_=__b_时___,等号成立.
(4) ____a_+__1a_≥__2_(_a_>__0_),__当__且__仅__当___a_=__1_时__,等号成立;___a_+__1a_≤__-__2_(a_<__0_)__, _当__且__仅__当__a_=__-__1_时_____,等号成立.
线性规划中的参数问题的注意点
(1)当__最__值__已__知____时,目标函数中的参数往往与___直__线__斜__率__有__关_____,解 题时应充分利用_斜__率___这一特征加以转化.
(2)当__目__标__函__数__与__最__值__都__已__知____,且__约__束__条__件__中__含__有__参__数__时____,因为平 面区域是变动的,所以要抓住___目__标__函__数__及__最__值__已__知______这一突破口,先确定 __最__优__解___,然后____变__动__参__数__范__围____,使得这样的_最__优__解___在该区域内即可.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第19讲 不等式与线性规划
(对应 生用书第113页)
一、选择题
1.(2017·山西吕梁二模)已知0<a <b ,且a +b =1,则下列不等式中正确的是( )
A .log 2 a >0
B .2a -b <1
2 C .log 2 a +log 2 b <-2
D .2⎝ ⎛⎭
⎪⎫a b +b a <12
C [对于A ,由log 2 a >0得log 2 a >log 2 1,即a >1,而由0<a <b ,且a +b =1,得a <1,矛盾,故A 不正确.
对于B ,由2a -b <1
2得2a -b <2-1,即a -b <-1,则a +1<b ,而由a +b =1得a +1=2-b >1>b ,矛盾,故B 不正确.
对于C ,当a 、b >0时,log 2 a +log 2 b <-2⇔log 2(ab )<log 2 14,即ab <1
4,又由1=a +b >2ab 可得ab <1
4,故C 正确.
对于D ,由2⎝ ⎛⎭⎪⎫a b +b a <12得a b +b a <1
4,而由0<a <b 得a b +b a >2,矛盾,故D 不正
确. 故选C.]
2.(2017·湖北四校联考)若变量x ,y 满足约束条件⎩⎨⎧
x +y -2≥0
x -2y +6≥0
x ≤2
,则z =(x -
1)2+y 2的最大值为( )
【导 号:07804125】
A .4
B .17
C .17
D .16
C [z =(x -1)2+y 2表示点(x ,y )与点P (1,0)间距离的平
方.画出约束条件所表示的平面区域如图中阴影部分所示,易知P (1,0)与A (2,4)间的距离最大,因此z max =(2
-1)2+42=17.]
3.(2017·广东五校协作体联考)不等式组⎩⎨⎧
2x +y -3≤0
3x -y +3≥0
x -2y +1≤0
的解集记为D ,有下面
四个命题:p 1:∀(x ,y )∈D,2x +3y ≥-1;p 2:∃(x ,y )∈D,2x -5y ≥-3;p 3:∀(x ,y )∈D ,y -12-x ≤1
3;p 4:∃(x ,y )∈D ,x 2+y 2+2y ≤1.其中的真命题是( )
A .p 1,p 2
B .p 2,p 3
C .p 2,p 4
D .p 3,p 4
C
[作出不等式组⎩⎨⎧
2x +y -3≤0
3x -y +3≥0
x -2y +1≤0
表示的区域,如
图中阴影部分所示,其中A (0,3),B (-1,0),由
⎩⎨⎧ 2x +y =3x -2y +1=0得⎩⎨⎧
x =1y =1,即C (1,1),对于p 1,因为2×(-1)+0≤-1,故p 1是假命题,排除A ;对于p 2,将C (1,1)代入2x -5y +3=0得到2×1-5×1+3=0,说明点C (1,1)在2x -5y +3=0上,故p 2是真命题,排除D ;对于p 3,因为3-12-0
=1>13,故p 3是假命题,排除B ,故选C.]
4.(2017·郑州二模)已知实数x ,y 满足⎩⎨⎧
y ≥x +2
x +y ≤6
x ≥1
,则z =2|x -2|+|y |的最小值
是( ) A .6 B .5 C .4
D .3
C
[法一:(数形结合法)作出不等式组⎩⎨⎧
y ≥x +2
x +y ≤6
x ≥1
所表示的平面区域,如
图中阴影部分所示.
由图易知1≤x ≤2,y >0,z =2(2-x )+y =4-2x +y ,即y =2x +z -4,平移直线y =2x 可知,当直线经过点M (2,4)时,z 取得最小值,最小值为4.故选C.
法二:(特殊值验证法)作出不等式组⎩⎨⎧
y ≥x +2
x +y ≤6
x ≥1
所表示的平面区域,如图
中阴影部分所示.
由可行域的形状可知,z =2|x -2|+|y |的最值必在顶点M (2,4),N (1,3),P (1,5)处取到,分别代入z =2|x -2|+|y |可得z =4或z =5或z =7,故选C.] 5.(2017·湘中名校模拟)若正数a ,b 满足:1a +2b =1,则2a -1+1b -2
的最小值为
( ) A .2 B .322 C .52
D .1+32
4
A [由a ,b 为正数,且1a +2b =1,得b =2a a -1>0,所以a -1>0,所以
2
a -1+
1b -2=2a -1+12a a -1
-2=2
a -1
+a -12≥22a -1·a -12=2,当且仅当2a -1
=a -12和1a +2b =1同时成立,即a =b =3时等号成立,所以2a -1+1
b -2的
最小值为2,故选A.]
6.(2017·石家庄模拟)已知函数f (x )=⎩⎨⎧
2e x -1
,x <1
x 3+x ,x ≥1
,则f (f (x ))<2的解集为( )
A .(1-ln 2,+∞)
B .(-∞,1-ln 2)
C .(1-ln 2,1)
D .(1,1+ln 2)
B [因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.]
7.(2017·武昌区模拟)设x ,y 满足约束条件⎩⎨⎧
x +y ≥a x -y ≤-1
,且z =x +ay 的最小值
为7,则a =( ) A .-5 B .3 C .-5或3
D .5或-3
B [根据约束条件画出可行域如图1中阴影部分所示:
图1
可知可行域为开口向上的V 字型.在顶点处z 有最小值,顶点为⎝ ⎛⎭⎪⎫a -12,a +12,则a -12+a ⎝ ⎛⎭⎪⎫
a +12=7,解得a =3或a =-5.当a =-5时,如图2,
图2
虚线向上移动时z 减小,故z →-∞,没有最小值,故只有a =3满足题意.选B.]
8.(2017·河南、湖北、山西三省联考)已知实数x ,y 满足⎩⎪⎨⎪⎧
2x -y -6>0,y ≥1
2x -3,
x +4y ≤12,
则z

y -3
x -2
的取值范围为( ) 【导 号:07804126】
A.⎝ ⎛
⎦⎥⎤-∞,-12 B .⎝ ⎛
⎦⎥⎤-∞,-13
C.⎣⎢⎡⎦
⎥⎤-1
2,-13 D .⎣⎢⎡⎭
⎪⎫-13,+∞
B [不等式组所表示的平面区域如图中阴影部分所示,z =
y -3
x -2
表示点D (2,3)与平面区域内的点(x ,y )之间连线的斜率.因点D (2,3)与B (8,1)连线的叙率为-1
3且C 的坐标为(2,-2),故由图知z =y -3x -2的取值范围为
⎝ ⎛

⎥⎤-∞,-13,故选B.
]
9.(2017·洛阳一模)已知实数x ,y 满足条件⎩⎨⎧
x +y -2≤0x -2y -2≤0
2x -y +2≥0
,若z =y -ax 取得
最大值时的最优解有且只有一个,则实数a 的取值集合为( )
A .{2,-1}
B .{a ∈R |a ≠2}
C .{a ∈R |a ≠-1}
D .{a ∈R |a ≠2且a ≠-1}
D [不等式组对应的平面区域如图中阴影部分所示.由z =-ax +y 得y =ax +z ,若a =0,直线y =ax +z =z ,此时最大的最优解只有一个,满足条件.若a >0,则直线y =ax +z
的。

相关文档
最新文档