2.3.2等比数列的前n项和
【人教B版】2017年必修五:2.3.2《等比数列的前N项和》示范学案(含答案)
2.3.2 等比数列的前n 项和1.理解等比数列的前n 项和公式的推导过程.2.掌握等比数列的前n 项和公式,并能用它解决有关等比数列问题.(1)在求等比数列{a n }的前n 项和公式时,应分q =1和q ≠1两种情况,若题目中没有指明,切不可忘记对q =1这一情形的讨论.(2)等比数列的通项公式及前n 项和公式共涉及五个量,即a 1,a n ,q ,n ,S n ,通常已知其中三个量可求另外两个量,这一方法简称为“知三求二”.【做一做1-1】在等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( ). A .4 B .-4 C .2 D .-2【做一做1-2】在等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .1922.等比数列前n 项和的常用性质性质(1):在等比数列{a n }中,若S n 为其前n 项和,则依次每k 项的和构成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,S 4k -S 3k ,…成等比数列,其公比为________.性质(2):在等比数列{an }中,若项数为2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=____. 性质(3):数列{a n }是公比为q 的等比数列,则S m +n =S n +__________.【做一做2】已知等比数列{a n },S n 是其前n 项和,且S 3=7,S 6=63,则S 9=________.一、错位相减法的实质及应用剖析:(1)用错位相减法求等比数列前n 项和的实质是把等式两边同乘等比数列的公比q ,得一新的等式,错位相减求出S n -qS n ,这样可以消去大量的“中间项”,从而能求出S n .当q =1时,S n =na 1,当q ≠1时,S n =a 1-a 1q n1-q.这是分段函数的形式,分段的界限是q =1.(2)对于形如{x n ·y n }的数列的和,其中{x n }为等差数列,{y n }为等比数列,也可以用错位相减法求和.错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.(3)利用这种方法时,要注意对公比的分类讨论.二、等比数列的前n 项和公式的推导(首项为a 1,公比q ≠1)剖析:除了书上用到的错位相减法之外,还有以下方法可以求等比数列的前n 项和. (1)等比性质法 ∵a 2a 1=a 3a 2=a 4a 3=…=a na n -1=q , ∴a 2+a 3+a 4+…+a na 1+a 2+a 3+…+a n -1=q ,即S n -a 1S n -a n =q ,解得S n =a 1-a n q 1-q =a 1-q n 1-q. (2)裂项相消法S n =a 1+a 2+a 3+…+a n =a 1+a 1q +a 1q 2+…+a 1q n -1=(a 11-q -a 1q 1-q )+(a 1q 1-q -a 1q 21-q)+(a 1q 21-q -a 1q 31-q )+…+(a 1q n -11-q -a 1q n 1-q )=a 11-q -a 1q n 1-q =a 1-q n1-q. (3)拆项法S n =a 1+a 2+a 3+…+a n=a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +a 1q 2+…+a 1q n -2)=a 1+q (a 1+a 1q +a 1q 2+…+a 1q n -2+a 1q n -1-a 1q n -1),∴S n =a 1+q (S n -a 1q n -1) =a 1+q (S n -a n ).解得S n =a 1-a n q 1-q =a 1-q n1-q.三、教材中的“?”例2中,有别的解法吗?将这个数列的前8项倒过来排,试一试.剖析:∵S 8=27+26+25+…+2+1, ∴S 8=1+2+22+…+26+27=-281-2=28-1=255.此题说明了在一个等比数列{a n }中,若为有限项,如a 1,a 2,…,a n ,则a n ,a n -1,…,a 2,a 1也是等比数列,其公比为原数列公比的倒数.题型一 等比数列的前n 项和公式的应用 【例1】在等比数列{a n }中,(1)已知a 1=3,q =2,求a 6,S 6;(2)已知a 1=-1,a 4=64,求q 和S 4; (3)已知a 3=32,S 3=92,求a 1,q .分析:在等比数列的前n 项和公式中有五个基本量a 1,a n ,q ,n ,S n ,只要已知任意三个,就可以求出其他两个.反思:在等比数列{a n }中,首项a 1与公比q 是两个最基本的元素;有关等比数列的问题,均可化成关于a 1,q 的方程或方程组求解.解题过程中,要注意:(1)选择适当的公式;(2)利用等比数列的有关性质;(3)注意在使用等比数列前n 项和公式时,要考虑q 是否等于1.题型二 等比数列的前n 项和的性质的应用【例2】在各项均为正数的等比数列{a n }中,若S 10=10,S 20=30,求S 30.分析:可以利用解方程组解决,也可以利用等比数列的前n 项和的性质来解决.反思:由于等比数列中,无论是通项公式还是前n 项和公式,均与q 的若干次幂有关,所以在解决等比数列问题时,经常出现高次方程,为达到降幂的目的,在解方程组时经常利用两式相除,达到整体消元的目的.题型三 某些特殊数列的求和【例3】(1)已知数列{a n }的通项公式a n =2n+n ,求该数列的前n 项和S n ;(2)已知数列{a n }的通项公式a n =n ·2n,求该数列的前n 项和S n .分析:(1)所给数列虽然不是等差数列或等比数列,但在求该数列的前n 项和时可以把a n 看成一个等比数列和一个等差数列的和的形式,分别求和,再相加.(2)写出数列的前n 项和,注意其与等比数列形式类似,考虑用推导等比数列求和公式的方法来求其前n 项和.反思:(1)分组求和法适用于某些特殊数列的求和,这些特殊数列的通项可写成几个等比数列或等差数列的和的形式;(2)错位相减法适用于求一个等差数列与一个等比数列的积组成的新数列的前n 项和.题型四 等比数列前n 项和的实际应用【例4】为了保护某处珍贵文物古迹,政府决定建一堵大理石护墙,设计时,为了与周边景观协调,对于同种规格的大理石用量须按下述法则计算:第一层用全部大理石的一半多一块,第二层用剩下的一半多一块,第三层……依此类推,到第十层恰好将大理石用完,问共需大理石多少块?每层各用大理石多少块?分析:设出共用大理石的块数,即可求出各层大理石的使用块数,通过观察,此即为一等比数列,通过等比数列求和,求出总块数,再求出每层用的块数.反思:对于实际问题,可以采用设出未知量的方法使之具体化.通过对前几项的探求,寻找其为等比数列的本质,再通过等比数列求和公式来求解.题型五 易错辨析【例5】已知数列{a n }满足a n =⎩⎪⎨⎪⎧2n,n 为奇数,n ,n 为偶数,试求其前n 项和.错解:S n =a 1+a 2+a 3+…+a n=(a 1+a 3+a 5+…+a n -1)+(a 2+a 4+a 6+…+a n )=-4n21-4+n2×2+n 2n2-2×2=13·2n +1+n 24+n 2-23. 错因分析:这里数列的通项a n 是关于n 的分段函数,当n 为奇数或为偶数时对应不同的法则,因此求和必须对项数n 进行分类讨论.1在等比数列{a n }中,若a 1=1,a 4=18,则该数列的前10项和为( ).A .2-128B .2-129C .2-1210 D .2-1211 2等比数列的前n 项和S n =k ·3n+1,则k 的值为( ).A .全体实数B .-1C .1D .33某人为了观看2012年奥运会,从2005年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2012年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( ).A .a (1+p )7B .a (1+p )8C .ap [(1+p )7-(1+p )] D .a p[(1+p )8-(1+p )]4已知等比数列{a n }的各项均为正数,前n 项和为S n ,若a 2=2,a 1a 5=16,则S 5=________. 5在等比数列{a n }中,S n =65,n =4,q =23,则a 1=________.6在等比数列{a n }中,S 3=4,S 6=36,求a n . 答案:基础知识·梳理1.na 1 a 1(1-q n )1-q na 1 a 1-a n q1-q【做一做1-1】A 由题意,知q ≠1,故有S 5=44=a 1(1-q 5)1-q,将q =-2代入解得a 1=4.【做一做1-2】B 由a 5=a 2·q 3,得q 3=2439=27,∴q =3,从而a 1=3.∴S 4=a 1(1-q 4)1-q =3×(1-34)1-3=120.2.q k (q ≠-1) q q n·S m 【做一做2】511 典型例题·领悟【例1】解:(1)a 6=a 1q 5=3×25=96.S 6=a 1(1-q 6)1-q =3(1-26)1-2=189.(2)∵a 4=a 1q 3,∴64=-q 3.∴q =-4,∴S 4=a 1-a 4q 1-q =-1-64×(-4)1-(-4)=51.(3)由题意,得⎩⎪⎨⎪⎧a 3=a 1q 2=32,S 3=a 1(1+q +q 2)=92,①②②÷①,得1+q +q2q2=3, ∴2q 2-q -1=0,∴q =1或q =-12.当q =1时,a 1=32;当q =-12时,a 1=6.【例2】解:解法一:设{a n }的公比为q ,显然q ≠1.由已知条件可列出方程组⎩⎪⎨⎪⎧10=a 1(1-q 10)1-q,30=a 1(1-q20)1-q,两式作商,得1+q 10=3,∴q 10=2.∴S 30=a 1(1-q 30)1-q=a 1(1-q 10)1-q(1+q 10+q 20)=10×(1+2+4)=70.解法二:由性质S m +n =S n +q n·S m ,得S 20=S 10+q 10S 10,即30=10+10q 10,∴q 10=2.∴S 30=S 20+q 20S 10=30+40=70.解法三:运用性质S m 1-q m =S n1-qn (q ≠±1).由已知条件S 10=10,S 20=30,易得q ≠±1,∴S 101-q 10=S 201-q 20,即101-q 10=301-q20.∴q 10=2. 又S 101-q 10=S 301-q30,解得S 30=70. 解法四:运用性质S k ,S 2k -S k ,S 3k -S 2k ,S 4k -S 3k ,…成等比数列.∵S 10,S 20-S 10,S 30-S 20成等比数列,而S 10=10,S 20=30,∴(S 20-S 10)2=S 10·(S 30-S 20),即(30-10)2=10×(S 30-30).∴S 30=70. 【例3】解:(1)S n =a 1+a 2+a 3+…+a n=(2+1)+(22+2)+(23+3)+…+(2n+n )=(2+22+23+ (2))+(1+2+3+…n )=2(1-2n)1-2+(1+n )n2 =2n +1-2+(n +1)n 2.(2)∵S n =1×21+2×22+3×23+…+n ×2n,2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1,∴-S n =2+22+23+…+2n -n ·2n +1,∴S n =n .2n +1-(2+22+23+ (2))=n ·2n +1-2(1-2n)1-2=n ·2n +1-(2n +1-2)=(n -1)·2n +1+2.【例4】解:设共用大理石x 块,则各层用大理石块数分别为第一层:x 2+1=x +22;第二层:x -x +222+1=x +24;第三层:x -x +22-x +242+1=x +28;……第十层:x -x +22-x +24-…-x +2292+1=x +2210.所以从第一层到第十层所用大理石的块数构成首项为x +22,公比为12,项数为10的等比数列,故x =x +22+x +24+…+x +2210,解得x =2 046.答:共用去大理石2 046块,各层分别为1 024,512,256,128,64,32,16,8,4,2块. 【例5】正解:(1)当n 为奇数时,S n =(a 1+a 3+a 5+…+a n )+(a 2+a 4+a 6+…+a n -1)=2(1-4n +12)1-4+n -12×2+n -12(n -12-1)2×2=13·2n +2+n 24-1112. (2)当n 为偶数时,S n =(a 1+a 3+a 5+…+a n -1)+(a 2+a 4+a 6+…+a n )=2(1-4n 2)1-4+n 2×2+n 2(n2-1)2×2=13·2n +1+n 24+n 2-23. 随堂练习·巩固1.B 设其公比为q ,∵a 1=1,a 4=a 1q 3=18.∴q =12.∴S 10=1×(1-1210)1-12=2-129.2.B 当n =1时,a 1=S 1=3k +1;当n ≥2时,a n =S n -S n -1=k ·3n -k ·3n -1=2k ·3n-1.令3k +1=2k 得k =-1.3.D 2005年存入的a 元到2012年所得的本息和为a (1+p )7,2006年存入的a 元到2012年所得的本息和为a (1+p )6,依此类推,则2011年存入的a 元到2012年的本息和为a (1+p ),每年所得的本息和构成一个以a (1+p )为首项,1+p 为公比的等比数列,则到2012年取回的总额为a (1+p )+a (1+p )2+…+a (1+p )7=a (1+p )[1-(1+p )7]1-(1+p )=a p[(1+p )8-(1+p )].4.315.27 S 4=a 1(1-q 4)1-q =a 1[1-(23)4]1-23=65,解得a 1=27.6.解:∵S 33≠S 66,∴q ≠1.∴S 3=a 1(1-q 3)1-q =4,S 6=a 1(1-q 6)1-q=36.两式相除,得1+q 3=9,∴q =2.将q =2代入S 3=4,得a 1=47.∴a n =47·2n -1=2n +17.。
高中数学 第一部分 第二章 2.3 第三课时 等比数列的前n项和课件 苏教版必修5
(1)列方程组求出a1和q即可.
(2)bn可以转化为两个等比数列的通项公式和一个
常数数列通项公式相加,求和时重新组合即可.
[精解详析]
(1)设等比数列{an}的公比为 q,则 an=a1qn-1,
1 1 a1+a1q=2a1+a1q, 由已知 a1q2+a1q3+a1q4=64 1 2+ 1 3+ 1 4, a1q a1q a1q
①-②得,(1-x)Sn=x+x2+x3+…+xn-nxn+1
x1-xn + = -nxn 1, 1- x x ∴ Sn= [nxn+1-(n+1)xn+1], 2· 1-x nn+1 2 ∴Sn=0 x=0 x n+1 [ nx -n+1xn+1] 2 1-x x=1
1 1 2 2 2 2 2n-1 ①-②得:2Sn=2+22+23+24+…+2n- n+1 2
2n-1 1 1 1 1 =2+2+22+…+ n-1- n+1 2 2 1 1 1 - n-1· 2 2 2 2n-1 3 2n-1 1 1 =2+ 1 - 2n+1 =2-2n-1- 2n+1 1- 2 3 2n+3 =2- n+1 , 2 2n+3 ∴Sn=3- 2n .
2 a1q=2, 化简得 2 6 a1q =64.
又 a1>0,故 q=2,a1=1. 所以 an=2n-1.
1 2 1 1 2 n-1 (2)由(1)知 bn=(an+a ) =an+a2 +2=4 + n-1+2. 4 n n 因此 Tn=(1+4+…+4
n-1
1 1 )+(1+4+…+ n-1)+2n 4
(2)设公比为 q,由通项公式及已知条件得
2 2 a + a q = 10 a 1 + q =10 1 1 1 3 5 ,即 3 5 5 2 a q +a1q =4 a q 1+q =4 1 1
人教新课标版数学高二B必修5学案 2.3.2 等比数列的前n项和(一)
2.3.2 等比数列的前n 项和(一)明目标、知重点 1.掌握等比数列的前n 项和公式及公式证明思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1)na 1(q =1). (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和公式的变式若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q (1-q n )=A (q n -1).其中A =a 1q -1.3.错位相减法推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.国际象棋起源于古代印度.相传国王要奖赏象棋的发明者,问他想要什么.发明者说:“请在象棋的第一个格子里放1颗麦粒,第二个格子放2颗麦粒,第三个格子放4颗麦粒,以此类推,每个格子放的麦粒数都是前一个格子的两倍,直到第64个格子.请给我足够的麦粒以实现上述要求”.国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g ,据查目前世界年度小麦产量约6亿 t ,根据以上数据,判断国王是否能实现他的诺言. 探究点一 等比数列前n 项和公式的推导思考1 在情境导学中,如果把各格所放的麦粒数看成是一个数列,那么这个数列是怎样的一个数列?通项公式是什么?答 所得数列为1,2,4,8,…,263.它是首项为1,公比为2的等比数列,通项公式为a n =2n -1. 思考2 在情境导学中,国王能否满足发明者要求的问题,转化为数列的怎样的一个问题? 答 转化为求通项为a n =2n-1的等比数列前64项的和.思考3 类比求等差数列前n 项和的方法,能否用倒序相加法求数列1,2,4,8,…,263的和?为什么?答 不能用倒序相加法,因为对应各项相加后的和不相等.思考4 对于S 64=1+2+4+8+…+262+263,用2乘以等式的两边可得2S 64=2+4+8+…+262+263+264,对这两个式子作怎样的运算能解出S 64?答 比较两式易知,两式相减能消去同类项,解出S 64,即S 64=1-2641-2=264-1≈1.84×1019.思考5 类比思考4中求和的方法,如何求等比数列{a n }的前n 项和S n ? 答 设等比数列{a n }的首项是a 1,公比是q ,前n 项和为S n . S n 写成:S n =a 1+a 1q +a 1q 2+…+a 1q n -1.① 则qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n .② 由①-②得:(1-q )S n =a 1-a 1q n . 当q ≠1时,S n =a 1(1-q n )1-q.当q =1时,由于a 1=a 2=…=a n ,所以S n =na 1.思考6 下面提供了两种推导等比数列前n 项和公式的方法.请你补充完整. 方法一 由等比数列的定义知: a 2a 1=a 3a 2=a 4a 3=…=a n a n -1=q . 当q ≠1时,由等比性质得: a 2+a 3+a 4+…+a n a 1+a 2+a 3+…+a n -1=q ,即S n -a 1S n -a n=q . 故S n =a 1-a n q 1-q =a 1(1-q n )1-q .当q =1时,易知S n =na 1.方法二 由S n =a 1+a 2+a 3+…+a n 得: S n =a 1+a 1q +a 2q +…+a n -1q =a 1+q ·(a 1+a 2+…+a n -1) =a 1+q ·(S n -a n )从而得(1-q )·S n =a 1-a n q . 当q ≠1时,S n =a 1-a n q1-q ;当q =1时,S n =na 1.小结等比数列{a n}的前n 项和S n可以用a 1,q ,a n表示为S n=⎩⎪⎨⎪⎧na 1,q =1a 1-a nq1-q ,q ≠1.例1 “一尺之棰,日取其半,万世不竭”,怎样用学过的知识来说明它? 解 这句话用现代文叙述是“一尺长的木棒,每天取它的一半,永远也取不完”.如果每天取出的木棒的长度排成一个数列,则得到一个首项为a 1=12,公比q =12的等比数列,它的前n 项和为S n =12×[1-(12)n ]1-12=1-(12)n .不论n 取何值,1-S n =(12)n 总大于0,这说明一尺长的木棒,每天取它的一半,永远也取不完.反思与感悟 涉及等比数列前n 项和时,要先判断q =1是否成立,防止因漏掉q =1而出错. 跟踪训练1 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2. 因此S n =a 1(1-q n )1-q=2n +1-2.例2 等比数列{a n }的公比q =12,a 8=1,求它的前8项和S 8.解 方法一 因为a 8=a 1q 7,所以a 1=a 8q 7=27.因此S 8=a 1(1-q 8)1-q =27[1-(12)8]1-12=28-1=255.方法二 把原数列的第8项当作第一项,第1项当作第8项,即顺序颠倒,也得到一个等比数列{b n },其中b 1=a 8=1,q ′=2,所以前8项和S 8=b 1(1-q ′8)1-q ′=1-281-2=255.反思与感悟 等比数列的前n 项和公式和通项公式中共涉及a 1,a n ,q ,n ,S n 五个基本量,已知其中三个量,可以求出另外的两个量,我们可以简称为“知三求二”. 跟踪训练2 求下列等比数列前8项的和: (1)12,14,18,…; (2)a 1=27,a 9=1243,q <0.解 (1)因为a 1=12,q =12,所以S 8=12[1-(12)8]1-12=255256.(2)由a 1=27,a 9=1243,可得1243=27·q 8.又由q <0,可得q =-13.所以S 8=27[1-(-13)8]1-(-13)=1 64081.探究点二 等比数列前n 项和的实际应用例3 某工厂去年1月份的产值为a 元,月平均增长率为p (p >0),求这个工厂去年全年产值的总和.解 该工厂去年2月份的产值为a (1+p )元,3月,4月……的产值分别为a (1+p )2元,a (1+p )3元,……,去年12个月的产值组成以a 为首项,1+p 为公比的等比数列,因此,该厂去年全年的总产值为S 12=a [1-(1+p )12]1-(1+p )=a [(1+p )12-1]p .答 该工厂去年全年的总产值为a [(1+p )12-1]p元.反思与感悟 解应用题先要认真阅读题目,尤其是一些关键词:“平均每年的销售量比上一年的销售量增加10%”.理解题意后,将文字语言向数字语言转化,建立数学模型,再用数学知识解决问题.跟踪训练3 一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗? 解 用a n 表示热气球在第n 分钟上升的高度, 由题意,得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度为 S n =a 1+a 2+…+a n=a 1(1-q n)1-q =25×⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=125×⎣⎡⎦⎤1-⎝⎛⎭⎫45n <125. 故这个热气球上升的高度不可能超过125 m. 探究点三 错位相减法求和例4 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0). 解 分x =1和x ≠1两种情况.当x =1时,S n =1+2+3+…+n =n (n +1)2.当x ≠1时,S n =x +2x 2+3x 3+…+nx n , xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1, ∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x -nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得S n=⎩⎪⎨⎪⎧n (n+1)2 (x =1)x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).反思与感悟 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法.跟踪训练4 求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1), 则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)a n ② ①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)a n , (1-a )S n =1-(2n -1)a n +2(a +a 2+a 3+a 4+…+a n -1) =1-(2n -1)a n +2·a (1-a n -1)1-a=1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0)n 2(a =1)1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).1.等比数列1,x ,x 2,x 3,…的前n 项和S n 为( ) A.1-x n 1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧1-x n1-x ,x ≠1n , x =1 D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1n , x =1答案 C解析 当x =1时,S n =n ;当x ≠1时,S n =1-x n 1-x.2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4 C.152 D.172答案 C解析 方法一 由等比数列的定义, S 4=a 1+a 2+a 3+a 4=a 2q +a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 方法二 S 4=a 1(1-q 4)1-q,a 2=a 1q ,∴S 4a 2=1-q 4(1-q )q =152. 3.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项的和是( ) A .179 B .211 C .243 D .275 答案 B解析 ∵q 4=a 5a 1=1681=(23)4,∴q =23,∴S 5=a 1-a 5q 1-q =81-16×231-23=211.4.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为________. 答案 11a (1.15-1)解析 注意去年产值为a ,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a .∴1.1a +1.12a +1.13a +1.14a +1.15a =11a (1.15-1).1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列{a n ·b n }的前n 项和时,可采用错位相减的方法求和.一、基础过关1.设数列{(-1)n }的前n 项和为S n ,则S n 等于( ) A.n [(-1)n -1]2B.(-1)n +1+12C.(-1)n +12D.(-1)n -12答案 D解析 S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12.2.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189 答案 C解析 由S 3=a 1(1+q +q 2)=21且a 1=3, 得q 2+q -6=0.∵q >0,∴q =2.∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11 答案 D解析 由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13 C.19 D .-19 答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.5.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 1(1-q 6)1-q =4·a 1(1-q 3)1-q⇒q 3=3(q 3=1舍去). ∴a 4=a 1·q 3=1×3=3.6.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,那么a n =________. 答案 2n -1解析 a n -a n -1=a 1q n -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2,a 3-a 2=22,…a n-a n -1=2n -1.相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1.7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q . 解 当q =1时,S n =na 1,∴S 3+S 6=3a 1+6a 1=9a 1=S 9≠2S 9; 当q ≠1时,a 1(1-q 3)1-q +a 1(1-q 6)1-q =2×a 1(1-q 9)1-q ,得2-q 3-q 6=2-2q 9,∴2q 9-q 6-q 3=0,解得q 3=-12或q 3=1(舍去),∴q =-342.二、能力提升8.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米 B .299米 C .199米 D .166米 答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×⎝⎛⎭⎫128=2993964≈300(米). 9.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)答案 C解析 先根据等比数列的定义判断数列{a n }是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算.由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎡⎦⎤1-(-13)101-⎝⎛⎭⎫-13=3(1-3-10).10.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 答案 13解析 由已知4S 2=S 1+3S 3, 即4(a 1+a 2)=a 1+3(a 1+a 2+a 3). ∴a 2=3a 3,∴{a n }的公比q =a 3a 2=13.11.求和:1×21+2×22+3×23+…+n ·2n . 解 设S n =1×21+2×22+3×23+…+n ·2n则2S n =1×22+2×23+…+(n -1)×2n +n ·2n +1∴-S n =21+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1 =(1-n )·2n +1-2∴S n =(n -1)·2n +1+2.12.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2013年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%.(1)以2013年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2013年最多出口多少吨?(保留一位小数)参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910). ∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910, ∴a ≤12.3.故2013年最多出口12.3吨.三、探究与拓展13.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和. 解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n , 即S n =a 1+a 22+…+a n 2n -1,① S n 2=a 12+a 24+…+a n 2n .② 所以,当n >1时,①-②得S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n =1-(1-12n -1)-2-n 2n =n 2n . 所以S n =n 2n -1.当n =1时也成立. 综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n 2n -1.。
数列知识点总结及例题讲解
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
《等比数列的前n项和》
《等比数列的前n项和》一、教材分析1、地位和作用《等比数列的前n项和》是一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
《等比数列前n项和公式》是高中数学二年级第二学期第十三章第五节内容。
教学对象为高二学生,教学课时为2课时。
本节课为第一课时。
在此之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和、数列极限打下基础。
本节课既是本章的重点,同时也是教材的重点。
从高中数学的整体内容来看,《数列与数学归纳法》这一章是高中数学的重要内容之一,在整个高中数学领域里占据着重要地位,也起着关键性的作用。
首先:数列有着广泛的实际应用。
例如产品的规格设计、储蓄、分期付款的有关计算等。
其次:数列有着承前启后的作用。
数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础。
再次:数列也是培养提高学生思维能力的好题材。
学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高。
2、学情分析学生在学习本节内容之前已经学习等差、等比数列的概念和通项公式,等差数列的前N项和的公式,具备一定的数学思想方法,能够就接下来的内容展开思考,而且在情感上也具备了学习新知识的渴求。
从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.二、教学目标的确定作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。
3.2等比数列前n项的和第一课时
等比数列的前30项和
每天投资100万元, 连续一个月(30天) 第一天返还1分, 第二天返还2分, 第三天返还4分…… 后一天返还数为前一天 的2倍.
八戒吸纳的资金
返还给悟空的钱数
3 T30 1 2 3 30 S 30 1, 2 , 222 , 223 , 229 2 2 , 465 (万元) =?
解:S3 2 1 33 1 3 26 .
1 1 1 , (2) 求等比数列1 , ,, 的前10项的和 . 2 4 8 10
1 1 1 1 2 解:因为公比q , S10 1 2 1 2
1023 . 512
1 1 1 变式 求等比数列 2 , 4 , 8 , 的第5项到第10项的和.
2Sn (a1 an ) (a2 an1 ) (an a1 )
n个相 同的数
n(a1 a n ) Sn 2
高老庄集团 高老庄
周转不 灵……
第一天出1分入1万;第 二天出2分入2万;第三天 出4分入3万元;……哇,发 这猴子会不会又在耍我? …… 了……
猴哥,能不能帮帮 我……
No problem!第一 天给你1万,每天给 你投资比前一天多1 万元, 连续一个月 (30天),但有一个条 件:
第一天返还1分, 第二天返还2分, 第三天返还4分…… 后一天返还数为前一天 的2倍.
八戒吸纳的资金
返还给悟空的钱数
3 T30 1 2 3 30 S 30 1, 2 , 2222 , 223 , 229 2 , 465 (万元)
q 1 q 1
例1 已知 {an } 是等比数列,请完成下表:
题号 (1) (2) (3) a1 3 8
等比数列前n项和的性质及应用(课件)高二数学(人教A版2019选择性必修第二册)
________.
【思路分析】 (1)运用等比数列的性质 am·an=ak·al=a2t(m,n,k,l,t∈N*) 求
解.
(2)由 S2,S4-S2,S6-S4 成等比数列求解.
【解析】
(1)方法一:由等比中项的性质知 a1a2a3=a32=5,a7a8a9=a38=10,
a4a5a6=a35=( a2a8)3=5 2,故选 A.
的等比数列,则
1 − 1250 + 2 − 1250 + 3 − 1250 + ⋯ + 10 − 1250
−50 × 1 − 1.0810
=
≈ −724.8
1 − 1.08
所以
10 = 1 + 2 + 3 + ⋯ + 10
≈ 1250 × 10 − 724.3 = 11 775.7 ≈ 11 776 .
1
1
1
1
1
1
∴Tn+
-
+…+ n
- +
=
2 -1 22-1 22-1 23-1
2 -1 2n 1-1
1
1
1
-
=1- n+1 .
21-1 2n+1-1
2 -1
二、等比数列前n项和的性质
1 数列{ }是等比数列 ⇔ = − ( ≠ 0)
2 若等比数列{ }的前n项和为 ,则
(1)求从正方形ABCD开始,连续10个正方形
的面积之和;
(2)如果这个作图过程可以一直继续下去,那
么所有这些正方形的面积之和将趋近于多少?
分析:
可以利用数列表示各正方形的面积,根据条件可知,这
是一个等比数列.
高中数学《3、2等比数列的前n项和》知识点+教案课件+习题
知识点:1求和公式,如果q=1,那么S n=na1备注:针对等比数列,无论题目中给出何种条件的等式,最终均可以根据公式化成只有a1跟q两个未知量,从而进行求解。
2等比中项如果2m=p+q,则a2m=a p·a q备注:题目中如果给出三项的积,通常都可求出中间项为多少。
例如已知等比数列a1·a2·a3=8,即可知a2=2,因为a2是a1跟a3的中间项;再如已知等差数列a1·a5·a9=64,即可知a5=4,因为a5是a1跟a9的中间项推论:如果m+n=p+q,那么一定有a m·a n=a p·a q3等比性质1.如果{a n}是等比数列,S n是数列{a n}前n项和,那么S n,S2n-S n,S3n-S2n,……也是成比差数列例题:已知等比数列{a n},S n是它的前n项和,S6/S3=3,求S12/S3=?解析:根据上面性质可知,S3,S6-S3,S9-S6,S12-S9也是成等比数列,令S3=m,则S6=3m,则这个新的等比数列的首项是m(S3),第二项是2m(S6-S3),所以公比d=2m/m=2,即可算出第三项S9-S6=4m,又S6=3m,所以S9=7m,同理可算出S12=15m,则S15/S3=15变式:等比数列{a n}中,若a1+a2=324,a3+a4=36,则a5+a6=?2.如果{a n}是等比数列,公比为q,每隔k项之后( a m, a m+k, a m+2k, a m+3k……)也是等比数列,公差为q k视频教学:练习:课本温习1. 设S n是等比数列{a n}的前n项和,若a1=1,a6=32,则S3=()A. 5B. 6C. 7D. 82. 若{a n}为等比数列,且a2=6,S3=26,则{a n}的通项公式a n=()A. 2×3n-1B. 2×33-nC. 2×3n-1或2×33-nD. 以上都不对3. 已知{a n}是由正数组成的等比数列,S n表示{a n}的前n项和.若a1=3,a2a4=144,则S10的值是()A. 2 019B. 1 023C. 2 046D. 3 0694. 已知等比数列{a n}的前n项和为S n,且S3=a2+10a1,a5=9,则a1等于()A. -19B. 19C. 16D. 135. 已知数列{a n}满足3a n+1+a n=0,a2=-43,则{a n}的前10项和等于()A. -6(1-3-10)B. 19(1-3-10)C. 3(1-3-10)D. 3(1+3-10)固基强能6. 已知等比数列的公比为2,且前5项和为1,则前10项和为()A. 33B. 36C. 39D. 657. (多选)已知正项等比数列满足,,若设其公比为,前项和为,则()A. B. C. D.8. (多选)已知等比数列中,满足,则()A.数列是等比数列 B.数列是递增数列C.数列是等差数列 D.数列中,仍成等比数列9. 记S n为等比数列{a n}的前n项和,已知S2=2,S3=-6.则{a n}的通项公式为;S n= .10. 已知等比数列{a n}中,a1=13,公比q=13.(1) S n为数列{a n}的前n项和,求证:S n=1-an2;(2) 设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.课件:教案:【教学目标】1. 理解并掌握等比数列前n项和公式,并会应用公式解决简单的问题.2.逐步熟练等比数列通项公式与前n项和公式的综合应用,培养学生的运算能力.3. 通过公式的探索、发现,培养学生观察、猜想、归纳、分析、综合推理的能力,渗透类比与转化的思想.【教学重点】等比数列前n项和公式的应用.【教学难点】等比数列前n项和公式的推导和灵活运用.【教学方法】本节课在公式推导中宜采用类比教学法和自主探究教学法.师生共同参与整个教学活动,教师是活动的主导,学生是活动的主体,教师在引导的同时,让学生在等差数列的基础上用类比的方法自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.环节教学内容师生互动设计意图导印度一国王与国际象棋发明家的故事:发明者要国王教师讲故事,并提出问题.利用学生好奇心理,让学。
2.3.2等比数列前n项和公式
na1 S n a1 (1 q n ) 1 q
q 1 q 1
问题5:等比数列的前n项和公式中共有几个量? 各自含义分别是什么?可解决什么样的问题?
首 项 a1
通 项 an
公 比q
项 数n
前n项 和 Sn
知 三 求 二
琉 璃 河 中 学
例题剖析
全 心
全
意
育
真
人
a1 (1 q ) 3(1 2 ) 解 : S6 189 1 q 1 2
n
例1、等比数列 an 的首项 a1 求其前6项的和。
3 ,公比 q 2 ,
6
例2、求等比数列
1 1 1 1 , , , ... 2 4 8 16
7 2
从第3项到第7项的和。
a1 (1 q ) a1 (1 q ) 31 解:S7 S 2 1 q 1 q 128
S30 1 2 2 2 2 2 ..... 2
5
人
29
S30 1 2 2 2 2 2 2
2 3 4 5
2 3 4 5
乙给甲的钱数:
29
29
①
2S30 2 2 2 2 2 2 2
230–1 (分)=10737418. 23 (元) 远大于3000元
全
心
全
意
育
真
人
2.3.2 等比数列的前n项和
琉璃河中学高一数学
琉 璃 河 中 学
全 心 全 意 育 真 人 请同学们思考下列问题
甲、乙二人约定在一个月(按30天)内甲每天给乙100 元钱,而乙则第一天给甲返还一分,第二天给甲返还二 分,第三天给甲返还四分,……,即后一天返还的钱是 前一天的二倍。请问谁赢谁亏? 问题1:甲给乙的钱数依次组成的是什么数列?你能求 出它的和吗? S 100 100 100 3000
2.3.2等比数列前n项和(1)
呼和浩特第一中学
因为棋盘共有64格,所以各 因为棋盘共有64格,所以各 格中的麦子数组成了一个 64项的等比数列 项的等比数列: 项的等比数列
1, 2 , 2 , 2 L , 2 2 63 S 64 = 1 + 2 + 2 + L + 2
2
3
63
问题情境
…… + 2 62 + 2 63 S 64 = 1 + 2 + 2 2 + 23 +
呼和浩特第一中学
2.3.2等比数列的前n项和( 2.3.2等比数列的前n项和(1) 等比数列的前
知 识 回 顾
等差数列 定 义 an-an-1=d(d为
常 数,n≥2)
呼和浩特第一中学
等比数列
an = q (q为常数 a n −1 n≥2)
通项公式 中项公式 主要性质
)
等比数列的前 n 项和 Sn公式: 公式:
( q ≠ 1) .
求和公式的运用
呼和浩特第一中学
1× (1 − 2 20 ) 1 + 2 + 2 2 + 23 + 2 4 + L + 2 20 = 判断正误: 判断正误: 1− 2
1× (1 − 22 n + 2 ) 1 + 22 + 24 + L + 22 n + 2 = 1− 2 1 1 1 例1 求等比数列1, , ,, 的前10项的和 . L 例1 2 4 8 10
1 1× 1 − 1 2 解:因为公比q = , S10 = 1 2 1− 2 1023 = . 512
求和公式的运用
变式训练:
等比数列通项公式和前n项和公式
等比数列通项公式和前n项和公式等比数列是指数列中相邻两项的比值都相等的数列。
设等比数列的首项为a,公比为r,则其通项公式为:an = a * r^(n-1),其中n 为项数。
在等比数列中,前n项和的公式为:Sn = a * (1 - r^n) / (1 - r)。
英文:Geometric progression is a sequence in which the ratio of any two consecutive terms is the same. Let the first term of the geometric sequence be a, and the common ratio be r, then its general term formula is: an = a * r^(n-1), where n is the number of terms. In a geometric sequence, the formula for the sum of the first n terms is: Sn = a * (1 - r^n) / (1 - r).等比数列通项公式an= a1 * q^(n-1),其中q为公比。
英文:The general term formula of a geometric sequence is an=a1 * q^(n-1), where q is the common ratio.在等比数列中,首项为a1,通项公式为:an= a1*q^(n-1)。
其中an表示第n项,q为公比。
英文:In a geometric sequence, the first term is a1 and the general term formula is: an= a1*q^(n-1). Where an represents the nth term, and q is the common ratio.当公比小于1时,等比数列是一个收敛的数列。
2.3.2等比数列的前n项和
2.3.2等比数列的前n项和7月25日(1)掌握并熟练运用等比数列前n项和公式(2)通过对实际问题的分析,培养学生数学建模能力(3)通过“错位相减法”与“合比定理法”对公式进行推导,提高学生一题多解的能力一、课前准备1.等比数列的定义:2.等比数列通项公式:3.等比数列的性质:4.等差数列前n项和公式的推导方法是。
二、新课导学※探索新知话说猪八戒自西天取经回到了高老庄,从高员外手里接下了高老庄集团,摇身变成了CEO.可好景不长,便因资金周转不灵而陷入了窘境,急需大量资金投入,于是就找孙悟空帮忙.悟空一口答应:“行!我每天投资100万元,连续一个月(30天),但是有一个条件是:作为回报,从投资的第一天起你必须返还给我1元,第二天返还2元,第三天返还4元……即后一天返还数为前一天的2倍.”八戒听了,心里打起了小算盘:“第一天:支出1元,收入100万;第二天:支出2元,收入100万,第三天:支出4元,收入100万元;……哇,发财了……” 心里越想越美……再看看悟空的表情,心里又嘀咕了:“这猴子老是欺负我,会不会又在耍我?”请你帮八戒分析一下,按照悟空的投资方式,30天后,八戒能吸纳多少投资?又该返还给悟空多少钱?需要解决的是一个什么问题?如何求解?对于一个一般的等比数列{a n}又该如何求解呢?当q=1时,当q≠1时,先看这样两个数列:1,2,22,23,24,25,…2,22,23,24,25,26,…有什么关系?前n项和呢?新知1:等比数列前n项和公式:这种求等比数列的前n项和公式的方法叫做错位相减法(全称:乘公比错位相减法)。
还有另外两种推导方法。
说明:下面你就用所学的知识帮猪八戒算一算。
例4.某工厂去年1月份的产值为a 元,月平均增长率为p (p >0),求这个工厂去年全年产值的总和。
例5、已知数列{}n a 的前n 项和215-=n n S ,求数列{}n a 的通项公式。
{}n a 是否为等比数列?若是请证明。
等比数列前n项和公式怎么求
等比数列前n项和公式怎么求等比数列是高中数学重点知识之一,那么等比数列前n项和公式怎么求呢?下面是由小编为大家整理的“等比数列前n项和公式怎么求”,仅供参考,欢迎大家阅读。
等比数列前n项和公式怎么求等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。
推导如下:因为an=a1q^(n-1)所以Sn=a1+a1*q^1+...+a1*q^(n-1)(1)qSn=a1*q^1+a1q^2+...+a1*q^n(2)(1)-(2)注意(1)式的第一项不变。
把(1)式的第二项减去(2)式的第一项。
把(1)式的第三项减去(2)式的第二项。
以此类推,把(1)式的第n项减去(2)式的第n-1项。
(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。
于是得到(1-q)Sn=a1(1-q^n)即Sn=a1(1-q^n)/(1-q)。
拓展阅读:等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:=q(n≥2,q为非零常数).(2)如果三个数a,G,b成等比数列,那么G叫做a与b的等比中项,其中G=±。
2.等比数列的通项公式及前n项和公式(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=a1qn-1;通项公式的推广:an=amqn-m.(2)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn==。
3.等比数列的性质已知{an}是等比数列,Sn是数列{an}的前n项和.(1)若k+l=m+n(k,l,m,n∈N*),则有ak·al=am·an。
(2)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,…仍是等比数列,公比为qm。
(3)当q≠-1,或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n,…仍成等比数列,其公比为qn。
等比数列前n项和2
2.3.2等比数列的前n 项和(二)学习目标(1)能运用等比数列的有关知识解决一些与数列相关的实际应用问题;(2)理解分期付款中的有关规定,掌握分期付款中的有关计算.能运用等差、等比数列的有关知识解决一些与数列相关的实际应用问题。
教学重点:等比数列前n 项和的性质。
教学难点:预习案一、学法指导1.对于等比数列可以用类比等差数列前n 项和的性质,得到等比数列前n 项和的性质,2.要注意等比数列与等差数列之间存在的差异性。
3.对于前n 项和S n 的公式形式,等差数列与二次函数有关,而等比数列与指数函数有关。
二、预习自测1.若某数列前n 项和公式为1(0,1,*)n n s a a a n N =-≠≠±∈ 则{}n a 是 数列。
2.若数列{}n a 是公比为q 的等比数列,则n m s +=3. ()()473102222n f n n N +*=++++∈ ,则()f n = 。
探究案一.课内探究1.等比数列的前n 项和的性质:设{a n }是等比数列,公比是q ,则(1)若n S ,n n 2S S -,n 2n 3S S -均不为0,则它们也成等比数列;(2)若数列的项数是偶数,有奇偶qS S =。
2.差比数列的前n 项的和的求法——“错位相减”设{a n }公差为d(d ≠0) 的等差数列,{b n }是公比是q(q ≠1)的等比数列,则n n 332211n b a b a b a b a S ⋅+⋅⋅⋅+⋅+⋅+⋅=。
1n n 433221n b a b a b a b a qS +⋅+⋅⋅⋅+⋅+⋅+⋅=1n n n 3211n b a b d b d b d b a S )q 1(+⋅-⋅+⋅⋅⋅+⋅+⋅+⋅=- ,右边中间部分构成一个等比数列,两边除以(1-q )便得到结论。
二.例题讲解例1.(1)在G.P {}n a 中,n S 表示前n 项和,且51012,36S S ==,求15S 的值。
等比数列的前n项和
( 1 ) a1 3, q 2, n 6 189
( 2 ) a1 8, q 1 2 , an 1 2
31 2
2.在等比数列{an} 中,
( 1 ) 已知a1 1.5, a4 96, 求q和S4 q 4, S 4 2 1 1 31 ( 2 ) 已知q , S5 , 求a1和a5 a1 2, a5 8 2 8 n
A
(D)-1或-4
3.在等比数列an 中:
(1)a4 27, q 3, 求a7 ;
729
a1 2 7 2 或 q 3 a1 2 7 2 q 3
(2)a2 18, a4 8, 求a1和q;
(3)a5 a1 15, a4 a2 6, 求a3 .
n个 9
练习:
求 和 : 0 . 9 0 .9 9 0 .9 9 9 0 . 9 9 9 9 9
n个 9
例5. 求和 : ( x
1 y
)(x
2
1 y
2
) ( x
n
1 y
n
)
练习:
求数列1,x,x2,x3,…,xn,…的前n项和。
例 6: 求 和 Sn =
6
189 2
3.求相应的等比数列 { a n } 的前n项和
(1 ) : a 1 3 , q 2 , n 6 ; ( 2 ) : a1 2 .7 , q 1 3
189
1 90 .
, an
1.求下列等比数列前n项的和:
1 (1) a 1 ,Sq0 0 1 n 0 11 0 0 0 5 0 . 1, 0 a 0 1 ; 1 1 2 3 2 1 a1 a 5 1q 2 3 ( ) 48 a 1 a n a a q4 3 21 2 ( 2 ) a 1 S2n , , n 5 . 3 q a a . 1 1 31 S5 q 1 3 4 1 16 1 1 1 ( ) q 1 (1)提 示 : 由 . 1 2 3 4 a 1, n 8 a 3 (3 ) q , a8 5 a 1 q 255 5 1 4 31 2 a 5 a 1 ( ) 2 1 , S 5 3 , 求 a 1与 a 5 . 2.在等比数列中已知 q 2
高中数学 同步教学 等比数列前n项和公式
题型三 利用错位相减法求数列的前n项和
例 3 求数列2nn的前 n 项和. 解 设 Sn=12+222+233+…+2nn,则有21Sn=212+223+…+n-2n1+2nn+1, 两式相减,得 Sn-12Sn=21+212+213+…+21n-2nn+1, 即12Sn=1211--1221n-2nn+1=1-21n-2nn+1. ∴Sn=2-2n1-1-2nn=2-n+2n 2(n∈N+).
第二章 2.3.2 等比数列的前n项和
第1课时 等比数列前n项和公式
学习目标
XUEXIMUBIAO
1.掌握等比数列的前n项和公式及公式证明思路. 2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.
内容索引
NEIRONGSUOYIN
自主学习 题型探究 达标检测
1 自主学习
PART ONE
2 题型探究
PART TWO
题型一 等比数列前n项和公式的直接应用
例1 求下列等比数列前8项的和: (1)12,14,18,…; 解 因为 a1=12,q=12, 所以 S8=2111--12128=225556.
(2)a1=27,a9=2143,q<0.
解 由 a1=27,a9=2413,可得2413=27·q8.
反思感悟 一般地,如果数列{an}是等差数列,{bn}是公比不为1的等比数列, 求数列{anbn}的前n项和时,可采用错位相减法.
跟踪训练3 求和:Sn=x+2x2+3x3+…+nxn (x≠0).
核心素养之数学建模
HEXINSUYANGZHISHUXUEJIANMO
分期付款模型
典例 小华准备购买一部售价为5 000元的手机,采用分期付款方式,并在一 年内将款全部付清.商家提出的付款方式为:购买2个月后第1次付款,再过 2个月后第2次付款,…,购买12个月后第6次付款,每次付款金额相同,约定月 利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少.(参考数据: 1.00812≈1.10)
等比数列的前n项和-2
练习3:已知等比数列{an}中,公比 q=3,a1+a3+a5+a7 36 =4,则a2+a4+a6+a8=_____,a3+a5+a7+a9=_____. 12 a2+a3=12,那么a5+a6+a7+a8=( A )
练习4:在公比为整数的等比数列{an}中,已知a1+a4=18,
A.480
B.493
2.3.2 等比数列 的Байду номын сангаасn项和
课前练习
数学的学习方法是严格、 严肃、严密——苏步青
4 7 3n +1
设
A.
f
2 7
n = 2+ 2 + 2 + +2
n
C.
2 7
*
,则 f n 等于
n +2
8 - 1
n
B.
2
7
8
n +1
- 1
8
- 1
D.
2 7
8
n +3
- 1
等比数列基本量的计算
根据下述条件分别计算公比 n 的值
(1)a 3 = 7 , S 3 = 2 1
1 3 4 8
数学的学习方法是严格、 严肃、严密——苏步青
-
1 2
or 1
-4 or 3
(2) a = 3 , S = 3 9 (3) S = 1 , S = 3 (4) a + a + a = 2 8 ,且 a
2 3 4
±
3
4
2
+ 2 是 a 2 , a 4 的等差中项 1
2
or 2
等比数列前n项和的性质
等比数列 S S2n-Sn,3n-S2n也成__________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们知道,等差数列有这样的性质:
如果an 为等差数列 ,则S k , S 2k S k , S3k S 2k 也成等差数列。
新的等差数列首项为 S k,公差为k d。
2
那么,在等比数列重,也有类似的性质吗?
等比数列前n项和的性质二:
怎么 证明?
如果an 为等比数列 ,则S k , S 2k S k , S3k S 2k 也成等比数列
Sn 1 (2)又bn= = 2n+1 2n-12n+1 1 1 1 = 2n-1-2n+1, 2 ∴Tn=b1+b2+„+bn 1 1 1 1 1 1 = 1-3+3-5+„+2n-1-2n+1 2 1 1 n = 1-2n+1= . 2 2n+1
n (2)∵bn=a ,∴bn=n· 3n. n ∴Sn=3+2×32+3×33+„+n· 3n, ③
∴3Sn=32+2×33+3×34+„+n· 3n+1.
④-③得2Sn=n· 3n+1-(3+32+33+„+3n), n n+1 3 1 - 3 2 n - 1 3 3 n+1 即2Sn=n· 3 - ,∴Sn= + . 4 4 1-3
4 25 26 27 … 263 2 1 2 国王要给多少麦粒?
22
23
?
让我们来分析一下:
由于每个格子里的麦粒数都是前一个 格子里的麦粒数的2倍,且共有64个格子, 各个格子里的麦粒数依次是
1, 2, 2 , 2 , , 2 ,
2 3 63
于是发明者要求的麦粒总数就是
1 2 2 2 2 ,
n
,
说明:这种求和方法称为错位相减法
等比数列前n项和求和公式
当q≠1时,
a1 1 q n Sn 1 q
当q=1时,
Sn na1
na1 , (q 1), 于是 S a (1 q n ) 1 n 1 q , ( q 1).
等比数列前n项和公式的其他推导方法
将上面两式列在一起,进行比较
S64 1 2 4 8 2 ,
63
① ②
2S64
2 4 8 263 264.
② - ①,得
S64 2 1
64
说明:这种求和方法称为错位相减法
等比数列的前 n 项和 设等比数列 a , a , a ,, a ,
用等比定理推导 an a 2 a 3 a4 q 因为 a1 a2 a3 a n 1 a 2 a 3 a4 a n q 所以 a1 a2 a3 an1 S n a1 q S n an na1 n a1 (1 q ) Sn (q 1) 或 S n a1 an q 1 q
④
探究二:裂项相消法求和
例 2 已知数列{an}中,a1=1,当 n≥2 时,其前 n 项和 Sn 满足 S2 n 1 =anSn-2. (1)求 Sn 的表达式; Sn (2)设 bn= ,求{bn}的前 n 项和 Tn. 2n+1
解
2 1 2 ∴Sn=(Sn-Sn-1)Sn-2,
2n
2 2
n
n
1
2
n 1
1 2 2 2
1
2
n 1
2
2n 2 1 (2n
2 . 2 2 1) 2
T f (5) f (4) f (0) f (5) f (6) T f ( 6 ) f ( 5 ) f ( 1 ) f (4) f (5)
1 2 3 n
它的前n项和是
即
Sn a1 a2 a3 an
2 n 2
Sn a1 a1q a1q a1q
a1q .
n1
⑴
⑴×q, 得
qSn
⑴-⑵,得
a1q a1q2 a1qn2 a1q n1 a1qn .
⑵
1 q Sn a1 a1q
即2Sn-1Sn=Sn-1-Sn, 由题意Sn-1· Sn≠0,
1 2 (1)∵Sn=an Sn- ,an=Sn-Sn-1
(n≥2),
①
1 1 ①式两边同除以Sn-1· Sn,得S - =2, n Sn-1 1 1 1 ∴数列S 是首项为 = =1,公差为2的等差数列. S1 a1 n 1 1 ∴S =1+2(n-1)=2n-1,∴Sn= . 2n-1 n
例题讲解
1 、若等比数列 {an }的前n项和S n 4n a,求a的值。
提示: S n Aq - A( A 0)
n
系数和常数互为相反数 a 1
变式练习
1、若等比数列 {an }的前n项和Sn 3n1 2a,求a的值。
1 1 1 n 化简到: S n 3 2a 2a 0 a 3 3 6
新等比数列首项为 S k,公比为q k 。
2、等比数列 {an }的前n项和为S n,若S m 10 ,S 2m 30 , 求S 3m的值。 解: S m,S 2m - S m,S3m - S 2m 成等比数列
(S 2m - S m ) S m (S3m - S 2m )
2
即: (30 - 10) 10 (S3m - 30)
探究四:倒序相加法求和 1 例 , 计算f ( n) f ( n 1)的值, 例 41.若函数 f ( x ) x 2 2 并求T f ( 5) f ( 4) f (0) f (5) f (6).
解: f ( n) f ( n 1) 1
2
解得:S3m 70
等比数列前n项和的性质三:
an 共有2n项,则: 若等比数列
S偶 S奇 q
怎么 证明?
等比数列前n项和的性质四:
如果an 为公比为 q的等比数列 ,对m、p N 有:
Sm p Sm q S p
m
探究一:错位相减法求和
例 1 设数列{an}满足 a1+3a2+3 a3+„+3
1-q
q 1 ,
q 1。
当 q = 1 时 Sn = n a 1
注意: ①在等比数列的前 n 项和的两个公式中共有五 个量 a1,n,q,Sn,an,如果已知其中的任意三个便可求出 另外两个,即所谓的“知三求二”. ②在使用等比数列的前 n 项和公式时,如果公比 q 不确 定,切不可贸然使用,而应当分 q=1 与 q≠1 两种情况讨论.
国王赏麦的故事
引入:
国际象棋的棋盘上 共有8行8列,构成64个 格子.国际象棋起源于 古代印度,关于国际象 棋有这样一个传说.
国王要奖赏国际象棋的发明者,问他有 什么要求,发明者说:“请在棋盘的第1个格 子里放上1颗麦粒,在第2个格子里放上2颗 麦粒,在第3个格子里放上4颗麦粒,在第4个 格子里放上8颗麦粒,依此类推,每个格子里 放的麦粒数都是前一个格子里放的麦粒的 2倍,直到第64个格子,请给我足够的粮食来 实现上述要求”.国王觉得这并不是很难办 到的,就欣然同意了他的要求.
2 n-1
n an= ,n∈N*. 3
(1)求数列{an}的通项; n (2)设 bn=a ,求数列{bn}的前 n 项和 Sn. n
解 (1)∵a1+3a2+3 a3+„+3
2 n-2
2
n-1
n an= , 3
①
∴当n≥2时,
a1+3a2+3 a3+„+3
n- 1 an-1= = ,∴an= n. 3 3 1 1 在①中,令n=1,得a1= ,适合an= n, 3 3 1 ∴an= n. 3
合作探究 形成规律
a1 n a1 a1 a1q n Sn q Sn 1-q 1-q 1-q a1 令A 0 则:S n Aqn - A 1-q
这个形式和等比 数列等价吗?
n
等比数列前n项和的性质一:
数列 {an }是等比数列 S n Aq - A( A 0) 类似结论: 相反 数列 {an }是等比数列 数 Sn Aan B( AB 0, A 1)
2 2T 12, 2
即 T 3 2.
2 3 63
=18,446,744,073,709,551,615
等比数列前n项和的公式
引例:
记
求数列: 1 2 2 2 23 263 ?
S64 1 2 22 23
263
两边同乘公比2,得 2S64 2 4 8 16 263 264.