4-3刚体的定轴转动定律
合集下载
刚体的定轴转动
J
1 2 m( R12 R2 ) 2
1 mR 2 2 若R1 R2 R, J mR 2
16
例:求长度为L,质量为m的均匀细棒AB的转动惯量。 (1)对于通过棒的一端与棒垂直的轴。 (2)对于通过棒的中心与棒垂直的轴。 m 解(1)细杆为线质量分布,单位长度的质量为: l L 1 3 2 2 dm A B J A x dm x dx L o 0 3 x
2 0
2
0
dm MR
2
绕圆环质心轴的转动惯量为
M
o
R
பைடு நூலகம்dm
J MR
2
讨论:若圆环绕其直径轴转动,再求此圆环的转动 惯量。
14
例: 一质量为m,半径为R的均匀圆盘,求对通过盘 中心并与盘面垂直的轴的转动惯量。
m 解: σ πR 2
dm σ 2π rdr
dJ r dm 2πσ r dr
5
匀变速圆周运动的基本公式
p
1 2 0 0t t 2
0 t
s
R
o
p
x
2 2 0 2 ( 0 )
定轴转动刚体上任一点的速度和加速度 s R 路程与角位移之间的关系:
v R 线速度与角速度的关系:
加速度与角量的关系: 2 dv d v at R R , an 2 R, dt dt R
1
柱壳形状的质元 ,其长为l半径为r厚度为dr, 则该质元的质量为 dm dV ( 2 rdr )l
R2
R2
l
J r dm 2lr dr
2 3 m R1
l
2
刚体的定轴转动和转动定律
受力: F Ft Fn
力矩:M r (Ft Fn )
r Ft rFt k
M F r ma r
z
M
Ft F
O r m
Fn
mr2
at r
即: M mr 2
3 – 2 力矩 转动定律 转动惯量
2、刚体转动定律
质元 m j 受力为:
右手螺旋定则
第三章 刚体的转动
3– 1 刚体的定轴转动
4、角加速度(矢量)
第三章 刚体的转动
大小: d
dt
方向: 若 2 > 1 则 与角速度同向, 若 2 < 1 则 与角速度反向。
3– 1 刚体的定轴转动
第三章 刚体的转动
二、匀变速转动公式
匀变速转动:转动的角加速度为恒量的运动。
J R 2π r3dr π R4 所以 J 1 mR2
0
2
2
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
例3 :质量为m、高为h、半径为r的均匀圆柱体,求其对 圆柱中心的转动轴的转动惯量?
解:dm dV 2 r h dr
其中:
m V
3 – 2 力矩 转动定律 转动惯量
第三章 刚体的转动
三 转动惯量 J mjrj2 , J r 2dm
1、物理意义:
j
描述刚体转动过程中转动惯性大小的物理量.( 转动
惯量的大小取决于刚体的质量、形状及转轴的位置 .)
2、转动惯量的计算方法:
1)质量离散分布刚体的转动惯量:
J mjrj2 m1r12 m2r22
对质量面分布的刚体: dm dS
第3章刚体的定轴转动
绕通过质心 由合外力矩决定(应用
轴的转动
转动定律)
第3章 刚体的定轴转动
例3 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
量为 的圆mC柱形滑轮 C,并系在另一质量为 的物mB
体 B 上. 滑轮与绳索间没有滑动, 且滑轮与轴承间的摩
擦力可略去不计. 问:(1) 两物体的线加速度为多少?
dt
M
dL
作用于质点的合力对参考点 O 的力矩 ,等于质点对该点 O 的角
dt 动量随时间的变化率.
第3章 刚体的定轴转动
M
dL
dt
t2 t1
Mdt
L2
L1
冲量矩
t2
Mdt
t1
质点的角动量定理:对同一参考点 O ,质点所受
的冲量矩等于质点角动量的增量.
3 质点的角动量守恒定律
M 0, L 恒矢量
的大小与角速度的平方成正比,比例系数为 k
( k 为大于零的常数).当 1 30 时,飞轮的角
加速度为
,所经历的时间为
M k2
M J
k 2
J
k
2 0
9J
第3章 刚体的定轴转动
M k2
M J J d
k 2 J d
dt
dt
t dt J
1
3
0
1
d
0
k 0 2
2J t
M mr 2
2)刚体
质量元受外力 Fej,内力 Fij
Mej Mij mjrj2
外力矩
内力矩
第3章 刚体的定轴转动
z
M
F
F
O
刚体定轴转动的转动定律
R
M
h
Hale Waihona Puke 解法一 用牛顿第二运动 定律及转动定律求解.分 析受力如图所示. 对物体m用牛顿第二 运动定律得 mg T ma 对匀质圆盘形滑轮用 转动定律有 TR J 物体下降的加速度的 大小就是转动时滑轮边缘 上切向加速度,所以
o R M
T
h
a
G
a R 物体m 落下h 高度时的速率为
2
3.试求质量为m 、半径为R 的匀质圆环 对垂直于平面且过中心轴的转动惯量. 解 作示意图如右,由于质 量连续分布,所以由转动 惯量的定义得
J R 2dm
m
dm
o
R
2R 0
m R dl 2R
2
mR 2
4.试求质量为m 、半径为R 的匀质圆盘 对垂直于平面且过中心轴的转动惯量. dr 解 如图所示, 由于质 量连续分布,设圆盘的 R l o r 厚度为l,则圆盘的质量 密度为 m 2 R l
r近日 r远日
v近日
解 彗星受太阳引力的作用,而引力通过了 太阳,所以对太阳的力矩为零,故彗星在运 行的过程中角动量守恒. 于是有 r近日 v近日 r远日 v远日 因为 r近日 v近日 ,r远日 v远日
r近日v近日 所以 r远日 v远日
代入数据可, 得
J r 2dm
m
R 0
1 1 4 r 2r ldr R l mR 2 2 2
2
5. 如图所示,一质 量为M 、半径为R 的匀 质圆盘形滑轮,可绕一 无摩擦的水平轴转动. 圆盘上绕有质量可不计 绳子,绳子一端固定在 滑轮上,另一端悬挂一 质量为m 的物体,问物 体由静止落下h 高度时, 物体的速率为多少?
大学物理3_4 刚体绕定轴转动的动能定理
t 3 3 3 5 3 2
3–4
刚体绕定轴转动的动能定理
第三章 刚体的转动
例3 留声机的转盘绕通过盘心垂直盘面的轴以角速度 作匀速转动.放上唱片后,唱片将在摩擦力作用下随转盘一 起转动.设唱片的半径为 R 、质量为 m ,它与转盘间的摩 擦系数为 .求(1)唱片与转盘间的摩擦力矩;(2)唱片达到 角速度 需要多长时间;(3)在这段时间内,转盘的驱动力 矩作了多少功? 解 (1)如图所示,在唱片上取长为 dl 宽为 dr 的面积元 dS dldr ,该面 积元所受的摩擦力为:
1 2 1 2 1 1 1 2 2 2 2 W J J0 mR 0 mR 2 2 2 2 4
3–4
第三章 刚体的转动 刚体绕定轴转动的动能定理 例3-11 一长为 l , 质量为 m0 的均质细竿可绕支点O自 由转动 . 一质量为 m、速率为 v0 的子弹射入竿内一端, 使竿的偏转角为30º 问子弹的初速率为多少 ? .
加速度
力 质量
dr v dt dv a dt
F
d 角速度 dt d 角加速度 dt
力矩
M
m
转动惯量 J
动量
P mv
角动量
L J
r
dm
2
3–4
刚体绕定轴转动的动能定理
第三章 刚体的转动
质点运动规律与刚体定轴转动的规律对照 质点的平动 刚体的定轴转动
EPB EkB EPA EkA
3–4
第三章 刚体的转动 刚体绕定轴转动的动能定理 1 2 4 2 2 J J1 J 2 ml ml ml 3 3
取A点的重力势能为零,即 则有 而
EPA 0
3–4
刚体绕定轴转动的动能定理
第三章 刚体的转动
例3 留声机的转盘绕通过盘心垂直盘面的轴以角速度 作匀速转动.放上唱片后,唱片将在摩擦力作用下随转盘一 起转动.设唱片的半径为 R 、质量为 m ,它与转盘间的摩 擦系数为 .求(1)唱片与转盘间的摩擦力矩;(2)唱片达到 角速度 需要多长时间;(3)在这段时间内,转盘的驱动力 矩作了多少功? 解 (1)如图所示,在唱片上取长为 dl 宽为 dr 的面积元 dS dldr ,该面 积元所受的摩擦力为:
1 2 1 2 1 1 1 2 2 2 2 W J J0 mR 0 mR 2 2 2 2 4
3–4
第三章 刚体的转动 刚体绕定轴转动的动能定理 例3-11 一长为 l , 质量为 m0 的均质细竿可绕支点O自 由转动 . 一质量为 m、速率为 v0 的子弹射入竿内一端, 使竿的偏转角为30º 问子弹的初速率为多少 ? .
加速度
力 质量
dr v dt dv a dt
F
d 角速度 dt d 角加速度 dt
力矩
M
m
转动惯量 J
动量
P mv
角动量
L J
r
dm
2
3–4
刚体绕定轴转动的动能定理
第三章 刚体的转动
质点运动规律与刚体定轴转动的规律对照 质点的平动 刚体的定轴转动
EPB EkB EPA EkA
3–4
第三章 刚体的转动 刚体绕定轴转动的动能定理 1 2 4 2 2 J J1 J 2 ml ml ml 3 3
取A点的重力势能为零,即 则有 而
EPA 0
大学物理第四章
返回 退出
二、平动和转动
1、平动 当刚体运动时,如果刚体内任何一条给定的直
线,在运动中始终保持它的方向不变,这种运动叫 平动(translation)。
平动时,刚体内各质点在任一时 刻具有相同的速度和加速度。
刚体内任何一个质点的运动,都可代表整个刚体的 运动,如质心。
可以用质点动力学的方法来处理刚体的平动问题。
如:车轮的滚动。
返回 退出
3、刚体的定轴转动 定轴转动时,刚体上各点都绕同一固定转轴作
不同半径的圆周运动。
在同一时间内,各点转过的圆弧长度不同,但 在相同时间内转过的角度相同,称为角位移,它可 以用来描述整个刚体的转动。
作定轴转动时,刚体内各点具 有相同的角量,包括角位移、角速 度和角加速度。但不同位置的质点 具有不同的线量,包括位移、速度 和加速度。
直角坐标系中,采用用 、 ,如图所示:
最后,刚体绕定轴转动时,需
要一个坐标来描述,选定参考方 z
向后,转动位置用表示。
p
总的说来,刚体共有6个自由
度,其中3个平动自由度,3个转 动自由度。
y
物体有几个自由度,它
o
的运动定律可归结为几个
独立的方程。
x
返回 退出
返回 退出
§4-2 力矩 转动惯量 定轴转动定律 一、力矩
v r
返回 退出
三、定轴转动定律
对刚体中任一质量元
mi
受外力 Fi 和内力 fi
应用牛顿第二定律,可得:
F ifi m ia i
采用自然坐标系,上式切向分量式为:
F isii n fisi i n m ia it m ir i
F ir isiin fir isiin m ir i2
二、平动和转动
1、平动 当刚体运动时,如果刚体内任何一条给定的直
线,在运动中始终保持它的方向不变,这种运动叫 平动(translation)。
平动时,刚体内各质点在任一时 刻具有相同的速度和加速度。
刚体内任何一个质点的运动,都可代表整个刚体的 运动,如质心。
可以用质点动力学的方法来处理刚体的平动问题。
如:车轮的滚动。
返回 退出
3、刚体的定轴转动 定轴转动时,刚体上各点都绕同一固定转轴作
不同半径的圆周运动。
在同一时间内,各点转过的圆弧长度不同,但 在相同时间内转过的角度相同,称为角位移,它可 以用来描述整个刚体的转动。
作定轴转动时,刚体内各点具 有相同的角量,包括角位移、角速 度和角加速度。但不同位置的质点 具有不同的线量,包括位移、速度 和加速度。
直角坐标系中,采用用 、 ,如图所示:
最后,刚体绕定轴转动时,需
要一个坐标来描述,选定参考方 z
向后,转动位置用表示。
p
总的说来,刚体共有6个自由
度,其中3个平动自由度,3个转 动自由度。
y
物体有几个自由度,它
o
的运动定律可归结为几个
独立的方程。
x
返回 退出
返回 退出
§4-2 力矩 转动惯量 定轴转动定律 一、力矩
v r
返回 退出
三、定轴转动定律
对刚体中任一质量元
mi
受外力 Fi 和内力 fi
应用牛顿第二定律,可得:
F ifi m ia i
采用自然坐标系,上式切向分量式为:
F isii n fisi i n m ia it m ir i
F ir isiin fir isiin m ir i2
第三章刚体的定轴转动
§3.1 刚体定轴转动的动能定理和转动定律
二、刚体定轴转动的动能定理 B、对于定轴转动刚体,所有内力的功总和在任何过程中均为零。(内力成对,大小相等方向相反,
一对内力矩的代数和为零;∴内力矩的功总和为零。另一角度,内力的功相对位移为零 .)
3、功率:
d A F 2d r
pdAMdM
dt dt
当 与 M 同方向, 和 为正 当 与 M 反方向, 和 为负
§3.1 刚体定轴转动的动能定理和转动定律
1 2 其中(:1 3M h 2 1 m l2l(12) ca 2o M s) 1( 3g )m h 2g(h 2 ) h 2 a (1 co )s(4 )
由(2)(3)(4)式求得:
2Mg(1lcos)/22mg(1acos)
M2l/3m a2
(Ml 2ma)g(1cos)
2
25
整理,得:
1 10 gh,
b7
vcb
10 gh 7
§3.2 定轴转动的动量矩定理和动量矩守恒定律
(2)小球到达A点不脱离轨道,要求小球在A点的速 度vA 和角速度A满足:
m v a A 2 m g v A 2 a,gA 2 v b A 2 2 a b 2 g (4 )
由机械能守恒:
b<<a
飞轮作变加速转动
§3.1 刚体定轴转动的动能定理和转动定律 例题3-1-2:一长为 l ,重为W的均匀梯子,靠墙放置,如图。墙光滑,地面粗糙, 当梯子与地面成角 时,处于平衡状态,求梯子与地面的摩擦力。
解:刚体平衡同时要满足两个条件:
Fi 0
Mi 0
列出分量方程:
O
水平方向:
f1N2 0
竖直方向:
刚体的定轴转动定律
例题 求质量为m、长为L的均匀细棒对下面 三种转轴的转动惯量: (1)转轴通过棒的中心并和棒垂直; (2)转轴通过棒的一端并和棒垂直; (3)转轴通过棒上距中心为h的一点 并和棒垂直。
X x dx x dx X
h x
C dx
X
平行轴定理
注意 质量为 m 的刚 体,如果对其质心轴 的转动惯量为 IC , 则对任一与该轴平行, d 相距为 的转轴的 转动惯量
物体2这边的张力为
T2、 T2’(T2’= T2)
1
a
m1 m2
m
a
m1g
2
m2 g
因m2>m1,物体1向上运动,物体2向下运动,滑轮以 顺时针方向旋转,Mr的指向如图所示。可列出下列方 程
T1 G1 m1a
G2 T2 m2 a T2r T1r M J
式中是滑轮的角加速度,a是物体的加速度。滑轮 边缘上的切向加速度和物体的加速度相等,即
I mi ri m r m r
2 2 11 2 2 2 i
r
dm
质量连续分布刚体的转动惯量
I r dm
2
dm
:质量元
计算转动惯量: m a
m a
m
m
m
m a
m
m
y
2 3a 2 2 2a 2
a a
2 a 2
a
x
2 2 2 2 2 2 I m( a) m( 2a) m( 3a) 2 2 2
FT1
PC
FC
FT2
mB PB y
a R
mB g a mA mB mC 2 mA mB g FT1 mA mB mC 2
4第四章 刚体的定轴转动
七、能综合应用转动定律和牛顿运动定律及质点、刚体定轴转 动的运动学公式计算质点刚体系统的简单动力学问题. 八、能综合应用守恒定律求解质点刚体系统的简单动力学问题. 明确选择分析解决质点刚体系统力学问题规律时的优先考虑顺序.
第 1 讲 刚体的定轴转动
预习要点 1. 理解刚体的运动; 2. 掌握描述刚体定轴转动的运动学方法; 3. 理解力矩的概念及力矩的功;
式中 mi ri2 表示第i个质点对转轴的转动惯量;
对质量连续分布的刚体,任取质量元 dm ,其到轴的
距离为 r ,则转动惯量:
J r2dm 单位:kg ·m2
若系统由多个刚体组成,则系统对转轴的总转动惯量, 等于各部分对同一转轴的转动惯量之和
一个长为4L的轻杆,连有两个质量都是m的小球(大小可 忽略),此系统可绕垂直于杆的轴转动,求下列转动惯量;
在转动平面内,O为转动平面与转轴的焦点,r 为从O 点指向
M 力的作用点 A 的位矢,两矢量的夹角为 ;
力 F 对定轴 OZ 的力矩 :
(力臂:力的作用线到转轴的距离)
z
M Z Fd Fr sin
通常,从OZ轴正向俯视,有 逆时针转动(趋势)力矩为正, 反之为负;
单位:牛·米(N ·m)
F
Or
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别悬
有质量为m1和m2的物体,滑轮可视为均质圆盘, 质量 为m,半径为r,绳子不可伸长而且与滑轮之间无相对 滑动.求物体加速度、滑轮转动的角加速度和绳子的张
力. 设 m2 m1
解: 受力分析如图:
FT1 m1g m1a m2g FT2 m2a
FT2R FT1R J a r
m2
)
gl
sin
α
第 1 讲 刚体的定轴转动
预习要点 1. 理解刚体的运动; 2. 掌握描述刚体定轴转动的运动学方法; 3. 理解力矩的概念及力矩的功;
式中 mi ri2 表示第i个质点对转轴的转动惯量;
对质量连续分布的刚体,任取质量元 dm ,其到轴的
距离为 r ,则转动惯量:
J r2dm 单位:kg ·m2
若系统由多个刚体组成,则系统对转轴的总转动惯量, 等于各部分对同一转轴的转动惯量之和
一个长为4L的轻杆,连有两个质量都是m的小球(大小可 忽略),此系统可绕垂直于杆的轴转动,求下列转动惯量;
在转动平面内,O为转动平面与转轴的焦点,r 为从O 点指向
M 力的作用点 A 的位矢,两矢量的夹角为 ;
力 F 对定轴 OZ 的力矩 :
(力臂:力的作用线到转轴的距离)
z
M Z Fd Fr sin
通常,从OZ轴正向俯视,有 逆时针转动(趋势)力矩为正, 反之为负;
单位:牛·米(N ·m)
F
Or
例:一轻绳跨过一轴承光滑的定滑轮,绳的两端分别悬
有质量为m1和m2的物体,滑轮可视为均质圆盘, 质量 为m,半径为r,绳子不可伸长而且与滑轮之间无相对 滑动.求物体加速度、滑轮转动的角加速度和绳子的张
力. 设 m2 m1
解: 受力分析如图:
FT1 m1g m1a m2g FT2 m2a
FT2R FT1R J a r
m2
)
gl
sin
α
刚体的转动
解 以m1 , m2 , m 为研究对象
m1g T1 m1a
T2 m2 g m2a
T1r
T2r
J
1 mr2
2
a r
T2
T2
m2
m2 g
(m1 m2 )g
(m1
m2
1 2
m)r
0
t
(m1 m2 )gt
(m1
m2
1 2
m)r
mr
T1
T1
m1
m1 g
17
例4-3:一长为l 质量为m 匀质细杆竖直放置,其下端与一固
0
3
平行轴定理 J z' J z Md2
J z' 刚体绕任意轴的转动惯量
J z 刚体绕通过质心的轴
d 两轴间垂直距离
z
x M,L
O dx
x
L
J
2 L
x2dx
1 12
ML2
2
z' z
M
d C
13
例如圆环绕中心轴旋转的转动惯量
J L R2dm m R2 0
例如圆盘绕中心轴旋转的转动惯量
dl m
R
O
ds 2 rdr
dm ds
dJ r2dm
J
R
dJ
1
mR2
0
2
m
R2
Rm dr
r O
14
例4-1:一轻绳绕在半径r =20 cm的飞轮边缘,在绳端施以F=98 N的拉力, 飞轮的转动惯量 J=0.5 kg·m2,飞轮与转轴间的摩擦不计,求(1)飞轮的 角加速度 (2)如以重量P =98 N的物体挂在绳端,计算飞轮的角加速度
需将力分别向垂直于轴以及平行于轴方向 做正交分解,如图所示
刚体绕定轴转动的转动定律和转动惯量
0 R2
1 mR2 2
Z
m R2
R1
薄圆环
dm
ds
m (R22
R12
)
ds
ds 2 rdr
dJ r2dm
J R2 r 2
m
2 rdr
R1
(R22 R12 )
1 2
m(R22
R12 )
R
m
H
空心圆柱面
dm ds m ds 2 RH
ds 2 Rdh
dJ r2dm
J H R2 m 2 Rdh
0 2 RH
mR3
r
R
H m
实心圆柱
dm
dV
m
R2H
dV
dV 2 rHdr
dJ r2dm
J R r2 m 2 rHdr
0 R2H
R2 R1
H m
同轴空心圆柱
dm
dV
mg
H (R22
R12 )
dV
dV 2 rHdr
dJ r2dm
J R2 r2
mg
2 rHdr
R1 H (R22 R12 )
R
+
T1
+
T2
N
m
4m
2m + o
P1
P2
mg
4m
T1
T2
2m
分别对人、物、滑轮建立方程:
4mg-T1 4ma人地
(1 )
T2-2mg 2ma物地 2ma绳地 (2) R
T1R -T2 R
J
1 2
mR2
(3) m
人相对 绳匀加 速a0上爬,则
a人地 a人绳 a绳地
4m
刚体定轴转动定律
于 180°的夹角 θ 转向 F 时,拇指所指的方向就是力矩的方向。
可见,力矩的方向与转轴的方向平行,只有两个可能的方向,因此,可用 M 的正负表示力矩的方向。 一般可按力矩的作用来判断其正负:由转轴 Oz 正向俯视,若力矩的作用使刚体逆时针转动,则力矩为 正,否则为负。
刚体定轴转动定律 1.1 力矩
可加性
• 对同一转轴而言,刚体各部分转动惯量之 和等于整个刚体的转动惯量。
平行轴定理
• 设有两个彼此平行的转轴,一个通过刚体 的质心,另一个不通过质心。两平行轴之 间的距离为d,刚体的质量为m。
如果此刚体对通过质心转轴的转动惯量为 Jc ,则对另一 转轴的转动惯量 J 为 J Jc md 2
刚体定轴转动定律
刚体定轴转动定律Βιβλιοθήκη , ,,,
例题讲解 2
如图所示,一轻绳跨过一轴承光滑的定滑轮。绳两边分别悬有质量为 m1 和 m2 的两个物体 A,B。已知 m1
小于 m2 ,滑轮可看作质量均匀分布的等厚圆盘,其质量为 m,半径为 r,设绳与滑轮间无相对滑动。求:① 物
体的加速度;② 滑轮的角加速度;③ 绳的张力。
i 1
n
用 M 表示,即 M (Δmiri2 ) β
i 1
n
n
式中的 (Δmiri2 ) 称为转动惯量,用 J 表示,即 J (Δmiri2 )
i 1
i 1
于是,式可写为 M Jβ
刚体定轴转动定律 1.2 转动定律
转动定律:刚体定轴转动时,刚体的角加速度与刚体所受的合外力矩成正比,与刚体的转动惯量 成反比。
r 2 dm
Ω
式中 r ——质元 dm 到转轴的距离(m)。 在国际单位制中,转动惯量的单位为 kg m2 。
可见,力矩的方向与转轴的方向平行,只有两个可能的方向,因此,可用 M 的正负表示力矩的方向。 一般可按力矩的作用来判断其正负:由转轴 Oz 正向俯视,若力矩的作用使刚体逆时针转动,则力矩为 正,否则为负。
刚体定轴转动定律 1.1 力矩
可加性
• 对同一转轴而言,刚体各部分转动惯量之 和等于整个刚体的转动惯量。
平行轴定理
• 设有两个彼此平行的转轴,一个通过刚体 的质心,另一个不通过质心。两平行轴之 间的距离为d,刚体的质量为m。
如果此刚体对通过质心转轴的转动惯量为 Jc ,则对另一 转轴的转动惯量 J 为 J Jc md 2
刚体定轴转动定律
刚体定轴转动定律Βιβλιοθήκη , ,,,
例题讲解 2
如图所示,一轻绳跨过一轴承光滑的定滑轮。绳两边分别悬有质量为 m1 和 m2 的两个物体 A,B。已知 m1
小于 m2 ,滑轮可看作质量均匀分布的等厚圆盘,其质量为 m,半径为 r,设绳与滑轮间无相对滑动。求:① 物
体的加速度;② 滑轮的角加速度;③ 绳的张力。
i 1
n
用 M 表示,即 M (Δmiri2 ) β
i 1
n
n
式中的 (Δmiri2 ) 称为转动惯量,用 J 表示,即 J (Δmiri2 )
i 1
i 1
于是,式可写为 M Jβ
刚体定轴转动定律 1.2 转动定律
转动定律:刚体定轴转动时,刚体的角加速度与刚体所受的合外力矩成正比,与刚体的转动惯量 成反比。
r 2 dm
Ω
式中 r ——质元 dm 到转轴的距离(m)。 在国际单位制中,转动惯量的单位为 kg m2 。
3-4 刚体定轴转动的角动量定理和角动量守恒定律
若 M 0 ,则 L r mv 常数
质点所受外力对某固定点的力矩为零,则质点 对该固定点的角动量守恒。这就是质点的角动 量守恒定律。
第3章 刚体力学基础
3–4 刚体定轴转动的角动量定理和角动量守恒定律
4
例3.7 在光滑的水平桌面上,放有质量为M的木块, 木块与一弹簧相连,弹簧的另一端固定在O点,弹簧 的劲度系数为k,设有一质量为m的子弹以初速 v0 垂 直于OA射向M并嵌在木块内.弹簧原长 l0 ,子弹击中 木块后,木块M运动到B点时刻,弹簧长度变为l,此 时OB垂直于OA,求在B点时,木块的运动速度 v2 . 解 击中瞬间,在水平 面内,子弹与木块组成 的系统沿 v0 方向动量守 恒,即有
M t d L L L J J M d t d L L L J J M dd t d L L M L d t J d L J L 0 0 0 0 0 0 L0 0 J J 0 t L L
3–4 刚体定轴转动的角动量定理和角动量守恒定律
24
例3.9 在工程上,两飞轮常用摩擦啮合器使它们以 相同的转速一起转动.如图所示,A和B两飞轮的 轴杆在同一中心线上.A轮的转动惯量为JA=10 kg· m2,B轮的转动惯量为JB=20 kg· m2,开始时A 轮每分钟的转速为600转,B轮静止.C为摩擦啮合 器.求两轮啮合后的转速,在啮合过程中,两轮的 机械能有何变化?
第3章 刚体力学基础
3–4 刚体定轴转动的角动量定理和角动量守恒定律
解 以飞轮A,B,啮合器C为系统,系统受到轴向 的正压力和啮合器之间的切向摩擦力。前者对轴的力 矩为零,后者对轴有力矩,但为系统的内力矩,即系 统所受合外力矩为零,所以系统的角动量守恒,即
4_刚体的定轴转动
从以上各式即可解得
m2 m1 g M r / r m2 m1 g M / r a
J m 2 m1 2 r 1 m 2 m1 m 2
37
若m=0,Mr=0,则
1 m1 2 m 2 m g M / r 2 T1 m1 g a 1 m 2 m1 m 2 1 m2 2m1 m g+M / r 2 T2 m1 g-a 1 m 2 m1 m 2
物体转动与否不仅与力的方向大小有关还与力作用的位置有关定轴转动的力矩只能引起物体变形对转动无贡献转动平面内a力与转轴平行b力与转轴垂直对转动无贡献仅使物体发生形变只有与转轴垂直的分力产生力矩使物体绕轴转动的垂直距离转轴到力在定轴动问题中如不加说明所说的力矩是指力在转动平面内的分力对转轴的力矩
第三章
刚体的定轴转动
l/2 2
28
(2)建立坐标系,分割质量元
x J x 2 dm l o 2 m x dx dx x 0 l 1 3 2 l 2 1 2 ml J C m ml 12 3 2
J x 2 dm
(3)建立坐标系,分割质量元
x
2
m x dx l / 2 h l 1 2 2 2 ml mh J C mh 12
25
转动惯量
多个质点组成的系统:
J mi ri
i
2
质量连续分布的刚体:
J r dm
2
平动 m 转动 J
v w
a a
mv Jw
dv F ma m dt d M z J J dt
26
小结
• • • • • 刚体的概念 刚体的运动自由度 刚体定轴转动的自由度 刚体定轴转动的运动方程 刚体定律转动定律
第四章刚体的定轴转动
L 2
x2dx
1
ML2
L L2
12
z
(2) 由平行轴定理:
zc L/2
C
I
I C M (
L 2
)2
1 12
ML2
1 4
ML2
1 3
ML2
例题4-2: 求密度均匀的圆盘对通过中心并与盘面垂直的转轴 的转动惯量。设圆盘的半径为R,质量为M。
在圆盘上取一半径为r、宽度为dr的圆环,环的面积为2rdr,
环的质量为:
dm
2rdr
M
R2
2rdr
2M R2
rdr
转动惯量:
M
dr
I
r 2dm
2M R2
R r 3dr 1 MR 2
0
2
r p
§4-4 刚体的转动定理
1、力矩:
外力在平行于转轴方向的分力对刚体定轴转动不起作用,
所以只需考虑外力在垂直于轴的平面内的分力。
M
f
定义:外力相对于某固定轴的力矩为:
开始运动时的角速度;
(1)棒和子弹的转动惯量:
IM
1 3
Ml 2
,
Im
m(
3 4
l
)2
9 16
ml 2
由角动量守恒:
o θ0
3l
4C
mv 3 l ( 1 Ml 2 9 ml 2 )
A
43
16
求得:
36 mv
8.88 ( rad / s )
( 16 M 27 m )l
习题4-23 一匀质木棒l = 0.40m,M=1.00kg,可绕轴o在竖直面内 无摩擦转动,开始棒处于竖直位置,一质量m=8g,
刚体定轴转动定律
F ma
(2) 列方程: 对于刚体:定轴转动定律 M J
线量与角量的关系:at R
(3) 解方程.
例题. 一轻绳跨过一轴承光滑的定滑轮,滑轮可视为
圆 盘 , 绳 的 两 端 分 别 悬 有 质 量 为 m1 和 m2 的 物 块 , 且 m1<m2. 设滑轮的质量为M,半径为R,绳与轮之间无 相对滑动,求物块的加速度和绳中张力.
本次课所讲知识点是刚体力学这部分内容的重点, 希望大家课后好好复习,多多练习,熟练掌握。
切向分量式: Fit fit miait
ait ri Fit fit miri
ri
作圆周运动. z
o
f Fit
i fit
ri mi
Fir
Fi
上式两端同乘以ri再对所有质点求和:
Fit ri fit ri miri2
i
i
i
合外力矩M 内力矩之和 =0 转动惯量J
M J
刚体所受的对某一固定转轴的合外力矩等于刚体 对此转轴的转动惯量与刚体在此合外力矩作用下所 获得的角加速度的乘积.
二、 刚体定轴转动定律与牛顿第二定律的比较
定律方程
牛顿第二定律 F ma
促使运动状态发 生变化的因素
合外力:F
阻碍运动状态发 生变化的因素
产生的物理量
质量:m
加速度:a
刚体定轴转动定律
M J
合外力矩:M
ห้องสมุดไป่ตู้转动惯量:J
角加速度:
三、 刚体定轴转动定律的应用
解题思路:
(1) 受力分析;
对于质点:牛顿第二定律
刚体定轴转动定律
一、 刚体定轴转动定律的证明
刚体可看成是由n个质点组成的连续质点系.
转动定理的积分形式力矩对时间和空间的累积效应
刚体绕定轴转动的动能 定理:合外力矩对绕定
0
轴转动的刚体所作的功
W=
1 2
J
2-
1 2
J
2 0
等于刚体的转动动能的 增量。
例题:如图所示,一质量为M、半径为R的圆盘,可绕一无摩擦的水平轴转动。圆盘上 绕有轻绳,一端悬挂质量为m的物体。问物体由静止下落高度h时,其速度的大小为多
少?设绳的质量忽略不计。
dW
Fvgdrv
F
drv
cos
2
Frd
sin
dW Md
W Md
说明:力矩作功的实质仍然是力作功。只是
对于刚体转动的情况,这个功不是用力的位移来 表示,而是用力矩的角位移来表示。
0
2、力矩的功率
(1)定义:
单位时间内力矩对刚体所作的功。
(2)公式
P dW =M d M
dt
dt
功率一定时,转速越大,力矩越小; 转速越小,力矩越大。
一、刚体定轴转动的角动量定理
v
定轴转动定理
v M
v dL
同牛顿第二定律
v F
dpv
dt
dt
类似,以微分形式反映了力或力矩对刚体质点或 质点系的瞬时作用规律。如果我们要考虑一段时 间内外力矩对刚体的作用效果,则可对转动定理
表式对时间积分可得积分形式——刚体定轴转 动的角动量定理
由
M
dL
dt
得
Mdt dL
(3)意义
表示力矩对刚体作功的快慢
3、刚体的转动动能
刚体以角速度ω作定轴转动,取一质元Δmi,距转轴 ri,则此质元的速度为vi=riω,
动能为ห้องสมุดไป่ตู้
力矩_刚体定轴转动定律
m2
m1
1 2
m
r
当不计滑轮质量及摩擦阻力矩即令m=0、M=0时,
有
T1
T2
2m1m2 m2 m1
g
a m2 m1 g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测量
重力加速度g的简单装置。因为在已知m1、 m2 、r和 J的情况下,能通过实验测出物体1和2的加速度a,
再通过加速度把g算出来。在实验中可使两物体的m1 和m2相近,从而使它们的加速度a和速度v都较小, 这样就能角精确地测出a来。
注 (1)在定轴动问题中 ,如不加说明,所指的力矩 是指力在转动平面内的分力 对转轴的力矩。
力矩
(2) M Z rF2 sin F2d
d r s是in转轴到力作用线
F1 F
的距离,称为力臂。
(3) F1 对转轴的力矩为零,
在定轴转动中不予考虑。
转动 平面
rF2ຫໍສະໝຸດ (4)在转轴方向确定后,力对 转轴的力矩方向可用+、-号表示。
的质量dm=rddre,所受到的阻力矩是rdmg 。
定轴转动定律
此处e是盘的厚度。圆盘所受阻力矩就是
M rdmg g rreddr
ge02
d
R
0
r
2dr
2 geR3
3
因m=eR2,代入得
M
2 mgR
3
根据定轴转动定律,阻力矩使圆盘减速,即
获得负的角加速度.
定轴转动定律
2 mgR J 1 mR2 d
N
firi sin i 0
i1
定轴转动定律
得到:
N
Firi
sin i
N
(mi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定轴转动定律
例题2 一半径为R 质量为m匀质圆盘 匀质圆盘, 例题2 一半径为R,质量为 匀质圆盘,平放在粗 糙的水平桌面上。 糙的水平桌面上 。 设盘与桌面间摩擦系数为 µ , 令 圆盘最初以角速度ω0 绕通过中心且垂直盘面的轴旋 问它经过多少时间才停止转动? 转,问它经过多少时间才停止转动?
ω
§4-3 力矩 刚体定轴转动定律 1. 力矩
r r r r 点的力矩: F 对O 点的力矩:M = r × F
Z
r M
转 动 平 面
M = rF sin α r F
r M
MZ
α r
r
r r M沿Z 轴分量为 F对Z 轴力矩 MZ
r F
r O r A
力矩
力不在转动平面内
r r r M = r× F r r r = r ×(F1 + F2 ) r r r r = r × F + r × F2 1 r r r × F1 只能引起轴的
F sinϕ + f sinθ = ∆m a = ∆m rα
i i i i i iτ i i
定轴转动定律
用 r 乘以上式左右两端: i 乘以上式左右两端:
i i i i i
Fr sinϕ + f r sinθ = ∆m r α
2 i i i
设刚体由N 个点构成, 设刚体由 个点构成,对每个质点可写出上述 类似方程, 类似方程,将N 个方程左右相加,得: 个方程左右相加,
变形, 对转动无贡献。 变形 对转动无贡献 注 (1)在定轴动问题中 如不加说明, ,如不加说明,所指的力矩 是指力在转动平面内的分力 对转轴的力矩。 对转轴的力矩。
r F 1
转动 平面
r F
r F 2
r r
力矩
(2 )
MZ = rF si α = F d 2 n 2
d = r sin α是转轴到力作
α ∑ Fr sin ϕ + ∑ f r sin θ = ∑(∆m r )
N N N 2 i=1 i i i i=1 i i i i=1 i i
根据内力性质(每一对内力等值、反向、 根据内力性质(每一对内力等值、反向、共 对同一轴力矩之代数和为零) 线,对同一轴力矩之代数和为零),得:
i= 1
∑ firi sin θi = 0
定轴转动定律
a (m2 − m1 )g − M τ / r α= = r m + m + 1 m r 2 1 2
当不计滑轮质量及摩擦阻力矩即令m= 当不计滑轮质量及摩擦阻力矩即令 =0、Mτ=0时,有
2m1m2 T1 = T2 = g m2 + m1
m2 − m1 a= g m2 + m1
定轴转动定律
例题1 一轻绳跨过一定滑轮, 滑轮视为圆盘, 例题 1 一轻绳跨过一定滑轮 , 滑轮视为圆盘 , 绳的两 的物体1 端分别悬有质量为m1和m2的物体1和2,m1< m2 如图所 设滑轮的质量为m 半径为r, 示 。 设滑轮的质量为 , 半径为 , 所受的摩擦阻力矩 绳与滑轮之间无相对滑动。 为M 。绳与滑轮之间无相对滑动。试求物体的加速度和 绳的张力。 绳的张力。 解:滑轮具有一定的转动惯 量。在转动中受到阻力矩 T1 T2 的作用, 的作用,两边的张力不再 T1’ T2’ 相等,设物体1 相等,设物体1这边绳的张 力为T1、 T1’(T1’= T1) , a m1
τ
a
物体2 物体2这边的张力为
T2、 T2’(T2’= T2)
a
m
1
m2 G1 m
2
G2
定轴转动定律
物体1向上运动,物体2向下运动, 因m2>m1,物体1向上运动,物体2向下运动,滑轮以 顺时针方向旋转, 的指向如图所示。 顺时针方向旋转,Mr的指向如图所示。可列出下列方 程
T1 − G1 = m1a
r (3) F 对转轴的力矩为零, 1 对转轴的力矩为零,
在定轴转动中不予考虑。 在定轴转动中不予考虑。
r F 1
r F
r F 2
用线的距离,称为力臂 用线的距离,称为力臂。 转动 平面
r r
(4)在转轴方向确定后,力对 在转轴方向确定后, 转轴的力矩方向可用+ 号表示。 转轴的力矩方向可用+、-号表示。
dθ r dr R e
由于摩擦力不是集中作用于一点, 解 由于摩擦力不是集中作用于一点,而是分布在 整个圆盘与桌子的接触面上, 整个圆盘与桌子的接触面上,力矩的计算要用积分 在图中,把圆盘分成许多环形质元, 法。在图中,把圆盘分成许多环形质元,每个质元 的质量dm,所受到的阻力矩是dM=rdf= µgdm 。 所受到的阻力矩是dM=rdf= 的质量 所受到的阻力矩是dM=rdf=r
定轴转动定律
2. 刚体定轴转动定律
对刚体中任一质量元 ∆m i
O’
ω
r ri
∆mi
O
r 外力 Fi -外力
r fi
r fi -内力
θi ϕ i
r F i
应用牛顿第二定律,可得: 应用牛顿第二定律,可得:
r r r Fi + fi = ∆mai i
采用自然坐标系,上式切向分量式为: 采用自然坐标系,上式切向分量式为:
N
定轴转动定律
得到: 得到:
α ∑ Fr sin ϕ = ∑(∆m r )
N N 2 i力矩, 上式左端为刚体所受外力的合外力矩,以M 表 右端求和符号内的量与转动状态无关, 示;右端求和符号内的量与转动状态无关,称为刚 表示。 体转动惯量,以J 表示。于是得到 体转动惯量,
a=
(m2 − m1 )g − M r / r (m2 − m1 )g − M τ / r
J m2 + m1 + 2 r =
1 m2 + m1 + m 2 而 1 m1 2m2 + m g − M τ / r 2 T1 = m1 ( g + a ) = 1 m2 + m1 + m 2 1 m2 2m1 + m g+M τ / r 2 T2 = m1 ( g-a ) = 1 m2 + m1 + m 2
dω M = Jα = J dt
刚体定轴 转动定律
dω M = Jα = J 讨论: 讨论: dt
(1) M 一定,J ) 一定, 惯性大小的量度; 惯性大小的量度;
定轴转动定律
α
转动惯量是转动
的符号: (2)M 的符号:使刚体向规定的转动正方向加速 的力矩为正; 的力矩为正;
(3) M = d(Jω) 适用于刚体、非刚体(这里不做证明) 适用于刚体、非刚体(这里不做证明) dt
定轴转动定律
圆盘所受阻力矩就是
M = ∫ r µ gdm = µ g ∫ r σ ds
τ
= ∫ µ gr σ 2 π rdr
R 0
= 2 πσµ g ∫ r dr 2 2 = πσµ gR = πµ gmR ( m = σπ R ) 3 3
R 2 0
3
2
根据定轴转动定律,阻力矩使圆盘减速, 根据定轴转动定律,阻力矩使圆盘减速,即 获得负的角加速度. 获得负的角加速度
G2 − T2 = m2 a T2′r − T1′r − M τ = Jα
是滑轮的角加速度, 是物体的加速度 是物体的加速度。 式中α是滑轮的角加速度,a是物体的加速度。滑轮 边缘上的切向加速度和物体的加速度相等, 边缘上的切向加速度和物体的加速度相等,即
a = rα
从以上各式即可解得
定轴转动定律
定轴转动定律
2 1 2 dω − µ mgR = J α = mR 3 2 dt
设圆盘经过时间t停止转动, 设圆盘经过时间t停止转动,则有
2 1 0 t − µ g ∫0 dt = R ∫ω 0 d ω 3 2
由此求得
3 R t= ω0 4 µg