高三理科数学一轮总复习第九章 圆锥曲线与方程

合集下载

届高三数学第一轮复习圆锥曲线与方程

届高三数学第一轮复习圆锥曲线与方程

第九章 圆锥曲线与方程第一单元 椭圆、双曲线、抛物线【考纲要求】1.椭圆的标准方程和几何性质(中心在坐标原点)是B 级要求;双曲线的标准方程和几何性质(中心在坐标原点)是A 级要求;抛物线的标准方程和几何性质(顶点在坐标原点)是A 级要求.2.(1)掌握椭圆的定义和几何图形;掌握椭圆的标准方程,会求椭圆的标准方程;掌握椭圆的简单几何性质,能运用椭圆的标准方程和几何性质处理一些简单的实际问题;了解运用曲线的方程研究曲线的几何性质的思想方法.(2)了解双曲线的定义和几何图形;了解双曲线的标准方程,会求双曲线的标准方程;了解双曲线的简单几何性质.(3)了解抛物线的定义和几何图形;了解抛物线的标准方程,会求抛物线的标准方程;了解抛物线的简单几何性质. 【知识回顾】1.椭圆的两种定义: (1) 平面内与两定点12,F F 的距离的等于常数(大于12F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的,之间的距离叫做焦距.(2) 椭圆的第二定义:平面上到的距离与到的距离之比是常数e ,且e ∈的点的轨迹叫椭圆.定点F 是椭圆的,定直线l 是,常数e 是.2.椭圆的标准方程: (1) 焦点在x 轴上,中心在原点的椭圆标准方程是; (2) 焦点在y 轴上,中心在原点的椭圆标准方程是.3.椭圆的几何性质(对22221,0x y a b a b+=>>进行讨论)(1) 范围:.(2) 对称性:对称轴方程为;对称中心为.(3) 顶点坐标:,焦点坐标:,长半轴长:,短半轴长:;准线方程:.(4) 离心率:e =,e 越接近1,椭圆越;e 越接近0,椭圆越接近于.4.双曲线的两种定义:(1)平面内与两定点12,F F 的距离的等于常数(大于12F F )的点的轨迹叫双曲线,这两个定点叫做双曲线的,之间的距离叫做焦距.(2)双曲线的第二定义:平面上到的距离与到的距离之比是常数e ,且e ∈的点的轨迹叫双曲线.定点F 是双曲线的,定直线l 是,常数e 是.5.双曲线的标准方程:(1) 焦点在x 轴上,中心在原点的双曲线标准方程是; (2) 焦点在y 轴上,中心在原点的双曲线标准方程是.6.双曲线的几何性质:(对22221,0,0x y a b a b-=>>进行讨论)(1) 范围:.(2) 对称性:对称轴方程为;对称中心为.(3) 顶点坐标:,焦点坐标:,实半轴长:,虚半轴长:;准线方程:.(4) 离心率:e =.7.抛物线的定义:平面上到的距离与到的距离相等的点的轨迹叫抛物线.定点F 是抛物线的,定直线l 是.8.抛物线的标准方程:.9.抛物线的几何性质:(对22(0)y px p =>进行讨论) (1) 范围:.(2) 对称性:对称轴方程为.(3) 顶点坐标:,焦点坐标:,准线方程:.(4) 离心率:e =. 【方法回顾】例1.设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为A ,过点A 且与AF 垂直的光线经椭圆的右准线反射,反射光线与直线AF 平行.(1)求椭圆的离心率;(2)设入射光线与右准线的交点为B ,过A ,B ,F 三点的圆M 与直线216202x y a ++=相交于,P Q 两点,且258MP MQ a ⋅=- ,求椭圆的方程. 解:⑴因为入射光线与反射光线垂直,所以入射光线与准线所成的角为︒45,即︒=∠45FAO ,所以b c =.⑵由⑴知,=b c a ,可得()()0,,2,A c B c c -,又AF AB ⊥,所以过,,A B F 三点的圆的圆心坐标为,22c c ⎛⎫- ⎪⎝⎭,半径12r FB ==, 因为25 8MP MQ a ⋅=- ,所以25cos 224MP MQ MPQ c ⋅=⨯⨯∠=- .所以0120MPQ ∠=.所以圆心到直线216202x y a ++=的距离等于半径12r =,得3c =,所以3,b a ==221189x y +=.例2.(2009江西卷理)已知点100(,)P x y 为双曲线222218x y b b -=(b 为正常数)上任一点,2F 为双曲线的右焦点,过1P 作右准线的垂线,垂足为A ,连接2F A 并延长交y 轴于2P .(1) 求线段1P 2P 的中点P 的轨迹E 的方程;(2) 设轨迹E 与x 轴交于B D 、两点,在E 上任取一点111,(0)Q x y y ≠(),直线QB QD ,分别交y 轴于M N ,两点.求证:以MN 为直径的圆过两定点.解: (1) 由已知得208303F b A b y (,),(,),则直线2F A 的方程为:03(3)yy x b b=--,令0x =得09y y =,即20(0,9)P y ,设P x y (,),则00002952x x y y y y ⎧=⎪⎪⎨+⎪==⎪⎩,即0025x xy y =⎧⎪⎨=⎪⎩代入22002218x y b b -=得:222241825x y b b -=, 即P 的轨迹E 的方程为22221225x y b b-=. (2) 在22221225x y b b-=中令0y =得222x b =,则不妨设00B D (,,), 于是直线QB 的方程为:)y x =,直线QD 的方程为:)y x =,则00M N ((, 则以MN 为直径的圆的方程为:20x y y +=(,令0y =得:222122122b y x x b=-,而11,Q x y ()在22221225x y b b -=上,则222112225x b y -=, 于是5x b =±,即以MN 为直径的圆过两定点(5,0),(5,0)b b -.59. 椭圆的标准方程与几何性质(1)【基础训练】1.已知(3,0),(3,0)M N -,P 是平面内任一点,(1)若6PM PN +=,则点P的轨迹方程为;(2)若PMN ∆周长为16,则点P 的轨迹方程.2.P 是椭圆)0(12222>>=+b a by a x 上的点,21F F 、为其焦点,若c =则1PF 的最小值为,1PF 最大值为,21PF PF ⋅的最小值为,21PF PF ⋅最大值为.3. 已知方程12-m x +my -22=1,表示焦点在y 轴上的椭圆,则m 的取值范围为.4.设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为.5.已知F 是椭圆459522=+y x 的左焦点,P 是椭圆上的动点,(1,1)A 是一定点,则PA PF +的最大值是.6.已知P 是椭圆16410022=+y x 上一点,21F F 、为该椭圆的焦点,若321π=∠PF F ,则21PF F ∆的面积为.【例题分析】例1.根据下列条件求椭圆的标准方程:(1)已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点;(2)经过两点A (0,2)和B ⎪⎭⎫⎝⎛3,21;例2.点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥.求点P 的坐标.例3.椭圆22221(0)x y a b a b+=>>的两个焦点F 1、F 2,点P 在椭圆上,且P F 1⊥F 1F 2,, | P F 1|=34,,| P F 2|=314. (1)求椭圆C 的方程;(2)若直线L 过圆x 2+y 2+4x-2y=0的圆心M 交椭圆于A 、B 两点,且A 、B 关于点M 对称,求直线L 的方程.例4.(1)设,A F 分别是椭圆22221(0)x y a b a b+=>>的左顶点与右焦点,若在其右准线上存在点P ,使得线段PA 的垂直平分线恰好经过点F ,求椭圆的离心率的取值范围;(2)已知椭圆2221(01)y x b b+=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作⊙P ,其中圆心P 的坐标为(m ,n ).当m +n >0时,求椭圆离心率的范围.【拓展提升】例5.设椭圆222:1(0)2x y C a a +=>的左右焦点分别为12,F F ,A 是椭圆C 上的点,且2120AF F F = ,坐标原点O 到直线1AF 的距离为113OF .(1)求椭圆C 的方程;(2)设Q 是椭圆C 上的一点,过点Q 的直线l 交x 轴于点(1,0)F -,交y 轴于点M ,若2MQ QF =,求直线l 的斜率.60. 椭圆的标准方程与几何性质(2)【基础训练】1.椭圆的2212x y m+=的离心率为12,则实数m 的值为. 2.1F 、2F 是椭圆22219x y a +=的左右焦点,P 为椭圆的一个顶点,若12PF F ∆是等边三角形,则2a =____________.3.若椭圆22221(0)x y a b a b+=>>上存在一点M ,它到左焦点的距离是它到右准线距离的2倍,则椭圆离心率的最小值为_____________.4.椭圆22221(0,0)x y a b a b+=>>的离心率12e =,右焦点(,0)F c ,方程02=-+c bx ax 的两个根分别为1,x 2x ,则点P (1,x 2x )在与圆222=+y x 的位置关系是.5.对于定点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1)。

数学(理)一轮复习:第九章 解析几何 双曲线

数学(理)一轮复习:第九章 解析几何  双曲线

1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c 为常数且a〉0,c〉0。

(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a〉|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质标准方程错误!-错误!=1(a〉0,b〉0)y2a2-错误!=1(a〉0,b〉0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关c2=a2+b2 (c>a>0,c>b〉0)系【知识拓展】巧设双曲线方程(1)与双曲线错误!-错误!=1(a>0,b〉0)有共同渐近线的方程可表示为错误!-错误!=t(t≠0).(2)过已知两个点的双曲线方程可设为错误!+错误!=1(mn〈0).【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ×)(2)方程错误!-错误!=1(mn〉0)表示焦点在x轴上的双曲线.(×)(3)双曲线方程错误!-错误!=λ(m〉0,n>0,λ≠0)的渐近线方程是错误!-错误!=0,即错误!±错误!=0.( √)(4)等轴双曲线的渐近线互相垂直,离心率等于 2.(√)(5)若双曲线错误!-错误!=1(a〉0,b>0)与错误!-错误!=1(a〉0,b>0)的离心率分别是e1,e2,则错误!+错误!=1(此结论中两条双曲线称为共轭双曲线).(√)1.(教材改编)若双曲线错误!-错误!=1 (a〉0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A。

高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题

高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题

第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。

高中数学总复习教学案09:圆锥曲线与方程

高中数学总复习教学案09:圆锥曲线与方程

高中数学总复习题组法教学案编写体例第9章圆锥曲线与方程本章知识结构本章的重点:椭圆、双曲线、抛物线的定义,标准方程及标准方程表示的圆锥曲线的几何性质,直线与圆锥曲线的位置关系。

本章的难点:求圆锥曲线的方程及利用几何性质和直线与圆锥曲线的位置关系综合问题。

◆本章学习中应当着重注意的问题理解椭圆、双曲线、抛物线的概念,准确掌握标准方程所表示曲线的几何性质,特别注重函数与方程不等式的思想、转化思想、数形结合思想在本单元解题中的应用。

◆本章高考分析及预测本章内容是高中数学的重要内容之一,也是高考常见新颖题的板块,各种解题方法在本章得到了很好的体现和充分的展示,尤其是在最近几年的高考试题中,平面向量与解析几何的融合,提高了题目的综合性,形成了题目多变,解法灵活的特点,充分体现了高考中以能力立意的命题方向。

通过对近几年的高考试卷的分析,可以发现选择题、填空题与解答题均可涉及本章的知识,分值20分左右。

主要呈现以下几个特点:1.考查圆锥曲线的基本概念、标准方程及几何性质等知识及基本技能、基本方法,常以选择题与填空题的形式出现;2.直线与二次曲线的位置关系、圆锥曲线的综合问题常以压轴题的形式出现,这类问题视角新颖,常见的性质、基本概念、基础知识等被附以新的背景,以考查学生的应变能力和解决问题的灵活程度;3.在考查基础知识的基础上,注意对数学思想与方法的考查,注重对数学能力的考查,强调探究性、综合性、应用性,注重试题的层次性,坚持多角度、多层次的考查,合理调控综合程度;4.对称问题、轨迹问题、多变量的范围问题、位置问题及最值问题也是本章的几个热点问题,但从最近几年的高考试题本看,难度有所降低,有逐步趋向稳定的趋势。

§椭圆① 了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.②掌握椭圆的定义、几何图形、标准方程及简单性质.本节的重点是椭圆的定义、标准方程和几何性质。

本节的难点是椭圆标准方程两种形式的应用及解决椭圆问题所涉及的思想方法。

高三数学一轮总结复习目录

高三数学一轮总结复习目录

高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。

2011届高三数学一轮复习教案:第九章圆锥曲线汇总

2011届高三数学一轮复习教案:第九章圆锥曲线汇总

圆锥曲线【方法点拨】解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。

而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。

研究圆锥曲线,无外乎抓住其方程和曲线两大特征。

它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。

高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。

圆锥曲线问题的基本特点是解题思路比较简单清晰,解题方法的规律性比较强,但是运算过程往往比较复杂,对学生运算能力,恒等变形能力,数形结合能力及综合运用各种数学知识和方法的能力要求较高。

1. 一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质.2.着力抓好运算关,提高运算与变形的能力,解析几何问题一般涉及的变量多,计算量大,解决问题的思路分析出来以后,往往因为运算不过关导致半途而废,因此要寻求合理的运算方案,探究简化运算的基本途径与方法,并在克服困难的过程中,增强解决复杂问题的信心,提高运算能力.3.突出主体内容,要紧紧围绕解析几何的两大任务来学习:一是根据已知条件求曲线方程,其中待定系数法是重要方法,二是通过方程研究圆锥曲线的性质,往往通过数形结合来体现,应引起重视.4.重视对数学思想如方程思想、函数思想、数形结合思想的归纳提炼,达到优化解题思维、简化解题过程第1课椭圆【考点导读】1.掌握椭圆的第一定义和几何图形,掌握椭圆的标准方程,会求椭圆的标准方程,掌握椭圆简单的几何性质;2. 了解运用曲线方程研究曲线几何性质的思想方法;能运用椭圆的标准方程和几何性质处理一些简单的实际问题. 【基础练习】1.已知△ABC 的顶点B 、C 在椭圆2213xy +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是2.椭圆1422=+y x 的离心率为233.已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是221164xy+=4. 已知椭圆19822=++yk x的离心率21=e ,则k 的值为544k k ==-或椭圆192522=+yx的焦点1F 2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为 9__【范例导析】例1.(1)求经过点35(,)22-,且229445x y +=与椭圆有共同焦点的椭圆方程。

一轮复习圆锥曲线

一轮复习圆锥曲线

高考一轮复习圆锥曲线1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

如(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

如已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+by a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。

高三数学一轮复习圆锥曲线的综合问题

高三数学一轮复习圆锥曲线的综合问题

备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2

-y0=λy1

第九单元圆锥曲线( 基础过关)-2021年高考数学一轮复习(解析版)

第九单元圆锥曲线( 基础过关)-2021年高考数学一轮复习(解析版)

第九单元 圆锥曲线A 卷 基础过关检查一、单项选择题:本大题共8小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2020全国高三课时练习(理)】已知点P 是以12,F F 为焦点的椭圆()222210x y a b a b +=>>上一点,若1221,tan 2PF PF PF F ⊥∠=,则椭圆的离心率e =( )AB .13C .23D .12【答案】A【解析】∵点P 是以F 1,F 2为焦点的椭圆22x a+2yb =1(a >b >0)上一点,PF 1⊥PF 2,tan ∠PF 2F 1=2,∴12PF PF =2,设|PF 2|=x ,则|PF 1|=2x ,由椭圆定义知x+2x=2a ,∴x=23a ,∴|PF 2|=23a ,则|PF 1|==43a,由勾股定理知|PF 2|2+|PF 1|2=|F 1F 2|2,∴解得, ∴e=c a故选A.2.【2020四川资阳高三其他(理)】已知椭圆C :()222210x y a b a b +=>>经过点(1,)2b ,且C 的离心率为12,则C 的方程是( ) A .22143x y +=B .22186x y +C .22142x y +=D .22184x y +=【答案】A【解析】依题意,可得2131412a ⎧+=⎪=,解得2243a b ⎧=⎨=⎩,故C 的方程是22143x y +=. 故选A.3.【2020年高考全国Ⅰ卷理数】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3C .6D .9【答案】C【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选C .4. 【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 A .4 B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b ab-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩, 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△, 双曲线2222:1(0,0)x y C a b a b-=>>,∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8.故选B .5. 【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -= D .221x y -= 【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -, 又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1b b a-⨯=-,因为0,0a b >>,解得1,1a b ==. 故选D .6. 【2020山东青岛高三二模】已知曲线C 的方程为()222126x y k k k-=∈--R ,则下列结论正确的是( )A .当8k时,曲线C 为椭圆,其焦距为4B .当2k =时,曲线C C .存在实数k 使得曲线C 为焦点在y 轴上的双曲线D .当3k =时,曲线C 为双曲线,其渐近线与圆()2249x y -+=相切 【答案】B【解析】对于A ,当8k 时,曲线C 的方程为221622x y +=,轨迹为椭圆,焦距22622415c =-=,A 错误;对于B ,当2k =时,曲线C 的方程为22124x y -=,轨迹为双曲线,则2a =,6c =,∴离心率3==ce a,B 正确; 对于C ,若曲线C 表示焦点在y 轴上的双曲线,则26020k k -<⎧⎨-<⎩,解集为空集,∴不存在实数k 使得曲线C 为焦点在y 轴上的双曲线,C 错误;对于D ,当3k =时,曲线C 的方程为22173x y -=,其渐近线方程为217y x =±,则圆()2249x y -+=的圆心到渐近线的距离4214323035214910d ±===≠+,∴双曲线渐近线与圆()2249x y -+=不相切,D 错误.故选B.7.【2020陕西西安高三二模(理)】设2F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,O 为坐标原点,过2F 的直线交双曲线的右支于点P ,N ,直线PO 交双曲线C 于另一点M ,若223MF PF =,且260MF N ∠=︒,则双曲线C 的渐近线的斜率为( )A .27±B .23±C .7±D .3±【答案】D【解析】设双曲线的左焦点为1F ,由双曲线的对称性可知四边形21MF PF 为平行四边形.∴12MF PF =,1//MF PN . 设2PF n =,则22MF m =,即1MF a =,23MF a =. ∵2122a MF MF m =-=,即1MF a =,23MF a =. ∵260MF N ∠=︒,∴1260F MF ∠=︒. 又122F F c =,在12MF F △中,由余弦定理可得:2224923cos60c a a a a =+-⋅⋅⋅︒,即2247c a =,∴2274c a =,2222314b c a a =-=.∴双曲线C 的渐近线的斜率为32±. 故选D .8.【2020山东高三其他】如图,已知双曲线22221(0)x y b a a b-=>>的左、右焦点分别为1F 、2F ,过右焦点作平行于一条渐近线的直线交双曲线于点A ,若12AF F △的内切圆半径为4b,则双曲线的离心率为( )A .233B .54C .53D .322【答案】C【解析】设双曲线的左、右焦点分别为1(,0)F c -,2(,0)F c , 设双曲线的一条渐近线方程为by x a=, 可得直线2AF 的方程为()b y x c a =-,与双曲线22221(0)x y b a a b-=>>联立,可得22(2c a A c +,22())2b a c ac-,设1||AF m =,2||AF n =,由三角形的面积的等积法可得2211()(2)22422b b c a m n c c ac -⋅++=⋅⋅,化简可得2442c m n a c a+=--①由双曲线的定义可得2m n a -=②在三角形12AF F 中22()sin 2b c a n ac θ-=,(θ为直线2AF 的倾斜角),由tan ba θ=,22sin cos 1θθ+=,可得sinbc θ==, 可得222c a n a-=,③由①②③化简可得223250c ac a --=, 即为(35)()0c a c a -+=, 可得35c a =,则53c e a ==. 故选C.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分. 9. 【2020年新高考全国Ⅰ卷】已知曲线22:1C mx ny +=. A .若m >n >0,则C 是椭圆,其焦点在y 轴上B .若m =n >0,则CC .若mn <0,则C 是双曲线,其渐近线方程为y =D .若m =0,n >0,则C 是两条直线 【答案】ACD【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=,因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为n的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=, 此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选ACD .10.【2020山东德州高三一模】 1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a ,2c ,下列结论正确的是( )A .卫星向径的取值范围是[],a c a c -+B .卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间C .卫星向径的最小值与最大值的比值越大,椭圆轨道越扁D .卫星运行速度在近地点时最大,在远地点时最小 【答案】ABD【解析】根据椭圆定义知卫星向径的取值范围是[],a c a c -+,A 正确;当卫星在左半椭圆弧的运行时,对应的面积更大,面积守恒规律,速度更慢,B 正确;12111a c e a c e e--==-+++,当比值越大,则e 越小,椭圆轨道越圆,C 错误. 根据面积守恒规律,卫星在近地点时向径最小,故速度最大,在远地点时向径最大,故速度最小,D 正确. 故选ABD .11. 【2020山东济南外国语学校高三月考】我们通常称离心率为51-的椭圆为“黄金椭圆”.如图,已知椭圆2222:1(0)x y C a b a b+=>>,1212,,,A A B B 为顶点,12,F F 为焦点,P 为椭圆上一点,满足下列条件能使椭圆C 为“黄金椭圆”的有( )A .111222||,||,||A F F F F A 为等比数列B .11290F B A ∠=︒C .1PF x ⊥ 轴,且21//PO A BD .四边形1221A B A B 的内切圆过焦点12,F F 【答案】BD【解析】2222:1(0)x y C a b a b+=>>()()()()1212,0,,0,0,,0,A a A a B b B b ∴--,()()12,0,,0F c F c -对于A :111222||,||,||A F F F F A 为等比数列则2112212||||||A F F A F F ⋅=()()222a c c ∴-=2a c c ∴-=13e ∴=不满足条件,故A 错误; 对于B :11290F B A ∠=︒222211112A F B F B A ∴=+ ()2222a c a a b ∴+=++220c ac a ∴+-=即210e e ∴+-=解得e =或e =故B 正确;对于C :1PF x ⊥ 轴,且21//PO A B2,b P c a ⎛⎫∴- ⎪⎝⎭21POA B k k =即2b c ab a =--解得bc =222a b c =+2c e a ∴===不满足题意,故C 错误; 对于D :四边形1221A B A B 的内切圆过焦点12,F F 即四边形1221A B A B 的内切圆的半径为c ,ab ∴=422430c a c a ∴-+=42310e e ∴-+=解得2e =(舍去)或2e =12e ∴=故D 正确 故选BD.12.【2020山东泰安高三其他】已知1F 、2F 是双曲线22:142y x C -=的上、下焦点,点M 是该双曲线的一条渐近线上的一点,并且以线段12F F 为直径的圆经过点M ,则下列说法正确的是( ) A .双曲线C的渐近线方程为y = B .以12F F 为直径的圆的方程为222x y += C .点M的横坐标为 D .12MF F △的面积为【答案】ACD【解析】由双曲线方程22142-=y x知2,a b ==y轴,渐近线方程为a y x b =±=,A正确;c ==12F F 为直径的圆的方程是226x y +=,B 错;由226x y y ⎧+=⎪⎨=⎪⎩得2x y ⎧=⎪⎨=⎪⎩2x y ⎧=⎪⎨=-⎪⎩,由对称性知M点横坐标是,C 正确;12121122MF F M S F F x ==⨯=△D 正确. 故选ACD .三、填空题:本大题共4小题,每小题5分,共20分.13. 【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 . 【答案】2【解析】联立22222221x cx ya ba b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x cbya=⎧⎪⎨=±⎪⎩,所以2bBFa=.依题可得,3BFAF=,AF c a=-,即()2223bc aac a a c a-==--,变形得3c a a+=,2c a=,因此,双曲线C的离心率为2.故答案为:2.14.【2020肥城市教学研究中心高三其他】双曲线22:1916x yC-=的右支上一点P在第一象限,1F,2F分别为双曲线C的左、右焦点,Q为△12PF F的内心,若内切圆Q的半径为1,则直线1PF的斜率等于_____. 【答案】1663【解析】设1212PF PF F F、、与圆的切点分别为,,M N H.则,PM PN=11,MF HF=22NF HF=,所以121226,PF PF HF HF a-=-==又12+=10HF HF,解得18,F H=12.F H=连接1,F Q HQ11tan,8HFQ∴∠=则112168tan2163164k HFQ⨯=∠==-,故答案为:1663.15.【2020山东高三其他】已知抛物线22(0)y px p=>与直线:4320l x y p--=在第一、四象限分别交于A,B两点,F是抛物线的焦点,若||||AF FBλ=,则λ=________.【答案】4【解析】直线:l 当0y =时,2p x =, ∴直线l 过抛物线的焦点,,,A F B 三点共线,联立直线与抛物线方程,224320y pxx y p ⎧=⎨--=⎩ , 得2281720x px p -+=, 解得:2A x p = ,8B p x =, 522A p AF x p ∴=+=,528B p BF x p =+=, 4AF FBλ==.故答案为416. 【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x ±=,所以,双曲线C=故答案为:()3,0.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a +=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).18.【2020年高考全国Ⅱ卷理数】已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且43CD AB =.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【解析】(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a-;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12. (2)由(1)知2a c =,3b c =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.19.【2020浙江湖州中学高三其他】如图,椭圆E :2222+1(0)x y a b a b =>>的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为22.(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)22142x y +=;(2)存在,Q 点的坐标为(0,2)Q . 【解析】(1)由已知,点2,1)在椭圆E 上.因此,22222211,,2a b a b c c a⎧+=⎪⎪⎪-=⎨⎪⎪=⎪⎩解得2,a b ==所以椭圆的方程为22142x y +=.(2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点.如果存在定点Q 满足条件,则||||1||||QC PC QD PD ==,即||||QC QD =. 所以Q 点在y 轴上,可设Q 点的坐标为0(0,)y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于M 、N 两点.则(0,M N ,由||||||||QM PM QN PN ==,解得01y =或02y =. 所以,若存在不同于点P 的定点Q 满足条件, 则Q 点的坐标只可能为(0,2)Q .下面证明:对任意的直线l ,均有||||||||=QA PA QB PB . 当直线l 的斜率不存在时,由上可知,结论成立. 当直线l 的斜率存在时,可设直线l 的方程为1y kx =+, A 、B 的坐标分别为1122(,),(,)x y x y .联立221,421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=. 其判别式22168(21)0k k ∆=++>, 所以,12122242,2121k x x x x k k +=-=-++.因此121212112x xkxx x x++==.易知,点B关于y轴对称的点的坐标为22(,)B x y'-.又121122122111,QA QBy yk k k k kx x x x x'--==-==-+=--,所以QA QBk k'=,即,,Q A B'三点共线.所以12||||||||||||||||xQA QA PAQB QB x PB==='.故存在与P不同的定点(0,2)Q,使得||||||||=QA PAQB PB恒成立.20.【2020年高考浙江】如图,已知椭圆221:12xC y+=,抛物线22:2(0)C y px p=>,点A是椭圆1C与抛物线2C的交点,过点A的直线l交椭圆1C于点B,交抛物线2C于点M(B,M不同于A).(Ⅰ)若116p=,求抛物线2C的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.【解析】(Ⅰ)由116p=得2C的焦点坐标是1(,0)32.(Ⅱ)由题意可设直线:(0,0)l x my t m t=+≠≠,点00(,)A x y.将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=,所以点M 的纵坐标22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m +=,因此22022(2)p m x m +=.由220012x y +=得2421224()2()160m m p m m =+++≥,所以当2m =,10t =时,p 取到最大值10. 21. 【2020山东高三其他】如图,在平面直角坐标系xOy 中,抛物线()2:20C y px p =>的焦点为F ,A 为抛物线上异于原点的任意一点,以AO 为直径作圆Ω,当直线OA 的斜率为1时,||42OA =.(1)求抛物线C 的标准方程;(2)过焦点F 作OA 的垂线l 与圆Ω的一个交点为M ,l 交抛物线于P ,Q (点M 在点P ,Q 之间),记OAM △的面积为S ,求23||2S PQ +的最小值. 【答案】(1)24y x =(2)23【解析】(1)当直线OA 的斜率为1时,可得直线OA 的方程为y x =,联立抛物线方程22y px =,解得2x p =,即(2,2)A p p ,||242OA ==2p =, 抛物线的方程为24y x =; (2)由(1)可得(1,0)F ,设11(,)A x y ,00(,)M x y ,22(,)P x y ,33(,)Q x y ,且2114y x =,由题意可得0OA FM ⋅=,即101010x x y y x +-=,又0OM AM ⋅=,即220100100x x x y y y -+-=,整理可得22001x y x +=,又22222222110011||||||()3AM OA OM x y x y x x =-=+-+=+,则1||||2S AM OM =⋅=221111(3)4S x x x =+, 又PQ 的斜率存在且不为0,:1PQ x ky =+,联立抛物线方程可得2440y ky --=, 可得234y y k +=,234y y =-,则2||4(1)PQ k ===+,由PQ OA ⊥,可得11PQx k y =-,即11y k x =-,可得212114||4(1)4(1)y PQ x x =+=+,则221111314||(3)6(1)24S PQ x x x x +=+++, 可令214()(3)6(1)4f x x x x x =+++,4323232()4x x f x x+-'=⋅, 显然43()232g x x x =+-在0x >递增,且(2)0=g , 当02x <<时,()0<g x ,2x >时,()0>g x , 可得()f x 在(0,2)递减,在(2,)+∞递增, 可得2x =时,()f x 取得最小值23. 即求23||2S PQ +的最小值为23. 22. 【2020年高考江苏】在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.【解析】(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c ,则2224,3,1a b c ===.所以12AF F △的周长为226a c +=. (2)椭圆E 的右准线为4x =. 设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--, 2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -.所以直线:3430.AB x y -+=设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=.由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解;由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-.代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.。

【高三】2021届高三理科数学圆锥曲线与方程总复习

【高三】2021届高三理科数学圆锥曲线与方程总复习

【高三】2021届高三理科数学圆锥曲线与方程总复习第九圆锥曲线与方程高考导航考试要求重难点击命题展望1.了解圆锥曲线的实际背景,以及圆锥曲线在描绘现实世界和解决实际问题中的作用;2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质;3.了解双曲线的定义、几何图形和标准方程,了解其简单的几何性质;4.了解圆锥曲线的简单应用;5.理解数形结合的思想;6.了解方程的曲线与曲线的方程的对应关系. 本重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.难点:1理解和应用二次曲线的定义和性质;2.直线与二次曲线的位置关系;3.曲线与方程的对应曲线、函数、方程、不等式、三角形、平面向量等知识是高考中常见的问题,很可能以一小一大的形式出现。

小问题主要考查圆锥曲线的标准方程、几何性质等基本知识、基本技能和基本方法的应用;在数学高考中,答题经常被用作重点题或期末题,用来综合测试学生数形结合、等价变换、分类讨论、逻辑推理等能力知识网络9.1椭圆典例精析求椭圆的标准方程【例1】已知点p在以坐标轴为对称轴的椭圆上,点p到两焦点的距离分别为453和253.作为长轴穿过P的垂直线正好穿过椭圆的一个焦点,从而得到椭圆的方程【解析】由椭圆的定义知,2a=453+253=25,故a=5,根据(C2-2)定理,(c4b2=53,C2-2=253,故所求方程为x25+3y210=1或3x210+y25=1.【点击】(1)求解椭圆标准方程时常用待定系数法。

然而,当焦点的坐标轴不确定时,需要考虑两种情况。

有时,也可以设置椭圆的统一方程形式:MX2+Ny2=1(M>0,n>0和M)≠ n) );(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.[variant training 1]已知椭圆C1的中心在原点,焦点在x轴上,抛物线C2的顶点在原点,焦点在x轴上。

高考数学一轮复习 第九章 解析几何 9.8 曲线与方程 理(2021年最新整理)

高考数学一轮复习 第九章 解析几何 9.8 曲线与方程 理(2021年最新整理)

2018版高考数学一轮复习第九章解析几何9.8 曲线与方程理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第九章解析几何9.8 曲线与方程理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第九章解析几何9.8 曲线与方程理的全部内容。

第九章解析几何 9。

8 曲线与方程理1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求动点的轨迹方程的基本步骤【知识拓展】1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系:(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的充要条件.( √)(2)方程x2+xy=x的曲线是一个点和一条直线.(×)(3)到两条互相垂直的直线距离相等的点的轨迹方程是x2=y2.(×)(4)方程y=错误!与x=y2表示同一曲线.(×)(5)y=kx与x=错误!y表示同一直线.(×)1.(教材改编)已知点F(14,0),直线l:x=-错误!,点B是l上的动点,若过点B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A.双曲线B.椭圆C.圆D.抛物线答案D解析由已知|MF|=|MB|,根据抛物线的定义知,点M的轨迹是以点F为焦点,直线l为准线的抛物线.2.(2017·广州调研)方程(2x+3y-1)(错误!-1)=0表示的曲线是()A.两条直线B.两条射线C.两条线段D.一条直线和一条射线答案D解析原方程可化为错误!或错误!-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条射线和一条直线.3.(2016·南昌模拟)已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是()A.(x+2)2+y2=4(y≠0)B.(x+1)2+y2=1(y≠0)C.(x-2)2+y2=4(y≠0)D.(x-1)2+y2=1(y≠0)答案C解析由角的平分线性质定理得|PA|=2|PB|,设P(x,y),则错误!=2错误!,整理得(x-2)2+y2=4(y≠0),故选C.4.过椭圆错误!+错误!=1(a〉b〉0)上任意一点M作x轴的垂线,垂足为N,则线段MN中点的轨迹方程是________________.答案错误!+错误!=1解析设MN的中点为P(x,y),则点M(x,2y)在椭圆上,∴错误!+错误!=1,即错误!+错误!=1(a>b〉0).5.(2016·唐山模拟)设集合A={(x,y)|(x-3)2+(y-4)2=错误!},B={(x,y)|(x-3)2+(y-4)2=错误!},C={(x,y)|2|x-3|+|y-4|=λ}.若(A∪B)∩C≠∅,则实数λ的取值范围是________.答案[错误!,4]解析由题意可知,集合A表示圆(x-3)2+(y-4)2=错误!上的点的集合,集合B表示圆(x-3)2+(y-4)2=165上的点的集合,集合C表示曲线2|x-3|+|y-4|=λ上的点的集合,这三个集合所表示的曲线的中心都在(3,4)处,集合A、B表示圆,集合C则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得λ的取值范围是[错误!,4].题型一定义法求轨迹方程例1 如图,动圆C1:x2+y2=t2,1〈t<3,与椭圆C2:错误!+y2=1相交于A,B,C,D四点.点A1,A2分别为C2的左,右顶点.求直线AA1与直线A2B交点M的轨迹方程.解由椭圆C2:错误!+y2=1,知A1(-3,0),A2(3,0).设点A的坐标为(x0,y0);由曲线的对称性,得B(x0,-y0),设点M的坐标为(x,y),直线AA1的方程为y=错误!(x+3).①直线A2B的方程为y=错误!(x-3).②由①②得y2=错误!(x2-9).③又点A(x0,y0)在椭圆C2上,故y错误!=1-错误!.④将④代入③得错误!-y2=1(x〈-3,y<0).因此点M的轨迹方程为错误!-y2=1(x〈-3,y〈0).思维升华应用定义法求曲线方程的关键在于由已知条件推出关于动点的等量关系式,由等量关系结合曲线定义判断是何种曲线,再设出标准方程,用待定系数法求解.已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|=4。

高三理科数学一轮复习讲义,复习补习资料:第九章解析几何9.9直线与圆锥曲线(原卷)

高三理科数学一轮复习讲义,复习补习资料:第九章解析几何9.9直线与圆锥曲线(原卷)

§9.9 直线与圆锥曲线考纲展示►1.掌握解决直线与椭圆、双曲线、抛物线的位置关系的思想方法. 2.了解圆锥曲线的简单应用. 3.理解数形结合的思想.考点1 直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,Fx ,y =0,消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C ________;Δ=0⇔直线与圆锥曲线C ________; Δ<0⇔直线与圆锥曲线C ________.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是________;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是________.[典题1] (1)[2019·甘肃兰州检测]若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .0(2)若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-153,153B.⎝ ⎛⎭⎪⎫0,153 C.⎝⎛⎭⎪⎫-153,0 D.⎝⎛⎭⎪⎫-153,-1[点石成金] 直线与圆锥曲线的位置关系的两种判定方法及两个关注点 (1)判定方法①代数法:即联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标.②几何法:即画出直线与圆锥曲线的图象,根据图象判断公共点个数. (2)关注点①联立直线与圆锥曲线的方程消元后,应注意讨论二次项系数是否为零的情况. ②判断直线与圆锥曲线的位置关系时,判别式Δ起着关键性的作用,第一:可以限定所给参数的范围;第二:可以取舍某些解以免产生增根.考点2 弦长问题圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2| =1+k 2·x 1+x 22-4x 1x 2=1+1k 2·|y 1-y 2|=1+1k2·y 1+y 22-4y 1y 2.[典题2] [2019·贵阳摸底]如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与C D.当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[点石成金] 处理弦长问题的两个注意点(1)利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在时,可直接求交点坐标再求弦长;(2)涉及焦点弦长时要注意圆锥曲线定义的应用.过抛物线y 2=2px (p >0)焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为________.考点3 中点弦问题[考情聚焦] 弦的中点问题是考查直线与圆锥曲线位置关系的命题热点. 主要有以下几个命题角度:角度一由中点弦确定直线方程[典题3] [2019·江西九校联考]已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦交椭圆于A ,B 两点,且此弦被点P 平分,则此弦所在的直线方程为________.角度二由中点弦确定曲线方程[典题4] [2019·福建福州质检]抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点,若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2x C .x 2=2y D .y 2=-2x角度三由中点弦解决对称问题[典题5] [2018·浙江模拟]已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).[点石成金] 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解.[方法技巧] 求解与弦有关问题的两种方法(1)方程组法:联立直线方程和圆锥曲线方程,消元(x 或y )成为二次方程之后,结合韦达定理,建立等式关系或不等式关系.(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数.[易错防范] 判断直线与圆锥曲线位置关系时的注意点(1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线也相交于一点.(2)直线与抛物线交于一点时,除直线与抛物线相切外,易忽视直线与对称轴平行时也相交于一点.真题演练集训1.[2018·成都模拟]已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A. x 245+y 236=1B. x 236+y 227=1 C. x 227+y 218=1 D. x 218+y 29=12.[2018·山东模拟]设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334 B.938C.6332D.943.[2019·江苏模拟]如图,在平面直角坐标系xOy 中,已知直线l :x -y -2=0,抛物线C :y 2=2px (p >0).(1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 的中点坐标为(2-p ,-p ); ②求p 的取值范围.4.[2019·山东模拟]平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点.(1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M .①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.课外拓展阅读 忽视讨论二次项系数致误[典例] 已知点A (0,2)和双曲线x 2-y 24=1,过点A 与双曲线只有一个公共点的直线的条数为( )A .1B .2C .3D .4温馨提醒直线与双曲线只有一个公共点时,该直线可与双曲线相切(Δ=0),也可也其渐近线平行,故只有一个公共点不一定是相切关系,注意数形结合法的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章圆锥曲线与方程高考导航知识网络9.1 椭 圆典例精析题型一 求椭圆的标准方程【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为453和253,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】由椭圆的定义知,2a =453+253=25,故a =5,由勾股定理得,(453)2-(253)2=4c 2,所以c 2=53,b 2=a 2-c 2=103,故所求方程为x 25+3y 210=1或3x 210+y 25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n ); (2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下:据此,可推断椭圆C 1的方程为 .【解析】方法一:先将题目中的点描出来,如图,A (-2,2),B (-2,0),C (0,6),D (2,-22),E (22,2),F (3,-23).通过观察可知道点F ,O ,D 可能是抛物线上的点.而A ,C ,E 是椭圆上的点,这时正好点B 既不在椭圆上,也不在抛物线上.显然半焦距b =6,则不妨设椭圆的方程是x 2m +y 26=1,则将点A (-2,2)代入可得m =12,故该椭圆的方程是x 212+y 26=1.方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.不妨设有两点y 21=2px 1,①y 22=2px 2,②y 21y 22=x 1x 2,则可知B (-2,0),C (0,6)不是抛物线上的点. 而D (2,-22),F (3,-23)正好符合.又因为椭圆的交点在x 轴上,故B (-2,0),C (0,6)不可能同时出现.故选用A (-2,2),E (22,2)这两个点代入,可得椭圆的方程是x 212+y 26=1.题型二 椭圆的几何性质的运用【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.【解析】(1)设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),|PF 1|=m ,|PF 2|=n ,在△F 1PF 2中,由余弦定理可知4c 2=m 2+n 2-2mn cos 60°,因为m +n =2a ,所以m 2+n 2=(m +n )2-2mn =4a 2-2mn , 所以4c 2=4a 2-3mn ,即3mn =4a 2-4c 2. 又mn ≤(m +n 2)2=a 2(当且仅当m =n 时取等号),所以4a 2-4c 2≤3a 2,所以c 2a 2≥14,即e ≥12,所以e 的取值范围是[12,1).(2)由(1)知mn =43b 2,所以21F PF S =12mn sin 60°=33b 2,即△F 1PF 2的面积只与椭圆的短轴长有关.【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2,|PF 1|≥a-c .【变式训练2】已知P 是椭圆x 225+y 29=1上的一点,Q ,R 分别是圆(x +4)2+y 2=14和圆(x -4)2+y 2=14上的点,则|PQ |+|PR |的最小值是 .【解析】设F 1,F 2为椭圆左、右焦点,则F 1,F 2分别为两已知圆的圆心, 则|PQ |+|PR |≥(|PF 1|-12)+(|PF 2|-12)=|PF 1|+|PF 2|-1=9.所以|PQ |+|PR |的最小值为9. 题型三 有关椭圆的综合问题【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程. 【解析】(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,又2|AB |=|AF 2|+|BF 2|,得|AB |=43a .l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎪⎩⎪⎨⎧=++=.1,2222b y a x c x y化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b2.因为直线AB 斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2], 即43a =4ab 2a 2+b2,故a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22.(2)设AB 的中点为N (x 0,y 0),由(1)知x 0=x 1+x 22=-a 2c a 2+b 2=-23c ,y 0=x 0+c =c3. 由|P A |=|PB |⇒k PN =-1,即y 0+1x 0=-1⇒c =3. 从而a =32,b =3,故E 的方程为x 218+y 29=1.【变式训练3】已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,两焦点为F 1,F 2,抛物线以F 1为顶点,F 2为焦点,P 为两曲线的一个交点,若|PF 1||PF 2|=e ,则e 的值是( )A.32B.33C.22D.63【解析】设F 1(-c,0),F 2(c,0),P (x 0,y 0),则椭圆左准线x =-a 2c ,抛物线准线为x =-3c ,x 0-(-a 2c )=x 0-(-3c )⇒c 2a 2=13⇒e =33.故选B.总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a 、 b 的值(即定量),若定位条件不足应分类讨论,或设方程为mx 2+ny 2=1(m >0,n >0,m ≠n )求解.2.充分利用定义解题,一方面,会根据定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行计算推理.3.焦点三角形包含着很多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范围.9.2 双曲线典例精析题型一 双曲线的定义与标准方程【例1】已知动圆E 与圆A :(x +4)2+y 2=2外切,与圆B :(x -4)2+y 2=2内切,求动圆圆心E 的轨迹方程.【解析】设动圆E 的半径为r ,则由已知|AE |=r +2,|BE |=r -2, 所以|AE |-|BE |=22,又A (-4,0),B (4,0),所以|AB |=8,22<|AB |. 根据双曲线定义知,点E 的轨迹是以A 、B 为焦点的双曲线的右支. 因为a =2,c =4,所以b 2=c 2-a 2=14, 故点E 的轨迹方程是x 22-y 214=1(x ≥2).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E 点满足的几何条件,结合双曲线定义求解,要特别注意轨迹是否为双曲线的两支.【变式训练1】P 为双曲线x 29-y 216=1的右支上一点,M ,N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM |-|PN |的最大值为( )A.6B.7C.8D.9【解析】选D.题型二 双曲线几何性质的运用【例2】双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,x 轴上有一点Q (2a,0),若C 上存在一点P ,使PQ AP ∙=0,求此双曲线离心率的取值范围.【解析】设P (x ,y ),则由PQ AP ∙=0,得AP ⊥PQ ,则P 在以AQ 为直径的圆上, 即 (x -3a 2)2+y 2=(a2)2,①又P 在双曲线上,得x 2a 2-y 2b2=1,②由①②消去y ,得(a 2+b 2)x 2-3a 3x +2a 4-a 2b 2=0, 即[(a 2+b 2)x -(2a 3-ab 2)](x -a )=0,当x =a 时,P 与A 重合,不符合题意,舍去;当x =2a 3-ab 2a 2+b 2时,满足题意的点P 存在,需x =2a 3-ab 2a 2+b 2>a ,化简得a 2>2b 2,即3a 2>2c 2,c a <62,所以离心率的取值范围是(1,62).【点拨】根据双曲线上的点的范围或者焦半径的最小值建立不等式,是求离心率的取值范围的常用方法.【变式训练2】设离心率为e 的双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,直线l 过焦点F ,且斜率为k ,则直线l 与双曲线C 的左、右两支都相交的充要条件是( )A.k 2-e 2>1B.k 2-e 2<1C.e 2-k 2>1D.e 2-k 2<1【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k 只需满足-b a <k <b a ,即k 2<b 2a2=c 2-a 2a 2=e 2-1,故选C. 题型三 有关双曲线的综合问题【例3】(2010广东)已知双曲线x 22-y 2=1的左、右顶点分别为A 1、A 2,点P (x 1,y 1),Q (x 1,-y 1)是双曲线上不同的两个动点.(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程;(2)若过点H (0,h )(h >1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且l 1⊥l 2,求h 的值. 【解析】(1)由题意知|x 1|>2,A 1(-2,0),A 2(2,0),则有 直线A 1P 的方程为y =y 1x 1+2(x +2),①直线A 2Q 的方程为y =-y 1x 1-2(x -2).② 方法一:联立①②解得交点坐标为x =2x 1,y =2y 1x 1,即x 1=2x ,y 1=2yx ,③则x ≠0,|x |< 2.而点P (x 1,y 1)在双曲线x 22-y 2=1上,所以x 212-y 21=1. 将③代入上式,整理得所求轨迹E 的方程为x 22+y 2=1,x ≠0且x ≠± 2.方法二:设点M (x ,y )是A 1P 与A 2Q 的交点,①×②得y 2=-y 21x 21-2(x 2-2).③又点P (x 1,y 1)在双曲线上,因此x 212-y 21=1,即y 21=x 212-1.代入③式整理得x 22+y 2=1.因为点P ,Q 是双曲线上的不同两点,所以它们与点A 1,A 2均不重合.故点A 1和A 2均不在轨迹E 上.过点(0,1)及A 2(2,0)的直线l 的方程为x +2y -2=0.解方程组⎪⎩⎪⎨⎧=-=-+12,02222y x y x 得x =2,y =0.所以直线l 与双曲线只有唯一交点A 2.故轨迹E 不过点(0,1).同理轨迹E 也不过点(0,-1). 综上分析,轨迹E 的方程为x 22+y 2=1,x ≠0且x ≠± 2.(2)设过点H (0,h )的直线为y =kx +h (h >1), 联立x 22+y 2=1得(1+2k 2)x 2+4khx +2h 2-2=0.令Δ=16k 2h 2-4(1+2k 2)(2h 2-2)=0,得h 2-1-2k 2=0, 解得k 1=h 2-12,k 2=-h 2-12. 由于l 1⊥l 2,则k 1k 2=-h 2-12=-1,故h = 3.过点A 1,A 2分别引直线l 1,l 2通过y 轴上的点H (0,h ),且使l 1⊥l 2,因此A 1H ⊥A 2H ,由h 2×(-h2)=-1,得h = 2.此时,l 1,l 2的方程分别为y =x +2与y =-x +2, 它们与轨迹E 分别仅有一个交点(-23,223)与(23,223). 所以,符合条件的h 的值为3或 2.【变式训练3】双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2等于( )A.1+2 2B.3+2 2C.4-2 2D.5-2 2【解析】本题考查双曲线定义的应用及基本量的求解. 据题意设|AF 1|=x ,则|AB |=x ,|BF 1|=2x . 由双曲线定义有|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a⇒(|AF 1|+|BF 1|)-(|AF 2|+|BF 2|)=(2+1)x -x =4a ,即x =22a =|AF 1|. 故在Rt △AF 1F 2中可求得|AF 2|=|F 1F 2|2-|AF 1|2=4c 2-8a 2.又由定义可得|AF 2|=|AF 1|-2a =22a -2a ,即4c 2-8a 2=22-2a , 两边平方整理得c 2=a 2(5-22)⇒c 2a2=e 2=5-22,故选D.总结提高1.要与椭圆类比来理解、掌握双曲线的定义、标准方程和几何性质,但应特别注意不同点,如a ,b ,c 的关系、渐近线等.2.要深刻理解双曲线的定义,注意其中的隐含条件.当||PF 1|-|PF 2||=2a <|F 1F 2|时,P 的轨迹是双曲线;当||PF 1|-|PF 2||=2a =|F 1F 2|时,P 的轨迹是以F 1或F 2为端点的射线;当 ||PF 1|-|PF 2||=2a >|F 1F 2|时,P 无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一般先画出渐近线,要掌握以下两个问题:(1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y =±b a x ,可将双曲线方程设为x 2a 2-y 2b 2=λ(λ≠0),再利用其他条件确定λ的值,求法的实质是待定系数法.9.3 抛物线典例精析题型一 抛物线定义的运用【例1】根据下列条件,求抛物线的标准方程. (1)抛物线过点P (2,-4);(2)抛物线焦点F 在x 轴上,直线y =-3与抛物线交于点A ,|AF |=5. 【解析】(1)设方程为y 2=mx 或x 2=ny . 将点P 坐标代入得y 2=8x 或x 2=-y .(2)设A (m ,-3),所求焦点在x 轴上的抛物线为y 2=2px (p ≠0), 由定义得5=|AF |=|m +p2|,又(-3)2=2pm ,所以p =±1或±9,所求方程为y 2=±2x 或y 2=±18x .【变式训练1】已知P 是抛物线y 2=2x 上的一点,另一点A (a,0) (a >0)满足|P A |=d ,试求d 的最小值. 【解析】设P (x 0,y 0) (x 0≥0),则y 20=2x 0,所以d =|P A |=(x 0-a )2+y 20=(x 0-a )2+2x 0=[x 0+(1-a )]2+2a -1.因为a >0,x 0≥0,所以当0<a <1时,此时有x 0=0,d min =(1-a )2+2a -1=a ; 当a ≥1时,此时有x 0=a -1,d min =2a -1. 题型二 直线与抛物线位置讨论【例2】(2010湖北)已知一条曲线C 在y 轴右侧,C 上每一点到点F (1,0)的距离减去它到y 轴距离的差都是1.(1)求曲线C 的方程;(2)是否存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FB FA <0?若存在,求出m 的取值范围;若不存在,请说明理由.【解析】(1)设P (x ,y )是曲线C 上任意一点,那么点P (x ,y )满足: (x -1)2+y 2-x =1(x >0). 化简得y 2=4x (x >0).(2)设过点M (m,0)(m >0)的直线l 与曲线C 的交点为A (x 1,y 1),B (x 2,y 2).设l 的方程为x =ty +m ,由⎩⎨⎧=+=,4,2x y m ty x 得y 2-4ty -4m =0,Δ=16(t 2+m )>0,于是⎩⎨⎧-==+.4,42121m y y t y y ①又=(x 1-1,y 1),=(x 2-1,y 2).FA ∙FB <0⇔(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+y 1y 2<0.②又x =y 24,于是不等式②等价于 y 214·y 224+y 1y 2-(y 214+y 224)+1<0⇔(y 1y 2)216+y 1y 2-14[(y 1+y 2)2-2y 1y 2]+1<0.③由①式,不等式③等价于m 2-6m +1<4t 2.④对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0,即3-22<m <3+2 2.由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有FA ·FB <0,且m 的取值范围是(3-22,3+22).【变式训练2】已知抛物线y 2=4x 的一条弦AB ,A (x 1,y 1),B (x 2,y 2),AB 所在直线与y 轴的交点坐标为(0,2),则1y 1+1y 2= .【解析】⎩⎨⎧=-=xy y m x 4),2(2⇒y 2-4my +8m =0,所以1y 1+1y 2=y 1+y 2y 1y 2=12.题型三 有关抛物线的综合问题【例3】已知抛物线C :y =2x 2,直线y =kx +2交C 于A ,B 两点,M 是线段AB 的中点,过M 作x 轴的垂线交C 于点N .(1)求证:抛物线C 在点N 处的切线与AB 平行;(2)是否存在实数k 使·=0?若存在,求k 的值;若不存在,说明理由.【解析】(1)证明:如图,设A (x 1,2x 21),B (x 2,2x 22),把y =kx +2代入y =2x 2,得2x 2-kx -2=0,由韦达定理得x 1+x 2=k2,x 1x 2=-1,所以x N =x M =x 1+x 22=k 4,所以点N 的坐标为(k 4,k 28).设抛物线在点N 处的切线l 的方程为y -k 28=m (x -k4),将y =2x 2代入上式,得2x 2-mx +mk 4-k 28=0,因为直线l 与抛物线C 相切,所以Δ=m 2-8(mk 4-k28)=m 2-2mk +k 2=(m -k )2=0,所以m =k ,即l ∥AB .(2)假设存在实数k ,使·=0,则NA ⊥NB , 又因为M 是AB 的中点,所以|MN |=21|AB |. 由(1)知y M =12(y 1+y 2)=12(kx 1+2+kx 2+2)=12[k (x 1+x 2)+4]=12(k 22+4)=k 24+2.因为MN ⊥x 轴,所以|MN |=|y M -y N |=k 24+2-k 28=k 2+168.又|AB |=1+k 2·|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·(k 2)2-4×(-1)=12k 2+1·k 2+16. 所以k 2+168=14k 2+1·k 2+16,解得k =±2.即存在k =±2,使·=0.【点拨】直线与抛物线的位置关系,一般要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须使用一般弦长公式.【变式训练3】已知P 是抛物线y 2=2x 上的一个动点,过点P 作圆(x -3)2+y 2=1的切线,切点分别为M 、N ,则|MN |的最小值是 .【解析】455.总结提高1.在抛物线定义中,焦点F 不在准线l 上,这是一个重要的隐含条件,若F 在l 上,则抛物线退化为一条直线.2.掌握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p ;(4)过焦点垂直于对称轴的弦(通径)长为2p .3.抛物线的标准方程有四种形式,要掌握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采用待定系数法.4.抛物线的几何性质,只要与椭圆、双曲线加以对照,很容易把握.但由于抛物线的离心率为1,所以抛物线的焦点有很多重要性质,而且应用广泛,例如:已知过抛物线y 2=2px (p >0)的焦点的直线交抛物线于A 、B 两点,设A (x 1,y 1),B (x 2,y 2),则有下列性质:|AB |=x 1+x 2+p 或|AB |=2psin 2(α为AB 的倾斜角),y 1y 2=-p 2,x 1x 2=p 24等.9.4 直线与圆锥曲线的位置关系典例精析题型一 直线与圆锥曲线交点问题【例1】若曲线y 2=ax 与直线y =(a +1)x -1恰有一个公共点,求实数a 的值.【解析】联立方程组⎩⎨⎧=-+=,,1)1(2ax y x a y(1)当a =0时,方程组恰有一组解为⎩⎨⎧==;0,1y x(2)当a ≠0时,消去x 得a +1ay 2-y -1=0,①若a +1a=0,即a =-1,方程变为一元一次方程-y -1=0,方程组恰有一组解⎩⎨⎧-=-=;1,1y x②若a +1a ≠0,即a ≠-1,令Δ=0,即1+4(a +1)a =0,解得a =-45,这时直线与曲线相切,只有一个公共点.综上所述,a =0或a =-1或a =-45.【点拨】本题设计了一个思维“陷阱”,即审题中误认为a ≠0,解答过程中的失误就是不讨论二次项系数aa 1+=0,即a =-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a =0时,曲线y 2=ax ,即直线y =0,此时与已知直线y =x -1 恰有交点(1,0);②当a =-1时,直线y =-1与抛物线的对称轴平行,恰有一个交点(代数特征是消元后得到的一元二次方程中二次项系数为零);③当a =-45时直线与抛物线相切.【变式训练1】若直线y =kx -1与双曲线x 2-y 2=4有且只有一个公共点,则实数k 的取值范围为( ) A.{1,-1,52,-52} B.(-∞,-52]∪[52,+∞) C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪[52,+∞) 【解析】由⎩⎨⎧=--=4,122y x kx y ⇒(1-k 2)x 2-2kx -5=0, ⎩⎨⎧=≠-0,112Δk ⇒k =±52,结合直线过定点(0,-1),且渐近线斜率为±1,可知答案为A. 题型二 直线与圆锥曲线的相交弦问题【例2】(2010辽宁)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过F 的直线l 与椭圆C 相交于A ,B两点,直线l 的倾斜角为60°,AF =2FB .(1)求椭圆C 的离心率; (2)如果|AB |=154,求椭圆C 的方程. 【解析】设A (x 1,y 1),B (x 2,y 2),由题意知y 1<0,y 2>0. (1)直线l 的方程为y =3(x -c ),其中c =a 2-b 2.联立⎪⎩⎪⎨⎧=+-=,1),(32222b y ax c x y得(3a 2+b 2)y 2+23b 2cy -3b 4=0.解得y 1=-3b 2(c +2a )3a 2+b 2,y 2=-3b 2(c -2a )3a 2+b 2.因为AF =2FB ,所以-y 1=2y 2,即3b 2(c +2a )3a 2+b 2=2·-3b 2(c -2a )3a 2+b 2.解得离心率e =c a =23.(2)因为|AB |=1+13|y 2-y 1|,所以23·43ab 23a 2+b2=154.由c a =23得b =53a ,所以54a =154,即a =3,b = 5. 所以椭圆的方程为x 29+y 25=1.【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程. 【变式训练2】椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ab的值为 . 【解析】设直线与椭圆交于A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),弦中点坐标为(x 0,y 0),代入椭圆方程两式相减得a (x 1-x 2)(x 1+x 2)+b (y 1-y 2)(y 1+y 2)=0⇒2ax 0+2by 0y 1-y 2x 1-x 2=0⇒ax 0-by 0=0. 故a b =y 0x 0=32. 题型三 对称问题【例3】在抛物线y 2=4x 上存在两个不同的点关于直线l :y =kx +3对称,求k 的取值范围. 【解析】设A (x 1,y 1)、B (x 2、y 2)是抛物线上关于直线l 对称的两点,由题意知k ≠0. 设直线AB 的方程为y =-1kx +b ,联立⎪⎩⎪⎨⎧=+-=x y b x k y 4,12消去x ,得14ky 2+y -b =0, 由题意有Δ=12+4·14k ·b >0,即bk+1>0.(*)且y 1+y 2=-4k .又y 1+y 22=-1k ·x 1+x 22+b .所以x 1+x 22=k (2k +b ).故AB 的中点为E (k (2k +b ),-2k ).因为l 过E ,所以-2k =k 2(2k +b )+3,即b =-2k -3k 2-2k .代入(*)式,得-2k -3k 3-2+1>0⇔k 3+2k +3k 3<0⇔k (k +1)(k 2-k +3)<0⇔-1<k <0,故k 的取值范围为(-1,0).【点拨】(1)本题的关键是对称条件的转化.A (x 1,y 1)、B (x 2,y 2)关于直线l 对称,则满足直线l 与AB 垂直,且线段AB 的中点坐标满足l 的方程;(2)对于圆锥曲线上存在两点关于某一直线对称,求有关参数的范围问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范围.【变式训练3】已知抛物线y =-x 2+3上存在关于x +y =0对称的两点A ,B ,则|AB |等于( ) A.3B.4C.3 2D.4 2【解析】设AB 方程:y =x +b ,代入y =-x 2+3,得x 2+x +b -3=0, 所以x A +x B =-1,故AB 中点为(-12,-12+b ).它又在x +y =0上,所以b =1,所以|AB |=32,故选C.总结提高1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.2.直线与圆锥曲线的位置关系的研究可以转化为相应方程组的解的讨论,即联立方程组⎩⎨⎧==++,0),(,0y x f C By Ax 通过消去y (也可以消去x )得到x 的方程ax 2+bx +c =0进行讨论.这时要注意考虑a =0和a ≠0两种情况,对双曲线和抛物线而言,一个公共点的情况除a ≠0,Δ=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(此时直线与双曲线、抛物线属相交情况).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.3.弦中点问题的处理既可以用判别式法,也可以用点差法;使用点差法时,要特别注意验证“相交”的情形.9.5 圆锥曲线综合问题典例精析题型一 求轨迹方程【例1】已知抛物线的方程为x 2=2y ,F 是抛物线的焦点,过点F 的直线l 与抛物线交于A 、B 两点,分别过点A 、B 作抛物线的两条切线l 1和l 2,记l 1和l 2交于点M .(1)求证:l 1⊥l 2; (2)求点M 的轨迹方程.【解析】(1)依题意,直线l 的斜率存在,设直线l 的方程为y =kx +12.联立⎪⎪⎩⎪⎪⎨⎧=+=22121x y kx y 消去y 整理得x 2-2kx -1=0.设A 的坐标为(x 1,y 1),B 的坐标为(x 2,y 2),则有x 1x 2=-1,将抛物线方程改写为y =12x 2,求导得y ′=x .所以过点A 的切线l 1的斜率是k 1=x 1,过点B 的切线l 2的斜率是k 2=x 2. 因为k 1k 2=x 1x 2=-1,所以l 1⊥l 2.(2)直线l 1的方程为y -y 1=k 1(x -x 1),即y -x 212=x 1(x -x 1).同理直线l 2的方程为y -x 222=x 2(x -x 2).联立这两个方程消去y 得x 212-x 222=x 2(x -x 2)-x 1(x -x 1),整理得(x 1-x 2)(x -x 1+x 22)=0,注意到x 1≠x 2,所以x =x 1+x 22.此时y =x 212+x 1(x -x 1)=x 212+x 1(x 1+x 22-x 1)=x 1x 22=-12.由(1)知x 1+x 2=2k ,所以x =x 1+x 22=k ∈R . 所以点M 的轨迹方程是y =-12.【点拨】直接法是求轨迹方程最重要的方法之一,本题用的就是直接法.要注意“求轨迹方程”和“求轨迹”是两个不同概念,“求轨迹”除了首先要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种基本曲线方程和它的形态的对应关系了如指掌.【变式训练1】已知△ABC 的顶点为A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( )A.x 29-y 216=1B.x 216-y 29=1 C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4)【解析】如图,|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |,所以|CA |-|CB |=8-2=6,根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线的右支,方程为x 29-y 216=1(x >3),故选C. 题型二 圆锥曲线的有关最值【例2】已知菱形ABCD 的顶点A 、C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为1.当∠ABC =60°时,求菱形ABCD 面积的最大值.【解析】因为四边形ABCD 为菱形,所以AC ⊥B D. 于是可设直线AC 的方程为y =-x +n .由⎩⎨⎧+-==+nx y y x ,4322得4x 2-6nx +3n 2-4=0. 因为A ,C 在椭圆上,所以Δ=-12n 2+64>0,解得-433<n <433.设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=3n2,x 1x 2=3n 2-44,y 1=-x 1+n ,y 2=-x 2+n . 所以y 1+y 2=n2.因为四边形ABCD 为菱形,且∠ABC =60°,所以|AB |=|BC |=|CA |. 所以菱形ABCD 的面积S =32|AC |2. 又|AC |2=(x 1-x 2)2+(y 1-y 2)2=-3n 2+162,所以S =34(-3n 2+16) (-433<n <433).所以当n =0时,菱形ABCD 的面积取得最大值4 3.【点拨】建立“目标函数”,借助代数方法求最值,要特别注意自变量的取值范围.在考试中很多考生没有利用判别式求出n 的取值范围,虽然也能得出答案,但是得分损失不少.【变式训练2】已知抛物线y =x 2-1上有一定点B (-1,0)和两个动点P 、Q ,若BP ⊥PQ ,则点Q 横坐标的取值范围是 .【解析】如图,B (-1,0),设P (x P ,x 2P -1),Q (x Q ,x 2Q -1), 由k BP ·k PQ =-1,得x 2P -1x P +1·x 2Q -x 2Px Q -x P=-1.所以x Q =-x P -1x P -1=-(x P -1)-1x P -1-1.因为|x P -1+1x P -1|≥2,所以x Q ≥1或x Q ≤-3. 题型三 求参数的取值范围及最值的综合题【例3】(2010浙江)已知m >1,直线l :x -my -m 22=0,椭圆C :x 2m 2+y 2=1,F 1,F 2分别为椭圆C 的左、右焦点.(1)当直线l 过右焦点F 2时,求直线l 的方程;(2)设直线l 与椭圆C 交于A ,B 两点,△AF 1F 2,△BF 1F 2的重心分别为G ,H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.【解析】(1)因为直线l :x -my -m 22=0经过F 2(m 2-1,0),所以m 2-1=m 22,解得m 2=2,又因为m >1,所以m = 2. 故直线l 的方程为x -2y -1=0. (2)A (x 1,y 1),B (x 2,y 2),由⎪⎪⎩⎪⎪⎨⎧=++=1,22222y m x m my x 消去x 得2y 2+my +m 24-1=0,则由Δ=m 2-8(m 24-1)=-m 2+8>0知m 2<8,且有y 1+y 2=-m 2,y 1y 2=m 28-12.由于F 1(-c,0),F 2(c,0),故O 为F 1F 2的中点,由=2, =2,得G (x 13,y 13),H (x 23,y 23),|GH |2=(x 1-x 2)29+(y 1-y 2)29.设M 是GH 的中点,则M (x 1+x 26,y 1+y 26),由题意可知,2|MO |<|GH |,即4[(x 1+x 26)2+(y 1+y 26)2]<(x 1-x 2)29+(y 1-y 2)29,即x 1x 2+y 1y 2<0.而x 1x 2+y 1y 2=(my 1+m 22)(my 2+m 22)+y 1y 2=(m 2+1)(m 28-12).所以m 28-12<0,即m 2<4.又因为m >1且Δ>0,所以1<m <2. 所以m 的取值范围是(1,2).【点拨】本题主要考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.【变式训练3】若双曲线x 2-ay 2=1的右支上存在三点A 、B 、C 使△ABC 为正三角形,其中一个顶点A 与双曲线右顶点重合,则a 的取值范围为 .【解析】设B (m ,m 2-1a ),则C (m ,-m 2-1a)(m >1),又A (1,0),由AB =BC 得(m -1)2+m 2-1a=(2m 2-1a)2, 所以a =3m +1m -1=3(1+2m -1)>3,即a 的取值范围为(3,+∞).总结提高1.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标法”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、待定系数法.2.最值问题的代数解法,是从动态角度去研究解析几何中的数学问题的主要内容,其解法是设变量、建立目标函数、转化为求函数的最值.其中,自变量的取值范围由直线和圆锥曲线的位置关系(即判别式与0的关系)确定.3.范围问题,主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围.其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.。

相关文档
最新文档