9_Histone modification & transcription regulation, 2012

合集下载

组蛋白共价修饰在肝脏疾病发生与发展中作用的研究进展

组蛋白共价修饰在肝脏疾病发生与发展中作用的研究进展

组蛋白共价修饰在肝脏疾病发生与发展中作用的研究进展孔德松;张峰;邱萍;郑仕中【摘要】Histone modification participates in the occurrence and development of the diseases though affecting gene transcrip-tion activity by acetylation,methylation,phosphorylation,and other forms.It is an important field in the study of epigenetics. Numerous studies have demonstrated that histone modification plays an important role in the occurrence and development of liv-er diseases.This paper reviews the recent progress in under-standing the role and mechanisms of histone modification in alco-holic liver disease,nonalcoholic fatty liver disease,viral hepati-tis,liver fibrosis and hepatocellular carcinoma,with an aim to provide a theoretical basis for the treatment of liver diseases and drug development.%组蛋白共价修饰通过乙酰化、甲基化、磷酸化等多种形式,影响基因的转录活性,参与疾病的发生与发展,是表观遗传学研究中的重要领域。

表观遗传:组蛋白甲基化、磷酸化解决方案

表观遗传:组蛋白甲基化、磷酸化解决方案

表观遗传:组蛋白甲基化、磷酸化解决方案组蛋白修饰(histone modification)是指组蛋白在相关酶作用下发生甲基化、乙酰化、磷酸化、腺苷酸化、泛素化、ADP核糖基化等修饰的过程。

今天我们来重点说说组蛋白甲基化、组蛋白磷酸化。

一、组蛋白甲基化组蛋白甲基化是由组蛋白甲基化转移酶(histonemethyl transferase,HMT)完成的。

甲基化可发生在组蛋白的赖氨酸和精氨酸残基上,而且赖氨酸残基能够发生单、双、三甲基化,而精氨酸残基能够单、双甲基化,这些不同程度的甲基化极大地增加了组蛋白修饰和调节基因表达的复杂性。

甲基化的作用位点在赖氨酸(Lys)、精氨酸(Arg)的侧链N原子上。

组蛋白H3的第4、9、27和36位,H4的第20位Lys,H3的第2、l7、26位及H4的第3位Arg都是甲基化的常见位点。

研究表明·,组蛋白精氨酸甲基化是一种相对动态的标记,精氨酸甲基化与基因激活相关,而H3和H4精氨酸的甲基化丢失与基因沉默相关。

相反,赖氨酸甲基化似乎是基因表达调控中一种较为稳定的标记。

例如,H3第4位的赖氨酸残基甲基化与基因激活相关,而第9位和第27位赖氨酸甲基化与基因沉默相关。

此外,H4—K20的甲基化与基因沉默相关,H3—K36和H3—K79的甲基化与基因激活有关。

但应当注意的是,甲基化个数与基因沉默和激活的程度相关。

【1】组蛋白甲基化定量组蛋白甲基化位点主要发生在H3和H4上面赖氨酸(K)和精氨酸(R)上,且能够发生单、双、三甲基化等。

要按照数学的排列组合,那也是蛮多类型了,举例EpiQuik 组蛋白H3修饰多重检测试剂盒(比色法)(96 次),P-3100-96,EpiQuik组蛋白H3修饰定量试剂盒(比色法)是一组完全的、优化的试剂组合,可以同时定量H3上面21个修饰方式,是一个简单的Elisa检测方法。

【2】组蛋白甲基转移酶(HMTs)分析测定组蛋白甲基化修饰的时候,需要甲基转移酶来进行催化。

表观遗传学——甲基化,组蛋白修饰

表观遗传学——甲基化,组蛋白修饰

表观遗传学——甲基化,组蛋⽩修饰参考资料:1.2.3.1.什么是表观遗传学?举个例⼦:同卵双⽣的双胞胎个体,从遗传学⾓度说他们的DNA序列是⼀致的,但多种表型存在⼀些差异。

经典的孟德尔遗传定律和⽣物学表型之间还存在另外⼀层调控因素,即表观遗传。

表观遗传(Epigenetics)是指DNA序列未发⽣变化,但基因表达却发⽣了可遗传改变。

这种改变的特点:可遗传性;可逆性;没有DNA序列的变化。

可逆性:表观遗传的修饰⽅式可以在某些因素的条件下被去除。

这使得通过调控表观遗传来影响⽣物学性状称为可能。

表观遗传改变主要从四个层⾯调控基因表达(1)DNA甲基化:DNA共价结合甲基基团,使相同序列等位基因处于不同修饰状态;(2)组蛋⽩修饰:通过对结合DNA的组蛋⽩进⾏不同的化学修饰实现对基因表达的调控;(3)染⾊质重塑:通过改变染⾊质的空间构象实现对基因表达的调控;(4)⾮编码RNA的调控:RNA可通过某些机制实现对基因转录和转录后的调控。

2.DNA甲基化DNA序列上特定的碱基在DNA甲基转移酶(DNMT)的催化作⽤下,以S-腺苷甲硫氨酸(SAM)作为甲基供体,通过共价结合的⽅式获得⼀个甲基基团的化学修饰过程。

最常见能够被甲基化的碱基是胞嘧啶(C),此外腺嘌呤,鸟嘌呤也可以被甲基化。

下图是5甲基胞嘧啶。

在4位上是⼀个胺基,5位上没有其他基团的结合。

在SAM提供甲基的情况下,在DNMT(DNA甲基转移酶)的作⽤下,甲基从SAM转移到胞嘧啶的5位,成为了5甲基胞嘧啶。

DNA甲基转移酶根据序列的同源性和功能,真核⽣物DNA甲基化转移酶主要分为:Dnmt 1, Dnmt2 和Dnmt 3.Dnmt 1参与序列甲基化的维持; Dnmt 3主要作⽤是从头甲基化。

a图左边的序列通过Dnmt 3的作⽤转化为右边的序列,这两个序列的差别是,所有的C(互补链上)被甲基化,这是⼀种重头甲基化的⽅式。

b图中左边的序列其中⼀条链上C位点被甲基化,互补链上的C没有甲基化,可以在甲基化维持酶(Dnmt 1)的作⽤下可以使得另外⼀条⾮甲基化的链进⾏甲基化。

关于组蛋白、甲基化、CHIP-Seq、结合位点、转录因子

关于组蛋白、甲基化、CHIP-Seq、结合位点、转录因子

关于组蛋白、甲基化、转录因子、结合位点和CHIP-Seq1)染色质:真核细胞分裂间期的细胞核内的一种物质,这种物质的基本化学成分为脱氧核糖核酸核蛋白(核蛋白就是由DNA或RNA与蛋白质形成的复合体),主要由DNA和组蛋白构成,也含有少量的非组蛋白和RNA。

由于它可以被碱性的染料染色,所以称为染色质。

在细胞的有丝分裂期,染色质经过螺旋、折叠,包装成了染色体。

2)核小体:核小体是染色体的基本结构单位,由DNA和组蛋白(histone)构成,是染色质(染色体)的基本结构单位。

由4种组蛋白H2A、H2B、H3和H4,每一种组蛋白各二个分子,形成一个组蛋白八聚体,约200 bp的DNA分子盘绕在组蛋白八聚体构成的核心结构外面,形成了一个核小体。

这时染色质的压缩包装比(packing ratio)为6左右,即DNA 由伸展状态压缩了近6倍。

200 bp DNA为平均长度;不同组织、不同类型的细胞,以及同一细胞里染色体的不同区段中,盘绕在组蛋白八聚体核心外面的DNA长度是不同的。

如真菌的可以短到只有154 bp,而海胆精子的可以长达260bp,但一般的变动范围在180bp到200bp之间。

在这200bp中,146 bp是直接盘绕在组蛋白八聚体核心外面,这些DNA不易被核酸酶消化,其余的DNA是用于连接下一个核小体。

连接相邻2个核小体的DNA分子上结合了另一种组蛋白H1。

组蛋白H1包含了一组密切相关的蛋白质,其数量相当于核心组蛋白的一半,所以很容易从染色质中抽提出来。

所有的H1被除去后也不会影响到核小体的结构,这表明H1是位于蛋白质核心之外的。

3)染色体:在细胞的有丝分裂的分裂期由染色质经螺旋折叠形成,呈线状或棒状。

4) 有丝分裂:真核细胞的染色质凝集成染色体、复制的姐妹染色单体在纺锤丝的牵拉下分向两极,从而产生两个染色体数和遗传性相同的子细胞核的一种细胞分裂类型。

分裂具有周期性。

即连续分裂的细胞,从一次分裂完成时开始,到下一次分裂完成时为止,为一个细胞周期。

天然药化专业英语词汇(一)

天然药化专业英语词汇(一)

天然药化专业英语词汇(一)
天然药化专业英语词汇
天然药化是研究天然药物的化学成分及其化学性质,探索其生物活性
以及制备天然药物和药物前体的科学。

以下是天然药化专业英语词汇:
1. Natural products:天然产物,指来源于自然界的生物分子,包括
植物、动物和微生物等。

2. Phytochemistry:植物化学,指对植物中的生物活性成分进行分离、鉴定、结构解析和制备药物的研究。

3. Bioactivity:生物活性,指物质对生物体产生的影响,如生长、
繁殖和代谢等。

4. Secondary metabolites:次生代谢产物,指植物、菌物和动物等
分泌出的次生代谢产物,如生物碱、黄酮类、苷类和酚酸类等。

5. Isolation:分离,指从混合物中分离出单一物质或混合物。

6. Purification:纯化,指将混合物中的目标物分离出来,并去除不
需要的杂质。

7. Structural elucidation:结构解析,指通过实验手段确定化合物
的分子结构。

8. Chemical modification:化学修饰,指化合物分子中的化学反应,如酯化、还原、氧化和脱水等。

9. Biosynthesis:生物合成,指生物体内的化学反应活动,如植物合成天然产物。

10. Pharmacology:药理学,指药物对生物体产生的药理效应,包括药效、毒理和药代动力学等。

以上词汇是天然药化专业不可或缺的基础词汇,掌握这些词汇能让我们更好地理解和研究天然药化科学的内容。

同时,建议在学习这些词汇时,结合实际案例和文献进行学习,加强对这些词汇的理解和应用能力。

Histone Modification

Histone Modification
Me

K
Me
Me
K
Me Me Me
K
Histone Methylation Unlike acetylation, the consequence of methylation can be either positive or negative toward transcriptional expression, depending on the position of the residue within the histone.
Epigenetics: The study of reversible heritable changes in gene function that occur without a change in the sequence of nuclear DNA
Genetic code
What is the code in Epigenetics?
Type 1 and Type 2 have a related mechanism of deacetylation, which does not involve a cofactor, whereas the Sir2-related enzymes required the cofactor NAD as part of their catalytic mechanism.
+ 40 bp of DNA
+ 1 (H2A-H2B) dimer

+ 40 bp of DNA Folded Nucleosome
Nucleosome
The nucleosome is a complex between basic histone proteins and DNA. The histone proteins form an octamer composed of two subunits of each of the histones H2A, H2B, H3 and H4. DNA is wrapped around the octamer surface in helical turns (147bp).

分子遗传学复习题及答案-汇总

分子遗传学复习题及答案-汇总

分子遗传学复习题1.名词解释:DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。

ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。

ENCODE计划的实施分为3个阶段:试点阶段(a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。

gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。

GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。

miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。

miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码RNA,它们主要参与基因转录后水平的调控。

RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。

课件:核酸与分子标志物(一)

课件:核酸与分子标志物(一)
Southern印迹杂 交是研究DNA图 谱的基本技术, 在PCR产物和遗传 疾病诊断分析方 面有重要价值。
2.原位杂交(in situ
hybridization,ISH)
原位杂交技术是在细胞保持基本 形态的情况下,采用荧光、生物素、 地高辛等标记的探针,依据碱基对 互补配对原理,在载玻片上与组织 切片、细胞制片等标本中的靶序列 特异杂交,经信号放大显色后,在 显微镜下观察结果。
• 两股链之间在空间上形成一条大 沟(major groove)和一条小沟 (minor groove),这是蛋白质识 别DNA的碱基序列的基础。
• 在特定条件下,DNA双螺旋结构 可产生变异,即DNA构象发生改 变(如DNA序列、超螺旋结构及 碱基修饰等)。
(三)DNA分析技术
1. Southern印迹 杂交
• rRNA占RNA总量的82%左 右
• 原核生物的核糖体所含的 rRNA有5S、16S及23S三种 ; 真核生物有4种rRNA,分
别是5S、5.8S、18S和28S。
四、 miRNA
• MicroRNAs(miRNAs)家族是 一类长度为18-25个碱基的单 链非编码RNA。
• 成熟的miRNAs由较长的初级 转录物经过一系列核酸酶的剪 切加工而产生, miRNAs随后 组装进RNA诱导的沉默复合体 ( RISC),通过与靶mRNA 的 3´ UTR区互补结合而干扰靶 mRNA的翻译,即指导沉默复 合体降解靶mRNA或阻遏靶 mRNA的翻译。
不同的剪接方式而排列组合产生不同的mRNA剪接体,即基因外
显子不同的组合产生新编码的蛋白质。
断裂基因结构
• 几乎所有mRNA基因的内含子两端相同即开始5´端为GU, 3´端为AG(GU/AG原则)。 • 经过剪接,除去非编码的DNA序列(内含子),形成了成熟的mRNA分子。

第十八章 表观遗传

第十八章 表观遗传
制作人:黄世全
组蛋白修饰
• 组蛋白修饰(Histone modification)是调控基因表达的重要 表观遗传学机制。 • 组蛋白的乙酰化和去乙酰化:一般与活化的染色质构型常 染色质和有表达活性的基因相联系。通常组蛋白在转录区 域乙酰化,使与其结合的基因处于转录活化状态。而低乙 酰化的组蛋白位于非转录活性的常染色质区域或异染色质 区域。 • 组蛋白的甲基化修饰:使染色体的结构发生变化。 • 组蛋白的磷酸化:可能是通过修饰改变了组蛋白的电荷, 因而改变了组蛋白与DNA结合的特性,通过修饰能产生蛋 白识别模块的结合表面,与特异的蛋白复合相互作用。
制作人:黄世全
• 染色质组装与激活:染色质主要由DNA和组蛋白分子组成, 但组装成染色质的一级结构需要利用ATP的染色质组装及 重塑因子(ACF)和核小体组装蛋白1(NAP1)。无转录活性 的染色质可以被染色质重塑等一系列过程激活。该过程至 少包括两个基本方面:首先是核小体上的DNA与特异性 DNA调节蛋白结合,然后是形成转录复合物,其中,染色 质装配相关蛋白参与了染色质的重塑和组蛋白的修饰。 • 染色质重塑复合物:含有ATP酶,依据其所含的ATP酶的 同源性可以分为三类,即酵母SWI2-SNF2的同源酶系、 果蝇ISWI的同源酶系及人类的皮肌炎特异性自身抗原Mi-2 的同源酶系。不同重塑重合物在体外均表现出相似的活性 特点,可去除与DNA结合的核小体,在体内,这种作用可 能具备严格的基因特异性。
制作人:黄世全
染色质重塑和非编码RNA指导的染 色质结构变化
• 组蛋白参与形成染色质结构而使得真核细胞的遗传物质变 得更加的稳定,而真核细胞基因的激活和转录需要一系列 重要的染色质变化,如染色质去凝集、核小体变成疏松的 开放式结构等,使转录因子等调节因子更易接近和结合核 小体。与基因表达调节所伴随的这类染色质结构改变现象 就叫做染色质重塑(Chromatin remodeling),需要特异 的因子结合在启动子和增强子等顺式作用元件上,并和聚 合酶之间建立起有效的联系。染色质重塑的基本生物化学 特点是染色质的一定区域对核酸酶敏感性的改变,对应的 物理改变是核小体的位置和状态的改变。

分子遗传学

分子遗传学

分子遗传学分子遗传学复习重点名词解释:RNA编辑:mRNA因核苷酸的插入、缺失或替换而改变了源自DNA模板的遗传信息,翻译出不同于基因编码的氨基酸序列,称为RNA编辑(RNA editing)C值及C值悖论:生物体的单倍体基因组所含DNA的总量称为C 值。

生物基因组的大小同生物在进化上所处地位的高低及复杂性之间无严格的对应关系,这种现象通常称为C值悖理假基因:核苷酸序列与相应正常功能基因基本相同,但没有编码蛋白质能力的基因或不产生有功能产物的基因RNA干涉(RNA interference,RNAi)是正常生物体内一些小的双链RNA,可有效地阻断靶基因表达的现象。

当向细胞中导入与内源性mRNA同源的双链RNA (double stranded RNA,dsRNA)小分子时,可导致该mRNA降解,从而高效、特异的阻断体内特定基因的表达,导致基因沉默。

转座子:是存在于染色体DNA上可自主复制和转位的基本单位。

程序性细胞死亡(PCD):多细胞生物体的一些细胞当不再为生物体所需或是已受到损伤时,会激活受遗传控制的自杀机构而自我毁灭。

抗原:一类能诱导机体发生免疫应答并能与相应的应答产物(如抗体)发生特异性免疫反应的大分子物质。

又称免疫原半抗原:缺乏免疫原性而有免疫反应性的物质。

抗体:在抗原物质的刺激下,由浆细胞产生的一类能与相应抗原在体内外发生特异性结合的免疫球蛋白DNA甲基化:在DNA甲基转移酶的催化下,利用S-腺苷蛋氨酸提供的甲基,将胞嘧啶第5位碳原子甲基化,从而使胞嘧啶转化为5甲基胞嘧啶。

遗传图谱:又称遗传连锁图,是指基因或DNA标记在染色体上的相对位置与遗传距离。

物理图谱:是指各遗传标记之间或DNA序列两点之间,以物理距离来表示其在DNA分子上的位置而构成的位置图,以实际的碱基对(bp)或千碱基对(Kb)或百万碱基对(Mb)长度来度量其物理距离。

Kazak序列:许多真核生物mRNA的5'端起始密码子附近有一段短的保守序列,可促进核糖体小亚基识别起始密码子,该序列为(GCC)RCCA TGG.miRNA:即小RNA,长度为22nt左右,5'端为磷酸基团,3'端为羟基。

组蛋白修饰的机制和生物学意义

组蛋白修饰的机制和生物学意义

组蛋白修饰的机制和生物学意义组蛋白修饰(histone modification)是指在核小体组成的染色质中,通过对组蛋白分子进行特定的化学修饰来调控基因表达。

组蛋白修饰具有高度的空间和时序的特异性,可以在基因转录、DNA复制、染色体凝聚和蛋白质-核酸互作等生理过程中起重要作用。

本文将探讨组蛋白修饰的机制和生物学意义,旨在深入了解这一重要的生物学过程。

一、组蛋白修饰的机制组蛋白是染色质的主要组成成分,它们紧密地包裹着DNA,并起到调控基因表达的作用。

组蛋白构成的小体分子上可以发生不同类型的化学修饰,如甲基化、乙酰化、磷酸化、泛素化等。

这些化学修饰可以改变DNA和组蛋白的相互作用,从而影响基因转录的过程和结果。

1. 甲基化组蛋白甲基化是指将甲基基团(CH3)添加到组蛋白分子上的一种化学修饰。

甲基化通常发生在组蛋白H3和H4的赖氨酸残基上。

甲基化的位置和程度可以影响DNA的可访问性,进而调控基因的表达。

例如甲基化的组蛋白H3K9会吸引DNA的甲基化酶,使得这一区域上的DNA甲基化增加,从而阻碍该区域的基因转录。

2. 乙酰化组蛋白乙酰化是将乙酰基(C2H3O)添加到组蛋白分子上的一种化学修饰。

乙酰化通常发生在组蛋白N末端的赖氨酸残基上,使得组蛋白更松散地包裹着DNA,从而使得DNA更容易被转录因子和RNA聚合酶访问。

例如组蛋白H3K9和H3K14的乙酰化会使得这些组蛋白和DNA相互作用减弱,从而促进基因的转录。

3. 磷酸化组蛋白磷酸化是指在组蛋白分子上添加磷酸基团(PO4)的一种化学修饰。

磷酸化通常发生在组蛋白H2A、H2B和H3的赖氨酸和苏氨酸残基上。

磷酸化的位置和程度可以影响DNA和组蛋白之间的相互作用,进而影响基因的表达。

例如组蛋白H3S10的磷酸化会降低该组蛋白与DNA的相互作用,从而促进基因的转录。

4. 泛素化组蛋白泛素化是指向组蛋白分子上添加泛素(Ub)的一种化学修饰。

组蛋白泛素化通常发生在组蛋白H2A和H2B的赖氨酸残基上。

浅析染色质免疫沉淀(ChIP)技术在DNA与蛋白质相互作用研究中的重要性

浅析染色质免疫沉淀(ChIP)技术在DNA与蛋白质相互作用研究中的重要性

浅析染色质免疫沉淀(ChIP)技术在DNA与蛋白质相互作用研究中的重要性染色质免疫沉淀(ChIP)是研究蛋白质-DNA相互作用的一项强大技术,广泛用于多个领域的染色质相关蛋白的研究(如组蛋白及其异构体,转录因子等),特别适用于已知启动子序列或整个基因位点的组蛋白修饰分析研究。

这项技术采用特定抗体来富集存在组蛋白修饰或者转录调控的DNA片段,通过多种下游检测技术(定量PCR,芯片,测序等)来检测此富集片段的DNA序列。

ChIP技术自诞生之后,已成功的应用于人或动物细胞和组织[1] 、植物组织[2]、酵母[3] 以及细菌、质粒[4] 。

由于在信号转导和表观遗传研究中的突出作用,ChIP 在肿瘤[5-7]、神经科学[8-10]、植物发育[11-13] 等领域中应用非常广泛,同时有关细胞凋亡[14]、雌激素信号转导[15] 、胰岛素抵抗[16] 、组织发育[1]的文献中也用到ChIP。

目前,最常见的有以下两种ChIP实验技术:1. nChIP:用来研究DNA及高结合力蛋白,采用微球菌核酸酶(micrococcal nuclease)消化染色质,然后进行片段富集及后续分析,适用于组蛋白及其异构体,例如[17-19] ;2. xChIP:用来研究DNA及低结合力蛋白,采用甲醛或紫外线进行DNA和蛋白交联,超声波片段化染色质,然后进行片段富集及后续分析,适用于多数非组蛋白的蛋白,例如[9, 15, 20]。

X-ChIP试验的一般过程以上两种方法在分离DNA-蛋白质复合物之后,对DNA进行PCR扩增,验证目标序列的存在。

除验证实验外,ChIP DNA也可以进行测序分析,这种方法被称为ChIP-seq[22];也可做芯片分析,这种方法被称为ChIP on CHIP或ChIP-CHIP[23] 。

这两种方法都可用于分析感兴趣蛋白结合的未知序列,而不需要知道目标序列的详细信息,因此可以进行探索性的研究。

当需要对DNA结合的蛋白复合物(两个或两个以上蛋白共同结合在DNA上)进行研究时,可以采用reChIP技术对DNA蛋白复合物进行再次富集,从而分析两种蛋白同时结合的DNA片段,例如转录调控因子及其受体复合物[24]。

表观遗传学课件chapter 2 histone modifications

表观遗传学课件chapter 2 histone modifications

1.1 Chromatin Roles
• Regulation of gene expression by influencing DNA accessibility – Nucleosome Occupancy – Histone variants – Nucleosome tail modifications
康九红 jhkang@
School of Life Science and Technology Tongji University
Part III: Histone Modification
康九红
School of Life Science Tongji University
as its main substrate. • A third major familyCBP/p300-targets both H3 and H4, and is the
1. 通常发生在蛋白质的赖氨酸(K)上; 2. 可逆的生化反应:
A. Histone acetyltransferase,HAT (>30) B. Histone deacetylase, HDAC (18) 3. 分子效应: 中和赖氨酸上的正电荷,增加组蛋白与 DNA(带负电)的排斥力
4. 生物学功能: A. 基因转录活化 B. DNA损伤修复
General transcription factor HATs TAF250 (H3, 4) TFIIIC (H2A, 3, 4) SRC1 (H3, 4) SRC3/ACTR (H3, 4)
2.2 Histone Acetyl-transferases (HATs)
• HAT proteins can acetylate lysine residues on all four core histones, but different enzymes possess distinct specificities in their substrate of choice

组蛋白修饰测序 流程

组蛋白修饰测序 流程

组蛋白修饰测序流程英文回答:Histone Modification Sequencing.Histone modification sequencing, or ChIP-seq, is a powerful technique used to study the role of histone modifications in gene regulation and other cellular processes. By combining chromatin immunoprecipitation (ChIP) with high-throughput DNA sequencing, ChIP-seq allows researchers to identify the specific genomic regions where particular histone modifications are present.The general protocol for ChIP-seq involves thefollowing steps:1. Crosslinking: Cells are crosslinked with formaldehyde to preserve chromatin structure.2. Chromatin fragmentation: The crosslinked cells arelysed and the chromatin is fragmented into small pieces using sonication or enzymatic digestion.3. Immunoprecipitation: The fragmented chromatin is immunoprecipitated using an antibody specific to the histone modification of interest.4. Library preparation: The immunoprecipitated DNA is converted into a sequencing library using standard protocols.5. Sequencing: The DNA library is sequenced using a high-throughput sequencing platform.6. Data analysis: The sequencing reads are aligned to the genome and analyzed to identify the regions of DNA that are enriched for the histone modification of interest.ChIP-seq has a wide range of applications, including:Identifying the genomic targets of specific histone modifications.Studying the dynamics of histone modifications during development or in response to environmental cues.Correlating histone modifications with gene expression patterns.Identifying candidate genes and regulatory elements.中文回答:组蛋白修饰测序。

组蛋白修饰与表观遗传学的研究进展

组蛋白修饰与表观遗传学的研究进展

组蛋白修饰与表观遗传学的研究进展组蛋白(histone)是构成染色体的四种核心蛋白之一,它们的主要作用是将DNA紧密缠绕成染色体结构。

而组蛋白修饰(histone modification)是指细胞利用特定酶类对组蛋白进行胞内化学修饰,从而调节核染色质的结构和功能。

组蛋白修饰是细胞表观遗传学(epigenetics)研究的主要内容之一。

组蛋白修饰的种类繁多,包括去乙酰化、甲基化、磷酸化、泛素化、琥珀酰化等。

其中,去乙酰化和甲基化是目前研究较为深入的两种类型。

去乙酰化是指通过去除组蛋白上的乙酰化修饰改变染色质蛋白的电荷,在调节基因表达、染色质可及性等方面发挥重要作用。

甲基化是指在组蛋白上加入甲基,通常与基因沉默、细胞分化、基因重编程等过程有关。

组蛋白修饰最早被发现于上世纪60年代,但是直到近年来才受到广泛关注。

从那时起,围绕着组蛋白修饰的研究从实验室进入到了基础医学的前沿研究领域。

这种修饰方式的广泛存在性以及其在染色质调控中的重要作用使得研究者们对组蛋白修饰的研究寄予了厚望。

2017年,英国科学家史蒂芬·埃尔文(Stephen Elledge)和美国科学家詹姆斯·布拉德利(James Bradner)因在组蛋白组修饰领域的开拓性贡献而获得了拉斯克基础医学研究奖。

研究表明,组蛋白修饰对基因表达、DNA复制、修复等过程有着影响。

组蛋白修饰对基因启动子区域的乙酰化、磷酸化等改变影响了转录因子的结合,从而调节基因转录。

在DNA复制和修复中,组蛋白修饰可以通过招募与调节DNA修复相关因子、组装复杂的核蛋白结构等方式发挥作用。

除此之外,组蛋白修饰还在细胞发育、分化中发挥着重要作用。

在胚胎早期,甲基化、去乙酰化等组蛋白修饰可以影响外显子启动子区域的组蛋白构象进而影响基因的表达。

在细胞分化过程中,组蛋白修饰可以调节基因表达模式,从而促进明确细胞命运的分化。

对于组蛋白修饰的研究,除了其在基本细胞过程的调控作用之外,还有很多有趣的研究方向。

备课素材:组蛋白修饰-高一下学期生物人教版必修2

备课素材:组蛋白修饰-高一下学期生物人教版必修2

组蛋白修饰2019版高中生物学必修二说,DNA组蛋白修饰也会影响基因的表达:那么,什么是组蛋白修饰?如何影响基因的表达?天然的DNA分子很长,尤其是在真核生物中,例如人类的DNA长度为2m(Bloom et al., 2010)。

将如此庞大的遗传信息放入7μm 左右的细胞核中,就需要将长DNA分子包装成更紧凑、更致密的高度压缩结构。

这个结构叫做染色体,染色体是染色质高度螺旋后的形态。

染色质的基本组成结构单位是核小体,因此参与核小体装配的组蛋白是决定染色质包装程度的重要因素之一。

图1 核小体结构。

简单来说,核小体由H2B、H2A、H3、H4四种组蛋白(Histone)亚基各两个拷贝形成的八聚体和缠绕在外约146bp的DNA组成(图1)。

其中组蛋白N端(尾部)的氨基酸残基易受到翻译后修饰(PTM),包括乙酰化、甲基化、磷酸化、泛素化等组蛋白修饰(图2)(Kouzarides et al., 2007)。

近年来随着检测技术的进一步成熟,发现组蛋白的中间肽段位置以及C端也会被特异性修饰。

这些修饰以不同的方式影响染色质的紧密度和可及性,从而影响基因的表达,最终影响生物各方面的生理和发育过程,是真核生物调节基因表达最重要的表观遗传调控方式之一(Lawrence et al., 2016)。

由于组蛋白修饰的类型众多,回顾一下组蛋白修饰的描述规则:组蛋白结构+氨基酸名称+氨基酸位置+修饰类型。

例如:H3K4ac代表H3组蛋白的第4位赖氨酸的乙酰化;H2AK119ub1代表H2A组蛋白的第199位赖氨酸的单泛素化。

图2 显示组蛋白尾部翻译后修饰的示意图(Lawrence et al., 2016)。

数字显示每个修饰的位置,字母表示每个修饰位点的氨基酸(K=赖氨酸,R=精氨酸,S=丝氨酸,T=苏氨酸)。

颜色展示了每个氨基酸残基具体的修饰类型(绿色=甲基化,粉色=乙酰化,绿松石=磷酸化,米色=泛素化)。

组蛋白修饰是目前生命科学研究的热点。

基因表达调控的分子机制与方法

基因表达调控的分子机制与方法

基因表达调控的分子机制与方法随着基因组学和生物技术的不断发展,越来越多的基因被发现与人类疾病的发生和发展密切相关。

而基因表达调控是基因功能研究的重要方向之一。

本文将讨论基因表达调控的分子机制与方法。

一、基因表达调控的分子机制1.顺式作用元件顺式作用元件(cis-acting element)是控制基因表达的重要因素之一,它们存在于靠近调控区的DNA序列中。

顺式作用元件的存在使得靠近其上游或下游的调控因子可以结合到其上,从而调控上下游基因的表达。

常见的顺式作用元件有启动子、增强子、转录终止子等。

2.转录因子转录因子(transcription factor)是激活或抑制基因转录的关键分子。

转录因子可以结合到特定的顺式作用元件上,调控基因表达。

目前发现的转录因子具有复杂的结构,常见的结构有基本区域(basic region)、顺式作用区域(DNA-binding domain)和调控区域(activation domain)等。

3.组蛋白修饰组蛋白(histone)是DNA缠绕的主要载体,组蛋白修饰(histone modification)是调控基因表达的重要机制之一。

组蛋白修饰包括甲基化、乙酰化、泛素化等,其中甲基化和乙酰化是最为常见的。

甲基化会影响到DNA的可读性,而乙酰化则会影响到组蛋白间的相互作用。

4.非编码RNA非编码RNA(non-coding RNA)是在基因表达调控中扮演着重要角色的分子。

非编码RNA可以结合到特定的DNA区域或RNA 上,对基因表达产生影响。

常见的非编码RNA包括微小RNA和长链RNA等。

二、基因表达调控的方法1.基因编辑技术基因编辑技术是指利用CRISPR/Cas9等基因编辑工具精确地切割DNA,以实现基因拷贝数的精确可以和特定环境下的调控等。

利用基因编辑技术,可以研究某个特定基因的功能及其与疾病发展之间的关系。

2.表观遗传研究表观遗传研究是一种研究基因表达调控的方法。

基因表达调控相关蛋白质的结构与功能研究

基因表达调控相关蛋白质的结构与功能研究

基因表达调控相关蛋白质的结构与功能研究基因表达调控 (gene expression regulation) 是生命科学中一个重要的研究领域。

在这个过程中参与的蛋白质有很多,其中最为关键的就是基因表达调控相关蛋白质。

基因表达调控相关蛋白质的结构基因表达调控相关蛋白质的结构一般可分为四部分:染色质可互作区域(chromatin interaction domain)、转录调控区域 (transcriptional regulatory region)、转录因子结合区域(transcription factor binding region)和转录因子(transcription factor)。

其中,染色质可互作区域是一个比较新兴的概念,其主要指基因间的空隙区域,并且是基因转录和表达调控的重要区域。

转录调控区域指的是基因上的一些特定区域,这些区域可以促进或者抑制转录因子的结合。

这种结合需要转录因子的配体结合 (ligand binding),从而改变转录因子的构象,使其得以结合到转录区域上。

转录因子结合区域是转录因子能够与特定的调控序列进行结合的区域,结合后会对基因表达进行调控。

这个区域的序列可以是比较松散的,多样性较大,不同的序列可以结合不同的转录因子。

而转录因子则是增强或降低基因表达的关键蛋白,是控制细胞生命过程的关键分子。

它们能够结合到 DNA 上的调控序列上,调控基因的转录水平,从而影响细胞命运。

转录因子的数量也是非常多的,对不同的基因、不同的调控机制都有不同的转录因子参与与事务相关。

基因表达调控相关蛋白质的功能基因表达调控相关蛋白质是基因转录和表达调控的关键因素。

它们可以通过转录因子、辅助因子等方式来参与基因的调控。

转录因子会结合到调控序列上,从而调控基因的转录进而影响蛋白的合成。

而辅助因子则可以改变对转录因子的亲和力,增强或者减弱转录因子的作用。

基因表达调控相关蛋白质的功能还包括组蛋白乙酰转移 (histone acetyltransferase),去乙酰化酶 (deacetylase) 等酶类蛋白,分别通过添加或者去除组蛋白上的乙酰基修饰 (acetylation),对染色质的结构、DNA 的结构,进而影响基因表达产生作用。

遗传和表观基因的调控网络和互作研究

遗传和表观基因的调控网络和互作研究

遗传和表观基因的调控网络和互作研究在人类的身体里有着数百万的基因,这些基因的功能对我们的健康和疾病产生了影响。

而在基因表达和调控方面,遗传和表观基因的网络和互动是非常重要的。

许多研究表明,基因表达和调控的变化与多种疾病的发生和发展密切相关。

因此,了解遗传和表观基因的调控网络和互作机制是目前生物学领域的一项热门研究。

遗传基因遗传基因是指一种表现型中遗传物质所编码的被遗传下去的基本单位。

众所周知,我们的DNA组成了所有的遗传基因。

每个遗传基因都对应一个特定的蛋白质或RNA分子。

这些分子控制着各种不同的生化途径和细胞功能。

在生命过程中,这些基因被转录成RNA,而这些RNA编码的蛋白质则构成了生物体的结构和功能。

肺癌是常见的肿瘤疾病之一,其发病率和死亡率较高。

一项对肺癌的基因表达研究表明,某些基因表达的变化与肺癌的发生和进展密切相关。

例如,一项研究表明,BRAF基因和EGFR基因是促进肺癌发展的关键因素。

该研究提出的结果为了进一步研究在遗传水平上影响肺癌发展的基因。

表观基因表观基因是指基因组中在DNA序列中没有改变的情况下,基因表达水平的变化。

表观遗传学是研究这些表观基因控制的过程。

表观基因通常通过非编码RNA分子或化学修饰来实现。

这些修饰包括DNA甲基化(methylation)、组蛋白修饰(histone modification)以及微小RNA(miRNA)等。

表观基因调控也是非常重要的生物学研究领域。

例如,在心血管系统中,表观基因的调控对心血管系统的健康至关重要。

研究表明,细胞壁的某些组蛋白修饰与心肌病的发生密切相关。

这些研究结果表明,表观基因调控在心脏病的研究和治疗中非常重要。

遗传和表观基因的互作最近研究表明,遗传和表观基因之间存在复杂的交互作用。

例如,DNA甲基化被认为是基因调控的一种方法,可以通过直接或间接地影响DNA转录来控制基因表达。

此外,表观基因调控还可以影响DNA甲基化的过程。

表观基因与遗传基因之间具有广泛的相互作用,并且可以互相调节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Set3HDAC Mediates Effectsof Overlapping Noncoding Transcriptionon Gene Induction KineticsTaeSoo Kim,1Zhenyu Xu,2Sandra Clauder-Mu¨nster,2Lars M.Steinmetz,2and Stephen Buratowski1,*1Department of Biological Chemistry and Molecular Pharmacology,Harvard Medical School,240Longwood Avenue,Boston,MA02115,USA 2Genome Biology Unit,European Molecular Biology Laboratory,Meyerhofstrasse1,69117Heidelberg,Germany*Correspondence:steveb@/10.1016/j.cell.2012.08.016SUMMARYThe Set3histone deacetylase complex(Set3C)binds histone H3dimethylated at lysine4(H3K4me2)to mediate deacetylation of histones in50-transcribed regions.To discern how Set3C affects gene expres-sion,genome-wide transcription was analyzed in yeast undergoing a series of carbon source shifts. Deleting SET3primarily caused changes during tran-sition periods,as genes were induced or repressed. Surprisingly,a majority of Set3-affected genes are overlapped by noncoding RNA(ncRNA)transcrip-tion.Many Set3-repressed genes have H3K4me2 instead of me3over promoter regions,due to either reduced H3K4me3or ncRNA transcription from distal or antisense promoters.Set3C also represses internal cryptic promoters,but in different regions of genes than the Set2/Rpd3S pathway.Finally, Set3C stimulates some genes by repressing an overlapping antagonistic antisense transcript.These results show that overlapping noncoding transcrip-tion canfine-tune gene expression,not via the ncRNA but by depositing H3K4me2to recruit the Set3C deacetylase.INTRODUCTIONPosttranslational modifications of histones play important roles in eukaryotic gene regulation(Kouzarides,2007;Li et al., 2007a).Acetylation promotes efficient transcription by affecting the interaction between DNA and histones as well as recruiting downstream regulators of chromatin structure and transcription. Histone acetylation levels are controlled by the antagonistic functions of histone acetyltransferases(HATs)and histone deacetylases(HDACs).Interestingly,several of these enzymes are recruited by specific histone methylations that are linked to RNA polymerase II(RNApII)transcription(Buratowski and Kim,2011).In budding yeast,Set1and Set2methylate H3K4and H3K36, respectively(Krogan et al.,2003;Ng et al.,2003;Strahl et al., 2002).These methyltransferases bind specific phosphorylated forms of the RNApII subunit Rpb1C-terminal domain(CTD), resulting in cotranscriptional methylation(Krogan et al.,2003; Ng et al.,2003).Near50ends of active genes,the serine5 phosphorylated CTD helps recruit the Set1complex(known as Set1C or COMPASS)to methylate H3K4(Ng et al.,2003). Although Set1is the only H3K4methyltransferase in budding yeast,it produces different methylation states at different posi-tions along genes.H3K4me3is strongest near transcription start sites,whereas H3K4me2is enriched in50-transcribed regions(Kirmizis et al.,2007;Liu et al.,2005;Pokholok et al., 2005).Complementary to Set1,Set2methyltransferase binds the CTD phosphorylated at both serines2and5to target H3K36me2and me3throughout transcribed regions but biased toward30ends(Kizer et al.,2005;Krogan et al.,2003;Li et al., 2002).These methylation patterns are well conserved in all eukaryotes.Both H3K4and K36methylation appear to function primarily by modulating histone acetylation(Buratowski and Kim,2011). In30-transcribed regions,H3K36me by Set2targets histone deacetylation by the Rpd3small complex,Rpd3S(Carrozza et al.,2005;Keogh et al.,2005;Li et al.,2007b).The Set2-Rpd3S pathway negatively affects transcription elongation and represses cryptic promoters within coding regions(Carrozza et al.,2005;Keogh et al.,2005;Li et al.,2007c).H3K4me3is highly correlated with histone acetylation at promoter-proximal regions,in part due to its ability to interact with PHDfinger subunits of HATs and HDACs(Hung et al.,2009;Shi et al., 2006,2007;Taverna et al.,2006).In higher eukaryotes,the TFIID subunit TAF3and the chromatin remodeler Chd1also interact with H3K4me3(Sims et al.,2005;Vermeulen et al.,2007).The function of H3K4me1remains unclear.In between the peaks of H3K4me3and H3K36me3, H3K4me2provides a binding site for the Set3PHDfinger protein(Kim and Buratowski,2009).The Set3histone deacety-lase complex(Set3C)contains two HDAC subunits,Hos2and Hst1(Pijnappel et al.,2001),and deacetylates histones in 50-transcribed regions(Kim and Buratowski,2009).It has been proposed that Set3C is also recruited to transcribed regions through interaction with the phosphorylated CTD of RNApII but nonetheless requires H3K4me2to deacetylate histones(Govind et al.,2010).The function of the Set3SET domain is still unclear,and no methyltransferase activity has yet been reported.SET3deletion genetically interacts with1158Cell150,1158–1169,September14,2012ª2012Elsevier Inc.many chromatin factors,including Set2,the SWR/Htz1com-plex,SAGA,and the Rpd3large complex (Rpd3L),that are involved in transcription regulation;these interactions implicate Set3C in transcription regulation (Collins et al.,2007;Krogan et al.,2003).The biological function of Set3C has been unclear.Set3has the strongest sequence similarity to mammalian MLL5,and other subunits of Set3C most closely resemble the metazoan NCoR/SMRT corepressor complexes (Pijnappel et al.,2001).Although histone deacetylation typically represses transcription,Set3C has been reported to be both repressive and activating.Set3C negatively regulates meiotic genes (Pijnappel et al.,2001)yet is also required for maximal induction of the GAL1and INO1genes (Hang and Smith,2011;Kim and Buratowski,2009;Wang et al.,2002).Surprisingly,overall genome-wide transcription patterns of cells grown in synthetic complete media with glucose are largely unaffected by Set3C deletion mutants (Lenstra et al.,2011).One interesting observation is that the previously reported effects of Set3C mutations were discovered in cells undergoing metabolic changes:whenmediaA BCFigure 1.Set3Transiently Regulates RNA-pII Transcription(A)Schematic representation of the time course experiments to monitor changes in mRNA levels upon carbon source shift.(B)SET3and set3D strains were grown in SC media containing raffinose and then sequentially shifted to SC media containing the indicated carbon sources for the times specified in the figure.+and Àindicate SET3and set3D ,respectively.mRNA levels were determined by RT-PCR with two independent RNA samples.(C)Quantitation from (B).mRNA levels of SET3cells in SC-raffinose media were set to 1.0.See also Figure S1.conditions were changed or upon trig-gering sporulation (Hang and Smith,2011;Kim and Buratowski,2009;Pijnap-pel et al.,2001;Wang et al.,2002).Here we show that Set3C is important for modulating the kinetics of many transcriptional responses during carbon source changes.Interestingly,the ma-jority of Set3target genes have overlap-ping ncRNA transcription:either cryptic unstable transcripts (CUTs),stable un-characterized transcripts (SUTs),Xrn1-sensitive unstable transcripts (XUTs)(Lenstra et al.,2011;van Dijk et al.,2011;Xu et al.,2009),or internal cryptic initiation sites.We propose that over-lapping noncoding transcription con-tributes to Set3C-mediated effects by altering histone methylation and acetylation patterns.Unlike activators or repressors that act as an on/off switch of transcription,Set3C instead playsan important role in the timing of transcription response during gene activation or repression.RESULTSSet3C Affects Gene Induction KineticsTo explore the roles of Set3C,gene expression was analyzed in SET3and set3D cells as they cycled through various carbon sources (Figure 1A).Cells were initially grown in synthetic complete medium with raffinose (SC-raffinose,0time point)and subsequently shifted to SC-galactose media.Samples were taken at 15,30,60,and 120min for RNA analysis.Cells were then shifted to SC-glucose media for a similar 120min time course.Finally,cells were transferred back to SC-galactose for 15and 30min.Under these conditions,deletion of SET3did not affect growth rates.To verify that the cells were responding as expected,levels of genes known to be regulated by carbon source were analyzed by RT-PCR.GAL genes were strongly induced in galactose media and repressed in glucose media (Figure 1B).GAL1,Cell 150,1158–1169,September 14,2012ª2012Elsevier Inc.1159GAL7,and GAL10messenger RNAs (mRNAs)were still detected up to 60min after transfer to glucose media.High-level expres-sion of SUC2was observed in raffinose and galactose media,but this transcript was rapidly decreased in glucose media.The level of ACT1mRNA changed very little during carbon source shifts and serves as an important normalization control (Figures 1B and 1C).As previously reported (Hang and Smith,2011;Kim and Buratowski,2009;Wang et al.,2002),set3D resulted in delayed induction of GAL1,GAL7,and GAL10in galactose media,although levels equalized by 120min (Figures 1B and 1C).INO1level was strongly reduced by set3D (Figures 1B and 1C),consistent with its inositol auxotrophy (Ino À)pheno-type (Villa-Garcı´a et al.,2011).Set3C mutants have increased acetylation in 50-transcribed regions of PYK1,PMA1,and YEF3,but transcription levels of these genes were unchanged under steady-state growthconditions (Kim and Buratowski,2009).To test whether set3D changes the rate of activation or repression of these genes,transcript levels were monitored during carbon source shifts.In SET3cells,these genes were downregulated in galactose media and rapidly induced in glucose media (Figures 1B and 1C).Whereas YEF3mRNA levels were not strongly affected by loss of Set3,PYK1and PMA1transcripts were higher in set3D during glucose induction until they equalized at 120min (Figures 1B and 1C).Therefore,as seen for GAL gene activation,the negative effect of Set3on PYK1and PMA1appears transient.To further study how the transcriptional changes upon carbon source shifts are affected by Set3C,total RNA was analyzed with high-resolution,strand-specific tiled microarrays (David et al.,2006).In wild-type cells,approximately 800genes showed significant changes relative to levels in raffinose media:197transcripts were increased specifically in galactose media and 94in glucose media (Figures S1A and S1B available online).Five hundred and nine transcripts were repressed in galactose relative to raffinose or glucose media (Figure S1C).In general,galactose-induced transcripts increased over the full 2hr incu-bation,more slowly than glucose-induced genes,which were typically fully induced after 15min (Figure S1).In all conditions,transcript levels of genes encoding transcription regulators such as GAL4,GAL3,GAL80,MIG1,and TUP1were not affected by deletion of SET3(Figure S2A).Set3-regulated genes were identified as those exhibiting at least 1.7-fold change in expression levels at one or more time points and were further verified by visual inspection.From this analysis,119genes repressed by Set3C were identified.Six genes of this group were increased in glucose media (Figure 2A),and 113genes were induced by galactose (Figure 2B).Although some genes showed differences at most or all time points,for most affected genes the greatest differences between SET3and set3D occurred during the transition periods.This effect is clearly seen by calculating an averaged response pattern for the galactose-induced genes (Figure 2C).The histone deacetylation activities of Set3C are important for its effects because Set3-repressed genes tested were also upre-gulated by hos2D or hst1D (Figure S2B).Interestingly,some genes respond more strongly to one or the other HDAC subunit,whereas others are sensitive to both.These gene-specific results likely reflect the different histone targets of the two HDACs (Kim and Buratowski,2009)and show that they are nonredundant.Interaction between the Set3PHD finger and H3K4me2is important in Set3C function,and a PHD finger mutant (W140A)that no longer binds H3K4me2behaves similarly to set3D (Figure S2C).These results indicate that histone deacetylation mediates the effects of Set3C on the kinetics of transcription induction.Remarkably,visual inspection of the array data showed that at least 61%of genes repressed by Set3have an overlapping ncRNA (from the previously annotated CUT,SUT,or XUT classes,as well as several that are unannotated).This percentage increases to 74%for genes that are repressed 2-fold or more by Set3C.This is a minimal estimate,as there may be additional ncRNAs induced during the time course that were missed due to rapid degradation by exosome or other RNA degradation pathways.The fraction of ncRNAs seen at-3.0 0.0 5.0-3.0 0.0 4.0SET3+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -SET3+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -6genes113 genesABC-1123R a153060120Gal153060120Glu 1530Gal(min)SET3set3ΔL o g 2e x p r e s s i o n l e v e l15 30 60 120 15 30 60 120 15 30Ra Galactose Glucose Galactose15 30 60 120 15 30 60 120 15 30Ra Galactose Glucose GalactoseFigure 2.Set3Negatively Regulates the Kinetics of Transcription InductionRNA samples from the time course in Figure 1were analyzed by high-reso-lution tiling arrays.Normalized,log 2-transformed mRNA expression data were visualized (color bar shows log 2scale)with the Multi Experiment Viewer program (/).+and Àindicate SET3and set3D ,respec-tively.(A)Expression profiles of 6genes upregulated in set3D during glucose induction.(B)Expression profiles of 113genes that are more rapidly induced in set3D during galactose induction.(C)Averaged profile of expression signals of genes from (B).See also Figure S2.1160Cell 150,1158–1169,September 14,2012ª2012Elsevier Inc.Set3-affected genes is much higher than in the overall genome (estimated to be about 12%by Xu et al.,2011),suggesting that overlapping transcription may contribute to regulation by Set3C.Upstream Transcription Can Target Set3C to Suppress Gene InductionDCI1,FUN19,and ATH1were induced in galactose media,and DUR3was transiently expressed in glucose media.These four Set3-repressed genes are annotated as having transcription start sites (TSSs)unusually far upstream (about 600bp)ofthe open reading frame (ORF)initiation codon (Xu et al.,2009).However,visual inspection of the array data showed that these genes have at least one additional TSS closer to the ORF (Figures 3A and S3A).The distal promoters are con-stitutively active,whereas the promoters just upstream of the ORFs are activated in specific media conditions.Interestingly,deletion of SET3increased transcription from the proximal but not distal promoters (Figures 3A and S3A).Although H3K4me2is typically localized in 50-transcribed regions,genome-wide analyses of published histone methylation patterns (Kirmizis et al.,2007;Pokholok et al.,2005)showAB SET3set3ΔH3 H4ac 1 2 3 1 2 3 TEL TEL 05101520123H 4a c /H 3SET3ΔSET31 2 3S E T 3s e t 3ΔD DCI1-3’G l uG a lR a fDci1-TAP SET3Ponceau SRaf Gal(60min)S E T 3s e t 3ΔCRaf Gal(60min)Raf Gal(60min)EFigure 3.Upstream ncRNA Transcription Can Target H3K4me2and Set3C Repression to a Downstream Promoter(A)DCI1and DUR3each have an ORF-distal promoter (red arrows in schematic at top)that isconstitutively active and proximal promoters (bluearrows)that are induced in specific media condi-tions.Transcription from the proximal promoter isincreased in set3D .Figure shows the microarray hybridization signal for each probe arrayed at positions along the gene as shown in schematic.Increased blue color designates more transcrip-tion.Red lines show the annotated start and stop of the mRNA (Xu et al.,2009),whereas the whitebox shows the ORF position.The time course asin Figure 1A is arrayed from bottom to top for each strain as designated.Only the top strand signal is shown here.Histone methylation maps of DCI1and DUR1from cells grown in YPD arefrom Kirmizis et al.(2007)and generated by theassociated website (http://www.gurdon.cam.ac.uk/$kouzarideslab/H3R2methylation.html ).Each K4methylation state is shown as a separate line of boxes representing individual probes.The intensity of color shows ChIP signal strength.Thedistal promoter has high levels of H3K4me3,whereas H3K4me2is enriched over the proximal promoter.(B)Set3deacetylates histones in the core pro-moter of DCI1.Crosslinked chromatin from SET3or set3D strains grown in YPD was precipitated with anti-H3or anti-acetyl H4as indicated.PCR analysis of the precipitated DNA was carried out on the DCI1gene (numbered primer locationsshown schematically at the top,PCR productsbelow).TEL is from a nontranscribed region near the telomere of chromosome VI.The signals foracetyl H4were quantitated and normalized to the total H3signal,and the ratios were graphed (x axisshows primer number,and y axis shows ratio).Error bars show the standard deviation (SD).(C)Northern blot analysis of DCI1transcripts with a 30strand-specific DNA probe.Cells were grown in SC-raffinose media and shifted to SC-galactosemedia for 60min.Bottom panel shows two transcripts of DCI1detected by northern blot analysis,which are schematicized at top.(D)Total proteins were extracted from cells grown in the indicated carbon sources,either for an extended time or after a 60min shift as indicated.Dci1-TAP protein was analyzed by immunoblot analysis.Membrane was stained with Ponceau S for loading control (bottom).(E)Strains with or without the CYC1terminator inserted between the DCI1promoters (left panel)were grown in SC-raffinose media and shifted to SC-galactose media for 60min.Right panel shows DCI1northern blot analysis,with transcripts schematicized in left panel.STE11is used for a loading control (bottom).See also Figure S3.Cell 150,1158–1169,September 14,2012ª2012Elsevier Inc.1161that H3K4me3is enriched at the upstream promoter,whereas a peak of H3K4me2overlaps the downstream promoter (Figures3A and S3A).To test whether the effect of Set3C is mediated by deacetyla-tion of the downstream promoter,histone acetylation at DCI1 was analyzed by chromatin immunoprecipitation(ChIP)with an antibody that recognizes tetra-acetyl H4(H4ac).Levels of acetylation were normalized to total histone content as measured by H3.Relative to SET3cells,a set3D strain had increased acetylation at the downstream promoter but not the 30end of DCI1(Figure3B).This result is consistent with a model by which H3K4me2directed by the upstream transcription unit targets Set3C deacetylation for repression of the downstream promoter.Interestingly,although the distal promoters of these four genes produce transcripts in rich media,a genome-wide GFP-fusion analysis failed to detect any protein products in these growth conditions(Ghaemmaghami et al.,2003;Xu et al.,2009).There-fore,the upstream transcripts appear to be long ncRNAs (lncRNAs).Northern blot analysis confirmed that the distal promoter of DCI1produces a stable transcript.At60min of growth in galactose,a30end DNA probe detected two tran-scripts.The long transcript level was unchanged,but the shorter DCI1transcript was significantly increased in set3D(Figure3C).A similar increase was seen in set1D but not set2D cells,sug-gesting that H3K4methylation but not H3K36methylation is involved in this repression.At this gene,hst1D strongly increased the downstream DCI1transcript,but a weaker effect was seen in hos2D(Figure S3B).Immunoblot analysis with a DCI1-TAP-tagged strain showed that Dci1protein is undetectable in glucose and seen at low levels in galactose or raffinose media(Figure3D).However,it was strongly induced when cells were shifted from raffinose to galactose for60min,indicating that Dci1protein is transiently expressed in galactose media,tracking levels of the short transcript.Also matching downstream transcript levels,Dci1 protein was increased in set3D(Figure3D).These results suggest that ncRNA transcription from an upstream distal promoter can place H3K4me2over a down-stream core promoter and that the resulting deacetylation by Set3C can inhibit or delay the expression of the downstream coding mRNA.To directly test this model,the CYC1terminator was inserted between the two DCI1promoters.This insertion abolished the long transcript and resulted in derepression of the shorter DCI1transcript(Figure3E).Also consistent with this model,H3K4me2decreased and histone acetylation at the downstream promoter increased when upstream ncRNA transcription was blocked(Figure S3C and data not shown). These results indicate that ncRNA transcription from the DCI1upstream promoter and Set3C cooperate to deacetylate chromatin at the downstream promoter to modulate gene induction.Set3C Represses Cryptic Promotersin50-Transcribed RegionsPassage of RNApII through a gene disrupts nucleosomes,which can cause cryptic transcription initiation within coding regions unless the chromatin is reassembled by elongation factors that include Spt6and Spt16(Cheung et al.,2008;Kaplan et al., 2003).Deacetylation of histones in30-transcribed regions by the Set2-Rpd3S pathway also contributes to repression of cryptic internal promoters at some genes(Carrozza et al., 2005;Li et al.,2007c).Because loss of Set3C increases acetyla-tion in50-transcribed regions(Kim and Buratowski,2009),it was pertinent to ask whether this pathway might also suppress cryptic promoters.A small number of Set3-repressed genes exhibited increased sense-strand signals beginning within the ORF through the30 end,suggesting internal initiation(Figures4A,4D,and S4A). For example,transcript hybridization intensities in50regions of PAH1and DNL4were not strongly changed during the time course in either SET3or set3D cells.However,during galactose incubation,the signal in downstream regions increased but even more strongly in cells lacking Set3C(Figures4A and4D). Northern blot analysis with strand-specific probes revealed several shorter transcripts that accumulated in galactose media, and these were markedly increased in set3D cells(Figures4B, 4C,and4E).Probing with50-or30-specific probes confirmed that the shorter transcripts arise from internal initiation within the coding regions(Figure S4C).As predicted,histone acetyla-tion increased at the internal PAH1promoter in set3D or hos2D cells(Figure S4B).Cells lacking Hos2(Figure S4C)or carrying a Set3PHDfinger mutant(W140A,Figure S4D)also showed increased internal initiation within PAH1,indicating that recogni-tion of H3K4me2mediates repression of internal promoters.The PAH internal promoters were not derepressed by set2D(data not shown),proving that Set3repression does not require H3K36 methylation.Internal promoters can also be in the antisense direction relative to the mRNA.For example,the antisense transcript SUT103overlaps the EPL1promoter region(Figure4F),and YIL055C has a previously uncharacterized50-overlapping anti-sense transcript that is expressed in galactose media(Fig-ure4G).The EPL1and YIL055C transcripts were slightly increased,and the galactose-induced antisense transcripts were significantly higher in set3D cells(Figures4F and4G). Therefore,Set3C contributes to repression of cryptic pro-moters in50-transcribed regions that produce both sense and antisense transcripts.Set3C-Mediated Repression Is Targeted by HighH3K4me2LevelsTo further understand the connection between set3D effects and H3K4methylation,the relative levels of H3K4me2and me3at50 ends of genes were analyzed(Kirmizis et al.,2007;Pokholok et al.,2005).Based on ChIP-chip data from Pokholok et al. (2005)for cells grown on glucose,the ratio of H3K4me2to H3K4me3signal at promoter regions is low at most genes, consistent with H3K4me3enrichment at promoters.About 19%of total yeast genes show relatively higher ratios of H3K4me2to H3K4me3.Importantly,for Set3-repressed pro-moters,this percentage increases to53%.Furthermore,mini-mally66%of Set3-repressed promoters with overlapping ncRNA have an elevated ratio of H3K4me2to H3K4me3.There-fore,higher H3K4me2and ncRNA transcription correlate strongly with Set3C-mediated repression(Figure5A).1162Cell150,1158–1169,September14,2012ª2012Elsevier Inc.Looking at some specific examples,the antisense transcripts SUT326and CUT839overlap YNL195C and GLO4promoter regions,respectively (Figure 5B).Both mRNAs are repressed in glucose or raffinose but are strongly induced in galactose,with even higher levels in set3D cells (Figure 5C).Published methyla-tion data for cells grown in glucose reveal that the H3K4me3and me2peaks correspond to the overlapping ncRNA tran-scription (Kirmizis et al.,2007;Pokholok et al.,2005),resulting in H3K4me2over the mRNA promoters (Figure 5B).This H3K4me2will recruit Set3C deacetylase,explaining why induc-tion of these two genes is stronger in set3D cells.Another group of Set3C-repressed genes with high H3K4me2/me3ratios over the promoter (Kirmizis et al.,2007;Pokholok et al.,2005)have no obvious overlapping transcripts.For example,YML131W and AGP2had levels of H3K4me2similar to other genes with comparable expression levels but shifted upstream over the promoter.In contrast,H3K4me3was sig-nificantly reduced or below the level of detection (Figure 5D).Both genes showed higher expression levels in set3DcellsA B CD EF GFigure 4.Set3C Represses Cryptic Pro-moters in 50-Transcribed Regions(A)Microarray expression profile at the PAH1locus in SET3and set3D cells.The position of the ORF is shown at top.Bars underneath indicate the probe positions used for northern blotting here and Figures S4C and S4D.Red and blue arrows indicate transcript start sites of short and full-length transcripts,respectively.(B)Northern blot analysis of PAH1with 30probe.FL indicates full-length transcript.1and 2indicate short transcripts.+and Àindicate SET3and set3D ,respectively.(C)Quantitation from (B).SET3transcript levels in SC-raffinose media were set to 1.0.(D)Expression data for the DNL4locus.(E)Northern blot analysis for the DNL4gene as in (B).(F and G)Expression profiles for EPL1and YIL055C loci.Red and blue arrows indicate puta-tive transcript start sites of antisense transcripts and sense transcripts,respectively.See also Figure S4.during galactose induction (Figure 5E).We hypothesized that H3K4me2might be generated by targeted demethyla-tion of H3K4me3.Deleting the gene for the H3K4tridemethylase Jhd2(Liang et al.,2007)led to dramatically higher H3K4me3at the Set3-repressed genes YML131W and AGP2but not the GAL10antisense transcript SUT013(Figures S5A–S5C).However,H3K4me2levels were equally high at these genes in JHD2and jhd2D cells,and both still re-sponded to Set3(Figure S5and data not shown).Therefore,how H3K4me2is tar-geted to these Set3target promoters remains unclear.There may be overlap-ping transcription of ncRNAs that was unstable and therefore not detected,or there may be some other mechanism yet to be discovered.Set3C Positively Affects Some Genes with Antisense TranscriptionAlthough Set3C represses most of its target genes,it has a posi-tive transcription effect on INO1and several GAL genes (Fig-ure 1B)(Pijnappel et al.,2001;Wang et al.,2002).Our microarray analysis identified 23transcripts that require Set3for maximal levels (Figure 6A).Whereas the GAL genes,HXT1,and TIR3showed delayed induction kinetics in set3D ,most Set3-activated genes had significantly reduced transcript levels throughout the time course.In log phase cells grown in minimal media with glucose,Set3-activated genes also required the other Set3C subunits for maximal transcription (Lenstra et al.,2011).At least 74%of Set3-activated genes had an overlapping antisense noncoding transcript.These differed from the anti-sense pairs described above in that the ncRNA typically initiatedCell 150,1158–1169,September 14,2012ª2012Elsevier Inc.1163。

相关文档
最新文档