Relativistic quark models of baryons with instantaneous forces
The Quark & Bag Models:夸克&袋模型
Interesting patterns started to emerge when I3 was plotted vs. Y
Y
I3
6
Original Quark Model
1964 The model was proposed independently by Gell-Mann and Zweig
(ex) D++ = u u u
• The D++ wave function is symmetric
16
Color
• Pauli exclusion principle?
– two or more identical fermions may not exist in the same quantum state
p + = u d ,p -= d u ,p o = 1 (u u - d )k + , = d s ,k o = d s d 2
baryons are bound state of 3 quarks: proton = (uud), neutron = (udd), L= (uds)
anti-baryons are bound states of 3 anti-quarks:
5
First steps
With the disccles (L, k) a new quantum
number was invented: strangeness
Gell-Mann, Nakano, Nishijima realized that electric charge (Q) of all particles could be related to isospin (3rd component), Baryon number (B) and Strangeness (S):
Quantum Mechanics
Quantum MechanicsQuantum Mechanics is the branch of physics that deals with the behavior of matter and energy at a microscopic level. It is a complex andfascinating subject that has revolutionized our understanding of the universe. Quantum Mechanics is based on the principles of quantum theory, which describes the behavior of particles at the subatomic level.One of the most important concepts in Quantum Mechanics is the wave-particle duality. This principle states that particles can behave as both waves and particles at the same time. This means that electrons, for example, can exist in multiple places at once and can interfere with themselves. This idea is fundamental to Quantum Mechanics and has led to many of its most important discoveries.Another important concept in Quantum Mechanics is the uncertainty principle. This principle states that it is impossible to know both the position and momentum of a particle at the same time. The more precisely we know the position of a particle, the less precisely we can know its momentum, and vice versa. This principle has important implications for the behavior of particles at the subatomic level.Quantum Mechanics has many practical applications, including in the development of new technologies such as transistors and lasers. It is also important in the study of materials and the behavior of atoms and molecules. Quantum Mechanics has led to many breakthroughs in our understanding of the universe and has helped us to develop new technologies that havetransformed our world.However, Quantum Mechanics is also a subject that is often misunderstood and can be difficult to grasp. The concepts involved are very different from our everyday experience, and the mathematics can be complex and abstract. This can make it challenging for students to learn and for researchers to make progress in the field.One of the challenges of Quantum Mechanics is that it seems to contradict our everyday experience of the world. For example, the idea that particles can exist in multiple places at once seems to go against our intuition. However, this is a fundamental principle of Quantum Mechanics, and experiments have shown that it is true.Another challenge of Quantum Mechanics is that the mathematics involved can be very complex and abstract. This can make it difficult for students to learn and for researchers to make progress in the field. However, the mathematics is essential for understanding the behavior of particles at the subatomic level, and it has led to many important discoveries in the field.Despite the challenges, Quantum Mechanics is a fascinating subject that has revolutionized our understanding of the universe. It has led to many important discoveries and has helped us to develop new technologies that have transformed our world. While it may be difficult to grasp at first, with time and effort, anyone can learn about this important field of physics.。
Search for a new state of matter – the Quark-Gluon Plasma一个物质–夸克胶子等离子体的新状态搜索 43
-- multi-parton dynamics (recombination or coalescence or …)
-- Hydrodynamics (constituent quarks ? parton dynamics from gluons to constituent quarks? )
Nucleus-Nucleus Collisions and Volcanic Eruption
Volcanic high pT -- Strombolian eruption
Volcanic mediate pT – Spatter (clumps)
6
Volcanic low pT – Bulk matter flows
Evidence for Multi-parton Dynamics in Hadronization of Bulk Partonic Matter at RHIC
Huan Zhong Huang (黄焕中) Department of Physics and Astronomy
University of California Los Angeles
Rafelski+Danos, Molnar+Voloshin …..) Quark Recombination – (R.J. Fries et al, R. Hwa et al)
13
Constituent Quark Scaling
Constituent (n) Quark Scaling -- Meson n=2 and Baryon n=3 grouping
p td d td p N y d 2 1 π p td dtd p N 1 y i 12ic vo s ψ R () i)1( 0
ooDACEToolboxAFlexibleObject-OrientedKriging…
Journal of Machine Learning Research15(2014)3183-3186Submitted6/12;Revised6/13;Published10/14ooDACE Toolbox:A Flexible Object-Oriented Kriging ImplementationIvo Couckuyt∗********************* Tom Dhaene******************* Piet Demeester*********************** Ghent University-iMindsDepartment of Information Technology(INTEC)Gaston Crommenlaan89050Gent,BelgiumEditor:Mikio BraunAbstractWhen analyzing data from computationally expensive simulation codes,surrogate model-ing methods arefirmly established as facilitators for design space exploration,sensitivity analysis,visualization and optimization.Kriging is a popular surrogate modeling tech-nique used for the Design and Analysis of Computer Experiments(DACE).Hence,the past decade Kriging has been the subject of extensive research and many extensions have been proposed,e.g.,co-Kriging,stochastic Kriging,blind Kriging,etc.However,few Krig-ing implementations are publicly available and tailored towards scientists and engineers.Furthermore,no Kriging toolbox exists that unifies several Krigingflavors.This paper addresses this need by presenting an efficient object-oriented Kriging implementation and several Kriging extensions,providing aflexible and easily extendable framework to test and implement new Krigingflavors while reusing as much code as possible.Keywords:Kriging,Gaussian process,co-Kriging,blind Kriging,surrogate modeling, metamodeling,DACE1.IntroductionThis paper is concerned with efficiently solving complex,computational expensive problems using surrogate modeling techniques(Gorissen et al.,2010).Surrogate models,also known as metamodels,are cheap approximation models for computational expensive(black-box) simulations.Surrogate modeling techniques are well-suited to handle,for example,expen-sivefinite element(FE)simulations and computationalfluid dynamic(CFD)simulations.Kriging is a popular surrogate model type to approximate deterministic noise-free data. First conceived by Danie Krige in geostatistics and later introduced for the Design and Analysis of Computer Experiments(DACE)by Sacks et al.(1989),these Gaussian pro-cess(Rasmussen and Williams,2006)based surrogate models are compact and cheap to evaluate,and have proven to be very useful for tasks such as optimization,design space exploration,visualization,prototyping,and sensitivity analysis(Viana et al.,2014).Note ∗.Ivo Couckuyt is a post-doctoral research fellow of FWO-Vlaanderen.Couckuyt,Dhaene and Demeesterthat Kriging surrogate models are primarily known as Gaussian processes in the machine learning community.Except for the utilized terminology there is no difference between the terms and associated methodologies.While Kriging is a popular surrogate model type,not many publicly available,easy-to-use Kriging implementations exist.Many Kriging implementations are outdated and often limited to one specific type of Kriging.Perhaps the most well-known Kriging toolbox is the DACE toolbox1of Lophaven et al.(2002),but,unfortunately,the toolbox has not been updated for some time and only the standard Kriging model is provided.Other freely available Kriging codes include:stochastic Kriging(Staum,2009),2DiceKriging,3 Gaussian processes for Machine Learning(Rasmussen and Nickisch,2010)(GPML),4demo code provided with Forrester et al.(2008),5and the Matlab Krigeage toolbox.6 This paper addresses this need by presenting an object-oriented Kriging implementation and several Kriging extensions,providing aflexible and easily extendable framework to test and implement new Krigingflavors while reusing as much code as possible.2.ooDACE ToolboxThe ooDACE toolbox is an object-oriented Matlab toolbox implementing a variety of Krig-ingflavors and extensions.The most important features and Krigingflavors include:•Simple Kriging,ordinary Kriging,universal Kriging,stochastic Kriging(regression Kriging),blind-and co-Kriging.•Derivatives of the prediction and prediction variance.•Flexible hyperparameter optimization.•Useful utilities include:cross-validation,integrated mean squared error,empirical variogram plot,debug plot of the likelihood surface,robustness-criterion value,etc.•Proper object-oriented design(compatible interface with the DACE toolbox1is avail-able).Documentation of the ooDACE toolbox is provided in the form of a getting started guide (for users),a wiki7and doxygen documentation8(for developers and more advanced users). In addition,the code is well-documented,providing references to research papers where appropriate.A quick-start demo script is provided withfive surrogate modeling use cases, as well as script to run a suite of regression tests.A simplified UML class diagram,showing only the most important public operations, of the toolbox is shown in Figure1.The toolbox is designed with efficiency andflexibil-ity in mind.The process of constructing(and predicting)a Kriging model is decomposed in several smaller,logical steps,e.g.,constructing the correlation matrix,constructing the1.The DACE toolbox can be downloaded at http://www2.imm.dtu.dk/~hbn/dace/.2.The stochastic Kriging toolbox can be downloaded at /.3.The DiceKriging toolbox can be downloaded at /web/packages/DiceKriging/index.html.4.The GPML toolbox can be downloaded at /software/view/263/.5.Demo code of Kriging can be downloaded at //legacy/wileychi/forrester/.6.The Krigeage toolbox can be downloaded at /software/kriging/.7.The wiki documentation of the ooDACE toolbox is found at http://sumowiki.intec.ugent.be/index.php/ooDACE:ooDACE_toolbox.8.The doxygen documentation of the ooDACE toolbox is found at http://sumo.intec.ugent.be/buildbot/ooDACE/doc/.Figure1:Class diagram of the ooDACE toolbox.regression matrix,updating the model,optimizing the parameters,etc.These steps are linked together by higher-level steps,e.g.,fitting the Kriging model and making predic-tions.The basic steps needed for Kriging are implemented as(protected)operations in the BasicGaussianProcess superclass.Implementing a new Kriging type,or extending an existing one,is now done by subclassing the Kriging class of your choice and inheriting the(protected)methods that need to be reimplemented.Similarly,to implement a new hyperparameter optimization strategy it suffices to create a new class inherited from the Optimizer class.To assess the performance of the ooDACE toolbox a comparison between the ooDACE toolbox and the DACE toolbox1is performed using the2D Branin function.To that end,20data sets of increasing size are constructed,each drawn from an uniform random distribution.The number of observations ranges from10to200samples with steps of10 samples.For each data set,a DACE toolbox1model,a ooDACE ordinary Kriging and a ooDACE blind Kriging model have been constructed and the accuracy is measured on a dense test set using the Average Euclidean Error(AEE).Moreover,each test is repeated 1000times to remove any random factor,hence the average accuracy of all repetitions is used.Results are shown in Figure2a.Clearly,the ordinary Kriging model of the ooDACE toolbox consistently outperforms the DACE toolbox for any given sample size,mostly due to a better hyperparameter optimization,while the blind Kriging model is able improve the accuracy even more.3.ApplicationsThe ooDACE Toolbox has already been applied successfully to a wide range of problems, e.g.,optimization of a textile antenna(Couckuyt et al.,2010),identification of the elasticity of the middle-ear drum(Aernouts et al.,2010),etc.In sum,the ooDACE toolbox aims to provide a modern,up to date Kriging framework catered to scientists and age instructions,design documentation,and stable releases can be found at http://sumo.intec.ugent.be/?q=ooDACE.ReferencesJ.Aernouts,I.Couckuyt,K.Crombecq,and J.J.J.Dirckx.Elastic characterization of membranes with a complex shape using point indentation measurements and inverseCouckuyt,Dhaene and Demeester(a)(b)Figure2:(a)Evolution of the average AEE versus the number of samples(Branin function).(b)Landscape plot of the Branin function.modelling.International Journal of Engineering Science,48:599–611,2010.I.Couckuyt,F.Declercq,T.Dhaene,and H.Rogier.Surrogate-based infill optimization applied to electromagnetic problems.Journal of RF and Microwave Computer-Aided Engineering:Advances in Design Optimization of Microwave/RF Circuits and Systems, 20(5):492–501,2010.A.Forrester,A.Sobester,and A.Keane.Engineering Design Via Surrogate Modelling:A Practical Guide.Wiley,Chichester,2008.D.Gorissen,K.Crombecq,I.Couckuyt,P.Demeester,and T.Dhaene.A surrogate modeling and adaptive sampling toolbox for computer based design.Journal of Machine Learning Research,11:2051–2055,2010.URL http://sumo.intec.ugent.be/.S.N.Lophaven,H.B.Nielsen,and J.Søndergaard.Aspects of the Matlab toolbox DACE. Technical report,Informatics and Mathematical Modelling,Technical University of Den-mark,DTU,Richard Petersens Plads,Building321,DK-2800Kgs.Lyngby,2002.C.E.Rasmussen and H.Nickisch.Gaussian processes for machine learning(GPML)toolbox. Journal of Machine Learning Research,11:3011–3015,2010.C.E.Rasmussen and C.K.I.Williams.Gaussian Processes for Machine Learning.MIT Press,2006.J.Sacks,W.J.Welch,T.J.Mitchell,and H.P.Wynn.Design and analysis of computer experiments.Statistical Science,4(4):409–435,1989.J.Staum.Better simulation metamodeling:The why,what,and how of stochastic Kriging. In Proceedings of the Winter Simulation Conference,2009.F.A.C.Viana,T.W.Simpson,V.Balabanov,and V.Toropov.Metamodeling in multi-disciplinary design optimization:How far have we really come?AIAA Journal,52(4): 670–690,2014.。
奇异夸克
No. X
...
2
actions, γp → Xp and strangeness exchange reactions, fundamental symmetries and the predictions for the
K−p → XΛ, and e+e− collisions. Given our unsatis- chiral perturbative theory. In addition, the η−η′ mix-
The study of the strangeonium mesons are of particular interest since they are bridge between the light u, d quarks and the heavy c, b quarks. In addition, the strangeonium spectrum also helps identify the exotics (e.g., glueball, hybrid, multi-quark states) which can decay into the same final states. Within the framework of the relativistic quark model with Chromodynamics [1], a spectroscopy similar to heavy quarkonia is expected for strangeonium (ss¯) states. Their decays were studied in detail with the 3P0 model [2], which is an phenomelogical theory for describing light meson decays. The ss¯ spectroscopy with spin J < 4 predicted by the 3P0 model, is shown in Fig. 1. Only seven states (underlined with the solid lines) have been established and many members of the spectrum are still missing.
基于群体平衡的汽轮机动叶表面盐析颗粒分布特性
2018年第37卷第2期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·437·化 工 进展基于群体平衡的汽轮机动叶表面盐析颗粒分布特性胡鹏飞,李勇,曹丽华,吴雪菲(东北电力大学能源与动力工程学院,吉林 吉林 132012)摘要:为深入了解汽轮机动叶内盐析颗粒的微观行为,本文以某超临界汽轮机高压级动叶为研究对象,应用计算流体力学与群体平衡模型耦合方法,对汽轮机动叶内盐析颗粒在流场中的分布进行数值模拟研究,获得了盐析颗粒在动叶内的粒径分布及不同负荷时叶片尾缘处盐析颗粒数量密度分布规律。
模拟结果表明:在汽轮机动叶吸力面附近的盐析颗粒粒径较压力面附近盐析颗粒粒径小,且叶根处颗粒粒径小于叶顶处;动叶压力面的颗粒数量密度呈前缘点尾缘点处大、中间段小的分布规律,并且盐析颗粒在叶片上的数量密度分布最大值并不出现在组分数及粒径最大处,而是出现在平均粒径为110~150μm 的盐析颗粒沉积位置处;当汽轮机30%负荷运行时,粒径40μm 盐析颗粒的数量密度是其在汽轮机额定负荷运行时的1.5倍,而粒径140μm 盐析颗粒的数量密度仅为汽轮机额定负荷运行时的80%。
关键词:汽轮机动叶;盐析颗粒;群体平衡模型;两相流中图分类号:TK26 文献标志码:A 文章编号:1000–6613(2018)02–0437–07 DOI :10.16085/j.issn.1000-6613.2017-1765Distribution characteristics of salting-out particles on the surface of steamrotor blade based on population balance model (PBM )HU Pengfei ,LI Yong ,CAO Lihua ,WU Xuefei(School of Energy and Power Engineering ,Northeast Electric Power University ,Jilin 132012,Jilin ,China )Abstract :In order to get a better understanding of microscopic behavior of salting-out particles in a steam turbine ,a high-pressure grade rotor blade was employed in a supercritical steam turbine as a research object and the distribution of salting-out particles in the flow field from a steam turbine rotor blade was simulated using CFD-PBM method. The diameter distribution of salting-out particles in a rotor blade and the number density distribution of salting-out particles in the tailed-edge area of rotor blade with different load situations were obtained. The simulation results showed that the salting-out particle diameter near the suction side was smaller than that near the pressure side in a steam turbine rotor blade ,and the salting-out particle diameter at the blade bottom was smaller than that at the blade tip. The particle number density distribution law at the pressure side of rotor blade was presented that the particle number density was larger both at the leading edge and at the tailed-edge of rotor blade while the particle number density was smaller in the middle parts of rotor blade ,and the maximum value of salting-out particle number density distribution did not appear in the position having the maximum component number and particle diameter in the rotor blade ,but it appeared in the positionwhere salting-out particles with the average diameter 110—150μm deposit. When steam turbine was under 30% load operation ,the number density of salting-out particles with 40μm diameter was 1.5第一作者及通讯作者:胡鹏飞(1985—),男,博士研究生,讲师,主要研究方向为汽轮机节能技术与优化运行。
赛米控丹佛斯 SEMITRANS 全碳化硅功率模块 SKM260MB170SCH17 数据表
© by SEMIKRONRev. 1.0–04.11.20201SEMITRANS ®3SiC MOSFET ModuleSKM260MB170SCH17Features*•Full Silicon Carbide (SiC) power module•High reliability 2nd Generation SiC MOSFETs•Optimized for fast switching and lowest power losses•External SiC Schottky Barrier Diode embedded•Insulated copper baseplate using DBC technology (Direct Bonded Copper)•Improved thermal performances with Aluminum Nitride (AlN) substrate •UL recognized, file no. E63532Typical Applications•High frequency power supplies •AC inverters •Traction APU •EV Chargers•Industrial Test SystemsRemarks•Case temperature limited to T C = 125°C max.•Recommended T jop = -40 ... +150°C •Gate-Source SURGE VOLTAGE(t surge <300ns), V GS_surge = -10V ... +26VAbsolute Maximum Ratings SymbolConditions Values UnitMOSFET V DSS T j =25°C 1700VI D T j =175°CT c =25°C 378 A T c =80°C301 A I DMPW ≤ 10µs, Duty cycle ≤ 1%980A I DM,repetitive790A V GS -6...22V T j-40 (175)°CAbsolute Maximum Ratings SymbolConditionsValuesUnitInverse diodeV RRM T j =25°C 1700V I F T j =175°CT c =25°C 552A T c =80°C428A I Fnom 300A I FRM 900A I FSM t p =10ms, sin 180°, T j =150°C, including body diode2030A T j-40 (175)°CAbsolute Maximum Ratings SymbolConditions Values UnitModule I t(RMS)500A T stg module without TIM -40...125°C V isolAC sinus 50 Hz, t =1min4000V2Rev. 1.0–04.11.2020© by SEMIKRONSEMITRANS ®3SiC MOSFET ModuleSKM260MB170SCH17Features*•Full Silicon Carbide (SiC) power module•High reliability 2nd Generation SiC MOSFETs•Optimized for fast switching and lowest power losses•External SiC Schottky Barrier Diode embedded•Insulated copper baseplate using DBC technology (Direct Bonded Copper)•Improved thermal performances with Aluminum Nitride (AlN) substrate •UL recognized, file no. E63532Typical Applications•High frequency power supplies •AC inverters •Traction APU •EV Chargers•Industrial Test SystemsRemarks•Case temperature limited to T C = 125°C max.•Recommended T jop = -40 ... +150°C •Gate-Source SURGE VOLTAGE(t surge <300ns), V GS_surge = -10V ... +26VMOSFET V (BR)DSS V GS =0V,I D =1mA, T j =25°C 1700V V GS(th)V DS =V GS , I D =57.75mA1.62.84V I DSS V GS =0V,V DS =1700V, T j =25°C 1.8mA I GSS V GS =22V,V DS =0V 700nA R DS(on)V GS =18V I D =161AchiplevelT j =25°C 8.110m ΩT j =150°C 14m ΩC iss V GS =0V V DS =800Vf =1MHzT j =25°C 27nF C oss T j =25°C 0.88nF C rss T j =25°C0.105nF R Gint T j =25°C2.1ΩQ G V DD =1000V, V GS =-5 ... 20V, I D =300A 1470nC t d(on)V DD =900V I D =300A V GS =-5 / +20VR Gon =0.7ΩR Goff =0.7Ωdi/dt on =12kA/µs di/dt off =9.5kA/µsdv/dt off =22kV/µs T j =150°C 64ns t r T j =150°C 60ns t d(off)T j =150°C162ns t f T j =150°C 32ns E on T j =150°C 7.59mJ E off T j =150°C6.21mJ R th(j-c)per MOSFET0.065K/W R th(c-s)per MOSFET (λgrease =0.81 W/(m*K))0.03K/WCharacteristics SymbolConditionsmin.typ.max.UnitInverse diodeV F = V SD I F =300A chiplevel T j =25°C 1.65 1.95V T j =150°C 2.51 2.86V V F0chiplevel T j =25°C 1.00 1.10V T j =150°C 0.860.96V r F chiplevelT j =25°C2.2 2.8m ΩT j =150°C5.56.3m ΩC j parallel to C oss , f =1MHz, V R =1700V, T j =25°C1.026nF Q c V R =800V, di/dt off =500A/µs, T j =25°C 0.95µCR th(j-c)per diode0.056K/W R th(c-s)per diode (λgrease =0.81 W/(m*K))0.027K/W© by SEMIKRONRev. 1.0–04.11.20203SEMITRANS ®3SiC MOSFET ModuleSKM260MB170SCH17Features*•Full Silicon Carbide (SiC) power module•High reliability 2nd Generation SiC MOSFETs•Optimized for fast switching and lowest power losses•External SiC Schottky Barrier Diode embedded•Insulated copper baseplate using DBC technology (Direct Bonded Copper)•Improved thermal performances with Aluminum Nitride (AlN) substrate •UL recognized, file no. E63532Typical Applications•High frequency power supplies •AC inverters •Traction APU •EV Chargers•Industrial Test SystemsRemarks•Case temperature limited to T C = 125°C max.•Recommended T jop = -40 ... +150°C •Gate-Source SURGE VOLTAGE(t surge <300ns), V GS_surge = -10V ... +26VModule L DS 15nH R DD'+SS'measured per switchT C =25°C0.55m ΩT C =125°C0.85m ΩR th(c-s)1calculated without thermal coupling (λgrease =0.81 W/(m*K))0.008K/W R th(c-s)2including thermal coupling, T s underneath module (λgrease =0.81 W/(m*K))0.013K/W M s to heat sink M635Nm M tto terminals M62.55Nm Nmw325g4Rev. 1.0–04.11.2020© by SEMIKRON© by SEMIKRON Rev. 1.0–04.11.202056Rev. 1.0–04.11.2020© by SEMIKRON© by SEMIKRON Rev. 1.0–04.11.20207This is an electrostatic discharge sensitive device (ESDS) due to international standard IEC 61340.*IMPORTANT INFORMATION AND WARNINGSThe specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.8。
基于模拟退火粒子群算法的波浪发电系统最大功率跟踪控制
基于模拟退火粒子群算法的波浪发电系统最大功率跟踪控制邹子君;杨俊华;杨金明【摘要】The particle swarm optimization (PSO) algorithm has low probability in searching global optimization and premature convergence in the maximum power point tracking (MPPT) control of the wave energy generation system.A novel simulated annealing particle swarm optimization (SA-PSO) algorithm was proposed to solve the problem of the traditional PSO.When the speed and position of each particle were updated with SA-PSO,the replacement value of the global maximum from all particles was confirmed by comparing the fitness of each particle of the current temperature and the random number value.As a result,the new algorithm could escape local maximum at the premature convergence and quickly discover global optimum solution.The simulation results showed that this novel algorithm could make the wave energy generation system effectively avoid the local optimization and fast achieve global MPPT control.The capture rate of wave energy was improved.%波浪发电系统最大功率点跟踪控制中,传统粒子群算法存在早熟收敛和局部搜索能力不足问题,为此提出基于模拟退火算法的粒子群优化方案.该算法每次更新粒子的速度和位置时,通过比较当前温度下各个粒子的适配值与随机数的大小,从所有粒子中确定全局最优解的替代值,从而使粒子群算法在发生早熟收敛时能够跳出局部最优并快速找到全局最优解.仿真结果表明,与传统粒子群优化算法相比,模拟退火粒子群算法可有效避免波浪发电系统陷入局部最大功率点,并快速实现全局最大功率跟踪,提高了波浪能捕获率.【期刊名称】《电机与控制应用》【年(卷),期】2017(044)010【总页数】6页(P13-18)【关键词】波浪发电;最大功率点跟踪;模拟退火粒子群算法【作者】邹子君;杨俊华;杨金明【作者单位】广东工业大学自动化学院,广东广州 510006;广东工业大学自动化学院,广东广州 510006;华南理工大学电力学院,广东广州 510641【正文语种】中文【中图分类】TM301.2近些年来,迫于温室气体排放限值(例如,京都议定书)压力及日益增加的能源需求,清洁可再生能源的开发和利用越来越获得广泛重视。
改进的零序电压注入法控制NPC逆变器中点电位平衡
现代电子技术Modern Electronics TechniqueAug.2022Vol.45No.162022年8月15日第45卷第16期0引言相较于两电平逆变器,三电平中点箝位(Neutral Point Clamped ,NPC )逆变器因具有输出电压谐波含量少、电压变化率小且功率器件承受电压低、转换效率高等优点而广泛应用于各种高压大功率场合[1⁃4]。
但是,三电平逆变器直流侧两个电容的中点电位很容易发生波动和偏移,这种波动和偏移会导致输出波形畸变,甚至会损坏电路中的开关管,因此三电平逆变器的中点电位控制策略一直是三电平推广应用研究的一个重点方DOI :10.16652/j.issn.1004⁃373x.2022.16.004引用格式:刘伍丰,陆建伟.改进的零序电压注入法控制NPC 逆变器中点电位平衡[J].现代电子技术,2022,45(16):18⁃24.改进的零序电压注入法控制NPC 逆变器中点电位平衡刘伍丰,陆建伟(河南工业大学电气工程学院,河南郑州450001)摘要:中点电位平衡控制问题是三电平中点箝位(NPC )逆变器实际应用中的一个关键问题,而基于载波脉宽调制(CBPWM )的零序电压注入法是解决该问题的有效控制策略。
基于此,文中提出一种基于CBPWM 的零序电压注入法的改进控制策略。
该方法只需要三相参考电压和直流侧电容的电压就可得出所需的零序电压注入信号,不需要三相输出电流,可简化计算过程。
通过在Simulink 中搭建仿真模型,对所提出的控制策略进行验证。
结果表明,文中的控制策略能够有效地平衡直流侧电容的电压,相比其他零序电压注入控制方法,具有计算量小、不需要三相电流、实现简单的优点,且能够保持较低的三相输出电流THD 。
仿真结果与理论分析结果基本一致,说明所提出的改进控制策略是有效的。
关键词:中点电位平衡;零序电压注入;载波脉宽调制;中点箝位;三电平逆变器;空间矢量脉宽调制中图分类号:TN761.7⁃34文献标识码:A文章编号:1004⁃373X (2022)16⁃0018⁃07Improved zero sequence voltage injection method to control neutral point potentialbalance of NPC inverterLIU Wufeng ,LU Jianwei(School of Electrical Engineering ,Henan University of Technology ,Zhengzhou 450001,China )Abstract :As the neutral point potential balance control is a key issue in the practical application of three ⁃level neutral point clamped (NPC )inverters ,zero sequence voltage injection method based on carrier ⁃based pulse width modulation(CBPWM )is a relatively effective control strategy for this problem.On this basis ,an improved control strategy of zero⁃sequence voltage injection method based on the CBPWM is proposed.In this method ,only the three ⁃phase reference voltage and the voltage of the DC side capacitor are required to obtain the required zero⁃sequence voltage injection signal ,without the need for three⁃phase output current ,which can simplify the calculation process.The proposed control strategy was verified by establishing simulation model in Simulink.The results show that the proposed control strategy can effectively balance the voltage of the DC side capacitor ,has the advantages of less calculation ,no three ⁃phase current ,and simple implementation in comparison with other zero ⁃sequence voltage injection control methods ,and can maintain low three ⁃phase output current THD.The simulation results are basically consistent with the results of theoretical analysis ,which verifies that the proposed control strategy iseffective.Keywords :neutral⁃point potential balance ;zero⁃sequence voltage injection ;CBPWM ;NPC ;three⁃level inverter ;spacevector pulse width modulation收稿日期:2022⁃01⁃13修回日期:2022⁃02⁃18基金项目:国家自然科学基金资助项目(11005136);河南省科技攻关资助项目(172102210028)18第16期向[5⁃8]。
谐振子基展开法数值计算基态重子谱
谐振子基展开法数值计算基态重子谱作者:戴延来源:《科技信息·下旬刊》2017年第08期摘要:谐振子基具有越高的激发态离原点越远的特点,取少数项即可近似地描述束缚态波函数。
本文利用谐振子基展开法在雅克比坐标的质心系中解三体薛定谔方程计算基态重子谱,讨论了耦合常数的形式以及重子哈密顿量运动学部分的相对论修正对谱的影响,结合拟合参数可以预测动力学部分的相对论修正必须提供额外的动能项或排斥芯。
关键词:重子谱;谐振子基展开;雅可比坐标引言由于重子处于QCD低能区,耦合常数大于1不能利用微扰论计算,因此势模型是常用来计算强子谱的唯象方法,所得的强子波函数可以用来计算各种过程的跃迁矩阵元。
计算重味重子时常用非相对论哈密顿量[1],但由不确定关系可以估计,在1fm尺度下轻夸克的运动速度已经可以比拟光速,准确地统一计算轻味重子和重味重子谱时应考虑相对论效应,其中运动学部分可以用相对论能量替换经典能量,而动力学部分则主要有Isgur等人和Ebert等人发明的两种修正方法[2,3]。
本文拟在Mathematica环境下通过谐振子基展开法数值计算运动学部分的相对论修正对重子谱的影响,分析谱和参数的变化从而得出动力学修正应该满足的一般条件。
1.理论方法基态重子哈密顿量可以取为其中(非相对论)或(相对论)。
,,分别是i,j粒子之间的色库伦势、色禁闭势和自旋相互作用势。
引入三组雅可比坐标[4]实验上测得的不变质量不依赖于粒子质心运动,在计算不变质量谱的时候可以事先把它扣除出去,即令。
很容易把哈密顿量改写成自变量为雅可比坐标的形式。
重子波函数在雅可比坐标下用如下哈密顿量的正交归一本征态来展开其本征值为,一定角动量的本征态为其中,,是拉盖尔多项式,是球谐函数,是归一化系数。
显然三组雅可比坐标之间满足如下关系待求哈密顿量中,等矩阵元可以直接用计算,而以,,,为自变量的项转换到或的具有相同量子数的本征态计算更方便,计算时直接插入一组投影算符重子处于色单态,色波函数必须反对称,归一化的色波函数可以取为[5]。
偶数相开关磁阻电机系统磁路平衡控制策略研究
第27卷㊀第11期2023年11月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.11Nov.2023㊀㊀㊀㊀㊀㊀偶数相开关磁阻电机系统磁路平衡控制策略研究徐帅1,㊀陶路委1,㊀贾东强1,㊀程志平1,㊀韩国强2(1.郑州大学电气与信息工程学院,河南郑州450000;2.中国矿业大学电气工程学院,江苏徐州221116)摘㊀要:针对传统偶数相开关磁阻电机磁路不平衡带来的转矩输出性能降低的问题,提出了一种磁路平衡控制策略㊂首先,分析了不同绕组连接方式下偶数相开关磁阻电机的磁场分布情况,揭示了单极性励磁是不平衡磁路产生的主要原因㊂然后,提出采用集成式功率变换器拓扑进行双极性励磁,保证磁路的平衡,确定了双极性励磁下功率器件的开关顺序,阐述了所提磁路平衡控制策略的工作原理和实施方法㊂最后,进行了仿真和实验分析,验证了所提磁路平衡控制策略能够有效增强偶数相开关磁阻电机系统转矩输出能力,同时在系统成本㊁算法复杂度和可靠性方面有明显的优势㊂关键词:开关磁阻电机;转矩脉动;磁路平衡控制;绕组连接方式;集成式功率变换器拓扑DOI :10.15938/j.emc.2023.11.016中图分类号:TM352文献标志码:A文章编号:1007-449X(2023)11-0163-10㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2022-01-22基金项目:中国博士后科学基金(2020M286343);国家自然科学基金(52107215);河南省科技攻关项目(212102210010);2020中原青年拔尖人才项目(ZYYCYU202012182)作者简介:徐㊀帅(1991 ),男,博士,副教授,研究方向为电机系统可靠性建模与控制;陶路委(1997 ),男,硕士研究生,研究方向为双定子磁阻电机控制;贾东强(1997 ),男,硕士,研究方向为开关磁阻电机效率优化控制;程志平(1974 ),男,博士,副教授,研究方向为微电网系统调度与优化;韩国强(1990 ),男,博士,讲师,研究方向为电机系统故障诊断与容错控制㊂通信作者:程志平Magnetic circuit balance control strategy of even-phaseswitched reluctance motor systemXU Shuai 1,㊀TAO Luwei 1,㊀JIA Dongqiang 1,㊀CHENG Zhiping 1,㊀HAN Guoqiang 2(1.School of Electric and Information Engineering,Zhengzhou University,Zhengzhou 450000,China;2.School of Electric Engineering,China University of Mining and Technology,Xuzhou 221116,China)Abstract :Focusing on the problem of reducing torque output performance caused by unbalanced magnetic circuit of traditional even-phase switched reluctance motor,a novel magnetic circuit balance control strat-egy was proposed.Firstly,the magnetic field distribution was analyzed in different winding connectionmethods for even-phase switched reluctance motor,indicating that unipolar excitation is the main cause of unbalanced magnetic circuit.Then,the integrated power converter topology was adopted to realize the bi-polar excitation and ensure the balance of magnetic circuit.Next,the switching sequence of power de-vices under bipolar excitation was determined,and the working principle and implementation method of the proposed magnetic circuit balance control strategy were described.Finally,the simulation and experi-mental analysis were carried out,proving that the proposed magnetic circuit balance control can enhance the torque output performance.Also,the proposed control strategy owns significant advantages in systemcost,algorithm complexity and reliability.Keywords:switched reluctance motor;torque ripple;magnetic circuit balance control;winding connec-tion;integrated power converter topology0㊀引㊀言近年来,随着全球传统燃油汽车产业的快速发展与石油短缺㊁环境污染之间的矛盾日益突出,新能源汽车因高效节能的显著优势,成为人类解决环境危机的主要途径[1]㊂驱动电机作为新能源汽车的核心环节,需要满足如下技术要求:1)宽调速范围内的高效率运行㊂该要求能够弥补新能源汽车由于电池续航能力不足带来的劣势㊂2)高功率密度㊂该要求是实现新能源汽车驱动系统高集成度和轻量化的基础㊂3)低转矩脉动㊂该要求能够保证新能源汽车乘坐的舒适性㊂4)高可靠性㊂该要求能够保证新能源汽车的安全性㊂相比于交流感应电机和永磁同步电机来说,开关磁阻电机(switched reluc-tance motor,SRM)具有结构简单㊁无需稀土永磁材料㊁制造成本低㊁调速范围宽㊁高节能性和高可靠性等优势,成为了新能源汽车高性能驱动电机的优先选择之一㊂但是由于双凸极特性和脉冲供电方式的存在,SRM的转矩输出性能受到影响,存在较大的转矩脉动,限制了SRM的进一步推广和应用[2-4]㊂为了抑制SRM的转矩脉动,国内外学者从电机控制和本体设计两方面进行研究㊂目前,SRM通过电机控制抑制转矩脉动可以分为间接转矩控制和直接转矩控制两大类㊂间接转矩控制通常利用转矩分配函数,选择合适的换相点,将参考转矩有序分配给各相,再通过各相的转矩㊁位置和电流关系,得到参考电流,依据参考电流改变驱动信号,使实际电流跟随参考电流的变化,进而实现转矩的控制㊂现阶段在间接转矩控制的研究中,学者们主要通过改进转矩分配函数,优化换相点,提升SRM系统转矩脉动抑制性能[5-7]㊂相比于间接转矩控制,直接转矩控制依据参考转矩和实际转矩的偏差直接产生驱动信号,能够有效提升SRM系统的动态响应速度㊂现阶段在直接转矩控制的研究中,学者们主要通过扇区的优化[8]㊁模型预测[9]和模糊调节[10]等策略增强转矩脉动抑制效果,但是在直接转矩的实施过程中存在开关频率不可控㊁算法复杂和容易出现尖峰电流等缺点,限制了直接转矩控制的推广和应用㊂SRM通过电机本体设计抑制转矩脉动方面的方法可以分为新型SRM拓扑结构和SRM的优化两大类㊂在新型SRM拓扑结构的研究中,学者们通常通过优化电磁路径的方法来进行转矩脉动的抑制[11]㊂文献[13]通过设计新型内外错齿转子,避免内外定子产生磁场的耦合,提出一种磁场解耦型双定子结构SRM,有效降低了转矩脉动㊂在SRM优化方面,通常采用多目标优化算法,合理选择定转子极数㊁定转子极弧系数和转子外形及尺寸等参数,进而能够有效抑制转矩脉动㊂文献[14]采用多目标系统优化算法,实现了三相6/4结构SRM的效率提高和转矩脉动的抑制㊂文献[15]采用粒子群算法,能够使SRM系统转矩脉动的抑制效果达到50%以上㊂虽然SRM现有的转矩脉动抑制方法取得了良好的应用效果,但是往往会带来算法复杂度的提升或者成本的增加㊂同时在对SRM转矩脉动产生机理和抑制策略的不断深入研究中,逐渐发现电磁路径的分布情况是影响SRM转矩脉动的重要因素㊂而相比于奇数相SRM,偶数相SRM的电磁路径分布不对称,增大了相间互感和转矩脉动[16]㊂文献[17]研究了四相8/6结构SRM的互感特性,结果表明样机存在电磁不对称励磁相,长磁路励磁相的负互感使输出转矩有所减小,一个导电周期内转矩波形不规则,增大了转矩脉动㊂文献[18]研究了六相12/10结构SRM五种绕组连接方式下的磁路分布㊁互感特性和运行性能,确定了最优的绕组连接方式,降低了转矩脉动㊂文献[19]详细介绍了六相SRM的非对称磁路和电流不一致现象的产生机理,并提出采用不等磁轭结构和多目标优化的方式来改善SRM的转矩性能,取得了良好的应用效果㊂但是上述两种策略均无法实现整个运行周期内的磁路对称,进而无法消除不对称磁路带来的转矩脉动现象㊂文献[20]的研究结果表明绕组连接方式的改变能够实现磁场的动态调节,提升SRM的运行性能㊂虽然文献[21]提出了偶数相SRM不对称电磁路径的解决方法,但是所需成本过高,实施过程复杂㊂因此亟需研究一种新型磁路平衡控制策略,为偶数相SRM转矩脉动的抑制提供新的解决思路㊂本文首先进行偶数相SRM的磁路分析,通过有限元建模和理论分析研究转子偶数齿和奇数齿偶数相SRM的磁链和转矩输出特性,归纳不对称磁路的产生机理㊂然后提出采用模块化集成式功率变换器461电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀拓扑实现磁路平衡控制,分析双极性励磁模式下功率器件的开关逻辑,给出磁路平衡控制策略的实施原则㊂最后通过仿真分析和样机实验,验证所提磁路平衡控制能够有效改善偶数相SRM 的转矩性能,提升系统运行的稳定性㊂同时,所提磁路平衡控制策略无需复杂的算法和优化过程,不影响现有的直接转矩控制或者间接转矩控制策略的实施,因此后续的研究中可以结合现有转矩控制策略,增强偶数相SRM 旋转的平滑性㊂1㊀偶数相开关磁阻电机磁路分析1.1㊀偶数相开关磁阻电机系统通常情况下,SRM 系统由SRM 本体㊁功率变换器㊁检测环节和控制器4部分组成㊂以四相8/6结构SRM 为例,其组成如图1(a)所示㊂当SRM 系统运行时,首先通过检测环节检测各相电流信息(i ph )和转子位置(θ),然后由控制器计算SRM 的实时转速(n s ),并结合给定的转速(n ∗)和设置的控制策略,生成各个功率开关管的驱动信号(DS ),驱动电机正常运转[3-6]㊂图1㊀四相SRM 系统Fig.1㊀Four-phase SRM system为了保证SRM 系统的控制性能和容错能力,功率变换器选择常用的不对称半桥功率变换器(asym-metric half-bridge power converter,AHBPC)拓扑,如图1(b)所示㊂其中:U s 为直流供电电源,一般选用蓄电池或者开关电源;C 为直流母线电容,用来进行滤波和吸收负电压续流阶段回馈的绕组储能;S1~S8为开关管;D1~D8为二极管,为避免直通故障,需要选用超快恢复二极管;L a ㊁L b ㊁L c 和L d 分别为A 相㊁B 相㊁C 相和D 相的绕组㊂在AHBPC 的驱动下,能够有效实施电压斩波控制(voltage chopping con-trol,VCC)㊁电流斩波控制(current chopping control,CCC)和角度位置控制(angle position control,APC)等策略,保证系统稳定可靠运行[22]㊂1.2㊀磁路分析在偶数相SRM 系统中,由于不对称半桥功率变换器带来的单极性电流励磁,会导致磁路不平衡现象的出现[16-21]㊂为了有效揭示不平衡磁路的产生机理,本文分别以转子偶数齿的四相8/6结构SRM 和转子奇数齿的四相12/9结构SRM 为分析对象,进行不同绕组连接方式下偶数相SRM 的磁极分布和磁路分析㊂图2(a)和图2(b)为四相8/6结构SRM 的两种绕组连接方式,分别命名为连接方式I 和连接方式II㊂图2(a)为绕组连接方式I 的示意图㊂此时SRM 定子极的磁场分布为NSNSSNSN㊂在两相同时励磁时,A 相和B 相㊁B 相和C 相㊁C 相和D 相之间为短磁路分布,而在D 相和A 相之间为长磁路分布,分别如图2(c)和图2(d)所示㊂若采用图2(b)所示的绕组连接方式II,在该绕组连接方式I 的影响下,从定子A1极开始,8个定子极的磁场分布为NNNNSSSS㊂在两相同时励磁时,A 相和B 相㊁B 相和C 相以及C 相和D 相之间的磁场分布为长磁路分布,而在D 相和A 相之间的磁场分布为短磁路分布,分别如图2(e)和图2(f)所示㊂综上所述,四相8/6结构SRM 在绕组连接方式I 时以短磁路运行为主,在绕组连接方式II 时以长磁路运行为主,均出现明显的磁路不平衡现象㊂对于转子奇数齿的四相12/9结构的SRM 来说,磁路分布与四相8/6结构SRM 明显不同,具有更高的复杂性㊂本文选取两种典型的绕组连接方式,分别命名为连接方式I 和连接方式II,如图3(a)和图3(b)所示㊂图3(a)为绕组连接方式I 的示意图,此时从定子A1极开始,12个定子极的磁场分布为NSNNSNSNSNSS㊂在两相同时励磁时,A 相和B 相㊁C 相和D 相以及D 相和A 相之间为短磁路分布,如图3(c)所示㊂而在B 相和C 相之间为长磁路分布的现象,如图3(d)所示㊂图3(b)为绕组连接方式II 的示意图,此时从定子A1极开始,12个定子极的磁场分布为NNNSSSNNNSSS,类似绕组连接方式I,此时也会出现长磁路和短磁路交错分布的现象㊂561第11期徐㊀帅等:偶数相开关磁阻电机系统磁路平衡控制策略研究图2㊀四相8/6结构SRM 绕组连接方式和磁路分析Fig.2㊀Winding connection and magnetic circuit analy-sis for four-phase 8/6SRMsystem图3㊀四相12/9结构SRM 绕组连接方式和磁路分析Fig.3㊀Winding connection and magnetic circuit analy-sis for four-phase 12/9SRM system从上述分析可知,转子偶数齿和转子奇数齿偶数相SRM 均存在磁路不平衡现象㊂而上述磁路不平衡现象的产生是由于偶数相SRM 采用AHBPC 驱动时,只能采用单极性电流励磁模式,即整个运行过程中相电流方向不变,造成定子磁极分布的相对固定,出现长磁路和短磁路交错分布的现象,进而造成磁路不平衡的现象㊂磁路不平衡现象的出现会影响偶数相SRM 的运行性能,以四相8/6结构SRM 为例进行分析㊂在单相励磁时,四相8/6结构各相磁路相同,具有相同的磁链和转矩特性,因此只需研究两相励磁时磁路不平衡对SRM 输出性能的影响,如图4所示㊂图4㊀四相SRM 磁链和转矩对比Fig.4㊀Comparison of flux and torque for four-phaseSRM system由于绕组连接方式I 和II 下均只存在短磁路和长磁路两种情况,因此分别对SRM 两相励磁时短磁路和长磁路下的运行情况进行分析㊂图4(a)为四相8/6结构SRM 在短磁路和长磁路运行时的磁链对比㊂从图中可以看出,短磁路运行时磁链明显大于长磁路运行时的磁链,进而可知在短磁路运行时661电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀SRM 产生更高的转矩,且两种情况下转矩的偏差随着励磁电流和磁路饱和度的增加而增大,如图4(b)所示㊂综上分析可以看出,偶数相SRM 在短磁路和长磁路情况下具有不同的输出转矩,而对所述的绕组连接方式下,不管对于转子偶数齿或者转子奇数齿的偶数相SRM 来说,不可能在一个转子周期内保证全程短磁路或者长磁路运行,进而会带来明显的转矩脉动㊂2提出的磁路平衡控制方法2.1㊀集成式变换器拓扑为了实现偶数相SRM 系统的短磁路运行,需要改变各个定子磁极的磁场分布㊂传统的AHBPC 只能通入单极性的电流,无法通过改变电流方向使长磁路运行转变为短磁路运行,因此本文提出采用集成式变换器拓扑的方式进行双极性电流励磁,如图5所示㊂其中,电流从绕组 + 端流入为正向运行,从 - 端流入为负向运行㊂图5㊀集成式变换器拓扑Fig.5㊀Integrated power converter topology所采用的集成式变换器拓扑由模块I 和模块II 组成,模块I 和模块II 均为三相全桥功率变换模块㊂相比于图1(b)所示的传统不对称半桥功率变换器,集成式变换器拓扑有效减少了所需功率器件的数目,只需要12个功率器件㊂由于三相全桥功率变换模块的广泛使用,其成本相比于不对称半桥功率变换器会大幅度降低㊂同时集成化的结构和少功率器件的特性会减小功率变换器体积和故障发生率,为系统功率密度和可靠性的提高奠定基础㊂所采用的集成式变换器拓扑具有正向励磁(Mode 1)㊁正向上零电压续流(Mode 2)㊁正向下零电压续流(Mode 3)㊁正向退磁(Mode 4)㊁反向励磁(Mode 5)㊁反向上零电压续流(Mode 6)㊁反向下零电压续流(Mode 7)和反向退磁(Mode 8)等8种运行模式㊂以B 相为例,不同模式下电流路径如图6所示㊂图6㊀不同模式下电流路径Fig.6㊀Current path in different modes通过将8种运行模式有效组合能够实现偶数相SRM 的双极性运行,进而保证电机磁路平衡,提高SRM 系统的转矩输出性能㊂2.2㊀磁路平衡控制所提出的磁路平衡控制策略不影响SRM 常用的VCC㊁CCC 和APC 等控制策略的实施,因此以CCC 策略为例进行磁路平衡控制策略实施原则的说明,具体如图7所示㊂在软斩波模式下,利用转速反馈,使给定转速(n ∗)和n 经PI 调节器生成参考电流(I ref ),将I ref 与i ph 经电流滞环控制器生成控制信号,并将其与对应相的位置信号相与,得到对应相761第11期徐㊀帅等:偶数相开关磁阻电机系统磁路平衡控制策略研究的驱动信号㊂在单极性运行模式下,斩波信号和位置信号分别用来驱动上管和下管㊂在导通区间,交替采用Mode 1和Mode 3,而在退磁区间,采用Mode 4,从而能够实现SRM 系统的稳定运行㊂图7㊀CCC 原理Fig.7㊀Principles of CCC为了克服磁路不平衡造成的SRM 系统转矩性能下降问题,本文提出采用集成式变换器拓扑,能够实现电流双极性模式的磁路平衡控制策略,其实施方法如图8所示,采用正向运行和反向运行相互交替的模式,在一个电流周期内可以分为两个转子运行周期,分别命名为第I 运行周期和第II 运行周期,在第I 运行周期为正向运行,在第II 运行周期为反向运行㊂在第I 运行周期,在导通区间,采用Mode 1和Mode 3交替运行,而在退磁区域,采用Mode 4㊂在第II 运行周期,在导通区间,采用Mode 5和Mode 6交替运行,而在续流区间,采用Mode8㊂图8㊀磁路平衡控制运行模式Fig.8㊀Magnetic circuit balance control operation mode在提出的磁路平衡控制方式的作用下,对于四相8/6结构SRM 来说,第一个转子周期内的磁场分布为NSNSSNSN,第二个转子周期内的磁场分布为SNSNNSNS,通过两个转子周期的磁场共同交替分布,进而实现短磁路运行,如图9(a)所示㊂对于四相12/9结构的SRM 来说,第一个转子周期内的磁场分布为NNSNSNSNSSNS,第二个转子周期内的磁场分布为SSNSNSNSNNSN,从而能够保证SRM 的磁路平衡运行㊂图9㊀磁路平衡控制下磁场分布Fig.9㊀Magnetic field distribution under the control ofmagnetic circuit balance3㊀仿真分析为了验证所提磁路平衡控制策略的有效性,依据电压方程㊁转矩方程和机电联系方程,在MAT-LAB /Simulink 中搭建一个150W 四相8/6结构SRM 的仿真模型,其中考虑磁路不平衡影响的磁链特性和转矩特性采用查找表的方式进行建模㊂设定仿真步长5μs,开通为2ʎ,关断角25ʎ,给定转速1000r /min,负载转矩1.5N㊃m,样机在常规单极性控制(采用图4(a)所示的绕组连接方式I)和磁路平衡控制下的仿真波形如图10所示㊂其中,DS 1㊁DS 4和T e 分别为开关管S1的驱动信号㊁开关管S4的驱动信号和电磁转矩㊂由仿真结果可知,单极性运行时开关管S1的开关管频率远大于S4的开关频率,因此S1上产生的热应力会远大于S4上产生的热应力㊂而采用双极性控制时,DS 1的频率将为一半,同时DS 4的频率有861电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀所提高,使DS 1和DS 4的频率接近,进而能够平衡开关管S1和S4上的热应力,降低器件的最大失效率㊂同时可以看出,在单极性运行时,虽然CCC 控制能够保证各相电流的对称,但是在长磁路运行时输出转矩有所减少,此时转矩脉动(γ)为42.6%,而所提出的磁路平衡控制策略能够保证整个运行周期内的短磁路运行,此时转矩脉动为34.3%,实现了转矩输出性能的改善㊂同时在负载转矩1.5N㊃m 时,在转速从200r /min 到1200r /min 的范围内,所提磁路平衡控制策略均能够有效降低转矩脉动,如图11所示㊂图10㊀样机仿真波形Fig.10㊀Simulation waveforms按照文献[23-24]所示的功率器件损耗解析结算方法,计算各个功率器件的损耗㊂以模块II 为例,表1对比了单极性软斩波励磁㊁单极性交替斩波励磁和磁路平衡控制策略下功率管的损耗分布情况㊂可以看出,在单极性软斩波励磁㊁单极性交替斩波励磁和磁路平衡控制策略下,功率管最大损耗和最小损耗的差分别为3.46㊁3.19㊁2.15W,因此可以得到磁路平衡控制下能够明显改善功率器件热分布的不平衡性㊂图11㊀不同控制策略下转矩脉动对比Fig.11㊀Torque ripple comparison under differentcontrol strategies表1㊀不同控制方式下功率管损耗分布Table 1㊀Power loss distribution in different control modes功率管功率器件损耗/W单极性软斩波单极性交替斩波磁路平衡控制S7 3.44 2.37 4.15S8 4.86 2.78 4.15S9 2.60 5.56 2.00S10 1.40 4.74 2.00S11 3.44 2.37 4.15S124.862.784.154㊀实验验证为了验证本文所提磁路平衡控制策略的有效性,研制了一台四相8/6结构150W 的小功率SRM,并配备了动态扭矩测量仪(HCNJ-101)和磁粉制动器分别进行转矩的测量和调节㊂同时搭建了基于TMS320F28335的样机控制平台,MOSFET 选用FQA160N08,二极管选用MUR6020,驱动芯片选用TLP250㊂硬件实验平台的具体构造如图12所示㊂图12㊀硬件实验平台Fig.12㊀Hardware experimental platform961第11期徐㊀帅等:偶数相开关磁阻电机系统磁路平衡控制策略研究为了验证短磁路和长磁路对偶数相SRM 电磁性能的影响,将A 相和B 相分别按照图2所示连接方式I 和连接方式II 串联连接,其中在连接方式I 时,A 相和B 相之间短磁路运行,而在连接方式II 时,A 相和B 相之间长磁路运行㊂考虑到A 相和B 相共同运行的区间,转子在A 相22.5ʎ时,测量得到驱动信号㊁A 相电流和绕组两端电压(u ab )如图13(a)和图13(b)所示㊂接下来,依据电压方程,进行磁链的解析计算[17],得到的计算结果如表2所示㊂从表2中可以看出,实验测量结果和仿真结果具有较好的吻合度,同时短磁路运行和长磁路运行下磁链有明显的差异,从而证明了不同绕组连接方式对偶数相SRM 的电磁性能有明显的影响,与理论分析结果相符㊂表2㊀磁链测量结果对比Table 2㊀Results comparison for flux measurement电流/A 短磁路长磁路仿真磁链/Wb 实验磁链/Wb 误差/%仿真磁链/Wb 实验磁链/Wb 误差/%50.00210.002412.500.00210.002412.50100.04160.04558.570.03950.0418 5.50150.05990.0626 4.300.05720.0547-4.57200.07430.0725-2.480.06910.0645-7.13250.07950.0766-3.780.07220.0687-5.09图13㊀磁链测量时驱动信号㊁电流和电压波形Fig.13㊀Drive signals ,current and voltage waveformsduring flux measurement㊀㊀保证和仿真时相同的开通角㊁关断角㊁给定转速和负载转矩,图14(a)为样机在磁路平衡控制时的运行波形,可以看出各相电流幅值对称,有效说明所提磁路平衡控制策略能够驱动样机正常运行㊂同时样机生成的电磁转矩波形对称,解决了单极性运行时长短磁路交替带来的电磁转矩峰值或者谷值过大的问题,进而验证了理论推导和仿真分析的有效性,如图14(b)所示㊂而在不同的运行转速下,相比于单极性运行,样机在所提磁路平衡控制策略的作用下,转矩脉动平均降低5.63%以上,如图15所示㊂图14㊀实验波形Fig.14㊀Experimental waverforms071电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图15㊀实验条件下转矩脉动对比Fig.15㊀Torque ripple comparison in experimentalconditions5㊀结㊀论本文通过分析不同绕组连接方式下磁场的分布情况,揭示了偶数相开关磁阻电机磁路不平衡现象的产生机理㊂在此基础上,提出了结合集成式功率变换器和双极性励磁的磁路平衡控制策略,并且进行了仿真分析和实验验证㊂结果表明所提磁路平衡控制策略具有以下优点:1)采用集成式功率变换器驱动,平均每相功率器件数目由不对称半桥功率变换器的4个降低到3个,减少了系统的成本,增强了系统的可靠性;2)所提磁路平衡控制策略实施简单,无需复杂的参数调节和优化过程,同时不影响后续采用直接转矩控制或者间接转矩控制进一步实现转矩脉动的降低,具有良好的普适性;3)所提磁路平衡控制策略能够有效改善偶数相开关磁阻电机的转矩输出能力,不采用任何优化策略的情况下,转矩脉动抑制效果增强5.63%以上㊂参考文献:[1]㊀新能源汽车国家大数据联盟,中国汽车技术研究中心有限公司,重庆长安新能源汽车有限公司.中国新能源汽车大数据研究报告(2019)[M].北京:社会科学文献出版社,2019. [2]㊀戈宝军,魏瑶,韩继超,等.开关磁阻电机定子铁损分布的时步有限元分析[J].电机与控制学报,2020,24(7):20.GE Baojun,WEI Yao,HAN Jichao,et al.Time-stepping finite el-ement analysis of stator iron loss distribution of switched reluctance motor[J].Electric Machines and Control,2020,24(7):20.[3]㊀CAI Jun,ZHAO Xingqiang.An on-board charger integrated powerconverter for EV switched reluctance motor drives[J].IEEE Transactions on Industrial Electronics,2021,68(5):3684. [4]㊀FENG Liyun,SUN Xiaodong,TIAN Xiang,et al.Direct torquecontrol with variable flux for an SRM based on hybrid optimizationalgorithm[J].IEEE Transactions on Power Electronics,2022,37(6):6688.[5]㊀费晨,颜建虎,汪盼,等.基于改进的转矩分配函数法的开关磁阻电机转矩脉动抑制[J].电工技术学报,2018,33(S2):394.FEI Chen,YAN Jianhu,WANG Pan,et al.Torque ripple sup-pression of switched reluctance motor based on modified torque sharing function[J].Transactions of China Electrotechnical Soci-ety,2018,33(S2):394.[6]㊀孙庆国,吴建华.基于转矩分配函数在线修正的开关磁阻电机转矩脉动抑制策略[J].电机与控制学报,2017,21(12):1.SUN Qingguo,WU Jianhua.Torque ripple suppression strategy of switched reluctance motor based on on-line correction of torque dis-tribution function[J].Electric Machines and Control,2017,21(12):1.[7]㊀王喜莲,许振亮,王翠.开关磁阻电机转矩脉动与铜耗最小化控制研究[J].电机与控制学报,2015,19(7):7.WANG Xilian,XU Zhenliang,WANG Cui.Research on torque ripple and copper loss minimization control of switched reluctance motor[J].Electric Machines and Control,2015,19(7):7. [8]㊀曹鑫,户红艳,颜宁,等.扇区实时优化的开关磁阻电机直接转矩控制方法[J].电工技术学报,2018,33(19):9.CAO Xin,HU Hongyan,YAN Ning,et al.Direct torque control of switched reluctance motor with real-time optimization of sectors [J].Transactions of China Electrotechnical Society,2018,33(19):9.[9]㊀李岩,王国峰,李存贺,等.开关磁阻电机有限控制集预测转矩控制[J].电机与控制学报,2019,23(10):10.LI Yan,WANG Guofeng,LI Cunhe,et al.Finite control set pre-dictive torque control method for switched reluctance motor drives [J].Electric Machines and Control,2019,23(10):10. [10]㊀周凯,石增.开关磁阻电机转矩脉动抑制技术[J].电机与控制学报,2019,23(12):8.ZHOU Kai,SHI Zeng.Torque ripple suppression technology ofswitched reluctance motor[J].Electric Machines and Control,2019,23(12):8.[11]㊀颜建虎,汪盼,费晨.模块化开关磁阻式横向磁通电机设计与分析[J].中国电机工程学报,2018,38(22):7.YAN Jianhu,WANG Pan,FEI Chen.Design and analysis ofmodular switched reluctance transverse flux motor[J].Proceed-ings of the CSEE,2018,38(22):7.[12]㊀LEE C H T,CHAU K T,LIU C,et al.Mechanical offset fortorque ripple reduction for magnetless double-stator doubly salientmachine[J].IEEE Transactions on Magnetics,2014,50(11):8103304.[13]㊀闫文举,陈昊,马小平,等.不同转子极数下磁场解耦型双定子开关磁阻电机的研究[J].电工技术学报,2021,36171第11期徐㊀帅等:偶数相开关磁阻电机系统磁路平衡控制策略研究。
Geometric Modeling
Geometric ModelingGeometric modeling is a crucial aspect of computer-aided design (CAD) and computer graphics. It involves the creation of digital representations of objects and environments using mathematical algorithms and geometric techniques. These models are used in various fields such as engineering, architecture, animation, and virtual reality. Geometric modeling plays a significant role in the design and visualization of complex structures, the simulation of physical phenomena, and the creation of realistic computer-generated imagery. One of the primary challenges in geometric modeling is achieving accuracy and precision in representing real-world objects and scenes. This requires the use of advanced mathematical concepts such as calculus, linear algebra, and differential geometry. Geometric modeling also involves the use of computational algorithms to generate and manipulate geometric shapes, surfaces, and volumes. These algorithms need to be efficient and robust to handle large-scale and intricate models while maintaining visualfidelity and integrity. Another important aspect of geometric modeling is the representation of 3D objects in a 2D space, which is essential for visualization and rendering. This process involves techniques such as projection, rasterization, and rendering, which are used to convert 3D geometric data into 2D images for display on screens or print. Achieving realistic and visually appealing representations requires careful consideration of lighting, shading, and texture mapping, which are fundamental in computer graphics and visualization. Inaddition to the technical challenges, geometric modeling also raises issuesrelated to usability and user experience. Designing intuitive and user-friendly interfaces for creating and manipulating geometric models is crucial for enabling efficient and effective design workflows. This involves considerations such as interactive manipulation, real-time feedback, and intuitive control mechanisms, which are essential for empowering users to express their creative ideas and concepts. Furthermore, geometric modeling has a significant impact on the manufacturing and production processes. The digital models created through geometric modeling are used for computer-aided manufacturing (CAM) and numerical control (NC) machining, enabling the production of precise and complex parts and assemblies. This integration of geometric modeling with manufacturing technologieshas revolutionized the way products are designed, prototyped, and manufactured, leading to advancements in efficiency, quality, and innovation. From an academic perspective, geometric modeling is a multidisciplinary field that draws from mathematics, computer science, and engineering. Researchers and educators in this field are constantly exploring new methods and techniques for geometric modeling, pushing the boundaries of what is possible in terms of representing and manipulating geometric data. This includes areas such as parametric modeling, geometric constraints, and procedural modeling, which are essential for enabling flexible and adaptable design processes. In conclusion, geometric modeling is a complex and multifaceted field with far-reaching implications for various industries and disciplines. It encompasses technical challenges related to accuracy, efficiency, and visualization, as well as considerations of usability, manufacturing, and academic research. As technology continues to advance, geometric modeling will play an increasingly critical role in shaping the way we design, create, and interact with the world around us.。
From Supernovae to Baryon acoustic Oscillations来自超新星的重子声学振荡
Baryon Acoustic Oscillations (B.A.O) = Pathfinder
At early times the universe was hot, dense and ionized. Photons and matter were tightly coupled by Thomson scattering.
Theoretical Work
Adiabatic &
Isocurvature modes on BAO
MeerKAT /SKA
Observational Work
Data Analysis
Type-Ia Supernovae
SALT
A reminder
A Type-Ia Supernovae (SNe Ia) -------> Explosion of a White Dwarf having accreted mass from a companion star, beyond a critical threshold known as the Chandrasekhar limit (~ 1.4 Solar masses).
Testing simultaneous identification of transients from ROTSE (rotse/), in Gamsberg (southern Namibia).
Theoretical Work
Observational Work
Data Analysis
Number density
and/or
energy density
characterize cosmological species in the early Universe. Linear perturbations of these quantities are
高级专业技术岗位任期考核-CERNIndico
Ping Wang
Institute of High Energy Physics, CAS
Krabi, 2015.7.7-11
1
I. Introduction
II. Dbar-ubar asymmetry in proton III. Magnetic form factor of u quark in Ʃ
Experiments: ZEUS and H1: 10^(-4) < x < 0.02 EIC: Up to x = 0.3 HERMES: 0.02 < x < 0.3 JLab 12 GeV: 0.1 < x < 0.7 COMPASS: 0.006 < x < 0.3
9
Dbar-ubar asymmetry
PAV4 2004 PAV4 2009
PAV4 2009
HAPPEX-I 2004
HAPPEX-III 2012
26
u/d quark in Ʃ-/Ʃ+
HAPPEX Collaboration Phys. Lett. B635 (2006) 275
[5] D. T. Spayder et al, Phy. lett. B583 (2004) 79 [8] F. E. Mass et al, Phys. Rev. Lett. 94 (2005) 152001 [9] D. S. Armstrong et al, Phys. Rev. Lett. 95 (2005) 092001 [11] S. Escoffier et al, Nucl. Instrum. Meth. A551 (2005) 563 [20] V. Lyubovitskij, P. Wang, T. Gutsche, A. Faessler, Phys. Rev. C 66 (2002) 055204
Solitonic Baryons in a Chiral Quark Meson Model
satis es
1 = p (u # ?d ") 2
(3)
When and are considered as eld variables which are functions of and z (the cylindrical coordinates), one gets classically stable(against decay into lower B states) solutions with toridal distributions of energy. The purpose of this paper is to investigate toroidal solitons in the chiral quark meson model 6].
Solitonic Baryons in a Chiral Quark Meson Model
Department of Theoretical Physics,University of Madras, Guindy campus, Madras 600025, India
M.S. Sriram
We consider a simple SU(2) quark soliton model based on chiral invariant quark-meson couplings. We nd axially symmetric, classically stable soliton solutions with B=2,3 and 4 (where B is the baryon number). The energy distributions corresponding to these solutions are toroidal in nature. The symmetries of the B=2 solution indicate that the ground state of this solution has the quantum numbers of the deuteron.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Quantum field theory seems to offer a solution to this problem, replacing the nonrelativistic wavefunctions by Bethe-Salpeter amplitudes obeying a suitable Bethe-Salpeter equation. In the case of QCD none of the basic ingredients of these equations is reliably known, i.e. we have no reliable prescription to calculate the full quark propagators and interaction vertices. Moreover we meet a serious problem with gauge invariance because the Bethe-Salpeter amplitudes are gauge-dependent. Nonetheless the general framework of quantum field theory can be used for a reasonable phenomenological description. If we want to remain as close as possible to the features of nonrelativistic quark models the Bethe-Salpeter equation should contain free quark propagators with constituent quark masses and instantaneous, unretarded interactions only. Both requirements are purely phenomenological assumptions but reasonably justified by the apparent success of nonrelativistic quark models. In this way these Bethe-Salpeter amplitudes form a more suitable basis for quark models, but respecting, in particular, relativistic covariance. As such it was already successfully used for the description of light mesons [18,19,20,21,22,23,24]. The baryon Bethe-Salpeter equation with genuine instantaneous three-quark forces is solved as in the mesonic calculations by a reduction to a three-dimensional integral equation (Salpeter equation) which is very similar to the Schr¨odinger equation. The spectrum contains however also antiparticle solutions corresponding to particles with charge conjugated quantum numbers. This situation is new and needs a special discussion. Another complication arises when genuine two-particle interactions are taken into account. In quark models this is natural, when the (three-body) confinement forces are supplemented by a two-body residual interaction (one-gluon-exchange, instanton induced forces). In this case an effective three-body interaction kernel has to be derived.
None of these features is entirely new, but there is no reference in the literature which presents this theoretical background in a unified way. The purpose of this paper is to fill this gap. In two consecutive papers [1,2] we will use these purely theoretical results for specific calculations of the baryon spectrum up to 3 GeV.
arXiv:hepscript No. (will be inserted by the editor)
Relativistic quark models of baryons with instantaneous forces
Theoretical background
a e-mail: loering@itkp.uni-bonn.de
2
U. L¨oring et al.: Relativistic quark models of baryons with instantaneous forces
This paper is organized as follows: In section 2 we briefly recall how in quantum field theory bound states of three fermions occur as poles in the six-point Green’s function defining the Bethe-Salpeter amplitudes as the corresponding residua at these poles. This property of the Green’s function is used in section 3 do derive simultaneously the BetheSalpeter equation for the Bethe-Salpeter amplitudes and their normalization condition in a simple and appealing way by a Laurent expansion of the integral equation for the six-point Green’s function in the vicinity of this pole. Section 4 is concerned with the reduction of the full eight-dimensional Bethe-Salpeter equation to a six-dimensional Salpeter equation by integrating out the relative energy dependence of the full Bethe-Salpeter amplitudes. To this end we use a covariant formulation of the instantaneous approximation for three- and two-body interaction kernels and assume that the full quark propagators can be suitably approximated by their free forms introducing effective constituent quark masses. In a first step, taking only the genuine (instantaneous) three-body kernels into account, we show how a straightforward reduction can then be performed, thus yielding a reduced equation which may be formulated as an ordinary eigenvalue problem in Hamiltonian form, where the Hamiltonian is hermitean with respect to a scalar product induced by the normalization condition of the Salpeter amplitudes. Complications arise for the more general case when also genuine two-particle interactions are taken into account. This case needs a special discussion and we demonstrate that a reduction to a Salpeter equation in the same Hamiltonian form can nevertheless be achieved by deriving an effective instantaneous three-body kernel which parameterizes all retardation effects of the unconnected two-body interactions. In section 5 we present the Salpeter equation in Born approximation of the quasi potential which constitutes the basic covariant equation of our model. We discuss the structure and main features of the Salpeter equation and its solutions with respect to the ordinary nonrelativistic quark model. Special features discussed in this section are the one-to-one correspondence of the Salpeter amplitudes to the states of the nonrelativistic quark model and the additional anti-particle solutions of the Salpeter equation. Finally we give a summary and conclusion in section 6.