PCB设计规范
PCB设计规范
PCB设计规范PCB设计是电子产品中非常重要的一环,也是实现电路功能的基础。
设计出高质量的PCB板不仅可以保证电路稳定性和可靠性,还能提升整个产品的性能和品质。
为了确保PCB设计的质量和效果,需要遵循PCB设计规范。
PCB设计规范包括以下几个方面:1.尺寸规范PCB板的尺寸要大于等于实际需要的空间大小,以确保电路板的稳定性和可靠性。
同时,PCB板的尺寸还需要考虑到制造成本和生产工艺。
在标注PCB尺寸时,应该包括外形尺寸和最长边尺寸。
2.布线规范布线是PCB设计中重要的一部分,它直接影响到电路的正常工作。
在布线时应该遵循以下规范:(1)布线路径尽量直,减少折线和弯曲。
(2)高频电路的信号线和地线要尽量靠近,避免干扰。
(3)普通信号电路布线路径和电源线相隔远,减少干扰。
(4)避免信号和电源线的平行布线,避免电磁兼容干扰。
(5)布线路径不能干扰到焊盘、元器件和标识。
PCB焊盘的设计要遵循以下规范:(1)焊盘与元器件之间的间距要够大,以方便手工/机械焊接。
(2)焊盘的大小要适当,不宜太小,避免给生产和维护造成麻烦。
(3)焊盘应该统一,避免出现大小不一、排列杂乱的情况。
(4)焊盘间应该有足够的间隙,以确保信号之间的电气隔离。
(5)焊盘应该有正确的标识和编号系统,以便后续操作。
4.元器件安装规范在PCB元器件的安装和设计时,需要遵循以下规范:(1)元器件的安装位置与焊盘匹配,避免安装反向,造成电路不通。
(2)在安装元器件时需要留足够的间距,以避免相邻件之间的干扰。
(3)在安装元器件时应该留出足够的空间,以便元器件的调整和维护。
(4)元器件的标识应该清晰、准确、统一,以便后续的维护和操作。
PCB接地规范主要包括以下几个方面:(1)整个PCB板需要有一个统一的接地系统,以确保电路的稳定性。
(2)接地线路应该尽量短,以避免接地线路电感和电容的影响。
(3)高频电路的接地和普通信号的接地要分开,避免互相干扰。
(4)接地的引脚和焊盘要足够的强壮,以防止接地不良等问题。
印制电路板设计规范
印制电路板设计规范印制电路板(Printed Circuit Board,简称PCB)设计规范是指为了保证电路板的设计、制造和使用中的质量和可靠性,制定的一系列规则和准则。
以下是一份典型的PCB设计规范,详细介绍了各个方面的要求。
一、电路板尺寸和层数1.PCB尺寸应符合实际需求,合理调整尺寸以满足其他设备的要求。
2.PCB层数应根据电路复杂度、电磁兼容性和成本等因素合理选择。
二、布局设计1.元器件布局应科学合理,尽量避免元器件之间的相互干扰。
2.高频信号和低频信号的布局应相互分离,以减少相互干扰。
3.电源和地线应尽量宽厚,减小电阻和电感,提高电路的稳定性。
三、网络连接1.信号线应尽量短、直且排布整齐,最大程度地避免信号交叉和串扰。
2.不同信号层之间的信号连线应通过过孔、通孔或阻抗匹配的方式进行连接。
四、电源和地线设计1.电源线和地线应尽量宽厚,减小电阻和电感,提高电压的稳定性。
2.电源和地线的路径应尽量短,减少电源回路的串扰和噪声。
五、元器件选择和焊接1.元器件的选择应根据设计需求,考虑其性能、品质和可靠性。
2.焊接工艺应符合IPC-610标准,保证焊点的牢固和质量。
六、阻抗匹配和信号完整性1.高速信号线应进行阻抗匹配,以减少反射和信号失真。
2.信号线应采用差分传输方式,以提高抗干扰能力和信号完整性。
七、电磁兼容性设计1.尽量合理布局和组织信号线,以减少电磁干扰和辐射。
2.使用合适的屏蔽措施,包括屏蔽罩、电磁屏蔽层和绕线等。
八、PCB制造和组装1.PCB制造应按照标准工艺进行,确保PCB质量和可靠性。
2.元器件的组装应按照标准操作进行,保证焊接质量。
九、测试和调试1.PCB设计完成后,应进行严格的电路测试和调试,确保其性能和可靠性。
2.测试和调试工具应符合要求,确保测试结果的准确性和可靠性。
以上是一份典型的PCB设计规范,设计师在进行PCB设计时应考虑到电路的复杂性、可靠性和成本等因素,并严格按照规范进行设计和制造,以提高电路板的质量和可靠性。
电路板设计规范
电路板设计规范引言:电路板(Printed Circuit Board, PCB)作为电子产品的重要组成部分,对于产品的性能和可靠性具有重要影响。
因此,制定一套科学、合理的电路板设计规范,对于提高产品的品质和可靠性具有重要意义。
本文将从电路板的布局、封装、走线等方面,详细阐述电路板设计中的规范要求。
一、电路板布局规范电路板的布局是整个设计过程的起点,合理的布局对于电路的性能和抗干扰能力有着重要的影响。
在进行电路板布局时,需要遵守以下规范:1. 尽量保持电路板的紧凑布局,减少线长,提高信号传输速度和稳定性;2. 分隔相互干扰的电路模块,减少信号串扰;3. 注重重要信号线和电源线的规划,使其路径短且减少穿越其他信号线的可能性;4. 合理安排电路板上各个元器件的位置,避免相邻元器件之间出现干扰。
二、电路板封装规范电路板上的元器件封装选择和布局设计对于产品的可维护性和性能具有重要影响。
在进行封装规范时,需要遵守以下原则:1. 选择合适的元器件封装规格,保证元器件能够完整地焊接在电路板上;2. 尽量使用标准化封装,方便元器件的替换和维修;3. 对于重要的元器件,采用固定方式进行加固,以防止在振动环境下发生松动或脱落。
三、电路板走线规范电路板的走线是保证信号传输质量和良好可靠性的重要环节。
在进行电路板走线时,需要遵守以下规范:1. 选择合适的走线层次,避免过多的层次转换导致信号传输的不稳定;2. 合理规划信号线的走向,避免交叉和迂回,减少信号串扰;3. 采用星型走线方式,将地线作为刚性连接;4. 为高速信号线提供必要的终端阻抗匹配;5. 适当增加地线密度,减少电磁干扰。
四、电路板线宽、线距规范电路板的线宽和线距直接影响到电路板的电气性能和外部环境的干扰。
在进行线宽、线距规范时,需要遵守以下原则:1. 根据信号的类型和重要性,合理选择线宽和线距,保证信号完整传递;2. 对于高速信号线,应增加线宽和线距,提高信号的可靠性;3. 对于外部环境的辐射干扰较大的区域,应增加线距,提高抗干扰能力。
PCB工艺规范及PCB设计安规原则
PCB工艺规范及PCB设计安规原则为确保PCB(Printed Circuit Board)设计的质量和可靠性,制定并遵守一系列工艺规范以及安全规则是非常重要的。
本文将阐述PCB工艺规范及PCB设计的安规原则。
一、PCB工艺规范1.板材选择:-必须符合设计要求的电气性能、机械性能、尺寸等要求;-必须符合应用环境的工作温度范围。
2.排布与布线:-尽量减少板上的布线长度,增加抗干扰能力;-根据电路频率、信号速度等要求合理设计布线;-所有布线层之间,要合理选用必要的接地和供电是层,增强电磁兼容性。
3.参考设计规则:-依据电路功能和各器件的规格书,正确设计布线规则;-合理设置电线宽度、间隙及线距。
4.等电位线规定:-等电位线使用实线表示;-必须保证等电位线闭合,不得相互交叉。
5.电气间隙要求:-不同电压等级的电源线,必须保持一定的电气间隙,避免跳线;-电源与信号线应尽量分成两组布线;-信号线与信号线之间应保持一定距离,以减少串扰。
6.焊盘设计:-合理布局焊盘和接插件位置;-焊盘和焊孔的直径、间距等必须满足可焊性和可靠性要求。
7.线宽、间隔规定:-根据电流、信号速度和PCB层数等因素,合理决定线宽和线距;-涂阻焊层的孔内径要适应最小焊盘直径;8.焊盘过孔相关规范:-不得将NC、不焊接引脚和地板连接到焊盘;-必需焊接的引脚应通至PCB底面或RX焊盘,不得配通至其他焊盘。
二、PCB设计的安规原则1.电源输入与保护:-保证电流符合设计要求,在输入端添加过压、过流、短路等保护电路。
2.信号线与地线的安全:-信号线与地线应保持一定距离,以避免干扰和电磁辐射;-尽量避免使用跳线。
3.防静电保护:-添加ESD保护电路,提高抗静电能力;-配置合适的接地网络,减少静电影响。
4.温度管理:-避免过大的电流密度,以减少热量;-根据散热要求设计散热装置。
5.安全封装:-选择符合安全认证标准的元器件封装;-避免封装错误和元器件方向错误。
PCB可制造性设计规范
PCB可制造性设计规范PCB (Printed Circuit Board)的制造性设计规范是指在设计和布局PCB电路板时所需考虑的一系列规范和标准,以确保电路板的制造过程顺利进行并获得可靠性和性能。
一、尺寸规范1.PCB电路板的尺寸要符合制造商的要求,包括最小尺寸、最大尺寸和板上零部件之间的间距。
2.确保电路板的边缘清晰、平整,并防止零部件或钳具与电路板边缘重叠。
二、层规范1.根据设计要求确定所需的层次和层的数量,确保原理图和布局文件的一致性。
2.定义PCB的地平面层、电源层、信号层和垫层、焊盘层等的位置和规格。
三、元件布局规范1. 合理布局元件,以最小化路径长度和EMI (Electromagnetic Interference),提高电路的可靠性和性能。
2.避免元件之间的相互干扰和干涉,确保元件之间有足够的间距,以便于焊接工序和维修。
四、接线规范1.线路走向应简洁、直接,避免交叉和环形走线。
2.确保信号和电源线路之间的隔离,并使用正确的引脚布局和接线技术。
五、电路可靠性规范1.选择适当的层次和厚度,以确保足够强度和刚度。
2.确保电路板表面和感应部件光滑,以防止划伤和损坏。
六、焊接规范1.在设计中使用标准的焊盘尺寸和间距,以方便后续的手工或自动焊接。
2.制定适当的焊盘和焊缺陷防范措施,以最小化焊接问题的发生。
七、标准规范1. 遵循IPC (Institute for Interconnecting and Packaging Electronic Circuits)标准,以确保PCB的制造符合国际标准。
2.正确标注和命名电路板上的元件和信号,以方便生产和测试。
八、生产文件和图纸规范1.提供准确和详细的生产文件和图纸,包括层叠图、金属化孔、引线表和拼图图等。
2.确保文件和图纸的易读性和可修改性。
九、封装规范1.选择适当的封装类型和尺寸,以满足电路板的要求。
2.避免使用不常见或过于复杂的封装,以确保可靠的元件焊接和连接。
PCB线路板设计规范
PCB线路板设计规范PCB线路板设计规范是为了确保电路板的性能、可靠性和可制造性而制定的一系列规则和要求。
遵循这些规范可以提高电路板的质量,减少故障率,优化设计和制造过程,使电路板能够更好地满足设计要求。
以下是PCB线路板设计规范的一些主要方面:1.外形尺寸和形状:电路板的外形尺寸和形状应符合设计要求,并适合安装在相应的应用设备中。
在设计过程中应注意尺寸的准确性和稳定性,避免设计过大或过小的尺寸。
2.电路板层布局:电路板的层布局应根据电路设计要求来确定。
在布局过程中,应将元件、信号线和电源线等布置在合适的层中,以避免互相干扰。
同时,还应根据电路的复杂程度和频率要求来确定电路板的层数。
3.电路布线规则:电路板的布线应遵循一定的规则,如信号线与电源线的间距、信号线的阻抗控制等。
布线规则的遵循可以减少信号串扰和噪音干扰,提高信号质量和抗干扰能力。
4.元件布置规则:电路板上各个元件的布置应符合一定的规则,如元件之间的间距、元件与边界的距离等。
元件布置规则的遵循可以方便焊接和维修,避免元件之间的相互干扰和短路等问题。
5.焊盘和焊接规则:电路板上焊接点的设计应符合一定的规则,如焊盘大小、已焊盘的间距等。
焊盘的设计合理与否直接影响到焊接质量和可靠性。
同时,还应注意焊接工艺的要求,如正确选择焊接材料、焊接温度和焊接时间等。
6.电源布局和分离规则:电路板上各个电源的布局应合理,避免互相干扰。
同时,还应根据电路的功耗和电流要求来确定电源的容量和类型,保证供电的稳定性和可靠性。
7.防护和绝缘规则:电路板的防护和绝缘要求是确保电路板安全运行的关键。
设计时应注意电路板的防尘、防潮、防静电等问题,并采取必要的安全措施,如绝缘层的加工、防火阻燃材料的选择等。
8.环境适应性和可靠性要求:电路板的环境适应性和可靠性要求是根据实际应用环境和可靠性要求来制定的。
设计时应考虑电路板的工作温度范围、振动和冲击等因素,并采取必要的措施,如选择适应性材料和加强电路板的结构,以提高电路板的可靠性。
PCB工艺设计规范
PCB工艺设计规范1. 厚度规范:PCB的厚度是指PCB板的整体厚度,包括铜箔厚度和基板厚度。
通常,常用的PCB板厚度为1.6mm,厚度小于0.8mm的为薄板,大于2.4mm的为厚板。
在设计中,需要根据具体的应用需求和制造工艺要求选择适当的板厚,以确保PCB的机械强度和电性能。
2. 最小线宽线距规范:线宽和线距是PCB中电路走线的基本要素。
在设计中,需要根据电路的复杂性、元器件封装的引脚间距以及制造工艺的要求来确定线宽和线距。
一般情况下,常见的线宽线距为0.15mm,对于高密度集成电路和高频电路,线宽线距可以更小,如0.1mm。
3.确保电信号完整性的规范:在高速信号和高频电路设计中,为了保证电信号的完整性,需要采取一系列措施,包括使用合适的PCB材料、布线布局、地与电源平面的设置、阻抗匹配和信号层堆叠等。
此外,还需要考虑信号的传输延迟,尽量缩短信号传输路径,减少信号的反射和串扰。
4.元器件布局规范:元器件的布局直接影响到电路的性能和可靠性。
在进行布局时,需要注意以下几点:首先,元器件之间的布局要合理,避免互相干扰;其次,布局要符合热分布平衡的原则,尽量避免热点集中;最后,布局要注意便于元器件的调试和维护。
5.焊接规范:PCB的焊接是PCB制造的重要步骤之一、在进行焊接时,需要根据不同的焊接方式和元器件类型选择合适的焊接方法。
常见的焊接方式有手工焊接、波峰焊接和无铅焊接。
此外,还需要注意焊接温度和时间,避免过高的温度和时间对PCB和元器件产生损害。
6.通孔设计规范:通孔是PCB中连接不同层电路的重要通道。
为了确保通孔的质量和可靠性,通孔设计时需要注意以下几点:首先,通孔尺寸应符合元器件引脚和焊盘的要求;其次,通孔布局应合理,避免通孔过多导致PCB变形和信号串扰;最后,通孔孔径和层数需要根据通孔负载和导通电流来确定。
以上是几个常见的PCB工艺设计规范,通过遵循这些规范可以有效地提高PCB设计的质量和可靠性。
PCB设计规范
PCB设计规范一.PCB 设计的布局规范(一)布局设计原则1. 组件距离板边应大于5mm。
2. 先放置与结构关系密切的组件,如接插件、开关、电源插座等。
3. 优先摆放电路功能块的核心组件及体积较大的元器件,再以核心组件为中心摆放周围电路元器件。
4. 功率大的组件摆放在利于散热的位置上,如采用风扇散热,放在空气的主流通道上;若采用传导散热,应放在靠近机箱导槽的位置。
5. 质量较大的元器件应避免放在板的中心,应靠近板在机箱中的固定边放置。
6. 有高频连线的组件尽可能靠近,以减少高频信号的分布参数和电磁干扰。
7. 输入、输出组件尽量远离。
8. 带高电压的元器件应尽量放在调试时手不易触及的地方。
9. 手焊元件的布局要充分考虑其可焊性,以及焊接时对周围器件的影响。
手焊元件与其他元件距离应大于1.5mm.10. 热敏组件应远离发热组件。
对于自身温升高于30℃的热源,一般要求:a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于2.5mm;b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于4.0mm。
若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在额定范围内。
11. 可调组件的布局应便于调节。
如跳线、可变电容、电位器等。
12. 考虑信号流向,合理安排布局,使信号流向尽可能保持一致。
13. 布局应均匀、整齐、紧凑。
14. 表贴组件布局时应注意焊盘方向尽量取一致,以利于装焊。
15. 去耦电容应在电源输入端就近放置。
16. 可调换组件(如: 压敏电阻,保险管等) ,应放置在明显易见处17. 是否有防呆设计(如:变压器的不对称脚,及Connect)。
18. 插拔类的组件应考虑其可插拔性。
影响装配,或装配时容易碰到的组件尽量卧倒。
(二)对布局设计的工艺要求1. 外形尺寸从生产角度考虑,理想的尺寸范围是“宽(200 mm~250 mm)×长(250 mm ~350 mm)”。
PCB设计规范
PCB设计规范1. 目的规范产品的电路和工艺设计,确定设计时的各项参数,使得PCB的设计满足可生产性、易测试性、EMC(电磁兼容性)、EMI(电磁干扰)、DFM(面向制造的技术)等技术规范要求,在产品设计过程中构建产品的工艺、技术、质量、成本等优势。
2. 使用范围本规范使用于所有电子产品的PCB工艺设计,运用于但不限于PCB的设计、PCB投板工艺审查、单板工艺审查等活动。
3. 规范内容3.1 PCB物理参数要求3.1.1 PCB板材根据PCB的使用条件以及机械、电性能要求确定基材材质,例如:FR-4、CEM-1、铝基板、陶瓷基板、纸芯板等;根据PCB的结构确定覆铜箔层数,例如:单面、双面或多层板;根据PCB的尺寸和元器件重量确定基材厚度,一般在0.3mm~6mm,常用PCB的厚度是1.6mm,特大型板可用2mm。
基材参数Tg(玻璃化转变温度)、CTE(热膨胀系数)、耐热性、平整度、电气性等符合要求。
3.1.2 PCB表面处理确定PCB铜箔的表面处理镀层,例如镀锡、镀镍、镀金或OSP等,并在文件中表明。
3.2 热设计要求3.2.1 高热器件应考虑放于出风口或利于对流的位置。
3.2.2 较高的元件应考虑放于出风口,且不阻挡风路。
3.2.3 散热器的放置应考虑利于对流。
3.2.4 温度敏感器械件应考虑远离热源。
对于自身温升高于 30℃的热源,一般要求:a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于 2.5mm;b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于 4.0mm。
若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在降额范围内。
3.2.5 大面积铜箔要求用隔热带与焊盘相连。
为了保证透锡良好,在大面积铜箔上的元件的焊盘要求用隔热带与焊盘相连,即焊盘与铜箔间以“十”字或“米”字形连接;对于需过5A以上大电流的焊盘不能采用隔热焊盘,如图1所示:3.2.6 过回流焊的0805以及0805以下片式元件两端焊盘的散热对称性。
PCB设计规范
A.本规范归定了我司PCB设计的流程和设计原则,主要目的是为PCB设计者提供必须遵循的规则和约定。
B.提高PCB设计质量和设计效率。
C.提高PCB的可生产性、可测试、可维护性(一) 布局设计原则1.距板边距离应大于5mm。
2.先放置与结构关系密切的元件,如接插件、开关、电源插座等。
3.优先摆放电路功能块的核心元件及体积较大的元器件,再以核心元件为中心摆放周围电路元器件。
4.功率大的元件摆放在利于散热的位置上,如采用风扇散热,放在空气的主流通道上;若采用传导散热,应放在挨近机箱导槽的位置。
5.质量较大的元器件应避免放在板的中心,应挨近板在机箱中的固定边放置。
6.有高频连线的元件尽可能挨近,以减少高频信号的分布参数和电磁干扰。
7.输入、输出元件尽量远离。
8.带高电压的元器件应尽量放在调试时手不易触及的地方。
9.热敏元件应远离发热元件。
10.可调元件的布局应便于调节。
如跳线、可变电容、电位器等。
11.考虑信号流向,合理安排布局,使信号流向尽可能保持一致。
12.布局应均匀、整齐、紧凑。
13.表贴元件布局时应注意焊盘方向尽量取一致,以利于装焊,减少桥连的可能。
14.去耦电容应在电源输入端就近放置。
(二) 对布局设计的工艺要求当开始一个新的PCB 设计时,按照设计的流程我们必须考虑以下的规则:1.建立一个基本的 PCB 的绘制要求与规则(示意如图)建立基本的PCB 应包含以下信息:1) PCB 的尺寸、边框和布线区A.PCB 的尺寸应严格遵守结构的要求。
B.PCB 的板边框(Board Outline) 通常用0.15 的线绘制。
C.布线区距离板边缘应大于 5mm。
2) PCB 的机械定位孔和用于SMC 的光学定位点。
A.对于PCB 的机械定位孔应遵循以下规则:要求■机械定位孔的尺寸要求PCB 板机械定位孔的尺寸必须是标准的 (见下表和图) ,如有特殊必须通知生产经理,以下单位为mm。
B.机械定位孔的定位机械定位孔的定位在PCB 对角线位置如图:■对于普通的PCB,推荐:机械定位孔直径为3mm,机械定位孔圆心与板边缘距离为5mm。
PCB设计工艺规范
PCB设计工艺规范一、概述二、布局规范1.PCB布局应符合电信号传输、电源分离和散热等特殊要求。
2.元器件应尽量按照功能分类,并根据其引脚数和电压等级进行合理排布。
3.PCBA板边缘应保留足够的空间用于安装和装配。
4.PCB上应有足够的装配间距,以便于元器件的安装和调试。
5.控制板的高频电路应尽量远离其他板块,减少相互干扰。
三、阻抗控制规范1.对于高频信号线路,应根据信号频率计算并控制阻抗。
2.对于差分信号线,应保持两个信号线的阻抗匹配。
3.PCB的阻状变化应符合信号传输的需求。
4.使用符合工艺要求且稳定的材料和工艺来控制阻抗。
四、封装规范1.元器件在PCB上的封装应符合国际标准,如IPC-7351等。
2.封装的引脚应正确标识,并与器件的引脚一一对应。
3.封装的安装方向应正确且一致。
五、布线规范1.信号线和地线应分开布线,以减少干扰。
2.信号线和电源线应相互垂直布线,以减少串扰。
3.控制板的重要信号线应尽量短且直接。
4.高速布线应使用差分布线技术,减少串扰和信号失真。
六、焊接规范1.针对手焊和自动焊两种焊接方式,设计合适的焊盘和焊垫。
2.焊盘和焊垫应具有合适的大小和间距,以方便焊接操作。
3.焊盘和焊垫的形状、位置和尺寸应符合焊接工艺要求。
七、质量控制规范1.PCB设计应符合ISO9001等国际质量管理体系认证要求。
2.在布局和布线过程中,应预留合适的测试点和测试接口,以便后续的功能测试和故障排除。
3.PCB设计应经过严格的验证和检验,确保电气性能满足要求。
4.PCB制造过程中应严格按照工艺规范进行生产操作,确保产品质量。
八、总结PCB设计工艺规范是保证设计质量和可靠性的重要依据。
遵循规范可以提高设计效率、减少错误和故障,确保PCB制造过程的顺利进行。
通过制定和实施一套完整的工艺规范,可以提高产品的品质水平和竞争力,满足客户的需求和要求。
最全PCB设计规范
最全PCB设计规范PCB设计规范是指对PCB板设计与布线进行规范化的要求和标准。
合理的PCB设计规范可以提高电路的可靠性、可制造性和可维护性,减少设计错误和生产问题。
以下是一个最全的PCB设计规范指南:一、尺寸和层数规范1.预留适当的板边用于固定和装配。
2.保持板厚适当,符合设备尺寸和散热要求。
3.层数应根据电路需求合理选择,减少层数可以降低生产成本。
二、元器件布局规范1.分配适当的空间给每个元器件,避免过于拥挤。
2.避免敏感元器件(如高频元器件)靠近高噪声源(如高压变压器)。
3.分组布局,将相关功能的元器件放在一起,便于调试和维护。
三、信号线布线规范1.信号线走线应尽量保持短而直的原则,减小传输延迟和信号损耗。
2.高频信号线避免与高电流线路交叉,以减少互相干扰。
3.分层布线,将高频信号和低频信号分开,避免互相干扰。
四、电源和地线布线规范1.电源线和地线应尽量宽而短,以降低阻抗。
2.使用大面积的地平面,减少地回流电流的路径。
3.电源线和地线应尽量平行走线,减少电感和电容。
五、阻抗控制规范1.布线时应根据需求控制差分对阻抗和单端信号阻抗。
2.保持差分对信号的平衡,避免阻抗不匹配。
3.使用合适的线宽和间距设计走线,以满足阻抗要求。
六、焊盘和插孔规范1.确保焊盘和插孔的尺寸、形状和位置符合零部件要求,并适合选用的焊接工艺。
2.避免焊盘和插孔之间过于拥挤,以便于手动和自动插件。
七、丝印规范1.丝印应清晰可见,包括元器件标识、引脚标识、极性标识等。
2.不要在元器件安装位置上涂抹丝印墨水,以免影响焊接质量。
八、通孔布局规范1.确保通孔位于焊盘的中心,避免焊盘过大或过小,影响焊接质量。
2.根据电路需求选择合适的通孔类型(如PTH、NPTH等)。
九、防静电规范1.PCB板表面清洁,避免灰尘和静电积累。
2.使用合适的静电防护手套和接地装置进行操作。
十、符号和标识规范1.适当添加电路图符号和标识,便于后续调试和维护工作。
印制电路板设计规范
布线优化
选择合适的线宽、间距和层叠结构, 降低电磁干扰和信号延迟。
阻抗控制
通过精确计算和控制线宽、间距等参 数,确保信号线的阻抗匹配,减少信 号反射和失真。
电源完整性设计
合理规划电源分布网络,减小电源噪 声和电压降,提高供电稳定性。
设计修改与迭代
设计修正
根据仿真结果和实际测试数据,对电路板设计进行必要的修正和改 进。
机械稳定性
确保印制电路板的结构设计能够承受正常的机械应力,如弯曲、 扭曲和振动等。
振动容限
评估印制电路板的振动容限,以确保在振动环境中仍能保持性能。
连接器设计
优化连接器的设计,以提高其机械强度和稳定性,减少因振动而产 生的连接问题。
07 设计验证与优化
设计审查与仿真
审查设计规则
确保电路板设计符合预定的设 计规则,如线宽、间距、层叠
元件间距和方向
元件间距
元件之间的间距应满足电气安全 和生产工艺要求,避免过近导致 短路或过远增加布线难度。
元件方向
元件的放置方向应统一、整齐, 便于识别和装配,同时应避免相 邻元件之间产生干扰或耦合。
04 布线规范
布线基本原则
1 2
确定合理的布线路径
遵循电路原理,确保信号传输的正确性和稳定性。
性能。
防尘与防潮设计
03
采取适当的防尘和防潮措施,以减少环境因素对电路板性能的
影响。
热设计考虑
热传导路径
优化印制电路板的热传导路径,确保热量能够有效地从发热元件 传导出去。
散热器设计
根据需要为关键元件配置散热器,以提高散热效率。
温度监控
设计温度监控功能,以便实时监测印制电路板的温度,防止过热。
PCB设计参考规范
PCB设计参考规范PCB(Printed Circuit Board)设计是电子产品开发过程中至关重要的一个环节。
一个好的PCB设计可以优化电子产品的性能、提高生产效率并降低成本。
为了保证PCB设计的质量和稳定性,设计工程师需要遵循一些常用的规范与标准。
下面是PCB设计参考规范的一些要点,以供设计工程师参考。
一、尺寸规范1.PCB板尺寸:PCB板尺寸应根据产品的需求进行合理的设计,并留出足够的空间用于组装元件和布局信号线路。
2.定位孔:在板子的四个角上应布置定位孔,用于方便PCB板的定位和对准。
二、元件布局规范1.元件布局:尽量采用合理的布局方式,避免元件之间的互相干扰。
可以根据不同的电路模块将元件进行分组,同时也要考虑到各个模块之间的互连。
2.元件间距:元件之间的间距要足够大,以避免干扰和短路等问题的发生。
三、信号线路规范1.信号线宽度:不同类型的信号线的宽度应根据其承载的电流大小来设计,以保证信号线的稳定性和可靠性。
2.信号线走向:信号线走向应尽量简洁、直观,并避免交叉。
尽量使用直线,避免过多的拐弯和斜线。
3.分层布局:合理使用PCB板的多层结构,将功率线和地线分层布局,避免互相干扰。
四、阻抗控制规范1.差分信号的阻抗控制:对于差分信号,其阻抗应尽量保持一致,以避免信号失真和互相干扰。
2.时钟信号的阻抗控制:对于高速时钟信号,应采用特殊的布线方式和阻抗控制,以避免信号抖动和失真。
五、电源和地线规范1.电源线和地线:电源线和地线应采用足够宽的线路来设计,以保证稳定的电源供应和良好的接地。
2.空域分离:电源线和地线应尽量分离,以避免互相干扰。
六、丝印规范1.丝印位置:丝印应放置在元件的旁边或正上方,方便用户查看和识别。
2.字体和标识:使用合适的字体和标识,确保丝印清晰可读。
七、焊盘规范1.焊盘尺寸:焊盘尺寸应根据元件的尺寸来设计,使得焊接过程更加方便和稳定。
2.焊盘间距:焊盘之间的间距应足够大,以便焊接过程中的热量扩散,避免焊接不良。
(完整word版)PCB设计规范
先进制造技术研究所智能车辆技术研究中心嵌入式硬件PCB设计规范(初稿)整理编制:王少平1、目的1.1 本规范规定车辆中心PCB设计规范, PCB设计人员必须遵循本规范。
1。
2 提高PCB设计质量和设计效率,提高PCB的可生产性、可测试、可维护性.2、设计任务2。
1 PCB设计申请流程硬件设计工程师按照本设计规范要求完成PCB设计,提交给嵌入式硬件开发组组长进行审核,审核通过后递交硬件评审小组评审,评审通过后才能进行PCB制作,并将设计图纸归档。
2.2 设计过程注意事项2。
2.1 创建PCB板,根据单板结构图或对应的标准板框,创建PCB设计文件;注意正确选定单板坐标原点的位置,原点的设置原则:(1)单板左边和下边的延长线交汇点;(2)单板左下角的第一个焊盘。
2.2。
2 布局(1) 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性. 按工艺设计规范的要求进行尺寸标注。
(2) 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。
根据某些元件的特殊要求,设置禁止布线区,如下图所示。
(3)综合考虑PCB性能和加工的效率选择加工流程加工工艺的优选顺序为:元件面单面贴装—〉元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)—>双面贴装—>元件面贴插混装、焊接面贴装。
(4)布局操作的基本原则a、遵照“先大后小,先难后易"的布置原则,即重要的单元电路、核心元器件应当优先布局;b、布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件:c、连线尽可能短,关键信号线最短,高电压、大电流信号与小电流,低电压的弱信号完全分开,模数信号分开,高低频信号分开,高频元器件的间隔要足够;d、相同结构电路部分,尽可能采用“对称式”标准布局;e、按照均匀分布、重心平衡、版面美观的标准优化布局;f、器件布局栅格的设置,一般IC器件布局时,栅格应为50~100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil;g、电路板推荐布局。
PCB硬件设计规范(详细版)
PCB硬件设计规范(详细版)PCB硬件设计规范是指为了确保电路板设计的质量和可靠性,制定的一系列硬件设计要求和标准。
下面是一个详细版的PCB硬件设计规范,包括设计原则、布局规范、电路连接规范、信号完整性和电磁兼容性等方面的内容。
一、设计原则1.硬件设计应符合产品需求和功能要求,能够满足性能指标,且易于制造和维护。
2.设计应考虑未来的功能扩展和升级,尽可能提供可定制和可扩展的接口。
3.硬件设计应尽量减少功耗,提高能效,节约资源。
4.设计应考虑电路的稳定性和可靠性,避免电路震荡、噪声和故障。
5.设计应符合相关的法规要求和环保要求,避免对环境和人体的危害。
二、布局规范1.尽量避免模拟和数字信号交叉对电路性能的影响,可采用分区布局或地线隔离的方法。
2.各个功能模块之间的物理距离应尽量缩短,减少信号传输的损失和电磁干扰。
3.硬件布局中,应尽量避免大功率和高频器件与敏感器件之间的接近,以及输入和输出接口的交叉排布。
4.硬件布局应合理利用板内空间,减少电路板的层数和尺寸,降低制造成本。
三、电路连接规范1.电路板设计应尽量减少导线的长度和延迟,减少信号传输的时延和损失。
2.设计应采用适当的导线宽度和间距,以满足电流容量和电脑要求。
3.设计中应采用相对稳定可靠的连接方式,如焊接、连接器、插座等。
4.PCB布线应避免“死角”和“凹槽”等不易焊接和检测的地方,同时注意避免高温区域。
四、信号完整性1.电源和地线是电路板设计中非常重要的信号,应保证可靠接地和供电。
2.高频信号输入和输出端口应采用专用的阻抗匹配电路,减少电磁干扰和反射。
3.时钟线和同步信号线应采用差分传输线,尽量减少信号的抖动和失真。
4.对于敏感信号和模拟信号,应采取屏蔽和滤波措施,提高信号的质量和抗干扰能力。
五、电磁兼容性1.设计应尽量减少电磁辐射和敏感器件对电磁干扰的影响,采用屏蔽、隔离和抑制措施。
2.PCB布局中应合理划分地面层和电源层,减少地线共享和电流回路交叉的可能性。
PCB板设计规范
PCB板设计规范PCB板设计规范是指在进行PCB(Printed Circuit Board,印刷电路板)设计和制造过程中应遵循的标准和规范。
遵循这些规范可以提高PCB 板的质量、可靠性和性能。
以下是关于PCB板设计规范的一些重要指导原则:1.尺寸和布局规范:-PCB板的尺寸应符合实际使用要求,并遵循制造厂商的规定。
-高速电路和低速电路应尽可能分离布局,以减少干扰和串扰。
-元器件布局应考虑信号路径、热管理和机械支撑等因素。
-必要时应提供地孔或散热垫以提高散热效果。
2.元器件布局规范:-元器件应按照设计要求放置在相应的位置上,并尽量集中布局。
-不同类型的元器件(如模拟和数字电路)应分离布局,以减少相互干扰。
-元器件之间的连接应尽量短且直接,以减少信号传输的延迟和功率损耗。
-高功率元器件和高频元器件应与其他元器件分离,并采取必要的热管理和屏蔽措施。
3.信号完整性规范:-控制线、时钟线和高速信号线应尽可能短,且避免平行走线,以减少串扰和时钟抖动。
-高速信号线应采用阻抗匹配技术,以确保信号的正确传输和减少反射。
-高速差分信号线应保持恒定的差分阻抗,并采用差分匹配技术,以减少干扰和降低功耗。
4.电源和接地规范:-电源线和地线应尽可能粗,以降低电阻和电压降。
-电源和地线应尽量采用平面形式,以减少电磁干扰和提供良好的电源和接地路径。
-多层PCB板应设有专用层用于电源和接地,以提高板层的抗干扰能力和电源噪声的影响。
5.焊接规范:-设计带有相应的焊接垫和焊盘,以便于元器件的焊接和可靠连接。
-焊盘和焊接垫的尺寸应符合元器件和制造工艺的要求,并考虑到热膨胀和热应力等因素。
-导线和焊盘间的间距应符合焊接工艺的要求,以确保焊接质量和可靠性。
6.标记和文档规范:-PCB板应有清晰的标记,包括元器件名称、值和位置、网络名称等。
-为了提供必要的参考和维护,应有详细的PCB设计文档,包括原理图、布线图和尺寸图等。
总的来说,遵循PCB板设计规范可以提高PCB板的可靠性、性能和一致性,减少制造和调试过程中的问题和风险。
pcb设计规范
pcb设计规范PCB设计规范是指在进行PCB(印刷电路板)设计时需要遵守的一系列规范和要求。
它是为了确保PCB设计能够满足电路功能、可靠性、性能和制造要求而制定的一套准则。
下面是一个包括以下几个方面的PCB设计规范的简要介绍:布局规范、连接规范、尺寸规范、排线规范、屏蔽规范、引脚规范、焊盘规范、维护规范、供电规范、阻抗控制规范、信号完整性规范和电磁兼容规范等。
一、布局规范:1. 分区:将电路分成不同区域,例如:模拟区和数字区,以保证信号隔离和降低干扰。
2. 元件间距:为了防止短路和易于维修,元件之间应有足够的间距。
3. 元件定位:同一类元件应按一定方向或排列位置的顺序来布置,方便组装和维护。
4. 散热:大功率元件应注意散热,通过散热铺铜、散热片等方式来确保元件正常工作。
二、连接规范:1. 自上而下:信号在PCB板上的走向应该尽量遵循由上到下的原则,使得PCB板的布线更加整洁、直观。
2. 避开高频:要尽量避免高频信号和低频信号之间的相互干扰,可以使用屏蔽或扩大引脚间的距离来降低干扰。
3. 引脚的选择:应该根据现有的条件优先选择靠近与所连接元件引脚的导线,减少有钟信号线的影响。
三、尺寸规范:1. PCB板的大小:要注意PCB板的大小与所在设备的大小相匹配,确保PCB板可以适应所在设备中的空间限制。
2. 引脚排列的紧凑性:要选择适当的引脚封装,使得PCB板的线路布线更加紧凑,减小占用空间。
四、排线规范:1. 频率分离:要分离高频和低频信号,以减少信号之间的干扰。
2. 避免平行:尽量避免平行排线,以减少互相之间的串扰。
3. 差分信号的布线:对差分信号进行特殊配置,使两个信号线的长度、宽度和间距保持一致,以减少干扰。
五、屏蔽规范:1. 地平面:在PCB板的一层铜皮上进行足够的地线平面,以减少地线的串扰。
2. 分离高频和低频信号:在高频和低频信号之间设置屏蔽层,以降低互相之间的干扰。
六、引脚规范:1. 引脚类型:根据元件的类型和功能,选择适当的引脚类型,例如标准引脚、表面贴装引脚或插针引脚等。
PCB设计规范
Q/DKBA深圳市华为技术有限公司企业标准Q/DKBA-Y004-1999印制电路板(PCB)设计规范VER 1.01999-07-30发布1999-08-30实施深圳市华为技术有限公司发布前言本标准根据国家标准印制电路板设计和使用等标准编制而成。
本标准于1998年07月30日首次发布。
本标准起草单位: CAD研究部、硬件工程室本标准主要起草人:吴多明韩朝伦胡庆虎龚良忠张珂梅泽良本标准批准人:周代琪Q/DKBA-Y004-1999目录目录1. 1适用范围42. 2 引用标准43. 3 术语44. 4 目的2.1 4.1 提供必须遵循的规则和约定2.2 4.2 提高PCB设计质量和设计效率25. 5 设计任务受理2.3 5.1 PCB设计申请流程2.4 5.2 理解设计要求并制定设计计划26. 6 设计过程2.5 6.1 创建网络表2.6 6.2 布局3.7 6.3 设置布线约束条件4.8 6.4 布线前仿真(布局评估,待扩充)8.9 6.5 布线8.10 6.6 后仿真及设计优化(待补充)15.11 6.7 工艺设计要求157. 7设计评审15.12 7.1 评审流程15.13 7.2 自检项目15附录1:传输线特性阻抗附录2: PCB设计作业流程深圳市华为技术有限公司企业标准Q/DKBA-Y004-1999印制电路板(PCB)设计规范1. 适用范围本《规范》适用于华为公司CAD设计的所有印制电路板(简称PCB)。
2. 引用标准??下列标准包含的条文,通过在本标准中引用而构成本标准的条文。
在标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨,使用下列GB 4588.3—88 印制电路板设计和使用Q/DKBA-Y001-印制电路板CAD工艺设计规范19991. 术语1..1 PCB(Print circuit Board):印刷电路板。
1..2 原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。
PCB设计规范大全
PCB设计规范大全1,目的规范印制电路板(以下简称PCB)设计流程和设计原则,提高PCB设计质量和设计效率,保证PCB 的可制造性、可测试、可维护性。
2,范围所有PCB 均适用。
3,名词定义3.1原理图:电路原理图,用原理图设计工具绘制的、表达硬件电路中各种器件之间的连接关系的图。
3.2网络表:由原理图设计工具自动生成的、表达元器件电气连接关系的文本文件,一般包含元器件封装、网络列表和属性定义等组成部分。
3.3布局:PCB 设计过程中,按照设计要求,把元器件放置到板上的过程。
3.4模拟:在器件的IBIS MODEL 或SPICE MODEL 支持下,利用EDA 设计工具对PCB 的布局、布线效果进行模拟分析,从而在单板的物理实现之前发现设计中存在的EMC 问题、时序问题和信号完整性问题,并找出适当的解决方案。
3.5 SDRAM :SDRAM 是Synchronous Dynamic Random Access Memory(同步动态随机内存)的简称,同步是指时钟频率与CPU 前端总线的系统时钟频率相同,并且内部的命令的发送数据和数据的传输都以它为准;动态是指存储数组需要不断刷新来保证数据不丢失;随机是指数据不是线性一次存储,而是自由指定地址进行数据的读写。
3.6 DDR :DDR SDRAM 全称为Double Data Rate SDRAM ,DDR SDRAM 在原有的SDRAM 基础上改进而来。
DDR SDRAM 可在一个时钟周期内传送两次数据。
3.7 RDRAM :RDRAM 是Rambus 公司开发的具有系统带宽的新型DRAM ,它能在很高的频率范围内通过一个简单的总线传输数据。
RDRAM 更像是系统级的设计,它包括下面三个关键部分:3.7.1 基于DRAM 的Rambus(RDRAM );3.7.2 Rambus ASIC cells (专用集成电路单元);3.7.3 内部互连的电路,称为Rambus Channel(Rambus 通道);3.8 容性耦合:即电场耦合,引发耦合电流,干扰源上的电压变化在被干扰对象上引起感应电流而导致电磁干扰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB设计室 23
焊盘设计:焊盘是焊接元件的地方,元件的一根引线只能对应 一个焊盘,不允许一个焊盘焊接多个元件引线。焊盘之间是由 印制导线连接起来的。
PCB设计室 14
四 印制板设计过程
印制电路板(PCB)设计也称印制板排版设计, 通常包括以下过程: (1)确定印制板的外形及结构:
印制板对外连接一般包括电源线、地线、板外元器 件的引线,板与板之间连接线等,绘图时应大致确定 其位臵和排列顺序。若采用接插件引出时,要确定接 插件位臵和方向。图4-1是温度控制器电路板的板外 连接图,图4-2是计算机上一种插卡外形尺寸草图。
PCB设计室 2
历史沿革
PCB诞生于上世纪四、五十年代,发展于 上世纪八、九十年代。伴随半导体技术 和计算机技术的进步,印刷电路板向着 高密度,细导线,更多层数的方向发展,其 设计技术也从最初的手工绘制发展到计 算机辅助设计(CAD)和电子设计自动化 (EDA).
PCB设计室
3
分类
按所用基材的机械特性。可以分为刚 性电路板(Rigid PCB) 、柔性电路板 (Flex PCB)以及刚性柔性结合的电 路板(Flex-Rigid PCB) 按导体图形的层数可分为单面/双面和 多层印制板。手机中的电路板多为高 密度互连多层电路板(high density integrated board)。
PCB设计室
13
(k) LCC16 (贴片元件类)
(l) DIP16 (双列直插类)
(m)TO-220 (三极管类)
图8.1 常见元件封装
2. 元件封装的编号 元件封装的编号规则一般为元件类型+焊盘距离(或焊 盘数)+元件外形尺寸。根据元件封装编号可区别元件封装 的规格。如AXIAL0.6表示该元件封装为轴状,两个管脚焊盘 的间距为0.6英寸(600mil);RB.3/.6表示极性电容类元件封 装,两个管脚焊盘的间距为0.3英寸(300mil),元件直径为 0.6英寸(600mil);DIP14表示双列直插式元件的封装,两列共 14个引脚。
22
(3)布线设计
布线原则:布线是按照原理图线路连接要求将元器件通过印制导线连接,这是 印制板设计中的关键步骤,具体布线要把握以下要点:
1)连接正确:印制板上的印制导线与电路原理图的连接线有很大的区别,在 印制板上的所有导线不能相互交叉,若相互交叉则交叉导线是相互连接的, 这是我们在布臵印制导线时特别注意的问题,利用Protell绘图软件绘图可 以将失误减到尽可能小的程度。
PCB设计室
17
3)类型:建议优先采用双面印制板布线,若电路比较 简单可采用单面板,若电路非常复杂可采多层印制板 布线。
4)方便:对电路中的可调节元件要臵于有利于调节位 臵。 5)把要放臵到本印制板上的所有元件在印制板的区域 上排列起来,确定印刷线路板的面积和元件的大致位 臵,位于边缘的元件,应离印刷线路板边至少应大于 2mm。
7)敏感元件要远离干扰源;有铁芯的电感线圈,应尽量相互垂直放臵,且相 互远离以减小相互间的磁耦合;尽可能缩短高频元件的连接线,设法减小它 们的分布参数和相互间的干扰;易受干扰的元件应加屏蔽。
PCB设计室
21
8)对于比较大、重的元件,要另加支架或紧固件,不能直接焊在印刷线路板
上;可调元件布臵时,要考虑到调节方便;线路板需要固定的,应留有紧固 件的位臵,放臵紧固件的位臵应考虑到安装,拆卸方便;若有引出线,最好 使用接线插头。
PCB板设计规范
简介 历史沿革 PCB的分类 各种PCB特点介绍
一 简介
PCB(printed circuit board),即印制电路 板是在绝缘基材上,按预定设计,制成印制 线路,印制元件或由两者组合而成的导电图 形后制成的板。 它作为元器件的支撑,并且提供系统电路工 作所需要的电气连接,是实现电子产品小型 化、轻量化、装配机械化和自动化的重要基 础部件,在电子工业中有广泛应用。本讲义 主要介绍手机PCB的应用特点。
5)定位孔:定位孔是印制板加工和检测定位用的。一般采用三 孔定位方式,孔径根据装配工艺确定。
PCB设计室
26
印制导线设计:印制导线的宽度确定:印刷线路板上的印制导 线宽度主要由印刷导线与绝缘板之间的粘附强度和流过它们的 电流值决定的。印制导线宽度和间距可根据布线的实际情况进 行选择。
PCB设计室
27
PCB设计室
6
PCB设计流程
元器件封装 PCB外形设计 器件布局 布线设计 规则检查
PCB设计室
7
三 常用元件及封装形式
元件名称 电阻 可变电阻 普通电容 电解电容 电容器 二极管 稳压二极 发光二极管 三极管 电感 可变电感 放大器 双列直插IC座 晶振 稳压块 接口 按钮 电源 开关 接收二极管 三脚插座 封装形式名称 RES2(1、3、4) AXIAL0.3 AXIAL0.4 POT2(1) VR5(1、2、3、4) CAP RAD0.2 RAD0.3 ELECTRO1 RB.2/.4 RB.3/.6 RB.4/.8 CAPACITOR RAD0.2 RAD0.3 DIODE0.4 ZENER1(2、3) DIODE0.4 LED DIODE0.4 NPN(PNP) TO-92A(单面板)TO-92B(双面板) INDUCTOR1 INDUCTOR4 AXIAL0.3 OPAMP DIP8,14,16… CRYSTAL XTAL1 VOLTREG TO-220H CON2,3,4 SIP2,3,4… SW-PB POWER4 SW SPST AXIAL0.4 SW SPDT SW DPDT PHOTO LAMP NEON 8 PCB设计室
PCB设计室 4
二 PCB的设计
印制板的设计决定印制板的固有特性, 在一定程度上也决定了印制板的制造、 安装和维修的难易程度,同时也影响印 制板的可靠性和成本。所以在设计时应 遵循以下基本原则,综合考虑各项要素, 才能取得较好的设计效果。
PCB设计室
5
PCB设计的原则
电气连接的准确性 电路板的可测试性 可靠性和环境适应性 工艺性(可制造性) 经济性等
常用元件封装形式实物图 (见PDF文件)
PCB设计室
9
PCB设计室
10
PCB设计室
11
PCB设计室
12
1. 元件封装的分类 表面粘贴式元件封装:现在,越来越多的元件采用此类 封装。这类元件在焊接时元件与其焊盘在同一层。故在其焊 盘属性对话框中,Layer属性必须为单一板层(如Top layer 或Bottom layer)。
PCB设计室 18
(2)元件布局: 布局就是将电路元器件放在印制板布线区内,布局 是否合理不仅影响后面的布线工作,而且对整个电 路板的性能也有重要作用。 元器件排列:元器件在印制板上的排列时尽可能按 元器件轴线方向排列,元器件以卧式安装为主,并 与板的四边垂直或平行,这样排列元件版面美观、 整齐、规范,对安装调试及维修均较方便。 元器件安装尺寸:设计PCB时,元器件的间距通常 采用0.1英寸即2.54mm为一个间距单位,设计PCB 时尽可能采用这个单位,既有利与Protel 绘图,又 有利于使安装规范,便于PCB加工和检测。
PCB设计室 25
• 过孔作用是连接不同层面之间的电气连线。一般电路过孔直径
可取0.6~0.8mm,高密度板可减小到0.4mm,尺寸越小则布 线密度越高,过孔的最小极限受制板厂技术设备条件的制约。 4)安装孔:安装孔用于在印制板上固定大型元器件,或将印制 板固定在机壳内部的安装支架上,安装孔根据实际需要选取, 优选选择2.2,3.0,3.5,4.0,4.5,5.0,6.0mm。
2)焊盘外径:焊盘外径的大小主要由所焊接元件的载流量和机 械强度等因素所决定的,一般单面板焊盘外径应大于引线孔 1.5mm以上,双面板大于1.0mm,高密度精密板大于0.5mm。
3)引线孔和过孔:引线孔有电气连接和机械固定双重作用,引 线孔既不能过大,也不能过小。过大容易使焊锡从引线孔流过 而损坏元件,或形成气孔造成焊接缺陷;过小则带来安装困难, 焊锡不能润湿金属孔。引线孔径应比元器件引线直径大0.2~ 0.4mm。
PCB设计室
28
安全间距(Clearance)
进行印刷电路板 设计时,为了避免导 线、过孔、焊盘及元 件间的距离过近而造 成相互干扰,就必须 在他们之间留出一定 的间距,这个间距就 称为安全间距。右图8 为安全间距示意图。
PCB设计室 19
布局原则:元件排列对电子设备的性能影响很大,不同电路在排列元件 时有不同的要求。因此,在动手安装前,首先要分析电路原理图,了解 电路元件的特性。排列元器件时应考虑下列因素。 1)排列顺序:先大后小,先放臵面积较大的元器件;先集成后分立,放 臵集成电路后,再在其周围放臵其它分立器件;先主后次,先放臵主电 路器件,之后放臵次电路,先放臵核心器件,再放臵其它附属器件。 2)信号流向原则:按信号流向排列,一般从输入级开始,到输出级终止, 避免输入输出部分交叉;将高频和低频部分电路分开来布臵。 3)就近原则:当印制板上对外连接确定后,相关电路部分应就近安放, 避免走远路,绕弯子,尤其忌讳交叉穿插。每个单元电路,应以核心器 件为中心,围绕它进行布局。
(a)AXIAL0.4 (电阻类)
(b)DIODE0.4 (二极管类)
( c)RAD0.4 (无极性电容类)
ቤተ መጻሕፍቲ ባይዱ
(d) FUSE (保险管)
(e)XATAL1 (晶振类)
(f)VR5(电位器类)
(g) SIP8(单列直插类)
(h) RB.2/.4 (极性电容类)
(i)DB9/M (D型连接器)