七年级数学下册5.3.3简单的轴对称图形教案(新版)北师大版

合集下载

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案

北师大版数学七年级下册5.3.2《简单的轴对称图形》教案一. 教材分析《简单的轴对称图形》是北师大版数学七年级下册第五章第三节的内容。

本节主要让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何找出轴对称图形的对称轴。

通过本节的学习,学生能更好地理解轴对称现象,提高他们的空间想象能力。

二. 学情分析学生在之前的学习中已经掌握了平面图形的知识,对图形的性质有一定的了解。

但是,对于轴对称图形的概念和判断方法,他们可能还比较陌生。

因此,在教学过程中,需要引导学生从实际例子中发现轴对称现象,逐步引入并讲解轴对称图形的概念和判断方法。

三. 教学目标1.让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形。

2.让学生能够找出轴对称图形的对称轴,并理解对称轴的意义。

3.培养学生的空间想象能力,提高他们解决实际问题的能力。

四. 教学重难点1.轴对称图形的概念及其判断方法。

2.找出轴对称图形的对称轴。

五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。

通过实际例子引导学生发现轴对称现象,讲解轴对称图形的概念和判断方法,然后让学生分组讨论,找出具体图形的对称轴,最后进行总结和拓展。

六. 教学准备1.准备一些轴对称图形的实例,如剪纸、图片等。

2.准备多媒体教学设备,用于展示实例和动画。

七. 教学过程1.导入(5分钟)通过展示一些轴对称图形的实例,如剪纸、图片等,引导学生发现轴对称现象,激发学生的兴趣。

让学生尝试解释这些实例中的对称现象,从而引入轴对称图形的概念。

2.呈现(10分钟)讲解轴对称图形的概念,让学生明白什么是轴对称图形。

通过展示一些动画和实例,让学生更好地理解轴对称图形的性质。

同时,讲解如何判断一个图形是否为轴对称图形,以及如何找出轴对称图形的对称轴。

3.操练(10分钟)将学生分成若干小组,每组提供一个轴对称图形,让学生找出该图形的对称轴。

通过小组合作,让学生加深对轴对称图形和对称轴的理解。

北师大版数学七年级下册5.3 《简单的轴对称图形第3课时》教学课件%28共30张PPT%29

北师大版数学七年级下册5.3 《简单的轴对称图形第3课时》教学课件%28共30张PPT%29

DC相等吗?还有其他相等的线段吗?
解:∵在Rt△ABC中,∠C=90°,AD是∠BAC的
平分线,DE⊥AB,
∴DE=DC,
∵∠ADE=180°-∠EAD-∠AED,
∠ADC=180°-∠C-∠CAD,
∴∠ADE=∠ADC,
B
∴△ADE≌△ADC,
∴AE=AC.
∴图中相等的线段:DE=DC,AE=AC.
∴ DB = DC,(在角的平分线上的点到这个角的两边的距离相等. )

B
A D
C
典型例题
例2.如图,CD⊥OA,CE⊥OB,D、E为垂足. (1)若∠1=∠2,则有___C_D_=__C_E___; (2)若CD=CE,则有__∠__1_=_∠__2___.
典型例题
例3.有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A 点放角的顶点,AB和AD沿AC画一条射线AE,AE就是∠BAD的平 分线,为什么?
随堂练习
3.如图,求作一点P,使PC=PD,并且使点P到∠AOB的两边的距
离相等,并说明你的理由.
A
D
C
O
B
解:作线段CD的垂直平分线和∠AOB的角平分线,两线交 点即为所求点.
随堂练习
4.如图,在△ABC中, ∠ABC=90°,AB的垂直平分线交AC与D,垂 足为E,若∠A=30°,DE=2,求∠DBC的度数和CD的长.
1 AB•OE+
2
1BC•OD+
2
1
2 AC•OF
=
1 2
×4×(AB+BC+AC)=34
随堂练习
1.(1)如图:OC是∠AOB的平分线, 点P在OC上,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm, 则PE=______4____cm.

北师大版七年级数学下册5.3简单的轴对称图形2

北师大版七年级数学下册5.3简单的轴对称图形2
课题:5.3.2简单的轴对称图形(二)
学习目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念2、探索并了解角的平分线、线段垂直平分线的有关性质。
一、自主预习:
(一)预习准备(1பைடு நூலகம்预习书123~126页
思考:角平分线有什么特征?线段垂直平分线有什么特征?
(2)预习作业:
1、角是轴对称图形,它的对称轴是_______,角的平分线上的点到这个角的两边的距离_______。
2、线段是轴对称图形,它的一条对称轴是_______,另一条对称轴是线段所在的直线。
3、线段垂直平分线上的点到这条线段_______。
二、合作探究:
例1.如图,在△ABC中,BC=10,边BC的垂直平分线分别交AB,BC于点E和D,BE=6,求△BCE的周长.
三、当堂检测:
(1)如图,AB是△ABC的一条边,,DE是AB的垂直平分线,垂足为E,并交BC于点D,已知AB=8cm,BD=6cm,那么EA=________,DA=____.
C.两个全等的三角形组成一个轴对称图形;D.直角三角形一定是轴对称图形
4.如图,CD⊥OA,CE⊥OB,D、E为垂足.
(1)若∠1=∠2,则有___________;
(2)若CD=CE,则有___________.
5、下面用我们学过的知识证明发现:
如图,已知AO平分∠BAC,OE⊥AB,OD⊥AC.求证:OE=OD.
课后反思:
(2)如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是_______cm.
四、总结反思:
1.角是图形。
2.角平分线上的点到这个角的两边的相等。

北师大版七年级下册简单的轴对称图形(第一课时)教案

北师大版七年级下册简单的轴对称图形(第一课时)教案

5.3简单的轴对称图形(第一课时)教案一、教学目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念.2、探索并了解等腰三角形的轴对称性及其有关特征, 经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题.3. 通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念. 二、教学重难点:教学重点:理解并掌握等腰三角形的性质;教学难点:经历等腰三角形的探究过程,能初步运用等腰三角形的性质解决有关问题. 三、教学过程: (一)复习:1.角是不是轴对称图形呢?如果是,它的对称轴是什么? 2.线段是不是轴对称图形呢?如果是,它的对称轴是什么? (二)情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC 有什么特点?(三)合作探究问题1:你知道什么样的图形叫等腰三角形吗? 【定义】 有两条边相等的三角形叫等腰三角形.腰腰底角底角顶角问题2:等腰三角形是轴对称图形吗?它的对称轴是什么?等腰三角形是轴对称图形.它的对称轴是顶角平分线所在直线.等腰三角形的底边中线所在直线是等腰三角形的对称轴吗? 等腰三角形的底边上的高所在直线是等腰三角形的对称轴吗?问题3:你知道等腰三角形有什么性质吗?你是怎样思考的.(1)沿等腰三角形的对称轴将三角形对折你能发现等腰三角形的哪些特征? (2)你能用说理的方法进一步证实你的发现吗? 已知:ΔABC 中,AB=AC ,M 是BC 的中点,连结AM. (1)∠B 与∠C 相等吗?为什么? (2)AM 平分∠BA C 吗?为什么? (3)AM 与BC 的位置关系怎样?为什么?MCBA解:(1)在ΔABM 和ΔACM 中,C B SSS ACM ABM CM BM AM AM AC AB ∠=∠→∆≅∆→⎪⎩⎪⎨⎧===)(. (2)→∠=∠→∆≅∆CAM BAM ACM ABM AM 平分∠BACBC AM AMB AMC AMB AMC AMB ACM ABM ⊥→︒=∠→⎭⎬⎫︒=∠+∠∠=∠→∆≅∆90180.综上所述,等腰等腰三角形的性质:1.等腰三角形是轴对称图形;2.等腰三角形的两个底角相等(在一个三角形中,等边对等角);3.等腰三角形顶角平分线、底边上的中线、底边上的高重合(也称“等腰三角形三线合一”),它们所在直线都是等腰三角形的对称轴.问题4:(1)你知道等边三角形吗?什么叫等边三角形? (2)等边三角形是轴对称图形吗?它的对称轴是什么? (3)等边三角形有哪些特征?【定义】三边都相等的三角形叫等边三角形.【议一议】我们知道“如果一个三角形有两条边相等,那么这两条边所的角相等.”(即在一个三角形中,等边对等角),反过来,如果一个三角形有两个角相等,那么这两个角所的边相等吗?通过折纸或测量可以知道如果一个三角形有两个角相等,那么这两个角所的边相等(在一个三角形中,等角对等边).由此可以判定一个三角形是否是等腰三角形.(四)应用新知例1 如图,在△ ABC中,AB=AC,点D在AC上,且BD=BC=AD。

北师大版数学七年级下册《简单的轴对称图形》教学设计

北师大版数学七年级下册《简单的轴对称图形》教学设计

北师大版数学七年级下册《简单的轴对称图形》教学设计一. 教材分析《简单的轴对称图形》是北师大版数学七年级下册第7章第1节的内容。

本节课的主要内容是引导学生认识轴对称图形,理解轴对称图形的概念及性质,并学会判断一个图形是否为轴对称图形。

通过本节课的学习,让学生体会数学与实际生活的联系,培养学生的观察能力、操作能力和推理能力。

二. 学情分析学生在六年级时已经学习了图形的对称性,对对称的概念有一定的了解。

但他们对轴对称图形的认识还比较模糊,对轴对称图形的性质和判定方法还不够熟练。

因此,在教学过程中,教师需要从学生的实际出发,通过丰富的实例和活动,帮助学生深化对轴对称图形的认识,提高他们的观察能力和操作能力。

三. 教学目标1.知识与技能目标:让学生掌握轴对称图形的概念,了解轴对称图形的性质,学会判断一个图形是否为轴对称图形。

2.过程与方法目标:通过观察、操作、推理等活动,培养学生的观察能力、操作能力和推理能力。

3.情感态度与价值观目标:让学生感受数学与实际生活的联系,提高学生学习数学的兴趣。

四. 教学重难点1.重点:轴对称图形的概念及性质。

2.难点:判断一个图形是否为轴对称图形,以及如何寻找对称轴。

五. 教学方法1.情境教学法:通过丰富的实例和实际问题,引发学生的兴趣,激发学生的思考。

2.操作教学法:让学生亲自动手操作,提高学生的实践能力。

3.引导发现法:教师引导学生发现问题,分析问题,从而解决问题。

4.小组合作学习:培养学生的团队合作精神,提高学生的交流表达能力。

六. 教学准备1.准备相关的图片和实例,用于教学演示。

2.准备一些轴对称图形的模型或卡片,用于学生操作和判断。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如剪刀、飞机、树叶等,引导学生观察并提问:“这些图形有什么共同的特点?”学生回答后,教师总结出轴对称图形的概念。

2.呈现(10分钟)教师通过PPT或黑板,展示一些轴对称图形的性质和判定方法,如:对称轴的定义,轴对称图形的性质等。

七年级数学下册第5章生活中的轴对称5.3.1简单的轴对称图形教案新版北师大版

七年级数学下册第5章生活中的轴对称5.3.1简单的轴对称图形教案新版北师大版

第五章生活中的轴对称5.3.1简单的轴对称图形【教学目标】知识与技能探索并掌握等腰三角形的轴对称性及其相关性质。

过程与方法经历探索简单图形轴对称的过程,进一步体验轴对称的特征,发展空间观念。

情感态度与价值观通过学生的操作与思考,使学生掌握等腰三角形和等边三角形的轴对称性及其有关性质,从而发展空间观念。

行为与创新使学生在积极参与探索、交流的数学活动中,激发学生的求知欲,感受与他人合作的重要性。

【教学重难点】重点等腰三角形的轴对称性及相关的性质难点利用等腰三角形的轴对称性及相关性质解决问题【课前准备】教师:课件学生:练习本.【教学过程】复习回顾一、创设情景引入观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?二、应用练习促进深化1. 认识等腰三角形。

给出三种等腰三角形的形状,包括锐角、钝角、直角形状的图形。

2. 介绍等腰三角形的概念及各部分名称。

给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象。

如艾菲尔铁塔、埃及金字塔等。

三、能力再提升等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗?1. 思考(1)等腰三角形是轴对称图形吗?找出对称轴。

(2)顶角的平分线所在的直线是等腰三角形的对称轴吗?(3)底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高呢?(4)沿对称轴折叠,你能发现等腰三角形的哪些特征?2.归纳(1)等腰三角形是轴对称图形。

(2)∠B =∠C(3 )∠BAD=∠CAD,AD为顶角的平分线(4)∠ADB=∠ADC=90°AD为底边上的高(5 )BD=CD,AD为底边上的中线。

等腰三角形的特征:1).等腰三角形是轴对称图形2).等腰三角形的顶角平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。

3).等腰三角形的两个底角相等。

【核心素养】北师大版七年级数学下册5.3 第3课时 角平分线的性质 教案(表格式)

【核心素养】北师大版七年级数学下册5.3 第3课时 角平分线的性质 教案(表格式)

5.3 简单的轴对称图形第3课时角平分线的性质教学内容第3课时角平分线的性质课时1核心素养目标1.从日常生活的常识,提炼出里面的数学思想,培养学生的数学思维能力和归纳总结的能力.2.根据折叠的性质,由具体的客观事实,转化成抽象的猜想证明,让学生感悟数学思维解决问题的方法.3.通过对角的平分线的的学习,在经历猜想、验证、归纳的学习过程中,体会归纳的数学思想方法,逐步养成用数学语言表达与交流的习惯,感悟数据的意义与价值.知识目标1.会用尺规作一个角的平分线,知道作法的合理性;2探索并证明角的平分线的性质;3.能用角的平分线的性质解决简单问题.教学重点探索并证明角的平分线的性质.教学难点能用角的平分线的性质解决简单问题.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知三、当堂练习,巩固所学一、创设情境,导入新知你发现了什么图形?角是生活中常见的图形,角是轴对称图形吗?师生活动:教师通过放映PPT展示角在生活中的应用,通过追问引出后续探究.二、小组合作,探究概念和性质知识点一:角的轴对称性如图,将∠AOB对折,你发现了什么?师生活动:学生独立画图折叠,发现∠AOB被平分.学生积极讨论,教师引导学生总结:角是轴对称图形,角平分线所在的直线是它的对称轴.知识点二:角平分线的性质做一做(1) 在一张纸上任意画∠AOB,沿角的两边将角剪下,将这个角对折,使角的两边重合,折痕就是∠AOB的平分线.(2) 在∠AOB的角平分线上任意取一点C,分别折出过点C且与∠AOB的两边垂直的直线,垂足分别为D,E,将∠AOB再次对折,线段CD与CE能重合吗?设计意图:用实际生活中的景物导入,吸引学生的注意力的同时,感悟数学知识在实际生活中的应用.设计意图:以操作性活动以及“你发现了什么”的问题探究角的轴对称性.由于角的两边是射线,图形具有一定的抽象性,建议让学生充分讨论“角是否是轴对称图形”的问题,关注学生是否能将直观与想象相结合.学生在回答“角是轴对称图形”后,建议要求进一步说明角的对称轴的特点.设计意图:目的是通过折纸活动,得到角平分线的性质:角平分线上的点到这个角的两边的距离相等. 教学中应让学生经历这一活动过程,并把活动师生活动:学生根据要求独立操作画图,然后通过观察发现:CD = CE .教师追问:改变点C 的位置,线段CD 和CE 还相等吗?学生独立思考,然后小组讨论,发现结论不变,猜测:角的平分线上的点到角的两边的距离相等. 思考:你能验证这个结论吗?已知:如图,∠AOC =∠BOC ,点P 在OC 上,PD ∠OA ,PE ∠OB ,垂足分别为D ,E . 试说明:PD = PE . 师生活动:学生独立思考,教师引导学生分析并完成板书: 解:因为PD ∠OA ,PE ∠OB , 所以∠PDO =∠PEO = 90°. 在△PDO 和△PEO 中, 因为∠PDO =∠PEO ,∠AOC =∠BOC ,OP = OP , 所以∠PDO ∠∠PEO . 所以PD = PE .由此教师引导学生总结角平分线的性质定理. 归纳总结 性质定理:角的平分线上的点到这个角的两边的距离相等.应用所具备的条件: (1) 点在角的平分线上;(2) 到角两边的距离(垂直). 定理的作用:证明线段相等. 应用格式:因为OC 是∠AOB 的平分线,CD ∠OA ,CE ∠OB , 所以CD = CE . 典例精析例1利用尺规,作∠AOB 的平分线. 已知:∠AOB .求作:∠AOB 的平分线. 师生活动:学生独立思考,学生代表发言,教师给予评价并整理板书,如 作法:(1) 以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ; (2) 分别以点M 、点N为圆心,大于12MN 的长为半径画弧,两弧在和思考结合起来,以加深对角平分线性质的理解,同时积累数学活动经验. 设计意图:验证结论,将学生的感性认知上升为理性认知,培养学生逻辑思考能力.设计意图:尺规作图不要求学生写作法,但学生应能说明其中的道理,即以操作和理解为主,提高学生作图能力以及语言表达能力.设计意图:强化学生对角平分线的性质的理解与应用.设计意图:变式加大难度,提升学生的解题技巧,让学生学会逆向思维,锻炼学生的思考能力.设计意图:通过归纳,帮学生理清思路,更好的把握不同题目中条件与思路的共性.设计意图:考查学生对角的平分线性质的掌握. 设计意图:考查学生运用角的平分线的性质进行简单运算的能力.设计意图:将本节课知识与之前学过的全等的知识相结合,综合考察学生对知识点的掌握.设计意图:让学生进一步巩固角平分线的性质,通过说理分析提高学生的思维能力与语言表达能力. 设计意图:考查学生对角平分线的性质的掌握与应用情况.∠AOB的内部相交于点C;(3) 作射线OC. 射线OC即为所求.想一想如图所示,在Rt∠ABC中,BD是∠ABC的平分线,DE∠AB,垂足为E. DE与DC相等吗?为什么?师生活动:学生独立思考,学生代表发言,教师给予评价并整理为板书:解:DE与DC相等.因为射线BD是∠ABC的平分线,点D到角两边BA,BC的距离分别是线段DE,DC的长,所以DE = DC.变式:如图,在直角∠ABC中,∠C=90°,AP平分∠BAC交BC于点P,若PC=4,AB=14. (1) 则点P到AB的距离为_____;(2) 求∠APB的面积.师生活动:学生独立思考,教师温馨提示:存在一条垂线段——构造应用.预测学生能在教师提示下想到方法解:由角平分线的性质知PD = PC = 4,故12AB·PD = 28.教师引导学生回忆上述问题的思路并总结.归纳总结针对训练1. 如图,DE⊥AB,DF⊥BG,垂足分别是E,F,若∠EDB =∠FDB = 60°,则∠EBF = °,BE = .师生活动:学生独立思考,学生代表发言,教师给予适当的评价.2. △ABC中,∠C = 90°,AD平分∠CAB,且BC = 8,BD = 5,则点D到AB 的距离是.师生活动:学生独立思考与画图,学生代表回答,教师引导学生代表叙述思路并给予适当评价.3. 用尺规作图作一个已知角的平分线的示意图如图所示,则能说明∠AOC =∠BOC的依据是()A. SSSB. ASAC. AASD. 角平分线上的点到角两边的距离相等师生活动:学生独立思考,学生代表回答,教师引导学生代表叙述思路并给予适当评价.4. 如图,AD是∠ABC的角平分线,DE∠AB,垂足为E,S∠ABC=7,DE=2,AB=4,则AC的长是()A.6 B.5C.4 D.3师生活动:学生独立思考,教师请学生代表回答,引导学生叙述思路并整理板书:解析:过点D作DF∠AC于F,因为AD是∠ABC的角平分线,DE∠AB,所以DF=DE=2.S∠ABC=12×4×2 +12·AC×2=7,解得AC=3.教师引导学生方法总结方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段长度是常用的方法.三、当堂练习,巩固所学1. 如图,D是∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F. 试说明:CE=CF.板书设计角平分线的性质角的平分线上的点到这个角的两边的距离相等.常见辅助线:作垂线段课后小结教师与学生一起回顾本节课所学的主要内容,梳理知识框架.本课时探索角的轴对称性. 本课教学设计较好地体现了“教为主导,学为。

北师大版七年级数学下册 5.3简单的轴对称图形1

北师大版七年级数学下册 5.3简单的轴对称图形1
(1)若∠A=50°,则∠B=______°,∠C=______°;
(2)若∠B=45°,则∠A=______°,∠C=______°;
(3)若∠C=60°,则∠A=______°,∠B=______°;
(4)若∠A=∠B,则∠A=______°,∠C=______°。
1、有两边相等的三角形是等腰三角形,它是_______图形。
(2)等边三角形的两条中线相交所成的钝角度数是_______.
8.如图,在△ABC中,已知AB=AC,D是BC边上的中点,∠B=30°,求∠BAC和∠ADC的度数。
A
B
C
D
课后反思:
例3、ABC是等边三角形,AE是它的高,AB=5,求∠BAE的度数和BE的长.
三、当堂检测:
1.等腰三角形的一腰为6,底边长为4,则这个等腰三角形的周长为()
A.13;B.14;C.15;D.16.
2、如图(7),△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.
3.如图,矩形ABCD沿AE折叠,使点D落在BC边上的点F处,如果
∠BAF=60°,那么∠DAE=_________.
四、总结反思:
(1)等腰三角形和等边三角形的轴对称性质
(2)三线合一
五、课后练习:
1.等腰三角形中,若底角是65°,则顶角的度数是_____.
2.等腰三角形的周长为10cm,一边长为3cm,则其他两边长分别为_____.
3.等腰三角形一个角为70°,则其他两个角分别是_____
课题:5.3.1简单的轴对称图形(一)
A
B
C
图(2)
A
B
C
图(5)
学习目标:1.等腰三角形的有关概念,探索并掌握等腰三角形的性质;

简单的轴对称图形(第3课时)教学课件北师大版中学数学七年级(下)

简单的轴对称图形(第3课时)教学课件北师大版中学数学七年级(下)

BC DB AD DB
A
C
AB 14
=
课堂小结
尺规 作图
角平 分线
性质 定理
辅助线 添加
属于基本作图,必须熟练掌握
一个点:角平分线上的点; 二距离:点到角两边的距离; 两相等:两条垂线段相等
过角平分线上一点向两边作 垂线段
当堂检测
1. 如图,DE⊥AB,DF⊥BG,垂足
分别是E,F, DE =DF, ∠EDB=
应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上;
(3)垂直距离.
O
A D
PC
定理的作用:证明线段相等.
E
B
应用格式: ∵OP 是∠AOB的平分线, PD⊥OA,PE⊥OB, ∴PD = PE
推理的理由有三个, 必须写完全,不能
少了任何一个.
随堂训练
(1)∵ 如下左图,AD平分∠BAC(已知),
知识讲授
已知:∠AOB. 求作:∠AOB的平分线. 仔细视察步骤 作法:
A
M C
(1)以点O为圆心,适当
长为半径画弧,交OA于 点M,交OB于点N.
B
N
O
(2)分别以点MN为圆心,大于 1 MN的长为半径画弧,两弧在
2
∠AOB的内部相交于点C.
(3)画射线OC.射线OC即为所求.
知识讲授
已知:平角∠AOB. 求作:平角∠AOB的角平分线.
做一做:请大家找到用尺规作角的平分线的方法, 并说明作图方法与仪器的关系.
ห้องสมุดไป่ตู้
提示:
A
(1)已知什么?求作什么?
(2)把平分角的仪器放在角的两边,仪器的顶
点与角的顶点重合,且仪器的两边相等,怎

2023七年级数学下册第五章生活中的轴对称4利用轴对称进行设计教案(新版)北师大版

2023七年级数学下册第五章生活中的轴对称4利用轴对称进行设计教案(新版)北师大版
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“轴对称在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,比如:“你们还能想到轴对称在生活中的其他应用吗?”
教学反思
今天的课,我教授了《生活中的轴对称》这一章节,主要是让学生理解和掌握轴对称的概念、性质以及如何利用轴对称进行设计。在教学过程中,我采用了案例分析法、问题驱动法和小组合作法等多种教学方法,力图让学生在实践中学习和理解轴对称的知识。
在课堂导入环节,我通过提问的方式,激发学生的兴趣和好奇心。在讲授新课时,我详细解释了轴对称的概念和性质,并通过具体的案例和实际操作,让学生更好地理解和掌握这些知识点。在实践活动环节,我让学生分组讨论和实验操作,提高了他们的实践能力和团队合作能力。最后,在学生小组讨论环节,我作为引导者,启发他们思考和解决问题,并分享了自己的教学反思。
2023七年级数学下册第五章生活中的轴对称4利用轴对称进行设计教案(新版)北师大版
学校
授课教师
课时
授课班级
授课地点
教具
教学内容
本节课的内容来自北师大版七年级数学下册第五章“生活中的轴对称”的第四节“利用轴对称进行设计”。本节课的主要内容是让学生掌握轴对称的概念,学会利用轴对称进行图形设计。通过本节课的学习,学生能够理解轴对称的性质,能够运用轴对称的知识解决一些实际问题。
课堂小结,当堂检测
课堂小结:
1.轴对称的概念:轴对称是指存在一条直线,将一个图形分成两个完全相同的部分。

北师大版七下《简单的轴对称图形》word教案2篇

北师大版七下《简单的轴对称图形》word教案2篇

7.2简单的轴对称图形(1)教学案教学目标知识目标:1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念2、探索并了解角的平分线、线段垂直平分线的有关性质。

过程与方法:教师通过生活中的实际问题来达到让学生对简单轴对称图形的认识,从而培养学生的识图能力。

情感与价值观:通过分组讨论学习,使学生体会在解决问题的过程中与他人合作的重要性。

培养团结协作的精神。

教学重、难点:教学重点:1、角、线段是轴对称图形2、角的平分线、线段垂直平分线的有关性质教学难点:角的平分线、线段垂直平分线的有关性质教学过程:一、知识回顾1.什么是轴对称图形?2. 角是不是轴对称图形呢?如果是,它的对称轴在哪里?二、探索研究,充分发挥学生的主体作用探索1:角的对称性1、在准备好的三角形的每个顶点上标好字母;2、A、B、C。

把角A对折,使得这个角的两边重合。

3、在折痕(即平分线)上任意找一点C,4、过点C折OA边的垂线,得到新的折痕CD,其中,点D是折痕与OA的交点,即垂足。

5、将纸打开,新的折痕与OB边交点为E。

教师要引导学生思考:我们现在观察到的只是角的一部分。

注意角的概念。

学生通过思考应该大部分都能明白角是轴对称图形这个结论。

问题2:在上述的操作过程中,你发现了哪些相等的线段?说明你的理由,在角平分线上在另找一点试一试。

是否也有同样的发现?实验结论:⑴角是轴对称图形,它的对称轴是它的平分线所在的直线;⑵角平分线的性质:角平分线上的点到这个角的两边的距离相等。

学生应该很快就找到相等的线段。

下面用我们学过的知识证明发现:巩固练习:1、在Rt△ABC中,BD是角平分线,DE⊥AB,垂足为E,DE与DC相等吗?为什么?2、如图,OC是∠AOB的平分线,点P在OC上,PO⊥OA,PE⊥OB,垂足分别是D、E,PD=4cm,则PE=__________cm.3、如图,在△ABC中,,∠C=90°,AD平分∠BAC交BC于D,点D到AB的距离为5cm,则CD=_____cm.探索2:探索线段的对称性做一做:按下面步骤做:1、用准备的线段AB,对折AB,使得点A、B重合,折痕与AB 的交点为O。

《简单的轴对称图形第1课时》示范公开课教学设计【北师大版七年级数学下册】

《简单的轴对称图形第1课时》示范公开课教学设计【北师大版七年级数学下册】

第五章生活中的轴对称5.3简单的轴对称图形第1课时教学设计一、教学目标1.掌握等腰三角形的定义,利用定义解决问题;2.掌握等腰三角形和等边三角形的轴对称性、相关性质及判定.二、教学重点及难点重点:等腰三角形的相关概念;掌握等腰三角形的轴对称性、有关性质及判定.难点:应用等腰三角形的概念和性质解决等腰三角形解决问题.三、教学准备多媒体课件四、相关资源相关图片,微课,动画五、教学过程【问题情境】在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就从轴对称的角度来认识一些我们熟悉的几何图形.问题1:三角形是轴对称图形吗?有的三角形是轴对称图形,有的三角形不是.问题2:什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种是轴对称图形的三角形——等腰三角形.设计意图:通过回顾轴对称图形及轴对称性质,引出本节课所要探究的内容,让学生明确探究方向.【探究新知】探究一:认识等腰三角形 观察图片:这些三角形有什么共同特点?定义:有两条边相等的三角形叫等腰三角形探究二:等腰三角形的性质活动1.作等腰三角形(1)如图所示,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 有什么特点?(2)鼓励学生用不同的方法得到等腰三角形,例如还可以像下面这样来作一个等腰三角形.(顶角底角底角腰腰底边)作一条直线l ,在l 上取一点A ,在l 外取一点B ,作出点B 关于直线l 的对称点C ,连接AB ,BC ,CA ,则可得到一个等腰三角形.设计意图:以动手操作的形式得出一个等腰三角形,鼓励学生充分的进行交流,充分利用等腰三角形的特征,逆向思维,达到学以致用的目的.同时充分体现了数学来源于生活,同时也更好的服务于生活的理念.活动2.思考:(1)等腰三角形是轴对称图形吗?请找出它的对称轴. (2)等腰三角形顶角平分线所在的直线是它的对称轴吗?(3)等腰三角形底边上的中线所在的直线是它的对称轴吗?底边上的高所在的直线呢? (4)沿对称轴对折,你能发现等腰三角形的那些特征?说说你的理由.因为等腰三角形的两腰相等,所以把这两条腰重合对折便知:等腰三角形是轴对称图形,它的对称轴是折痕所在的直线.学生通过折叠,发现折痕两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到:等腰三角形是轴对称图形.性质1:等腰三角形的两个底角相等(简写成“等边对等角”);性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.活动3.等腰三角形的性质1的证明:证法1:如图,在△ABC 中,AB =AC ,作底边BC 的中线AD ,则BD =CD . 在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,, ∴△ABD ≌△ACD (SSS ).∴∠B =∠C .证法2:如图,在△ABC 中,AB =AC ,作顶角∠BAC 的角平分线AD , ∴∠1=∠2.在△ABD 和△ACD 中,1=2AB AC AD AD =⎧⎪∠∠⎨⎪=⎩,,, ∴△ABD ≌△ACD (SAS ). ∴∠B =∠C .几何语言表示:在△ABC 中,∵AB =AC , ∴∠B =∠C .活动4.等腰三角形性质2的证明:性质2可以分解为三个命题,下面我们来证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”.已知:如图,△ABC 中,AB =AC ,AD 是底边BC 的中线.求证:∠BAD =∠CAD ,AD ⊥BC .证明:∵AD 是底边BC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,,, ∴△ABD ≌△ACD (SSS ). ∴∠BAD =∠CAD , ∠ADB =∠ADC .∵∠ADB +∠ADC =180°, ∴∠ADB =90°. ∴AD ⊥BC .教师鼓励学生仿照示例口述另两个命题的证明过程. 几何语言表示:在△ABC 中,(1)∵AB =AC ,BD =CD , ∴AD ⊥BC ,∠BAD =∠CAD . (2)∵AB =AC ,∠BAD =∠CAD , ∴AD ⊥BC ,BD =CD . (3)∵AB =AC ,AD ⊥BC , ∴∠BAD =∠CAD ,BD =CD .在等腰三角形性质的探索过程和证明过程中,“折痕”“辅助线”发挥了非常重要的作用,由此得到:等腰三角形是轴对称图形,底边上的中线(或顶角平分线、底边上的高)所在直线就是它的对称轴.设计意图:通过引导学生动手操作,探索和发现等腰三角形的性质,加深学生对等腰三角形性质的直观感知,并尝试构造全等三角形给出推理证明,锻炼学生探索和发现问题并解决问题的能力.探究三:等边三角形1. 定义:三边都相等的三角形是等边三角形也叫正三角形.2.性质:(1)等边三角形是轴对称图形吗?找出对称轴(2)你能发现它的哪些特征?结论:(1)等边三角形是轴对称图形;(2)等边三角形每个角的平分线和这个角的对边上的中线、高线重合(“三线合一”),它们所在的直线都是等边三角形的对称轴。

北师大版七下数学5.3简单的轴对称图形(3)说课稿

北师大版七下数学5.3简单的轴对称图形(3)说课稿

北师大版七下数学5.3简单的轴对称图形(3)说课稿一. 教材分析北师大版七下数学 5.3简单的轴对称图形(3)是本册书的第三章第五节内容,本节课的内容是在学生已经掌握了轴对称图形的概念以及对称轴的定义的基础上进行学习的,本节课的内容主要是让学生进一步理解轴对称图形的性质,并且能够运用轴对称图形的性质解决一些实际问题。

在教材的安排上,首先是通过一些实际的问题引出轴对称图形的性质,然后通过一些例题让学生进一步理解轴对称图形的性质,最后通过一些练习让学生巩固所学的知识。

二. 学情分析在教学之前,我首先会对学生进行学情分析。

根据对学生已经掌握的知识的掌握程度,我发现学生已经掌握了轴对称图形的概念以及对称轴的定义,但是学生对于如何运用轴对称图形的性质解决实际问题还不是很清楚。

因此,在教学过程中,我需要引导学生运用所学的知识解决实际问题,提高他们的解决问题的能力。

三. 说教学目标根据教材内容和学情分析,我制定了以下教学目标:1.让学生理解轴对称图形的性质,并能够运用性质解决一些实际问题。

2.培养学生的观察能力、思考能力和解决问题的能力。

3.激发学生对数学的兴趣,培养他们的数学思维。

四. 说教学重难点根据教材内容和学情分析,我确定了以下教学重难点:1.轴对称图形的性质的理解和运用。

2.如何引导学生运用轴对称图形的性质解决实际问题。

五. 说教学方法与手段为了实现教学目标,突破重难点,我采用了以下教学方法和手段:1.采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握轴对称图形的性质。

2.使用多媒体教学手段,通过展示一些实际的例子,让学生更直观地理解轴对称图形的性质。

六. 说教学过程在教学过程中,我会按照以下步骤进行:1.导入:通过一些实际的问题,引出轴对称图形的性质。

2.讲解:通过一些例题,讲解轴对称图形的性质,并引导学生运用性质解决实际问题。

3.练习:让学生做一些练习题,巩固所学的知识。

4.总结:对本节课的内容进行总结,强调轴对称图形的性质及其运用。

5.3.3简单的轴对称图形(三)角平分线

5.3.3简单的轴对称图形(三)角平分线

5.3.3角平分线的性质教学目标:1.掌握作已知角的平分线的尺规作图方法。

2.利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题.3.使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验;重难点:1. 利用角平分线的性质定理解决实际问题;2. 利用角平分线构造垂线。

启中入1.复习:(1)角平分线定义:(2)角平分线性质:(3)相关模型:2.验证猜想:角的平分线上的点到角的两边的距离相等.已知:如图,OC 平分∠AOB ,点P 在OC 上,PD ⊥OA 于点D ,PE ⊥OB 于E 。

求证: PD=PE归纳:角平分线性质:___________________________________________ 几何语言:O B读中思例1.如图,△ABC 中,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB 于E ,F 在AC 上,BD=DF ,求证:CF=EB 。

练习1.如图 ,在△ABC 中,∠C=90°,AC=BC , AD 平分∠CAB ,并交BC 于D , DE ⊥AB 于点E ,若 AB=8cm ,则△DEB 的周长为_____2.如图,已知点P 是∠AOB 角平分线上的一点, PC ⊥OA 于C ,PC=4cm ,点D 是OB 上一个动点, 则PD 的最小值为___(练习1) (练习2) (例2)例2.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积为__________.练习1.如图,已知△ABC ,∠ABC ,∠ACB 的角平分线交于点O ,连接AO 并延长交BC 于D ,OH ⊥BC 于H ,若∠BAC=60°,OH=3cm ,OA 长为_____(练习1) (练习2)CF OC B2.如图,∠AOB=300,P 是∠AOB 的平分线上一点,PC ∥OA,交OB 于点C ,PD ⊥OA ,垂足为点D 。

5.3 简单的轴对称图形(2)

5.3 简单的轴对称图形(2)

其中,正确的说法有(
A.1个
B.2个
B
)
C.3个
D.0个
数学
返回目录
2.如图,在△ABC中,BC=8,AB,AC的垂直平分线与BC分别交于
E,F两点,则△AEF的周长为(
A.2
B.4
C.8
D.不能确定
C
)
数学
返回目录
3.如图,等腰△ABC的周长为13,底边BC=3,AB的垂直平分线DE
交AB于点D,交AC于点E,则△BEC的周长为(
= .
所以A,B,D项都成立.故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.如图,在△ABC中,BC=8,AB的中垂线交BC于点D,AC的中垂
线交BC于点E,求△ADE的周长.
数学
返回目录
解:因为点D在线段AB的垂直平分线上,
所以DA=DB,
因为点E在线段AC的垂直平分线上,
所以EA=EC,
D
)
数学
返回目录
解析:因为BC=BD+CD,AD+CD=BC,所以AD=BD.
由作图痕迹可知,
在选项A中,AB=BD,不符合题意;
在选项B中,AD=CD,不符合题意.
在选项C中,AC=CD,不符合题意;
在选项D中,AD=BD,符合题意.
故选D.
数学
返回目录
二、填空题
1.如图,AB是△ABC的一条边,DE是AB的垂直平分线,垂足为
∠ = ∠,
在△FEC与△AED中,ቐ = ,
∠ = ∠,
所以△FEC≌△AED(ASA).所以CF=AD.
数学
返回目录
(2)当BC=6时,点B在线段AF的垂直平分线上.理由:

北师大版七年级下册 第五章生活中的轴对称(教案)

北师大版七年级下册 第五章生活中的轴对称(教案)

5.1 轴对称现象教学目标:1.经历观察生活中的轴对称现象、探索轴对称现象共同特征的过程,进一步积累数学活动经验和发展学生的空间观念.2.理解轴对称图形和成轴对称的图形的定义,能够识别这些图形并能指出它们的对称轴.3.欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和丰富的文化价值.教学重点:通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴教学难点:理解轴对称图形和轴对称的联系与区别教学过程:一、出示目标:二、动手自学:阅读教材P115~P117的内容,完成下面练习1.如果一个平面图形沿一条折叠后,直线两旁的部分能够,那么这个图形就叫做,这条直线叫做.这时,我们也说这个图形关于这条直线(成轴) .2.如果两个平面图形沿一条直线折叠后能够重合,那么称这两个图形,这条直线叫做这两个图形的.三、展示分享:1、观察图5-2中的图形,哪些图形是轴对称图形?如果是轴对称图形,请找出它的对称轴2、说出如何判断两个图形成轴对称图形?并且画出下列图形的对称轴3、誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是()四、课堂检测:1、下面的图形都是轴对称图形或成轴对称的图形,请分别找出每个图形的对称轴2、观察下面的图形,哪些图形是轴对称图形?如果是轴对称图形,请画出对称轴五、拓展链接:1、下列汉子中,哪些可以看成是轴对称图形?2、试画出下列正多边形的所有对称轴,并完成表格.正多边形的边数34567…对称轴的条数34567…根据上表,猜想正n边形有条对称轴.六、布置作业七、教学反思5.2 探索轴对称的性质教学目标:1.经历探索轴对称性质的过程,积累数学活动经验,发展空间观念.2.理解轴对称的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.教学重点:探索并掌握轴对称的性质教学难点:运用轴对称的性质作图及利用轴对称的性质解决一些实际问题教学过程:出示目标:动手操作(1):将一张矩形纸对折,然后用笔尖扎出“14”这个数字,将纸打开后铺平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 简单的轴对称图形
【教学目标】
知识与技能
1、经历探索简单图形轴对称性的过程,进一步体会轴对称的特征,发展空间观念
2、探索并了解角的平分线的有关性质
过程与方法
通过生活中的实际问题来达到让学生对简单轴对称图形的认识,从而培养学生的识图能力。

情感态度与价值观
通过分组讨论学习,使学生体会在解决问题的过程中与他人合作的重要性。

培养团结协作精神。

通过各种途径,培养学生的搜索力、发现力、概括力、想象力、记忆力 思维力、操作力、应变力、创造力和自我调控力。

【教学重难点】
重点:1、角是轴对称图形
2、角的平分线的有关性质
难点:角的平分线的有关性质及作图
【导学过程】
按下面的步骤做一做:
⑴在一张纸上任意画一个角∠AOB ,沿角的两边将角剪下.将这个角对折,使角的两边重合. ⑵在折痕上任取一点M ;
⑶过点M 折OA 边的垂线,得到新的折痕MD ,其中,点D 是折痕与0A 边的交点,即垂足. ⑷将纸打开,新的折痕与OB 边的交点为E (电脑形象的演示,教师适时的引导,学生的动手操作,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想。


2
角的对称轴是什么?请阅读课本P127
2.角是轴对称图形吗?如果是,请在图(4)中画出它的对称轴.
你是如何找到角的对称轴的? .
3、归纳结论:角是 图形, 是角的一条对称轴. 探究二角平分线的性质
4、课本P127“做一做”
(1)如图(5),将角对折,使角的两边重合折痕就是AOB ∠的平分线;
(2)在AOB ∠的角平分线上任意取一点C,分别过点C 且与AOB ∠ 的两边垂直的线(这一步如何折?),垂足分别为点D 和点E ,将
AOB ∠再次对折,线段CD 和 CE 能重合吗? 答: (“能”或“不能”)重合.理由是: (3)改变点C 的位置,线段CD 和CE 还相等吗? 5.归纳角平分线的性质: . 几何语言:如图(6) BOM AOM ∠=∠,AO CD ⊥,OB CE ⊥ ∴ = . 探究三用尺规作角平分线 6、课本P126 例 2:利用尺规,作AOB ∠的平分线(图7) 已知:AOB ∠. 求作:射线OC,使AOC ∠=BOC ∠. 作法:1.在 和 上分别截取 、 ,使 = .
2.分别以 和 为圆心,以 为半径作弧,
两弧在 内交于点 . 3、作 . 就是AOB ∠平分线.
为什么第6题这样就能作出角的平分呢?其中的道理是什么?
【知识梳理】
角是 图形。

角平分线上的点到这个角的两边的 相等。

【随堂练习】
1、在△ABC 中,BC=10,边BC 的垂直平分线分别交AB ,BC 于点E ,D ,BE=6,求△BCE 的周长.
2、已知ABC ∆,求作三个内角的平分线(如下图).
图(5)
O 图(6) M
O
B 图(7
) A
3、某铁路MN与公路PQ相交于点O且交角为90度,
的相交点O的距离为200m.(1)在图中标出仓库G的位置(比例
尺1:10000.保留作图痕迹);(2)求出仓库G到的实际距离.
3。

相关文档
最新文档