201x年春七年级数学下册8.2.1不等式的解集新版华东师大版
华东师大版数学七年级下册第八章《一元一次不等式》全单元课件
当堂练习
1. 用不等式表示下列数量关系: (1)a是负数; (2)x比-3小; a < 0. x < -3. m-n >5.
(3)两数m与n的差大于5.
2.雷电的温度大约是28000℃,比太阳表面温度的4.5倍还要高. 设太阳表面温度为t℃,那么t应该满足怎样的关系式?
解:4.5t<28000.
典例精析
例1 用不等式表示下列关系,并分别写出两个满足不等 式的数: (1)x的一半不小于-1
(2)y与4的和大于0.5 (3)a是负数; (4)b是非负数;
解:
(1) 0.5x≥-1.如 x=-3,-4.
(2) y+4>0.5. 如y=0,1. (3) a<0 . 如a=-3,-4. (4) b是非负数,就是b不是负数,它可以是正数 或零,即b>0或b=0.如b=0,2.
七年级数学下(HS) 教学课件
第8章
一元一次不等式
8.1 认识不等式
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.了解不等式的概念,认识不等号的含义; 2.学会并准确运用不等式表示数量关系,形成在表达中渗透
数形结合的思想.(重点、难点)
导入新课
问题引入
现实生活中,数量之间存在着相等与不相等的关系. 对于不相等的关系问题,我们如何用式子来表示 它们呢? 例如,小明的身高为155cm,小聪的身高为156cm,
我们把用不等号“>”或“<”表示不等关系的式子叫作不等
式.
练一练 判断下列式子是不是不等式: (1)-3>0; (2)4x+3y<0; (3)x=3; (4) x2+xy+y2; (5)x+2>y+5. 解 : (1)(2)(5)是不等式; (3)(4)不是不等式.
华师大版初中数学七年级下册《8.2.1 不等式的解集》同步练习卷(含答案解析
华师大新版七年级下学期《8.2.1 不等式的解集》同步练习卷一.选择题(共31小题)1.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<bC.a=b D.无法判断a、b的大小2.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.3.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<54.若不等式组有解,则m的取值范围为()A.m>1B.m≥1C.m<1D.m≤15.若(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m>1B.m≤﹣1C.m<1D.m≥16.若关于x的一元一次不等式组有解,则m的取值范围是()A.m≥﹣8B.m≤﹣8C.m>﹣8D.m<﹣8 7.一元一次不等式2x+1≥3的解在数轴上表示为()A.B.C.D.8.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3 9.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1B.0C.1D.210.已知不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a<2C.a=2D.a>211.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>412.不等式组的解表示在数轴上,正确的是()A.B.C.D.13.如果不等式ax+4<0的解集在数轴上表示如图,那么()A.a>0B.a<0C.a=﹣2D.a=214.若不等式(a﹣3)x>a﹣3的解集是x<1,则a的取值范围是()A.a>3B.a>﹣3C.a<3D.a<﹣315.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.16.关于x的不等式ax>b的解集是,则()A.a>0B.a<0C.a≤0D.a≥017.已知不等式ax<b的解集为,则有()A.a<0B.a>0C.a<0,b>0D.a>0,b<0 18.把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.19.下列不等式中,解集为空集的是()A.B.C.D.20.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.21.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.22.若不等式组的解集是x>3,则m的取值范围是()A.m≤B.m<C.m≥D.m=23.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.24.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.26.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤327.不等式x≥2的解集在数轴上表示为()A.B.C.D.28.不等式组的解集在数轴上表示,正确的是()A.B.C.D.29.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.30.不等式组的解集在数轴上可表示为()A.B.C.D.31.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0B.﹣3C.﹣2D.﹣1二.填空题(共7小题)32.不等式组的解集是x>4,那么m的取值范围是.33.若不等式组有实数解,则实数m的取值范围是.34.已知关于x的不等式组无解,则a的取值范围是.35.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.36.不等式组的解集是x>4,那么m的取值范围是.37.不等式6﹣12x<0的解集是.38.不等式组的解集是;不等式组的解集是.三.解答题(共2小题)39.在数轴上表示下列不等式的解集:(1)x<﹣2(2)x≥140.已知x=3是关于x的不等式的解,求a的取值范围.华师大新版七年级下学期《8.2.1 不等式的解集》同步练习卷参考答案与试题解析一.选择题(共31小题)1.若关于x的不等式(a﹣b)x>a﹣b的解集是x<1,那么下列结论正确的是()A.a>b B.a<bC.a=b D.无法判断a、b的大小【分析】由已知不等式的解集确定出a与b的大小即可.【解答】解:∵关于x的不等式(a﹣b)x>a﹣b的解集是x<1,∴a﹣b<0,即a<b,故选:B.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.2.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由﹣x≤﹣1解得x≥1,由x+1>0解得x>﹣1,不等式的解集是x≥1,在数轴上表示如图,故选:A.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.已知关于x的不等式>1的解都是不等式>0的解,则a的范围是()A.a=5B.a≥5C.a≤5D.a<5【分析】先把a看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【解答】解:由>1得,x>,由>0得,x>﹣,∵关于x的不等式>1的解都是不等式>0的解,∴≥﹣,解得a≤5.即a的取值范围是:a≤5.故选:C.【点评】本题考查了不等式的解集,解一元一次不等式,分别求出两个不等式的解集,再根据同大取大列出关于a的不等式是解题的关键.4.若不等式组有解,则m的取值范围为()A.m>1B.m≥1C.m<1D.m≤1【分析】根据不等式组有解的口诀解答即可.【解答】解:∵不等式组有解,∴m的取值范围为m>1.故选:A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.若(m﹣1)x>m﹣1的解集是x<1,则m的取值范围是()A.m>1B.m≤﹣1C.m<1D.m≥1【分析】根据已知不等式的解集,利用不等式的基本性质求出m的范围即可.【解答】解:∵(m﹣1)x>m﹣1的解集为x<1,∴m﹣1<0,解得:m<1,故选:C.【点评】本题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.6.若关于x的一元一次不等式组有解,则m的取值范围是()A.m≥﹣8B.m≤﹣8C.m>﹣8D.m<﹣8【分析】首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【解答】解:,解①得:x≤m,解②得:x>﹣4,根据题意得:m>﹣4,解得:m>﹣8.故选:C.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.7.一元一次不等式2x+1≥3的解在数轴上表示为()A.B.C.D.【分析】先移项、合并同类项、化系数为1即可求出x的取值范围,再把x的取值范围在数轴上表示出来即可.【解答】解:2x+1≥32x≥2x≥1,故选:A.【点评】本题考查的是解一元一次不等式及在数轴上表示不等式的解集,在解答此题时要注意实心圆点与空心圆点的区别.8.如图,用不等式表示数轴上所示的解集,正确的是()A.x<﹣1或x≥3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a的值为()A.﹣1B.0C.1D.2【分析】首先解不等式组,求得其解集,又由,即可求得不等式组的解集,则可得到关于a的方程,解方程即可求得a的值.【解答】解:∵的解集为:﹣2≤x<a﹣1,又∵,∴﹣2≤x<1,∴a﹣1=1,∴a=2.故选:D.【点评】此题考查了在数轴上表示不等式的解集.注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.已知不等式组的解集是x>2,则a的取值范围是()A.a≤2B.a<2C.a=2D.a>2【分析】根据不等式组的求解规律:大大取较大,小小取较小,大小小大中间找,大大小小无解,探究a的取值范围即可.【解答】解:由不等式组的解集是x>2,因此a的取值范围是a≤2.故选:A.【点评】本题考查了不等式组解集的求解方法.注意,这里的a可以等于2.11.不等式组的解集是x>4,那么m的取值范围是()A.m≤4B.m<4C.m≥4D.m>4【分析】利用不等式组取解集的方法判断即可得到m的范围.【解答】解:∵等式组的解集是x>4,∴m≤4,故选:A.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.12.不等式组的解表示在数轴上,正确的是()A.B.C.D.【分析】先解不等式组求得解集,再在数轴上表示出来.【解答】解:解不等式组得﹣1<x≤2,所以在数轴上表示为故选:D.【点评】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.如果不等式ax+4<0的解集在数轴上表示如图,那么()A.a>0B.a<0C.a=﹣2D.a=2【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【解答】解:解关于x的不等式ax+4<0,ax<﹣4,所以当a>0时,x<﹣;a<0时,x>﹣;a=0时,无解.由图可知,不等式的解集为x>2,故,a=﹣2.故选:C.【点评】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向,余下运算不受影响,该怎么算还怎么算.14.若不等式(a﹣3)x>a﹣3的解集是x<1,则a的取值范围是()A.a>3B.a>﹣3C.a<3D.a<﹣3【分析】不等式两边同时除以a﹣3即可求解不等式,根据不等式的性质可以得到a﹣3一定小于0,据此即可求解.【解答】解:根据题意得:a﹣3<0,解得:a<3.故选:C.【点评】本题考查了不等式的解法,解答此题学生一定要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.15.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.【分析】首先由数轴上表示的不等式组的解集为:﹣1≤x≤2,然后解各不等式组,即可求得答案,注意排除法在解选择题中的应用.【解答】解:如图:数轴上表示的不等式组的解集为:﹣1≤x≤2,A、解得:此不等式组的解集为:﹣1≤x≤2,故本选项正确;B、解得:此不等式组的解集为:x≤﹣1,故本选项错误;C、解得:此不等式组的无解,故本选项错误;D、解得:此不等式组的解集为:x≥2,故本选项错误.故选:A.【点评】此题考查了在数轴上表示不等式解集的知识.此题比较简单,注意掌握不等式组的解法是解此题的关键.16.关于x的不等式ax>b的解集是,则()A.a>0B.a<0C.a≤0D.a≥0【分析】根据题意可得,不等式两边除以a后,不等式变号,从而可得出a的取值范围.【解答】解:∵ax>b的解集是,∴a<0.故选:B.【点评】此题考查了不等式的性质,注意掌握不等式两边同时除以一个负数,不等式变号.17.已知不等式ax<b的解集为,则有()A.a<0B.a>0C.a<0,b>0D.a>0,b<0【分析】求不等式ax<b的解集两边同时除以a,而解集是为,即原不等式两边同时除以a,不等号的方向改变,因而a的范围即可确定.【解答】解:ax<b的解集两边同时除以a,而解集是为,即原不等式两边同时除以a,不等号的方向改变,则a<0.故选:A.【点评】本题主要考查了不等式的性质,不等式的左右两边同时除以同一个负数时,不等号的方向要改变.18.把不等式x+2>4的解表示在数轴上,正确的是()A.B.C.D.【分析】利用解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1,进行解方程.【解答】解:移项得,x>4﹣2,合并同类项得,x>2,把解集画在数轴上,故选:B.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错19.下列不等式中,解集为空集的是()A.B.C.D.【分析】根据不等式组解集的确定方法:两大取大,两小取小,大小小大,中间找,大大小小无处找,即可确定.【解答】解:A、空集,故选项正确;B、解集是:x<﹣2,故选项错误;C、解集是:﹣3<x<7,故选项错误;D、解集是:x>3,故选项错误.【点评】本题考查了不等式组的解集的确定方法,正确理解法则是关键.20.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【分析】根据数轴上表示不等式解集的方法进行解答即可.【解答】解:∵此不等式不包含等于号,∴可排除B、D,∵此不等式是小于号,∴应向左化折线,∴A错误,C正确.故选:C.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.21.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是()A.B.C.D.【分析】先根据数轴上表示不等式解集的方法求出此不等式组的解集,再分别求出四个选项中不等式组的解集,找出符合条件的不等式组即可.【解答】解:由数轴上不等式解集的表示方法可知,此不等式组的解集为:﹣1<x<3.A、,由①得,x>﹣1,由②得,x>3,所以此不等式组的解集为:x>3,故本选项错误;B、,由①得,x>﹣1,由②得,x<3,所以此不等式组的解集为:﹣1<x<3,故本选项正确;C、,由①得,x<﹣1,由②得,x>3,所以此不等式组无解,故本选项错误;D、,由①得,x<﹣1,由②得,x<3,所以此不等式组的解集为:x<﹣1,故本选项错误.故选:B.【点评】本题考查的是在数轴上表示不等式组的解集,解答此类题目时一定要注意实心圆点与空心圆点的区别.22.若不等式组的解集是x>3,则m的取值范围是()A.m≤B.m<C.m≥D.m=【分析】解第一个不等式得到x>3,由于不等式的解集是x>3,则对于mx<﹣1要得到x>﹣,即m为负数,再根据同大取大得3≥﹣,然后再解关于m的不等式即可.【解答】解:解x+8<4x﹣1得x>3,∵不等式组的解集是x>3,∴解mx<﹣1得x>﹣(m<0),∴3≥﹣,∴3m≤﹣1,∴m≤﹣.故选:A.【点评】本题考查了不等式组的解集:先解出各个不等式的解集,再根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.23.已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A.B.C.D.【分析】根据第二象限内点的特征,列出不等式组,求得a的取值范围,然后在数轴上分别表示出a的取值范围.【解答】解:∵点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则有解得﹣2<a<1.故选:C.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.第二象限的点横坐标为<0,纵坐标>0.24.不等式2x﹣4≤0的解集在数轴上表示为()A.B.C.D.【分析】先移项再系数化1,然后从数轴上找出.【解答】解:2x﹣4≤02x≤4x≤2故选:B.【点评】本题既考查了一元一次不等式的解法又考查了数轴的表示方法.25.不等式2x+3≥5的解集在数轴上表示正确的是()A.B.C.D.【分析】不等式2x+3≥5的解集是x≥1,大于应向右画,且包括1时,应用点表示,不能用空心的圆圈,表示1这一点,据此可求得不等式的解集以及解集在数轴上的表示.【解答】解:不等式移项,得2x≥5﹣3,合并同类项得2x≥2,系数化1,得x≥1;∵包括1时,应用点表示,不能用空心的圆圈,表示1这一点;故选:D.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心圆点,没有等于号的画空心圆圈.26.如图,用不等式表示数轴上所示不等式组的解集,正确的是()A.x<﹣1或x≥﹣3B.x≤﹣1或x>3C.﹣1≤x<3D.﹣1<x≤3【分析】不等式的解集表示﹣1与3之间的部分,其中不包含﹣1,而包含3.【解答】解:由图示可看出,从﹣1出发向右画出的折线且表示﹣1的点是空心圆,表示x>﹣1;从3出发向左画出的折线且表示3的点是实心圆,表示x≤3.所以这个不等式组为﹣1<x≤3故选:D.【点评】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.27.不等式x≥2的解集在数轴上表示为()A.B.C.D.【分析】数轴上的数右边的数总是大于左边的数,因而不等式x≥2的解集是指2以及2右边的部分.【解答】解:不等式x≥2,在数轴上的2处用实心点表示,向右画线.故选:C.【点评】本题考查在数轴上表示不等式的解析,需要注意当包括原数时,在数轴上表示时应用实心圆点来表示,当不包括原数时,应用空心圆圈来表示.28.不等式组的解集在数轴上表示,正确的是()A.B.C.D.【分析】把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),如果数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.【解答】解:由于x<1,所以表示1的点应该是空心点,折线的方向应该是向左,由于x≥0,所以表示0的点应该是实心点,折线的方向应该是向右,如图:故选:C.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.29.不等式2(x+1)<3x的解集在数轴上表示出来应为()A.B.C.D.【分析】首先解不等式,把不等式的解集表示出来,再对照答案的表示法判定则可.【解答】解:去括号得:2x+2<3x移项,合并同类项得:﹣x<﹣2即x>2.故选:D.【点评】解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.30.不等式组的解集在数轴上可表示为()A.B.C.D.【分析】在表示数轴时,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.而它们相交的地方加上阴影即为不等式的解集在数轴上的表示.【解答】解:两个不等式的公共部分是在数轴上,5以及5右边的部分,因而解集可表示为:故选:D.【点评】注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.31.关于x的不等式2x﹣a≤﹣1的解集如图所示,则a的取值是()A.0B.﹣3C.﹣2D.﹣1【分析】首先根据不等式的性质,解出x≤,由数轴可知,x≤﹣1,所以,=﹣1,解出即可;【解答】解:不等式2x﹣a≤﹣1,解得,x≤,由数轴可知,x≤﹣1,所以,=﹣1,解得,a=﹣1;故选:D.【点评】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二.填空题(共7小题)32.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】根据不等式组解集的求法解答.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.【解答】解:不等式组的解集是x>4,得m≤4,故答案为:m≤4.【点评】本题考查了不等式组解集,求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.33.若不等式组有实数解,则实数m的取值范围是m≤2.【分析】根据大小小大中间找可得答案.【解答】解:由6﹣3x≥0,解得x≤2.由x﹣m≥0,解得x≥m,由不等式组有实数解,则实数m的取值范围是m≤2,故答案为:m≤2.【点评】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).34.已知关于x的不等式组无解,则a的取值范围是a≥10.【分析】根据不等式组无解,可得出a≥10.【解答】解:∵关于x的不等式组无解,∴根据大大小小找不到(无解)的法则,可得出a≥10.故答案为a≥10.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).35.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是13≤a<15.【分析】表示出不等式的解集,由x=5是一个解,x=4不是它的解,确定出a的范围即可.【解答】解:不等式2x+5>a,解得:x>,由x=5是不等式的一个解,但x=4不是它的解,得到4≤<5,解得:13≤a<15,则a的取值范围是13≤a<15,故答案为:13≤a<15【点评】此题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.36.不等式组的解集是x>4,那么m的取值范围是m≤4.【分析】首先解不等式﹣x+2<x﹣6得x>4,而x>m,并且不等式组解集为x >4,由此即可确定m的取值范围.【解答】解:∵﹣x+2<x﹣6,解之得x>4,而x>m,并且不等式组解集为x>4,∴m≤4.【点评】此题主要考查了如何确定不等式组的解集,首先确定已知不等式的解集,然后结合不等式组的解集和另一个不等式的形式就可以确定待定系数m的取值范围.37.不等式6﹣12x<0的解集是x>.【分析】先移项,然后将系数化为1即可.【解答】解:移项得,﹣12x<﹣6,解得x>.【点评】本题主要考查了不等式的解法,解不等式时要注意,不等式两边都乘以或除以一个负数,要改变不等号的方向.38.不等式组的解集是x>1;不等式组的解集是x<1.【分析】根据求不等式组解集的方法求解即可.【解答】解:∵不等式组,∴此不等式组的解集为x>1;∵不等式组,∴此不等式组的解集为x<1.故答案为:x>1;x<1.【点评】本题考查的是不等式组的解集,熟知“同大取较大,同小取较小”的原则是解答此题的关键.三.解答题(共2小题)39.在数轴上表示下列不等式的解集:(1)x<﹣2(2)x≥1【分析】(1)在﹣2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.【解答】解:(1)如图所示;;(2)如图所示..【点评】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.40.已知x=3是关于x的不等式的解,求a的取值范围.【分析】先根据不等式,解此不等式,再对a分类讨论,即可求出a的取值范围.【解答】解:解得(14﹣3a)x>6当a<,x>,又x=3是关于x的不等式的解,则<3,解得a<4;当a>,x<,又x=3是关于x的不等式的解,则>3,解得a<4(与所设条件不符,舍去).综上得a的取值范围是a<4.【点评】本题考查了不等式的解的定义及一元一次不等式的解法,比较简单,注意分类讨论是解题的关键.。
【最新】华东师大版七年级数学下册第八章《不等式的简单变形》公开课课件
华东师大·七年级下册
复习回顾
等式的基本性质
(1)等式的两边都加上(或减去)同一 个数或同一个整式,所得的结果仍 是等式. 若a=b,则a+c=b+c(或a-c=b-c)
(2)等式的两边都乘以(或除以)同 一个数(除数不能为零),所得的结 果仍是等式. b a 若a=b,则ac=bc(或 c = c ,c≠0)
的什么变形类似?
这里的变形,与方程变形中的移项相类似, 你能说出不等式变形的“移项”该怎么进行吗?
当堂训练
1. 设a>b,用“<”或“>”填空Βιβλιοθήκη a -3____b > –3
< 2-3a______2 < -3b
- 4a____ - 4b
2.判断
1. 因为-3<0,所以-3+1<1 3. 若a<b,则3 a< 3 b 4. 若-6a<-6 b,则a<b 5. 若a>b,则-a<-b 6. 若-2x>0,则x>0 (√ ( ×) ) (√ ) 2. 因为-3 × 2> -5 ×2,所以-3<-5 (× ) (√ ) (× )
(2)解:6x-5x<5x-1-5x x <- 1 1) 1) ( - ( - (4)解: –4x× 4 <3× 4 3 x< - 4
x>15
4. 由x<y得mx>my的条件是 A . m≥0 B . m≤0
( D ) D. m<0
C. m>0
5.若mx<m,且x>1,则应为
( A )
A. m<0
8.2.1 不等式的解集 华东师大版数学七年级下册课时练习(含解析)
8.2.1不等式的解集一、选择题(共10小题)1.下列说法正确的是()A.x=2是不等式3x>5的一个解B.x=2是不等式3x>5的解集C.x=2是不等式3x>5的唯一解D.x=2不是不等式3x>5的解2.下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3B.C.D.23.不等式﹣2≤x<3中的整数解的个数是()A.3个B.4个C.5个D.6个4.如果有一个数不超过a,那么这个数的取值范围在数轴上表示正确的是()A.B.C.D.5.如图表示的是不等式的解集,其中错误的是()A.x≤2B.x>1C.x≠0D.x<06.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.7.如图所示的不等式组的解集为()A.﹣1<x<2B.﹣1≤x<2C.﹣1<x≤2D.﹣1≤x≤2 8.对于不等式x+2>5,下列说法正确的是()A.x=3,x=﹣2都是它的解B.x=3,x=5,x=7是它的全部解C.x=5是它的解,x=7不是它的解D.x>3就是x+2>5的解集9.下列说法中,错误的是()A.不等式x<5的整数解有无数个B.不等式x>﹣5的负整数解为有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解10.下列说法中,错误的是()A.不等式x<2的正整数解只有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个二、填空题(共4小题)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是.12.如图表示的不等式的解集是.13.如图,数轴上表示关于x的不等式组的解集是.14.下列数值中能使1﹣2x>0成立的数有个.三、解答题(共3小题)15.写出下列数轴所表示的不等式的解集.16.把下列不等式的解集在数轴上表示出来:(1)x<2:(2)x≥﹣1;(3)x≤﹣1.5;(4)x>3.总结:小于向画,大于向画;无等号画圆圈,有等号画圆点.17.在数轴上表示下列不等式的解集:(1)x<4;(2)x≤﹣2;(3)x>﹣1;(4)x≥﹣4;(5)x<﹣50;(6)﹣1<x≤3.8.2.1不等式的解集参考答案与试题解析一、选择题(共10小题)1.下列说法正确的是()A.x=2是不等式3x>5的一个解B.x=2是不等式3x>5的解集C.x=2是不等式3x>5的唯一解D.x=2不是不等式3x>5的解【解答】解:3x>5,解得x>,A、x=2是不等式3x>5的一个解,故A正确;B、x=2是不等式3x>5的解,故B错误;C、x=2是不等式3x>5的唯一解,故C错误;D、x=2不是不等式3x>5的解,故D错误;故选:A.2.下列各数中,不是不等式2(x﹣3)+3<0的一个解的是()A.﹣3B.C.D.2【解答】解:2(x﹣3)+3<0,去括号得,2x﹣6+3<0,移项得,2x<6﹣3,合并同类项得,2x<3,把x的系数化为1得,x<.∵,∴2不是不等式2(x﹣3)+3<0的解.故选:D.3.不等式﹣2≤x<3中的整数解的个数是()A.3个B.4个C.5个D.6个【解答】解:不等式﹣2≤x<3的整数解有:﹣2、﹣1、0、1、2,共5个.故选:C.4.如果有一个数不超过a,那么这个数的取值范围在数轴上表示正确的是()A.B.C.D.【解答】解:设这个数是x,∵这个数不超过a,∴x≤a.故选:B.5.如图表示的是不等式的解集,其中错误的是()A.x≤2B.x>1C.x≠0D.x<0【解答】解:A、x≤2应该从表示2的点出发,实心圆点向左画折线,正确;B、x>1应该从表示1的点出发,空心圆点向右画折线,错误;C、x≠0应该从表示0的点出发,空心圆点向右和向左画2条折线,正确;D、x<0应该从表示0的点出发,空心圆点向左画条折线,正确.故选:B.6.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【解答】解:∵此不等式不包含等于号,∴可排除B、D,∵此不等式是小于号,∴应向左化折线,∴A错误,C正确.故选:C.7.如图所示的不等式组的解集为()A.﹣1<x<2B.﹣1≤x<2C.﹣1<x≤2D.﹣1≤x≤2【解答】解:由图可知不等式的解集是﹣1及﹣1与2之间的数,故应表示为:﹣1≤x<2.故选:B.8.对于不等式x+2>5,下列说法正确的是()A.x=3,x=﹣2都是它的解B.x=3,x=5,x=7是它的全部解C.x=5是它的解,x=7不是它的解D.x>3就是x+2>5的解集【解答】解:x+2>5,解得x>3.故选项D符合题意.故选:D.9.下列说法中,错误的是()A.不等式x<5的整数解有无数个B.不等式x>﹣5的负整数解为有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【解答】解:A、正确;B、不等式x>﹣5的负整数解有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选:C.10.下列说法中,错误的是()A.不等式x<2的正整数解只有一个B.﹣2是不等式2x﹣1<0的一个解C.不等式﹣3x>9的解集是x>﹣3D.不等式x<10的整数解有无数个【解答】解:A、不等式x<2的正整数解只有一个,不符合题意;B、﹣2是不等式2x﹣1<0,即x<的一个解,不符合题意;C、不等式﹣3x>9的解集是x<﹣3,符合题意;D、不等式x<10的整数解有无数个,不符合题意.故选:C.二、填空题(共4小题)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是x>﹣2.【解答】解:观察数轴可得该不等式的解集为x>﹣2.故答案为:x>﹣2.12.如图表示的不等式的解集是x<1.【解答】解:图中不等式的解集是x<1,故答案为:x<1.13.如图,数轴上表示关于x的不等式组的解集是﹣1<x≤3.【解答】解:从图可知,不等式组的解集为﹣1<x≤3,故答案为﹣1<x≤3.14.下列数值中能使1﹣2x>0成立的数有3个.【解答】解:∵1﹣2x>0,∴﹣2x>﹣1,∴x<,满足x<的有﹣、﹣1、0,共3个,故答案为:3.三、解答题(共3小题)15.写出下列数轴所表示的不等式的解集.【解答】解:(1)∵4处是实心点且折线向左,∴不等式的解集为:x≤4;(2)∵3处是空心点且折线向右,∴x>3.16.把下列不等式的解集在数轴上表示出来:(1)x<2:(2)x≥﹣1;(3)x≤﹣1.5;(4)x>3.总结:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点.【解答】解:(1)x<2:(2)x≥﹣1:(3)x≤﹣1.5:(4)x>3:.总结:小于向左画,大于向右画;无等号画空心圆圈,有等号画实心圆点.故答案为:左;右;空心;实心.17.在数轴上表示下列不等式的解集:(1)x<4;(2)x≤﹣2;(3)x>﹣1;(4)x≥﹣4;(5)x<﹣50;(6)﹣1<x≤3.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:(5)如图所示:(6)如图所示:.。
华东师大版七下数学第8章8
针对华东师大版七下数学第8章8.2不等式的解集这一部分内容,学生在学习过程中已具备了一定的数学基础。他们已经掌握了基本的算术运算,能够解决一些简单的数学问题。在此基础上,学生对不等式的概念和性质有了初步的认识,但对于不等式的解集及其在实际问题中的应用,可能还存在一定的困难。
在知识层面上,学生需要巩固不等式的定义和基本性质,以便能够顺利地过渡到解集的学习。在能力层面上,学生需要提高观察、分析、归纳等数学思维能力,以便能够准确地找出不等式的解集,并将其应用于实际问题。
(2)新知学习:讲解不等式的性质,结合数轴,让学生直观地理解不等式的解集。
(3)巩固练习:设计不同难度的练习题,让学生在解题过程中,巩固所学知识,提高解题能力。
(4)实际应用:将不等式应用于实际问题,让学生感受数学的实用价值,提高学生的数学素养。
(5)总结反思:对本节课的知识点进行总结,引导学生反思学习过程中的收获与不足,培养学生的自我评价能力。
(二)讲授新知
1.教学内容:不等式的解集表示方法。
教学过程:
(1)教师通过数轴,直观地展示不等式的解集。
(2)讲解解集的表示方法,如大于、小于、大于等于、小于等于等。
(3)结合具体不等式,让学生在数轴上表示解集,加深理解。
2.教学内容:不等式的解集在实际问题中的应用。
教学过程:
(1)教师通过实例,讲解如何将实际问题转化为不等式问题。
(2)引导学生分析问题,找出关键信息,列出不等式。
(3)利用数轴表示解集,解决实际问题。
(三)学生小组讨论
1.教学内容:小组合作,共同解决不等式问题。
教学过程:
(1)教师给出具有挑战性的不等式问题,要求学生分组讨论。
(2)学生在小组内分享解题思路,共同寻找解决方案。
七年级数学下册 8.2.1 不等式的解集教案 (新版)华东师大版
第8章一元一次不等式8.2.1不等式的解集【教学目标】知识与能力1、理解不等式的解集的概念和解不等式的概念。
2、用数轴表示不等式的解集,感受到数形结合的作用。
过程与方法不等式的解集;通过数轴直观表示不等式的解集。
体会数形结合的思想,并懂得如何在实际问题中运用它。
情感态度与价值观通过自主探究体会到不等式与方程的类似与不同之处,感受不等式解法的实际应用,进一步认识到数学是解决实际问题和进行交流的工具。
【教学重点】理解不等式的解集的概念和解不等式的概念。
【教学难点】用数轴表示不等式的解集,感受到数形结合的作用。
【教学过程】一、知识回顾什么叫不等式? 常用的不等号有哪些? 什么叫方程?什么是方程的解?二、自主预习在上一节练习第3题中,我们发现,-3、-2、-1、0、1.5、2.5、3都不是不等式x+2>5的解。
由此可以看出,不等式x+2>5有许多个解。
进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解。
由此可见,不等式x+2>5的解有无限多个,它们组成一个集合,称为不等式x+2>5的解集。
三、自主探究(一)一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集(solution set)。
研究不等式的一个重要任务,就是求出不等式的解集。
求不等式的解集的过程,叫做解不等式(solving inequality)。
想一想:不等式的解与不等式的解集有何区别?举例说明!(二)1.回忆:数轴的三要素?(原点、正方向、单位长度)2.表示不等式解集:不等式x+2>5的解集,可以表示成x>3,它也可以在数轴上直观地表示出来,如图13.2.1所示。
同样,如果某个不等式的解集为x≤-2,也可以在数轴上直观地表示出来,如图13.2.2所示。
3.归 纳:大于向右,小于向左。
不含等号画空心,若含等号点实心。
四、知识梳理 不等式的解集有什么特点?它与方程的解有何区别? 2.在数轴上表示不等式的解集有何优点,要注意些什么? 五、随堂练习1、-3x ≤6的解集是 ( )0-1-2 0-1-2 012 012A 、B 、C 、D 、2、用不等式表示图中的解集,其中正确的是( )A. x ≥-2B. x >-2C. x <-2D. x ≤-23、下列说法中,错误的是( )A.不等式x <5的整数解有无数多个B.不等式x >-5的负数解集有有限个C.不等式-2x <8的解集是x <-4D.-40是不等式2x <-8的一个解4、下列说法正确的是( )A.x =1是不等式-2x <1的解集B.x =3是不等式-x <1的解集C.x >-2是不等式-2x <1的解集D.不等式-x <1的解集是x <-15、不等式x -3>1的解集是( )A.x >2B. x >4C.x -2>D. x >-46、不等式2x <6的非负整数解为( )A.0,1,2B.1,2C.0,-1,-2D.无数个7直接想出不等式的解集:(1) x +3>6的解集 ;(2)2x <12的解集 ;(3)x -5>0的解集 ;(4)0.5x >5的解集 ;8、在数轴上表示下列不等式的解集:(1)x ≥-3.5 (2)x <-1.52-110-2-3-43 2-110-2-3-43(3)x ≥2 (4)-1≤x <2。
七年级数学下册8、2解一元一次不等式3解一元一次不等式第1课时解一元一次不等式习题课件新版华东师大版
A.4
B.±4
C.3
D.±3
13.【中考·无锡】若关于 x 的不等式 3x+m≥0 有且仅有两个负
整数解,则 m 的取值范围是( D )
A.6≤m≤9
B.6<m<9
C.6<m≤9
D.6≤m<9
14.我们知道不等式1+2 x<1+32x+1 的解集是 x>-5,现给出另 一个不等式1+(32x-1)<1+2(33x-1)+1,它的解集是
1.下列式子是一元一次不等式的是( B )
A.x2<1
B.y-3>0
C.a+b=1
ห้องสมุดไป่ตู้D.3x=2
2.若不等式 2xa<1 是关于 x 的一元一次不等式,则( C )
A.a≠1
B.a=0
C.a=1
D.a=2
3.【中考·宁波】不等式3-2 x>x 的解集为( A )
A.x<1
B.x<-1
C.x>1
D.x>-1
18.已知关于 x,y 的二元一次方程组x2+x-4yy==-4m7-m+5,2的解满足
x+y>-3,其中 m 是非负整数,求 m 的值.
解:2xx+-4yy= =-4m7-m+5,2① ,② 所以 x+y=-m-1.
①+②,得 3x+3y=-3m-3,
因为 x+y>-3,所以-m-1>-3,所以 m<2.
17.已知不等式13(x-m)>2-m. (1)若其解集为 x>3,求 m 的值; 解:不等式整理得 x-m>6-3m, 解得 x>6-2m, 由不等式的解集为 x>3,得到 6-2m=3, 解得 m=1.5.
(2)若满足 x>3 的每一个数都能使已知不等式成立,求 m 的取 值范围.
华师大版数学七年级下册全册教案
1、知识与技能:①了解方程、一元一次方程、二元一次方程组以及方程(组)的解等基本概念,了解方程的基本变形及其在解方程(组)中的作用。会解一元一次方程、二元一次方程组,并经历和体会解方程中转化的过程与思想,了解解方程(组)解法的一般步骤,并能灵活运用。②了解三角形的内角、外角及其主要线段(中线、高线、角平分线)等概念,会画出任意三角形的中线、高线和角平分线,了解三角形的稳定性,了解几种特殊三角形与多边形的特征,并能加以简单的识别,探索并掌握三角形的外角性质与外角和,理解并掌握三角形三边关系,探索、归纳多边形的内角和秘外角和公式。③通过具体实例认识轴对称探索线段、角和圆等图形的轴对称性,了解线段中垂线的性质和角平分线的性质,会画轴对称图形并探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分的性质,能利用轴对称进行图案设计,了解等腰三角形的概念掌握其性质和其识别方法。④让学生知道普查和抽样调查的区别,感受抽样调查的必要性和现实性,体会选取有代表性的样本对正确估计总体是十分重要的,会求平均数、中位数、众数并了解它们各自适用范围,体验随机事件在每一次实验中是否发生是不可预言的,但在大数次反复实验后是有规律的。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。
第十章:轴对称图形是通过观察与操作,让学生感知确认最为简单的变换——轴对称中隐含着的数学不变量关系,同时辅以数学说理,给学生一定的理性训练与图形变换的思想。
本章重点:轴对称中隐含着的数学不变量关系,同时辅以数学说理
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?
不等式的解集
数学(七年级下)
8.2 解一元一次不等式 1.不等式的解集
学习目标
1. 理解不等式的解集的意义,明确不等 式的解集是指某个范围内的所有数. 2. 能准确的在数轴上表示不等式的解集, 并能根据图示写不等式的解集. 3. 体会数形结合思想,感受数轴在探求和 表示不等式解集中的作用. 4. 培养自主探索、合作交流的能力.
⑴列出不等式; ⑵探索出它的解集; ⑶将它的解集在数轴上表示出来;
不等式的解集:
一个不等式的所有解,组成这个不等式 的解的集合,简称为这个不等式的解集。
求不等式的解集的过程,叫做解不等式。
x+2>5的解集,可以表示成x>3, 也可以在数轴上直观地表示出来
-2 -1 0 1 2 3 4 5 6
x>3不包括3,在x=3处画空心圆圈。
答:不能。因为x>0不包括不等式x+3>2的 所有解,还有满足-1<x≤0的数也都是这个不 等式的解。这个不等式的解集应为x>-1 注意:不等式的解集必须满足两个条件: 1.解集中的任何一个数值都使不等式成立; 2.解集外的任何一个数值都不能使不等式 成立.
3. 不等式x>-2与x≥-2的解集有什么不同? 在数轴上表示它们时怎样区别?分别在数轴 上把这两个解集表示出来.
解: x>-2不包括-2,在数轴上表示时,在x= -2 处画空心圆圈; x≥-2包括-2,在数轴上表示时, 在x= -2处画实心圆圈.
不等式x>-2与x≥-2的解集如下
4、在数轴上表示出下列不等式的解集: (1)x>-1 (2) x≥-1 ; (3)x<- 1 (4) x≤-1
解:
注意:数轴上实心与空心的区别在于: (1)空心点表示解集不包括这一点,实心 点表示解集包括这一点。 (2)数轴上表示不等式的解集遵循“大于向 右走,小于向左走”这一原则。
华东师大版初中七下8[1].2.2不等式的性质ppt课件A
7 ×(-1)____4 ×(-1) 7 ×(-2)____4 ×(-2)
通过这题,你可以得到什么样的结论, 说给其他同学听听!
概括
不等式的基本性质2:
不等式的两边都乘以(或除以)同一个正 数,不等号的方向 不变
不等式的基本性质2:
如果a > b,并且c ຫໍສະໝຸດ 0,那么ac > bc概括
2
2
4判断正误:
(1)∵a+8>4 (2)∵3>2
∴a>-4 ( √ )
(3)∵-1>-2
∴3a>2a( × )
(4)∵ab>0
∴a-1>a-2 ( √ ) ∴a>0,b> 0( ×)
练习B
1.a,b两个实数在数轴上的对应点如图所示: 用“>”或“<”号填空:
> < (1)a___b (2) |a|___|b| < > (3)a+b___0 (4) a-b___0 (5) a+b___a-b (6) ab____a < <
例题分析
例2.将下列不等式化成“x<a或x>a”的式:
(1) 0.5 x>-3 解1:不等式的两边都乘以2 ,不等号的方向 不变,所以
0.5 × 2 x > (-3) × 2
得x > -6
例题分析
• (2) -2X < 6
解2:不等式的两边都除以-2 ,不等号的方向改变, 所以
(-2) x÷ (-2) > 6 ÷ (-2)
不等式的基本性质3:
不等式的两边都乘以(或除以)同一个 负 数,不等号的方向 改变 不等式的基本性质3:
如果a > b,并且c < 0,那么ac < bc
例题分析
例1.根据不等式的基本性质,把下列 不等式化成x<a或x>a的形式: (1) x-2< 3 (2) 6x< 5x-1 解:(1)根据不等式基本性质1,两边都 加上2,得 x-2+2<3+2 x<5 (2)根据不等式基本性质1,两边都减去5x, 得 6x-5x<5x-1-5x x<-1
七年级数学下册8.2.1不等式的解集课件(新版)华东师大版
◆知识导航 ◆典例导学 ◆反馈演练(yǎn liàn) (◎第一阶 ◎第二阶)
第十五页,共17页。
◆知识导航 ◆典例导学 ◆反馈演练 (◎第一(dìyī)阶 ◎第二阶)
第十六页,共17页。
◆知识(zhī shi)导航 ◆典例导学 ◆反馈演练 (◎第一阶 ◎第二阶)
第十七页,共17页。
◆知识导航 ◆典例导学 ◆反馈演练(yǎn liàn) (◎第一阶 ◎第二阶)
第八页,共17页。
◆知识(zhī shi)导航 ◆典例导学 ◆反馈演练 (◎第一阶 ◎第二阶)
第九页,共17页。
◆知识导航 ◆典例导学 ◆反馈演练 (◎第一(dìyī)阶 ◎第二阶)
第十页,共17页。
◆知识导航 ◆典例பைடு நூலகம்学 ◆反馈演练(yǎn liàn) (◎第一阶 ◎第二阶)
第十一页,共17页。
◆知识导航(dǎoháng) ◆典例导学 ◆反馈演练 (◎第一阶 ◎第二阶)
第十二页,共17页。
◆知识导航 ◆典例导学 ◆反馈(fǎnkuì)演练 (◎第一阶 ◎第二阶)
第十三页,共17页。
◆知识导航(dǎoháng) ◆典例导学 ◆反馈演练 (◎第一阶 ◎第二阶)
第十四页,共17页。
阶)
第四页,共17页。
◆知识导航 ◆典例导学 ◆反馈演练(yǎn liàn) (◎第一阶 ◎第二阶)
第五页,共17页。
◆知识导航(dǎoháng) ◆典例导学 ◆反馈演练 (◎第一阶 ◎第二
阶)
第六页,共17页。
◆知识(zhī shi)导航 ◆典例导学 ◆反馈演练 (◎第一阶 ◎第二
阶)
第七页,共17页。
◆知识导航 ◆典例导学 ◆反馈(fǎnkuì)演练 (◎第一阶 ◎第二阶)
2017年春季新版华东师大版七年级数学下学期8.2.1、不等式的解集课件6
◆反馈演练 (◎第一阶 ◎第二阶)
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
◆反馈演练 (◎第一阶 ◎第二阶)
◆知识导航 ◆典例导学
华师版数学七年级下册8.2.3解一元一次不等式(共2课时25页)
(4) -4x>3
概括总结 一元一次不等式的定义: 只含一个未知数,并且含未知数的式子都是整式,
未知数的次数都是 1,像这样的不等式,叫做一元一 次不等式.
练一练
下列不等式中,哪些是一元一次不等式?
(1) 3x+2>x-1 ✓ (2) 5x+3< 0
✓
(3) 1 +3<5x -1 ✕ x
(4) x (x-1)<2x ✕
x 4
≤
9.
解得 x ≤ 12.
因此要满足下午 4 点以前必须返回
出发点,小华他们最远能登上 D 山顶.
典例精析
例1 某童装店按每套 90 元的价格购进 40 套童装,应 缴纳的税费为销售额的 10%. 如果要获得不低于 900 元的纯利润,每套童装的售价至少是多少元?
分析: 本题涉及的数量关系是: 销售额-成本-税费≥纯利润(900元).
生联想,根据小草的结构发明了锯子.
鲁班在这里就运用了“类比”的思想方法,“类比” 也是数学学习中常用的一种重要方法.
合作探究
思考 观察下面的不等式: (1) x-7>26 (2) 3x-7>26 (3) 2 x >50
3
它们有哪些共同特征? 左右两边都是整式; 都只含有一个未知数; 未知数的次数是 1.
步骤
华师版七下数学教学课件
8.2 解一元一次不等式
8.2.3 解一元一次不等式
第2课时 一元一次不等式的实际应用
导入新课
回顾与思考
1. 应用一元一次方程解实际问题的步骤:
实际问题
设未知数
找相等关系
检验解的 合理性
解方程
列出方程
2. 将下列生活中的不等关系翻译成数学语言.
(1) 超过 > (2) 至少 ≥
8.2.1-不等式的解集-华东师大版七年级数学下册教学课件
1.下列说法正确的是( A ) A. x=3是2x+1>5的解 B. x=3是2x+1>5的唯一解 C. x=3不是2x+1>5的解 D. x=3是2x+1>5的解集
2.判断下列说法是否正确?
(1) x=2是不等式x+3<4的解;
(×)
(2) 不等式x+1<2的解有无穷多个; (√ )
(3) x=3是不等式3x<9的解
用数轴表示不等式的解集的要点: (1)在定方向时,要注意不要搞错方向,大于向右.小于向左. (2)有等于号(≤,≥)画实心圆点,无等于号(<,>)画空心圆圈. (3)在数轴上表示不等式的解集,一般分三步:画数轴,定界点,定方向.
易错提醒: (1)在数轴上表示不等式的解集时,要确定边界和方向: ① 边界:有等号的是实心圆点,无等号的是空心圆圈; ② 方向:大于向右,小于向左. (2)在用数轴表示不等式的解集时,端点用实心圆点和用空心圆圈表示的含 义不同,要特别注意.
(×)
(4) x=2是不等式3x<7的解集; (×)
3.在数轴上表示不等式3x>5的解集,正确的是( A )
0 1 52 3
A
0 1 52 3
C
0 1 52 B3
0 1 52 3
D
4.已知x的解集如图所示,你能写出x的解集吗?
(1)
-4 0
解:(1)x<-4;
(2) 04
(2)x>4.
5.利用数轴来表示下列不等式的解集.
(1)x>-1 ;
(2)
x<
1 2
.
-1 0
0
1 2
1
6.已知x的解集在数轴上表示如图,你能写出x的解集吗?