2019-2020学年人教版初一下学期期末考试数学试题及答案

合集下载

2019-2020学年山东省济宁市汶上县七年级下学期期末数学试卷 (解析版)

2019-2020学年山东省济宁市汶上县七年级下学期期末数学试卷 (解析版)

2019-2020学年山东济宁市汶上县七年级第二学期期末数学试卷一、选择题(共10小题).1.若点P的坐标是(2,﹣1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列说法中正确的是()A.不带根号的数都是有理数B.8没有立方根C.16的算术平方根是4D.1的平方根是13.我国疫情防控形势积极向好,为做好复学复课前的准备工作,我县某学校为了解全校1500名学生复课后的上学方式,随机抽取了300名学生进行调查,其中有150人乘车上学,50人步行,剩下的选择其他上学方式,该调査中的样本容量是()A.1500B.300C.150D.504.如图,能判断直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°5.已知m>n,则下列不等式中不正确的是()A.m+7>n+7B.5m>5n C.m﹣6<n﹣6D.﹣4m<﹣4n 6.端午节前夕,某超市用1680元购进A、B两种商品共60件,其中A型商品每件24元,B型商品每件36元.设购买A型商品x件、B型商品y件,依题意列方程组正确的是()A.B.C.D.7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.58.已知关于x的不等式组的解集为﹣1<x<1,则(a+b)2020为()A.1B.3C.4D.﹣19.若方程组的解是,则方程组的解是()A.B.C.D.10.如图,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,则下列结论:①∠ACB=∠E;②∠ABF=∠ADC;③BF∥CD;④∠ABF=∠BCD,其中正确的有()A.4个B.3个C.2个D.1个二、填空题(共5小题,每小题3分,满分12分)11.小明家1至6月份的用水量统计如图所示,根据图中的数据可知,5月份的用水量比3月份的用水量多吨.12.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于度.13.中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点.14.关于x,y的二元一次方程组的解满足x+y>2,则a的范围为.15.我们规定:将任意三个互不相等的数a,b,c按照从小到大的顺序排列后,把处于中间位置的数叫做这三个数的中位数,用符号mid{a,b,c}表示.例如mid{﹣1,2,1}=1,则mid{,5,3}=.三、解答题(共7小题,满分55分)16.计算:(1)+(﹣1)2.(2)|1﹣|﹣(1﹣).17.如图,AG⊥BD,CD⊥BD,垂足分别为B、D,∠A+∠AEF=180°,求证:CD∥EF.某同学证法如下,请在括号里填写其推理过程或理由.证明::AB⊥BD,CD⊥BD(已知),∴∠DBG=∠CDB=90°().∴AB∥(),∵∠A+∠AEF=180°(),∴AB∥EF(),∴CD∥EF().18.在解方程组时,由于粗心,小军看错了方程组中的n,得解为,小红看错了方程组中的m,得解为.(1)则m,n的值分别是多少?(2)正确的解应该是怎样的?19.为弘扬传统文化,我县某校开展了“传承经典文化,阅读经典名著”活动、为了解七、八年级学生的阅读效果,该校举行了经典文化知识竞赛.现从两个年级随机抽取m名学生的竞赛成绩进行整理分组,形成如下表格(x代表成绩),并绘制出扇形统计图和条形统计图(横坐标表示成绩,单位:分).A组90<x≤100B组80<x≤90C组70<x≤80D组60<x≤70E组50<x≤60(1)求m的值和扇形统计图中D组对应的圆心角的度数;(2)请补全条形统计图,并标注出相应的人数;(3)若此次竞赛成绩80分以上的为优秀,参加此次竞赛考试的学生总数为2000人,请求出此次竞赛成绩为优秀的学生人数.20.【计算下列各式】(1)×=,=.×=,=.【归纳发现】(2)观察以上计算结果,尝试用含有字母a、b(其中,a≥0,b≥0)的式子表示发现的规律;【实践应用】(3)运用发现的规律进行计算:①×.②×.21.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?22.某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b.他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、BQ.(1)如图1,过点E作EH∥AB,运用上述结论,探究∠PEQ、∠APE、∠CQE之间的数量关系,并说明理由;(2)如图2,类比(1)中的方法,运用上述结论,探究∠PEQ、∠APE、∠CQE之间的数量关系,并说明理由;(3)如图3,PF平分∠BPE,QF平分∠EQD,当∠PEQ=140°时,直接写出∠PFQ 的度数.参考答案一、选择题(共10小题).1.若点P的坐标是(2,﹣1),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵2>0,﹣1<0,∴点P(2,﹣1)在第四象限.故选:D.2.下列说法中正确的是()A.不带根号的数都是有理数B.8没有立方根C.16的算术平方根是4D.1的平方根是1解:A、不带根号的数不一定是有理数,如π,故选项错误;B、8有立方根2,故选项错误;C、16的算术平方根是4,故选项正确;D、1的平方根是±1,故选项错误.故选:C.3.我国疫情防控形势积极向好,为做好复学复课前的准备工作,我县某学校为了解全校1500名学生复课后的上学方式,随机抽取了300名学生进行调查,其中有150人乘车上学,50人步行,剩下的选择其他上学方式,该调査中的样本容量是()A.1500B.300C.150D.50解:为了解某校1500名学生的上学方式,随机抽取了300名学生进行调查,该调查中的样本容量是:300.故选:B.4.如图,能判断直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠3=180°D.∠3+∠4=180°解:∵∠1+∠5=180°,∠3+∠1=180°,∴∠3=∠5,∴AB∥CD,故选:C.5.已知m>n,则下列不等式中不正确的是()A.m+7>n+7B.5m>5n C.m﹣6<n﹣6D.﹣4m<﹣4n 解:A.∵m>n,∴m+7>n+7,故本选项不符合题意;B.∵m>n,∴5m>5n,故本选项不符合题意;C.∵m>n,∴m﹣6>n﹣6,故本选项符合题意;D.∵m>n,∴﹣4m<﹣4n,故本选项不符合题意;故选:C.6.端午节前夕,某超市用1680元购进A、B两种商品共60件,其中A型商品每件24元,B型商品每件36元.设购买A型商品x件、B型商品y件,依题意列方程组正确的是()A.B.C.D.解:设购买A型商品x件、B型商品y件,依题意列方程组:.故选:B.7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.8.已知关于x的不等式组的解集为﹣1<x<1,则(a+b)2020为()A.1B.3C.4D.﹣1解:由x﹣a>2,得:x>a+2,由b﹣2x>0,得:x<,∵解集为﹣1<x<1,∴a+2=﹣1,=1,解得a=﹣3,b=2,则(a+b)2020=(﹣3+2)2020=(﹣1)2020=1,故选:A.9.若方程组的解是,则方程组的解是()A.B.C.D.解:由题意得:,解得:,故选:B.10.如图,已知BC∥DE,BF平分∠ABC,DC平分∠ADE,则下列结论:①∠ACB=∠E;②∠ABF=∠ADC;③BF∥CD;④∠ABF=∠BCD,其中正确的有()A.4个B.3个C.2个D.1个解:∵BC∥DE,∴∠ACB=∠E,①正确;∵BC∥DE,∴∠ABC=∠ADE,∵BF平分∠ABC,DC平分∠ADE,∴∠ABF=∠CBF=∠ABC,∠ADC=∠EDC=∠ADE,∴∠ABF=∠CBF=∠ADC=∠EDC,②正确;∴BF∥CD,③正确;∵∠ABF=∠ADC,∠ADC=∠EDC,∴∠ABF=∠EDC,∵DE∥BC,∴∠BCD=∠EDC,∴∠ABF=∠BCD,④正确;即正确的有4个,故选:A.二、填空题(共5小题,每小题3分,满分12分)11.小明家1至6月份的用水量统计如图所示,根据图中的数据可知,5月份的用水量比3月份的用水量多3吨.解:由折线统计图知,5月份用的水量是6吨,3月份用的水量是3吨,则5月份的用水量比3月份的用水量多3吨;故答案为:3.12.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于105度.解:∵将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,∴∠E=∠EDB=45°,∠B=60°,∴∠1=45°+60°=105°.故答案为:105.13.中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点(﹣1,1).解:如图所示:可得原点位置,则“兵”位于(﹣1,1).故答案为:(﹣1,1).14.关于x,y的二元一次方程组的解满足x+y>2,则a的范围为a<﹣2.解:,①+②得:4(x+y)=2﹣3a,即x+y=,代入不等式得:>2,解得:a<﹣2.故答案为:a<﹣2.15.我们规定:将任意三个互不相等的数a,b,c按照从小到大的顺序排列后,把处于中间位置的数叫做这三个数的中位数,用符号mid{a,b,c}表示.例如mid{﹣1,2,1}=1,则mid{,5,3}=.解:∵3<<5,∴mid{,5,3}=.故答案为:.三、解答题(共7小题,满分55分)16.计算:(1)+(﹣1)2.(2)|1﹣|﹣(1﹣).解:(1)+(﹣1)2=5+(﹣4)+1=2.(2)|1﹣|﹣(1﹣)=﹣1﹣+2=1.17.如图,AG⊥BD,CD⊥BD,垂足分别为B、D,∠A+∠AEF=180°,求证:CD∥EF.某同学证法如下,请在括号里填写其推理过程或理由.证明::AB⊥BD,CD⊥BD(已知),∴∠DBG=∠CDB=90°(垂直的定义).∴AB∥CD(内错角相等,两直线平行),∵∠A+∠AEF=180°(已知),∴AB∥EF(同旁内角互补,两直线平行),∴CD∥EF(平行于同一条直线的两直线平行).解:∵AB⊥BD,CD⊥BD(已知),∴∠DBG=∠CDB=90°(垂直的定义).∴AB∥CD(内错角相等,两直线平行),∵∠A+∠AEF=180°(已知),∴AB∥EF(同旁内角互补,两直线平行),∴CD∥EF(平行于同一条直线的两直线平行).故答案为:垂直的定义;CD;内错角相等,两直线平行;已知;同旁内角互补,两直线平行;平行于同一条直线的两直线平行.18.在解方程组时,由于粗心,小军看错了方程组中的n,得解为,小红看错了方程组中的m,得解为.(1)则m,n的值分别是多少?(2)正确的解应该是怎样的?解:(1)把代入第一个方程得:m+=6,解得:m=2,把代入第二个方程得:﹣4+4n=8,解得:n=3;(2)方程组为,②﹣①×2得:y=2,把y=2代入①得:x=1,则方程组的解为.19.为弘扬传统文化,我县某校开展了“传承经典文化,阅读经典名著”活动、为了解七、八年级学生的阅读效果,该校举行了经典文化知识竞赛.现从两个年级随机抽取m名学生的竞赛成绩进行整理分组,形成如下表格(x代表成绩),并绘制出扇形统计图和条形统计图(横坐标表示成绩,单位:分).A组90<x≤100B组80<x≤90C组70<x≤80D组60<x≤70E组50<x≤60(1)求m的值和扇形统计图中D组对应的圆心角的度数;(2)请补全条形统计图,并标注出相应的人数;(3)若此次竞赛成绩80分以上的为优秀,参加此次竞赛考试的学生总数为2000人,请求出此次竞赛成绩为优秀的学生人数.解:(1)m=4÷8%=50,图中D组对应的圆心角的度数是:360°×=72°,即m的值是50,图中D组对应的圆心角的度数是72°;(2)C组的人数为:50×30%=15,E组的人数为:50﹣10﹣15﹣16﹣4=5,补全的频数分布直方图如右图所示;(3)2000×=800(人),即此次竞赛成绩为优秀的学生有800人.20.【计算下列各式】(1)×=6,=6.×=20,=20.【归纳发现】(2)观察以上计算结果,尝试用含有字母a、b(其中,a≥0,b≥0)的式子表示发现的规律;【实践应用】(3)运用发现的规律进行计算:①×.②×.解:(1)×=2×3=6,=6.×=4×5=20,==20.故答案为:6,6;20,20;(2)观察以上计算结果,尝试用含有字母a、b(其中,a≥0,b≥0)的式子表示发现的规律×=(a≥0,b≥0);(3)运用发现的规律进行计算:①×=.②×==3.21.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?解:(1)设A型污水处理设备每周每台可以处理污水x吨,B型污水处理设备每周每台可以处理污水y吨,,解得,即A型污水处理设备每周每台可以处理污水240吨,B型污水处理设备每周每台可以处理污水200吨;(2)设购买A型污水处理设备a台,则购买B型污水处理设备(20﹣a)台,则,解得,12.5≤x≤15,第一种方案:当a=13时,20﹣a=7,即购买A型污水处理设备13台,购买B型污水处理设备7台;第二种方案:当a=14时,20﹣a=6,即购买A型污水处理设备14台,购买B型污水处理设备6台;第三种方案;当a=15时,20﹣a=5,即购买A型污水处理设备15台,购买B型污水处理设备5台;(3)如果我是厂长,从节约资金的角度考虑,我会选择第一种方案,即购买A型污水处理设备13台,购买B型污水处理设备7台;因为第一种方案所需资金:13×12+7×10=226万元;第二种方案所需资金:14×12+6×10=228万元;第三种方案所需资金:15×12+5×10=230万元;∵226<228<230,∴选择第一种方案所需资金最少,最少是226万元.22.某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b.他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、BQ.(1)如图1,过点E作EH∥AB,运用上述结论,探究∠PEQ、∠APE、∠CQE之间的数量关系,并说明理由;(2)如图2,类比(1)中的方法,运用上述结论,探究∠PEQ、∠APE、∠CQE之间的数量关系,并说明理由;(3)如图3,PF平分∠BPE,QF平分∠EQD,当∠PEQ=140°时,直接写出∠PFQ 的度数.解:(1)∠PEQ=∠APE+∠CQE,理由如下:∵AB∥CD,EH∥AB,∴AB∥EH∥CD,∴∠APE=∠PEH,∠CQE=∠QEH.∵∠PEQ=∠PEH+∠QEH,∴∠PEQ=∠APE+∠CQE.(2)∠APE+∠CQE+∠PEQ=360°;理由如下:过点E作EG∥AB,如图2所示:∵AB∥CD,EG∥AB,∴AB∥EG∥CD,∴∠APE+∠PEG=180°,∠CQE+∠QEG=180°,∴∠APE+∠PEG+∠CQE+∠QEG=360°,即∠APE+∠CQE+∠PEQ=360°;(3)由(2)得:∠PEQ+∠BPE+∠EQD=360°,∵∠PEQ=140°,∴∠BPE+∠EQD=360°﹣140°=220°,∵PF平分∠BPE,QF平分∠EQD,∴∠BPF=∠BPE,∠DQF=∠EQD,∴∠BPF+∠DQF=(∠BPE+∠EQD)=110°,由(1)得:∠PFQ=∠BPF+∠DQF=110°.。

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

(已整理)2019-2020学年成都市成华区七年级(下)期末数学试卷(含解析)

2019-2020学年成都市成华区七年级(下)期末数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分)1.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD2.中国的方块字中有些具有对称性.下列美术字是轴对称图形的是()A.B.C.D.3.某种新型冠状病毒的直径为0.000000053米,将0.000000053用科学记数法表示为()A.53x10﹣8B.5.3x10﹣7C.5.3x10﹣8D.5.3x10﹣94.“对顶角相等”,这一事件是()A.必然事件B.不确定事件C.随机事件D.不可能事件5.下列长度的三条线段,能组成三角形的是()A.4,5,9B.6,7,14C.4,6,10D.8,8,156.下列运算正确的是()A.(a3)2=a6B.a2•a3=a6C.(a+b)2=a2+b2D.a2+a3=a57.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD8.如图,直线AD∥BC,若∠1=74°,∠BAC=56°,则∠2的度数为()A.70°B.60°C.50°D.40°9.如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线AD对称,∠CAD=10°,连接BB',则∠ABB'的度数是()A.45°B.40°C.35°D.30°10.第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()A.B.C.D.二.填空题(本大题4个小题,每小题4分,共16分)11.已知∠A=30°,则∠A的补角的度数为度.12.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是.13.若a2+b2=6,a+b=3,则ab的值为.14.如图,在△ABC中,分别以点A和点C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E.若AE=3,△ABD的周长为13,则△ABC的周长为.三.解答题(本大题共6个小题,满分54分)15.(12分)计算:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4.16.(12分)(1)先化简,再求值:(x+1)(x﹣1)+(2x﹣1)2﹣2x(2x﹣1),其中x=﹣2.(2)先化简,再求值:[(2x﹣y)2+(2x﹣y)(2x+y)]÷4x,其中x=2,y=﹣1.17.(7分)为了增强学生的安全意识,某校组织了一次全校2500名学生都参加的“安全知识”考试.阅卷后,学校团委随机抽取了100份考卷进行分析统计,发现考试成绩(x分)的最低分为51分,最高分为满分100分,并绘制了如下尚不完整的统计图表.请根据图表提供的信息,解答下列问题:分数段(分)频数(人)频率51≤x<61a0.161≤x<71180.1871≤x<81b n81≤x<91350.3591≤x<101120.12合计1001(1)填空:a=,b=,n=;(2)将频数分布直方图补充完整;(3)该校对考试成绩为91≤x≤100的学生进行奖励,按成绩从高分到低分设一、二、三等奖,并且一、二、三等奖的人数比例为1:3:6,请你估算全校获得二等奖的学生人数.18.(6分)如图,在△ABC中,AB=AC,点D,E分别是AB,AC的中点,BE,CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.19.(7分)某种型号汽车油箱容量为63升,每行驶100千米耗油8升.设一辆加满油的该型号汽车行驶路程为x千米.(1)写出汽车耗油量y(升)与x之间的关系式;(2)写出油箱内剩余油量Q(升)与x之间的关系式;(3)为了有效延长汽车使用寿命,厂家建议汽车油箱内剩余油量为油箱容量的时必须加油.按此建议,问该辆汽车最多行驶多少千米必须加油?20.(10分)已知:如图,点B在线段AD上,△ABC和△BDE都是等边三角形,且在AD同侧,连接AE交BC于点G,连接CD交BE于点H,连接GH.(1)求证:AE=CD;(2)求证:AG=CH;(3)求证:GH∥AD.B 卷(50分)一、填空题(每小题4分,共20分)21.若2x =5,2y =3,则22x+y =.22.如图,已知11∥l 2,∠C=90°,∠1=40°,则∠2的度数是.23.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.24.如图,图1是“杨辉三角”数阵;图2是(a+b)n 的展开式(按b 的升幂排列).若(1+x)45的展开式按x 的升幂排列得:(1+x)45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=.25.如图,AD,BE 在AB 的同侧,AD=2,BE=2,AB=4,点C 为AB 的中点,若∠DCE=120°,则DE 的最大值是.二、解答题(本大题共3个小题,共30分)26.(8分)图1和图2的大正方形都是由一些长方形和小正方形组成的.观察图形,完成下列各题:(1)如图1,求S 大正方形的方法有两种:S 大正方形=(x+y)2,同时,S 大正方形=S ①+S ②+S ③+S ④=.所以图1可以用来解释等式:;同理图2可以用来解释等式:.(2)已知a+b+c=6,ab+bc+ca=ll,利用上面得到的等式,求a 2+b 2+c 2的值.27.(10分)王老师和小颖住同一小区,小区距离学校2400米.王老师步行去学校,出发10分钟后小颖才骑共享单车出发.小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校.小颖跑步比王老师步行每分钟快70米.设王老师步行的时间为x(分钟),图1中线段OA和折线B﹣C﹣D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据).28.(12分)(1)如图1,在△ABC中,AB=4,AC=6,AD是BC边上的中线,延长AD到点E使DE=AD,连接CE,把AB,AC,2AD集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;(3)如图3,在四边形ABCD中,∠A为钝角,∠C为锐角,∠B+∠ADC=180°,DA=DC,点E,F分别在BC,AB上,且∠EDF=∠ADC,连接EF,试探索线段AF,EF,CE之间的数量关系,并加以证明.参考答案与试题解析一、选择题1.【解答】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.2.【解答】解:A、爱,不是轴对称图形;B、我,不是轴对称图形;C、中,是轴对称图形;D、华,不是轴对称图形;故选:C.3.【解答】解:0.000000053=5.3×10﹣8.故选:C.4.【解答】解:“对顶角相等”一定正确,所以这一事件是必然事件,故选:A.5.【解答】解:根据三角形任意两边的和大于第三边,得A中,4+5=9,不能组成三角形;B中,6+7=13<14,不能组成三角形;C中,4+6=10,不能够组成三角形;D中,8+8=16>15,能组成三角形.故选:D.6.【解答】解:A、(a3)2=a6,原计算正确,故此选项符合题意;B、a2•a3=a5,原计算错误,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,原计算错误,故此选项不符合题意;D、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意.故选:A.7.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.8.【解答】解:∵∠1=74°,∠BAC=56°,∴∠ABC=50°,又∵AD∥BC,∴∠2=∠ABC=50°,故选:C.9.【解答】解:∵AB=AC,∴∠ABC=∠C=70°,∴∠BAC=180°﹣70°﹣70°=40°,∵△AB'C'与△ABC关于直线AD对称,∴∠BAC=∠B′AC′=40°,∠CAD=∠C′AD=10°,∴∠BAB′=40°+10°+10°+40°=100°,∵AB=AB′,∴∠ABB′=(180°﹣100°)=40°,故选:B.10.【解答】解:由于乌龟比兔子早出发,而早到终点;故B选项正确;故选:B.二.填空题11.【解答】解:根据定义,∠A补角的度数是180°﹣30°=150°.12.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P==,故答案为:.13.【解答】解:由a+b=3两边平方,得a2+2ab+b2=9①,a2+b2=6②,①﹣②,得2ab=3,两边都除以2,得ab=.故答案为:.14.【解答】解:∵DE垂直平分线段AC,∴DA=DC,AE+EC=6,∵AB+AD+BD=13,∴AB+BD+DC=13,∴△ABC的周长=AB+BD+BC+AC=13+6=19,故答案为:19.三.解答题15.【解答】解:(1)(﹣1)2020﹣(2020﹣π)0+(﹣)﹣2﹣|﹣2|=1﹣1+9﹣2=7;(2)[(2x2)3﹣6x3(x3﹣2x2)]÷2x4=(8x6﹣6x6+12x5)÷2x4=(2x6+12x5)÷2x4=x2+6x.16.【解答】解:(1)原式=x2﹣1+4x2﹣4x+1﹣4x2+2x=x2﹣2x,当x=﹣2时,原式=4+4=8;(2)原式=(4x2﹣4xy+y2+4x2﹣y2)÷4x=(8x2﹣4xy)÷4x=2x﹣y,当x=2,y=﹣1时,原式=4﹣(﹣1)=4+1=5.17.【解答】解:(1)a=100×0.1=10,b=100﹣10﹣18﹣35﹣12=25,n==0.25;故答案为:10,25,0.25;(2)补全频数分布直方图如图所示;(3)2500××=90(人),答:全校获得二等奖的学生人数90人.18.【解答】证明:(1)∵AB=AC,∴∠ECB=∠DBC,∵点D,E分别是AB,AC的中点,∴BD=AB,CE=AC,∴BD=CE,在△DBC与△ECB中,,∴△DBC≌△ECB(SAS);(2)由(1)知:△DBC≌△ECB,∴∠DCB=∠EBC,∴OB=OC.19.【解答】解:(1)汽车耗油量y(升)与x之间的关系式为:y=,即y=0.08x;(2)油箱内剩余油量Q(升)与x之间的关系式为:Q=63﹣0.08x;(3)当Q=时,63﹣0.08x=9,解得x=675,答:该辆汽车最多行驶675千米必须加油.20.【解答】证明:(1)∵△ABC、△BDE均为等边三角形,∴AB=AC=BC,BD=BE,∠ABC=∠EBD=60°,∴180°﹣∠EBD=180°﹣∠ABC,即∠ABE=∠CBD,在△ABE与△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAG=∠BCH,∵∠ABC=∠EBD=60°,∴∠CBH=180°﹣60°×2=60°,∴∠ABC=∠CBH=60°,在△ABG与△CBH中,,∴△ABG≌△CBH(ASA),∴AG=CH;(3)由(2)知:△ABG≌△CBH,∴BG=BH,∵∠CBH=60°,∴△GHB是等边三角形,∴∠BGH=60°=∠ABC,∴GH∥AD.B 卷一、填空题21.【解答】解:∵2x =5,2y =3,∴22x+y =(2x )2×2y =52×3=75.故答案为:75.22.【解答】解:如图,过点C 作直线l,使l∥11∥l 2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.23.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.24.【解答】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n 的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x)45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)=990;故答案为:990.25.【解答】解:如图,作点A 关于直线CD 的对称点M,作点B 关于直线CE 的对称点N,连接SM,CM,MN,NE.由题意AD=EB=2,AC=CB=2,DM=CM=CN=EN=2,∴∠ACD=∠ADC,∠BCE=∠BEC,∵∠DCE=120°,∴∠ACD+∠BCE=60°,∵∠DCA=∠DCM,∠BCE=∠ECN,∴∠ACM+∠BCN=120°,∴∠MCN=60°,∵CM=CN=2,∴△CMN 是等边三角形,∴MN=2,∵DE≤DM+MN+EN,∴DE≤6,∴当D,M,N,E 共线时,DE 的值最大,最大值为6,故答案为6.二、解答题26.【解答】解:(1)∵S ③=S ④=xy,S ①=x 2,S ②=y 2,∴S 大正方形=S ①+S ②+S ③+S ④=x 2+2xy+y 2.∴(x+y)2=x 2+2xy+y 2.∵图2大正方形的面积=(a+b+c)2,同时图2大正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc.∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.故答案为:x2+2xy+y2,(x+y)2=x2+2xy+y2,(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∴a2+b2+c2=(a+b+c)2﹣2ab﹣2ac﹣2bc=(a+b+c)2﹣2(ab+ac+bc)=62﹣2×11=14.27.【解答】解:(1)由图可得,王老师步行的速度为:2400÷30=80(米/分),小颖出发时甲离开小区的路程是10×80=800(米),答:王老师步行的速度是80米/分,小颍出发时王老师离开小区的路程是800米;(2)设直线OA的解析式为y=kx,30k=2400,得k=80,∴直线OA的解析式为y=80x,当x=18时,y=80×18=1440,则小颍骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵小颍骑自行车的时间为:25﹣10=15(分钟),∴小颍骑自行车的路程为:180×15=2700(米),当x=25时,王老师走过的路程为:80×25=2000(米),∴小颍到达还车点时,王老师、小颖两人之间的距离为:2700﹣2000=700(米);答:小颍骑自行车的速度是180米/分,小颍到达还车点时王老师、小颖两人之间的距离是700米;(3)小颍步行的速度为:80+70=150(米/分),小颍到达学校用的时间为:25+(2700﹣2400)÷150=27(分),当25≤x≤30时s关于x的函数的大致图象如右图所示.28.【解答】(1)解:如图1中,∵CD=BD,AD=DE,∠CDE=∠ADB,∴△CDE≌△BDA(SAS),∴EC=AB=4,∵6﹣4<AE<6+4,∴2<2AD<10,∴1<AD<5,故答案为1<AD<5.(2)证明:如图2中,延长ED到H,使得DH=DE,连接DH,FH.∵BD=DC,∠BDE=∠CDH,DE=DH,∴△BDE≌△CDH(SAS),∴BE=CH,∵FD⊥EH.DE=DH,∴EF=FH,在△CFH中,CH+CF>FH,∵CH=BE,FH=EF,∴BE+CF>EF.(3)解:结论:AF+EC=EF.理由:延长BC到H,使得CH=AF.∵∠B+∠ADC=180°,∴∠A+∠BCD=180°,∵∠DCH+∠BCD=180°,∴A=∠DCH,∵AF=CH,AD=CD,∴△AFD≌△CHD(SAS),∴DF=DH,∠ADF=∠CDH,∴∠ADC=∠FDH,∵∠EDF=∠ADC,∴∠EDF=∠FDH,∴∠EDF=∠EDH,∵DE=DE,∴△EDF≌△EDH(SAS),∴EF=EH,∵EH=EC+CH=EC+AF,∴EF=AF+EC.。

七年级下册数学期末试卷人教版含答案免费

七年级下册数学期末试卷人教版含答案免费

2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。

2019--2020第二学期期末考试七年级数学试题(附答案)

2019--2020第二学期期末考试七年级数学试题(附答案)
pOPq#$-$%$'4+ %!$0,'0#,4"
54 678 !"!,4 $$%($%!))
!!p@q# %!$*%#"$!0#! Ó×p§VØYÙb!
七年级数学试卷 98 第(页共-页
54 678 !#!,4
!!rs;<. k&()* )* ÚzxY1¨./-() L/ Û(* L0'(4(*+'.4 )!+Ü'(*. D#!
货 物种类
货厢型号 装货量
甲 乙
A
35x 吨 15x 吨
B
25(50-x)吨 35(50-x)吨
解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得 35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
所以∠CED=∠AEF=55°,
七年级数学参考答案,第 1页,共 3 页
所以∠ACD=180°-∠CED-∠D =180°-55°-42=83°.
22. (7 分)∠3 两直线平行,同位角相等 已知 等量代换 DG 内错角相等,两直线平行。 两直线平行,同旁内角互补。
23.(9 分)
分组 600≤ x <800 800≤ x <1000 1000≤ x <1200 1200≤ x <1400 1400≤ x <1600 1600≤ x <1800
七年级数学试卷 98 第,页共-页
54 678 !+!##4
!!>WXµ±®FYZ[#*("\GYZ[##*"\]^1?ZUÝ_Z[X`ab ?ZUic() \YÑCDZd*"e!;<FYZ[(*\#GYZ[#*\ifg1 e( hZdFYZ[!*\#GYZ[(*\ifg1e) hZdij²Ü]^ () \Y ZdDe®klYXmO: lßàCËn.O:

精品解析:江苏省扬州市邗江区2019-2020学年七年级下学期期末数学试题(解析版)

精品解析:江苏省扬州市邗江区2019-2020学年七年级下学期期末数学试题(解析版)
∵AE⊥BC于E,
∴∠CAE=90°﹣60°=30°,
∴∠DAE=∠CAD﹣∠CAE=35°﹣30°=5°,
故答案为:5°.
【点睛】本题考查了三角形的内角和定理、角平分线的定义、直角三角形的两锐角互余,属于基础题型,熟练掌握它们的性质及应用是解答的关键.
13.已知 , ,则 __________, __________.
故答案为:35°.
【点睛】本题考查了折叠的性质、平角定义和三角形的内角和定理,熟练掌握折叠的性质是解答的关键.
17.为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是__________.
【答案】98
【解析】
∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB,铅直距离等于(AD-1)×2,
又∵长AB=50米,宽BC=25米,
∴小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为50+(25-1)×2=98米,
故答案为98.
12.在△ABC中,已知∠B=50°,∠C=60°,AE⊥BC于E,AD平分∠BAC,则∠DAE的度数是_____.
【解析】
因为“同位角相等”的题设是“两个角是同位角”,结论是“这两个角相等”,
所以命题“同位角相等”的逆命题是“相等的两个角是同位角”.

2019-2020学年山西省太原市七年级第二学期期末达标测试数学试题含解析

2019-2020学年山西省太原市七年级第二学期期末达标测试数学试题含解析
2019-2020学年山西省太原市七年级第二学期期末达标测试数学试题
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题只有一个答案正确)
【答案】B
【解析】
【分析】
据答对题的得分:10x;答错题的得分:-5(20-x),得出不等关系:得分要超过1分.
【详解】
解:根据题意,得
10x-5(20-x)>1.
故选:B.
【点睛】
本题考查由实际问题抽象出一元一次不等式,要特别注意:答错或不答都扣5分,至少即大于或等于.
8.估计 的值是在( )
A.3和4之间B.4和5之间C.5和6之间D.6和7之间
【点睛】
本题考查了平方根,算术平方根.在做题时,容易忽略根号计算16的平方根造成错误,需注意.
7.某次知识竞赛共有20道题,每答对一道题得10分,答错或不答都扣5分.娜娜得分要超过90分,设她答对了x道题,则根据题意可列不等式为()
A.10x-5(20-x)≥90B.10x-5(20-x)>90
C.20×10-5x>90D.20×10-5x≥90
1.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是( )
A. B. C. D.
【答案】B
【解析】
【分析】
从四条线段中任意选取三条,找出所有的可能,以及能构成直角三角形的情况数,即可求出所求的概率.
【详解】
从四条线段中任意选取三条,所有的可能有:4,6,8;4,6,10;6,8,10;4,8,10共4种,

人教版七年级下册数学期末考试试卷及答案

人教版七年级下册数学期末考试试卷及答案

人教版七年级下册数学期末考试试题1.16的绝对值是( ) A .﹣6 B .6 C .﹣16 D .162.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( )千米.A .0.34×108B .3.4×106C .34×106D .3.4×1073.下列平面图形不能够围成正方体的是( )A .B .C .D . 4.下列实数中,无理数是( )A .3.14B .3πC .D .2275.某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为( )A .18B .19C .20D .216.若单项式2m n x y -与单项式2312m n x y +-是同类项,那么这两个多项式的和是( ) A .4612x y B .2312x y C .2332x y D .233 2x y 7.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)8.若n 是任意实数,则点N(-1,n 2+1)在第( )象限.A .一B .二C .三D .四9.下列不等式变形正确的是( )A .由a b >,得ac bc >B .由a b >,得c a c b -<-C .由a b >,得a b ->-D .由a b >,得22a b -<-10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .()2018,1B .()2019,2C .()2018,2D .()2019,0二、填空题 11.已知α∠和β∠互为补角,且β∠比α∠小30,则β∠等于______12.一个正数a 的平方根分别是2m ﹣1和﹣3m +52,则这个正数a 为_____. 13.若关于x ,y 的二元一次方程组23122x y k x y +=-⎧⎨+=-⎩的解满足1x y +=,则k 的值是______; 14.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.15.如图,在长为15,宽为12的矩形中,有形状、大小完全相同的5个小矩形,则图中阴影部分的面积为__________.三、解答题16.解不等式组:2x 53(x 2),13x 2x-1,2+≤+⎧⎪⎨+<⎪⎩把不等式组的解集在数轴上表示出来.17.随着我国经济社会的发展,人民对于美好生活的追求越来越高,某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成如下两幅不完整的统计图表.15000x20000x20000请你根据统计图表提供的信息,解答下列问题:(1)本次被调查的家庭有___________户,表中m=___________;(2)在扇形统计图中,E组所在扇形的圆心角为多少度?(3)这个社区有2500户家庭,请你估计年文化教育消费在10000元以上的家庭有多少户.18.如图,AD⊥BC于点D, EF⊥BC于点E, ∠1=∠2.(1)试说明DG//AC.(2)若∠BAC=70°,求∠AGD的度数.19.阅读下面的文字,解答问题.如图,在平面直角坐标系中,点D的坐标是(﹣3,1),点A的坐标是(4,3).(1)点B和点C的坐标分别是________、________.(2)将△ABC平移后使点C与点D重合,点A、B分别与点E、F重合,画出△DEF.并直接写出E点的坐标,F点的坐标.(3)若AB上的点M坐标为(x,y),则平移后的对应点M′的坐标为________.∆的面积.(4)求ABC20.某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为66万元;本周已售出2辆A 型车和1辆B 型车,销售额为42万元.(1)求每辆A 型车和B 型车的售价各为多少元.(2)甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,购车费不超过84万元.问最多可以购买多少辆B 型号的新能源汽车?21.如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,(1)已知∠BOD =36°,求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?说明理由.22.规定:{}x 表示不小于x 的最小整数,如{}44=,{}2,62=-,{}55-=-.在此规定下任意数x 都能写出如下形式:{}x x b =-,其中01b ≤<.(1)直接写出{}x ,x ,1x +的大小关系:__________;(2)根据(1)中的关系式解决下列问题:满足{}35x +=的x 的取值范围;(3)求适合{}13.5224x x -=-的x 的值.23.将一副三角板中的两块直角三角板的直角顶点C 按如图方式叠放在一起,友情提示:60A ∠=︒,30D ∠=︒,45E B ∠=∠=︒.(1)①若50DCE ∠=︒,则ACB ∠的度数为__________;②若120ACB ∠=︒,则DCE ∠的度数为__________.(2)由(1)猜想ACB ∠与DCE ∠的数量关系,并说明理由;(3)当90ACE ∠<︒且点E 在直线AC 的上方时,当这两块角尺有一组边互相平行时,请直接写出ACE ∠角度所有可能的值.参考答案1.D【解析】【分析】利用绝对值的定义解答即可.【详解】1 6的绝对值是16,故选D.【点睛】本题考查了绝对值得定义,理解定义是解题的关键.2.D【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以:将34000000用科学记数法表示为3.4×107.故选D.考点:科学记数法—表示较大的数.3.B【解析】【分析】直接利用正方体的表面展开图特点判断即可.【详解】根据正方体展开图的特点可判断A属于“1、3、2”的格式,能围成正方体,D属于“1,4,1”格式,能围成正方体,C、属于“2,2,2”的格式也能围成正方体,B、不能围成正方体.故选B.【点睛】本题主要考查展开图折叠成几何体的知识点.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.4.B【解析】【分析】根据无理数的定义,逐项判断即可.【详解】解:A 、3.14是有理数,故不合题意;B 、3π是无理数,故符合题意;C 、=-2是有理数,不符合题意;D 、227是有理数,故不合题意, 故选:B .【点睛】本题考查了无理数的知识,解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.C【解析】设平均每天至少加工x 个零件,才能在规定的时间内完成任务,因为要求10天里加工完190个零件,最初2天,每天加工15个,还剩8天,依题意得2×15+8x ≥190,解之得,x ≥20,所以平均每天至少加工20个零件,才能在规定的时间内完成任务.故选C .【方法点睛】本题中存在的不等关系是,10天中能加工的零件数要大于或等于190个.根据这个不等关系就可以得到不等式.6.B【解析】【分析】利用同类项定义列出方程组,求出方程组的解得到m 与n 的值,即可求出两个多项式的和.【详解】∵单项式x2y m-n与单项式-12x2m+n y3是同类项,∴223m nm n+=⎧⎨-=⎩,解得:5343 mn⎧=⎪⎪⎨⎪=-⎪⎩,则原式=x2y3-12x2y3=12x2y3,故选:B.【点睛】本题考查了整式的加减,以及同类项,熟练掌握同类项的定义是解本题的关键.7.D【解析】因为∠DAM和∠CBM是直线AD和BC被直线AB的同位角,因为∠DAM=∠CBM根据同位角相等,两直线平行可得AD∥BC,所以D选项错误,故选D.8.B【解析】【分析】根据非负数的性质判断出点M的横坐标是正数,再根据各象限内点的坐标特征解答.【详解】∵n2≥0,∴1+n2≥1,∴点M在第二象限.故选:B.【点睛】考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.B【解析】试题分析:不等式的基本性质1 :若a <b 和b <c ,则a <c (不等式的传递性);不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立;不等式的基本性质3:不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.解:A .由,得,C .由a b >得,D .由a b >得,故错误;B .由a b >得c a c b -<-,本选项正确.考点:不等式的基本性质点评:本题属于基础应用题,只需学生熟练掌握不等式的基本性质,即可完成.10.B【解析】【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.【详解】解:根据动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,∴横坐标为运动次数,经过第2019次运动后,动点P 的横坐标为2019,纵坐标为1,0,2,0,每4次一轮,∴经过第2019次运动后,动点P 的纵坐标为:2019÷4=504余3,故纵坐标为四个数中第3个,即为2,∴经过第2019次运动后,动点P 的坐标是:(2019,2),故选:B .【点睛】本题考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.11.75【解析】【分析】根据已知得出方程组,求出方程组的解即可.【详解】解:α∠和β∠互为补角,且β∠比α∠小30,α+β180βα30⎧∠∠=∴⎨∠=∠-⎩,解得:α105∠=,β75∠=,故答案为75.【点睛】本题考查了余角和补角定义,能熟记α∠的补角180α∠=-是解此题的关键. 12.4【解析】【分析】直接利用平方根的定义得出2m-1+(-3m+52)=0,进而求出m 的值,即可得出答案. 【详解】解:根据题意,得:2m-1+(-3m+52)=0, 解得:m=32, ∴正数a=(2×32-1)2=4, 故答案为4.【点睛】此题主要考查了平方根,正确把握平方根的定义是解题关键.13.k=2【解析】【分析】先解关于x 、y 的方程组,用k 表示出x 、y 的值,再把x 、y 的值代入x+y >1即可得到关于k 的不等式,求出k 的取值范围即可.【详解】23122x y k x y +=-⎧⎨+=-⎩①②,①−②×2得,y=−k−1;将y=−k−1代入②得,x=2k ,∵x+y=1,∴2k−k−1=1,解得k=2.故答案为:k=2【点睛】此题考查解二元一次方程组,掌握运算法则是解题关键14.40°【解析】【分析】由EF ⊥BD ,∠1=50°,结合三角形内角和为180°,即可求出∠D 的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF 中,∠1=50°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=40°.∵AB ∥CD ,∴∠2=∠D=40°.故答案为40°.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∠D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.15.45【解析】【分析】设小矩形的长为x ,宽为y ,观察图形可得出关于x 、y 的二元一次方程组,解之即可求出x 、y 的值,再利用阴影部分的面积=大矩形的面积-5×小矩形的面积,即可求出答案.【详解】解:设小矩形的长为x ,宽为y ,根据题意得:2153x y x y+=⎧⎨=⎩, 解得:93x y =⎧⎨=⎩, ∴S 阴影=15×12-5xy=180-135=45.故答案为:45.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.-1≤x<3【解析】【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【详解】253(2)13x 2-12x x x +≤+⎧⎪⎨+<⎪⎩①②, 由①得x≥-1,由②得x<3,∴不等式组的解集是-1≤x<3.在数轴上表示为【点睛】此题主要考查了解一元一次不等式组,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进行求解.17.(1)答案为:150,42;(2)E 组所在扇形的圆心角为72︒;(3)1200(户)【解析】【分析】(1)依据A 组或E 组数据,即可得到样本容量,进而得出m 的值;(2)利用圆心角计算公式,即可得到E 组所在扇形的圆心角;(3)依据家庭年文化教育消费10000元以上的家庭所占的比例,即可得到家庭年文化教育消费10000元以上的家庭的数量.【详解】解:(1)本次被调查的家庭有:36÷24%=150,m=150-36-27-15-30=42,故答案为:150,42;(2)E 组所在扇形的圆心角为36020%72︒⨯︒=;(3)年文化教育消费10000元以上的家庭有27153025001200150++⨯=(户) 【点睛】本题考查了扇形统计图、用样本估计总体以及中位数的运用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.18.(1)答案见解析;(2)110°.【解析】【分析】(1)根据垂直的定义及互余的性质得到同位角相等解答即可.(2)根据两直线平行,同旁内角互补解答即可.【详解】解:∵AD ⊥BC 于点D ,EF ⊥BC 于点F ,∴∠ADB=∠FEC=90°,∴∠BDG+∠2=90°,∠C+∠1=90°,∵∠1=∠2∵∠BDG=∠C ,∴DG//AC.(2)由(1)得:DG//AC ,∴∠BAC+∠AGD=180°,∵∠BAC=70°,∴∠AGD=180°-70°=110°.【点睛】本题考查垂直的定义及互余的性质、平行线的判定和性质,利用垂直的定义得到∠ADB=∠FEC=90°是解题的关键19.(1)(3,1);(1,2);(2)图详见解析,点E 坐标为(0,2),点F 坐标为(﹣1,0);(3)(x ﹣4,y ﹣1);(4)2.5.【解析】【分析】(1)根据直角坐标系直接写出B,C 的坐标;(2)根据△ABC 平移后使点C 与点D 重合,得出平移的规律,再把A,B 进行平移,再连接得到△DEF ,即可写出E,F 的坐标;(3)根据平移的规律即可写出;(4)根据割补法即可求出△ABC 的面积.【详解】解:(1)(3,1);(1,2)(2)解:如图所示,△DEF 即为所求. 点E 坐标为(0,2),点F 坐标为(﹣1,0).(3)(x ﹣4,y ﹣1)(4)将ABC ∆补成长方形,减去3个直角三角形的面积得:11123131212222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯ =6-1.5-1-1=2.5【点睛】此题主要考查直角坐标系的平移,解题的关键是熟知平移的特点.20.(1)每辆A 型车售价为12万元,每辆B 型车售价为18万元;(2) 最多可购买B 型车辆2辆.【解析】【分析】(1)设每辆A 型车和B 型车的售价分别是x 万元、y 万元,根据等量关系为:1辆A 型车和3辆B 型车,销售额为66万元,2辆A 型车和1辆B 型车,销售额为42万元,列方程组求解即可得;(2)设购买B 型车b 辆,则购买A 型车(6-b )辆,则根据“购买A ,B 两种型号的新能源汽车共6辆,购车费不超过84万元”列不等式进行求解即可.【详解】(1)设每辆A 型车售价为x 万元,每辆B 型车售价为y 万元,根据题意,得:366242x y x y +=⎧⎨+=⎩, 解得 1218x y =⎧⎨=⎩, 答:每辆A 型车售价为12万元,每辆B 型车售价为18万元;(2)设购买B 型车辆b 辆,则购买A 型车(6-b )辆,根据题意,得:12(6-b )+18b≤84,解得:b≤2,答:最多可购买B 型车辆2辆.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,找准等量关系列出方程组,找准不等关系列出不等式是解题的关键.21.(1)54°;(2)详见解析.【解析】试题分析:(1)根据对顶角的性质,可得∠AOC 的度数,根据角的和差,可得答案; (2)根据角平分线的性质,可得∠AOC 与∠COE 的关系,由垂直得到o AOC AOG 90∠+= ,由平角的定义,得COE GOF 90∠∠+=︒,由等量代换得AOG GOF ∠∠=,可得答案.试题解析:(1)AB CD 、相交于点O ,AOC BOD ∠∠∴=(对顶角相等)BOD ∠= 36o (已知)AOC BOD ∠∠∴== 36oOG CD ⊥(已知)∴ o COG 90∠=(垂直的定义)即o AOC AOG 90∠+=∴ o o o o AOG 90AOC=9036=54∠∠=--(2)OC 平分AOE ∠∴ AOC COE ∠∠=(角平分线定义)o COG 90∠=(已证)即o AOC AOG 90∠+=o COE AOC AOG GOF 180∠∠∠∠+++= (平角定义)∴ o COE GOF 90∠∠+=(等式性质)∴ AOG=GOF ∠∠(等角的余角相等)∴OG 是∠AOF 的角平分线(角平分线定义)点睛:本题考查了角平分线的定义、对顶角的性质、邻补角的性质,掌握对顶角相等、垂直的定义是解题的关键.22.(1){}1x x x ≤+<;(2)12x ≤<;(3)58x =或98x =. 【解析】【分析】(1)根据题意可以判断{x},x ,x+1的大小关系;(2)根据(1)中的结果可以解答本题;(3)根据(1)中的结果可以解答本题.【详解】解:(1)由题意可得:{}1x x x ≤+<;(2){}1x x x ≤+<,{}35x +=∴35531x x +≤⎧⎨<++⎩, 解得,12x ≤<,故答案为:12x ≤<;(3)∵{}13.5224x x --=, ∴由(1)得:{}{}3.52 3.52 3.521x x x ≤<+--﹣,且124x -为整数, ()13.522 3.5214x x x ∴≤--+-, 解得:1726x <≤ 311224412x ∴<-≤ ∴整数124x -是1或2, 当1214x -=时,得58x =, 当1234x +=时,得98x =, ∴适合{}13.5224x x =--的x 的值是58x =或98x =. 【点睛】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法. 23.(1)①答案为:130︒;②答案为:60︒;(2)180ACB DCE ∠+∠=︒;(3)30、45︒.【解析】【分析】(1)①根据∠DCE 和∠ACD 的度数,求得∠ACE 的度数,再根据∠BCE 求得∠ACB 的度数;②根据∠BCE 和∠ACB 的度数,求得∠ACE 的度数,再根据∠ACD 求得∠DCE 的度数; (2)根据∠ACE=90°-∠DCE 以及∠ACB=∠ACE+90°,进行计算即可得出结论;(3)分2种情况进行讨论:当CB ∥AD 时,当EB ∥AC 时,分别求得∠ACE 角度即可.【详解】解:(1)①∵∠DCE=50°,∠ACD=90°∴∠ACE=40°∵∠BCE=90°∴∠ACB=90°+40°=130°故答案为130;②∵∠ACB=120°,∠ECB=90°∴∠ACE=120°-90°=30°∴∠DCE=90°-∠ACE=90°-30°=60°故答案为60°;(2)猜想:180ACB DCE ∠+∠=︒理由如下:90ACE DCE ∠=︒∠- 又90ACB ACE ∠=∠+︒9090180ACB DCE DCE ∴∠︒∠+︒=︒∠=--即180ACB DCE ∠+∠=︒;(3)30、45︒,理由:当CB ∥AD 时,∠ACE=30°;当EB ∥AC 时,∠ACE=45°.【点睛】本题考查了平行线的性质,以及直角三角形的性质,解题时注意分类讨论思想的运用,分类时不能重复,也不能遗漏.。

【人教版】数学七年级下册《期末考试题》(带答案)

【人教版】数学七年级下册《期末考试题》(带答案)
(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.
22.某校在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:
“A--国学诵读”、“B--演讲”、“C--书法”、“D---课本剧”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意愿,随机调查了部分学生,结果统计如下:
12 如果 ,则x-y=_______.
15.《孙子算经》是中国古代重要的数学著作之一,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的 ,那么乙也共有钱48文,甲、乙两人原来各有多少钱.设甲原有x文钱,乙原有y文钱,可列方程组是________.
16.如图,把一块含有30°角的直角三角板的直角顶点放在相互平行的两条直线的其中一条上,如果∠1=38°,那么∠2的度数是______________.
【答案】C
【解析】
分析:根据无理数是无限不循环小数,判断出 , ,0.123112233111222333…, ,- ,这些数中,无理数有多少个即可.
详解: , ,0.123112233111222333…, ,- ,其中无理数有3个: ,0.123112233111222333…,- .
故选C.
点睛:此题主要考查了无理数的含义和求法,要熟练掌握,解答此题的关键是要明确:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.
17.对于非负实数x “四舍五入”到个位的值记为 ,即当m为非负整数时,若 ,则 .如: , ,……根据以上材料,若 ,则x应满足的条件是_______________________.
三、解答题(18小题5分,19(1)小题6分,19(2)小题7分,20小题7分,满分25分)

[人教版]七年级下册数学《期末考试试题》及答案解析

[人教版]七年级下册数学《期末考试试题》及答案解析

2019-2020学年度第二学期期末测试人教版七年级数学试题一、选择题(本大题共 12 小题,共 36 分)1.下列方程组中不是二元一次方程组的是( )A.30430x yx y+=⎧⎨-=⎩B.3049x yxy+=⎧⎨=⎩C.52mn=⎧⎨=-⎩D.1426xx y=⎧⎨+=⎩2.下列调查中,最合适采用抽样调查的是()A. 策坐高铁对旅客的行李的检查B. 调查七年级一班全体同学的身高情况C. 了解长沙市民对春节晚会节目的满意程度D. 对新研发的新型战斗机的零部件进行检查3.已知三角形的两边长分别为5和7,则第三边长不可能是()A.2B. 3C. 10D. 11 4.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS5.下列四个图形中,线段BE是△ABC的高的是()A. B. C.D.6.统计得到的一组数据有80个,其中最大值为139,最小值为48,取组距为10,可分成( )A. 10组B. 9组C. 8组D. 7组7.下列各式中正确的是()A . 若a >b ,则a ﹣1<b ﹣1B. 若a >b ,则a 2>b 2C. 若a >b ,则ac >bcD. 若a c >b c,则a >b 8.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则2x y -=( )A. 2B. 4C. 6D. 89.如图, BD是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A. 35°B. 40°C. 45°D. 50°10.如果不等式组213(1)x x x m ->-⎧⎨>⎩无解,那么m 的取值范围是 A. m=2 B. m >2 C. m <2 D. m ≥211.在我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两少7两,每人半斤多半斤;试问多少人分多少银?(注:这里的斤是指市厅,1市斤=10两),设一共有x 人,y 两银子,则下列方程组正确的是( )A. 7755y x y x =-⎧⎨=+⎩B. 7755y x y x =+⎧⎨=-⎩C. 7755y x y x =-⎧⎨=-⎩D. 7755y x y x =+⎧⎨=+⎩ 12.如图,在△ABC 中,∠AOB=125°,把△ABC 剪成三部分,边AB 、BCAC 放在同一直线上,点O 都落在直线MN 上,且S △BCO :S △CAO :S △ABO =BC :CA :AB ,则∠ACB 的度数为( )A. 70°B. 65°C. 60°D. 85°二、填空题(本大题共 6 小题,共 18 分)13.不等式组2x3x3>-⎧⎨≤⎩的最小整数解是______.14.2019年我市约8.3万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,则在该统计调查中,个体是______.15.如图,△ABC≌△DEF,BE=7,AD=3,AB=_____.16.已知一个正多边形的每个内角都是150°,则这个正多边形是正______边形.17.已知x3y2=⎧⎨=-⎩是方程组ax by4bx ay7+=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为______.18.如图,已知△ABC中,∠B=∠C,BC=8cm,BD=6cm如果点P在线段BC上以1cm/s的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,设点Q的速度为xcm/s,则当△BPD与△CQP全等时,x=______.三、计算题(本大题共 1 小题,共 6 分)19.解方程组:(1)y2x35x y11=-⎧⎨+=⎩;(2)3x5y3 x y1 23-=⎧⎪⎨-=⎪⎩.四、解答题(本大题共 8 小题,共 60 分)20.解下列不等式(组).(1)211146x x -+-≥ (2)523(1)5x x x x +⎧>⎪⎨⎪--≤⎩ 21.某校七年级开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,学校随机抽查了部分学生在这次活动中做家务的时间,并绘制了如下的频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:等级做家务时间(小时) 频数 百分比 A0.5≤x <1 3 6% B1<x <1.5 a 30% C1.5≤x <2 20 40% D2≤x <2.5 b m E25≤x <32 4% (1)这次活动中抽查的学生有______人,表中a =______,b =______,m =______,并补全频数分布直方图; (2)若该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有多少人?22.一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形23.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,求证:AE CE =.24.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图2所示的竖式与横式两种无盖的长方形纸箱(加工时接缝材料不计).若该厂购进正方形纸板1000张,长方形纸板2000张,问竖式纸盒、横式纸盆各加工多少个,恰好能将购进的纸板全部用完?25.如图,△ABC中,∠ACB=90°,AC=BC,E是BC边上的一点,连接AE,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:△ACE≌△CBD;(2)若BE=33,AB=62,求点E到AB的距离.26.某运输公司派出大小两种型号共20辆渣土运输车运输士方.已知一辆大型渣土运输车和两辆小型渣土运输车每次共运20吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.并且一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)若每次运输主方总不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有哪几种派出方案?最少需要花费多少元?27.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD的面积之和.答案与解析一、选择题(本大题共 12 小题,共 36 分)1.下列方程组中不是二元一次方程组的是( )A.30430x yx y+=⎧⎨-=⎩B.3049x yxy+=⎧⎨=⎩C.52mn=⎧⎨=-⎩D.1426xx y=⎧⎨+=⎩【答案】B【解析】【分析】由组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,即可求得答案.【详解】A.30430x yx y+=⎧⎨-=⎩,是二元一次方程组,故不符合题意;B.3049x yxy+=⎧⎨=⎩,不是二元一次方程组,故符合题意;C.52mn=⎧⎨=-⎩,是二元一次方程组,故不符合题意;D.1426xx y=⎧⎨+=⎩,是二元一次方程组,故不符合题意,故选B.【点睛】本题考查了二元一次方程组的定义,准确理解二元一次方程组的定义是解此题的关键.2.下列调查中,最合适采用抽样调查的是()A. 策坐高铁对旅客的行李的检查B. 调查七年级一班全体同学的身高情况C. 了解长沙市民对春节晚会节目的满意程度D. 对新研发的新型战斗机的零部件进行检查【答案】C【解析】【分析】根据抽样调查的定义和意义,逐一判断选项,即可得到答案.【详解】A、乘坐高铁对旅客行李的检查,是事关重大的调查,适合普查,故A错误;B、调查七年级一班全体同学的身高情况,调查范围小,适合普查,故B错误;C、了解长沙市民对春节晚会节目的满意程度,调查范围广,适合抽样调查,故C正确;D、对新研发的新型战斗机的零部件进行检查,是事关重大的调查,适合普查,故D错误;故选:C.【点睛】本题主要考查抽样调查的定义和意义,掌握抽样调查和普查的特点,是解题的关键.3.已知三角形的两边长分别为5和7,则第三边长不可能是()A. 2B. 3C. 10D. 11【答案】A【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】∵三角形的两边长分别为5和7,∴2<第三边长<12,故第三边长不可能是:2,故选:A.【点睛】本题主要考查三角形三边长关系,掌握三角形任意两边之和大于第三边,两边之差小于第三边,是解题的关键.4.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.5.下列四个图形中,线段BE是△ABC的高的是()A. B. C.D.【答案】D【解析】试题分析:根据三角形的高线的定义可得,则D 选项中线段BE 是△ABC 的高.考点:三角形的高6.统计得到的一组数据有80个,其中最大值为139,最小值为48,取组距为10,可分成( )A. 10组B. 9组C. 8组D. 7组【答案】A【解析】【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】在样本数据中最大值为139,最小值为48,它们的差是139-48=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选A . 【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.7.下列各式中正确的是( )A. 若a >b ,则a ﹣1<b ﹣1B. 若a >b ,则a 2>b 2C. 若a >b ,则ac >bcD. 若a c >b c ,则a >b 【答案】D【解析】【详解】A 、不等式的两边都减1,不等号的方向不变,故A 错误;B 、当a=-1,b=-2时,a 2<b 2,故B 错误;C 、当c=0时,ac=bc ,故C 错误;D 、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D 正确;故选D .8.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则2x y -=( )A. 2B. 4C. 6D. 8【答案】B【解析】【分析】 根据题意得出方程组,求出方程组的解,代入2x y -计算即可.【详解】由题意得26022002y y y x y y -++=++⎧⎨-+=++⎩, 解之得82x y =⎧⎨=⎩, ∴x-2y=8-4=4.故选B.【点睛】本题考查了二元一次方程组的应用及求代数式的值,能根据题意列出方程组是解此题的关键. 9.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A. 35°B. 40°C. 45°D. 50°【答案】C【解析】【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【详解】∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=12∠ABC=352︒,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°-17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°-∠ABC-∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°-50°=45°,故选C.【点睛】本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键.10.如果不等式组213(1)x xx m->-⎧⎨>⎩无解,那么m的取值范围是A. m=2B. m>2C. m<2D. m≥2 【答案】D【解析】【分析】先把不等式组进行化简,再根据条件,即可得到m的范围.【详解】213(1) x xx m->-⎧⎨>⎩①②解①得,x<2,∵不等式组213(1)x xx m->-⎧⎨>⎩①②无解,∴m≥2,故选:D.【点睛】本题主要考查求一元一次不等式组参数的范围,掌握一元一次不等式组的解是各个不等式的解的公共部分,是解题的关键.11.在我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两少7两,每人半斤多半斤;试问多少人分多少银?(注:这里的斤是指市厅,1市斤=10两),设一共有x人,y两银子,则下列方程组正确的是()A.7755y xy x=-⎧⎨=+⎩B.7755y xy x=+⎧⎨=-⎩C.7755y xy x=-⎧⎨=-⎩D.7755y xy x=+⎧⎨=+⎩【答案】A【解析】【分析】根据“每人7两少7两,每人半斤多半斤”,列出二元一次方程组,是解题的关键.【详解】设共有x人,y两银子,根据题意可列方程组:7755y xy x=-⎧⎨=+⎩,故选:A.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键.12.如图,在△ABC中,∠AOB=125°,把△ABC剪成三部分,边AB、BCAC放在同一直线上,点O都落在直线MN上,且S△BCO:S△CAO:S△ABO=BC:CA:AB,则∠ACB的度数为()A. 70°B. 65°C. 60°D. 85°【答案】A【解析】【分析】由S△BCO:S△CAO:S△ABO=BC:CA:AB,得点O为三个内角平分线的交点,根据三角形内角和定理,得∠AOB=90°+12∠ACB,进而即可求解.【详解】∵S△BCO:S△CAO:S△ABO=BC:CA:AB,∴点O到三边的距离相等,∴点O是△ABC的内心,点O为三个内角平分线的交点,∴∠AOB+12∠CAB+12∠ABC=∠ACB+∠CAB+∠ABC=180°,∴∠AOB=∠ACB+12∠CAB+12∠ABC=∠ACB+12(180°-∠ACB),∴∠AOB=90°+12∠ACB,∵∠AOB=125°,∴∠ACB=70°.故选:A.【点睛】本题主要考查三角形的内心定义以及三角形内角和定理,掌握三角形的内角和等于180°,是解题的关键.二、填空题(本大题共 6 小题,共 18 分)13.不等式组2x3x3>-⎧⎨≤⎩的最小整数解是______.【答案】x=-1【解析】【分析】先解一元一次不等式组,再求符合要求的最小整数解,即可.【详解】解不等式2x>-3,得:x>-1.5,∴不等式组的解集为:-1.5<x≤3,∴不等式组的最小整数解为:x=-1,故答案为:x=-1.【点睛】本题主要考查一元一次不等式组的解法,掌握解一元一次不等式的基本步骤,是解题的关键.14.2019年我市约8.3万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,则在该统计调查中,个体是______.【答案】每名考生的数学成绩【解析】【分析】根据抽样调查中个体的定义,即可得到答案.【详解】从中抽取1000名考生的数学成绩进行统计分析,则在该统计调查中,个体是:每名考生的数学成绩.故答案为:每名考生的数学成绩.【点睛】本题主要考查抽样调查中,个体的定义,掌握“个体是:抽样调查中每个调查对象”是解题的关键.15.如图,△ABC ≌△DEF ,BE=7,AD=3,AB=_____.【答案】5;【解析】【分析】先根据全等三角形的性质AB=DE ,再结合题意得DB= AE ,则由BE=7,AD=3,可得答案.【详解】因为△ABC ≌△DEF ,所以AB=DE ,则DB=AB-DA ,AE=DE-AE ,则DB= AE ,由BE=7,AD=3,可得AE=2BE AD -=732-=2, 则AB= BE-AE=5.【点睛】本题考查全等三角形的性质,解题的关键是根据全等三角形的性质得出DB= AE.16.已知一个正多边形的每个内角都是150°,则这个正多边形是正______边形.【答案】十二【解析】【分析】先求出正多边形的每个外角的度数,再根据多边形的外交和等于360°,即可求解.【详解】由题意得:正多边形的每个外角是:180°-150°=30°,360°÷30°=12.答:这个正多边形是正十二边形.故答案为:十二.【点睛】本题主要多边形的外交和定理以及正多边形的性质,掌握正多边形的性质,是解题的关键.17.已知x3y2=⎧⎨=-⎩是方程组ax by4bx ay7+=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为______.【答案】-335【解析】【分析】根据方程的解的定义,得3a2b43b2a7-=⎧⎨-=-⎩,从而得a+b,a-b的值,进而即可求解.【详解】把x3y2=⎧⎨=-⎩代入方程组得:3a2b43b2a7-=⎧⎨-=-⎩①②,①+②得:a+b=-3,①-②得:5a-5b=11,即:a-b=11 5,∴(a+b)(a-b)=-335,故答案为:-335.【点睛】本题主要考查代数式求值以及方程的解的定义,掌握方程的解的定义,是解题的关键.18.如图,已知△ABC中,∠B=∠C,BC=8cm,BD=6cm如果点P在线段BC上以1cm/s的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动,当一个点停止运动时,另一个点也随之停止运动,设点Q的速度为xcm/s,则当△BPD与△CQP全等时,x=______.【答案】1或32【解析】【分析】 设运动的时间为t s ,分两种情况:当BD=CQ ,BP=CP 时,△BPD ≌△CPQ ;当BD=CP ,BP=CQ 时,△BPD ≌△CQP ,分别列出方程组,即可求解.【详解】设运动的时间为t s ,则BP=t cm ,PC=(8-t)cm ,CQ=tx cm ,∵∠B=∠C ,∴当BD=CQ ,BP=CP 时,△BPD ≌△CPQ (SAS ),即:tx=6,t=8-t ,解得:t=4,x=32; 当BD=CP ,BP=CQ 时,△BPD ≌△CQP (SAS ),即8-t=6,t=tx ,解得t=2,x=1;综上所述,x 的值为1或32. 故答案为:1或32. 【点睛】本题主要考查全等三角形的判定定理,掌握SAS 判定三角形全等,是解题的关键.三、计算题(本大题共 1 小题,共 6 分)19.解方程组:(1)y 2x 35x y 11=-⎧⎨+=⎩; (2)3x 5y 3x y 123-=⎧⎪⎨-=⎪⎩. 【答案】(1)x 2y 1=⎧⎨=⎩;(2)8x 3y 1⎧=⎪⎨⎪=⎩ 【解析】【分析】 (1)由代入消元法,即可求解;(2)先去分母,再根据加减消元法,即可求解.【详解】(1)y 2x 35x y 11=-⎧⎨+=⎩①②,把①代入②得:5x+2x-3=11,解得:x=2,把x=2代入①得:y=1,∴方程组的解为:x2 y1=⎧⎨=⎩;(2)去分母得:3x5y33x2y6-=⎧⎨-=⎩①②,②-①得:3y=3,解得:y=1,把y=1代入②得:x=83,∴方程组的解为:8x3 y1⎧=⎪⎨⎪=⎩.【点睛】本题主要考查二元一次方程组的解法,掌握代入消元法和加减消元法,是解题的关键.四、解答题(本大题共 8 小题,共 60 分)20.解下列不等式(组).(1)211146x x-+-≥(2)523(1)5xxx x+⎧>⎪⎨⎪--≤⎩【答案】(1)x≥(2)-1≤x<5【解析】试题分析:(1)根据去分母,去括号,移项,系数化为1(根据不等式的基本性质)可求解;(2)分别解不等式,然后根据“都大取大,都小取小,大小小大,取中间,大大小小无解了,可求解.试题解析:(1)2111 46x x-+-≥3(2x-1)-2(1+x)≥12 6x-3-2-2x≥124x≥17x≥(2)5{23(1)5x x x x +--≤>①② 解不等式①得x <5解不等式②得x≥-1所以不等式组的解集为-1≤x <5.考点:一元一次不等式(组)21.某校七年级开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,学校随机抽查了部分学生在这次活动中做家务的时间,并绘制了如下的频数分布表和频数分布直方图.请根据图表中提供的信息,解答下列问题:等级做家务时间(小时) 频数 百分比 A0.5≤x <1 3 6% B1<x <1.5 a 30% C1.5≤x <2 20 40% D2≤x <2.5 b m E2.5≤x <32 4%(1)这次活动中抽查的学生有______人,表中a =______,b =______,m =______,并补全频数分布直方图; (2)若该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有多少人?【答案】(1)50,15,10,20%;(2)大约有490人【解析】【分析】(1)根据第一组的频数是3,百分比是6%,求得数据总数,再用数据总数乘以B 组百分比率可得a 的值,再用总人数-各个组人数可得b ,根据百分率之和为1,求出m 即可;(2)利用总数700乘以做家务时间不足2小时而又不低于1小时的所占的百分比即可.【详解】(1)总人数=3÷6%=50(人),a=50×30%=15,b=50-3-15-20-2=10,m=1-6%-30%-40%-4%=20%. 故答案为50,15,10,20%;(2)700×70%=490(人),∴该校七年级有700名学生,请估计这所学校七年级学生一周做家务时间不足2小时而又不低于1小时的大约有490人【点睛】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体. 22.一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形【答案】八边形;证明见解析.【解析】【分析】设它是n 边形,根据多边形的内角和公式及外角和为360°列出方程,解方程即可.【详解】解:设它是n 边形,依题意得:(n-2)×180°+360°=1440°.解得:n=8.答:它是八边形.【点睛】本题考查了多边形内角与外角的基本知识,熟知多边形的内角和公式及外角和为360°是解题的关键.23.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,求证:AE CE =.【答案】证明见解析.【解析】【分析】根据平行线性质可得∠ADE=∠CFE ,利用ASA 可证明△ADE ≌△CFE ,根据全等三角形的性质即可证明AE=CE.【详解】∵FC//AB,∴∠ADE=∠CFE,在△ADE和△CFE中,ADE CFE DE FEAED CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CFE,∴AE=CE.【点睛】本题考查了全等三角形的判定与性质,熟练掌握判定定理是解题关键.24.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图2所示的竖式与横式两种无盖的长方形纸箱(加工时接缝材料不计).若该厂购进正方形纸板1000张,长方形纸板2000张,问竖式纸盒、横式纸盆各加工多少个,恰好能将购进的纸板全部用完?【答案】加工竖式纸盒200个,加工横式纸盒400个,恰好能将购进的纸板全部用.【解析】【分析】设加工竖式纸盒x个,加工横式纸盒y个,根据“正方形纸板1000张,长方形纸板2000张”,列出二元一次方程组,即可求解.【详解】设加工竖式纸盒x个,加工横式纸盒y个,根据题意得:x2y10004x3y2000+=⎧⎨+=⎩,解得:x200 y400=⎧⎨=⎩.答:加工竖式纸盒200个,加工横式纸盒400个,恰好能将购进的纸板全部用.【点睛】本题主要考查二元一次方程组的实际应用,找出等量关系,列出方程组,是解题的关键.25.如图,△ABC中,∠ACB=90°,AC=BC,E是BC边上的一点,连接AE,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:△ACE≌△CBD;(2)若BE=33,AB=62,求点E到AB的距离.【答案】(1)见解析;(236【解析】【分析】(1)由余角的性质得∠D=∠AEC,根据AAS即可得到结论;(2)根据条件,先求出AC=BC=6,再根据三角形的面积公式,即可求解.【详解】(1)∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°,∴∠D=∠AEC,又∵∠DBC=∠ECA=90°,且BC=CA,∴△ACE≌△CBD(AAS)(2)∵∠ACB=90°,AC=BC,2,∴AC=BC=6,∴S△ABE= 12BE×AC=12AB×(点E到AB的距离),∴点E到AB的距离=362.【点睛】本题主要考查三角形全等的判定定理以及三角形的面积公式,掌握用三角形的面积法求高,是解题的关键.26.某运输公司派出大小两种型号共20辆渣土运输车运输士方.已知一辆大型渣土运输车和两辆小型渣土运输车每次共运20吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.并且一辆大型渣土运输车运输花费500元/次,一辆小型渣土运输车运输花费300元/次.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)若每次运输主方总不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有哪几种派出方案?最少需要花费多少元?【答案】(1)一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)见解析【解析】【分析】(1)设一辆大型渣土运输车每次运土方x 吨,一辆小型渣土运输车每次运土方y 吨,根据等量关系,列出二元一次方程组,即可求解;(2)设小型渣土运输车派出m 辆,则大型渣土运输车派出(20-m )辆,根据题意,列出关于m 的不等式组,求出m 的范围,再取整数,即可得到结论.【详解】(1)设一辆大型渣土运输车每次运土方x 吨,一辆小型渣土运输车每次运土方y 吨,依题意,得:x 2y 203x 8y 70+=⎧⎨+=⎩,解得:x 10y 5=⎧⎨=⎩. 答:一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)设小型渣土运输车派出m 辆,则大型渣土运输车派出(20-m )辆,依题意,得:()m 71020m 5m 148≥⎧⎨-+≥⎩, 解得:7≤m≤10.4,∵m 为整数,∴m=7,8,9,10.∴该渣土运输公司有4种排出方案,方案1:派出大型渣土运输车13辆,小型渣土运输车7辆;方案2:派出大型渣土运输车12辆,小型渣土运输车8辆;方案3:派出大型渣土运输车11辆,小型渣土运输车9辆;方案4:派出大型渣土运输车10辆,小型渣土运输车10辆.方案1所需总费用为500×13+300×7=8600(元);方案2所需总费用为500×12+300×8=8400(元);方案3所需总费用为500×11+300×9=8200(元);方案4所需总费用为500×10+300×10=8000(元).∵8600>8400>8200>8000,∴派出大型渣土运输车和小型渣土运输车各10辆花费最少,最少花费为8000元.【点睛】本题主要考查二元一次方程组以及一元一次不等式组的实际应用,找到等量关系和不等量关系列出方程组和不等式组,是解题的关键.27.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.(1)如图1,已知A(3,2),B(4,0),请在x轴上找一个C,使得△OAB与△OAC是偏差三角形.你找到的C点的坐标是______,直接写出∠OBA和∠OCA的数量关系______.(2)如图2,在四边形ABCD中,AC平分∠BAD,∠D+∠B=180°,问△ABC与△ACD是偏差三角形吗?请说明理由.(3)如图3,在四边形ABCD中,AB=DC,AC与BD交于点P,BD+AC=9,∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD的面积之和.【答案】(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解析;(3)27 2【解析】【分析】(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏差三角形的定义,即可得到结论;(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直线EA的距离是3,根据三角形的面积公式,即可求解.【详解】(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),∴点C的坐标为(2,0),如图1,∵AC=AB,∴∠ACB=∠ABC,∵∠OCA+∠ACB=180°,∴∠OBA+∠OCA=180°,故答案为:(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由如下:如图2中,在AD上取一点H,使得AH=AB.∵AC平分∠BAD,∴∠CAH=∠CAB,又∵ AC=AC,∴△CAH≌△CAB(SAS),∴CH=CB,∠B=∠AHC,∵∠B+∠D=180°,∠AHC+∠CHD=180°,∴∠D=∠CHD,∴CH=CD,∴CB=CD,∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,∴△ABC与△ACD是偏差三角形;(3)如图3中,延长CA至点E,使AE=BD,连接BE,∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,∴∠BDC=∠BAE,又∵AB=CD,∴∆BDC≅∆EAB(SAS),∴EA=BD,∵点C到直线BD的距离是3,∴点B到直线EA的距离是3,∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=12∙(AC+EA)×3 =12∙(AC+BD)×3 =12×9×3=272.【点睛】本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键。

2019-2020学年山东省枣庄市滕州市、市中区七年级下学期期末数学试卷 (解析版)

2019-2020学年山东省枣庄市滕州市、市中区七年级下学期期末数学试卷 (解析版)

2019-2020学年山东省枣庄市滕州市、市中区七年级第二学期期末数学试卷一、选择题(共12小题).1.下列各式计算正确的是()A.2x3•3x3=6x9B.(﹣ab)4÷(﹣ab)2=﹣a2b2C.3x2+4x2=7x2D.(a+b)2=a2+b22.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件4.如图,AB∥CD,∠FGB=154°,FG平分∠EFD,则∠AEF的度数等于()A.26°B.52°C.54°D.77°5.若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣16.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.87.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是()A.B.C.D.8.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.AD∥BC C.∠B=∠D D.∠3=∠49.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a10.如图,已知∠ABD=∠BAC,添加下列条件不能判断△ABD≌△BAC的条件是()A.∠D=∠C B.AD=BC C.∠BAD=∠ABC D.BD=AC11.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.12.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020,因此2S﹣S=22020﹣1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019﹣1 B.52020﹣1 C.D.二、填空题:每题4分,共24分,将答案填在答题卡的相应位置上。

2019-2020学年山东省潍坊市潍城区、安丘市七年级下学期期末数学试卷 (解析版)

2019-2020学年山东省潍坊市潍城区、安丘市七年级下学期期末数学试卷 (解析版)

2019-2020学年山东省潍坊市潍城区、安丘市七年级第二学期期末数学试卷一、选择题(共12小题).1.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5D.(a2)3=a62.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角D.相等3.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣54.如图是小亮跳远时沙坑的示意图,测量成绩时先使皮尺从后脚跟的点A处开始并与起跳线l于点B处成直角,然后记录AB的长度,这样做的理由是()A.垂线段最短B.过两点有且只有一条直线C.两点之间线段最短D.过一点可以做无数条直线5.现有四根木棒,长度分别为6cm,9cm,10cm,15cm,从中任取三根木棒,能组成三角形的个数为()A.1B.2C.3D.46.如图,可以判定AB∥CD的条件是()A.∠1=∠2B.∠BAD+∠B=180°C.∠3=∠4D.∠D=∠57.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km8.下列因式分解正确的是()A.x2﹣2x=x(x+2)B.a2﹣a﹣6=(a﹣2)(a+3)C.4a2+4ab﹣b2=(2a﹣b)2D.4x2﹣y2=(2x+y)(2x﹣y)9.如图,在△ABC中,点D、E、F分别是BC、AD、BE上的中点,若△ABC的面积为12cm2,则△CEF的面积为()A.0.75B.1.5C.3D.610.下列说法不正确的是()A.在x轴上的点的纵坐标为0B.点P(﹣1,3)到y轴的距离是1C.若xy<0,x﹣y>0,那么点Q(x,y)在第四象限D.点A(﹣a2﹣1,|b|)一定在第二象限11.已知a﹣b=1,ab=12,则a+b等于()A.7B.5C.±7D.±512.已知关于x,y的方程组,给出下列结论:①是方程组的一个解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y间的数量关系是x﹣2y=3.其中正确的是()A.②③B.①②③C.②③④D.①②③④二、填空题(共6小题,共18分.)13.若一个多边形每个内角为160°,则这个多边形的边数是.14.如果(x+3)(x+a)=x2﹣2x﹣15,则a=.15.已知a m=2,a n=3(m,n为正整数),则a3m+2n=.16.如图,将长方形纸片进行折叠,ED,EF为折痕,A与A'、B与B'、C与C'重合,若∠AED=25°,则∠BEF的度数为.17.某车间有56名工人,每人每天能生产螺栓16个或螺母24个,设有x名工人生产螺栓,其他y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,则列方程组为.18.如图,点D是△ABC的边BC的延长线上的一点,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,依此类推…,已知∠A=α,则∠A2020的度数为.(用含α的代数式表示).三、解答题(共7小题;满分66分)19.(1)计算:①利用乘法公式计算:2020×1980;②.(2)因式分解:①xy2﹣9x;②(x﹣y)﹣2x(y﹣x)+x2(x﹣y).20.解下列方程组:(1);(2).21.(2a+b)(2a﹣b)+b(2a+b)﹣4a2,其中a=﹣,b=2.22.如图,在平面直角坐标系中,O为坐标原点,点A(4,1)B(1,1),C(4,5),D(6,﹣3),E(﹣2,5).(1)在坐标系中描出各点,并画出△AEC,△BCD.(2)求出△BCD的面积.23.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B =75°,求∠A的度数.24.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD =α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.参考答案一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分.)1.下列运算正确的是()A.a+a3=a4B.(a+b)2=a2+b2C.a10÷a2=a5D.(a2)3=a6【分析】根据同底数幂的乘法,可判断A,根据完全平方公式,可判断B,根据同底数幂的除法,可判断C,根据幂的乘方,可判断D.解:A、不是同底数幂的乘法指数不能相加,故A错误;B、和的平方等于平方和加积的二倍,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、幂的乘方底数不变指数相乘,故D正确;故选:D.2.已知:如图,AB⊥CD于O,EF为经过点O的一条直线,那么∠1与∠2的关系是()A.互余B.互补C.互为对顶角D.相等【分析】根据垂直得直角:∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即∠1与∠2互余.故选:A.3.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.解:0.0000046=4.6×10﹣6.故选:C.4.如图是小亮跳远时沙坑的示意图,测量成绩时先使皮尺从后脚跟的点A处开始并与起跳线l于点B处成直角,然后记录AB的长度,这样做的理由是()A.垂线段最短B.过两点有且只有一条直线C.两点之间线段最短D.过一点可以做无数条直线【分析】根据垂线段的性质:垂线段最短进行解答即可.解:这样做的理由是根据垂线段最短.故选:A.5.现有四根木棒,长度分别为6cm,9cm,10cm,15cm,从中任取三根木棒,能组成三角形的个数为()A.1B.2C.3D.4【分析】取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.解:共有4种方案:①取6cm,9cm,10cm;由于9﹣6<10<9+6,能构成三角形;②取6cm,9cm,15cm;由于15=6+9,不能构成三角形;③取6cm,10cm,15cm;由于10﹣6<15<10+6,能构成三角形;④取9cm,10cm,15cm;由于10﹣9<15<10+9,能构成三角形.所以有3种方案符合要求.故选:C.6.如图,可以判定AB∥CD的条件是()A.∠1=∠2B.∠BAD+∠B=180°C.∠3=∠4D.∠D=∠5【分析】利用内错角相等两直线平行、同旁内角互补两直线平行逐一判定即可得.解:A.∠1=∠2可判定AD∥BC,不符合题意;B.∠BAD+∠B=180°可判定AD∥BC,不符合题意;C.∠3=∠4可判定AB∥CD,符合题意;D.∠D=∠5可判定AD∥BC,不符合题意;故选:C.7.甲、乙两个城市,乙城市位于甲城市北偏东50°方向,距离为80km,那么甲城市位于乙城市()A.南偏东50°方向,距离为80kmB.南偏西50°方向,距离为80kmC.南偏东40°方向,距离为80kmD.南偏西40°方向,距离为80km【分析】首先作出甲与乙的位置示意图,然后可以直接写出.解:如图:∵乙城市位于甲城市北偏东50°方向,距离为80km,∴甲城市位于乙城市南偏西50°方向,距离为80km,故选:B.8.下列因式分解正确的是()A.x2﹣2x=x(x+2)B.a2﹣a﹣6=(a﹣2)(a+3)C.4a2+4ab﹣b2=(2a﹣b)2D.4x2﹣y2=(2x+y)(2x﹣y)【分析】各项分解因式得到结果,判断即可.解:A、原式=x(x﹣2),不符合题意;B、原式=(a﹣3)(a+2),不符合题意;C、原式不能分解,不符合题意;D、原式=(2x+y)(2x﹣y),符合题意,故选:D.9.如图,在△ABC中,点D、E、F分别是BC、AD、BE上的中点,若△ABC的面积为12cm2,则△CEF的面积为()A.0.75B.1.5C.3D.6【分析】根据三角形中线把三角形分成两个面积相等的三角形可得S△ABD=S△ACD=S△ABC,S△BDE=S△ABD,S△CDE=S△ACD,从而求出S△BCE=S△ABC,再根据S△CEF=S计算即可得解.△BCE解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC,S△BDE=S△ABD,∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BCE=S△BDE+S△CDE=S△ABD+S△ACD=S△ABC,∵F是BE的中点,∴S△CEF=S△BCE=×S△ABC=S△ABC,∵△ABC的面积为12cm2,∴△BCF的面积=×12=3cm2.故选:C.10.下列说法不正确的是()A.在x轴上的点的纵坐标为0B.点P(﹣1,3)到y轴的距离是1C.若xy<0,x﹣y>0,那么点Q(x,y)在第四象限D.点A(﹣a2﹣1,|b|)一定在第二象限【分析】根据坐标轴上点的坐标特点,点的坐标到坐标轴的距离及各个象限内点的坐标符号特点逐一判断可得.解:A.在x轴上的点的纵坐标为0,说法正确,故本选项不合题意;B.点P(﹣1,3)到y轴的距离是1,说法正确,故本选项不合题意;C.若xy<0,x﹣y>0,则x>0,y<0,所以点Q(x,y)在第四象限,说法正确,故本选项不合题意;D.﹣a2﹣1<0,|b|≥0,所以点A(﹣a2﹣1,|b|)在x轴或第二象限,故原说法错误,故本选项符合题意.故选:D.11.已知a﹣b=1,ab=12,则a+b等于()A.7B.5C.±7D.±5【分析】利用完全平方公式解答即可.解:∵a﹣b=1,ab=12,∴(a+b)2=a2+2ab+b2=(a﹣b)2+4ab=1+48=49,∴a+b=±7,故选:C.12.已知关于x,y的方程组,给出下列结论:①是方程组的一个解;②当a=﹣2时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a的解;④x,y间的数量关系是x﹣2y=3.其中正确的是()A.②③B.①②③C.②③④D.①②③④【分析】①将x=5,y=﹣1代入检验即可做出判断;②将a=﹣2代入方程组求出方程组的解即可做出判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④消去a得到关于x与y的方程,即可做出判断.解:①将x=5,y=﹣1代入方程组得:,解得:a=2,本选项正确;②将a=﹣2代入方程组得:,①﹣②得:4y=12,即y=3,将y=3代入②得:x=﹣3,则x与y互为相反数,本选项正确;③将a=1代入方程组得:,解得:,将x=3,y=0代入方程x+y=3的左边得:3+0=3,是方程x+y=3的解,本选项正确;④,由①得:a=4﹣x﹣3y,代入②得:x﹣y=3(4﹣x﹣3y),整理得:x+2y=3,本选项错误,则正确的选项为①②③.故选:B.二、填空题(本大题共6小题,共18分.只要求填写最后结果,每小题填对得3分.)13.若一个多边形每个内角为160°,则这个多边形的边数是18.【分析】本题需先根据内角度数计算公式,列出式子解出结果,即可求出边数.解:根据题意得:360°÷(180°﹣160°)=360°÷20°=18.故答案为:18.14.如果(x+3)(x+a)=x2﹣2x﹣15,则a=﹣5.【分析】已知等式左边利用多项式乘多项式法则计算,合并后利用多项式相等的条件即可求出a的值.解:(x+3)(x+a)=x2+(a+3)x+3a=x2﹣2x﹣15,可得a+3=﹣2,解得:a=﹣5.故答案为:﹣5.15.已知a m=2,a n=3(m,n为正整数),则a3m+2n=72.【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.解:∵a m=2,a n=3(m,n为正整数),∴a3m+2n=(a m)3×(a n)2=23×32=8×9=72.故答案为:72.16.如图,将长方形纸片进行折叠,ED,EF为折痕,A与A'、B与B'、C与C'重合,若∠AED=25°,则∠BEF的度数为65°.【分析】根据折叠的性质和平角的定义即可得到结论.解:根据翻折的性质可知,∠AED=∠A′ED,∠BEF=∠FEB′,∵∠AED+∠A′ED+∠BEF+∠FEB′=180°,∴∠AED+∠BEF=90°,又∵∠AED=25°,∴∠BEF=65°.故答案为:65°.17.某车间有56名工人,每人每天能生产螺栓16个或螺母24个,设有x名工人生产螺栓,其他y名工人生产螺母,每天生产的螺栓和螺母按1:2配套,则列方程组为.【分析】根据题意可得等量关系:(1)车间有56名工人;(2)x名工人生产螺栓的数量×2=y名工人生产螺母的数量,根据等量关系列出方程组即可.解:设有x名工人生产螺栓,其他y名工人生产螺母,由题意得:,故答案为:.18.如图,点D是△ABC的边BC的延长线上的一点,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,依此类推…,已知∠A=α,则∠A2020的度数为,.(用含α的代数式表示).【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A1=α,∠A2=α,∠A3=α,据此找规律可求解.解:在△ABC中,∠A=∠ACD﹣∠ABC=α,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1=∠A1CD﹣∠A1BC=(∠ACD﹣∠ABC)=∠A=α,同理可得∠A2=∠A1=α,∠A3=∠A2=α,…以此类推,∠A2020=,故答案为..三、解答题(共7小题;满分66分)19.(1)计算:①利用乘法公式计算:2020×1980;②.(2)因式分解:①xy2﹣9x;②(x﹣y)﹣2x(y﹣x)+x2(x﹣y).【分析】(1)①根据平方差公式对要求的式子进行分解,然后进行计算即可;②根据零指数幂、负整数指数幂对要求的式子进行计算即可得出答案;(2)①先提取公因式,再根据平方差公式进行分解即可;②先提取公因式,再根据完全平方公式进行解答即可.解:(1)①2020×1980=(2000+20)(2000﹣20)=20002﹣202=3999600;②=1﹣8+9﹣2=0;(2)①xy2﹣9x=x(y2﹣9)=x(y2﹣32)=x(x+3)(x﹣3);②(x﹣y)﹣2x(y﹣x)+x2(x﹣y)=(x﹣y)(1+2x+x2)=(x﹣y)(1+x)2.20.解下列方程组:(1);(2).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解:(1),②﹣①得:y=1,把y=1代入②得:x+2=1,解得:x=﹣1,∴原方程组的解为;(2)原方程组整理得,,①×③﹣②,得16x=8,解得x=,把x=代入①得,,解得y=,∴原方程组的解是.21.(2a+b)(2a﹣b)+b(2a+b)﹣4a2,其中a=﹣,b=2.【分析】先算乘法,再合并同类项,最后代入求出即可.解:(2a+b)(2a﹣b)+b(2a+b)﹣4a2=4a2﹣b2+2ab+b2﹣4a2=2ab,当a=﹣,b=2时,原式=2×(﹣)×2=﹣2.22.如图,在平面直角坐标系中,O为坐标原点,点A(4,1)B(1,1),C(4,5),D(6,﹣3),E(﹣2,5).(1)在坐标系中描出各点,并画出△AEC,△BCD.(2)求出△BCD的面积.【分析】(1)根据各点坐标描出点的位置,依次连接即可;(2)根据割补法,利用三角形面积公式计算可得.解:(1)如图所示:(2)S△BCD=×4×4+×4×4=16.23.如图所示,点E在AB上,CE,DE分别平分∠BCD,∠ADC,∠1+∠2=90°,∠B =75°,求∠A的度数.【分析】根据已知条件∠1+∠2=90°,CE,DE分别为角平分线,可得一对同旁内角互补,证得AD∥BC;根据两直线平行,同旁内角互补由已知∠B的度数,即可求出∠A 的度数.解:∵∠1+∠2=90°,CE,DE分别平分∠BCD,∠ADC,∴∠ADC+∠BCD=2(∠1+∠2)=180°,∴AD∥BC,∴∠A+∠B=180°,∵∠B=75°,∴∠A=180°﹣75°=105°.24.某生态柑橘园现有柑橘21吨,计划租用A,B两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨.(1)1辆A型车和1辆B型车满载时一次分别运柑橘多少吨?(2)若计划租用A型货车m辆,B型货车n辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A型车每辆需租金120元/次,B型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y 吨,依题意,得:,解得:.答:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣n.又∵m,n均为非负整数,∴或或或.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A 型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,∴最省钱的租车方案是租用7辆A型车,最少租车费是840元.25.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD =α,∠BCD=β(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=150°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=150°,∴∠MBC+∠NDC=150°,(2)β﹣α=90°理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,在△BCD中,∠BDC+∠DBC=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∴∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CDB)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°,(3)平行,理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.。

专练09(几何题)-2019~2020学年下学期七年级期末考点必杀200题(人教版)(解析版)

专练09(几何题)-2019~2020学年下学期七年级期末考点必杀200题(人教版)(解析版)

专练09(几何题)(20道)1.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数.小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得 5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.【来源】北京市朝阳外国语学校2019-2020学年七年级下学期5月阶段性测试数学试题【答案】(1)∠CPD=∠α+∠β,理由见解析;(2)①当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;②当点P 在B 、O 两点之间时,∠CPD=∠α−∠β【解析】(1)∠CPD=αβ∠+∠,理由如下:如图3,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE +∠CPE=αβ∠+∠;(2)①当点P 在A 、M 两点之间时,∠CPD=βα∠-∠,理由如下:如图4,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠EPD ,β∠=∠CPE ,∴∠CPD=∠CPE −∠EPD=βα∠-∠;②当点P 在B 、O 两点之间时,∠CPD=αβ∠-∠,理由如下:如图5,过点P 作PE ∥AD 交CD 于点E ,∵AD ∥BC ,PE ∥AD ,∴AD ∥PE ∥BC ,∴α∠=∠DPE ,β∠=∠CPE ,∴∠CPD=∠DPE −∠CPE=αβ∠-∠,综上所述,当点P 在A 、M 两点之间时,∠CPD=∠β−∠α;当点P 在B 、O 两点之间时,∠CPD=∠α−∠β.【点睛】本题主要考查了在平行线性质及判定的综合运用,熟练掌握相关概念是解题关键.2.(1)如图1,AB ∥CD ,点M 为直线AB ,CD 所确定的平面内的一点,若∠A =105︒+α,∠M =108︒-α,请直接写出∠C 的度数 ;(2)如图2,AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点,点E 在直线CD 上,AN 平分∠PAB ,射线AN 的反向延长线交∠PCE 的平分线于M ,若∠P =30︒,求∠AMC 的度数;(3)如图3,点P 与直线AB ,CD 在同一平面内,AN 平分∠PAB ,射线AN 的反向延长线交∠PCD 的平分线于M ,若∠AMC =180︒-12∠P ,求证:AB ∥CD .【来源】湖北省武汉市外国语学校2019-2020学年七年级下学期期中数学试题【答案】(1)147C ∠=︒;(2)105AMC ∠=︒;(3)证明过程见解析【解析】解:(1)如图,连接AC ,在AMC 中,180MAC MAC MCA ∠+∠+∠=︒,∵AB ∥CD ,180BAC ACD ∴∠+∠=︒,180180360BAM M MCD ∴∠+∠+∠=︒+︒=︒,∵∠A =105︒+α,∠M =108︒-α,∴105(108367)014a a MCD ︒++︒⎡⎤∠=︒-=︒⎣⎦-;(2)如图,延长BA 与CP 交于Q ,记CQ 和AM 交于点H ,∵AN 平分∠PAB ,BAN PAN ∴∠=∠,1802QAP BAN ∴∠=︒-∠,∵∠P =30︒,∴3018022102CQA P QAP BAN BAN ∠=∠+∠=︒+︒-∠=︒-∠,30MHC NHP NAP P BAN ∠=∠=∠-∠=∠-︒,∵AB ∥CD ,2102ECQ CQA BAN ∴∠=∠=︒-∠,∵CM 平分∠PCE ,()11210210522MCH ECP BAN BAN ∴∠=∠=⨯︒-∠=︒-∠,180AMC MHC MCH ∠=︒-∠-∠,()18030(105)105AMC BAN BAN ∴∠=︒-∠-︒-︒-∠=︒; (3)如图,连接AC ,则180PAC PCA P ∠+∠=︒-∠,180MAC MCA M ∠+∠=︒-∠,∵∠AMC =180︒-12∠P , 12MAC MCA P ∴∠+∠=∠, 11802MAC MCA PAC PCA P ∴∠+∠+∠+∠=︒-∠, 即11802PAM PCM P ∠+∠=︒-∠, ∵AN 平分∠PAB ,MC 平分∠PCD ,,BAM PAM DCM PCM ∴∠=∠∠=∠,11802BAM DCM P ∴∠+=︒-∠, 1118018022BCA DCA P P ∴∠+∠=︒-∠+∠=︒, ∴AB ∥CD .【点睛】本题考查的平行线及三角形的综合知识,在这里要注意添加根据题意添加合适的辅助线,这里需要用到三角形的内角和、平行四边形的性质、角平分线的性质以及对顶角等综合性质,难度稍大.3.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒. (2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系; (3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.【来源】湖北省武汉市青山区武钢实验学校2019-2020学年七年级下学期期中数学试题【答案】(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【解析】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.4.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.【来源】重庆市西南大学附属中学校2018-2019学年七年级下学期期中数学试题【答案】(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【解析】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠,322∠=∠∴.又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒. 5.已知//AB CD ,点M 为平面内一点.(1)如图1,ABM ∠和DCM ∠互余,小明说过M 作//MP AB ,很容易说明BM CM ⊥。

人教版初中数学七年级下册期末测试题(2019-2020学年黑龙江省齐齐哈尔市四县联考

人教版初中数学七年级下册期末测试题(2019-2020学年黑龙江省齐齐哈尔市四县联考

2019-2020学年黑龙江省齐齐哈尔市四县联考七年级(下)期末数学试卷一、单项选择题(每小题3分,共30分)1.(3分)初中第一学年的学习生活就要结束了,在你们成长的花季里,一定有很多收获.很高兴和你们合作完成第一道考试题.现在我作一个120°的角,你作一个60°的角,下面结论正确的是()A.这两个角是邻补角B.这两个角是同位角C.这两个角互为补角D.这两个角是同旁内角2.(3分)一个数的立方就是它本身,则这个数是()A.1B.0C.﹣1D.1或0或﹣1 3.(3分)下列图形中,能将其中一个图形平移得到另一个图形的是()A.B.C.D.4.(3分)下列选项正确的是()A.=±1B.=﹣2C.=﹣5D.=15.(3分)若点P(a,a﹣1)在第四象限,则a的取值范围是()A.﹣1<a<0B.0<a<1C.a>1D.a<06.(3分)若a>b,则下列不等式一定成立的是()A.﹣1+a<﹣1+b B.<C.2﹣a>2﹣b D.b﹣a<07.(3分)下面四个图形中,∠1与∠2为对顶角的图形是()A.B.C.D.8.(3分)下列调查中,最适合采用抽样调查的是()A.在“新冠状肺炎”疫情期间,对出入某小区的人员进行体温检测B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况9.(3分)下列命题中是假命题的是()A.两点的所有连线中,线段最短B.两条直线被第三条直线所截,同位角相等C.等式两边加同一个数,结果仍相等D.不等式两边加同一个数,不等号的方向不变10.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上,若∠1=40°,则∠2的度数为()A.30°B.40°C.45°D.50°二、填空题(每小题3分,共21分)11.(3分)的立方根是.12.(3分)将一点A(1,2)向右平移2个单位得到一个对应点A′,则点A′的坐标是.13.(3分)某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是.14.(3分)用不等式表示“a与5的差不是正数”:.15.(3分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=.16.(3分)在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2020的坐标为.17.(3分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三、解答题(满分49分)18.(5分)计算:﹣+.19.(6分)解不等式组,并将解集在数轴上表示出来.20.(6分)解方程组.21.(7分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中画出△ABC向右平移3个单位,再向下平移2个单位的图形△A1B1C1.(3)写出点A1,B1,C1的坐标.22.(7分)为了解居民月用水量,某市对居民用水进行了抽样调查,并制成直方图.(1)这次一共抽查了户;(2)用水量不足10吨的有户,用水量超过16吨的有户;(3)假设该区有8万户居民,估计用水量少于10吨的有多少户?23.(9分)如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断AD与BC的位置关系,并说明理由;(3)若AD平分∠BDF,试说明BC平分∠DBE.24.(9分)我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?2019-2020学年黑龙江省齐齐哈尔市四县联考七年级(下)期末数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.(3分)初中第一学年的学习生活就要结束了,在你们成长的花季里,一定有很多收获.很高兴和你们合作完成第一道考试题.现在我作一个120°的角,你作一个60°的角,下面结论正确的是()A.这两个角是邻补角B.这两个角是同位角C.这两个角互为补角D.这两个角是同旁内角【分析】根据互为补角的定义、邻补角的定义、同位角的定义、同旁内角的定义进行判断.【解答】解:一个是120°的角,另一个是60°的角,这两个角和等于180°,这两个角互为补角.故选:C.【点评】本题考查互为补角、邻补角、同位角、同旁内角.解题的关键是灵活掌握补角的定义、邻补角的定义、同位角的定义、同旁内角的定义.2.(3分)一个数的立方就是它本身,则这个数是()A.1B.0C.﹣1D.1或0或﹣1【分析】本题考查立方的意义,在解答时,根据立方的意义求得结果.【解答】解:一个数的立方就是它本身,则这个数是1或0或﹣1.故选:D.【点评】解决此类题目的关键是熟记立方的意义.根据立方的意义,一个数的立方就是它本身,则这个数是1,﹣1或0.3.(3分)下列图形中,能将其中一个图形平移得到另一个图形的是()A.B.C.D.【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【解答】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到;C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D、图形的大小发生变化,不属于平移得到;故选:A.【点评】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想.4.(3分)下列选项正确的是()A.=±1B.=﹣2C.=﹣5D.=1【分析】根据算术平方根以及立方根的定义即可作出判断.【解答】解:A、=1,故选项不符合题意;B、==2,故选项不符合题意;C、==﹣5,选项符合题意;D、没有意义,选项不符合题意.故选:C.【点评】本题考查了算术平方根和立方根的定义,理解算术平方根是非负的平方根,只有非负数有平方根是关键.5.(3分)若点P(a,a﹣1)在第四象限,则a的取值范围是()A.﹣1<a<0B.0<a<1C.a>1D.a<0【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【解答】解:∵点P(a,a﹣1)在第四象限,∴,解得0<a<1,即a的取值范围是0<a<1.故选:B.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.(3分)若a>b,则下列不等式一定成立的是()A.﹣1+a<﹣1+b B.<C.2﹣a>2﹣b D.b﹣a<0【分析】根据不等式的性质进行判断即可.【解答】解:A、在不等式a>b的两边同时减去1,不等式仍成立,即﹣1+a>﹣1+b,故本选项错误;B、在不等式a>b的两边同时除以2,不等式仍成立,即>,故本选项错误;C、在不等式a>b的两边同时乘以﹣1然后加上2,不等式方向改变,即2﹣a<2﹣b,故本选项错误;D、由原不等式得到:b﹣a>0,故本选项正确.故选:D.【点评】本题考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7.(3分)下面四个图形中,∠1与∠2为对顶角的图形是()A.B.C.D.【分析】根据对顶角的定义,对顶角的两边互为反向延长线,可以判断.【解答】解:因为A、B、D中,∠1与∠2的两边不互为反向延长线,所以都不表示对顶角,只有C中,∠1与∠2为对顶角.故选:C.【点评】本题考查了对顶角的定义,注意对顶角是两条直线相交而成的四个角中,没有公共边的两个角.8.(3分)下列调查中,最适合采用抽样调查的是()A.在“新冠状肺炎”疫情期间,对出入某小区的人员进行体温检测B.了解全班同学每周体育锻炼的时间C.企业招聘,对应聘人员的面试D.了解某批次灯泡的使用寿命情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、在“新冠状肺炎”疫情期间,对出入某小区的人员进行体温检测,意义重大,应采用全面调查,故此选项不合题意;B、了解全班同学每周体育锻炼的时间,人数不多,应采用全面调查,故此选项不合题意;C、企业招聘,对应聘人员的面试,人数不多,应采用全面调查,故此选项不合题意;D、了解某批次灯泡的使用寿命情况,调查具有破坏性,应采用抽样调查,故此选项符合题意;故选:D.【点评】此题主要考查了全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.9.(3分)下列命题中是假命题的是()A.两点的所有连线中,线段最短B.两条直线被第三条直线所截,同位角相等C.等式两边加同一个数,结果仍相等D.不等式两边加同一个数,不等号的方向不变【分析】根据线段的性质、平行线的性质、等式的性质和不等式的性质判断即可.【解答】解:A、两点的所有连线中,线段最短,是真命题;B、两条平行线被第三条直线所截,同位角相等,是假命题;C、等式两边加同一个数,结果仍相等,是真命题;D、不等式两边加同一个数,不等号的方向不变,是真命题;故选:B.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上,若∠1=40°,则∠2的度数为()A.30°B.40°C.45°D.50°【分析】根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【解答】解:∵∠1=40°,∴∠3=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故选:D.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.二、填空题(每小题3分,共21分)11.(3分)的立方根是﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵(﹣)3=﹣,∴﹣的立方根根是:﹣.故答案是:﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.12.(3分)将一点A(1,2)向右平移2个单位得到一个对应点A′,则点A′的坐标是(3,2).【分析】根据点的平移方法可得答案.【解答】解:将一点A(1,2)向右平移2个单位得到一个对应点A′,则点A′的坐标是(1+2,2)即(3,2),故答案为:(3,2).【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.13.(3分)某中学为了了解本校2 000名学生所需运动服尺码,在全校范围内随机抽取100名学生进行调查,这次抽样调查的样本容量是100.【分析】找到样本,根据样本容量的定义解答.【解答】解:样本是在全校范围内随机抽取的100名学生的运动服尺码,故样本容量为100.故答案为:100.【点评】样本容量是指样本中包含个体的数目,没有单位,一般是用样本中各个数据的和÷样本的平均数,可以求得样本的容量.14.(3分)用不等式表示“a与5的差不是正数”:a﹣5≤0.【分析】理解:不是正数,意思是应小于或等于0.【解答】解:根据题意,得a﹣5≤0.【点评】读懂题意,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.15.(3分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★=﹣2.【分析】根据二元一次方程组的解的定义得到x=5满足方程2x﹣y=12,于是把x=5代入2x﹣y=12得到2×5﹣y=12,可解出y的值.【解答】解:把x=5代入2x﹣y=12得2×5﹣y=12,解得y=﹣2.∴★为﹣2.故答案为:﹣2.【点评】本题考查了二元一次方程组的解:使二元一次方程组的两个方程左右两边都相等的未知数的值叫二元一次方程组的解.16.(3分)在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,2),A4(4,5)…用你发现的规律,确定点A2020的坐标为(2020,2021).【分析】先设出A n(x,y),再根据所给的坐标,找出规律,当n为偶数,A n(x,y)的坐标是(n,n+1),当n为奇数,A n(x,y)的坐标是(n,n﹣1),再把n=2020代入即可.【解答】解:设A n(x,y),∵当n=1时,A1(1,0),即x=n=1,y=1﹣1=0,当n=2时,A2(2,3),即x=n=2,y=2+1=3;当n=3时,A3(3,2),即x=n=3,y=3﹣1=2;当n=4时,A4(4,5),即x=n=4,y=4+1=5;…∴当点的位置在奇数位置横坐标与下标相等,纵坐标减1,当点的位置在偶数位置横坐标与下标相等,纵坐标加1,∴A2020(x,y)的坐标是(n,n+1)∴点A2020的坐标为(2020,2021).故答案为:(2020,2021).【点评】此题主要考查了点的坐标变化规律,利用已知得出点的变化规律是解题关键.17.(3分)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式,正确表示出小明的得分是解决本题的关键.三、解答题(满分49分)18.(5分)计算:﹣+.【分析】先分别根据数的开方法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=4﹣(2﹣)﹣2=4﹣2+﹣2=.【点评】本题考查的是实数的运算,熟知数的开方法则、绝对值的性质是解答此题的关键.19.(6分)解不等式组,并将解集在数轴上表示出来.【分析】根据解不等式组的方法可以求得不等式组的解集,从而可以在数轴上表示不等式组的解集.【解答】解:,解不等式①,得x≤3,解不等式②,得x>﹣2,不等式①、②的解集在数轴表示如下图所示,故原不等式组的解集为:﹣2<x≤3.【点评】本题考查解一元一次不等式不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.20.(6分)解方程组.【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:8﹣y+5y=16,解得:y=2,把y=2代入①得:x=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(7分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中画出△ABC向右平移3个单位,再向下平移2个单位的图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【分析】(1)直接根据三角形的面积公式求出△ABC的面积即可;(2)根据图形平移的性质画出△A1B1C1即可;(3)根据各点在坐标系中的位置写出点A1,B1,C1的坐标即可.【解答】解:(1)S△ABC=×5×3=7.5;(2)如图所示:(3)由图可知,A1(2,3),B1(2,﹣2),C1(﹣1,1).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.22.(7分)为了解居民月用水量,某市对居民用水进行了抽样调查,并制成直方图.(1)这次一共抽查了100户;(2)用水量不足10吨的有55户,用水量超过16吨的有10户;(3)假设该区有8万户居民,估计用水量少于10吨的有多少户?【分析】(1)各组的人数的和就是总人数;(2)用水量不足10吨的就是前边的两组的频数的和,用水量超过16吨的户数是最后两组的频数的和;(3)80000乘以水量少于10吨的户数所占的比例即可求解.【解答】解:(1)一共抽查的户数是:20+35+20+15+5+5=100(户);故答案是:100;(2)用水量不足10吨的有:20+35=55(户),用水量超过16吨的有5+5=10(户);故答案是:55,10.(3).∴估计该区居民用水量少于10吨的有44000户【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(9分)如图,AE∥CF,∠A=∠C.(1)若∠1=35°,求∠2的度数;(2)判断AD与BC的位置关系,并说明理由;(3)若AD平分∠BDF,试说明BC平分∠DBE.【分析】(1)由平行线的性质求得∠BDC=∠1=35°,然后由邻补角的定义求得∠2的度数即可;(2)由平行线的性质可知:∠A+∠ADC=180°,然后由∵∠A=∠C,再证得∠C+∠ADC=180°,从而可证得BC∥AD;(3)由AE∥CF可证明∠BDF=∠DBE,由BC∥AD,可证明∠ADB=∠DBC,由角平分线的定义可知,∠ADB=∠BDF,从而可证明∠DBC=∠EBD.【解答】解:(1)∵AE∥CF,∴∠BDC=∠1=35°,又∵∠2+∠BDC=180°,∴∠2=180°﹣∠BDC=180°﹣35°=145°;(2)BC∥AD.理由:∵AE∥CF,∴∠A+∠ADC=180°,又∵∠A=∠C,∴∠C+∠ADC=180°,∴BC∥AD.(3)∵AE∥CF,∴∠BDF=∠DBE.∵BC∥AD,∴∠ADB=∠DBC.∵AD平分∠BDF,∴∠ADB =∠BDF,∴∠DBC =∠EBD.∴BC平分∠DBE.【点评】本题主要考查的是平行线的性质的应用,掌握平行线的性质是解题的关键.24.(9分)我校为做好高三年级复课工作,积极准备防疫物资,计划从新兴药房购买消毒液和酒精共40瓶,在获知北国超市有促销活动后,决定从北国超市购买这些物品.已知消毒液和酒精在这两家店的售价如表所示,且在新兴药房购买这些物品需花费900元.品名商店消毒液(元/瓶)酒精(元/瓶)新兴药房2420北国超市2018(1)求出需要购买的消毒液和酒精的数量分别是多少瓶?(2)求从北国超市购买这些物品可以节省多少元?【分析】(1)设需要购买的消毒液x瓶,酒精y瓶,根据从北国超市购买消毒液和酒精共40瓶需花费900元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用,用900减去该值即可得出结论.【解答】解:(1)设需要购买的消毒液x瓶,酒精y瓶,根据题意得:,解得:.答:需要购买的消毒液25瓶,酒精15瓶.(2)从北国超市购买这些物品所需费用为25×20+15×18=770(元),节省的钱数为900﹣770=130(元).答:从北国超市购买这些物品可节省130元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据总价=单价×数量求出从北国超市购买这些物品所需费用.。

2019—2020学年度第二学期期末考试七年级数学试题及答案

2019—2020学年度第二学期期末考试七年级数学试题及答案

七年级数学试题 第1页 共4页2019—2020学年度第二学期期末考试七年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷. 2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3. 答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置. 一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上) 1.四边形的内角和为A .180°B .360°C .540°D .720°2.下列图形中,可以由其中一个图形通过平移得到的是A. B .CD .3.下列由左到右的变形中,因式分解正确的是A .21(1)(1)x x x -=+-B .22(1)21x x x +=++C .221(2)1x x x x -+=-+D .2(1)(1)1x x x +-=-4.满足不等式10x +>的最小整数解是A .1-B .0C .1D .25.已知24x x k ++是一个完全平方式,则常数k 为A .2B .-2C .4D .-46.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒.现有18张白铁皮,设用x 张制作盒身、y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y +=⎧⎨=⨯⎩D .181610x y x y +=⎧⎨=⎩7.已知01()2a =-,22b -=-,2(2)c -=-,则a 、b 、c 的大小关系为A .c b a <<B .a b c <<C .b a c <<D .b c a <<七年级数学试题 第2页 共4页8. 对于有理数x ,我们规定{}x 表示不小于x 的最小整数,如{}2.23=,{}22=,{}2.52-=-,若4310x +⎧⎫=⎨⎬⎩⎭,则x 的取值可以是A .10B .20C .30D .40二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上)9. 如图,直线a 、b 被直线c 所截,a ∥b ,∠1=70°,则∠2= ▲ °.10.命题“若a b =,则a b -=-”的逆命题是 ▲ . 11.太阳的半径约为700 000 000米,数据700 000 000用科学记数法表示为 ▲ . 12.计算:23()b b ÷= ▲ .13.如图,△ABC 中,∠1=∠2,∠BAC =60°,则∠APB = ▲ °.14.已知方程组123a b b c c a +=-⎧⎪+=⎨⎪+=⎩,则a b c ++= ▲ .15.计算:100920181(9)()3-⨯= ▲ .16.计算:2416(21)(21)(21)(21)1+++⋅⋅⋅++= ▲ .三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)分解因式:(1)23x x -;(2)2242a a -+. 18.(本题满分6分)解方程组:2351x y x y +=⎧⎨=-⎩19.(本题满分6分)化简并求值:2(2)(21)2n n n +--,其中13n =.20.(本题满分6分)利用数轴确定不等式组2413122x x ≥-⎧⎪⎨+<⎪⎩的解集.第9题图a b1c2第13题图ABP12七年级数学试题 第3页 共4页21.(本题满分6分)如图,在方格纸上,以格点为顶点的三角形叫做格点三角形,请按要求完成下列操作: (1)将△ABC 先向右平移2个单位,再向上平移4个单位,画出平移后的△A 1B 1C 1; (2)连接AA 1、BB 1,则线段AA 1、BB 1的位置关系为 ▲ 、数量关系为 ▲ ; (3)画出△ABC 的AB 边上的中线CD 以及BC 边上的高AE .22.(本题满分6分)已知:如图,是一个形如“5”字的图形,AC ∥DE ,AB ∥CD ,∠D +∠E =180°.求证:∠A =∠E . 证明:∵ ▲( 已知 ) ∴∠A +∠C =180° ( ▲ ) ∵AC ∥DE( ▲ )∴∠ ▲ =∠D ( ▲ ) 又∠D +∠E =180° ( 已知 ) ∴∠A =∠E( ▲ )23.(本题满分8分)已知关于x 、y 的二元一次方程组23,2 6.x y m x y -=⎧⎨-=⎩(1)若方程组的解满足4x y -=,求m 的值; (2)若方程组的解满足0x y +<,求m 的取值范围.24.(本题满分8分)一家公司加工蔬菜,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购蔬菜150吨,并用14天加工完这批蔬菜.请问粗加工蔬菜和精加工蔬菜各多少吨?ABC AB C EDF七年级数学试题 第4页 共4页25.(本题满分8分)小军、小华、小峰三人身上各有一些1元和5角的硬币.小军:我有1元和5角的硬币共13枚,总币值为9元. 小华:我有1元和5角的硬币共13枚,总币值小于8.5元. 小峰:我有1元和5角的硬币若干,这些硬币的总币值为4元. 这三人身上哪一个的5角硬币最多呢?请写出解答过程.26.(本题满分12分)三角形内角和定理告诉我们:三角形三个内角的和等于180°.如何证明这个定理呢?我们知道,平角是180°,要证明这个定理就是把三角形的三个内角转移到一个平角中去.请根据如下条件,证明定理. 【定理证明】已知:△ABC (如图①). 求证:∠A +∠B +∠C =180°. 【定理推论】如图②,在△ABC 中,有∠A +∠B +∠ACB =180°,点D 是BC 延长线上一点,由平角的定义可得∠ACD +∠ACB =180°,所以∠ACD = ▲ .从而得到三角形内角和定理的推论:三角形的外角等于与它不相邻的两个内角的和.【初步运用】如图③,点D 、E 分别是△ABC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠DBC =150°,则∠ACB = ▲ °; (2)若∠A =80°,则∠DBC +∠ECB = ▲ °. 【拓展延伸】如图④,点D 、E 分别是四边形ABPC 的边AB 、AC 延长线上一点. (1)若∠A =80°,∠P =150°,则∠DBP +∠ECP = ▲ °;(2)分别作∠DBP 和∠ECP 的平分线,交于点O ,如图⑤,若∠O =50°,则∠A 和∠P的数量关系为 ▲ ; (3)分别作∠DBP 和∠ECP 的平分线BM 、CN ,如图⑥,若∠A =∠P ,求证:BM ∥CN .图④B ACDE P 图⑤B ACDE P O图⑥B ACD EP MN B A C D 图② 图③B A CD EA C 图①七年级数学试题 第5页 共4页七年级数学参考答案与评分细则一、选择题(每小题3分,共24分)1.B 2.C 3.A 4.B 5.C6.B7.D8.B二、填空题(每小题3分,共24分)9. 7010.若a b -=-,则a b = 11.8710⨯12.5b 13.120 14.2 15.1-16.322三、解答题 17.解:(1)23x x -=(3)x x -······································································ 3分(2)2242a a -+=22(1a -) ······························································ 6分18.解:23x y =-⎧⎨=⎩······················································································· 6分(x 、y 的值作对一个得3分)19.解:原式=32n - ················································································· 4分当13n =时,原式=1- ··········································································· 6分20.解: 2413122x x ≥-⎧⎪⎨+<⎪⎩①② 由①得2x ≥- ················································································ 1分 由②得1x < ·················································································· 2分 在数轴上表示不等式①、②的解集·························4分所以,不等式组的解集是21x -≤< ··············6分21.解:(1)如图 ·················································2分(2)AA 1∥BB 1、AA 1=BB 1·········································· 4分 (3)如图·················································6分ABC A 1B 1C 1D┐E七年级数学试题 第6页 共4页22.解: AB ∥CD ················································································································· 1分(两直线平行,同旁内角互补) ········································ 2分 (已知) ······································································ 3分∠C (两直线平行,内错角相等) ··········································· 5分(等角的补角相等) ······················································· 6分23.解:2326x y m x y -=⎧⎨-=⎩①②(1)方法一:由题得4x y -=③③-②得 2y =- ··········································································· 1分 把2y =-代人②得 2x = ·································································· 2分把22x y =⎧⎨=-⎩代入①解得 2m = ··············································································· 4分方法二:①+②得 3336x y m -=+即2x y m -=+ ··············································································· 2分 由③得 24m +=解得 2m = ··············································································································· 4分 (2)①-②得 36x y m +=- ··································································· 6分又0x y +< 所以360m -<解得2m < ···················································································· 8分24.解:设粗加工蔬菜为x 吨,精加工蔬菜为y 吨 ············································ 1分得15014155x y x y +=⎧⎪⎨+=⎪⎩ ············································································· 4分解得12030x y =⎧⎨=⎩················································································ 7分答:粗加工蔬菜为120吨,精加工蔬菜为30吨 ···································· 8分25.解:设小军身上有1元硬币x 枚,5角硬币y 枚得 130.59x y x y +=⎧⎨+=⎩解得 58x y =⎧⎨=⎩·················································································· 2分所以,小军身上有5角硬币8枚设小华身上有5角硬币m 枚七年级数学试题 第7页 共4页得 130.58.5m m -+<, 解得 9m >所以,小军身上有5角硬币至少10枚 ················································· 4分 设小峰身上有1元硬币a 枚,5角硬币b 枚 得 0.54a b +=82b a =- 所以,小峰身上有5角硬币不超过8枚(写出不超过6或不超过8的正整数解也可以) ··································· 6分 综上所述,可得小华身上5角硬币最多 ··············································· 8分26.【定理证明】证明:方法一:过点A 作直线MN ∥BC ,如图所示∴∠MAB =∠B ,∠NAC =∠C ∵∠MAB +∠BAC +∠NAC =180°∴∠BAC +∠B +∠C =180° ······························································ 3分 方法二:延长BC 到点D ,过点C 作CE ∥AB ,如图所示 ∴∠A =∠ACE ,∠B =∠ECD ∵∠ACB +∠ACE +∠ECD =180° ∴∠A +∠B +∠ACB =180° ······························································ 3分【定理推论】∠A +∠B ·················································································································· 4分 【初步运用】(1)70° ························································································ 5分 (2)260° ······················································································ 6分 【拓展延伸】(1)230° ······················································································ 7分 (2)∠P =∠A +100° ······································································· 9分 (3)证明:延长BP 交CN 于点Q ∵BM 平分∠DBP ,CN 平分∠ECP ∴2DBP MBP ∠=∠2ECP NCP ∠=∠∵DBP ECP A BPC ∠+∠=∠+∠A BPC ∠=∠∴222MBP NCP A BPC BPC ∠+∠=∠+∠=∠ ∴BPC MBP NCP ∠=∠+∠ ∵BPC PQC NCP ∠=∠+∠ ∴MBP PQC ∠=∠∴BM ∥CN ············································································································· 12分BACMNA CDEB AC DE PMNQ。

精品解析:广东省深圳市龙岗区2019-2020学年七年级下学期期末数学试题(解析版)

精品解析:广东省深圳市龙岗区2019-2020学年七年级下学期期末数学试题(解析版)

龙岗区2019-2020学年第二学期七年级期末教学质量监测数学试卷一、选择题(本部分共 12 小题,每小题 3 分,共 36 分)1. 计算32x x ⋅正确结果是( )A. 4xB. 5xC. 6xD. 7x【答案】B【解析】【分析】根据同底数幂的乘法的运算法则求解即可求得答案.【详解】2x •35x x =.故选:B .【点睛】本题考查了同底数幂的乘法.此题比较简单,注意掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.2. 下列交通标志是轴对称图形的是( ) A. B. C. D.【答案】C【解析】试题分析:A 、不是轴对称图形,故此选项错误;B 、不是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项正确;D 、不是轴对称图形,故此选项错误.故选C .点睛:此题主要考查了轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.3. 下列事件中,是必然事件的是( )A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B. 抛掷一枚普通正方体骰子,所得点数小于7C. 抛掷一枚一元硬币,正面朝上D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块【答案】B【解析】【分析】根据事件发生的可能性大小即可判断.【详解】A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B. 抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C. 抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.4. 成人体内成熟的细胞的平均直径一般为0.00000073m ,可以用科学记数法表示为( )A. 67.310m ⨯B. 77.310m ⨯C. 67.310m -⨯D. 77.310m -⨯【答案】D【解析】【分析】 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000073m =7.3×10−7m ; 故选:D .【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 5. 以下列各组线段为边,能组成三角形的是(). A. 2cm ,3cm ,5cm B. 5cm ,6cm ,10cmC. 1cm ,1cm ,3cmD. 3cm ,4cm ,9cm 【答案】B【解析】根据三角形的三边关系对各选项进行逐一分析即可.【详解】A .∵2+3=5,∴不能组成三角形,故本选项错误;B .∵5+6=11>10,∴能组成三角形,故本选项正确;C .∵1+1=2<3,∴不能组成三角形,故本选项错误;D .∵3+4=7<9,∴不能组成三角形,故本选项错误.故选B .【点睛】本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.6. 下列运算正确的是( )A. 222()ab a b =B. 523()a a =C. 632a a a ÷=D. 221a a -=- 【答案】A【解析】【分析】分别根据积的乘方运算法则,幂的乘方运算法则,同底数幂的除法法则以及负整数指数幂的定义逐一判断即可.【详解】A 、222()ab a b =,故本选项运算正确;B 、236()a a =,故本选项运算错误;C 、624a a a ÷=,故本选项运算错误;D 、221a a -=,故本选项运算错误. 故选:A .【点睛】本题主要考查了同底数幂的除法,负整数指数幂以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.7. 如果等腰三角形的一个内角为50°,那么其它两个内角为( ) A. 50°,80°B. 65°,65°C. 50°,65°D. 50°,80°或 65°,65°【答案】D【解析】本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可能是底角,因此要分类讨论.【详解】解:当50°是底角时,顶角为180°-50°×2=80°,当50°是顶角时,底角为(180°-50°)÷2=65°.故这个等腰三角形的另外两个内角度数分别是50°,80°或65°,65°.故选:D .【点睛】本题主要考查了等腰三角形的性质,及三角形内角和定理.注意分类思想的应用.8. 如图,下列条件中能判定直线l 1∥l 2的是( )A. ∠1=∠2B. ∠1=∠5C. ∠1+∠3=180°D. ∠3=∠5【答案】C【解析】【详解】∵∠1+∠3=180°∴l 1∥l 2,故选C .考点:平行线的判定. 9. 下列各式中,不能运用平方差公式进行计算的是( )A. (21)(12)x x --+B. (1)(1)ab ab -+C. (2)(2)x y x y ---D. (5)(5)a a -+--【答案】A【解析】【分析】运用平方差公式(a+b )(a-b )=a 2-b 2时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A. 中不存在互为相反数的项,B. C. D 中均存在相同和相反的项,【点睛】此题考查平方差公式,解题关键在于掌握平方差公式结构特征.10. 已知3x y +=,2xy =-,则22x xy y -+的值是( )A. 11B. 15C. 3D. 7 【答案】B【解析】【分析】先把22x xy y -+利用完全平方公式变形:()2223x xy y x y xy =+--+,再整体代入求值即可.【详解】解:3x y +=,2xy =-,()2223x y x xy y y x =+-∴-+()23329615.=-⨯-=+=故选B .【点睛】本题考查的是利用完全平方公式变形求代数式的值,掌握完全平方公式的变形是解题的关键. 11. 甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地其中符合图象描述的说法有( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】【分析】根据函数图象可以直接回答问题.【详解】解:(1)根据统计图,他们都行驶了18千米到达目的地,故(1)正确;(2)甲行驶了0.5小时,在途中停下,一直到1小时,因此在途中停留了0.5小时,故(2)正确;(3)甲行驶了0.5小时,乙才出发,因此乙比甲晚出发了0.5小时,故(3)正确;(4)根据统计图,很明显相遇后,甲的速度小于乙的速度,故(4)正确;(5)甲行驶了2.5小时到达目的地,乙用了2-0.5=1.5小时到达目的地,故(5)错误.综上所述,正确的说法有4个.故选C.【点睛】本题考查函数的图象以及通过函数图象获取信息的能力,关键在于仔细读图,明白各部分表示的含义,从图中获取信息,解决问题.12. 如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A. ①②③B. ①②④C. ①③④D. ①②③④【答案】D【解析】分析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.详解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP,∴∠BAP=∠BFP,AB=FB,PA=PF,故②正确.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD,∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选D.点睛:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.二、填空题(每题3分,共12分)13. 计算:x(x﹣2)=_____【答案】x2﹣2x【解析】【分析】根据单项式乘多项式法则即可求出答案.【详解】解:原式=x 2﹣2x故答案为:x 2﹣2x .【点睛】此题考查的是整式的运算,掌握单项式乘多项式法则是解决此题的关键.14. 如图,已知∠ACB =∠DBC ,要用“SAS ”判断△ABC ≌△DCB ,需添加的一个条件:____.【答案】AC =BD【解析】【分析】已知∠ACB =∠DBC ,BC 公共,要用“SAS ”判断△ABC ≌△DCB ,需添加的一个条件是AC =BD .【详解】添加的条件是:AC =BD ,理由是:∵在△ABC 和△DCB 中AC BD ACB DBC CB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DCB (SAS ),故答案为:AC =BD .【点睛】本题考查三角形全等的判定方法,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15. 如图所示,已知△ABC 的周长是30,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是____.【答案】45【解析】【分析】根据角平分线上的点到角的两边的距离相等可得点O 到AB 、AC 、BC 的距离都相等(即OE =OD =OF ),从而可得到△ABC 的面积等于周长的一半乘以3,代入求出即可.【详解】如图,连接OA ,过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,∵OB 、OC 分别平分∠ABC 和∠ACB ,∴OE =OF =OD =3,∵△ABC 的周长是30,OD ⊥BC 于D ,且OD =3,∴S △ABC =12×AB ×OE +12×BC ×OD +12×AC ×OF =12×(AB +BC +AC )×3 =12×30×3=45, 故答案为:45.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,判断出三角形的面积与周长的关系是解题的关键.16. 如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若ABC 的面积是3,那么111A B C △的面积是____.【答案】21【解析】【分析】如图(见解析),连接1A C ,先根据等底同高可得1△ACA 的面积与ABC 的面积相等,从而可得1BCA 的面积,再根据等底同高可得11BA B 的面积与1BCA 的面积相等,同理可得11CB C 与11AA C 的面积,由此即可得出答案. 【详解】点A 是1A B 的中点,1A AA B ∴=,由等底同高得:1△ACA 的面积与ABC 的面积相等,即为3,11336BCA A A C CA B S S S ∴=+=+=,点B 是1B C 的中点,1B BB C ∴=,由等底同高得:11BA B 的面积与1BCA 的面积相等,即为6,同理可得:11CB C 与11AA C 的面积均为6,则111A B C △的面积是111111111BA B CB C A A B C A C ABC S S S S S =+++,6663=+++,21=,故答案为:21.【点睛】本题考查了三角形中线的应用,掌握三角形中线的性质是解题关键.三、解答题(共 52 分)17. 计算:(1)322(64)2a b a b ab -÷(2)20180211()(3.14)2π--++- 【答案】(1)232a b a -;(2)4【解析】【分析】(1)利用整式的除法的运算法则运算即可;(2)运用负整数指数幂的运算法则和零指数幂的运算法则运算即可.【详解】(1)322(64)2a b a b ab -÷322(62)(42)a b ab a b ab =÷-÷232a b a =-;(2)20180211()(3.14)2π--++- 141=-++4=.【点睛】本题主要考查了整式的除法和负整数指数幂的运算、零指数幂的运算,熟练掌握运算法则是解答此题的关键.18. 先化简,再求值:()()()()2211141,a a a a a -++---其中1a =-. 【答案】2a ,1.【解析】【分析】先利用乘法公式、单项式乘以多项式乘法进行计算,然后再进行合并同类项,化为最简后,再代入求值即可.【详解】()()()()2211141a a a a a -++---=222441144a a a a a -++--+=2a ,当1a =-时,原式=()21-=1.【点睛】本题考查了整式的混合运算,灵活运用两个乘法公式(完全平方公式和平方差公式)是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变. 19. 在一个不透明的袋中装有3个红球,4个黄球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.(1)若袋内有5个白球,从中任意摸出一个球,是红球的概率为 ,是黄球的概率为 ,是白球的概率为 .(2)如果任意摸出一个球是黄球的概率是25,求袋中内有几个白球?【答案】(1)14;13;512;(2)3个白球【解析】【分析】(1)根据概率公式计算;(2)袋中内有x个白球,利用概率公式得到42345x=++,然后利用比例性质求出x即可.【详解】(1)从中任意摸出一个球,是红球的概率为:31 3454=++,是黄球的概率为:41 3453=++,是白球的概率为:55 34512=++,故答案为:14,13,512;(2)设袋中内有x个白球,根据题意得42 345x=++,解得3x=,即袋中内有3个白球.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.20. 为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:(1)在这个变化过程中,是自变量,是因变量;(填中文)(2)根据上表的数据,请你写出Q与t的关系式:;(3)汽车行驶6h后,油箱中的剩余油量是;(4)该品牌汽车的油箱加满60L,若以100km/h的速度匀速行驶,该车最多能行驶km.【答案】(1)汽车行驶时间,油箱剩余油量;(2)Q=100-6t;(3)64L;(4)1000【解析】【分析】(1)根据函数的定义解答即可;(2)由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;(3)求汽车行驶6h后,油箱中的剩余油量即是求当t=6时,Q的值;(4)贮满60L汽油的汽车,理论上最多能行驶几小时即是求当Q=0时,t的值,即可求得答案.【详解】(1)在这个变化过程中,汽车行驶时间是自变量,油箱剩余油量是因变量;(2)由题意可知,Q=100-6t;(3)当t=6时,Q=100-6×6=64;即汽车行驶6h后,油箱中的剩余油量是64L;(4)贮满60L汽油的汽车,最多能行驶t=60106(小时),∴10×100=1000(km),该车最多能行驶1000km;故答案为:(1)汽车行驶时间,油箱剩余油量;(2)Q=100-6t;(3)64L;(4)1000.【点睛】本题考查了一次函数的应用,关键是求函数关系式.21. 如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=4,△CBD的周长为20,求BC的长.【答案】(1)∠DBC的度数为30°;(2)BC=12【解析】【分析】(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性质,即可求得∠ABC的度数,然后由AB 的垂直平分线MN交AC于点D,根据线段垂直平分线的性质,可求得AD=BD,继而求得∠ABD的度数,则可求得∠DBC的度数.(2)根据AE=4,AB=AC,得出CD+AD=4,由△CBD的周长为20,代入即可求出答案.【详解】(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C=180402︒-︒=70°,∵AB的垂直平分线MN交AC于点D,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC-∠ABD=30°;(2)∵AE=4,∴AC=AB=2AE=8,∵△CBD的周长为20,∴BC=20-(CD+BD)=20-(CD+AD)=20-8=12,∴BC=12.【点睛】本题考查了线段垂直平分线和等腰三角形性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.22. 如图,点O为线段AB上的任意一点(不于A、B重合),分别以AO,BO为一腰在AB的同侧作等腰△AOC 和△BOD,OA=OC,OB=OD,∠AOC与∠BOD都是锐角,且∠AOC=∠BOD,AD与BC交于点P,AD交CO于点M,BC交DO于点N.(1)试说明:CB=AD;(2)若∠COD=70°,求∠APB的度数.【答案】(1)证明见解析;(2)∠APB=125°【解析】【分析】(1)由“SAS”可证△AOD≌△COB,可得CB=AD;(2)由全等三角形的性质可求∠BCO=∠DAO,可得∠DAO+∠CBO=∠BCO+∠CBO,由三角形内角和定理可求解.【详解】(1)∵∠AOC=∠BOD,∴∠AOD=∠COB,又∵OA=OC,OB=OD,∴△AOD ≌△COB (SAS ),∴CB=AD ;(2)∵∠COD=70°,∴∠AOC=∠BOD=180702︒-︒=55°, ∴∠AOD=∠COD+∠BOD=125°=∠COB , ∵△AOD ≌△COB ,∴∠DAO=∠BCO ,∴∠DAO+∠CBO=∠BCO+∠CBO ,∴180°-∠APB=180°-∠COB , ∴∠APB=∠COB=125°.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,三角形内角和定理,掌握全等三角形的判定是本题的关键.23. 直角三角形ABC 中,∠ACB =90°,直线l 过点C . (1)当AC =BC 时,如图①,分别过点A 、B 作AD ⊥l 于点D ,BE ⊥l 于点E .求证:△ACD ≌△CBE . (2)当AC =8,BC =6时,如图②,点B 与点F 关于直线l 对称,连接BF ,CF ,动点M 从点A 出发,以每秒1个单位长度的速度沿AC 边向终点C 运动,同时动点N 从点F 出发,以每秒3个单位的速度沿F →C →B →C →F 向终点F 运动,点M 、N 到达相应的终点时停止运动,过点M 作MD ⊥l 于点D ,过点N 作NE ⊥l 于点E ,设运动时间为t 秒.①CM = ,当N 在F →C 路径上时,CN = .(用含t 的代数式表示)②直接写出当△MDC 与△CEN 全等时t 的值.【答案】(1)证明见解析;(2)①CM =8t -,CN =63t -;②t =3.5或5或6.5.【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)①由折叠的性质可得出答案;②动点N 沿F→C 路径运动,点N 沿C→B 路径运动,点N 沿B→C 路径运动,点N 沿C→F 路径运动四种情况,根据全等三角形的判定定理列式计算.【详解】(1)∵AD ⊥直线l ,BE ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△CBE (AAS );(2)①由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ;故答案为:8-t ;6-3t ;②由折叠的性质可知,∠BCE=∠FCE ,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD ,∴当CM=CN 时,△MDC 与△CEN 全等,当点N 沿F→C 路径运动时,8-t=6-3t ,解得,t=-1(不合题意),当点N 沿C→B 路径运动时,CN=3t-6,则8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,当点N 沿C→F 路径运动时,由题意得,8-t=3t-18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC与△CEN全等.【点睛】本题考查了折叠的性质,全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.。

人教版七年级下学期期末考试数学试题及答案三

人教版七年级下学期期末考试数学试题及答案三

人教版七年级下学期期末考试数学试题及答案亲爱的同学们:本次考试将实行网上阅卷,所有试题答案一律填写在答题卡上相应区域,选择题用2B铅笔在相应小框框内涂黑,要求把小框框涂满,非选择题必须填写在相应的框框内横线上,不准填写在框框外,否则不得分。

每题留下的横线可能较长,但答案可能很短。

一.选择题(每题3分,共30分)1.平方根等于它自己的数是()A.0B.1C.﹣1D.42.下列方程中,为二元一次方程的是()A.2a+1=0B.3x+y=2z C.x=3y D.xy=93.如图,在梯形ABCD中,∠B=115°,则∠C的大小是()A.50°B.65°C.75°D.85°(3题图)(4题图)(6题图)4.如图,直线AB与CD相交于点O,若∠1+∠2=80°,则∠3等于()A.100°B.120°C.140°D.160°5.在﹣,﹣,0,﹣3四个数中,满足不等式x+2>0的有()A.1个B.2个C.3个D.4个6.光线在不同介质中的传播速度不同,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,当∠1=45°,∠2=122°时,∠3和∠4的度数分别是()A.45°,68°B.45°,58°C.45°,45°D.58°,122°7.为了解某市2020年参加中考的34000名学生的视力情况,抽查了其中1800名学生的视力进行统计分析,下面叙述错误的是()A.34000名学生的视力情况是总体B.样本容量是34000C .1800名学生的视力情况是总体的一个样本D .本次调查是抽样调查 8.由方程组可得x 与y 的关系式是( ) A .3x =7+3mB .5x ﹣2y =10C .﹣3x +6y =2D .3x ﹣6y =29.已知a <b ,下列不等式成立的是( ) A .a +2<b +1B .﹣3a >﹣2bC .m ﹣a >m ﹣bD .am 2<bm 210.小明在拼图时,发现8个大小一样的小长方形恰好可以拼成一个大的长方形,如图1所示.小红看见了,说“我来试一试”,结果拼成如图2所示的正方形,中间还留有一个洞,恰好是边长为2cm 的小正方形.则每个小长方形的长和宽分别为( )A .8cm 和6cmB .12cm 和8cmC .10cm 和8cmD .10cm 和6cm二.填空题(每题3分,共15分) 11.已知x 2=64,则= .12.阅读下列材料:设=0.333…①,则10x =3.333…②,则由②﹣①得:9x =3,即.所以=0.333…=.根据上述提供的方法把下列这个数化成分数.= .13.以方程组的解为坐标的点(x ,y )在平面直角坐标系中的位置是在第 象限.14.如图,有一条直的等宽纸条按图折叠时,则图中∠α= . 15.已知02=+-n mm ,则当m ≥2时,m +n 的取值范围是 . 三.解答题(共75分) 16.(8分)解方程组时,两位同学的解法如下:解法一:由①﹣②,得3x=3解法二:由②得3x+(x﹣3y)=5③把①代入③得3x+8=5(1)上述两种消元过程是否正确?你的判定是.A.都正确B.解法一错C.解法二错D.两种都错(2)请选择一种你喜欢的方法解此方程组.17.(10分)解不等式组:,在数轴上画出它的解集并写出该不等式组的非负整数解.18.(8分)下面数据是20位同学的身高(单位:cm):159、157、164、161、167、153、166、163、162、158162、164、160、172、166、162、168、167、161、156(1)这组数据中,最大值与最小值的差是;(2)将这组数据分为4组:153≤x<158,158≤x<163,163≤x<168,168≤x<173,则组距是.(3)完成下面频数分布表,并将频数分布直方图补充完整.19.(8分)如图,这是一所学校的平面示意图.(1)若校门的坐标为(﹣2,0)、图书馆的坐标为(2,3),请在图中画出对应的坐标系,这时实验楼的坐标为;(2)以国旗杆的位置为坐标原点,校门的坐标可以不可以表示为(﹣1,0)?若可以请写出这时实验楼的坐标,若不可以请说明理由。

广西北海市2019-2020学年七年级下学期期末数学试题(解析版)

广西北海市2019-2020学年七年级下学期期末数学试题(解析版)
∴∠AOD=180°-∠BOD= 180°-60°=120°.
【点睛】本题主要考查了垂线,关键是掌握垂线定义,掌握邻补角互补.
21.如图,AF//DC,AD// BC,∠ABE= 100°,求∠CBF,∠A,∠C,∠D的度数.
【答案】∠CBF=100°,∠A=100°,∠C= 100°,∠D=80°
因为在这10人中,月销售量不低于平均数10台的只有4人,月销售不低于中位数8台的有8人,
所以想让一半以上的销售人员达到月销售目标,(1)中的中位数最适合作为月销售目标.
【点睛】本题考查了平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.
20.如图,直线AB,CD相交于点O.射线OF⊥CD于点O,∠BOF=30°,求∠BOD,∠AOD的度数.
【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把a与b 值代入计算即可求出值.
【详解】

当 , 时,
原式= .
【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.
19.一销售某品牌冰箱的公司有营销人员10人,销售部为制定营销人员月销售冰箱定额(单位:台),统计了10人某月的销售量如下表:
3.下列运算正确的是()
A. B.
C. D.
【答案】D
【解析】
【分析】用单项式乘以单项式法则计算A,用幂的乘方法则计算B,用积的乘方法则计算C、D,即可判断.
【详解】∵ ,故选项A错误;
,故选项B错误;
,故选项C错误;
,故选项D正确.
故选:D.
【点睛】本题考查了单项式乘单项式、幂的乘方、积的乘方等知识点,题目比较简单,掌握整式的乘法法则是解决本题的关键.

浙江省湖州市长兴县2019-2020学年第二学期七年级下期末考试数学试卷(解析版)

浙江省湖州市长兴县2019-2020学年第二学期七年级下期末考试数学试卷(解析版)

浙江省湖州市长兴县2019-2020学年七年级下学期数学期末考试试卷一、选择题(本题有10小题,每小题3分,共30分)1.下列方程中,是二元一次方程的是()A. x+y=1B. x2+y=0C. xy=3D. x= 2y+12.无论x取何值,下列分式总有意义的是()A. x−3x B. 12x+3C. 2x2+1D. 3x−13.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A. 67×10-6B. 6.7×10-6C. 0.67×10-5D. 6.7×10-54.下列运算正确的是()A. 3a²-2a2=1B. (a2)3=a5C. a².a4=a6D. (3a)2=6a25.以下调查中,不适合采用全面调查方式的是( )A. 了解全班同学健康码的情况B. 了解我国全体中小学生对“冠状病毒”的知晓程度C. 为准备开学,对全班同学进行每日温度测量统计D. “新型冠状病毒”疫情期间,对所有疑似病例病人进行核酸检测6.下列各式从左到右的变形中,属于因式分解的是( )A. (3-x)(3+x)=9-x2B. (y+1)(y-3)=-(3-y)(y+1)C. 4yz-2y2z+z=2y(2z-yz)+zD. -8x2+8x-2=-2(2x-1)27.下面图形中,∠1和∠2是同位角的是( )A. ①②B. ①③C. ②③D. ②④8.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了40分钟。

若设原来的平均车速为x(km/h),则根据题意可列方程是( )A. 180x −180(1+50%)x=23B. 180(1−50%)x−180x=40C. 180x −180(1+50%)x=40 D. 180(1−50%)x−180x=239.对于两个不相等的实数a,b,我们规定符号Max(a,b)表示a,b中的较大的值,如Max(2,4}=4,按照这个规定,方程Max( 1x ,2x)=1- 3x的解是( )A. x=4B. x=5C. x=4或x=5D. 无实数解10.如图,在7×7的方格纸中,每个小方格都是边长为1的小正方形,网格线的交点称格点,点A,点B是方格纸中的两个格点,找出格点C,使△ABC的面积为3,则满足条件的格点C的个数是( )A. 4个B. 5个C. 6个D. 8个二、填空题(本题有6小题,每小题2分,共12分)11.已知二元一次方程4x-2y=7,用含有x的式子表示y,则y=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年七年级下册期数学期末试题 班级: 姓名: 考号:温馨提示:本试卷共26道小题,时量120分钟,满分150分 一、选择题(每小题4分,共48分)1.25的算术平方根是 ( ).A .5B .5C .-5D .±5 2.63+的相反数是( ).A .63-B .63-+C .63--D .63+ 3、点A(-2,1)是平面直角坐标系中的一点,则点A 在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )5、如右图,下列不能判定AB ∥CD 的条件有( ).A.∠3=∠4B.∠1=∠5C.∠1+∠4=180°D.∠3=∠56、为了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是:( )A 、抽取的100台电视机B 、这批的电视机使用寿命C 、抽取的100台电视机的使用寿命D 、1007、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 ( ) A (3,2) B (3,-2) C (-2,3) D (2,-3) 8.不等式3x ﹣5<3+x 的正整数解有( ) A . 1个B . 2个C . 3个D . 4个(1)ABCD9.在下列实数,3.14159265,,﹣8,,,中无理数有()A.3个B.4个C.5个D.6个10.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°11.方程组的解为,则被遮盖的两个数分别为()A.5,1 B.1,3 C.2,3 D.2,412.忠县某中学七年级一班40名为灾区捐款,共捐款2000元,捐款情况如下表:捐款(元)20 40 50 100人数10 8表格中捐款40元和50元的人数不小心被墨水污染已看不清楚、若设捐款40元的有x名同学,捐款50元的有y名同学,根据题意,可得方程组()A.B.C.D.二、填空题(每小题4分,共24分)13.若点M(a+3,a﹣2)在y轴上,则点M的坐标是________14.如果一个数的平方根为a+1和2a-7, 这个数为________15.已知点P(-2,3),Q(n,3)且PQ=6,则n=________16.已知关于x的不等式组的整数解共有3个,则m的取值范围是____,17、甲、乙、丙、丁四位同学围成一圈依序循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5、乙报6……按此规律,后一位同学报出的数比前一位同学报出的数大1,当报到的数是50时,报数结束;②若报出的数为3的倍数,则报该数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为18、如图,AB ∥CD,BE⊥DE。

则∠B与∠ D 之间的关系________,A BEC D三、解答题(要求写出必要的步骤,共78分)19、解方程组:(8分)(1) (用代入法)(2) .(用加减法)20.解不等式组:,并把解集在数轴上表示出来:(10分)21(10分)如图,在直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)△ABC的面积是.(2)在图中画出△ABC向下平移2个单位,向右平移5个单位后的△A1B1C1.(3)写出点A1,B1,C1的坐标.22、16.(4分)如图,直线AB、CD相交于点O,OE⊥OC,若∠1=50°,分别求∠2.∠3+∠1的度数23.(10分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.24、(10分)今年4月,国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了重庆市若干名初中学生坐姿、站姿、走姿的好坏情况。

我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在扇形统计图中,代表坐姿不良扇形的圆形角是________ ; (3)在这次形体测评中,一共抽查了_______ 名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有________ 人; (4)根据统计结果,请你简单谈谈自己的看法.25.(10分)忠县为创建国家级绿色环保县城,污水处理厂决定购买10台污水处理设备,现有A ,B 两种型号的设备,已知购买1台A 型号设备比购买1台B 型号设备多2万元,购买2台A 型设备比购买3台B 型号设备少6万元.求A ,B 两种型号设备的单价.26.(12分)某退休老师想为希望小学三年级(1)班的同学购买学习用品,了解到某商店每个书包的价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)老师计划用1000元为全班40位同学每人购买一件学习用品(一个书包或一本词典)后,余下不少于100元且不超过120元的钱购买体育用品,共有哪几种购买书包和词典的方案?2550 75 100 125 150 175 200 人数参考答案一选择题(每小题4分,共48分)(1) B (2)C (3)B (4)C (5)D (6)C (7)D (8)C(9)A (10)A (11)A (12)C二、填空题(每小题4分,共24分)(13)(0,-5)(14)9 (15)4或-8 (16)2<m<3(17) 4(18)互余三、解答题19、解:(1),把①代入②得,4y﹣3y=2,解得 y=2, __ __ __ __ ___ __ ___2分把y=2代入①得,x=4,故此方程组的解为:;__ __ __ __ ___ __ __4分(2),解:①×3+②得,14x=﹣14,解得 x=﹣1, __ __ __ __ ___ __ __2分把x=﹣1代入①得,﹣3+2y=3,解得 y=3.故此方程组的解为:.__ __ __ __ __ _ __4分20解:不等式可化为:,即;__ __ __ __ __ _ __6分在数轴上可表示为:__ __ __ __ __ _ __2分∴不等式组的解集为﹣2≤x<0.__ __ __ __ __ _ __2分21、(10分)解:(1)(3分)△ABC的面积是:×3×5=7.5;(2)(4分)如图所示:△A1B1C1,即为所求;(3)(3分)点A1,B1,C1的坐标分别为:A1(4,3),B1(4,﹣2),C1(1,1).故答案为:7.5.22、解:∵OE⊥OC,∴∠COE=90°,∴∠1+∠2=180°﹣∠COE=90°,∵∠1=50°,∴∠2=40°,∴∠3=180°﹣∠2=140°,∴∠3+∠1=140°+50°=190°.23、解:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4 (等量代换),∴CE∥BF (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等);又∵∠B=∠C(已知),∴∠3=∠B(等量代换),∴AB∥CD (内错角相等,两直线平行).24、略25、解:设A型号设备每台x万元,B型号设备每台y万元,根据题意得:,解得:.答:A,B两种型号设备的单价分别为12万元,10万元.解:(1)设每个书包的价格为x元,则每本词典的价格为(x﹣8)元.根据题意,得3x+2(x﹣8)=124,解得:x=28.∴x﹣8=20.答:每个书包的价格为28元,每本词典的价格为20元.(2)设购买书包y个,则购买词典(40﹣y)本.26、解:根据题意得:,解得:10≤y≤12.5.因为y取整数,所以y的值为10或11或12所以有三种购买方案,分别是:①购买书包10个,词典30本;②购买书包11个,词典29本;③购买书包12个,词典28本.1、老吾老以及人之老,幼吾幼以及人之幼。

22.4.274.27.202203:5803:58:08Apr-2203:582、鞠躬尽瘁,死而后已。

二〇二二年四月二十七日2022年4月27日星期三3、同是天涯沦落人,相逢何必曾相识。

03:584.27.202203:584.27.202203:5803:58:084.27.202203:584.27.20224、人之相识,贵在相知,人之相知,贵在知心。

4.27.20224.27.202203:5803:5803:58:0803:58:085、书到用时方恨少,事非经过不知难。

Wednesday, April 27, 2022April 22Wednesday, April 27, 20224/27/20226、居安思危,思则有备,有备无患。

3时58分3时58分27-Apr-224.27.20227、若要功夫深,铁杵磨成针。

22.4.2722.4.2722.4.27。

2022年4月27日星期三二〇二二年四月二十七日8、人无远虑,必有近忧。

03:5803:58:084.27.2022Wednesday, April 27, 2022亲爱的读者: 春去春又回,新桃换旧符。

在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,感谢你的阅读。

1、盛年不重来,一日难再晨。

及时宜自勉,岁月不待人。

22.4.274.27.202203:5803:58:08Apr-2203:582、千里之行,始于足下。

2022年4月27日星期三3、少年易学老难成,一寸光阴不可轻。

03:584.27.202203:584.27.202203:5803:58:084.27.202203:584.27.20224、敏而好学,不耻下问。

4.27.20224.27.202203:5803:5803:58:0803:58:085、海内存知已,天涯若比邻。

Wednesday, April 27, 2022April 22Wednesday, April 27, 20224/27/2022 6莫愁前路无知已,天下谁人不识君。

3时58分3时58分27-Apr-224.27.20227、人生贵相知,何用金与钱。

22.4.2722.4.2722.4.27。

2022年4月27日星期三二〇二二年四月二十七日8、勇气通往天堂,怯懦通往地狱。

03:5803:58:084.27.2022Wednesday, April 27, 2022亲爱的读者:春去春又回,新桃换旧符。

相关文档
最新文档