Photodegradation of Graphene Oxide Sheets by TiO2 Nanoparticles after a Photocatalytic Reduction
水合肼与抗坏血酸还原氧化石墨烯
水合肼与抗坏血酸还原氧化石墨烯吕亚楠1,2,夏林1,陶呈安1,朱慧1,王建方1,*1国防科技大学理学院化学与生物学系,湖南长沙,4100732湖南师范大学化学化工学院,湖南长沙,410081*Email: wangjianfang@2004年Geim等发现了石墨烯的电场效应后,石墨烯的研究发展十分迅速,展现出了诱人的发展前景[1]。
目前合成石墨烯的方法主要有物理微机械剥离法、氧化-还原法、化学气相沉积(CVD)、SiC热解法等。
氧化还原法简便易行而且可以通过改变还原剂或者添加分散剂得到水溶液中分散良好的石墨烯。
本文首先运用改进的Hummer方法[2]制备出了氧化石墨烯,然后分别用水合肼100℃回流和抗坏血酸常温N2保护下还原得到石墨烯,并利用傅立叶红外光谱(FT-IR)、X-射线衍射分析(XRD)、透射电子显微镜(TEM)进行分析。
结果表明:抗坏血酸可以将氧化石墨上大部分含氧官能团有效去除,并且可以得到分散良好的石墨烯水分散系,该方法有望用于大量制备水溶性石墨烯。
Fig. 1Photographs of aqueous dispersions of GO(A) and RGOprepared by hydrazine hydrate(B) and ascorbic acid(C)关键词:改进的Hummer法;水合肼;抗坏血酸参考文献[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666-669.[2] Daniela C. Marcano, Dmitry V. Kosynkin, Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun,Alexander Slesarev, Lawrence B. Alemany, Wei Lu, and James M. Tour.Nano letter.2010,4(8). 4806-4814.Reduction of Graphene Oxidevia Hydrazine Hydrate and Ascorbic AcidLv Ya'nan1,2, Xia Lin1,Tao Cheng'an1, Zhu Hui1, Wang Jianfang1,*1College of Science, National University of Defense Technology, Changsha, 410073 2College of Chemistry and Chemical Engineering , Hunan NormalUniversity,Changsha,410081In this paper, we prepared graphite oxide powder by modified Hummer method, then reduced℃ascorbic acid at room temperature it respectively via hydrazine hydrate refluxing at the 100 andunder the protection of N2. The products were characterized by FT-IR , XRD, TEM. Results indicate that ascorbic acid can remove most of the oxygen functionalities of GO, and we can obtain better RGO aqueous dispersions. This method is more promising in large scale production of water soluble graphene.。
李景虹(生物电分析化学
经历 2004 年清华大学化学系 教授、博士生导师 2001 年 5 月- 2004 年 9 月 中科院长春应化所电分析化学国家重点实验室 研究员、博士生导师 1997 年-2001 年 美国伊利偌大学(University of Illinois at Urbana-Champaign)化学学院,加利福尼 亚大学(University of California at Santa Barbara)化学和生物化学系,克莱姆森大 学(Clemson University)和 Evonyx Inc.从事研究
发表部分学术论文
2010
1. Haixin Chang, Longhua Tang, Ying Wang, Jianhui Jiang*, Jinghong Li*, Graphene Fluorescence Resonance Energy Transfer Aptasensor for the Thrombin Detection, Anal. Chem., 2010, 82, 2341–2346
李景虹(生物电分析化学,材料电化学,能源电化学)
李景虹 1967 年 12 月生 教育部长江特聘教授、化学系学术委员会副主任、分析中心副主任
Tel: 010-62795290;E-mail: jhli@
学历 1986 年 9 月-1991 年 7 月 中国科学技术大学 化学物理专业和高分子材料工程专业双学士学位 1991 年 9 月-1996 年 12 月 中国科学院长春应用化学研究所 理学博士学位
【精品文章】深圳先进院等成功制备黑磷基光敏水凝胶
深圳先进院等成功制备黑磷基光敏水凝胶
近日,中国科学院深圳先进技术研究院研究员喻学锋、王怀雨与香港城市大学教授朱剑豪等合作,成功制备出基于黑磷纳米片的近红外响应光敏水凝胶,可用于癌症手术与光热协同治疗和创面修复。
黑磷是用白磷在很高压强和较高温度下转化而形成的。
黑磷在磷的同素异形体中反应活性最弱的,它在空气中不会点燃。
癌症治疗目前仍以手术切除肿瘤组织为主,但其中会面临创伤较大、伤口易感染和术后局部复发率高等难题。
新兴纳米光热治疗技术具有适用范围广、非侵入、选择性强、过程简便、正常组织损伤小等优点,在肿瘤治疗领域有巨大的应用价值。
但光热治疗技术作为独立的癌症治疗手段,也存在近红外光穿透深度受限、纳米光热制剂体内残留等问题,这限制了其临床应用。
在该研究中,研究团队将生物可降解的黑磷纳米片与温度响应水凝胶进行复合,制备了一种可喷涂的新型光敏水凝胶光热制剂。
黑磷优异的近红外光热效应可使水凝胶在伤口表面迅速凝胶化,清除癌症手术治疗后的残余肿瘤组织,且可以杀死细菌避免伤口感染。
同时,黑磷和水凝胶都具有良好的生物可降解性和生物相容性,在光热治疗之后可以缓慢降解,安全地代谢出体外。
这种新型光敏水凝胶的成功研发,有助于推动光热治疗技术的实际临床应用。
研究团队已申请相关发明专利,正积极推动申报相关临床应用许可,以早日将其用于临床。
相关研究成果以Black-Phosphorus-Incorporated Hydrogel as a Sprayable and Biodegradable Photothermal Platform for Postsurgical Treatment of Cancer。
g-C3N4
第42卷第10期2023年10月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.10October,2023g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展柏林洋1,蔡照胜2(1.江苏旅游职业学院,扬州㊀225000;2.盐城工学院化学化工学院,盐城㊀224051)摘要:光催化技术在太阳能资源利用方面呈现出良好的应用前景,已受到世界各国的广泛关注㊂g-C 3N 4是一种二维结构的非金属聚合物型半导体材料,具有合成简单㊁成本低㊁化学性质稳定㊁无毒等特点,在环境修复和能量转化方面应用潜力较大㊂但g-C 3N 4存在对可见光吸收能力差㊁比表面积小和光生载流子复合速率高等缺点,限制了其实际应用㊂构筑异质结光催化剂是提高光催化效率的有效途径之一㊂基于Ag 基材料的特点,前人对g-C 3N 4/Ag 基二元复合光催化剂进行了大量研究,并取得显著成果㊂本文总结了近年来AgX(X =Cl,Br,I)/g-C 3N 4㊁Ag 3PO 4/g-C 3N 4㊁Ag 2CO 3/g-C 3N 4㊁Ag 3VO 4/g-C 3N 4㊁Ag 2CrO 4/g-C 3N 4㊁Ag 2O /g-C 3N 4和Ag 2MoO 4/g-C 3N 4复合光催化剂降解环境污染物的研究进展,并评述了g-C 3N 4/Ag 基二元复合光催化剂目前面临的主要挑战,展望了其未来发展趋势㊂关键词:g-C 3N 4;Ag 基材料;二元复合光催化剂;光催化性能;环境污染物中图分类号:TQ426㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)10-3755-09Research Progress on g-C 3N 4/Ag-Based Binary Composite Photocatalysts for Degradation of Environmental PollutantsBAI Linyang 1,CAI Zhaosheng 2(1.Jiangsu Institute of Tourism,Yangzhou 225000,China;2.School of Chemistry and Chemical Engineering,Yancheng Institute of Technology,Yancheng 224051,China)Abstract :Photocatalysis technology shows a good application prospect in the utilization of solar energy resource and has attracted worldwide attention.g-C 3N 4is a two-dimensional polymeric metal-free semiconductor material with the characteristics of facile synthesis,low cost,high chemical stability and non-toxicity,which has great potential in environmental remediation and energy conversion.However,g-C 3N 4has the drawbacks of poor visible light absorption capacity,low specific surface area and high recombination rate of photogenerated charge carriers,which limits its practical application.Constructing heterojunction photocatalyst has become one of effective pathways for boosting photocatalytic efficiency.Based on the inherent merits of Ag-based materials,a lot of researches have been carried out on g-C 3N 4/Ag-based binary photocatalysts and prominent results have been achieved.Recent advances on AgX (X =Cl,Br,I)/g-C 3N 4,Ag 3PO 4/g-C 3N 4,Ag 2CO 3/g-C 3N 4,Ag 3VO 4/g-C 3N 4,Ag 2CrO 4/g-C 3N 4,Ag 2O /g-C 3N 4and Ag 2MoO 4/g-C 3N 4composite photocatalysts for the degradation of environmental pollutants were summarized.The major challenges of g-C 3N 4/Ag-based binary composite photocatalysts were reviewed and the future development trends were also forecast.Key words :g-C 3N 4;Ag-based material;binary composite photocatalyst;photocatalytic performance;environmental pollutant㊀收稿日期:2023-05-15;修订日期:2023-06-12基金项目:江苏省高等学校自然科学研究面上项目(19KJD530002)作者简介:柏林洋(1967 ),男,博士,副教授㊂主要从事光催化材料方面的研究㊂E-mail:linybai@通信作者:蔡照胜,博士,教授㊂E-mail:jsyc_czs@0㊀引㊀言随着全球经济的快速增长和工业化进程的加快,皮革㊁印染㊁制药和化工等行业排放的环境污染物总量3756㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷也不断增长㊂这些环境污染物存在成分复杂㊁毒性大㊁难以降解等特点,对人们的身体健康和生态环境产生严重威胁,已成为制约经济和社会发展的突出问题㊂如何实现环境污染物的高效降解是目前亟待解决的重要问题㊂效率低㊁能耗高及存在二次污染是利用传统处理方法处置环境污染物的主要缺陷[1]㊂光催化技术作为一种新型的绿色技术,具有环境友好㊁成本低㊁反应效率高和无二次污染等优点,在解决环境污染问题方面具有很大的发展潜力,深受人们的关注[2-4]㊂g-C3N4属于一种非金属聚合物型半导体材料,具有二维分子结构,即C原子和N原子通过sp2杂化形成的共轭石墨烯平面结构,具有适宜的禁带宽度(2.7eV)和对460nm以下可见光良好的响应能力㊂g-C3N4具有合成原料成本低㊁制备工艺简单㊁耐酸耐碱和稳定性好等特点,在催化[5]㊁生物[6]和材料[7]等领域应用广泛㊂然而,g-C3N4较小的比表面积㊁较弱的可见光吸收能力和较快的光生载流子复合率等不足导致其光量子利用率不高,给实际应用带来较大困难[8]㊂为了克服上述问题,前人提出了对g-C3N4进行形貌调控[9]㊁元素掺杂[10-11]和与其他半导体耦合[12-13]等方法㊂其中,将g-C3N4与其他半导体耦合形成异质结光催化剂最为常见㊂Ag基半导体材料因具有成本合理㊁光电性能好和光催化活性高等特点而深受青睐,但仍存在光生载流子快速复合和光腐蚀等缺陷㊂近年来,人们将Ag基材料与g-C3N4进行复合,整体提高了复合光催化剂的催化性能,并由此取得了大量极有价值的科研成果㊂本文综述了近年来g-C3N4/Ag银基二元复合光催化剂的制备方法㊁性能和应用等方面的研究现状,同时展望了未来的发展趋势,期望能为该领域的研究人员提供新的思路㊂1㊀g-C3N4/Ag基二元复合光催化剂近年来,基于Ag基半导体材料能与g-C3N4能带结构匹配的特点,构筑g-C3N4/Ag基异质结型复合光催化体系已成为国内外的研究热点㊂这类催化剂通常采用沉淀法在g-C3N4表面负载Ag基半导体材料㊂其中,Ag基体的成核和生长是关键问题㊂通过对Ag基材料成核和生长工艺的控制,实现了Ag基材料在g-C3N4上的均匀分布㊂此外,通过对g-C3N4微观结构进行调控,使其具有较大的比表面积和较高的结晶度,从而进一步提高复合光催化剂的催化性能㊂相对于纯g-C3N4和Ag基光催化剂,g-C3N4/Ag基二元复合光催化剂通过两组分的协同效应和界面作用,不仅能提高对可见光的吸收利用率,而且能有效抑制g-C3N4和Ag基材料中光生e-/h+对的重组,从而提高复合光催化剂的活性和稳定性㊂在g-C3N4/Ag基二元复合光催化材料中,以AgX(X=Cl,Br,I)/g-C3N4㊁Ag3PO4/g-C3N4㊁Ag2CO3/g-C3N4㊁Ag3VO4/g-C3N4㊁Ag2CrO4/g-C3N4㊁Ag2O/g-C3N4和Ag2MoO4/g-C3N4为典型代表㊂1.1㊀AgX(X=Cl,Br,I)/g-C3N4二元复合光催化剂AgX(X=Cl,Br,I)在杀菌㊁有机污染物降解和光催化水解产氢等方面展现出优异的性能㊂但AgX (X=Cl,Br,I)是一种光敏材料,在可见光下容易发生分解,形成Ag0,从而影响其催化活性及稳定性㊂将AgX(X=Cl,Br,I)与g-C3N4复合是提升AgX(X=Cl,Br,I)使用寿命㊁改善光催化性能最有效的方法之一㊂Li等[14]采用硬模板法制备出一种具有空心和多孔结构的高比表面积g-C3N4纳米球,并以其为载体,通过沉积-沉淀法得到AgBr/g-C3N4光催化材料㊂XRD分析显示AgBr的加入并没有改变g-C3N4的晶体结构,瞬态光电流试验表明AgBr/g-C3N4光电流密度高于g-C3N4,橙黄G(OG)染料经10min可见光照射后的降解率达到97%㊂Shi等[15]报道了利用沉淀回流法制备AgCl/g-C3N4光催化剂,研究了AgCl的量对催化剂结构及光催化降解草酸性能的影响,确定了最佳修饰量,分析了催化剂用量㊁草酸起始浓度㊁酸度和其他有机成分对光催化活性影响,通过自由基捕获试验揭示了光降解反应中起主要作用的活性物质为光生电子(e-)㊁羟基自由基(㊃OH)㊁超氧自由基(㊃O-2)和空穴(h+)㊂彭慧等[16]采用化学沉淀法制备具有不同含量AgI的AgI/g-C3N4光催化剂,SEM测试表明AgI纳米颗粒分布在层状结构g-C3N4薄片的表面,为催化反应提供了更多的活性位㊂该系列催化剂应用于光催化氧化降解孔雀石绿(melachite green,MG)的结果显示,AgI/g-C3N4(20%,质量分数,下同)的光催化性能最好,MG经2h可见光辐照后去除率达到99.8%㊂部分AgX(X=Cl,Br,I)/g-C3N4二元复合光催化剂的研究现状如表1所示㊂第10期柏林洋等:g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展3757㊀表1㊀AgX (X =Cl ,Br ,I )/g-C 3N 4二元复合光催化剂光降解环境污染物的研究现状Table 1㊀Research status of AgX (X =Cl ,Br ,I )/g-C 3N 4binary composite photocatalysts forphotodegradation of enviromental pollutantsPhotocatalytst Synthesis method TypePotential application Photocatalytic activity Reference AgBr /g-C 3N 4Sonication-assisted deposition-precipitation II-schemeDegradation of RhB,MB and MO 100%degradation for RhB,95%degradation for MB and 90%degradation for MO in 10min [17]AgCl /g-C 3N 4Precipitation Z-schemeDegradation of RhB and TC 96.1%degradation for RhB and 77.8%degradation for TC in 120min [18]AgCl /g-C 3N 4Solvothermal +in situ ultrasonic precipitation Z-scheme Degradation of RhB 92.2%degradation in 80min [19]AgBr /g-C 3N 4Deposition-precipitation II-schemeDegradation of MO 90%degradation in 30min [20]AgI /g-C 3N 4In-situ growth II-scheme Degradation of RhB 100%degradation in 60min [21]㊀㊀Note:MO-methyl orange,RhB-rhodamine B,TC-tetracycline hydrochloride,MB-methyl blue.1.2㊀Ag 3PO 4/g-C 3N 4二元复合光催化剂纳米Ag 3PO 4禁带宽度为2.5eV 左右,对可见光有很好的吸收作用,且光激发后具有很强的氧化性,在污染物降解和光解水制氢等领域有良好的应用前景[22]㊂但是,纳米Ag 3PO 4易团聚,光生载流子的快速重组使光催化活性大大降低,此外,Ag 3PO 4还易受光生e -的腐蚀,从而影响稳定性㊂Ag 3PO 4与g-C 3N 4复合可显著降低e -/h +对的重组,有效提高光催化性能㊂Wang 等[23]采用原位沉淀法获得Z-型异质结构g-C 3N 4/Ag 3PO 4复合光催化剂,并有效地提高了e -/h +对的分离效率㊂TEM 结果显示,Ag 3PO 4粒子被g-C 3N 4纳米片所覆盖,UV-DRS 结果表明,Ag 3PO 4的添加使g-C 3N 4吸收边发生红移,且吸收光强度显著增强,光降解实验结果显示,30%g-C 3N 4/Ag 3PO 4光催化剂在40min 内能去除约90%的RhB㊂胡俊俊等[24]利用了原位沉淀法合成了一系列Ag 3PO 4/g-C 3N 4复合光催化剂,研究了Ag 3PO 4和g-C 3N 4的物质的量比对催化剂在可见光下催化降解MB 性能的影响,发现在最优组分下,MB 经可见光辐照30min 后可以被完全降解㊂Mei 等[25]采用焙烧-沉淀法制备了一系列Ag 3PO 4/g-C 3N 4复合光催化剂,并用于可见光条件下降解双酚A(bisphenol A,BPA),发现Ag 3PO 4质量分数为25%时,光催化降解BPA 的性能最好,3h 能降解92.8%的BPA㊂潘良峰等[26]采用化学沉淀法制备出一种具有空心管状的Ag 3PO 4/g-C 3N 4光催化剂,SEM 结果表明,Ag 3PO 4颗粒均匀分布于空心管状结构g-C 3N 4的表面,两者形成一个较强异质结构,将其用于盐酸四环素(tetracycline hydrochloride,TC)光催化降解,80min 能降解98%的TC㊂Deonikar 等[27]研究了采用原位湿化学法合成催化剂过程中使用不同溶剂(去离子水㊁四氢呋喃和乙二醇)对Ag 3PO 4/g-C 3N 4的结构和光降解MB㊁RhB 及4-硝基苯酚性能的影响,发现不同溶剂对复合光催化剂的形貌有着重要影响,从而影响光催化性能,其中以四氢呋喃合成的复合光催化剂的催化降解性能最佳,这是由于g-C 3N 4纳米片均匀包裹在Ag 3PO 4的表面,从而促使两者界面形成较为密切的相互作用,有利于e -/h +对的分离㊂部分Ag 3PO 4/g-C 3N 4二元复合光催化剂的研究进展见表2㊂表2㊀Ag 3PO 4/g-C 3N 4二元复合光催化剂光降解环境污染物的研究现状Table 2㊀Research status of Ag 3PO 4/g-C 3N 4binary composite photocatalysts for photodegradation of environmental pollutantsPhotocatalyst Synthesis method Type Potential application Photocatalytic activity Reference g-C 3N 4/Ag 3PO 4In situ precipitation Z-scheme Degradation of BPA 100%degradation in 180min [28]g-C 3N 4/Ag 3PO 4Hydrothermal Z-schemeDecolorization of MB Almost 93.2%degradation in 25min [29]g-C 3N 4/Ag 3PO 4In situ prepcipitation II-scheme Reduction of Cr(VI)94.1%Cr(VI)removal efficiency in 120min [30]g-C 3N 4/Ag 3PO 4Chemical precipitation Z-scheme Degradation of RhB 90%degradation in 40min [31]g-C 3N 4/Ag 3PO 4In situ precipitation Z-scheme Degradation of levofloxacin 90.3%degradation in 30min [32]Ag 3PO 4/g-C 3N 4Chemical precipitation Z-schemeDegradation of gaseous toluene 87.52%removal in 100min [33]Ag 3PO 4/g-C 3N 4Calcination +precipitation Z-scheme Degradation of diclofenac (DCF)100%degradation in 12min [34]Ag 3PO 4/g-C 3N 4In situ deposition Z-scheme Degradation of RhB and phenol 99.4%degradation in 9min for RhB;97.3%degradation in 30min for phenol [35]3758㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷续表Photocatalyst Synthesis method Type Potential application Photocatalytic activity Reference Ag3PO4/g-C3N4In situ hydrothermal II-scheme Degradation of sulfapyridine(SP)94.1%degradation in120min[36] Ag3PO4/g-C3N4In situ growth Z-scheme Degradation of berberine100%degradation in15min[37] g-C3N4/Ag3PO4In situ deposition Z-scheme Degradation of ofloxacin71.9%degradation in10min[38] Ag3PO4/g-C3N4Co-precipitation Z-scheme Degradation of MO98%degradation in10min[39]g-C3N4/Ag3PO4Calcination+precipitation Z-scheme Degradation of MO,RhB and TC95%degradation for MO in30min;[40]96%degradation for RhB in15min;80%degradation for TC in30min1.3㊀Ag2CO3/g-C3N4二元复合光催化剂Ag4d轨道和O2p轨道杂化,形成Ag2CO3的价带(valence band,VB);Ag5s轨道和Ag4d轨道进行杂化,形成Ag2CO3导带(conduction band,CB),而CB中原子轨道杂化会降低Ag2CO3带隙能,从而提高光催化活性[41]㊂纳米Ag2CO3带隙能约为2.5eV,可见光响应性好,在可见光作用下表现出良好的光催化降解有机污染物特性[42-43]㊂然而,经长时间光照后,Ag2CO3晶粒中Ag+会被光生e-还原成Ag0,导致其光腐蚀,引起光催化性能下降[44]㊂Ag2CO3与g-C3N4耦合,能够有效地抑制光腐蚀,促进e-/h+对的分离,进而改善光催化性能㊂An等[45]通过构筑Z型核壳结构的Ag2CO3@g-C3N4材料来增强Ag2CO3和g-C3N4界面间的相互作用,从而有效防止光腐蚀发生,加速光生e-/h+对的分离,实现了催化剂在可见光辐照下高效降解MO㊂Yin等[46]通过水热法制备Ag2CO3/g-C3N4光催化剂,探讨了g-C3N4的含量㊁合成温度对催化剂结构和光降解草酸(oxalic acid,OA)性能的影响,获得最优条件下合成的催化剂能在45min光照时间内使OA去除率达到99.99%㊂Pan等[41]采用煅烧和化学沉淀两步法,制备了一系列Ag2CO3/g-C3N4光催化剂,TEM结果显示,Ag2CO3纳米粒子均匀分布在g-C3N4纳米片表面,且形貌规整㊁粒径均一,光催化性能测试结果表明,60% Ag2CO3/g-C3N4光催化活性最高,MO和MB分别经120和240min可见光光照后,其降解率分别为93.5%和62.8%㊂Xiu等[47]使用原位水热法构筑了Ag2CO3/g-C3N4光催化剂,光降解试验结果表明,MO经可见光辐照1h的去除率为87%㊂1.4㊀Ag3VO4/g-C3N4二元复合光催化剂纳米Ag3VO4带隙能约为2.2eV,可用于催化可见光降解环境污染物,是一种具有应用前景的新型半导体材料㊂然而,如何提高Ag3VO4光催化性能,仍然是学者研究的重点㊂构建Ag3VO4/g-C3N4异质结催化剂是提高Ag3VO4的催化性能的一种有效方法㊂该方法能够降低Ag3VO4光生载流子的复合率,拓宽可见光的吸收范围㊂Hind等[48]通过溶胶凝胶法制备出一种具有介孔结构的Ag3VO4/g-C3N4复合光催化剂,该复合催化剂经60min可见光照射能将Hg(II)全部还原,其光催化活性分别是Ag3VO4和g-C3N4的4.3倍和5.4倍,主要是由于异质结界面处各组分间紧密结合以及催化剂具有较高的比表面积和体积比,从而促进光生载流子的分离㊂蒋善庆等[49]利用化学沉淀法制备了系列Ag3VO4/g-C3N4催化剂,催化性能研究结果表明,Ag3VO4负载量为20%(质量分数)时,其光催化降解微囊藻毒素的效果最好,可见光辐照100min后降解率为85.43%,而g-C3N4在相同条件下的降解率仅为18.76%㊂1.5㊀Ag2CrO4/g-C3N4二元复合光催化剂纳米Ag2CrO4具有特殊的晶格和能带结构,其带隙能为1.8eV,可见光响应良好,是一种非常理想的可见光区半导体材料㊂然而,Ag2CrO4存在自身的电子结构和晶体的缺陷,导致其光催化效率性能较差,严重影响了实际应用[50-52]㊂将Ag2CrO4与g-C3N4复合形成异质结光催化剂是提高其光催化效率和稳定性的一种有效途径,因为Ag2CrO4在光照下产生的光生e-快速地迁移到g-C3N4表面,可避免光生e-在Ag2CrO4表面聚集而引起光腐蚀㊂Ren等[53]利用SiO2为硬模板,以氰胺为原料,合成出具有中空介孔结构的g-C3N4,再通过化学沉淀法制备了系列g-C3N4/Ag2CrO4光催化剂,并将其用于RhB和TC的可见光降解,研究发现g-C3N4/Ag2CrO4催化剂具有较高比表面积和丰富的孔道结构,在可见光辐射下表现出较高的光催化活性㊂Rajalakshmi等[54]利用水热方法合成了一系列Ag2CrO4/g-C3N4光催化剂,并将其用于对硝基苯酚的光催化降解,结果表明,Ag2CrO4质量分数为10%时,其降解率达到97%,高于单组分g-C3N4或Ag2CrO4,原因是与第10期柏林洋等:g-C 3N 4/Ag 基二元复合光催化剂降解环境污染物的研究进展3759㊀Ag 2CrO 4和g-C 3N 4界面间形成了S-型异质结,能提高e -/h +对的分离效率㊂1.6㊀Ag 2O /g-C 3N 4二元复合光催化剂纳米Ag 2O 是一种理想的可见光半导体材料,在受到光辐照后,其电子发生跃迁,CB 上光生e -能够将Ag 2O 晶粒中Ag +还原成Ag 0,而VB 上h +能够使Ag 2O 的晶格氧氧化为O 2,导致其结构不稳定㊂然而,纳米Ag 2O 在有机物污染物降解方面表现出良好的稳定性[55],这是因为Ag 2O 的表面会随着光化学反应的进行被一定数量的Ag 0纳米粒子所覆盖,而Ag 0纳米粒子作为光生e -陷阱,能够降低e -在Ag 2O 表面的富集,同时,由于光生h +具有较强的氧化性能力,既能实现对有机污染物的直接氧化,又能避免其对晶格氧的氧化,从而提高了纳米Ag 2O 光催化活性和稳定性㊂Liang 等[56]在常温下采用简易化学沉淀法制备了p-n 结Ag 2O /g-C 3N 4复合光催化剂,研究发现,起分散作用的g-C 3N 4为Ag 2O 纳米颗粒的生长提供了大量成核位点并限制了Ag 2O 纳米颗粒聚集,p-n 结的形成以及在光化学反应过程中生成的Ag 纳米粒子,加速了光生载流子的分离和迁移,拓宽了光的吸收范围,在可见光和红外光照下降解RhB 溶液过程中表现出良好的催化活性,其在可见光和红外光照下反应速率分别是g-C 3N 4的26倍和343倍㊂Jiang 等[57]通过液相法制备了一系列介孔结构的g-C 3N 4/Ag 2O 光催化剂,试验结果表明,Ag 2O 的添加显著提高了g-C 3N 4/Ag 2O 光催化剂的吸光性能和比表面积,因此对光催化性能的提升有促进作用,当Ag 2O 含量为50%时,光催化分解MB 的效果最好,经120min 可见光光照后,MB 的脱除率达到90.8%,高于g-C 3N 4和Ag 2O㊂Kadi 等[58]以Pluronic 31R 1表面活性剂为软模板,以MCM-41为硬模板,合成出具有多孔结构的Ag 2O /g-C 3N 4光催化剂,TEM 结果显示,球形Ag 2O 的纳米颗粒均匀地分布于g-C 3N 4的表面,催化性能评价表明0.9%Ag 2O /g-C 3N 4复合光催化剂光催化效果最佳,60min 能完全氧化降解环丙沙星,其降解效率分别是Ag 2O 和g-C 3N 4的4倍和10倍㊂1.7㊀Ag 2MoO 4/g-C 3N 4二元复合光催化剂Ag 2MoO 4具有良好的导电性㊁抗菌性㊁环保性,以及优良的光催化活性,在荧光材料㊁导电玻璃㊁杀菌剂和催化剂等方面有着广阔的应用前景[59]㊂但Ag 2MoO 4带隙大(3.1eV),仅能对紫外波段光进行响应,限制了其对太阳光的利用㊂当Ag 2MoO 4与g-C 3N 4进行耦合时,可以将其对太阳光的吸收范围由紫外拓展到可见光区,从而提高太阳光的利用率㊂Pandiri 等[60]通过水热合成的方法,制备出β-Ag 2MoO 4/g-C 3N 4异质结光催化剂,SEM 结果显示该催化剂中β-Ag 2MoO 4纳米颗粒均匀地分布在g-C 3N 4纳米片的表面,光催化性能测试结果表明在3h 的可见光照射下,其降解能力是β-Ag 2MoO 4和g-C 3N 4机械混合物的2.6倍,主要原因在于β-Ag 2MoO 4和g-C 3N 4两者界面间形成更为紧密的异质结,使得e -/h +对被快速分离㊂Wu 等[61]采用简单的原位沉淀方法成功构建了Ag 2MoO 4/g-C 3N 4光催化剂,并将其应用于MO㊁BPA 和阿昔洛韦的降解,结果表明该催化剂显示出良好的太阳光催化活性,这主要是因为Ag 2MoO 4和g-C 3N 4界面间存在着一定的协同效应,可有效地提高对太阳光的利用率,降低载流子的复合概率㊂2㊀g-C 3N 4/Ag 基二元复合光催化剂电荷转移机理模型研究g-C 3N 4/Ag 基二元复合光催化剂在可见光的辐照下,价带电子发生跃迁,产生e -/h +对㊂e -被催化剂表面吸附的O 2捕获产生㊃O -2,并进一步与水反应生成㊃OH,形成的三种活性自由基(h +㊁㊃O -2和㊃OH),实现水中有机污染物的高效降解(见图1)㊂而光催化反应机理与载流子的迁移机制密切相关㊂目前,g-C 3N 4/Ag 基二元复合光催化剂体系中主要存在三种不同的光生载流子的转移机制,分别为I 型㊁II 型和Z 型㊂图1㊀g-C 3N 4/Ag 基二元复合光催化剂降解有机污染物的光催化反应机理Fig.1㊀Photocatalytic reaction mechanism of g-C 3N 4/Ag-based binary composite photocatalyst for degradation of organic pollutants3760㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷2.1㊀I 型异质结载流子转移机理模型图2(a)为I 型异质结构中的光生e -/h +对转移示意图㊂半导体A 和半导体B 均对可见光有响应,其中,半导体A 的带隙较宽,半导体B 的带隙较窄,并且半导体B 的VB 和CB 均位于半导体A 之间,在可见光的照射下,e -发生跃迁,从CB 到VB,半导体A 的CB 上的e -和VB 上的h +分别向半导体B 的CB 和VB 转移,从而实现了e -/h +对的分离㊂以Ag 2O /g-C 3N 4复合催化剂为例[58],当Ag 2O 和g-C 3N 4相耦合时,因为g-C 3N 4的VB 具有更正的电势,h +被转移到Ag 2O 的VB 上,同时,光激发e -在g-C 3N 4的CB 上,其电势较负,e -便传输到Ag 2O 的CB 上,CB 上e -与O 2结合形成㊃O -2,并进一步与H +结合生成了㊃OH,而有机物污染物被Ag 2O 的价带上h +氧化分解生成CO 2和H 2O㊂2.2㊀II 型异质结载流子转移机理模型II 型异质结是一种能级交错带隙型结构,如图2(b)所示,其中半导体A 的CB 电位较负,在可见光照射下,e -从CB 上转移到半导体B 的CB 上,h +从半导体B 的VB 转移到半导体A 的VB 上,从而使e -/h +对得以分离㊂以Ag 3PO 4@g-C 3N 4为例[62],由于g-C 3N 4的CB 的电势较Ag 3PO 4低,光生e -从g-C 3N 4迁移到Ag 3PO 4的CB 上,而Ag 3PO 4的CB 电势较g-C 3N 4高,h +从Ag 3PO 4的VB 迁移到g-C 3N 4的VB 上,从而实现e -/h +对的分离,g-C 3N 4表面的h +可直接氧化降解MB,而Ag 3PO 4表面积聚的电子又会被氧捕获,产生H 2O 2,并进一步分解成㊃OH,从而加快MB 的降解㊂上述I 型和II 型结构CB 的氧化能力和VB 还原能力低于单一组分,造成复合半导体的氧化还原能力降低[63]㊂2.3㊀Z 型异质结载流子转移机理模型构建Z 型异质结光光催化剂使得e -和h +沿着特有的方向迁移,有效解决复合催化剂氧化还原能力降低问题[64]㊂Z 型异质结催化剂e -/h +对的迁移方向如图2(c)所示,e -从半导体B 的电势较高的CB 转移到半导体A 的电势较低的VB 进行复合,从而实现半导体A 的e -和半导体B 的h +发生分离㊂h +在半导体B 表面氧化性能更强,在半导体A 上e -具有较高还原特性,两者共同作用使环境污染物得以顺利降解㊂为了更好地解释Z 型异质结h +和e -迁移机理,以Ag 3VO 4/g-C 3N 4复合光催化剂为例[48],复合光催化剂经可见光激发后,Ag 3VO 4和g-C 3N 4都发生了e -跃迁,在Ag 3VO 4的CB 上e -与g-C 3N 4的VB 上h +进行复合时,e -对Ag 3VO 4的腐蚀作用被削弱,同时,也实现了g-C 3N 4的CB 上e -和Ag 3PO 4的价带上h +发生分离,g-C 3N 4的CB 上e -具有较强的还原性,将Hg 2+还原成Hg 0,而Ag 3PO 4的VB 上h +具有较强的氧化性,可将HOOH氧化生成CO 2和H 2O㊂图2㊀电子-空穴对转移机理示意图Fig.2㊀Schematic diagrams of electron-hole pairs transfer mechanism 3㊀结语和展望g-C 3N 4/Ag 基二元复合光催化剂因其较强的可见光响应和优异的光催化性能,在环境污染物的降解方面具有广阔的发展空间㊂近年来,国内外研究人员在理论研究㊁制备方法和光催化性能等多个领域取得了重要进展,为光催化理论的发展奠定了坚实的基础㊂然而,g-C 3N 4/Ag 基二元复合光催化剂在实际应用中还面临诸多问题,如制备工艺复杂㊁光腐蚀㊁光催化剂回收利用困难㊁光催化降解污染物的反应机理尚不明确等,第10期柏林洋等:g-C3N4/Ag基二元复合光催化剂降解环境污染物的研究进展3761㊀现有的光催化降解模型仍有较大的分歧,亟待深入研究㊂为了获得性能优良的g-C3N4/Ag基复合光催化剂,实现产业化应用,应进行以下几方面的研究:1)在g-C3N4/Ag基二元光催化剂的基础上,构建多元复合光催化剂,是进一步提升光生载流子分离效率的有效㊁可靠手段,也是当今和今后光催化剂的研究重点㊂2)对g-C3N4/Ag基二元光催化剂体系中e-/h+对的转移㊁分离和复合等过程进行系统研究,并阐明其光催化反应机制㊂3)针对当前合成的g-C3N4材料多为体相,存在着颗粒大㊁比表面积小㊁活性位少等缺陷,应通过对g-C3N4材料的形状㊁形貌及尺寸的调控,来实现Ag 基材料在g-C3N4材料表面的均匀分布,降低e-/h+对的重组概率,从而大幅度提高复合光催化剂的性能㊂4)Ag基材料的光腐蚀是导致光催化活性和稳定性下降的重要因素,探索一种更为有效的光腐蚀抑制机制,是将其推广应用的关键㊂5)当前合成的g-C3N4/Ag基二元复合光催化剂多为粉末状,存在着易团聚㊁难回收等问题,从而限制了其循环利用㊂因此,需要开展g-C3N4/Ag基二元复合光催化剂回收和再利用的研究,这将有利于社会效益和经济效益的提高㊂参考文献[1]㊀LIN Z S,DONG C C,MU W,et al.Degradation of Rhodamine B in the photocatalytic reactor containing TiO2nanotube arrays coupled withnanobubbles[J].Advanced Sensor and Energy Materials,2023,2(2):100054.[2]㊀DIAO Z H,JIN J C,ZOU M Y,et al.Simultaneous degradation of amoxicillin and norfloxacin by TiO2@nZVI composites coupling withpersulfate:synergistic effect,products and mechanism[J].Separation and Purification Technology,2021,278:119620.[3]㊀ZHAO S Y,CHEN C X,DING J,et al.One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solarlight-driven degradation of Rhodamine B[J].Frontiers of Environmental Science&Engineering,2021,16(3):1-16.[4]㊀JUABRUM S,CHANKHANITTHA T,NANAN S.Hydrothermally grown SDS-capped ZnO photocatalyst for degradation of RR141azo dye[J].Materials Letters,2019,245:1-5.[5]㊀SUN Z X,WANG H Q,WU Z B,et al.g-C3N4based composite photocatalysts for photocatalytic CO2reduction[J].Catalysis Today,2018,300:160-172.[6]㊀LIN L,SU Z Y,LI Y,et parative performance and mechanism of bacterial inactivation induced by metal-free modified g-C3N4undervisible light:Escherichia coli versus Staphylococcus aureus[J].Chemosphere,2021,265:129060.[7]㊀DANG X M,WU S,ZHANG H G,et al.Simultaneous heteroatom doping and microstructure construction by solid thermal melting method forenhancing photoelectrochemical property of g-C3N4electrodes[J].Separation and Purification Technology,2022,282:120005. [8]㊀VAN KHIEN N,HUU H T,THI V N N,et al.Facile construction of S-scheme SnO2/g-C3N4photocatalyst for improved photoactivity[J].Chemosphere,2022,289:133120.[9]㊀LINH P H,DO CHUNG P,VAN KHIEN N,et al.A simple approach for controlling the morphology of g-C3N4nanosheets with enhancedphotocatalytic properties[J].Diamond and Related Materials,2021,111:108214.[10]㊀XIE M,TANG J C,KONG L S,et al.Cobalt doped g-C3N4activation of peroxymonosulfate for monochlorophenols degradation[J].ChemicalEngineering Journal,2019,360:1213-1222.[11]㊀ZHEN X L,FAN C Z,TANG L,et al.Advancing charge carriers separation and transformation by nitrogen self-doped hollow nanotubes g-C3N4for enhancing photocatalytic degradation of organic pollutants[J].Chemosphere,2023,312:137145.[12]㊀AL-HAJJI L A,ISMAIL A A,FAYCAL A M,et al.Construction of mesoporous g-C3N4/TiO2nanocrystals with enhanced photonic efficiency[J].Ceramics International,2019,45(1):1265-1272.[13]㊀CUI P P,HU Y,ZHENG M M,et al.Enhancement of visible-light photocatalytic activities of BiVO4coupled with g-C3N4prepared usingdifferent precursors[J].Environmental Science and Pollution Research,2018,25(32):32466-32477.[14]㊀LI X W,CHEN D Y,LI N J,et al.AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for waterremediation[J].Applied Catalysis B:Environmental,2018,229:155-162.[15]㊀SHI H L,HE R,SUN L,et al.Band gap tuning of g-C3N4via decoration with AgCl to expedite the photocatalytic degradation and mineralizationof oxalic acid[J].Journal of Environmental Sciences,2019,84:1-12.[16]㊀彭㊀慧,刘成琪,汪楚乔,等.AgI/g-C3N4复合材料制备及其降解孔雀石绿染料性能[J].环境工程,2019,37(4):93-97.PENG H,LIU C Q,WANG C Q,et al.Preparation of AgI/g-C3N4composites and their degradation performance of malachite green dyes[J].Environmental Engineering,2019,37(4):93-97(in Chinese).[17]㊀LIANG W,TANG G,ZHANG H,et al.Core-shell structured AgBr incorporated g-C3N4nanocomposites with enhanced photocatalytic activityand stability[J].Materials Technology,2017,32(11):675-685.[18]㊀LI Y B,HU Y R,LIU Z,et al.Construction of self-activating Z-scheme g-C3N4/AgCl heterojunctions for enhanced photocatalytic property[J].Journal of Physics and Chemistry of Solids,2023,172:111055.3762㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷[19]㊀XIE J S,WU C Y,XU Z Z,et al.Novel AgCl/g-C3N4heterostructure nanotube:ultrasonic synthesis,characterization,and photocatalyticactivity[J].Materials Letters,2019,234:179-182.[20]㊀YANG J,ZHANG X,LONG J,et al.Synthesis and photocatalytic mechanism of visible-light-driven AgBr/g-C3N4composite[J].Journal ofMaterials Science:Materials in Electronics,2021,32:6158-6167.[21]㊀HUANG H,LI Y X,WANG H L,et al.In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance forphotodegrading rhodamine B solution[J].Applied Surface Science,2021,538:148132.[22]㊀GUO C S,CHEN M,WU L L,et al.Nanocomposites of Ag3PO4and phosphorus-doped graphitic carbon nitride for ketamine removal[J].ACSApplied Nano Materials,2019,2(5):2817-2829.[23]㊀WANG H R,LEI Z,LI L,et al.Holey g-C3N4nanosheet wrapped Ag3PO4photocatalyst and its visible-light photocatalytic performance[J].Solar Energy,2019,191:70-77.[24]㊀胡俊俊,丁同悦,陈奕桦,等.Ag3PO4/g-C3N4复合材料的制备及其光催化性能[J].精细化工,2021,38(3):483-488.HU J J,DING T Y,CHEN Y H,et al.Preparation and photocatalytic application of Ag3PO4/g-C3N4composites[J].Fine Chemicals,2021,38(3):483-488(in Chinese).[25]㊀MEI J,ZHANG D P,LI N,et al.The synthesis of Ag3PO4/g-C3N4nanocomposites and the application in the photocatalytic degradation ofbisphenol A under visible light irradiation[J].Journal of Alloys and Compounds,2018,749:715-723.[26]㊀潘良峰,阎㊀鑫,王超莉,等.中空管状g-C3N4/Ag3PO4复合催化剂的制备及其可见光催化性能[J].无机化学学报,2022,38(4):695-704.PAN L F,YAN X,WANG C L,et al.Preparation and visible light photocatalytic activity of hollow tubular g-C3N4/Ag3PO4composite catalyst[J].Chinese Journal of Inorganic Chemistry,2022,38(4):695-704(in Chinese).[27]㊀DEONIKAR V G,KOTESHWARA R K,CHUNG W J,et al.Facile synthesis of Ag3PO4/g-C3N4composites in various solvent systems withtuned morphologies and their efficient photocatalytic activity for multi-dye degradation[J].Journal of Photochemistry and Photobiology A: Chemistry,2019,368:168-181.[28]㊀DU J G,XU Z,LI H,et al.Ag3PO4/g-C3N4Z-scheme composites with enhanced visible-light-driven disinfection and organic pollutantsdegradation:uncovering the mechanism[J].Applied Surface Science,2021,541:148487.[29]㊀NAGAJYOTHI P C,SREEKANTH T V M,RAMARAGHAVULU R,et al.Photocatalytic dye degradation and hydrogen production activity ofAg3PO4/g-C3N4nanocatalyst[J].Journal of Materials Science:Materials in Electronics,2019,30(16):14890-14901.[30]㊀AN D S,ZENG H Y,XIAO G F,et al.Cr(VI)reduction over Ag3PO4/g-C3N4composite with p-n heterostructure under visible-light irradiation[J].Journal of the Taiwan Institute of Chemical Engineers,2020,117:133-143.[31]㊀YAN X,WANG Y Y,KANG B B,et al.Preparation and characterization of tubelike g-C3N4/Ag3PO4heterojunction with enhanced visible-lightphotocatalytic activity[J].Crystals,2021,11(11):1373.[32]㊀高闯闯,刘海成,孟无霜,等.Ag3PO4/g-C3N4复合光催化剂的制备及其可见光催化性能[J].环境科学,2021,42(5):2343-2352.GAO C C,LIU H C,MENG W S,et al.Preparation of Ag3PO4/g-C3N4composite photocatalysts and their visible light photocatalytic performance[J].Environmental Science,2021,42(5):2343-2352(in Chinese).[33]㊀CHENG R,WEN J Y,XIA J C,et al.Photo-catalytic oxidation of gaseous toluene by Z-scheme Ag3PO4-g-C3N4composites under visible light:removal performance and mechanisms[J].Catalysis Today,2022,388/389:26-35.[34]㊀ZHANG W,ZHOU L,SHI J,et al.Synthesis of Ag3PO4/g-C3N4composite with enhanced photocatalytic performance for the photodegradation ofdiclofenac under visible light irradiation[J].Catalysts,2018,8(2):45.[35]㊀ZHANG M X,DU H X,JI J,et al.Highly efficient Ag3PO4/g-C3N4Z-scheme photocatalyst for its enhanced photocatalytic performance indegradation of rhodamine B and phenol[J].Molecules,2021,26(7):2062.[36]㊀LI K,CHEN M M,CHEN L,et al.In-situ hydrothermal synthesis of Ag3PO4/g-C3N4nanocomposites and their photocatalytic decomposition ofsulfapyridine under visible light[J].Processes,2023,11(2):375.[37]㊀汲㊀畅,王国胜.Ag3PO4/g-C3N4异质结催化剂可见光降解黄连素[J].无机盐工业,2022,54(4):175-180.JI C,WANG G S.Degradation of berberine by visible light over Ag3PO4/g-C3N4heterojunction catalyst[J].Inorganic Chemicals Industry, 2022,54(4):175-180(in Chinese).[38]㊀CHEN R H,DING S Y,FU N,et al.Preparation of a g-C3N4/Ag3PO4composite Z-type photocatalyst and photocatalytic degradation ofOfloxacin:degradation performance,reaction mechanism,degradation pathway and toxicity evaluation[J].Journal of Environmental Chemical Engineering,2023,11(2):109440.[39]㊀HAYATI M,ABDUL H A,ZUL A M H,et al.In-depth investigation on the photostability and charge separation mechanism of Ag3PO4/g-C3N4photocatalyst towards very low visible light intensity[J].Journal of Molecular Liquids,2023,376:121494.[40]㊀DING M,ZHOU J J,YANG H C,et al.Synthesis of Z-scheme g-C3N4nanosheets/Ag3PO4photocatalysts with enhanced visible-lightphotocatalytic performance for the degradation of tetracycline and dye[J].Chinese Chemical Letters,2020,31(1):71-76.[41]㊀PAN S G,JIA B Q,FU Y S.Ag2CO3nanoparticles decorated g-C3N4as a high-efficiency catalyst for photocatalytic degradation of organiccontaminants[J].Journal of Materials Science:Materials in Electronics,2021,32(11):14464-14476.。
高钛渣提钛制备纳米二氧化钛及其光催化性能的研究
第49卷第9期2021年5月广州化工Guangzhou Chemical IndustryVol. 49 No. 9May. 2021高钛渣提钛制备纳米二氧化钛及其光催化性能的研究**基金项目:沈阳医学院科技发展基金(No : 20191026) ; 2019辽宁省教育厅科学研究一般项目(N 。
: 201902);沈阳医学院创新创业训练计划(N 。
: 20209034)D通讯作者:王凯(1978-),女,讲师,主要从事纳米材料光催化性能研究。
王小禾,王 凯,隋丽丽,董微,常红,吴 園,莫大森(沈阳医学院,辽宁沈阳110034)摘 要:以高钛渣为原料,采用浓硫酸焙烧法得到硫酸氧钛溶液,水热法制备偏钛酸进行高温锻烧,制备不同晶型组成的纳米二氧化钛产品,以亚甲基蓝为降解对象,检测不同熾烧温度下纳米二氧化钛产品的光催化性能。
在254 nm 波长的光照下,对亚甲基蓝溶液的光催化降解实验结果表明:纳米Ti()2对亚甲基蓝有一定的降解活性,650 t 锻烧得到的二氧化钛产品对亚甲基蓝 的光催化降解活性最高。
关键词:高钛渣;二氧化钛;光催化;亚甲基蓝中图分类号: X52文献标志码:A 文章编号:1001 -9677(2021)09-0064-03Photocatalytic Performance of Nanometer TiO 2 Preparedfrom High Titanium Slag *WANGXiao-he, WANG Kai, SUI Li-li, DONG Wei, CHANG Hong, WU Nan, MO Da-sen(Shenyang Medical College , Liaoning Shenyang 110034, China)Abstract : Using high titanium slag as raw material , titanium oxysulfate solution was obtained by roasting withconcentrated sulfuric acid. Metatitanic acid was prepared by hydrothermal method and calcined at high temperature toprepare nanotitanium dioxide products with different crystal form& The photocatalytic activity was tested of nano titanium dioxide products with different calcination temperatures and methylene blue as degradation object. The photocatalyticdegradation under UV irradiation at k = 254 nm showed thatnano TiO 2 had a certain degradation activity to Methylene blue. The photocatalytic activity of titanium dioxide products calcined at 650 P was the highest.Key words : high titanium slag ; titanium dioxide ; photocatalysis ; methylene blueTiOz 具有廉价、稳定、无毒、光催化活性较高等特点,被广泛应用于有机污染物的降解。
improve synthesis of graphene oxide
graphitic material,and indeed,either in thinfilms partial restoration of the graphitic structure accomplished by chemical reduction12,29Ϫ31to converted graphene(CCG).However,thestructure(with its desired properties)is not restored using these conditions,and significant de-introduced.32we reported the scalable preparation of oxide nanoribbons(GONRs)from multiwalled nanotubes by treatment with KMnO4and con-SO430and the discovery that the addition phosphoric acid(H3PO4)to this reaction produced more intact graphitic basal planes.33Re-these second-generation GONRs producedwere comparable in conductivity to thosereduction of thefirst-generation GONRs. hypothesized that this oxidation procedure(KMnO4 mixture of concentrated H SO/H PO,called gas evolution during preparation,and equivalent ductivity upon reduction,make it attractiveing material on a large scale.It may also show performance in materials applications,suchbranes,TEM grids,or temperature-sensitive fabrication.DISCUSSIONThe increased efficiency of the IGO methodpared to the HGO and HGOϩmethods wasafter thefirst purification step for each method. drophilic carbon material produced duringtion passed through the sieve,while the under-oxidized hydrophobic carbon material was retaineddue to its particle size and low water solubility.cantly less under-oxidized material was generatedthe production of IGO(0.7g)compared toor HGOϩ(3.9g)when starting with3g ofRepresentation of the procedures followed starting with graphiteflakes(GF).Under-oxidized hydrophobic recovered during the purification of IGO,HGO,and HGO؉.The increased efficiency of the IGO method small amount of under-oxidized material produced.techniques indicated that the order of HGOϽHGOϩϽIGO.Thermogravi-(TGA)of the materials(Figure4)showed losses between150and300°C,whichCO2,and steam release10from the functional groups.Between400and950°C,a slower mass loss was observed andto the removal of more stable oxygenBy TGA,HGO had the smallest weight and IGO had similar weight losses.Solid-state13C NMR(Figure5)suggests der of overall oxidation is HGOϽHGOspectra recorded using514nm laser excitation and(B)FTIR-ATR spectra of HGO؉Tapping mode AFM topographic images and height profiles of a single layer of(A)HGO؉,(B)HGO,and(C)can be assigned as described previously:10,35,36carbonyls near 190ppm;ester and lactol carbonyls 164ppm;graphitic sp 2carbons near 131ppm;ϪC(sp 3)ϪO near 101ppm;and alcohols at ppm with an upfield intense signal from epoxides 61ppm.The simplest measure of oxidation between the alcohol/epoxide signal and graphitic carbon signal.This ratio is greatest for IGO and HGO.It is also noteworthy that IGO appears to epoxide functionalities than either of the other X-ray diffraction (XRD)spectra (Figure 6)the same order of overall oxidation.For XRD,interlayer spacing of the materials is proportional degree of oxidation.The spacings are 9.5,9.0,and IGO,HGO ϩ,and HGO,respectively.Also,the spectrum had a peak at 3.7Å,indicating that traces starting material (graphite flakes)were present in O,286.2eV),carbonyl (C A O,287.8eV),and carbox-ylates (O ϪC A O,289.0eV).10All percentages of the dized materials were combined such that IGO had oxidized carbon and 31%graphitic carbon;HGO ϩand 37%;HGO contained 61and 39%of the oxi-dized carbon and graphitic carbon,respectively.The XPS spectra were then normalized with respect C A C peak (Figure 7).The degree of oxidation sample is similar to the amount indicated by NMR.IGO is the most oxidized material,HGO ϩisslightly (ϳ10%)less oxidized,and HGO is the least dized.Moreover,the apparent peak at ϳ287eV,corre-sponding to the oxidized carbons for IGO,is sharper the same peak for HGO ϩ.This suggests that,similar levels of overall oxidation,the IGO has a more regular structure than that of HGO ϩ.38Transmission electron microscopy (TEM)images three samples support the assertion that IGO has 4.TGA plots of HGO ؉,HGO,and IGO.Figure 5.13C NMR (50.3MHz)spectra obtained of HGO,HGO ؉and IGO [12kHz magic angle spinning (MAS),a 90°13C pulse,41ms FID,and 20s relaxation delay].Integration areas are shown under each peak.Figure 6.XRD spectra of HGO,HGO ؉,and IGO (1.54059␣1as wavelength).The UV/vis spectra of the three materials suggest the more ordered structure of IGO is due to greater retention of carbon rings in the basal planes.The spectra were recorded for an equal concentration material (Figure 9).The degree of remaining jugation can be determined by the max of each UV/vis spectrum.The more ¡*transitions (conjugation),less energy needs to be used for the electronic which results in a higher max .IGO,HGO ϩ,all have a very similar max ,which is in the231nm range as previously reported for GO.for all three materials,a similar shoulder around nm is observed and can be attributed to n ¡transitions of the carbonyl groups.This suggests materials are grossly similar in structure,as the IR,and AFM data indicated.However,IGO has extinction coefficient than those of HGO ϩsuggesting that,for an equal amount of each sample,the IGO has more aromatic rings or isolated Bulk samples of the oxidized materials were re-duced using hydrazine hydrate and then annealed and 900°C in Ar/H 2.In general,for the hydrazine duction,100mg of the IGO,HGO,or HGO ϩmaterial dispersed in 100mL of DI water,stirred for 30then 1.00mL of hydrazine hydrate was added.mixtures were heated at 95°C using a water min;a black solid precipitated from the reaction mixture.Products were isolated by filtration (PTFE pore size)and washed with DI water (50mL,methanol (20mL,3ϫ),producing 54,57,and of the reduced chemically converted IGO (CCIG),chemically converted HGO ϩ(CCHG ϩ),and chemically converted HGO (CCHG),respectively.After reduction,signal from oxidized carbons could be detected Only a broad aromatic/alkene NMR signal could detected for CCHG,CCHG ϩ,and CCIG.This signal shifted upfield relative to that in the precursor HGO ϩ,and IGO;the peak maximum after reduc-7.C1s XPS spectra of HGO ؉,HGO,and IGO normal-with respect to the C A C peak.images of (A)HGO ؉,(C)HGO,(E)IGO and their diffraction patterns (B),(D),and (F),respectively.electron diffraction (SAED)patterns corresponded to the graphene films in the TEM images.support films (Ted Pella,Inc.)were used to prepare the samples.Figure 9.UV/vis spectra recorded in aqueous solutions mg/mL of HGO ؉,HGO,and IGO.the tuning and matching of the13C and1H channels of the probe.After reduction and annealing in Ar/H2at900°C,no NMR signal could be detected for any of the samples,consistent with their becoming even more graphite-like.35XPS analysis of the black solids showed similar lev-els of reduction for all three materials when they were hydrazine reduced and when they were annealed(Fig-ure10;in Figure10B,C,the annealed materials are des-ignated by the prefix“ann”to differentiate them from standard e-beam lithography(we used PMMA as a posi-tive resist),and then20nm thick Pt contacts were formed by e-beam evaporation and lift-off process.Fig-ure11C shows a SEM image of a typical electronic device.The electrical measurements were performed using a probe station(Desert Cryogenics TT-probe6system) under vacuum with chamber base pressure below10Ϫ5 Torr.Normally,the devices were kept under vacuum for at least2days before the measurements.TheFigure10.C1s XPS spectra of(A)hydrazine reduced,(B)further300°C/H2-annealed materials,(C)900°C/H2-annealed materials. The annealed materials in panels B and C are designated by the prefix“ann”to differentiate them from the materials in A that were only hydrazine reduced.annealed in Ar/H2at300or900°C for0.5h.Forthermally annealed materials,we measured atdevices for each material.We found that,after thermal treatment at300°C,the conductivities ofannCCG materials dramatically increase up to2.1Ϯ(annCCHG),6.8Ϯ4.4S/cm(annCCHGϩ),andS/cm(annCCIG);the scatter plot is shown inThe annCCHG is statistically significantly less conductive than the other two samples(pϽ0.05,t assuming equal variance),but due to the smalldevices for annCCHGϩ,it is difficult to deter-annCCHGϩand annCCIG are significantlyThe statistical significance of the increase in conductivity for annCCHGϩcompared to annCCIG is pϭ0.04,t test assuming equal variance)and completely driven by the outlier point at15.0(remov-point,pϭ0.24,t test assuming equal variance).well as in other cases,the conductivities were calculated assuming the thicknesses of theflakesG materials annealed at even higherture of900°C exhibit further increases in conductivities up to375Ϯ215S/cm(annCCHG),350Ϯ125 (annCCHGϩ),and400Ϯ220S/cm(annCCIG)11F).There is no statistically significant difference tween any of the samples after annealing at900 gesting that high temperature annealing eliminates most of the differences in composition and structure present in the three samples.CONCLUSIONSThe improved method for producing GOcant advantages over Hummers’method.Thefor running the reaction does not involve a large therm and produces no toxic gas.Moreover,proved method yields a higher fraction of well-oxidized hydrophilic carbon material.This IGO is more(A,B)SEM images of CCIGflakes on Si/SiO2substrate.(C)SEM image of a typical electronic device for CCIGflake.(D)Source؊drain current(I sd)؊gate voltage(V g)characteristics of the same electronic device CCIGflake measured in air and in vacuum after3days of evacuation in the probe station chamber at ؊5Torr.(E)Plot of the mean conductivities for the monolayer annCCHG,annCCHG؉,and annCCIGflakesAr/H2at300°C for0.5h.(F)Plot of the mean conductivities for the monolayer annCCHG,annCCHG؉, annealed in Ar/H2at900°C for0.5h.。
氧化石墨烯通过破坏细胞骨架和氧化应激途径诱导巨噬细胞凋亡和功能损伤
氧化石墨烯通过破坏细胞骨架和氧化应激途径诱导巨噬细胞凋亡和功能损伤曲广波,刘思金*中国科学院生态环境研究中心/环境化学与生态毒理学国家重点实验室,北京,100085*Email: sjliu@石墨烯优越的物理化学性质使其在多个领域有着潜在的广泛应用。
然而,石墨烯的生产和应用所带来的健康风险尚不明确。
我们关于石墨烯健康效应的研究发现,与肝脏实质细胞相比,单核/巨噬细胞对于氧化石墨烯的暴露更为敏感,氧化石墨烯可显著的引起细胞内活性氧的生成并引起巨噬细胞J774A.1细胞骨架的破坏,这直接导致了巨噬细胞J774A.1细胞吞噬能力的降低,并在高浓度下直接引起细胞的坏死。
分子水平的实验证明,氧化石墨烯可引起细胞Rock激酶活性的抑制,并且阻遏了肌动蛋白单体的组装。
归结起来,我们的研究表明,在氧化石墨烯的暴露下,单核/巨噬细胞是主要的易感细胞类型之一,细胞骨架的破坏与氧化应激是其引起细胞毒性的主要机制。
这些结果将为进一步推动关于石墨烯的细胞摄入和定位、生物效应与分子机制方面的研究。
关键词:氧化石墨烯;巨噬细胞;Rock激酶;细胞骨架参考文献[1] Qu, G.; Zhang, C.; Yuan, L.; He, J.; Wang, Z.; Wang, L.; Liu, S.*; Jiang, G. Quantum dots impair macrophagic morphology and the ability of phagocytosis by inhibiting the Rho-associated kinase signaling. Nanoscale,2012 (online published, DOI: 10.1039/C2NR30243H).Graphene Oxide Induces Macrophagic Necrosis via CytoskeletalDisruption and Oxidative StressGuangbo Qu, Sijin Liu *State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China, 100085Graphene display novel and characteristics, which endow these nanomaterial with promising applications in a wide spectrum of areas including biotechnology and bioscience. Whereas, its adverse health influence are largely unknown and widely concerned. In the current study, we demonstrated that monocytes/macrophages are susceptible to graphene oxide (GO) exposure in comparison to hepatocytes. GO caused significant oxidative stress evidenced by massive ROS generation and damage to cytoskeleton of the J774A.1 macrophages, resulting in a reduction of macrophagic ability in phagocytosis and direct necrotic death. Additionally, GO exposure diminished the ROCK activity resulting in reduction of actin polymerization and impairment to the fidelity of cytoskeleton. Thus, Our results suggest that monocyte/macrophage could be a major type of target upon graphene exposure, and cytoskeletal disruption and oxidative stress are presumably the main mechanism underlying GO-induced cytotoxicity. These findings offer more insights into graphene’ cellular uptake, biological fate and toxic influence in macrophages.。
硒化铟 硒化钨 横向异质结 界面 单层 武大物理系
硒化铟硒化钨横向异质结界面单层武大物理系硒化铟和硒化钨是两种广泛研究的半导体材料。
硒化铟(InSe)是一种层状材料,在最近几年中引起了人们的广泛关注。
硒化铟晶体的结构可以看作是硒原子和铟原子交替堆积形成的层状结构。
硒化铟的层状结构具有许多特殊的性质,例如它是一种直接带隙材料,其带隙大小与层数成反比,这对于开发光电器件非常有利。
另外,硒化铟具有优异的稳定性、可调控的载流子密度和高迁移率等优良性能,使得它在光电子学和纳米器件中有着广泛的应用前景。
横向异质结将不同材料的晶格结合在一起,形成具有不同化学组成的界面。
横向异质结可以用于调控电子和光子在材料中的输运和相互作用。
由于硒化铟和硒化钨具有相近的晶格参数,它们可以很好地结合在一起构成横向异质结。
例如,通过在硒化铟晶体中引入硒化钨的纳米层,可以在硒化铟晶体中形成一个硒化钨的嵌入层,从而形成硒化铟/硒化钨的横向异质结。
硒化铟/硒化钨横向异质结的形成对这两种材料的性能产生了显著影响。
首先,横向异质结的形成改变了硒化铟的带隙大小。
通过调节硒化钨嵌入层的厚度,可以调节硒化铟的带隙大小。
这种调控能够使硒化铟材料在不同的电子能级下具有不同的光吸收特性,进而实现在不同波长范围内的光电转换效率的调控。
其次,横向异质结的形成也影响了硒化铟的载流子输运性质。
硒化铟本身具有较高的迁移率和低的缺陷密度,使其成为光电子学和纳米器件的理想材料。
当硒化钨嵌入层引入到硒化铟中时,由于两种材料之间的电子能带差异,会产生额外的电子能级。
这些额外的能级会在硒化铟中形成电子谷和空穴谷结构,从而影响到载流子的输运性质。
研究表明,横向异质结的引入可以显著增强硒化铟材料的载流子迁移率,这对于提高硒化铟材料的性能非常关键。
最后,硒化铟/硒化钨横向异质结还可以用于制作光电子器件。
例如,通过在硒化铟晶体中形成硒化钨嵌入层,可以制备硒化铟/硒化钨异质结场效应晶体管(FET),该晶体管具有优异的电子输运性质和可调控的电子能级结构,可用于实现高性能的光电转换器件。
异质结 内建电场 光催化 光催化 产氢 硫化物 单原子-概述说明以及解释
异质结内建电场光催化光催化产氢硫化物单原子-概述说明以及解释1.引言1.1 概述概述随着环境污染和能源危机的日益加剧,开发高效、环保的能源转化技术成为当前重要的研究方向之一。
光催化产氢技术作为一种可持续发展的能源转化方式,具有巨大的应用潜力。
在光催化产氢过程中,异质结、内建电场和硫化物单原子等材料起着重要的作用。
本文将首先介绍异质结的概念和特点,其中异质结作为一种具有不同晶体结构或化学成分的界面结构,其在光催化中扮演着重要角色。
其次,我们将探讨内建电场在光催化过程中的作用机制,内建电场能够调控光生载流子的分离和传输,从而提高光催化产氢的效率。
最后,我们将详细介绍硫化物单原子在光催化产氢中的应用,硫化物单原子具有良好的光催化活性和稳定性,可有效促进水的光解产氢反应。
通过对这些关键材料和机制的研究,我们有望为光催化产氢技术的发展提供新的思路和解决方案,推动能源领域的创新和进步。
1.2 文章结构文章结构部分包括引言、正文和结论三个部分。
在引言中,我们将介绍文章的主题和研究背景,引出文章的研究目的。
在正文中,我们将详细探讨异质结的概念和特点,内建电场在光催化中的作用,以及硫化物单原子在光催化产氢中的应用。
最后,在结论部分,我们将对整个研究进行总结,并展望未来的研究方向,最终得出结论。
整个文章结构分明,逻辑清晰,有助于读者对研究内容进行系统地理解和掌握。
1.3 目的本文的目的是探讨异质结内建电场在光催化中的作用以及硫化物单原子在光催化产氢中的应用。
通过对这些关键概念的深入研究,我们希望能够揭示它们在光催化领域中的重要性和潜在应用,为开发更高效的光催化材料提供理论基础和实践指导。
同时,本文也旨在为读者提供对光催化产氢技术的深入了解,促进相关领域的研究和发展。
通过系统的分析和讨论,我们希望为光催化产氢技术的发展做出贡献,推动清洁能源产业的进步与发展。
2.正文2.1 异质结的概念和特点异质结是指两种不同材料的结合界面,具有不同晶格结构和能带结构的区域。
快速光催化杀菌的红磷-氧化锌异质结薄膜的制备方法[发明专利]
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810573973.2(22)申请日 2018.06.06(71)申请人 湖北大学地址 430062 湖北省武汉市武昌区友谊大道368号(72)发明人 吴水林 李浚 刘想梅 (74)专利代理机构 武汉河山金堂专利事务所(普通合伙) 42212代理人 胡清堂(51)Int.Cl.C23C 16/455(2006.01)C23C 16/40(2006.01)C23C 16/28(2006.01)(54)发明名称快速光催化杀菌的红磷-氧化锌异质结薄膜的制备方法(57)摘要一种快速光催化杀菌的红磷-氧化锌异质结薄膜的制备方法,包括如下步骤:步骤一,钛片机械抛光处理,依次将钛片打磨,至表面光滑,将抛光钛片依次置于丙酮、无水乙醇和去离子水中各超声清洗15分钟,室温下自然干燥,备用;步骤二,制备红磷薄膜,将步骤一得到的抛光钛片作为基底,用化学气相沉积镀一层均匀的红磷薄膜;步骤三,制备纳米ZnO薄膜,在步骤二得到的沉积有红磷薄膜的基底上用原子层沉积镀一层均匀的纳米ZnO薄膜。
其优点是:红磷-氧化锌异质结薄膜在可见光的照射下能够在20分钟内将细菌全部杀死,并具有广谱抗菌性。
另外,红磷-氧化锌异质结薄膜具有较好的生物相容性。
权利要求书1页 说明书7页 附图10页CN 108950521 A 2018.12.07C N 108950521A1.快速光催化杀菌的红磷-氧化锌异质结薄膜的制备方法,其特征在于,包括如下步骤:步骤一,钛片机械抛光处理在抛光机上用240和800目金刚砂依次将钛片打磨,至表面光滑,将抛光钛片依次置于丙酮、无水乙醇和去离子水中各超声清洗15分钟,室温下自然干燥,备用;步骤二,制备红磷薄膜将步骤一得到的抛光钛片作为基底,采用化学气相沉积法镀一层均匀的红磷薄膜,具体步骤为:1)将红磷粉末放在200℃下,水热处理9-15h,缓慢降至室温,真空干燥后研磨至100微米以下的均匀粉末;2)将预处理的红磷和钛片放在CVD炉子中,先以1-10sccm速率通入氩气,然后5-15℃/min升温速率到550-750℃,保温4-6h;3)以5-10℃/min降温速率到250-450℃,再保温1-3h,最后缓慢降至室温;步骤三,制备纳米ZnO薄膜将步骤二得到的沉积有红磷薄膜的基底上用ALD镀一层均匀的纳米ZnO薄膜,以获得红磷-氧化锌异质结薄膜。
改性石墨烯改性氧化铝协同提高硅脂的导热性能研究
河南科技Henan Science and Technology 能源与化学总772期第二期2022年1月改性石墨烯/改性氧化铝协同提高硅脂的导热性能研究史浩龙王蓉唐秀之(中南大学航空航天学院,湖南长沙410000)摘要:随着集成电路的发展,对热管理材料的性能提出了日益严苛的要求。
借助接枝在氧化石墨烯(GO)上的烯丙基胺的碳碳双键与硅氢键的反应,将硅油分子接枝在GO表面,同时对Al2O3采用十六烷基三甲氧基硅烷进行表面修饰。
采用扫描电子显微镜(SEM)、傅里叶转换红外光谱(FTIR)、X射线光电子能谱(XPS)和热失重分析(TGA)等手段对材料的形貌、组成、热稳定性等进行了表征分析。
研究发现,填充了改性后的Al2O3和GO后导热硅脂的导热性能明显提高。
因此,对填料表面的适当修饰是一种有效提高硅脂导热性能的策略。
关键词:表面改性;石墨烯;氧化铝;导热硅脂中图分类号:TB332文献标志码:A文章编号:1003-5168(2022)2-0088-05 DOI:10.19968/ki.hnkj.1003-5168.2022.02.021Synergistic Improvement of Thermal Conductivity of Sili⁃cone Grease by Modified Graphene/Modified AluminaSHI Haolong WANG Rong TANG Xiuzhi(School of Aeronautics and Astronautics,Central South University,Changsha410000,China)Abstract:With the development of integrated circuits,more and more stringent requirements are put for⁃ward for the performance of thermal management materials.Silicone oil molecules were grafted on the surface of graphene oxide(GO)by the reaction of carbon carbon double bond and silicon hydrogen bondof allylamine grafted on graphene oxide(GO).At the same time,Al2O3was modified by cetyltrimethoxysi⁃lane.The morphology,composition and thermal stability of the materials were characterized by scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectros⁃copy(XPS)and thermogravimetric analysis(TGA).It is found that the thermal conductivity of thermal conductive silicone grease filled with modified Al2O3and GO is significantly improved.Therefore,the ap⁃propriate modification of the filler surface is an effective strategy to improve the thermal conductivity of silicone grease.Keywords:surface modification;Graphene;Alumina;thermal conductive silicone grease收稿日期:2021-11-04基金项目:湖南省自然科学基金面上项目“多孔(还原)氧化石墨烯增韧聚合物基复合材料”(2020JJ4726)。
北京航空航天大学科技成果——二维MOF氧化碳材料复合薄膜及其制备技术
北京航空航天大学科技成果——二维MOF/氧化碳材料复合薄膜及其制备技术项目简介放射性铯是核废物和核泄漏的重要组成部分。
在冷却时间内,这种放射性核素的浸出会污染我们的水源、土壤和空气,通过植物进入食物链并最终被纳入进入动物和人类。
铯可能是甲状腺癌的主要原因。
由于其在水中的高溶解度,铯在整个身体中都是均匀分布的,受损害最为严重的主要是软组织。
去除放射性铯,吸附是很简单和经济的技术。
通过膜分离处理放射性废液的吸附是最常见的手段。
氧化石墨烯(Graphene Oxide,GO)是石墨烯经化学氧化的产物,其表面含有大量的含氧官能团,可经由金属离子与含氧官能团的反应而达到吸附金属离子的目的。
金属有机框架材料(MOFs)具有三维的孔结构,是沸石和碳纳米管之外的又一类重要的新型多孔材料,其高孔隙率、低密度、大比表面积等特性使其在吸附和分离中可以发挥重要作用。
MOF与氧化石墨烯复合可获得用于过滤的薄膜,但制备出的MOF仍然是三维结构的。
因为MOF难以单独成膜,所以二维MOF 的制备较为少见,这极大地限制了二维MOF膜在处理放射性废液中的应用。
为此,迫切需要一种二维MOF/氧化碳材料复合薄膜及其制备技术以及其在处理放射性废液中的应用。
针对以上问题,本项目研发了一种二维MOF/氧化碳材料复合薄膜及其制备技术。
技术描述制备二维金属有机框架材料(MOF)/氧化碳材料复合薄膜,技术包括下述步骤:1、制备二维片状MOF:使中心金属离子、有机配体、连接剂以及去质子化溶剂在预定温度下进行水热处理,获得二维片状MOF;2、在去质子化溶剂中搅拌混合氧化碳材料以及二维片状MOF,得到其混合物,其中氧化碳材料包括氧化石墨烯和/或氧化碳纳米管;3、真空抽滤以上混合物,得到二维金属有机框架材料(MOF)/氧化碳材料复合薄膜。
本技术的优势在于:1、操作简单、可重复性强;2、氧化石墨烯本身带含氧基团的电负性与电正性的MOF产生静电诱导可很好的实现自组装;3、获得的复合薄膜中,氧化石墨烯含有大量官能团可实现对放射性污染源元素的吸附,MOF本身的多孔性,大的比表面及拓扑结构也具有很高的吸附效果,两者各自发挥协同效应,可实现超强的吸附能力;4、该方法普适于不同二维金属有机框架材料与氧化石墨烯的复合,这些高质量的二维MOF/GO复合材料在吸附、分离以及催化领域有巨大的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Photodegradation of Graphene Oxide Sheets by TiO2Nanoparticles after a Photocatalytic ReductionO.Akhavan,*,†,‡M.Abdolahad,§A.Esfandiar,‡and M.Mohatashamifar|Department of Physics,P.O.Box11155-9161,Sharif Uni V ersity of Technology,Tehran,Iran,Institute forNanoscience and Nanotechnology,P.O.Box14588-89694,Sharif Uni V ersity of Technology,Tehran,Iran,Nano-Electronics and Thin Film Laboratory,Department of Electrical and Computer Engineering,North KargarA V enue,P.O.Box14395/515,Uni V ersity of Tehran,Tehran,Iran,and Electronic Research Center,Tehran,IranRecei V ed:April18,2010;Re V ised Manuscript Recei V ed:June6,2010TiO2nanoparticles were physically attached to chemically synthesized single-layer graphene oxide nanosheetsdeposited between Au electrodes in order to investigate the electrical,chemical,and structural properties ofthe TiO2/graphene oxide composition exposed to UV irradiation.X-ray photoelectron spectroscopy showedthat after effective photocatalytic reduction of the graphene oxide sheets by the TiO2nanoparticles in ethanol,the carbon content of the reduced graphene oxides gradually decreased by increasing the irradiation time,while no considerable variation was detected in the reduction level of the reduced sheets.Raman spectroscopyindicated that,atfirst,the photocatalytic reduction resulted in a significant increase in the graphitized sp2structure over the disorders in the graphene oxides.After that,as the carbon content decreased by UV irradiation,further disorders appeared in the reduced graphene oxide sheets,confirming degradation of the reduced sheetsafter the photocatalytic reduction.Based on the current-voltage characteristic,the optimum time for thephotocatalytic reduction resulted in a sharp decrease in the electrical resistivity of the reduced graphene oxide.However,longer photocatalytic processes caused a high increase in the resistivity,due to dominating thephotodegradation process over the nearly completed photocatalytic reduction.1.IntroductionIn the universe of carbon nanostructures,graphene as a one-atom-thick sheet made up of sp2-bonded carbons in a hexagonal lattice with unique physical and chemical characteristics has attracted special attention.In fact,after empirical discovery of graphene in2004by Novoselov et al.,1it has rapidly come into view as an extraordinary nanomaterial with promising capability in some research and technologicalfields in material science and condensed-matter physics.2-14Among the various fabrication procedures of graphene,the chemical exfoliation method has been extensively used as an effective,reliable,and low-cost method.15,16In this method,the chemically oxidized graphite is cleaved by ultrasonic dispersion or rapid thermal expansion,and the synthesized graphene oxide nanosheets should be reduced to obtain graphene nanosheets. After reduction of graphene oxides,high electrical conduc-tance and transparency can be achieved,so that reduced graphene oxides are known as promising candidates for large-area transparent conductors.17However,due to the toxicity of chemical reductants such as hydrazine and high temperatures (>500°C)required in the thermal reductions,the usual chemical and thermal reductions are not completely compatible with the current electronic and chemistry technologies,and so,their extensive applications have been limited.Furthermore,it was shown that in the Au-doped graphene sheets,18the Au nano-structures act as antireduction resist during a chemical reduc-tion.19Hence,in addition to improving the current reducing processes,other effective reducing methods,including micro-wave and(photo)catalytic reductions,are considered as some of the important research subjects for production of high quality reduced graphene oxide nanosheets at lower and lower tem-peratures.For example,an improved thermal reduction method by which an effective reduction of graphene oxide sheets occurred at temperatures lower than500°C was studied previously.20Microwave reduction of graphene oxide sheets was also investigated by Chen et al.21Concerning the(photo)catalytic reduction processes,Xu et al.22showed that Au,Pt,and Pd metallic nanoparticles adsorbed on graphene oxide sheets can reduce the graphene oxide sheets with ethylene glycol in a catalytic process.In other works,photocatalytic reduction of graphene oxide sheets by TiO2nanoparticles and thinfilms in ethanol solution was investigated.23,24However,it is well-known that metal oxide semiconductors,such as TiO2,can easily decompose carbonaceous bonds in a photocatalytic process.25,26 Therefore,photocatalytic reduction of graphene oxides by using metal oxide semiconductor photocatalysts and its effects on the quality of the reduced graphene sheets should be examined in more detail.In this research,based on the procedure reported by Williams et al.23(only applied in the photocatalytic reduction of graphene oxide),gradual photodegradation of chemically synthesized graphene oxide sheets physically combined with TiO2nano-particles was systematically investigated,particularly after completion of the photocatalytic reduction of the oxide sheets. In this regard,the effect of UV irradiation and its duration on the oxygen-containing carbonaceous bonds,carbon contents including disorder and the graphitized carbons,and the current-voltage characteristic of the TiO2/graphene oxide sheets were examined for different periods of irradiation time.*Corresponding author.Tel.:+98-21-66164566.Fax:+98-21-66022711.E-mail address:oakhavan@.†Department of Physics,Sharif University of Technology.‡Institute for Nanoscience and Nanotechnology,Sharif University ofTechnology.§University of Tehran.|Electronic Research Center.J.Phys.Chem.C2010,114,12955–129591295510.1021/jp103472c 2010American Chemical SocietyPublished on Web07/14/20102.Experimental SectionThe improved Hummers method15,27was applied to oxidizenatural graphite powder(particle diameter of45µm,Sigma-Aldrich)in order to synthesize the graphite oxide.In a typicalprocedure,50mL of H2SO4was added into a500mLflaskincluding2g of graphite at room temperature.Theflask wascooled to0°C in an ice bath.Then6g of potassiumpermanganate(KMnO4)was added slowly to the above mixtureand allowed to warm to room temperature.The suspension wasstirred continuously for2h at35°C.Then,it was cooled in anice bath and subsequently diluted by350mL of deionized(DI)water.Then H2O2(30%)was added to reduce the residualpermanganate to soluble manganese ions,that is,until stoppingthe gas evolution.Finally,the resulting suspension wasfiltered,washed with1M HCl and twice with DI water,and dried at60°C for24h to obtain brownish graphite oxide powders.The obtained graphite oxide powder was dispersed in water(1mg/mL)to obtain a suspension.Then the suspension was sonicatedfor30min to obtain a graphene oxide suspension.The graphene oxide samples were prepared by drop-castingthe graphene oxide suspension onto two chemically patternedAu electrodes(with∼1.5µm space between the electrodes) deposited on SiO2/Si substrates by using e-beam evaporation. After drying in air,the samples were annealed in air at200°C for30min.Then,the annealed samples were immersed in a prepared TiO2suspension(40mg/mL commercial TiO2nano-particles with particle diameter of15nm and surface area of 240(50m2g-1(Hurricane Co.,Iran)in DI water),and the suspension was sonicated for30min to physically hybridize the TiO2nanoparticles on the surface of the deposited graphene oxide sheets.Then,the TiO2/graphene oxide samples were annealed at200°C for30min.To study the photocatalytic effect of the TiO2nanoparticles on the graphene oxide sheets,atfirst,the TiO2/graphene oxide samples were dispersed in ethanol(C2H5OH,Merck,>99.9%)). Then,the samples were irradiated by a110mW/cm2mercury lamp(peak wavelengths at275,350,and660nm)for different periods of time at room temperature.Surface morphology of the TiO2/graphene oxide sheets deposited on the Au electrodes(especially those that were deposited on the hollow space between the two electrodes)was studied by using a Philips XL30scanning electron microscopy (SEM).Atomic force microscopy(AFM)images were obtained by using a Park Scientific model CP-Research(VEECO).The substrates used for AFM imaging were freshly cleaved mica substrates.X-ray photoelectron spectroscopy(XPS)was em-ployed to study the relative concentration of carbon and the chemical states of the TiO2/graphene oxide sheets irradiated at different irradiation times.The data were obtained using a hemispherical analyzer with an Al K R X-ray source(hν) 1486.6eV)operating at a vacuum better than10-7Pa.In the XPS data analysis,peak deconvolution was performed using Gaussian components after a Shirley background subtraction. Raman spectroscopy was performed at room temperature using a Raman Microprobe(HR-800Jobin-Yvon)with532nm Nd: YAG excitation source.Current-voltage curves of the TiO2/ graphene oxide sheets exposed to UV irradiation for the different times were obtained by using a Keithley485Autoranging Picoammeter.3.Results and DiscussionFigure1shows surface morphology of the TiO2/graphene oxide sheets deposited on the Au electrodes,especially those located on the hollow space between the two electrodes,as connecting bridges of the electrodes.The width of the electrodes was250µm,and the average distance between them was about 1.5µm.After deposition of the TiO2/graphene oxide sheets, we observed41sheets connecting the two electrodes.Here,the SEM image shows only two graphene oxide sheets connecting the electrodes.The dimension of the majority of the graphene oxide sheets was found to be a few micrometers,as can be seen for some of them in Figure1.The light spots on the graphene oxide sheets can be assigned to the TiO2nanoparticles attached on the surface.To better observe and characterize the topography of the TiO2/ graphene oxide sheets,AFM was used as an appropriate technique,as shown in Figure2.The AFM image(Figure2a) shows two partially overlapped platelets nearly covered by nanoparticles with average size of18nm.The diameter histogram of the surface particles was presented in Figure2b. Although,based on the average size,the surface particles can be attributed to the TiO2nanoparticles,a fraction of them can be also assigned to the residual carbons and/or solvents attached to defect sites of the graphene oxide sheets.The height profile diagram of the AFM image(Figure2c)containing the sharp peaks(with the height of∼10-20nm)confirmed attachment of the TiO2nanoparticles(with the average size of15nm)on the surface of the graphene sheets.The height profile also showed that the thickness of the graphene oxide sheets was∼0.9 nm,which is in good consistency with the typical thickness of the single-layer graphene oxides(∼0.8nm).16In fact,the typical thickness of graphene oxide shows a∼0.44nm increase in graphene thickness(∼0.36nm)because of the presence of epoxy and hydroxyl groups on both sides of the oxide surface.16,28 To study the effect of UV irradiation and its duration on the chemical state of the TiO2/graphene oxide sheets,XPS was utilized.The deconvoluted C(1s)XPS spectra of the TiO2/ graphene(oxide)samples have been shown in Figure3.The deconvoluted peak centered at the binding energy ranging from 284.8to285.0eV was assigned to the C s C,C d C,and C s H bonds.The deconvoluted peaks centered at the binding energy ranges of286.0-286.5,287.4-287.7,and289.0-289.5eV were attributed to the C s OH,C d O,and O d C s OH oxygen-containing carbonaceous bands,respectively.29-31Before the light irradiation(Figure3a),high amounts of the oxygen-containing carbonaceous bands were detected in the carbon peak, consistent with the presence of the graphene oxides on the Figure1.SEM image of the TiO2/graphene oxide sheets on Au electrodes deposited on SiO2/Si substrate.12956J.Phys.Chem.C,Vol.114,No.30,2010Akhavan etal.surface of the as-prepared samples.No peaks relating to formation of Ti-C and or Ti-O-C bonds were found in the XPS spectra,indicating physical(not chemical)attachment of the TiO2nanoparticles to the graphene oxide sheets.To quantitatively investigate and compare the change in concentra-tion of the oxygen-containing carbonaceous bands,the peak area ratios of the C s OH,C d O,and O d C s OH bonds to the C s C,C d C,and C s H bonds were calculated and presented in Table1.By exposing the TiO2/graphene oxides immersed in ethanol to the UV light irradiation for1h(Figure3b),the concentration of the oxygen-containing bonds substantially decreased,indicat-ing photocatalytic reduction of the graphene oxide sheets in the TiO2/graphene oxide composition.After2h irradiation(Figure 3c),the relative concentration of the C s OH,C d O,and O d C s OH bonds showed about76,85,and81%reduction relative to the corresponding concentrations of the sample before irradia-tion,respectively.The remarkable decrease in the concentration of the oxygen-containing bonds of the graphene oxides after 2h UV irradiation indicated their effective photocatalytic reduction in the TiO2/graphene(oxide)composition.By increas-ing the time of the UV exposure to4,10,and24h,no considerable change in the concentration of the oxygen-containing bonds was observed.But,based on the decrease in the peak area ratio of the C(1s)to Au(4f)core levels(A C/A Au), it was found that the amount of carbon on surface of the samples also decreased during the photocatalytic reduction,particularly after10and24h irradiation.In fact,after24h irradiation,85% of the surface carbons of the TiO2/graphene(oxide)composition disappeared,while no considerable change in their chemical states was found.This means that the TiO2nanoparticles in the TiO2/graphene(oxide)composition gradually degraded the graphene oxide sheets after reducing them in a photocatalytic process.To further examine the degradation of the reduced graphene oxide sheets of the TiO2/graphene(oxide)composition in the photocatalytic process,Raman spectroscopy was utilized,as shown in Figure4.In fact,Raman spectroscopy is known as a suitable technique to study the ordered/disordered crystal structures of carbonaceous materials.The usual characteristics of carbon materials in Raman spectra are the G band(∼1580 cm-1),which is usually attributed to the E2g phonon of C sp2 atoms,and the D band(∼1350cm-1)as a breathing mode of κ-point phonons of A1g symmetry,32,33which is attributed to local defects and disorders,particularly located at the edges of graphene and graphite platelets.34Concerning this,a smaller I D/I G peak intensity ratio in a Raman spectrum can be assigned to lower defects and disorders of the graphitized structures, smaller fraction of sp3/sp2-bonded carbon,and/or larger size of the in-plane graphitic crystallite sp2domains.The Raman spectra shown in Figure4display the G line at about1585cm-1and the D line at1350cm-1.The obtained values of the I D/I G ratio were also presented in Table1.It was found that the I D/I G ratio decreased from1.26to0.81after2h UV irradiation.This canFigure2.(a)AFM image of the TiO2/graphene oxide sheets on a mica substrate,(b)diameter histogram of the surface particles,and(c)height profile diagram of the line shown in the AFM image.The sharp peaks in the depth profile correspond to the TiO2nanoparticles,and the vertical distance of each couple of the markers is given above them.Figure3.Peak deconvolution of C(1s)XPS core level of the TiO2/ graphene(oxide)sheets after(a)0,(b)1,(c)2,(d)4,(e)10,and(f) 24h UV irradiation time.TABLE1:Peak Area(A)Ratios of the Oxygen-Containing Bonds to the CC Bonds and the Total Carbon Bands to the Au Band(Obtained by XPS)and the Peak Intensity Ratios of I D/I G(Obtained by Raman Analysis)of the TiO2/ Graphene(Oxide)Samples at the Different Irradiation TimesXPS Raman irradiationtime(h)A COH/A CCA CO/A CCA OCOH/A CCnormalized(A C/A Au)a I D/I G00.68 1.260.161 1.2610.230.370.060.820.9220.160.180.030.730.8140.150.180.030.630.95100.130.210.030.32 1.10 240.140.200.030.15 1.55a A C)A CC+A COH+A CO+A OCOH.Photodegradation of Graphene Oxide Sheets J.Phys.Chem.C,Vol.114,No.30,201012957be assigned to formation of further sp 2bonds after the UV-assisted photocatalytic reduction of the graphene oxide sheets,in good consistency with the XPS results.But,by further increasing the time of UV irradiation,the I D /I G ratio increased so that after 24h irradiation the I D /I G ratio increased to a high value of 1.55.Such considerable increase in the I D /I G ratio was assigned to the appearance of further carbonaceous defects in the reduced graphene oxide sheets due to the photocatalytic degradation of them by the TiO 2nanoparticles.In fact,since the ratio of I G /I D is proportional to the in-plane graphitic crystallite size,35,36it can be concluded that the crystallite size of sp 2domains of the graphene sheets photodegraded by the TiO 2nanoparticles after 24h decreased about 19and 48%of the crystallite size of the as-prepared graphene oxide sheets and the graphene oxide sheets photocatalytically reduced in 2h,respectively.Raman spectroscopy is also utilized to examine the single-,bi-,and multilayer characteristics of graphene and/or graphene oxide layers.For example,it was previously reported that the peak position of the G band of the single-layer graphenes (1585cm -1)shifts about 6cm -1into lower frequencies after stacking further graphene layers (for 2-6layers G band shifts to 1579cm -1).28,34-39In addition,shape and position of the 2D band are the key parameters indicating formation and the layer numbers of graphene sheets.28,37-40The 2D peak position of the single-layer graphene sheets is usually observed at 2679cm -1,while the 2D band of multilayer (2-4layers)shifts to higher wavenumbers by 19cm -1.34Here,the observed 2D bands of the graphene (oxide)sheets with a nearly symmetrical shape were centered at around 2680cm -1,indicating formation of single-layer graphene (oxide)sheets.Therefore,the Raman analysis confirmed presence of single-layer graphene (oxide)sheets,as also found by using the height profile analysis of the AFM image.The current -voltage (IV )characteristic of the TiO 2/graphene (oxide)sheets irradiated for the different periods of time was also studied,as shown in Figure 5.The linear behavior of the current -voltage curve of the TiO 2/graphene (oxide)sheets indicated the metallic nature of the sheets and formation of ohmic contact between the sheets and the ing the obtained IV curves,sheet resistance (Rs)of the TiO 2/graphene (oxide)sheets was calculated for different irradiation times,as shown in the inset of Figure 5.The sheet resistance of the as-prepared TiO 2/graphene oxides was evaluated to be as high as ∼1011Ω/sq.The IV diagram of the as-prepared graphene oxides was very similar to that of the as-prepared TiO 2/graphene oxides (shown in Figure 5).This similarity indicated that the TiO 2nanoparticles connected only physically (not chemically)to the surface of the graphene oxide sheets,consistent with the XPSanalysis.After the photocatalytic reduction of the graphene oxide sheets,the sheet resistance sharply decreased,so that,for example,the Rs value of the TiO 2/graphene oxide sheets decreased to 4.6×106Ω/sq,after 2h photocatalytic reduction.The increase in the conduction of the graphene (oxide)sheets can be assigned to decrease in the oxygen contents of the sheets,as previously studied for the graphene sheets exposed to oxygen plasma.41Moreover,comparing our optimum Rs value of the photocatalytic reduced graphene oxides with the ones reported for graphene oxides reduced by hydrazine (∼108Ω/sq)and graphene oxides reduced by both hydrazine and thermal reduction at 400°C (∼105Ω/sq)42,43shows that application of the photocatalytic process in a suitable time (here,2h)can be substantially effective in chemical reduction of the graphene oxide sheets.However,longer times of UV irradiation resulted in increase in the sheet resistance of the reduced graphene oxide sheets (for example,after 24h irradiation,the Rs value increased to the large value of 5.1×109Ω/sq).Since,the XPS analysis showed that the level of reduction of the reduced graphene oxide sheets was unchanged for the irradiation times longer than 2h,the high increase in the Rs value of the graphene oxide sheets irradiated for the longer times was assigned to photodegradation of the reduced graphene oxide sheets by the TiO 2nanoparticles,consistent with the analysis of Raman spectra.4.ConclusionsThe chemically synthesized graphene oxide sheets were physically combined by TiO 2nanoparticles after deposition between Au thin film electrodes.Both Raman and AFM analyses confirmed formation of single-layer graphene oxide sheets.Based on the significant reduction of the oxygen-containing carbonaceous bands and the I D /I G ratio of the XPS and Raman spectra,it was found that the photocatalytic reduction of the graphene oxides by the TiO 2nanoparticles was nearly completed after 2h UV irradiation,respectively.In addition,using XPS no considerable change was observed in the reduction level of the reduced graphene oxides for the longer irradiation times.However,the longer irradiations resulted in decrease of the carbon content of the reduced graphene oxides (based on the XPS)and increase of the carbon defects (based on the Raman),indicating degradation of the reduced sheets by the TiO 2nanoparticles in the photocatalytic process.Consistently,the IV measurements showed that the Rs value of the graphene oxide sheets substantially decreased from ∼1011to 4.6×106Ω/sq after the photocatalytic reduction for 2h.But,by increasing the irradiation time from 4to 24h,the Rs value highly increasedFigure 4.Raman spectra of the TiO 2/graphene (oxide)sheets after (a)0,(b)1,(c)2,(d)4,(e)10,and (f)24h UV irradiation time.Figure 5.Current -voltage diagram of the TiO 2/graphene (oxide)samples at different irradiation times.The inset shows sheet resistance of the TiO 2/graphene (oxide)nanosheets at the different irradiation times.12958J.Phys.Chem.C,Vol.114,No.30,2010Akhavan etal.from1.3×107to5.1×109Ω/sq.These results showed that the photodegradation of graphene oxide sheets by TiO2occurred along with their photocatalytic reduction.Therefore,to achieve photocatalytically reduced graphene oxide sheets with minimum carbon defects,obtaining an optimum irradiation time in which the photodegradation does not act as a dominant mechanism is necessary.Acknowledgment.O.A.thanks the Research Council of Sharif University of Technology and also the Iran Nanotech-nology Initiative Council for thefinancial support of the work. References and Notes(1)Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang, Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Electric Field Effect in Atomically Thin Carbon Films.Science2004,306,666–669.(2)Novoselov,K.S.;Geim, A.K.;Morozov,S.V.;Jiang, D.; Katsnelson,M.I.;Grigorieva,I.V.;Dubonos,S.V.;Firsov,A.A.Two-Dimensional Gas of Massless Dirac Fermions in Graphene.Nature2005, 438,197–200.(3)Zhang,Y.B.;Tan,Y.;Stormer,H.L.;Kim,P.Experimental Observation of Quantum Hall Effect and Berry’s Phase in Graphene.Nature 2005,438,201–204.(4)Meyer,J.C.;Geim,A.K.;Katsnelson,M.I.;Novoselov,K.S.; Booth,T.J.;Roth,S.The Structure of Suspended Graphene Sheets.Nature 2007,446,60–63.(5)Katsnelson,M.I.;Novoselov,K.S.Graphene:New Bridge Between Condensed Matter Physics and Quantum Electrodynamics.Solid State Commun.2007,143,3–13.(6)Schedin,F.;Geim,A.K.;Morozov,S.V.;Hill,E.W.;Blake,P.; Katsnelson,M.I.;Novoselov,K.S.Detection of Individual Gas Molecules Adsorbed on Graphene.Nat.Mater.2007,6,652–655.(7)Robinson,J.T.;Perkins,F.K.;Snow,E.S.;Wei,Z.Q.;Sheehan, P.E.Reduced Graphene Oxide Molecular Sensors.Nano Lett.2008,8, 3137–3140.(8)Arsat,R.;Breedon,M.;Shafiei,M.;Spizziri,P.G.;Gilje,S.;Kaner, R.B.;Kalantar-zadeh,K.;Wlodarski,W.Graphene-Like Nano-Sheets for Surface Acoustic Wave Gas Sensor Applications.Chem.Phys.Lett.2009, 467,344–347.(9)Wang,X.;Zhi,L.J.;Tsao,N.;Tomovic,Z.;Li,J.L.;Mullen,K. Transparent Carbon Films as Electrodes in Organic Solar Cells.Angew. Chem.,Int.Ed.2008,47,2990–2992.(10)Gomez-Navarro,C.;Weitz,R.T.;Bittner,A.M.;Scolari,M.; Mews,A.;Burghard,M.;Kern,K.Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets.Nano Lett.2007, 7,3499–3503.(11)Gilje,S.;Han,S.;Wang,M.;Wang,K.L.;Kaner,R.B.A Chemical Route to Graphene for Device Applications.Nano Lett.2007,7,3394–3398.(12)Liang,X.;Fu,Z.;Chou,S.Y.Graphene Transistors Fabricated via Transfer-Printing in Device Active-Areas on Large Wafer.Nano Lett. 2007,7,3840–3844.(13)Stampfer,C.;Schurtenberger,E.;Molitor,F.;Gu¨ttinger,J.;Ihn, T.;Ensslin,K.Tunable Graphene Single Electron Transistor.Nano Lett. 2008,8,2378–2383.(14)Bao,W.;Zhang,H.;Bruck,J.;Lau,C.N.;Bockrath,M.;Standley,B.Graphene-Based Atomic-Scale Switches.Nano Lett.2008,8,3345–3349.(15)Stankovich,S.;Dikin,D.A.;Piner,R.D.;Kohlhaas,K.A.; Kleinhammes,A.;Jia,Y.;Wu,Y.;Nguyen,S.T.;Ruoff,R.S.Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide.Carbon2007,45,1558–1565.(16)Schniepp,H.C.;Li,J.L.;McAllister,M.J.;Sai,H.;Herrera-Alonso,M.;Adamson,D.H.;Prud’homme,R.K.;Car,R.;Saville,D.A.; Aksay,I.A.Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide.J.Phys.Chem.B2006,110,8535–8539.(17)Kim,K.S.;Zhao,Y.;Jang,H.;Lee,S.Y.;Kim,J.M.;Kim,K.S.; Ahn,J.-H.;Kim,P.;Choi,J.-Y.;Hong,rge-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes.Nature2009, 457,706–710.(18)Muszynski,R.;Seger,B.;Kamat,P.V.Decorating Graphene Sheets with Gold Nanoparticles.J.Phys.Chem.C2008,112,5263–5266.(19)Jasuja,K.;Berry,V.Implantation and Growth of Dendritic Gold Nanostructures on Graphene Derivatives:Electrical Property Tailoring and Raman Enhancement.ACS Nano2009,3,2358–2366.(20)Akhavan,O.The Effect of Heat Treatment on Formation of Graphene Thin Films from Graphene Oxide Nanosheets.Carbon2009,48, 509–519.(21)Chen,W.;Yan,L.;Bangal,P.R.Preparation of Graphene by the Rapid and Mild Thermal Reduction of Graphene Oxide Induced by Microwaves.Carbon2010,48,1146–1152.(22)Xu,C.;Wang,X.;Zhu,J.Graphene-Metal Particle Nanocom-posites.J.Phys.Chem.C2008,112,19841–19845.(23)Williams,G.;Seger,B.;Kamat,P.V.TiO2-Graphene Nanocom-posites.UV-Assisted Photocatalytic Reduction of Graphene Oxide.ACS Nano2008,2,1487–1491.(24)Akhavan,O.;Ghaderi,E.Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation.J.Phys.Chem.C2009,113,20214–20220.(25)Gaya,U.I.;Abdullah, A.H.Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide:A Review of Fundamentals,Progress and Problems.J.Photochem.Photobiol.,C2008, 9,1–12.(26)Kuo,T.-J.;Lin,C.-N.;Kuo,C.-L.;Huang,M.H.Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts.Chem.Mater.2007,19,5143–5147.(27)Hummers,W.S.;Offeman,R.E.Preparation of Graphitic Oxide. J.Am.Chem.Soc.1958,80,1339–1339.(28)McAllister,M.J.;Li,J.L.;Adamson,D.H.;Schniepp,H.C.; Abdala,A.A.;Liu,J.;Alonso,M.H.;Milius,D.L.;Car,R.;Prud’homme, R.K.;Aksay,I.A.Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite.Chem.Mater.2007,19,4396–4404.(29)Yang,D.;Velamakanni,A.;Bozoklu,G.;Park,S.;Stoller,M.; Piner,R.D.;Stankovich,S.;Jung,I.;Field,D.A.;Ventrice,C.A.,Jr.; Ruoff,R.S.Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectros-copy.Carbon2009,47,145–152.(30)Chiang,T.C.;Seitz,F.Photoemission Spectroscopy in Solids.Ann. Phys.2001,10,61–74.(31)Yumitori,S.Correlation of C1s Chemical State Intensities with the O1s Intensity in the XPS Analysis of Anodically Oxidized Glass-Like Carbon Samples.J.Mater.Sci.2000,35,139–146.(32)Tuinstra,F.;Koenig,J.L.Raman Spectrum of Graphite.J.Chem. Phys.1970,53,1126–1130.(33)Ferrari,A.C.;Robertson,J.Interpretation of Raman Spectra of Disordered and Amorphous Carbon.Phys.Re V.B2000,61,14095–14107.(34)Graf,D.;Molitor,F.;Ensslin,K.;Stampfer,C.;Jungen,A.;Hierold,C.;Wirtz,L.Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene.Nano Lett.2007,7,238–242.(35)Ferrari,A.C.Raman Spectroscopy of Graphene and Graphite: Disorder,Electron-Phonon Coupling,Doping and Nonadiabatic Effects. Solid State Commun.2007,143,45–57.(36)Cancado,L.G.;Takai,K.;Enoki,T.;Endo,M.;Kim,Y.A.; Mizusaki,H.;Jorio,A.;Coelho,L.N.;Magalhaes-Paniago,R.;Pimenta, M.General Equation for the Determination of the Crystallite Size L a of Nanographite by Raman Spectroscopy.Appl.Phys.Lett.2006,88,163106.(37)Kudin,K.N.;Ozbas,B.;Schniepp,H.C.;Pruı¨homme,R.K.; Aksay,I.A.;Car,R.Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets.Nano Lett.2008,8,36–41.(38)Dato,A.;Radmilovic,V.;Lee,Z.;Phillips,J.;Frenkach,M. Substrate Free Gas-Phase Synthesis of Graphene Sheets.Nano Lett.2008, 8,2012–2016.(39)Ferrari,A.C.;Meyer,J.C.;Scardaci,V.;Casiraghi,C.;Lazzeri, M.;Mauri,F.;Piscanec,S.;Jiang,D.;Novoselov,K.S.;Roth,S.;Geim, A.K.The Raman Fingerprint of Graphene and Graphene Layers.Phys. Re V.Lett.2006,97,187401.(40)Calizo,I.;Balandin, A. A.;Bao,W.;Miao, F.;Lau, C.N. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers.Nano Lett.2007,7,2645–2649.(41)Kim,K.;Park,H.J.;Woo,B.-C.;Kim,K.J.;Kim,G.T.;Yun, W.S.Electric Property Evolution of Structurally Defected Multilayer Graphene.Nano Lett.2008,8,3092–3096.(42)Becerril,H.A.;Mao,J.;Liu,Z.;Stoltenberg,R.M.;Bao,Z.;Chen, Y.Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors.ACS Nano2008,2,463–470.(43)Eda,G.;Fanchini,G.;Chhowalla,rge-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material.Nat.Nanotechnol.2008,3,270–274.JP103472CPhotodegradation of Graphene Oxide Sheets J.Phys.Chem.C,Vol.114,No.30,201012959。