n-p Interaction Effects on the Double Beta Decay Nuclear Matrix Elements for Medium Mass Nu

合集下载

Detection-of-QTLs-with-Additive-Effects

Detection-of-QTLs-with-Additive-Effects

Agricultural Sciences in China 2009, 8(9): 1039-1045September 2009© 2009, CAAS. All rights reserved. Published by Elsevier Ltd.Detection of QTLs with Additive Effects, Epistatic Effects, and QTL ×Environment Interactions for Zeleny Sedimentation Value Using a Doubled Haploid Population in Cultivated WheatZHAO Liang, LIU Bin, ZHANG Kun-pu, TIAN Ji-chun and DENG Zhi-yingState Key Laboratory of Crop Biology, Group of Quality Wheat Breeding, Shandong Agricultural University, Tai’an 271018, P.R.ChinaAbstractIn order to understand the genetic basis for Zeleny sedimentation value (ZSV) of wheat, a doubled haploid (DH) population Huapei 3×Yumai 57 (Yumai 57 is superior to Huapei 3 for ZSV), and a linkage map consisting of 323 marker loci were used to search QTLs for ZSV. This program was based on mixed linear models and allowed simultaneous mapping of additive effect QTLs, epistatic QTLs, and QTL×environment interactions (QEs). The DH population and the parents were evaluated for ZSV in three field trials. Mapping analysis produced a total of 8 QTLs and 2 QEs for ZSV with a single QTL explaining 0.64-14.39% of phenotypic variations. Four additive QTLs, 4 pairs of epistatic QTLs, and two QEs collectively explained 46.11% of the phenotypic variation (PVE). This study provided a precise location of ZSV gene within the Xwmc 93 and GluD1 interval, which was designated as Qzsv-1D. The information obtained in this study should be useful for manipulating the QTLs for ZSV by marker assisted selection (MAS) in wheat breeding programs.Key words: doubled haploid population, Zeleny sedimentation value, quantitative trait loci (QTLs), wheat (Triticum aestivum L.)INTRODUCTIONThe Zeleny sedimentation value (ZSV) has been provento be useful in wheat breeding programs for the esti-mation of wheat eating and cooking quality (Mesdag1964; Kne et al. 1993; Liu et al. 2003; He et al.2004; Zhang et al. 2005; Özberk et al. 2006; Ozturket al. 2008). There is a positive correlation betweensedimentation volume and gluten strength or loaf volume.The ZSV method is often used as a screening test inwheat breeding. Mesdag (1964) showed that the valueof ZSV is a measure for the quantity and quality of thegluten. Because the baking value of wheat flour is largelydetermined by these components, the ZSV is also con-sidered as a useful predictor for the baking value. LiuReceived 3 December, 2008 Accepted 9 April, 2009Correspondence TIAN Ji-chun, Professor, Tel/Fax: +86-538-8242040, E-mail: jctian9666@et al. (2003) detected that the associations betweenZSV and DWCN’s (dry white Chinese noodle) appear-ance and taste also fit quadratic regression modelsignificantly. The gluten quality-related parameter ofsedimentation value was significantly associated withpan bread quality score (He et al. 2004). Özberk et al.(2006) found that the only quality analyses showingsignificant correlations with market price were Zelenysedimentation value and hectolitre weights (kg hL-1).Ozturk et al. (2008) reported that the cookie diametergave highly significant correlations with ZSV.The advent and utilization of molecular markers hasprovided powerful tools for elucidating the genetic ba-sis of quantitatively inherited traits. However, only afew studies have reported genetic loci that influenceZSV in wheat (Rousset et al. 2001; Kunert et al. 2007;1040ZHAO Liang et al.Sun et al. 2008). Rousset et al. (2001) reported that one strong QTL for ZSV was mapped on the long arm of chromosome 1A around Glu-A1. A distally located QTL for ZSV was mapped on chromosome arm 1BS, centered on the Gli-B1/Glu-B3 region. And a major QTL for ZSV, clearly corresponding to the Glu-D1 locus, was detected on chromosome arm 1DL. Kunert et al. (2007) found four putative QTLs for ZSV. Sun et al. (2008) identified three QTLs for ZSV in a F14 RIL derived from the cross between Chuan 35050 and Shannong 483.Additive effect QTLs were first identified and epi-static interactions among these additive effect QTLs were then estimated (Zanetti et al. 2001). However, this approach usually leaves out many QTLs that may have no additive effects but influence the trait only through epistatic interactions or QTL×environment in-teractions (QEs) (Ma et al. 2005, 2007; Rebetzke et al. 2007). Additive effect QTLs, epistatic QTLs, and QEs were detected using two-locus analyses in both the populations (Kulwal et al. 2005). Sometimes QTLs involved in such interactions contribute substantially to the total variation of a quantitative trait, and therefore should not be ignored. Further experimentation is needed to clarify whether the traits are also affected by epistatic and environment, and to dissect the genotype ×environment interaction effects at the molecular level. In this study, QTLs for ZSV were investigated based on the mixed linear model in a DH population across environments. The objective of this study was to com-prehensively characterize the genetic basis for ZSV of wheat in order to facilitate the future breeding of high-quality wheat varieties.MATERIALS AND METHODSMaterialsA population of 168 DH lines was produced from the cross between two Chinese wheat cultivars Huapei 3 (Hp3)/Yumai 57 (Ym57) and was used for the con-struction of a linkage map. The DH population and parents were kindly provided by Professor Yanhai, Henan Academy of Agricultural Sciences, Zhengzhou, China. Hp3 and Ym57 were registered by Henan Prov-ince of China in 2006 (Hai and Kang 2007) and by the state (China) in 2003 (Guo et al. 2004), respectively. The parents, planted over a large area in the Huang-Huai wheat region in China, differ in several agronomi-cally important traits as well as baking quality traits (Guo et al. 2004; Hai and Kang 2007).The field trials were conducted in three environments, at Tai’an (36.18°N, 117.13°E), Shandong Province, China, in 2005 and 2006, and at Suzhou (31.32°N, 120.62°E), Anhui Province, China, in 2006. The ex-perimental design followed a completely randomized block design with two replications at each location. In autumn 2005, all lines and parental lines were grown in 2 m long by three-row plots (25 cm apart); in autumn 2006, the lines were grown in 2 m long by four-row plots (25 cm apart). Suzhou and Tai’an differ in cli-mate and soil conditions. In Tai’an, there were differ-ences in temperature and soil conditions between the years 2005 and 2006. During the growing season, man-agement was in accordance with the local practice. The lines were harvested individually at maturity to prevent yield loss from over-ripening. Harvested grain samples were cleaned prior to conditioning and flour milling was performed in a mill (Quadrumat Senior, Brabender, Germany) to flour extraction rates of around 70%. Prior to milling, the hard, medium hard (mixtures of hard and soft wheat) and soft wheats were tempered to around 14, 15, and 16% moisture contents, respectively.Measurements of ZSVZeleny sedimentation volume was determined using AACC method 56-61A.Construction of the genetic linkage mapA genetic linkage map of DH population with 323 markers, including 284 SSR, 37 ESTs loci, 1 ISSR loci and 1 HMW-GS loci, was constructed. This linkage map covered a total length of 2485.7 cM with an aver-age distance of 7.67 cM between adjacent markers. Thirteen markers remained unlinked. These markers formed 24 linkage groups at LOD 4.0. The chromo-somal locations and the orders of the markers in the map were in accordance with the one reported for Triti-cum aestivum L. (Somers et al. 2004). The recom-mended map distance for genome wide QTL scanningDetection of QTLs with Additive Effects, Epistatic Effects, and QTL×Environment Interactions for Zeleny Sedimentation1041 was an interval length less than 10 cM (Doerge 2002).Thus the map was suitable for genome-wide QTL scan-ning in this study.Statistical analysisAnalysis of variance (ANOVA) was carried out usingSPSS ver. 13.0 (SPSS, Chicago, USA). QTLs withadditive effects and epistatic effects as well as QEs inthe DH population were mapped by the softwareQTLNetwork ver. 2.0 (Yang and Zhu 2005) based on amixed linear model (Wang et al. 1999). Composite in-terval analysis was undertaken using forward-backwardstepwise multiple linear regression with a probabilityinto and out of the model of 0.05 and window size setat 10 cM. Significant thresholds for QTL detectionwere calculated for each data set using 1000 permuta-tions and a genome-wide error rate of 0.10 (suggestive)and 0.05 (significant). The final genetic model incor-porated significant additive effects and epistatic effectsas well as their environmental interactions.RESULTSPhenotypic variation for DH lines and parentsAs is shown in Fig.1, ZSV of Ym57 showed highervalues than ZSV of Hp3; the means of the ZSV fellbetween the two parent’s values. It expressed the ex-istence of the large transgressive segregation. ZSV seg-regated continuously and approximately fit normal dis-tributions with absolute values of both skewness andkurtosis less than 1.0, indicating that this trait was suit-able for QTL mapping.QTLs with additive effects and additive×environment (AE) interactionsFour QTLs with significant additive effects were iden-tified on chromosomes 1B, 1D, 5A, and 5D (Table 1and Fig.2). These QTLs explained from 2.66 to14.39% of the phenotypic variance. The Qzsv-1B had the most significant effect, accounting for 14.39% of the phenotypic variance. The Ym57 alleles at three loci, Qzsv-1B,Qzsv-1D, and Qzsv-5D, increased Fig. 1 Frequency distributions of ZSV in 168 DH lines derived from a cross of Hp3×Ym57 evaluated at three environments in the 2005 and 2006 cropping seasons. The means of trait values for the DH lines and both parents are indicated by arrows. Several statistics for the traits in the DH lines are shown on the right of each plot.Zeleny sedimentation volume (mL)2006 in SuzhouZeleny sedimentation volume (mL)2006 in Tai’anZeleny sedimentation volume (mL)2005 in Tai’anMean: 24.39SD: 5.45Range: 12.00-39.00Skewness: 0.171Kurtosis: -0.153 252015105No.ofDHlinesDH linesYm57Hp315.0020.0025.0030.0035.0040.00DH linesYm57Hp320.0030.0040.0050.0060.00252015105No.ofDHlines30DH linesYm57Hp320.0030.0040.002015105No.ofDHlinesMean: 24.39SD: 5.45Range: 12.00-39.00Skewness: 0.171Kurtosis: -0.153Mean: 24.39SD: 5.45Range: 12.00-39.00Skewness: 0.171Kurtosis: -0.1531042ZHAO Liang et al.Table 1 Estimated additive effects and additive ×environment (AE) interactions of QTLs for ZSV at three environments in the 2005 and 2006 cropping seasonsQTL Flanking-marker 1)Position (cM)2)F -value P A 3)H 2 (A, %)4)AE 1H 2 (AE 1, %)5)AE 2H 2 (AE 2, %)AE 3H 2 (AE 3, %)Qzsv -1B Xwmc412.2-Xcfe023.236.425.220.000-2.5214.39------Qzsv -1D Xwmc93-GluD161.915.910.000-1.988.93------Qzsv -5A Xbarc358.2-Xgwm18638.18.100.000 1.08 2.66------Qzsv -5DXcfd101-Xbarc32060.612.690.000-1.203.25---1.042.44--1)Flanking marker, the interval of F peak value for QTL. The same as below.2)Position, the location of F peak value for QTL in “Flanking marker”. The same as below.3)Additive effects, a positive value indicates that the allele from Hp3 increased ZSV, a negative value indicates that the allele from Ym57 increased ZSV.4)H 2(A, %) indicates the contribution explained by putative additive QTL.5)H 2(AE 1, %) indicates the contribution explained by additive QTL ×environment 1 interaction. E 1, Tai’an 2005; E 2, Tai’an 2006; E 3, Suzhou 2006.Fig. 2 A genetic linkage map of wheat showing mapping QTLs with additive effects, epistatic effects, AE, and AAE for ZSV.1A 1B 1D 2A 3A5A 5D 7A 7DLocus involved in AELocus involved in additive effects Locus involved in epistasisLocus involved in AAEDetection of QTLs with Additive Effects, Epistatic Effects, and QTL ×Environment Interactions for Zeleny Sedimentation 1043ZSV by 2.52, 1.98, and 1.20 mL, respectively, owing to additive effects. The Hp3 allele increased ZSV at the Qzsv -5A by 1.08 mL, accounting for 2.66% of the phe-notypic variance. This suggested that alleles, which increased ZSV, were dispersed within the two parents,resulting in small differences of phenotypic values be-tween the parents and transgressive segregants among the DH population. The total additive QTLs detected for ZSV accounted for 29.23% of the phenotypic variance.One additive effect was involved in AE interactions (Table 1 and Fig.2). The Ym57 alleles at one locus,Qzsv -5D , increased the ZSV by 1.04 mL with corre-spondingly contributing 2.44% of the phenotypic variance.QTLs with epistasis effects and epistasis ×environment (AAE) interactionsFour pairs of epistatic QTLs were identified for ZSV,and were located on chromosomes 1A, 2A, 3A, 7A and 7D (Table 2 and Fig.2). These QTLs had correspond-ing contributions ranging from 0.64 to 6.79%. One pair of epistasis, occurring between the loci Qzsv -2A /Qzsv -7A , had the largest effect, which contributed ZSV of 1.73 mL and accounted for 6.79% of the phenotypic variance. The four pairs of epistatic QTLs explained 12.11% of the phenotypic variance. All the epistatic effects were non-main-effect QTLs.One pair of epistatic QTL was detected in AAE in-teractions for ZSV (Table 2 and Fig.2). The AAE ef-fects explained 2.33% of the phenotypic variance and this QTL, Qzsv3A.2/Qzsv7D.1, increased ZSV by 1.01mL owing to AAE effects, simultaneously the positive value means that the parent-type effect is greater than the recombinant-type effect.DISCUSSIONEpistatic effects and QTL ×environment interactions were important genetic basis for ZSV in wheatEpistasis, as an important genetic basis for complex traits, has been well demonstrated in recent QTL map-ping studies (Cao et al . 2001; Fan et al . 2005; Ma et al .2005, 2007). Ma et al . (2005) provided a strong evi-dence for the presence of epistatic effects on dough rheological properties in a wheat DH population. In the present study, four pairs of QTLs with epistatic ef-fects were detected for ZSV in three environments (Table 2 and Fig.2). The four pairs of epistatic QTLs explained 12.11% of the phenotypic variance.ZSV was predominantly influenced by the effects of genotype (Zhang et al . 2004, 2005), and in the present study, only one AE interaction and one AAE interaction were found. It is suggested that QTL ×environment interactions just play a minor role, but QTL ×environment interactions should not be ignored.ZSV and subunits of high molecular weight gluteninsSubunits of high molecular weight glutenins strongly influence wheat bread making quality. This study pro-vided a precise location of ZSV gene within the Xwmc 93 and GluD1 interval, which was designated Qzsv -1D and was located in the central region of a 2 cM interval.Also Rousset et al . (2001) detected a major QTL for sedimentation volume on 1DL, clearly corresponding to the Glu -D1 locus. Kunert et al . (2007) found that the SSR marker Xgwm642 on 1DL identified a QTLTable 2 Estimated epistatic effects and epistasis ×environment (AAE) interactions of QTLs for ZSV at three environments in the 2005 and 2006 cropping seasonsPosition Position H 2H 2H 2H 2(cM)(cM)(AA, %)2)(AAE 1, %)3)(AAE 2, %)(AAE 3, %)Qzsv -1A Xwmc278-Xbarc120.156.3Qzsv -3A.1Xbarc1177-Xbarc276.2196.3-0.94 1.99------Qzsv -2A Xgwm636-Xcfe6729.1Qzsv -7A Xbarc259-Xwmc59653.7-1.73 6.79------Qzsv -3A.2Xcfa2193-Xgwm155152.7Qzsv -7D.1Xcfd175-Xwmc14181.5-1.09 2.69 1.01 2.33----Qzsv -3A.2Xcfa2193-Xgwm155152.7Qzsv -7D.2Xgdm67-Xwmc634161.5-0.530.64------1)The epistatic effect. A positive value means that the parent-type effect is greater than the recombinant-type effect, and the negative value means that the parent-type effect is less than the recombinant-type effect.2)H 2 (AA, %) indicates the contribution explained by putative epistatic QTL.3)H 2 (AAE 1, %) indicates the contribution explained by epistatic QTL ×environment 1 interaction. E 1, Tai’an 2005; E 2, Tai’an 2006; E 3, Suzhou 2006.QTL Flanking-marker QTL Flanking-markerAA 1)AAE 1AAE 2AAE 31044ZHAO Liang et al. for ZSV. The position indicates an influence of theGlu-D1 locus. And a major QTL, clearly correspond-ing to the Glu-D1 locus, was detected on chromosomearm 1DL. Correlation coefficient between Glu-1 scoreand sedimentation values was significant (r=0.553).There were significant correlations between sedimen-tation values and Glu-lAa,Glu-1Ac,Glu-Ba, and Glu-1Bcalleles, respectively (Kne et al. 1993). Thesedimentation values showed statistically significantassociations with the status of the Glu-A1 locus(Witkowski et al. 2008).In this study, the Qzsv-1D increased ZSV by 1.98mL, correspondingly contributing 8.93% of the pheno-typic variance. Barro et al. (2003) found that HMW-GS 1Ax1 increased the sedimentation value. In contrast,HMW-GS 1Dx5 drastically decreased in sedimentationvalue.In summary, four additive QTLs, four pairs of epi-static QTLs, and two QEs were detected for ZSV in168 DH lines derived from a cross Hp3×Ym57. Onemajor QTL,Qzsv-1B, was closely linked to Xwmc412.20.2cM and could account for 14.39% of the phenotypicvariation without any influence from the environment.Therefore, the Qzsv-1B could be used in MAS in wheatbreeding programs. The results showed that both ad-ditive and epistatic effects were important as a geneticbasis for ZSV, and were also sometimes subject to en-vironmental modifications.AcknowledgementsThis work was supported by the National Basic Re-search Program of China (2009CB118301), the NationalHigh-Tech Research and Development (863) Programof China (2006AA100101 and 2006AA10Z1E9), andthe Doctor Foundation of Shandong AgriculturalUniversity, China (23023). Thanks Prof. Chuck Walker,University of Kansas State University, USA, for hiskindly constructive advice on the language editing ofthe manuscript.ReferencesBarro F, Barceló P, Lazzeri P A, Shewry P R, Ballesteros J,Martín A. 2003. Functional properties of flours from fieldgrown transgenic wheat lines expressing the HMW gluteninsubunit 1Ax1 and 1Dx5 genes. Molecular Breeding,12,223-229.Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. 2001. Impact ofepistasis and QTL×environment interaction on thedevelopmental behavior of plant height in rice (Oryza sativaL.). Theoretical and Applied Genetics,103, 153-160.Doerge R W. 2002. Multifactorial genetics: Mapping and analysisof quantitative trait loci in experimental populations. NatureReviews,3, 43-52.Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. 2005.The main effects, epistatic effects and environmentalinteractions of QTLs on the cooking and eating quality ofrice in a doubled-haploid line population. Theoretical andApplied Genetics,110, 1445-1452.Guo C Q, Bai Z A, Liao P A, Jin W K. 2004. New high qualityand yield wheat variety Yumai 57. China Seed Industry,4, 54(in Chinese)Hai Y, Kang M H. 2007. Breeding of a new wheat vatiety Huapei 3with high yield and early maturing. Henan AgriculturalSciences, 5, 36-37. (in Chinese)He Z H, Yang J, Zhang Y, Quail K J, Peña R J. 2004. Pan breadand dry white Chinese noodle quality in Chinese winterwheats.Euphytica,139, 257-267.,G, D. 1993. Allelic variationat Glu-1 loci in some Yugoslav wheat cultivars. Euphytica,69,89-94.Kulwal P, Kumar N, Kumar A, Balyan H S, Gupta P K. 2005.Gene networks in hexaploid wheat: interacting quantitativetrait loci for grain protein content. Functional & IntegrativeGenomics,5, 254-259.Kunert A, Naz A A, Oliver D, Pillen K, Léon J. 2007. AB-QTLanalysis in winter wheat: I. Synthetic hexaploid wheat(T.turgidum ssp. dicoccoides × T. tauschii) as a source offavourable alleles for milling and baking quality traits.Theoretical and Applied Genetics,115, 683-695.Liu J J, He Z H, Zhao Z D, Peña R J, Rajaram S. 2003. Wheatquality traits and quality parameters of cooked dry whiteChinese noodles. Euphytica,131, 147-154.Ma W, Appels R, Bekes F, Larroque O, Morell M K, Gale K R.2005. Genetic characterisation of dough rheological propertiesin a wheat doubled haploid population: additive genetic effectsand epistatic interactions. Theoretical and Applied Genetics,111, 410-422.Ma X Q, Tang J H, Teng W T, Yan J B, Meng Y J, Li J S. 2007.Epistatic interaction is an important genetic basis of grainyield and its components in maize. Molecular Breeding,20,41-51.Mesdag J. 1964. in the protein content of wheat and its influenceon the sedimentation value and the baking quality. Euphytica,13, 250-261.Özberk I, Kýlýç H, Atlý A, Özberk F, Karlý B. 2006. Selectionof wheat based on economic returns per unit area. Euphytica,Detection of QTLs with Additive Effects, Epistatic Effects, and QTL×Environment Interactions for Zeleny Sedimentation1045152, 235-245.Ozturk S, Kahraman K, Tiftik B, Koksel H. 2008. Predicting the cookie quality of flours by using Mixolab. European Food Research and Technology,227, 1549-1554.Rebetzke G J, Ellis M H, Bonnett D G, Richards R A. 2007.Molecular mapping of genes for Coleoptile growth in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics,114, 1173-1183.Rousset M, Brabant P, Kota R S, Dubcovsky J, Dvorak J. 2001.Use of recombinant substitution lines for gene mapping and QTL analysis of bread making quality in wheat. Euphytica, 119,81-87.Somers D J, Isaac P, Edwards K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics,109, 1105-1114.Sun H Y, Lu J H, Fan Y D, Zhao Y, Kong F, Li R J, Wang H G, Li S S. 2008. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Progress in Natural Science,18, 825-831.Wang D L, Zhu J, Li Z K, Paterson A H. 1999. Mapping QTLswith epistatic effects and QTL × environment interactions by mixed linear model approaches. Theoretical and Applied Genetics,99, 1255-1264.Witkowski E, Waga J, Witkowska K, Rapacz M, Gut M, Bielawska A, Luber H, Lukaszewski A J. 2008. Association between frost tolerance and the alleles of high molecular weight glutenin subunits present in Polish winter wheats. Euphytica, 159,377-384.Yang J, Zhu J. 2005. Methods for predicting superior genotypes in multiple environments based on QTL effects. Theoretical and Applied Genetics,110, 1268-1274.Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M. 2001.Genetic analysis of bread-making quality in wheat and spelt.Plant Breeding,120, 13-19.Zhang Y, He Z H, Guo Y Y, Zhang A M, Maarten V G.2004.Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China. Euphytica, 139, 75-83.Zhang Y, Zhang Y, He Z H, Ye G Y. 2005. Milling quality and protein properties of autumn-sown Chinese wheats evaluated through multi-location trials. Euphytica,143,209-222.(Edited by ZHANG Yi-min)。

纳米二氧化硅的改性与应用及聚倍半硅氧烷结构和性能研究

纳米二氧化硅的改性与应用及聚倍半硅氧烷结构和性能研究

复旦大学碾士学位论文1.4.6复合材料中纳米二氧化硅的形貌表征图1—11和1-12是纳米二氧化硅SPl和A200分散在丙烯酸树脂中的透射电镜照片。

与纳米二氧化硅在醋酸丁酯中的分散性一样,用MAPTS改性的二氧化硅相对未改性的二氧化硅来说,具有较好的分散性,这点对于SPl来说尤为明显(见图1—1la和1.1lb)。

另外,通过原位聚合制备的纳米复合材料中,二氧化硅的分散性优于通过共混法制各的(见图1-llb和】.1lc),这是由于改性的二氧化硅中含有可与丙烯酸酯单体反应的基团,在原位聚合中,与丙烯酸酯链段有较强作用,有利其分散。

然而这些对于纳米二氧化硅A200来说都不是那么明显(见图1-12),无论是否改性,无论使用原位或者共混得方法,对于A200在丙烯酸树脂中的分散性没有很大影响。

这可能是纳米二氧化硅A200相对SPl而言,本身就具有较小的比表面积以及较低的羟基含量,使其在丙烯酸树脂中具有比较好的分散性,所以通过MAPTS对其改性,欲使其更易分散并没有在A200中体现出来。

(a)复旦大学硕士学位论文(c)图1-ll含有SPl的复合涂层的TEM照片(a)含有共混的未改性的二氧化硅(b)含有共混的改性的二氧化硅(c)含有原位生成改性的二氧化硅Figure1-11TEMpicturesofcompositescontainingSPIpreparedby【a)blendingwithunmodifiednano-silica,(b)blendingwithmodifiednano·silicaand(c)in—situmethodwithmodifiednano-silica(a)(b)复旦大学硕士学位论文(c)图1-12含有A200的复合涂层的TEM照片(a)含有共混的未改性的二氧化硅(b)含有共混的改性的二氧化硅(c)古有原位生成改性的二氧化硅Figure1-12TEMpicturesofcompositescontainingA200preparedby(a)blendingwithunmodifiednano-silica,(b)blendingwithmodifiedriano-silicaand(c)in-situmethodwithmodifiednano.silica1.4.7改性对复合树脂Tg的影响图1.13至图1.15为纳米复合树脂的DMA损耗曲线。

Plant-Microbe Interactions in the Phyllosphere

Plant-Microbe Interactions in the Phyllosphere

Plant-Microbe Interactions in thePhyllospherePlant-microbe interactions in the phyllosphere play a crucial role in shaping the health and productivity of plants. The phyllosphere, which refers to the above-ground parts of plants, is home to a diverse community of microorganisms including bacteria, fungi, and viruses. These microorganisms have the potential to influence plant growth, development, and resistance to pathogens. Understanding the dynamics of plant-microbe interactions in the phyllosphere is essential for developing sustainable agricultural practices and enhancing crop productivity. One of the key aspects of plant-microbe interactions in the phyllosphere is the role of microbial communities in promoting plant health. Beneficial microbes can colonize the phyllosphere and provide plants with essential nutrients, protect them from pathogens, and enhance their tolerance to environmental stresses. For example, certain bacteria have been found to produce compounds that inhibit the growth of pathogenic fungi, thereby protecting the plant from disease. This mutualistic relationship between plants and beneficial microbes highlights the potential for harnessing these interactions to improve crop yield and resilience. On the other hand, the phyllosphere can also harbor pathogenic microorganisms that pose a threat to plant health. Pathogens such as bacteria and fungi can colonize the phyllosphere and cause diseases in plants, leading to reduced yield and economic losses for farmers. Understanding the mechanisms by which these pathogens interact with plants in the phyllosphere is crucial for developing effective disease management strategies. Additionally, studying the factors that influence the abundance and diversity of pathogenic microorganisms in the phyllosphere can provide insights into how to mitigate their negative impact on plant health. Moreover, the phyllosphere represents a dynamic and complex environment where plant-microbe interactions are influenced by various factors including plant species, environmental conditions, and agricultural practices. For instance, studies have shown that the composition of microbial communities in the phyllosphere can vary depending on the type of plant and its surrounding environment. Furthermore, agricultural practices such as pesticide use andirrigation can also impact the structure and function of phyllosphere microbial communities. Therefore, a holistic understanding of plant-microbe interactions in the phyllosphere requires considering the interconnectedness of biological, environmental, and anthropogenic factors. In addition to their direct effects on plant health, plant-microbe interactions in the phyllosphere can also have broader implications for ecosystem functioning and global biogeochemical cycles. For example, the activities of phyllosphere microorganisms, such as nutrient cycling and organic matter decomposition, can influence the cycling of carbon, nitrogen, and other essential elements in terrestrial ecosystems. Understanding the role of phyllosphere microbial communities in these processes is critical for predicting the impacts of environmental changes on ecosystem stability and productivity. In conclusion, plant-microbe interactions in the phyllosphere are a complex and dynamic aspect of plant biology with far-reaching implications for agriculture, ecology, and global biogeochemical cycles. By unraveling the intricacies of these interactions, researchers can develop innovative strategies for enhancing plant health, improving crop productivity, and promoting sustainable land management practices. Moreover, a deeper understanding of phyllosphere microbial communities can contribute to the development of novel biotechnological applications aimed at harnessing the potential of beneficial microbes for agricultural and environmental purposes.。

DAB级联单相逆变器系统的阻抗特性及稳定性分析

DAB级联单相逆变器系统的阻抗特性及稳定性分析

第27卷㊀第12期2023年12月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.12Dec.2023㊀㊀㊀㊀㊀㊀DAB 级联单相逆变器系统的阻抗特性及稳定性分析刘欣,㊀袁静,㊀高鑫波(华北电力大学电气与电子工程学院,河北保定071003)摘㊀要:针对双有源桥(DAB )直流变换器级联单相并网逆变器系统因阻抗失配而造成系统发生振荡失稳的问题,通过建立DAB 和单相逆变器的输出和输入阻抗模型,基于阻抗分析法对级联系统的交互稳定性进行了分析㊂首先,推导采用双环控制策略的前级DAB 输出阻抗模型和考虑锁相环影响的后级逆变器直流侧输入阻抗模型,并通过扫频法验证其准确性㊂在此基础上,建立二者阻抗交互模型,详细分析了DAB 反馈控制器的PI 参数对其输出阻抗频率特性和级联系统稳定性的影响,并据此提出一种DAB 控制参数的优化设计方法,在兼顾动态性能的同时提升了级联系统的稳定性㊂最后,通过仿真算例验证了阻抗模型的准确性,分析了结论的正确性以及稳定性改善方法的有效性㊂关键词:级联系统;稳定性;阻抗重塑;双有源桥;单相并网逆变器;阻抗模型DOI :10.15938/j.emc.2023.12.001中图分类号:TM46文献标志码:A文章编号:1007-449X(2023)12-0001-11㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2023-03-17作者简介:刘㊀欣(1980 ),男,博士,副教授,研究方向为新能源发电系统建模与控制㊁电力电子系统电磁兼容和瞬态特性;袁㊀静(1997 ),女,硕士研究生,研究方向为电力电子变流器建模与控制;高鑫波(1999 ),男,硕士研究生,研究方向为电力电子变流器建模与控制㊂通信作者:袁㊀静Impedance characteristics and stability analysis of DAB cascadesingle-phase inverter systemLIU Xin,㊀YUAN Jing,㊀GAO Xinbo(School of Electrical and Electronic Engineering,North China Electric Power University,Baoding 071003,China)Abstract :Aiming at the problem of oscillation instability of the dual active bridge (DAB)DC-DC con-verter cascaded single-phase grid-connected inverter systems due to its impedance mismatching,the out-put and input impedance models of DAB and single-phase inverter were established,and the interaction stability of the cascade system was analyzed based on impedance analysis method.Firstly,the output im-pedance model of the front-stage DAB using the double-loop control strategy and the DC-side input im-pedance model of the back-stage inverter considering the influence of the phase-locked loop were derived,and the accuracy of the models were verified by frequency sweep method.Based on this,the impedance interaction model between the two was established.Additionally,the effects of PI parameters of DAB feedback controller on its output impedance frequency characteristics and cascade system stability wereanalyzed in detail,and the optimal design method of DAB control parameters was proposed accordingly,which improves the stability of the cascade system while taking into account the dynamic performance.Fi-nally,the simulation examples verify accuracy of the impedance model,correctness of the analytical con-clusions and effectiveness of the stability improvement method.Keywords :cascaded system;stability;impedance reshaping;dual active bridges;single-phase grid-con-nected inverters;impedance model0㊀引㊀言在光伏系统㊁蓄电池㊁超级电容,车网互联(ve-hicle to grid,V2G)等交流并网型储能系统中,通常需要使用两级式DC /AC 变换器实现并入交流电网和双向功率控制的功能[1]㊂其中,双有源桥变换器由于具有高功率密度㊁电流隔离㊁能量双向传输和易实现零电压开关等优点[2-4],很好地适应了交流并网型储能系统的需求,是第一级DC /DC 变换器的理想选择,而单相逆变器用于与电网连接㊂基于双有源桥(dual active bridge,DAB)变换器的两级式DC /AC 变换器的典型电路拓扑如图1所示㊂该拓扑整体结构简单,易于实现,控制方法较为成熟,被大量应用于电动汽车充电桩领域[5-8]㊂然而,由于变换器复杂的输入输出特性以及级联结构的存在,尽管两级变换器在单独运行时能保持稳定,但子系统之间的相互作用可能会使系统性能下降,导致直流母线产生电压振荡,以至于系统崩溃[9]㊂因此,通过稳定性分析㊁合理参数调整㊁控制优化等方法改善级联系统的稳定性和可靠性是当今研究的一个热点与难点问题[10-12]㊂图1㊀两级式DC /AC 变换器主电路拓扑及控制框图Fig.1㊀Main circuit topology and control block diagram of two-stage DC /AC converter㊀㊀基于阻抗的Nyquist 阻抗匹配原则[13]已经被广泛应用于各类级联系统的交互稳定性的研究中㊂准确的阻抗模型对于级联系统稳定性分析是必要的㊂目前,常用的逆变器阻抗建模方法包括谐波线性化法[14-16]和dq 坐标系下的阻抗建模法[17-18]㊂谐波线性化将系统视为2个单输入单输出系统,主要用于分析三相系统的谐波稳定性;而dq 阻抗建模法通常将电气量转变为d 轴和q 轴分量,以便单独控制有功和无功功率,有利于在稳态工作点处进行小信号分析㊂文献[19]在dq 坐标系下推导了使用不同控制策略的三相并网逆变器的直流侧输入阻抗模型,此方法适用性较强,但并未应用到单相逆变器系统中㊂文献[20]提出一种基于二阶广义积分器(second order generalized integrator,SOGI)的dq 坐标系下单相整流器的阻抗建模方法,但此方法并未推广到单相并网逆变器的阻抗建模中㊂由于阻抗相互作用是造成两级式DC /AC 级联系统失去稳定的根本原因,可以通过重塑源变换器或者负载变换器的总线端口阻抗来提高系统的稳定性㊂为了达到这一目的,学者们提出了多种方法,包括无源阻尼法[21-23]和有源阻尼法[24-26]㊂其中,无源阻尼法需要引入附加无源元件,以改变变换器的阻抗特性,但附加阻尼电路会增加硬件成本,降低变换器效率;有源补偿法具有成本低㊁不增加损耗的优点,因而被广泛用于基于DAB 变换器的级联系统阻抗匹配优化设计中㊂文献[27]采用有源阻尼的优化思路对LC -DAB 级联系统进行阻抗重塑,提出基于一次侧电容电压的并联虚拟阻抗和一次电流串联虚拟阻抗控制策略,从而使得级联系统在全功率范围内均能稳定运行;文献[28]研究基于DAB 的储能系统稳定性,提出在窄带范围内对负载变换器DAB 的输入阻抗进行重塑,在提高稳定性的同时保证系统动态性能良好;文献[7]研究了用于电动汽车双向充放电的DAB 级联单相并网电压源变换器(voltage source converter,VSC)系统的阻抗稳定性,提出一种基于虚拟电阻的有源阻尼方法,以改变2电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀VSC的输出阻抗,提高级联系统在各种工作模式下的稳定性;文献[29]面向DAB级联三相VSG系统,通过构建与DAB转换器的输入阻抗并联或串联的虚拟阻抗以增加DAB输入阻抗幅值,从而满足稳定性准则㊂文献[30]针对具有电压调整单元的DAB 变换器提出一种基于超前-滞后的阻抗优化调节器用以抑制输出阻抗谐振尖峰,提升了系统运行可靠性,并优化了电流应力㊂总的来说,上述级联系统的稳定性增强方法都需要增加附加的控制过程,从而不可避免地增加了模型的复杂度,其设计方法仍存在进一步简化的空间㊂而DAB变换器的输入阻抗会受到其反馈控制器的影响,揭示二者之间的关联有助于简化阻抗匹配优化设计,但此方面的相关研究较少,并且缺乏深入的理论分析㊂针对上述问题,本文对双有源桥DC/DC变换器与单相并网逆变器组成的级联系统进行阻抗建模并进行稳定性分析㊂首先,建立采用双环控制策略的DAB输出阻抗模型和采用解耦电流控制策略的单相并网逆变器直流端输入阻抗模型,并将锁相环的相位波动考虑在内,通过扫频法验证阻抗模型的正确性㊂随后,建立阻抗交互模型,从理论上分析DAB变换器的PI参数对其输出阻抗波形的影响,结合Nyquist图和闭环根轨迹进一步讨论关键参数与系统稳定性之间的关联㊂分析结论表明,调节DAB电压外环比例系数可直接调节级联系统稳定性,基于此,提出通过优化DAB变换器的电压外环比例系数提高级联系统稳定性的方法,该方法无需任何额外的补偿器或控制回路,在兼顾系统动态性能的同时,有效实现了基于DAB的交直流级联系统的稳定性增强㊂MATLAB/Simulink仿真算例验证了稳定性改善方法的有效性㊂1㊀级联系统阻抗建模变换器阻抗的精确建模是稳定性分析的基础㊂图1所示的控制框图为级联系统的常规控制方案,其中,DAB变换器负责控制直流母线电压的稳定,单相并网逆变器负责控制功率输出[31-32]㊂本节将分别给出DAD输出阻抗和单相并网逆变器的直流侧输入阻抗的建模过程㊂1.1㊀DAB变换器输出阻抗建模DAB变换器的拓扑及控制方案如图1中左面虚线框所示㊂其输出功率[33-34]可表示为P=nV in v busL o f s dϕ(1-2dϕ)=v bus i2⓪㊂(1)式中:n为变压器变比;V in为DAB输入电压;v bus为输出电压;L o为变压器等效电感;f s为开关频率;dϕ为变压器两侧H桥输出电压之间的相移量(dϕ=ϕ/2π);i2为副边H桥输出电流, i2⓪表示其平均值㊂经小信号分析可得i2与占空比dϕ的关系为G i2d=i^2d^ϕ=nV in Lo f s(1-4Dϕ)㊂(2)式中符号^表示变量的小信号形式㊂采用内环电流加外环电压的双环控制模式㊂将控制器的内环传函记作G c1(s),外环传递函数记作G c2(s),其中:G c1(s)=k pi+k ii s;G c2(s)=k pv+k iv s㊂将负载变换器阻抗等效为R,则DAB控制回路小信号模型如图2所示,图中LPF为一阶低通滤波器,用于实现20dB/dec的环路增益[35](H LPF(s)= 1/(s/ωLPF+1),其中ωLPF为低通滤波器的截止频率)㊂图2㊀DAB控制回路小信号模型Fig.2㊀Small signal model of DAB control loop根据上述控制框图,得到DAB的输出阻抗为Z out_DAB=v^bus-i^bus=1C bus s+G c1G x㊂(3)式中G x=G c2G i2d1+G c2G i2d H LPF㊂1.2㊀单相并网逆变器直流侧输入阻抗建模基于SOGI的锁相环(PLL)模型如图3(a)所示㊂图中,v为自公共耦合点(PCC)电压(将其本身视为静止坐标系下的α轴分量,β轴虚拟分量与之垂直)㊂SOGI的传递函数为H e(s)=K SOGIω1ss2+K SOGIω1s+ω21㊂(4)式中:ω1为电网工频;K SOGI为闭环系数㊂在小扰动下,PLL输出与PCC实际相位存在相位差Δθ,其将导致控制系统中的各变量与功率系统中的相应变量存在差异㊂为以示区分,文中带有上标s的变量表示 电气量 ,带有上标c的变量表示 控制量 ㊂为了简化表达式,将成对变量以矢量形式编写,例如v s dq表示[v s d v s q]T,另外,变量的大写符3第12期刘㊀欣等:DAB级联单相逆变器系统的阻抗特性及稳定性分析号表示其自身静态工作点㊂图3㊀基于SOGI 的PLL 模型Fig.3㊀SOGI-based PLL model根据图1可得系统功率方程为:(Z L +Z g )i ^s dq =D dq v ^bus +d ^sdq V bus ;i ^bus=12(D T dq i ^s dq +I T dq d ^sdq )㊂}(5)式中:i ^s dq =[i ^s d i ^s q ]T 和d ^s dq =[d ^s d d ^s q ]T分别为交流侧电流与占空比的dq 轴分量构成的列向量;Z L =sL f +R f -ωL f ωL f sL f +R f éëêêùûúú;Z g =sL g +R g -ωL g ωL g sL g +R g éëêêùûúú;L f 和R f 为滤波电感及其等效内阻;L g 和R g 为电网内阻抗;i ^bus 为逆变器直流侧输入电流㊂将图3中Park 变换框图T θ1前移,得到其等效控制框图如图3(b)所示,图中:H edq (s )=A B-B A[];A =[H e (s +j ω1)+H e (s -j ω1)]/2;B =[j H e (s +j ω1)-j H e (s -j ω1)]/2㊂根据图3(b)可推导PCC 电压的 控制量v ^c dq与 电气量v ^sdq之间的关系为v ^c dq =G v PLL v ^sdq ㊂(6)式中:Gv PLL=v ^c dq v^s dq=A -V sqG s B B +V sqG s A -B +V sd G s B A -V sd G s Aéëêêùûúú;G s 为PLL 输出角度与PCC 电压q 轴分量的关系式;G s =sk p_PLL +k i_PLLs +V s d (sk p_PLL +k i_PLL ),k p_PLL 和k i_PLL 为锁相环PLL 的PI 参数㊂同理可得输出电流与占空比的 控制量 与 电气量 的小信号关系为:d ^sdq=d^cdq+G dPLL v ^s dq;i^c dq=Hedq i^s dq+GiPLL v ^s dq㊂}(7)式中:G d PLL =D s qG s B -D s qG s A -D sd G s B D sd G s Aéëêêùûúú;Gi PLL=-I sq G s B I s q G s A I sd G s B-I sd G s Aéëêêùûúú㊂令:H i =k p_INV +k i_INV /sk p_INV+k i_INV /s éëêêùûúú,其中:k p_INV 和k i_INV 为逆变器电流控制器的PI 参数;G ci=k p_INV +k i_INV /s ωL f-ωL fk p_INV+k i_INV /s éëêêùûúú㊂将解耦电流控制策略与PCC 电压前馈结合,得到考虑锁相环影响的逆变器控制回路的小信号模型如图4所示㊂图4㊀PLL 影响下电流控制回路小信号模型Fig.4㊀Small-signal model for current control loopwith PLL根据图4,得到逆变器控制部分的方程为d ^s dq =[(G v PLL -G ci G i PLL +V bus G dPLL )Z g -G ci H edq ]i ^s dq /V bus ㊂(8)联立式(5)㊁式(8)可得单相并网逆变器直流侧输入导纳为Y in_INV =i ^busv ^bus=12V busI T dq (Z L +Z g )+12D T dq[]㊃([Z L +G ci H edq -G PLL_V Z g ]-1D dq )-12V bus I Tdq D dq㊂(9)式中G PLL_V =G v PLL -G ci G i PLL +V bus G dPLL -E ,其中E为单位矩阵㊂相应的单相并网逆变器直流侧输入阻抗为Z in_INV =1/Y in_INV ㊂(10)1.3㊀阻抗模型的仿真验证基于MATLAB /Simulink 平台搭建了DAB 级联单相并网逆变器的仿真模型,采用扫频法对2个级联子系统的输出和输入阻抗模型分别进行验证,仿真参数如表1所示㊂图5给出了仿真扫频与理论模型的对比结果㊂可以看出,在1~10000Hz 频段,所得阻抗模型与扫频结果吻合较好,验证了所推得的DAB 输出阻抗和单相逆变器输入阻抗模型的正确性㊂4电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图5㊀级联系统阻抗模型Fig.5㊀Impedance model of cascade system表1㊀级联系统电路参数Table1㊀Parameters of cascade system㊀㊀㊀参数数值DAB直流侧输入电压稳态值V in/V400直流母线电压稳态值V bus/V400直流母线电容C bus/μF1500 DAB变压器等效电感L o/μH30变压器变比n1ʒ1 DAB开关频率f s/kHz20低通滤波器截至频率ωLPF/(rad/s)4000π逆变器并网电压有效值V g/V220逆变器输出功率稳态值P/kW10逆变器滤波电感L f/mH及等效内阻R f/mΩ10,50电网内电感L g/mH及内电阻R g/mΩ1,152㊀级联系统稳定性分析2.1㊀级联系统阻抗交互模型级联系统的稳定性不仅取决于变换器各自的稳定性,还决定于源变换器(本文为DAB)输出阻抗与负载变换器(本文为单相逆变器)输入阻抗二者交互作用的影响㊂将DAB视为电压源,逆变器视为电流源,二者构成的级联系统阻抗相互作用示意图如图6所示㊂图6㊀级联系统等效阻抗示意图Fig.6㊀Equivalent impedance diagram of cascade system根据图6,可知级联系统开环传递函数为T m=Z out_DABZ in_INV㊂(11)式中T m也称为系统小环路增益㊂根据Middlebrook 判据[13],当源变换器和负载变换器各自稳定,并且系统的小环路增益T m满足Nyquist稳定判据时,该级联系统方是稳定的㊂图7为DAB输出阻抗和逆变器输入阻抗伯德图㊂由于逆变器采用恒功率控制,因此,除50Hz频点外,在f<f c3(f c3为逆变器电流控制器的截止频率)频率范围内逆变器直流端输入阻抗呈现阻值为-V2bus/P的负电阻特性;在f>f c3频率范围内呈现电感性质㊂而50Hz频点是一个特殊点,其阻抗幅值几乎为0,相位跃变到0㊂虽然逆变器与DAB的阻抗在50Hz频点处容易产生交叉,但二者相位之差小于180ʎ,因此不影响系统稳定性㊂此外,DAB输出阻抗在f<f r频段(f r为DAB输出阻抗谐振频率)呈现电感特性,在f>f r频段呈现电容特性㊂这使得DAB输出阻抗具有类似LC滤波器的阻抗特性㊂图7㊀级联系统阻抗伯德图Fig.7㊀Impedance Bode diagram of cascade system综合以上阻抗特性可知,DAB输出阻抗的谐振峰以及逆变器在低频段的负阻抗特性是导致交直流级联系统稳定性降低的主要原因㊂一旦DAB输出阻抗的谐振峰与逆变器输入阻抗发生交叉,就会因5第12期刘㊀欣等:DAB级联单相逆变器系统的阻抗特性及稳定性分析相位裕度无法满足稳定条件而造成系统振荡失稳㊂2.2㊀DAB 变换器的控制参数分析由图7可知,平抑DAB 输出阻抗的谐振峰将有效提高级联系统稳定性㊂为了达成这一目的,本节将详细分析DAB 反馈控制器的PI 参数与谐振峰之间的关联,为级联系统的稳定性分析及控制器参数优化设计奠定基础㊂当DAB 电流内环截止频率与一阶低通滤波器LPF 带宽相等时,经控制器定量设计可得电流控制器比例系数k pi 为0㊂将k pi =0代入式(3),并且忽略含有C bus 和T LPF 的高阶项,整理得到DAB 输出阻抗的简化表达式为Zᶄout_DABʈ1G i2d k ii s (s +G i2d k ii )C bus s 2+k pv s +k iv㊂(12)图8给出了DAB 输出阻抗的理论模型和简化模型的对比图㊂可以看出,在1~200Hz 频率范围内,二者阻抗模型基本吻合,结合图7可知,影响系统稳定性的频段为几十赫兹,因此说明上述简化模型可胜任稳定性分析需求㊂图8㊀DAB 理论模型和简化模型对比Fig.8㊀Comparison of theoretical and simplified Bodediagrams of DAB设定DAB 电流内环截至频率f c1为2000Hz,相位裕度P m1为45ʎ,同时电压外环截至频率f c2为20Hz,相位裕度P m2为45ʎ时,经设计所得DAB 的控制参数如表2所示㊂表2㊀DAB 控制器PI 参数Table 2㊀PI parameters of DAB controller㊀㊀㊀㊀参数数值电流控制器比例系数k pi 0电流控制器积分系数k ii 30.443电压控制器比例系数k pv 0.102电压控制器积分系数k iv24.35㊀㊀将s =j ω代入式(12),得到DAB 阻抗的模值为|Z ᶄout_DAB (j ω)|=ωaω2(C bus ω2-k iv +ak pv )2+(ω2k pv -C bus ω2a +ak iv )2(-C bus ω2+k iv )2+ω2k 2pv㊂(13)式中a =G i2d k ii ㊂令Z ᶄout_DAB (j ω)虚部为0,得到谐振点频率为ω=G i2d k ii k ivC bus G i2d k ii -k pv㊂(14)根据式(13)和式(14)可得DAB 输出阻抗的谐振频率及谐振峰值分别与控制参数的关系曲线如图9所示㊂结合式(27)㊁式(28)和图9,可得如下结论:当电压外环比例系数k pv 增大时,谐振频率几乎不变,谐振峰值陡然降低;当电压外环积分系数k iv 增大时,谐振频率增大,谐振峰值维持不变;当电流环积分系数k ii 改变时,二者均基本不发生改变㊂上述分析表明,参数k pv 是平抑DAB 输出阻抗谐振峰的关键参数,而参数k iv 是改变谐振频点的关键参数㊂图9㊀谐振频率及谐振峰值与DAB 控制参数的关系曲线Fig.9㊀Relationship curves of resonant frequency andresonant peak with DAB control parameters为了佐证此结论,图10给出了不同控制参数下的DAB 输出阻抗伯德图㊂可以看出,当比例系数k pv 从0.02逐渐增大到0.4,且其余参数与表1和表2保持一致时,DAB 输出阻抗谐振峰值急剧减小,但谐振频点基本保持不变;当积分系数k iv 从10增大到120,且其余参数与表1和表2保持一致时,DAB 输出阻抗谐振频率逐渐增大,而谐振峰值几乎不变㊂6电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀图10㊀不同控制参数作用下DAB输出阻抗伯德图Fig.10㊀DAB output impedance Bode diagram of differ-ent control parameters综上所述,DAB电压外环控制器参数直接决定了其输出阻抗谐振峰值的大小及位置㊂其中,参数k pv与谐振峰幅值大小具有强相关性,适度增大参数k pv将显著降低DAB输出阻抗谐振峰,从而避免与逆变器输入阻抗发生交叉㊂据此可推断,参数k pv是作为影响级联系统稳定性的关键参数,对其进行优化设计可实现系统稳定控制,且设计过程也最为简单,相关分析及验证将在2.3节给出㊂2.3㊀DAB电压外环比例系数对系统稳定性的影响本节进一步讨论k pv对级联系统稳定性的影响㊂根据式(11)可知系统的特征方程为1+T m=0㊂(15)将式(3)和式(10)代入式(15),可得sC bus s2+(k pv s+k iv)G x+Z in_INV=0㊂(16)由于参数k pv直接体现在系统特征方程中,因此可结合基于闭环传递函数的根轨迹和开环传递函数的Nyquist图进行分析㊂对式(16)进行等效变换,保证特征方程不变,得到系统等效的开环传递函数为D(s)=k pv sG x Z in_INVs+Z in_INV(Cs2+k iv G x)㊂(17)根据式(17),得到当参数k pv从0逐渐变化至+ɕ时系统闭环传递函数的特征根在复平面的变化轨迹如图11所示㊂此时DAB电流内环控制参数与表2中相同,电压外环积分系数为98.3㊂可以看出,当k pv<0.0634时,级联系统存在右半平面极点,系统处于不稳定状态;当k pv>0.0634时,系统方可稳定;当k pv=0.0634时,复平面上出现位于虚轴上的闭环极点(0,ʃj251),说明系统处于临界稳定状态,这意味着系统中将会出现251rad/s(约40Hz)的振荡频率㊂图11㊀系统关于参数的k pv的根轨迹图Fig.11㊀Root trajectory diagram of the system with re-spect to the parameter k pv图12给出了此临界稳定状态下系统开环传递函数T m的Nyquist图,在此参数状态下,Nyquist曲线恰好穿越(-1,j0)点㊂分析结果说明,增大DAB电压外环比例系数k pv有助于增强级联系统稳定性,反之,将使级联系统稳定性变差㊂图12㊀系统开环传递函数的Nyquist图Fig.12㊀Nyquist diagram of the open-loop transferfunction为了验证上述分析结论,在MATLAB/Simulink 中搭建DAB与单相并网逆变器级联系统的仿真模7第12期刘㊀欣等:DAB级联单相逆变器系统的阻抗特性及稳定性分析型㊂电路参数如表1所示㊂图13给出了当其余参数保持不变,DAB 电压外环比例系数k pv 分别为2㊁0.258㊁0.0634和0.03时直流母线电压和交流侧输出电流的时域仿真波形㊂可以看出,当k pv 为2和0.258时,系统运行在稳定状态;当k pv 为0.0634时,系统处于临界稳定状态;当k pv 减小到0.03时,系统振荡失稳㊂这与图11中的参数根轨迹分析结果相符㊂图13㊀k pv 减小时直流母线电压和交流电流时域波形Fig.13㊀Waveforms of DC bus voltage and AC currentwhen k pv decreases取时间窗为0.2s,对图13中各个时间段的直流母线电压的时域波形进行频谱分析,所得结果如图14所示㊂可以看出,当k pv >0.0634时,直流母线电压主要含有直流分量和单相交直流系统中固有的二倍频分量;当k pv =0.0634时,在直流母线电压中出现可观的40Hz 频率分量,与图11中临界稳定状态下的系统振荡频率基本吻合;当k pv <0.0634时,直流母线电压中谐波分量杂乱繁多,系统失去稳定性㊂此外,还需特别说明的是,系数k pv 在影响系统稳定性的同时,也会影响系统动态响应速度㊂观察图11中根轨迹局部放大图可知,当k pv 小于0.258时,随着k pv 增大,主导极点的根轨迹从右半平面逐渐变化到左半平面并远离虚轴;当k pv 大于0.258时,根轨迹方向转变并逐渐靠近虚轴㊂因此,当k pv =0.258时,系统具有最佳的动态性能㊂若k pv 持续增大,越过最佳运行点,虽仍可保证稳定,但系统稳定速度将滞缓,这说明需兼顾稳定性和动态性能进行k pv 的参数设计㊂为了验证这一结论,图15给出了k pv 取值变化时系统有功功率波形的变化,从有功功率角度说明系数k pv 对系统稳定性及动态响应速度的影响㊂比较图15(a)㊁(b)和(c)可知,当0.0634<k pv <0.258时,系统动态响应速度随着k pv 的增大而加快,并且k pv 越大,系统稳定速度越快㊂比较图15(c)和图15(d)可知,当k pv 取2时,系统的稳定速度相较于图15(c)变慢,说明此时k pv 取值已越过了最佳运行点,进而验证了前述理论分析的正确性㊂图14㊀直流母线电压FFT 分析Fig14㊀FFT analysis of DC busvoltage图15㊀不同k pv 作用下的有功功率曲线Fig.15㊀Active power waveforms with different k pv8电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀3㊀级联系统稳定性改善方法第2.3节中的分析结论表明,增大DAB 电压外环比例系数k pv 将显著提高级联系统稳定性㊂因此,当级联系统面临振荡失稳问题时,一种简单而可靠并且无需任何额外的补偿器或控制回路的稳定性改善方法为:增大DAB 电压外环比例系数k pv ㊂根据2.1节的分析,若要使系统满足稳定性要求,应保证增大k pv 后,DAB 输出阻抗的峰值小于V 2bus /P ,从而避免与逆变器输入阻抗发生交叉,并保证系统具有足够的相位裕度㊂本节将结合具体的仿真算例验证此稳定性改善方法的有效性㊂仿真算例中基本电路参数如表1所示,DAB 控制器的相关参数列于表2之中㊂图16给出了算例中直流母线电压和交流电流时域波形,图17则给出了与之对应的级联系统阻抗伯德图㊂如图16中0.2~0.5s 时间窗内波形所示,当系统传输功率为5kW 时,系统稳定运行,直流母线电压包含400V 的直流分量和二倍频分量㊂若传输功率增加为10kW,系统将发生振荡失稳,如图16中0.5~0.7s 的波形所示㊂图17中曲线Z in_INV1与Z in_INV2分别为功率改变前后逆变器输入阻抗伯德图㊂可以看出,负载的加重造成逆变器在低频段的阻抗幅值减小,因此与DAB 输出阻抗发生交叉㊂图16㊀稳定性改善前后的时域仿真波形Fig.16㊀Time domain simulation waveforms before andafter stability improvement为了改善系统稳定性,应当增大DAB 电压外环比例系数㊂图18为传输功率为10kW 时,级联系统关于参数k pv 的根轨迹曲线㊂可以看出,要想保证系统稳定运行,k pv 的取值必须大于0.0645,并且当k pv 取0.452时,系统具有最佳动态性能㊂观察图16中0.7~1.1s 时域波形可知,在0.8s 时,将DAB 电压外环比例系数调整为最佳参数0.452,其余参数保持不变,由于DAB 输出阻抗的谐振峰值降低,系统又重新恢复至稳定运行状态㊂图17㊀稳定性改善前后的级联子系统阻抗伯德图Fig.17㊀Impedance Bode diagram before and after sta-bility improvement of the cascadesubsystem图18㊀传输功率为10kW 时系统闭环根轨迹Fig.18㊀Closed-loop root trajectory of the system at10kW transmission power上述仿真算例进一步验证了稳定性改善方法的可行性㊂在系统控制器设计中,应当根据DAB 和单相并网逆变器的阻抗特性,利用阻抗伯德图和系统关于参数k pv 的闭环根轨迹进行直观判断,综合考虑系统的稳定性和动态响应速度,以确定适合的控制参数㊂4㊀结㊀论本文分别建立了DAB 输出阻抗模型和考虑锁相环相位波动影响的单相并网逆变器的直流端输入阻抗模型,提高了模型的准确度,并通过扫频法对阻抗模型进行验证;此外,通过理论分析获得了DAB 输出阻抗谐振频率及谐振峰值的计算公式,从原理9第12期刘㊀欣等:DAB 级联单相逆变器系统的阻抗特性及稳定性分析。

2019新人教高中英语选择性必修一Unit 4 Body Language单元重点词汇课件

2019新人教高中英语选择性必修一Unit 4 Body Language单元重点词汇课件

• The president has already given his approval (approve) to the plan.
• The conference approved his proposal (通过了他的提 议).
• Catherine’s parents didn’t approve of her marrying (赞同她嫁给) Tim.
approval n. approving adj.
赞成,赞同; 批准,认可 赞成的,赞许的
disapprove vi./vt. 不赞成,反对;不批准
1. We would be pleased if you would approve our proposal.
2. I approve of you trying to climb this mountain once again, but please be careful.
He could not distinguishb__e_t__w__e__e_n__ right and wrong. As is known to us, Mo Yan is a d__i_s_t_i_n__g__uished (distinguish)
novelist.
be ashamed of/at sth. be ashamed to do … be ashamed that…
vary between... and ... 在……与……之间变化/更迭交替
The land varies _in____ height f_r_o_____ 700 metres above sea level __t_o___m_ over 2,000 meters and is home _to__ a great variety of plants and animals.

学生视角下影响中外合作办学双语课程的因素

学生视角下影响中外合作办学双语课程的因素

嘉教论坛Higher Education Forum学生视角下影响中外合作办学双语课程的因素许冬瑞(安徽新华学院安徽•合肥230001)摘要目的:从学生的角度研究影响中外合作办学双语课程的因素.方法:根据安徽新华学院国际教育学院4个专业200份学生问卷调查的数据,运用SPSS22.0统计软件进行Binary Logistic回归分析并建立模型,从学生基本情况、事后感悟两个方面分析了影响中外合作办学双语课程的因素.结果:年级、性别、双语课程开设6勺时间及类型、双语课开设的实际意义、课堂中英语的使用比例、双语课的教学模式对中外合作办学双语课程质量的影响显著,高考英语分数、是否出国留学与中外合作办学双语课程质量的影响不显著.结论:在学生的视角下,影响中外合作办学双语课程的因素有年级、性别、双语课程开设的时间及类型、双语课程开设的实际意义、课堂中英语的使用比例、双语课的教学模式.关键词中外合作办学双语课程学生视角中图分类号:G642文献标识码:A DOI:10.16400/ki.kjdkz.2019.03.010Factors Influencing Bilingual Courses in Sino-foreignCooperative Schools from the Perspective of StudentsXU Dongrui(Anhui Xinhua University,Hefei,Anhui230001)Abstract Objective:To study the factors affecting the bilingual curriculum of Sino-foreign cooperatively-run schools from the perspective of students.METHODS:According to the data of200questionnaires from four majors of the International Edu­cation College of Anhui Xinhua University,Binary Logistic regression analysis was conducted with SPSS22.0statistical sof­tware and a model was established.The factors affecting the bilingual curriculum of Sino-foreign cooperative education were analyzed from two aspects:the basic situation of students and their post-experience.Result:Grade,gender,time and type of bilingual courses,practical significance ofbilingual courses,the proportion of English used in class,and the teaching mode of bilingual courses have significant effects on the quality ofbilingual courses in Sino-foreign cooperative schools,but the scores of English in college entrance examination,whether to study abroad and the quality ofbilingual courses in Sino-foreign coop­erative schools have no significant effects.CONCLUSION:From the perspective of students,the factors affecting the bilingual curriculum in Sino-foreign cooperatively-run schools are grade,gender,the time and type ofbilingual curriculum,the practical significance ofbilingual curriculum,the proportion of English used in classroom,and the teaching mode ofbilingual curriculum.Keywords Sino-foreign cooperation in running schools;bilingual courses;perspective of students1现有研究及存在的问题为了促进我国高等教育与国际尽快接轨,我国高校在中外合作办学方面进行了有益的探索和实践,并取得了一定的成效。

2024年研究生考试考研英语(一201)试卷与参考答案

2024年研究生考试考研英语(一201)试卷与参考答案

2024年研究生考试考研英语(一201)复习试卷与参考答案一、完型填空(10分)Part A: Cloze TestRead the following passage and choose the best word for each blank from the options given below. There are twenty blanks in the passage. Each blank has four choices marked A, B, C, and D. You should mark the corresponding letter on Answer Sheet 1 with a single line through the centre.The rise of the Internet has 1 a significant impact on the way people 2 information. With just a few clicks, one can access a vast array of resources and 3 from around the world. However, this 4 in information access has also brought about challenges. Here is a story that illustrates the complexities of our digital age.In a small town, a young girl named Lily was 5 her studies. She was particularly 6 in learning about the world beyond her village. One day, while browsing the Internet, she stumbled upon an article about climate change. The article 7 her curiosity and she began to research further.Lily found a website that offered a variety of 8 on environmental issues. She spent hours reading about the effects of global warming and the importanceof sustainable practices. As she learned more, she felt 9 to make a difference in her community.10, Lily organized a local clean-up drive. She 11 her friends and neighbors to join her, and together they collected trash and cleaned up the local park. The event received 12 from the community, and it inspired others to take action.Despite the positive outcome, Lily realized that there was still much work to be done. She 13 to join a local environmental group to 14 her knowledge and skills. The group organized workshops and community outreach programs to educate people about environmental issues.As Lily continued her journey, she 15 that technology could be a double-edged sword. While it provided access to information, it also 16 distractions and could lead to 17 attention spans. She learned to balance her use of the Internet with other activities and discovered that 18 the right balance was crucial.One day, while 19 the news, Lily read about a global initiative to reduce plastic waste. She 20 the opportunity to participate and reached out to her environmental group. Together, they organized a campaign to promote the use of reusable bags and educate people about the impact of single-use plastics.1.A. A. resulted inB. B. contributed toC. C. led toD. D. caused2.A. gatherB. B. acquireC. C. searchD. D. seek3.A. experiencesB. B. perspectivesC. C. knowledgeD. D. insights4.A. increaseB. B. expansionC. C. surgeD. D. boost5.A. dedicated herself toB. B. immersed herself inC. C. focused onD. D. involved herself in6.A. enthusiastic aboutB. B. fascinated byC. C. interested inD. D. excited about7.A. sparkedB. B. ignitedC. C. arousedD. D. stimulated8.A. articlesB. B. resourcesC. C. materialsD. D. publications9.A. motivatedB. B. determinedC. C. inspiredD. D. encouraged10.A. SubsequentlyB. B. ConsequentlyC. C. EventuallyD. D. Immediately11.A. invitedB. B. encouragedC. C. persuadeD. D. asked12.A. supportB. B. recognitionC. C. enthusiasmD. D. appreciation13.A. decidedB. B. volunteeredC. C. attemptedD. D. agreed14.A. enhanceB. B. expandC. C. improveD. D. develop15.A. recognizedB. B. realizedC. C. acknowledgedD. D. admitted16.A. offeredB. B. providedC. C. causedD. D. resulted in17.A. shorterB. B. briefC. C. conciseD. D. limited18.A. findingB. B. maintainingC. C. achievingD. D. striking19.A. watchingB. B. listening toC. C. readingD. D. scanning20.A. seizedB. B. grabbedC. C. tookD. D. embracedAnswers:1.A. resulted in2.B. acquire3.C. knowledge4.C. surge5.A. dedicated herself to6.B. fascinated by7.A. sparked8.B. resources9.C. inspired10.C. Eventually11.A. invited12.B. recognition13.B. volunteered14.A. enhance15.B. realized16.C. caused17.A. shorter18.D. striking19.C. reading20.D. embraced二、传统阅读理解(本部分有4大题,每大题10分,共40分)First QuestionRead the following passage and answer the questions that follow.Passage:The Role of Technology in EducationEducation has always been a fundamental factor for societal development. However, with the rapid advancement of technology, it’s becoming increasingly clear that traditional methods of teaching are no longer sufficient to meet the needs of today’s digital natives. The integration of technology into education is not just about equipping students with computer skills; it’s also about transforming the way we teach and learn.One of the most significant benefits of technology in education is its ability to personalize learning experiences. Adaptive learning software cantailor educational content to the specific needs of each student, ensuring that every learner gets the support they require. Furthermore, online platforms provide access to a wealth of information and resources that would otherwise be unavailable to many students, particularly those in remote or underprivileged areas.However, critics argue that an over-reliance on technology might lead to a loss of essential human interaction and the development of social skills. There is also concern about the potential for increased screen time to have negative effects on children’s health and well-being. Despite these concerns, proponents of educational technology believe that if used correctly, it can enhance rather than detract from the educational experience.As technology continues to evolve, so must our approach to education. It is clear that there is a need for a balanced integration of traditional teaching methods with modern technological tools. Only by embracing this hybrid model can we ensure that future generations are adequately prepared for the challenges of the 21st century.Questions:1、What is the main argument presented in the passage regarding technology in education?A)Technology should replace traditional teaching methods.B)Technology should complement traditional teaching methods.C)Technology is detrimental to the educational process.D)Technology has no place in the classroom.Answer: B) Technology should complement traditional teaching methods.2、According to the passage, what is one of the advantages of using technology in education?A)It increases the amount of homework students receive.B)It personalizes learning experiences for individual students.C)It makes traditional teaching methods obsolete.D)It decreases the need for teachers in the classroom.Answer: B) It personalizes learning experiences for individual students.3、What concern does the passage mention regarding the use of technology in education?A)It may cause a decrease in the use of textbooks.B)It might result in a lack of social interaction among students.C)It could lead to an increase in physical activity among students.D)It ensures that all students have equal access to information.Answer: B) It might result in a lack of social interaction among students.4、How does the passage suggest that technology affects access to information?A)It limits access to information only to those who can afford it.B)It provides broader access to information for students in remote areas.C)It restricts the types of information available to students.D)It has no impact on how students access information.Answer: B) It provides broader access to information for students in remote areas.5、What does the passage imply about preparing future generations?A)They should rely solely on technology for learning.B)They should reject modern educational tools in favor of traditional ones.C)They should be taught using a combination of traditional and modern methods.D)They should focus exclusively on developing social skills without technology.Answer: C) They should be taught using a combination of traditional and modern methods.第二题Reading PassageIn the 19th century, the Industrial Revolution brought about significant changes in the way people lived and worked. This period of rapid industrialization led to the development of factories, the mass production of goods, and a shift from an agrarian society to an urban one. The following article discusses the impact of the Industrial Revolution on society and the environment.The Impact of the Industrial RevolutionThe Industrial Revolution, which began in the late 18th century, was a period of profound economic and social change in Europe and North America. It was marked by the transition from hand production methods to machines, and by the introduction of new chemical, iron, steel, and coal industries. This transition had a profound impact on the lives of people, and it brought about both positive and negative consequences.One of the most significant impacts of the Industrial Revolution was the urbanization of society. As factories were built in cities, people moved fromrural areas to urban centers in search of work. This led to the growth of cities and the creation of slums, where many workers lived in poor conditions. The overcrowded and unsanitary conditions in these areas contributed to the spread of diseases such as cholera and tuberculosis.Another consequence of the Industrial Revolution was the degradation of the environment. The burning of coal and the release of pollutants into the air and water led to air and water pollution, which had serious health implications for people and animals. The deforestation and soil erosion that resulted from the expansion of industrial activities also had a detrimental effect on the natural landscape.Despite these negative impacts, the Industrial Revolution also brought about many positive changes. The mass production of goods led to a significant increase in the standard of living for many people. The development of new technologies, such as the steam engine and the telegraph, improved communication and transportation, making the world a smaller place. Additionally, the Industrial Revolution led to the rise of the middle class, which had a profound impact on social and political structures.Questions:1、What was one of the most significant impacts of the Industrial Revolution on society?A. The decline of agricultureB. The urbanization of societyC. The decrease in populationD. The increase in unemployment2、Why did people move to urban centers during the Industrial Revolution?A. To pursue higher educationB. To enjoy the culture of the citiesC. To seek better job opportunitiesD. To avoid the diseases prevalent in rural areas3、What was a negative consequence of the Industrial Revolution on the environment?A. The increase in agricultural productivityB. The improvement of air qualityC. The reduction of deforestationD. The decline in water pollution4、How did the Industrial Revolution affect the standard of living for many people?A. It led to a decrease in living standardsB. It resulted in a significant increase in living standardsC. It had no significant impact on living standardsD. It caused a mixed impact on living standards5、What was one of the social and political impacts of the Industrial Revolution?A. The strengthening of the monarchyB. The rise of the middle classC. The fall of the aristocracyD. The abolition of slaveryAnswers:1、B2、C3、D4、B5、B第三题Once upon a time, in a small village nestled between rolling hills, there lived an old man named Mr. Brown. Mr. Brown was a kind-hearted and wise man, known throughout the village for his stories and his ability to solve problems with a unique perspective. The villagers would often gather at his house after the day’s work to listen to his tales, which were always filled with lessons and moral values.One evening, a young man named Tom approached Mr. Brown. Tom had heard about Mr. Brown’s wisdom and sought his advic e on a difficult situation. Tom was facing a choice between a lucrative job offer in a big city and staying close to his family and friends in the village.Questions:1、What is the main topic of the passage?A. The beauty of the villageB. The wisdom of Mr. BrownC. The challenges of modern lifeD. The importance of family2、Why did Tom go to see Mr. Brown?A. To ask for help with his studiesB. To discuss the village’s problemsC. To seek advice on a difficult decisionD. To compete with Mr. Brown in a storytelling contest3、What was the young man’s main dilemma?A. Whether to move to the city or stay in the villageB. How to become a successful businessmanC. What to do with his old houseD. How to improve the village’s economy4、What is the purpose of Mr. Brown’s stories in the passage?A. To entertain the villagersB. To teach moral values and lessonsC. To promote tourism in the villageD. To showcase his own wisdom5、According to the passage, what does Mr. Brown represent to the villagers?A. A source of entertainmentB. A mentor and counselorC. A competitor in storytellingD. A symbol of wealth and powerAnswers:1、B2、C3、A4、B5、B第四题Passage:In recent years, the rise of e-books has sparked a debate about the future of traditional books. While many argue that e-books will eventually replace printed books, others believe that the traditional book format will continue to thrive. This article explores the arguments on both sides and examines the potential impact of e-books on the publishing industry.1.The article mentions that the debate over e-books versus traditional books is a topic of great concern. What is the main reason for this debate?A. The declining sales of printed booksB. The increasing popularity of e-readersC. The potential impact on the publishing industryD. The environmental concerns of paper usage2.The passage states that some people believe e-books will eventually replace printed books. What is the primary reason for this belief?A. The convenience of e-booksB. The lower cost of e-booksC. The environmental benefits of e-booksD. The potential for interactive content in e-books3.According to the article, which of the following is NOT mentioned as a potential disadvantage of e-books?A. The lack of tactile experienceB. The potential for screen fatigueC. The ease of copying and distributing contentD. The limited availability of e-books in some regions4.The article discusses the role of traditional books in the education system. What does the author suggest about the importance of physical books in education?A. They are becoming less importantB. They are essential for learningC. They are being replaced by digital resourcesD. They are being ignored by modern students5.The author concludes the article by discussing the future of the publishing industry. What does the author imply about the industry’s ability to adapt to the rise of e-books?A. The industry will struggle to adaptB. The industry will thrive regardless of e-booksC. The industry will adapt and evolveD. The industry will disappear due to e-booksAnswers:1.C2.A3.C4.B5.C三、阅读理解新题型(10分)Passage:The rise of e-commerce has transformed the way we shop and conduct business. Online shopping has become increasingly popular due to its convenience, variety, and competitive prices. As a result, traditional brick-and-mortar stores are facing stiff competition and are forced to adapt to the digital world. This essay explores the impact of e-commerce on the retail industry and discusses the challenges and opportunities it presents.Questions:1.What is the main topic of the passage?A) The benefits of online shoppingB) The decline of traditional storesC) The impact of e-commerce on the retail industryD) The challenges faced by brick-and-mortar stores2.According to the passage, why is online shopping becoming more popular?A) It is more expensive than shopping in physical stores.B) It is only available during specific hours.C) It offers a wider variety of products.D) It requires customers to physically visit a store.3.What is the main challenge that traditional stores are facing?A) The lack of competitive prices.B) The limited selection of products.C) The stiff competition from e-commerce.D) The difficulty in adapting to digital technology.4.The passage suggests that traditional stores need to do what in order to survive?A) Offer the lowest prices.B) Close their physical locations.C) Embrace e-commerce and digital technology.D) Focus solely on online sales.5.How does the passage conclude the impact of e-commerce on the retail industry?A) E-commerce will eventually replace all traditional stores.B) Traditional stores will need to adapt to e-commerce or risk extinction.C) The impact of e-commerce on the retail industry is negligible.D) E-commerce will only benefit large corporations and not small businesses.Answers:1.C) The impact of e-commerce on the retail industry2.C) It offers a wider variety of products.3.C) The stiff competition from e-commerce.4.C) Embrace e-commerce and digital technology.5.B) Traditional stores will need to adapt to e-commerce or risk extinction.四、翻译(本大题有5小题,每小题2分,共10分)第一题Translate the following paragraph into English.中文段落:研究生考试是许多中国学生梦寐以求的机会,它不仅为他们提供了一个深造和提升自身能力的机会,而且也是实现个人职业目标的重要途径。

双醋瑞因联合阿法骨化醇治疗膝骨关节炎的临床评价

双醋瑞因联合阿法骨化醇治疗膝骨关节炎的临床评价

双醋瑞因联合阿法骨化醇治疗膝骨关节炎的临床评价康志平;石坚;徐润娥【摘要】目的:评价双醋瑞因及其联合阿法骨化醇治疗膝骨关节炎的疗效和安全性.方法:将180例膝骨关节炎患者根据性别、年龄、20m步行痛的视觉模糊评分VAS值、lequesne指数、Womac评分配对分为两组,试验组予以双醋瑞因(50mg/bid)联合阿法骨化醇(0.25μg/qd)治疗,对照组予以双醋瑞因(50mg/bid)治疗.以VAS值、lequesne指数、Womac评分作为疗效评价指标,病人的不适症状(如胃肠道反应、头昏等)及其肝肾功能、血尿常规结果作为评价药物不良反应的指标.结果:经过8周、16周治疗后两组20m步行痛的VAS值、lequesne指数、Womac评分均较治疗前明显下降,试验组的改善程度于16周后明显优于对照组,P <0.05,差异有统计学意义.停药满4周后,两组均能基本保持原疗效.除2例较重的全身不适反应外,两组均未见明显不良反应.结论:双醋瑞因联合阿法骨化醇治疗骨关节炎疗效肯定,且比单用双醋瑞因能更有效地缓解OA症状,而且无明显不良反应.【期刊名称】《医学理论与实践》【年(卷),期】2016(029)011【总页数】4页(P1412-1414,1417)【关键词】骨关节炎;双醋瑞因;阿法骨化醇【作者】康志平;石坚;徐润娥【作者单位】湖南省益阳市中心医院风湿免疫科 413000;湖南省益阳市中心医院风湿免疫科 413000;湖南省益阳市中心医院风湿免疫科 413000【正文语种】中文【中图分类】R684.3论著骨关节炎(Osteoarthritis,OA)是一种最常见的慢性关节病,它以关节软骨的变性、破坏及骨质增生为特征,其发生与肥胖、关节过度使用、衰老、创伤、炎症、遗传及代谢障碍等多种因素相关。

对于OA的治疗,国内外骨关节炎诊治指南[1]既指出了改善其全身疼痛症状等对症治疗的重要性,同时也指出使用软骨保护剂和改善病情药物治疗不可替代的地位;近年来对细胞因子拮抗剂的研究也上升到了新的层次。

安徽省江南十校2024-2025学年高三上学期10月第一次综合素质检测英语试卷

安徽省江南十校2024-2025学年高三上学期10月第一次综合素质检测英语试卷

安徽省江南十校2024-2025学年高三上学期10月第一次综合素质检测英语试卷一、听力选择题1.What does Jerry do for a living now?A.He makes videos.B.He reports news.C.He writes storybooks. 2.Why did the man join the soccer club?A.To get credits.B.To make some friends.C.To satisfy his interest. 3.What does the man tell the woman to do?A.Complete the project.B.Take a break.C.Get him some coffee. 4.What did the woman probably do last night?A.She went to a pool.B.She finished a report.C.She planned a project. 5.What is the main topic of the conversation?A.Grocery shopping.B.Food preservation.C.Cooking techniques.听下面一段较长对话,回答以下小题。

6.What did the boy spend an hour doing today?A.Concentrating on handling balls.B.Walking his dog.C.Practicing shooting.7.How soon will the dinner be ready?A.In 20 minutes.B.In 30 minutes.C.In 40 minutes.听下面一段较长对话,回答以下小题。

8.Why is Emily planting trees?A.She wants to celebrate Tree-Planting Day.B.She is participating in a school project.C.She hopes to have some fun.9.What does Emily say about oak trees?A.They provide a habitat and a food source for wildlife.B.They are easier to take care of than other trees.C.They have hard wood and are long-lasting.10.What will the speakers do next?A.Choose a tree.B.Visit a forest.C.Pick a spot.听下面一段较长对话,回答以下小题。

英文材料-简单斜率分析

英文材料-简单斜率分析

A primer on interaction effects in multiple linear regression Kristopher J. Preacher (Vanderbilt University)This primer is divided into 6 sections:1.T wo-way interaction effects in MLR2.R egions of significance3.P lotting and probing higher order interactions4.C entering variables5.C autions regarding interactions in standardized regression6.R eferencesTwo-Way Interaction Effects in MLRAn interaction occurs when the magnitude of the effect of one independent variable (X) on a dependent variable (Y) varies as a function of a second independent variable (Z). This is also known as a moderation effect, although some have more strict criteria for moderation effects than for interactions. Interactions occur potentially in situations involving univariate analysis of variance and covariance (ANOVA and ANCOVA), multivariate analysis of variance and covariance (MANOVA and MANCOVA), multiple linear regression (MLR), logistic regression, path analysis, and covariance structure modeling. This primer is concerned with interactions as they occur in MLR. ANOVA and ANCOVA models are special cases of MLR in which one or more predictors are nominal or ordinal "factors." It is straightforward to estimate such models in the MLR framework, but the accompanying web pages were designed for use with interactions among two or three continuous and/or dichotomous predictor variables only.2-way InteractionsThe regression equation used to assess the predictive effect of two independent variables (X and Z) on Y is:Y = b0 + b1(X) + b2(Z) + eThe regression equation used to analyze and interpret a 2-way interaction is:Y = b0 + b1(X) + b2(Z) + b3(XZ) + e...where the last term (XZ) is simply the product of the first two. b3 can be interpreted as the amount of change in the slope of the regression of Y on X when Z changes by one unit.Assuming a significant interaction effect has been obtained, examine the unstandardized regression coefficients and construct a prediction equation from them. For example, the coefficientsobtained in an analysis conducted by Aiken and West (1991, p. 11, uncentered data) are:^Y = 90.15 - 24.68(X) - 9.33(Z) + 2.58(XZ)To make things easier, it makes sense to reconceptualize these equations in terms of one predictor, thus:^Y = (b1 + b3Z)X + (b0 + b2(Z))= (-24.68 + 2.58(Z))X + (90.15 - 9.33(Z))This arrangement makes it clear that we are interested in the regression of Y on X at particular values of Z. The (b0 + b2(Z)) term is called the simple intercept because it operates as the intercept for the equation describing Y as a linear function of X. The (b1 +b3(Z)) term is called the simple slope. To examine the interaction, we must choose particular values of Z at which to compute simple slopes. We are free to choose any values for Z we want, but it is usually sensible to stay within the observed range of Z. For example, researchers commonly choose the mean of Z, one standard deviation below the mean, and one standard deviation above the mean if Z is continuous (if Z is dichotomous, these values correspond to the only two possible values of Z). We are not restricted to using plus or minus one standard deviation about the mean of Z - we could use any values we wish, perhaps corresponding to meaningful ranges on the scale (such as 0 and 1 for female and male) or to clinical cutoff points (such as 16 and 10 for major depression and dysthymia, respectively, on the Beck Depression Inventory). Insert the values for Z into the prediction equation, obtain equations for three lines, and then plot the lines. In this example:MEAN of Z = 10.0STDEV of Z = 2.2= 7.8ZlowZ= 10.0mid= 12.2ZhighSo...Zline:low= (-24.68 + 2.58(7.8))X + (90.15 - 9.33(7.8))= -4.556(X) + 17.376Zline:mid= (-24.68 + 2.58(10.0))X + (90.15 - 9.33(10.0))= 1.12(X) - 3.15Zline:high= (-24.68 + 2.58(12.2))X + (90.15 - 9.33(12.2))= 6.796(X) - 23.676We can choose any twomeaningful values for X toanchor the lines (forexample, the minimum andmaximum observed values),and then plot them usingany plotting software (e.g.,Excel or Sigma Plot). Wechose values of 4.05 and5.95 for X to stay consistentwith the example in Aikenand West (1991, p. 15)(only two values are necessary because two points define a line). Each of the lines in the plot corresponds to a chosen level of Z.Is the simple slope different from zero?Recall that simple slopes are the regression slopes of Y on X at particular values of Z. In order to test the hypothesis that a simple slope differs from zero, we must first know the standard error of the simple slope, which is given by:s= sqrt[s11 + 2Z s13 + (Z)2s33]b...where s11 is the variance of the X coefficient (i.e., the squared standard error of b1), s33 is the variance of the interaction coefficient (i.e., the squared standard error of b3), and s13 is the covariance of the two. These values can be obtained from the asymptotic covariance matrix of regression coefficients, which usually can be found in regression output (sometimes it must be specially requested). For the hypothetical group of people one standard deviation above the mean of Z in the example from Aiken and West (1991, p. 17),s= sqrt[43.88 + 2(12.2)(-4.07) + (12.2)2(.4)]b= sqrt[43.88 - 99.308 + 59.536]= 2.03The test of the simple slope is a t-test with t equal to the simple slope divided by its standard error, with (N - k - 1) degrees of freedom, where N is the sample size and k is the number of predictors including the interaction term. In our example, that would be:t = (-24.68 + 2.58(7.8)) / 2.03 = -2.24df = 400 - 3 - 1 = 396...for the simple slope corresponding to Z low. In this case, the slope is significantly negative at alpha = .05. Aiken & West (1991) describe an easy way to do this test of a simple slope using any statistical software capable of MLR:1.C reate a new variable Z s, which is Z minus the value of Z forwhich we want the simple slope of Y on X. For simple slopes at the mean of Z, this transformation is the same as centering Z.2.F orm a new variable that is X times Z s.3.R egress Y on X, the Z s, and the product term, and the t-test forthe X coefficient will be the t-test conducted by hand above.Are two simple slopes different from each other?This question can be answered by looking at the p-value of the interaction effect. If the interaction is significant, then any two simple slopes are significantly different from one another. This may seem strange, but remember that the question we are trying to answer is "does the dependence of Y on X depend on the level of Z for hypothetical people at different levels of Z?" The answer is "yes" if the interaction is significant.What about covariates?If the regression equation involves continuous covariates not involved in interactions, then the recommended approach is to pick the mean value for each covariate and then follow the procedure above for plotting and probing interactions (West, personal communication, April 2001). For dichotomous covariates, the model is interpreted for the case when the dichotomous covariate equals zero (the reference group). Picking different values for covariates has the effect of sliding the existing plot up or down the y-axis.Regions of SignificanceRegions of significance for 2-way interactions are values of Z for which the simple slope of Y on X is statistically significant. Computing regions of significance can be much more useful and powerful than picking arbitrary values of Z at which to examine the significance of simple slopes. One advantage associated with computing the region of significance is that knowing this region tells the user the results of all possible simple slopes tests. Any value of Z falling inside the region corresponds to a nonsignificant simple slope of Y on X. Any value of Z falling outside the region corresponds to a significant simple slope.Regions of significance were explored by Aiken and West (1991, pp. 134-137), but only for the case involving an interaction between one continuous and one categorical predictor. The idea was elaborated upon by Curran, Bauer, and Willoughby (2006), operating on the insight that regions of significance can be easily computed for both categorical and continuous predictors by simply reversing the t-test formula. The computational aspects of regions of significance are detailed in Curran et al. (2006).Plotting and Probing Higher Order InteractionsTreatment of 3-way and 4-way interactions proceeds in much the same way as for 2-way interactions. To form the 3-way interaction term, compute the product of all 3 IVs. In order to obtain the unique effect of a higher-order interaction term, it is necessary to include all lower-order terms first (or simultaneously) so that the interaction coefficient represents a unique effect. The regression equation used to analyze a 3-way interaction looks like this:^Y = b0 + b1(X) + b2(Z) + b3(W) + b4(XZ) + b5(XW) + b6(ZW) + b7(XZW)If the b7 coefficient is significant, then it is reasonable to explore further. Reframe the regression equation so that Y is a function of one of the IVs at particular values of the other two:^Y = (b1 + b4(Z) + b5(W) + b7(ZW))X + (b0 + b2(Z) + b3(W) + b6(ZW))The simple slope (what Aiken and West, 1991 call a "simple regression equation") is now:(b1 + b4(Z) + b5(W) + b7(ZW))The remainder of the equation now functions as a simple intercept term.We can represent 3-way interactions graphically in the same way as 2-way interactions. Pick convenient or meaningful values for Z and W, such as one standard deviation above and below the mean on each, and use all combinations of these values in the equation to plot lines at meaningful levels of X. We can choose any variable to use for the x-axis - it does not matter, except that it may be easier for interpretation to use one over another.Just as we can test the significance of simple slopes in 2-way interactions, it is also possible to test the significance of simple slopes in 3-way interactions. If you want to test the significance of a simple slope from a line representing the regression of Y on X at particular levels of Z and W, divide the simple regression equation at those values of Z and W by its standard error, which is given by:sb = sqrt[s11+ (Z)2s44+ (W)2s55+ (Z)2(W)2s77+ (2Z)s14+ (2W)s15+ (2Z)(W)s17 + (2Z)(W)s45+ (2W)(Z)2s47+ (2Z)(W)2s57]Tests of simple slopes can be accomplished using any statistical software capable of MLR in a manner similar to testing simple slopes in 2-way interactions. New Z and W variables can be created by subtracting the values at which the researcher wants to examine simple slopes of Y on X. All 2-way and 3-way product terms are then created, and Y is regressed on X, Z, W, XZ, ZW, XW, and XZW. The t-test for the X coefficient will be the t-test conducted by hand above.Centering VariablesCentering means subtracting the mean from a variable, leaving deviation scores. There are advantages to be gained from centering independent variables, however:1.C entering can make otherwise uninterpretable regressioncoefficients meaningful, and2.C entering reduces multicollinearity among predictor variables. Centering to reduce multicollinearity is particularly useful when the regression involves squares or cubes of IVs. Centering has no effect at all on linear regression coefficients (except for the intercept) unless at least one interaction term is included. The more the IVs are correlated, the smaller their regression weights and the larger their standard errors tend to be.Regardless of the complexity of the regression equation, centering has no effect at all on the coefficients of the highest-order terms, but may drastically change those of the lower-order terms in the equation. The algebra is given in Aiken and West (1991), but centering unstandardized IVs usually does not affect anything of interest. Simple slopes will be the same in centered as in uncentered equations, their standard errors and t-tests will be the same, and interaction plots will look exactly the same, but with different values on the x-axis.Cautions Regarding Interactions in Standardized Regression Standardized regression weights are what would be obtained if every independent variable in the regression equation were rescaled to have a mean of 0.0 and a standard deviation of 1.0 before running a regression analysis. The most common reason to use standardized coefficients is in order to have a common scale with which to evaluate the contribution of each of the independent variables (IVs). With one predictor, the standardized regression coefficient of the IV is simply the correlation between thedependent variable (Y) and the IV. With two IVs, this is no longer the case (unless the IVs are completely uncorrelated).An advantage that standardized weights have over unstandardized weights is that they can be informally compared in terms of magnitude. If one IV has a standardized coefficient larger than another one, then it is probably the case that it is more effective at predicting Y. However, this claim becomes more untenable as the IVs become more correlated. Caution should also be exercised when interactions are investigated using standardized coefficients. Three things to keep in mind are:1.t he t-test for the interaction term will typically be the same forany combination of standardized, unstandardized, centered, or uncentered data.2.W hereas the regression coefficient for the interaction term willbe the same for centered or uncentered IVs in unstandardized regression, they differ with standardized regression.3.F or standardized regression, the simple slopes differ dependingon whether centered or uncentered data are used.#2 and #3 above are troubling. They imply that we should never interpret standardized regression weights when an interaction is present, because the effect size of the interaction changes when constants are added to the IVs. However, software is not at fault here. Statistical software usually computes standardized regression weights by first standardizing all predictors. It does not differentiate between IVs and products of IVs - they are all considered independent variables on equal footing. In unstandardized regression (centered or uncentered) we manually compute the interaction term by multiplying X by Z to yield the product XZ. In standardized regression, then, we ought to compute it by multiplying z X by z Z to yield z X z Z. Software packages do not know that this term is supposed to be a product, so they simply standardize the product rather than obtaining the product of already-standardized variables. In general, the z-score of the product does not equal the product of z-scores, a point made very clear by Friedrich (1982). This fact implies that the way to obtain correct results for standardized regression with an interaction term involves computing the standardized terms, and their product terms, manually. Then the regression can be conducted on the standardized terms as with any other regression.However, even though the correct standardized coefficients are obtained using this method, the standard error still will not be correct for the standardized coefficients. Standardized coefficientsinvolve a stochastic scaling adjustment, which itself is subject to sampling error. This adjustment is not made by most statistics packages (see Bollen, 1989, p. 125). In other words, computation of standardized effects is correct if accomplished by using the procedure above, but significance should be assessed using unstandardized coefficients.ReferencesAiken, L. S., & West, S. G. (1991). Multiple Regression: Testing and interpreting interactions. Thousand Oaks: Sage.Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40, 373-400.Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley & Sons.Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences, 3rd ed.. Hillsdale: Erlbaum.Curran, P. J., Bauer, D. J, & Willoughby, M. T. (2006). Testing and probing interactions in hierarchical linear growth models. In C. S. Bergeman & S. M. Boker (Eds.), The Notre Dame Series on Quantitative Methodology, Volume 1: Methodological issues in aging research, (pp. 99-129). Mahwah, NJ: Lawrence Erlbaum Associates.Curran, P. J., Bauer, D. J, & Willoughby, M. T. (2004). Testing main effects and interactions interactions in hierarchical linear growth models. Psychological Methods, 9, 220-237.Friedrich, R. J. (1982). In defense of multiplicative terms in multiple regression equations. American Journal of Political Science, 26, 797-833.。

ICU中的血液净化治疗最新进展

ICU中的血液净化治疗最新进展
The Mediators of Sepsis (the Humoral Theory of Sepsis)
TNF (MW 17,500-trimer) IL-1 (MW< 17,000); IL-8 (MW<9,000); IL-6 (MW<22,000) Complement: Factor D (MW< 25,000), C3a, C5a (MW < 11,500) Eicosanoids: TxB2, PGE2 (MW 500) PAF: MW < 600 血小板活化因子 Others: VIP, vasopressin, endorphin, myocardial depressant factors (MW<5,000), Phospholipase 其它:Vasoactive intestinal peptide,血管活性药物,内皮素,心肌抑制因子小于5千道尔顿,磷脂酶
Change in MAP after IV LPS
Time after IV LPS (minutes)
MAP (mmHg)
p < 0.05
Bellomo et al AJRCCM 2000; 161: 1429-1436
HVHF vs. CVVH
10 patients with septic shock and ARF Noradrenaline dependent Randomized to 8 hrs of HVHF (6L/hr) or CVVH (1L/hr) in random order Physiological outcome: hemodynamic response Biological outcome: Complement and cytokines 这里是一项10个病人的试验,他们均患有感染中毒性休克和急性肾功能衰竭 去甲肾、8小时6、1L/hr血滤 生理指标:血流动力学的影响 生物学指标:补体系统和细胞因子

分数阶多机器人的领航-跟随型环形编队控制

分数阶多机器人的领航-跟随型环形编队控制

第38卷第1期2021年1月控制理论与应用Control Theory&ApplicationsV ol.38No.1Jan.2021分数阶多机器人的领航–跟随型环形编队控制伍锡如†,邢梦媛(桂林电子科技大学电子工程与自动化学院,广西桂林541004)摘要:针对多机器人系统的环形编队控制复杂问题,提出一种基于分数阶多机器人的环形编队控制方法,应用领航–跟随编队方法来控制多机器人系统的环形编队和目标包围,通过设计状态估测器,实现对多机器人的状态估计.由领航者获取系统中目标状态的信息,跟随者监测到领航者的状态信息并完成包围环绕编队控制,使多机器人系统形成对动态目标的目标跟踪.根据李雅普诺夫稳定性理论和米塔格定理,得到多机器人系统环形编队控制的充分条件,实现对多机器人系统对目标物的包围控制,通过对一组多机器人队列的目标包围仿真,验证了该方法的有效性.关键词:分数阶;多机器人;编队控制;环形编队;目标跟踪引用格式:伍锡如,邢梦媛.分数阶多机器人的领航–跟随型环形编队控制.控制理论与应用,2021,38(1):103–109DOI:10.7641/CTA.2020.90969Annular formation control of the leader-follower multi-robotbased on fractional orderWU Xi-ru†,XING Meng-yuan(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin Guangxi541004,China) Abstract:Aiming at the complex problem of annular formation control for fractional order multi robot system,an an-nular formation control method based on fractional order multi robot is proposed.The leader follower formation method is used to control the annular formation and target envelopment of the multi robot systems.The state estimation of multi robot is realized by designing state estimator.The leader obtains the information of the target state in the system,the followers detects the status of the leader and complete annular formation control,the multi-robot system forms the target tracking of the dynamic target.According to Lyapunov stability theory and Mittag Leffler’s theorem,the sufficient conditions of the annular formation control for the multi robot systems are obtained in order to achieve annular formation control of the leader follower multi robot.The effectiveness of the proposed method is verified by simulation by simulation of a group of multi robot experiments.Key words:fractional order;multi-robots;formation control;annular formation;target trackingCitation:WU Xiru,XING Mengyuan.Annular formation control of the leader-follower multi-robot based on fractional order.Control Theory&Applications,2021,38(1):103–1091引言近年来,随着机器人技术的崛起和发展,各式各样的机器人技术成为了各个领域不可或缺的一部分,推动着社会的发展和进步.与此同时,机器人面临的任务也更加复杂,单个机器人已经无法独立完成应尽的责任,这就使得多机器人之间相互协作、共同完成同一个给定任务成为当前社会的研究热点.多机器人系统控制的研究主要集中在一致性问题[1]、多机器人编队控制问题[2–3]、蜂拥问题[4–5]等.其中,编队控制问题作为多机器人系统的主要研究方向之一,是国内外研究学者关注的热点问题.编队控制在生活生产、餐饮服务尤其是军事作战等领域都发挥着极大的作用.例如水下航行器在水中的自主航行和编队控制、军事作战机对空中飞行器的打击以及无人机在各行业的应用等都是多机器人编队控制上的用途[6–7].目前,多机器人编队控制方法主要有3种,其中在多机器收稿日期:2019−11−25;录用日期:2020−08−10.†通信作者.E-mail:****************;Tel.:+86132****1790.本文责任编委:黄攀峰.国家自然科学基金项目(61603107,61863007),桂林电子科技大学研究生教育创新计划项目(C99YJM00BX13)资助.Supported by the National Natural Science Foundation of China(61603107,61863007)and the Innovation Project of GUET Graduate Education (C99YJM00BX13).104控制理论与应用第38卷人系统编队控制问题上应用最广泛的是领航–跟随法[8–10];除此之外,还有基于行为法和虚拟结构法[11].基于行为的多机器人编队方法在描述系统整体时不够准确高效,且不能保证系统控制的稳定性;而虚拟结构法则存在系统灵活性不足的缺陷.领航–跟随型编队控制法具有数学分析简单、易保持队形、通信压力小等优点,被广泛应用于多机器人系统编队[12].例如,2017年,Hu等人采用分布式事件触发策略,提出一种新的自触发算法,实现了线性多机器人系统的一致性[13];Zuo等人利用李雅普诺夫函数,构造具有可变结构的全局非线性一致控制律,研究多机器人系统的鲁棒有限时间一致问题[14].考虑到分数微积分的存储特性,开发分数阶一致性控制的潜在应用具有重要意义.时中等人于2016年设计了空间遥操作分数阶PID 控制系统,提高了机器人系统的跟踪性能、抗干扰性、鲁棒性和抗时延抖动性能[15].2019年,Z Yang等人探讨了分数阶多机器人系统的领航跟随一致性问题[16].而在多机器人的环形编队控制中,对具有分数阶动力学特性的多机器人系统的研究极其有限,大部分集中在整数阶的阶段.而采用分数阶对多机器人系统目标包围编队控制进行研究,综合考虑了非局部分布式的影响,更好地描述具有遗传性质的动力学模型.使得系统的模型能更准确的反映系统的性态,对多机器人编队控制的研究非常有利.目标包围控制问题是编队控制的一个分支,是多智能体编队问题的重点研究领域.随着信息技术的高速发展,很多专家学者对多机器人系统的目标包围控制问题进行了研究探讨.例如,Kim和Sugie于2017年基于一种循环追踪策略设计分布式反馈控制律,保证了多机器人系统围绕一个目标机器人运动[17].在此基础上,Lan和Yan进行了拓展,研究了智能体包围多个目标智能体的问题,并把这个问题分为两个步骤[18]. Kowdiki K H和Barai K等人则研究了单个移动机器人对任意时变曲线的跟踪包围问题[19].Asif M考虑了机器人与目标之间的避障问题,提出了两种包围追踪控制算法;并实现了移动机器人对目标机器人的包围追踪[20].鉴于以上原因,本文采用了领航–跟随型编队控制方法来控制多机器人系统的环形编队和目标包围,通过设计状态估测器,实现对多机器人的状态估计.系统中目标状态信息只能由领航者获取,确保整个多机器人系统编队按照预期的理想编队队形进行无碰撞运动,并最终到达目标位置,对目标、领航者和跟随者的位置分析如图1(a)所示,图1(b)为编队控制后的状态.通过应用李雅普诺夫稳定性理论,得到实现多机器人系统环形编队控制的充分条件.最后通过对一组多机器人队列进行目标包围仿真,验证了该方法的有效性.(a)编队控制前(b)编队控制后图1目标、领航者和追随者的位置分析Fig.1Location analysis of targets,pilots and followers2代数图论与分数阶基础假定一个含有N个智能体的系统,通讯网络拓扑图用G={v,ε}表示,定义ε=v×v为跟随者节点之间边的集合,v={v i,i=1,2,···,N}为跟随者节点的集合.若(v i,v j)∈ε,则v i与v j为相邻节点,定义N j(t)={i|(v i,v j)∈ε,v i∈v}为相邻节点j的标签的集合.那么称第j个节点是第i 个节点的邻居节点,用N j(t)={i|(v i,v j)∈ε,v i∈v}表示第i个节点的邻居节点集合.矩阵L=D−A称为与图G对应的拉普拉斯矩阵.其中:∆是对角矩阵,对角线元素i=∑jN i a ij.若a ij=a ji,i,j∈I,则称G是无向图,否则称为有向图.如果节点v i与v j之间一组有向边(v i,v k1)(v k1,v k2)(v k2,v k3)···(v kl,v j),则称从节点v i到v j存在有向路径.定义1Riemann-Liouville(RL)分数阶微分定义:RLD atf(t)=1Γ(n−a)d nd t ntt0f(τ)(t−τ)a−n+1dτ,(1)其中:t>t0,n−1<α<n,n∈Z+,Γ(·)为伽马函数.定义2Caputo(C)分数阶微分定义:CDαtf(t)=1Γ(n−α)tt0f n(τ)(t−τ)α−n+1dτ,(2)其中:t>t0,n−1<α<n,n∈Z+,Γ(·)为伽马第1期伍锡如等:分数阶多机器人的领航–跟随型环形编队控制105函数.定义3定义具有两个参数α,β的Mittag-Leffler方程为E α,β(z )=∞∑k =1z kΓ(αk +β),(3)其中:α>0,β>0.当β=1时,其单参数形式可表示为E α,1(z )=E α(z )=∞∑k =1z kΓ(αk +1).(4)引理1[21]假定存在连续可导函数x (t )∈R n ,则12C t 0D αt x T (t )x (t )=x T (t )C t 0D αt x (t ),(5)引理2[21]假定x =0是系统C t 0D αt x (t )=f (x )的平衡点,且D ⊂R n 是一个包含原点的域,R 是一个连续可微函数,x 满足以下条件:{a 1∥x ∥a V (t ) a 2∥x ∥ab ,C t 0D αt V (t ) −a 3∥x ∥ab,(6)其中:t 0,x ∈R ,α∈(0,1),a 1,a 2,a 3,a,b 为任意正常数,那么x =0就是Mittag-Leffler 稳定.3系统环形编队控制考虑包含1个领航者和N 个跟随者的分数阶非线性多机器人系统.领航者的动力学方程为C t 0D αt x 0(t )=u 0(t ),(7)式中:0<α<1,x 0(t )∈R 2是领航者的位置状态,u 0(t )∈R 2是领航者的控制输入.跟随者的动力学模型如下:C t 0D αt x i (t )=u i (t ),i ∈I,(8)式中:0<α<1,x i (t )∈R 2是跟随者的位置状态,u i (t )∈R 2是跟随者i 在t 时刻的控制输入,I ={1,2,···,N }.3.1领航者控制器的设计对于领航者,选择如下控制器:u 0(t )=−k 1(x 0(t )−˜x 0(t ))−k 2sgn(x 0(t )−˜x 0(t )),(9)C t 0D αt x 0(t )=u 0(t )=−k 1(x 0(t )−˜x 0(t ))−k 2sgn(x 0(t )−˜x 0(t )).(10)设计一个李雅普诺夫函数:V (t )=12(x 0(t )−˜x 0(t ))T (x 0(t )−˜x 0(t )).(11)根据引理1,得到该李雅普诺夫函数的α阶导数如下:C 0D αt V(t )=12C 0D αt (x 0(t )−˜x 0(t ))T (x 0(t )−˜x 0(t )) (x 0(t )−˜x 0(t ))TC 0D αt (x 0(t )−˜x0(t ))=(x 0(t )−˜x 0(t ))T [C 0D αt x 0(t )−C 0D αt ˜x0(t )]=(x 0(t )−˜x 0(t ))T [−k 1(x 0(t )−˜x 0(t ))−k 2sgn(x 0(t )−˜x 0(t ))−C 0D αt ˜x0(t )]=−k 1(x 0(t )−˜x 0(t ))T (x 0(t )−˜x 0(t ))−k 2∥x 0(t )−˜x 0(t )∥−(x 0(t )−˜x 0(t ))TC 0D αt ˜x0(t )=−2k 1V (t )−k 2∥x 0(t )−˜x 0(t )∥+∥C 0D αt ˜x0(t )∥∥x 0(t )−˜x 0(t )∥=−2k 1V (t )−(k 2−∥C 0D ∝t ˜x0(t )∥)∥x 0(t )−˜x 0(t )∥ −2k 1V (t ).(12)令a 1=a 2=12,a 3=2k 1,ab =2,a >0,b >0,得到a 1∥x 0(t )−˜x 0(t )∥a V (t ) a 2∥x 0(t )−˜x 0(t )∥ab ,(13)C t 0D αt V(t ) −a 3∥x 0(t )−˜x 0(t )∥ab .(14)根据引理2,可知lim t →∞∥x 0(t )−˜x 0(t )∥=0,即x 0(t )逐渐趋近于˜x 0(t ).为了使跟随者能够跟踪观测到领航者的状态,设计了一个状态估测器.令ˆx i ∈R 2是追随者对领航者的状态估计,给出了ˆx i 的动力学方程C 0D αt ˆx i=β(∑j ∈N ia ij g ij (t )+d i g i 0(t )),(15)其中g ij =˜x j (t )−˜x i (t )∥˜x j (t )−˜x i (t )∥,˜x j (t )−˜x i (t )=0,0,˜x j (t )−˜x i (t )=0.(16)对跟随者取以下李雅普诺夫函数:V (t )=12N ∑i =1(ˆx i (t )−x 0(t ))T (ˆx i (t )−x 0(t )).(17)计算该函数的α阶导数如下:C 0D αt V(t )=12C 0D αtN ∑i =1(ˆx i (t )−x 0(t ))T (ˆx i (t )−x 0(t )) N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt (ˆx i (t )−x 0(t ))=N ∑i =1(ˆx i (t )−x 0(t ))T [C 0D αt ˆxi (t )−C 0D αt x 0(t )]=N ∑i =1(ˆx i (t )−x 0(t ))T [β(∑j ∈N ia ijˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+d iˆx 0(t )−ˆx i (t )∥ˆx 0(t )−ˆx i (t )∥)−C 0D αt x 0(t )]=N ∑i =1(ˆx i (t )−x 0(t ))T β(∑j ∈N i a ij ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i(t )∥+106控制理论与应用第38卷d iˆx 0(t )−ˆx i (t )∥ˆx 0(t )−ˆx i (t )∥)−N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt x 0(t )=βN ∑i =1(ˆx i (t )−x 0(t ))T ∑j ∈N i a ij ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+βN ∑i =1(ˆx i (t )−x 0(t ))Td i ˆx 0(t )−ˆx i (t )∥ˆx 0(t )−ˆx i(t )∥−N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt x 0(t ).(18)在上式中,令C 0D αt V (t )=N 1+N 2以方便后续计算,其中:N 1=βN ∑i =1(ˆx i (t )−x 0(t ))T ∑j ∈N i a ij ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+βN ∑i =1(ˆx i (t )−x 0(t ))Td i ˆx 0(t )−ˆx i (t )∥ˆx 0(t )−ˆx i (t )∥=β2[N ∑i =1N ∑j =1a ij (ˆx i (t )−x 0(t ))T ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+N ∑j =1N ∑i =1a ij (ˆx j (t )−x 0(t ))Tˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥]−βN ∑i =1d i∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥=β2N ∑i =1N ∑j =1a ij [(ˆx i (t )−x 0(t ))Tˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−(ˆx j (t )−x 0(t ))T ˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥]−βN ∑i =1d i∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥=β2N ∑i =1N ∑j =1a ij [ˆx T i(t )ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−x T 0(t )ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−ˆx T j(t )ˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥+x T0(t )ˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥]−βN ∑i =1d i ∥ˆx 0(t )−ˆx i (t )∥=β2N ∑i =1N ∑j =1a ij [ˆx T i (t )ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−ˆx T j (t )ˆx i (t )−ˆx j (t )∥ˆx i (t )−ˆx j (t )∥]−βN ∑i =1d i ∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥=β2N ∑i =1N ∑j =1a ij (ˆx T i(t )−ˆx Tj (t ))ˆx j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥−βN ∑i =1d i ∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥=−β(12N ∑i =1N ∑j =1a ij (ˆx T j (t )−ˆx T i (t ))׈x j (t )−ˆx i (t )∥ˆx j (t )−ˆx i (t )∥+N ∑i =1d i ∥ˆx 0(t )−ˆx i (t )∥2∥ˆx 0(t )−ˆx i (t )∥),(19)N 2=−N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt x 0(t )=N ∑i =1∥ˆx i (t )−x 0(t )∥∥C 0D αt x 0(t )∥×cos {ˆx i (t )−x 0(t ),−C 0D αt x 0(t )}.(20)由于∥C 0D αt x 0(t )∥k 1∥x 0(t )−˜x 0(t )∥+k 2∥sgn(x 0(t )−˜x 0(t ))∥ k 1∥x 0(t )−˜x 0(t )∥+k 2.(21)根据定义3,当lim t →∞∥x 0(t )−˜x 0(t )∥=0时,存在T >0(T 为实数),使得在t >T 时∥x 0(t )−˜x 0(t )∥ ε成立,那么对于t >T ,有0<∥C 0D αt x 0(t )∥ k 1ε+k 2=M 2,可得−N ∑i =1(ˆx i (t )−x 0(t ))TC 0D αt x 0(t )N ∑i =1∥ˆx i (t )−x 0(t )∥M 2M 2N max {∥ˆx i (t )−x 0(t )∥},(22)C 0D αt V(t ) −(β−M 2N )max i ∈I{∥ˆx i (t )−x 0(t )∥}−2β1λmin V (t ).(23)根据引理2,得lim t →∞∥ˆx i (t )−x 0(t )∥=0.(24)由上式可知,ˆx i (t )在对目标的追踪过程中逐渐趋近于x 0(t ).3.2跟随者控制器的设计在本文中,整个多机器人系统中领导者能够直接获得目标的位置信息,将这些信息传递给追随者,因此需要为每个追随者设计观测器来估计目标的状态.令ϕi (t )∈R 2由跟随者对目标i 的状态估计,给出ϕi (t )的动力学方程C 0D αt ϕi(t )=α(∑j ∈N ia ij f ij (t )+d i f i 0(t )),(25)其中f ij =ϕj (t )−ϕi (t )∥ϕj (t )−ϕi (t )∥,ϕj (t )−ϕi (t )=0,0,ϕj (t )−ϕi (t )=0.(26)取如下李雅普诺夫函数:V (t )=12N ∑i =1(ϕi (t )−r (t ))T (ϕi (t )−r (t )).(27)计算α阶导数如下:C 0D αt V(t )=第1期伍锡如等:分数阶多机器人的领航–跟随型环形编队控制10712N ∑i =1(ϕi (t )−r (t ))T (ϕi (t )−r (t )) N ∑i =1(ϕi (t )−r (t ))TC 0D αt (ϕi (t )−r (t ))=N ∑i =1(ϕi (t )−r (t ))T [C 0D αt ϕi (t )−C 0D αt r (t )]=N ∑i =1(φi (t )−r (t ))T [α(∑j ∈N ia ij f ij (t )+d i f i 0(t ))]−C 0D αt r (t )=N ∑i =1(ϕi (t )−r (t ))T α(∑j ∈N ia ij ϕj (t )−ϕi (t )∥ϕj (t )−ϕi (t )∥+d i ϕ(t )−ϕi (t )∥ϕ(t )−ϕi (t )∥)=βN ∑i =1(ϕi (t )−r (t ))T ∑j ∈N i a ijϕj (t )−ϕi (t )∥ϕj (t )−ϕi(t )∥+βN ∑i =1(ϕi (t )−r (t ))T d i ϕ(t )−ϕi (t )∥ϕ(t )−ϕi(t )∥−N ∑i =1(ϕi (t )−r (t ))TC 0D αt r (t ),(28)可得lim t →∞∥x i (t )−˜x i (t )∥=0.(29)由上式可知,x i (t )在对目标的追踪过程中逐渐趋近于˜x i (t ).4仿真结果与分析本节通过仿真结果来验证本文所提出的方法.图2为通信图,其中:V ={1,2,3,4}表示跟随者集合,0代表领导者.以5个机器人组成的队列为例进行验证,根据领航者对目标的跟随轨迹,分别进行了仿真.图2通信图Fig.2Communication diagrams假设系统中目标机器人的动态为C 0D αt r (t )=[cos t sin t ]T ,令初始值r 1(0)=r 2(0)=1,α=0.98,k 1=1,k 2=4,可知定理3中的条件是满足的.根据式(24)和式(29),随着时间趋于无穷,领航者及其跟随者的状态估计误差趋于0,这意味着领航者的状态可以由跟随者渐近精确地计算出来.令k 2>M 1,M 1=M +M ′>0,则lim t →∞∥x 0(t )−˜x 0(t )∥=0,x 0渐近收敛于领航者的真实状态.此时取时滞参数µ=0.05,实验结果见图3,由1个领航者及4个跟随者组成的多机器人系统在进行目标围堵时,最终形成了以目标机器人为中心的包围控制(见图3(b)).(a)领航者和跟随者的初始位置分析(b)编队形成后多机器人的位置关系图3目标、领航者和追随者的位置分析Fig.3Location analysis of target pilots and followers综合图4–5曲线,跟随者对领航者进行渐进跟踪,领航者同目标机器人的相对位置不变,表明该领航跟随型多机器人系统最终能与目标机器人保持期望的距离,并且不再变化.图4领航者及其跟随者的状态估计误差Fig.4The state estimation error of the leader and followers108控制理论与应用第38卷图5编队形成时领航者与目标的相对位置关系Fig.5The relative position relationship between leader andtarget仿真结果表明,多个机器人在对目标物进行包围编队时,领航者会逐渐形成以目标物运动轨迹为参照的运动路线,而跟随者则渐近的完成对领航者的跟踪(如图6所示),跟随者在对领航者进行跟踪时,会出现一定频率的抖振,但这些并不会影响该多机器人系统的目标包围编队控制.5总结本文提出了多机器人的领航–跟随型编队控制方法,选定了一台机器人作为领航者负责整个编队的路径规划任务,其余机器人作为跟随者.跟随机器人负责实时跟踪领航者,并尽可能与领航机器人之间保持队形所需的距离和角度,确保整个多机器人系统编队按照预期的理想编队队形进行无碰撞运动,并最终到达目标位置.通过建立李雅普诺夫函数和米塔格稳定性理论,得到了实现多机器人系统环形编队的充分条件,并通过对一组多机器人队列的目标包围仿真,验证了该方法的有效性.图6领航者与跟随者对目标的状态估计Fig.6State estimation of target by pilot and follower参考文献:[1]JIANG Yutao,LIU Zhongxin,CHEN Zengqiang.Distributed finite-time consensus algorithm for multiple nonholonomic mobile robots with disturbances.Control Theory &Applications ,2019,36(5):737–745.(姜玉涛,刘忠信,陈增强.带扰动的多非完整移动机器人分布式有限时间一致性控制.控制理论与应用,2019,36(5):737–745.)[2]ZHOU Chuan,HONG Xiaomin,HE Junda.Formation control ofmulti-agent systems with time-varying topology based on event-triggered mechanism.Control and Decision ,2017,32(6):1103–1108.(周川,洪小敏,何俊达.基于事件触发的时变拓扑多智能体系统编队控制.控制与决策,2017,32(6):1103–1108.)[3]ZHANG Ruilei,LI Sheng,CHEN Qingwei,et al.Formation controlfor multi-robot system in complex terrain.Control Theory &Appli-cations ,2014,31(4):531–537.(张瑞雷,李胜,陈庆伟,等.复杂地形环境下多机器人编队控制方法.控制理论与应用,2014,31(4):531–537.)[4]WU Jin,ZHANG Guoliang,ZENG Jing.Discrete-time modeling formultirobot formation and stability of formation control algorithm.Control Theory &Applications ,2014,31(3):293–301.(吴晋,张国良,曾静.多机器人编队离散模型及队形控制稳定性分析.控制理论与应用,2014,31(3):293–301.)[5]WANG Shuailei,ZHANG Jinchun,CAO Biao.Target tracking al-gorithm with double-type agents based on flocking control.Control Engineering of China ,2019,26(5):935–940.(王帅磊,张金春,曹彪.双类型多智能体蜂拥控制目标跟踪算法.控制工程,2019,26(5):935–940.)[6]SHAO Zhuang,ZHU Xiaoping,ZHOU Zhou,et al.Distributed for-mation keeping control of UA Vs in 3–D dynamic environment.Con-trol and Decision ,2016,31(6):1065–1072.(邵壮,祝小平,周洲,等.三维动态环境下多无人机编队分布式保持控制.控制与决策,2016,31(6):1065–1072.)[7]PANG Shikun,WANG Jian,YI Hong.Formation control of multipleautonomous underwater vehicles based on sensor measuring system.Journal of Shanghai Jiao Tong University ,2019,53(5):549–555.(庞师坤,王健,易宏.基于传感探测系统的多自治水下机器人编队协调控制.上海交通大学学报,2019,53(5):549–555.)[8]WANG H,GUO D,LIANG X.Adaptive vision-based leader-followerformation control of mobile robots.IEEE Transactions on Industrial Electronics ,2017,64(4):2893–2902.[9]LI R,ZHANG L,HAN L.Multiple vehicle formation control basedon robust adaptive control algorithm.IEEE Intelligent Transportation Systems Magazine ,2017,9(2):41–51.[10]XING C,ZHAOXIA P,GUO G W.Distributed fixed-time formationtracking of multi-robot systems with nonholonomic constraints.Neu-rocomputing ,2018,313(3):167–174.[11]LOPEZ-GONZALEA A,FERREIRA E D,HERNANDEZ-MAR-TINEZ E G.Multi-robot formation control using distance and ori-entation.Advanced Robotics ,2016,30(14):901–913.[12]DIMAROGONAS D,FRAZZOLI E,JOHNSSON K H.Distributedevent-triggered control for multi-agent systems.IEEE Transactions on Automatic Control ,2019,57(5):1291–1297.[13]HU W,LIU L,FENG G.Consensus of linear multi-agent systems bydistributed event-triggered strategy.IEEE Transactions on Cybernet-ics ,2017,46(1):148–157.第1期伍锡如等:分数阶多机器人的领航–跟随型环形编队控制109[14]ZUO Z,LIN T.Distributed robustfinite-time nonlinear consensusprotocols for multi-agent systems.International Journal of Systems Science,2016,47(6):1366–1375.[15]SHI Zhong,HUANG Xuexiang,TAN Qian.Fractional-order PIDcontrol for teleoperation of a free-flying space robot.Control The-ory&Applications,2016,33(6):800–808.(时中,黄学祥,谭谦.自由飞行空间机器人的遥操作分数阶PID控制.控制理论与应用,2016,33(6):800–808.)[16]YANG Z C,ZHENG S Q,LIU F.Adaptive output feedback con-trol for fractional-order multi-agent systems.ISA Transactions,2020, 96(1):195–209.[17]LIU Z X,CHEN Z Q,YUAN Z Z.Event-triggered average-consensusof multi-agent systems with weighted and directed topology.Journal of Systems Science and Complexity,2016,25(5):845–855.[18]AI X L,YU J Q.Flatness-basedfinite-time leader-follower formationcontrol of multiple quad rotors with external disturbances.Aerospace Science and Technology,2019,92(9):20–33.[19]KOWDIKI K H,BARAI K,BHATTACHARYA S.Leader-followerformation control using artificial potential functions:A kinematic ap-proach.IEEE International Conference on Advances in Engineering.Tamil Nadu,India:IEEE,2012:500–505.[20]ASIF M.Integral terminal sliding mode formation control of non-holonomic robots using leader follower approach.Robotica,2017, 1(7):1–15.[21]CHEN W,DAI H,SONG Y,et al.Convex Lyapunov functions forstability analysis of fractional order systems.IET Control Theory& Applications,2017,11(7):1070–1074.作者简介:伍锡如博士,教授,硕士生导师,目前研究方向为机器人控制、神经网络、深度学习等,E-mail:***************.cn;邢梦媛硕士研究生,目前研究方向为多机器人编队控制,E-mail: ****************.。

自旋电子学材料_物理和器件设计原理的研究进展

自旋电子学材料_物理和器件设计原理的研究进展

自旋电子学材料、物理和器件设计原理的研究进展韩秀峰(中国科学院物理研究所磁学国家重点实验室 北京 100190)摘 要 文章介绍了作者所在实验室在巨磁电阻(G MR )、隧穿磁电阻(T MR )、庞磁电阻(C MR )和反铁磁钉扎薄膜材料以及单晶金属氧化物、高自旋极化率材料、P 2N 异质结和纳米环磁随机存储器原理型演示器件设计等研究方面取得的一些重要研究成果和进展.例如:在A l 2O 势垒磁性隧道结材料体系里,获得室温磁电阻超过80%的国际最好结果;获得两种高性能层状反铁磁钉扎材料体系;发现具有大的电致电阻效应的C MR 薄膜材料,并可期望用于电流直接进行磁信息写和读操作的磁存储介质;发现双势垒磁性隧道结中的量子阱态共振隧穿和磁电阻振荡效应,以及纳米器件体系中自旋翻转长度的观测新方法,可用于新型自旋电子学材料及相关器件的人工辅助设计;利用电子自旋共振谱探测和研究了金属氧化物的微观自旋结构和各向异性;在[CoFe /Pt]n 磁性金属多层膜中,观测到超高灵敏度的反常霍尔效应;利用纳米环状磁性隧道结作为存储单元,研制出一种新型纳米环磁随机存储器MRAM 原理型演示器件.关键词 自旋电子学,巨磁电阻,隧穿磁电阻,庞磁电阻,磁随机存储器,自旋转移力矩,电子自旋共振Spi n tron i c ma ter i a ls ,physi cs and dev i ce desi gnsHAN Xiu 2Feng(S tate Key Laboratory of M agnetis m ,Institute of Physics,Chinese Acade m y of Sciences,B eijing 100190,China )Abstract Recently,in the State Key Laborat ory ofMagnetis m amor phous A l 2O barrier based magnetic 2tunnel 2juncti ons (MTJs )with ring 2shaped structures and a tunneling magnetic res onance ratio of 80%at r oom tempera 2ture were m icro 2fabricated .H igh ordered FePt and antiferr omagnetic (Cr 25Mn 25)Pt 50thin fil m s with good ther mal stability and high coercivity were als o synthesized .Large current 2induced resistance effects in col ossal magnetic res onance thin fil m s was observed .A new method was designed to observe s p in flip scattering in the nano meter sized s pacer layer near the ballistic li m it based on MTJs .An i mportant first 2p rincip les study of quantum well (QW )states and QW 2res onance tunneling in the sy mmetric ep itaxial Fe (001)/Mg O /Fe /Mg O /Fe double barrier MTJ was perfor med .Electr on s p in res onance s pectra was successfully used to investigate the interlayer exchange coup ling and anis otrop ic sp in structures in layered transiti on metal oxides .An ultrahigh sensitivity Hall effect was observed in CoFe /Pt multilayers via mani pulati on of the perpendicular interface anis otr opy due to the strong sp in 2orbit interaction of Pt .Nano 2ring MTJ s and 4×4bit nano 2ring magnetic random access memory (MRAM )demo devices were fabricated with s p in 2polarized current (s p in transfer t orque )s witching,which may open a new way for develop ing MRAM devices .Keywords s p intronics,G MR,T MR,C MR,MRAM ,sp in transfer torque,electr on s p in res onance2008-05-25收到 Email:xfhan@aphy .i phy .ac .cn 自从1988年在磁性多层膜中发现了巨磁电阻效应(G MR ),1993和1994在钙钛矿锰氧化物(R 1-x T x Mn O 3,R 为稀土元素,T 为二价碱土金属)中发现了庞磁电阻效应(C MR ),特别是1995年在铁磁性隧道结材料中发现了室温高隧穿磁电阻效应(T MR )以及后续形成的稀磁半导体等研究热潮[1—10],这些具有里程碑意义的人工合成磁性材料的成功制备和深入研究,不仅迅速推动了近20年中凝聚态物理新兴学科———磁电子学(magnet o 2elec 2tr onics )和自旋电子学(s p in 2electr onics/s p intr onics )的形成与快速发展[11,12],也极大地促进了与自旋极化电子输运相关的磁电阻材料和新型自旋电子学器件的研制和应用.例如,巨磁电阻(G MR)是自旋电子学成功应用的范例之一,它从物理发现到材料制备,直至最后器件大规模产业化仅用了不到10年的时间.计算机硬盘在G MR读出头的推动下,其磁记录密度已从过去60Mbit/inch2发展到目前~300Gbit/inch2(1G= 109,美国Seagate Tech.公司公布的数据),提高了近5000倍.2002年,它仅在硬盘驱动器方面创造的收入就突破400亿美元.基于非晶A l2O3势垒材料的磁性隧道结(MT J)和隧穿磁电阻效应(T MR)是自旋电子学的另一个成功应用的范例之一,它从物理发现(1995年发现20%的室温隧穿磁电阻效应)到材料制备和2005年T MR磁读出头器件大规模生产化(>270Gbit/inch2)也仅用了不到10年时间. 2007年美国西部数据公司(WD)采用基于单晶Mg (001)势垒的磁性隧道结材料和T MR读出头技术结合垂直磁记录介质,实现了520Gbit/inch2磁硬盘面记录密度的演示.从1997年至今,基于以上G MR和T MR效应的磁读出头产品及其硬磁盘已经被广泛地应用到网络服务器和台式计算机、手提电脑、数字照相机以及MP3、MP4等音乐播放器中,显著促进了计算机和信息技术的进步,充分体现了基础科学研究对丰富人类文化生活的作用.自从1997年以来,已经有50亿只G MR磁读出头被生产和投放市场,而且至今仍然被广泛使用;自从2004年开始,大约每年生产4亿个隧穿磁电阻(T MR)磁读出头,并不断地被投入市场,进入最终用户,正在产生巨大的科技和社会经济效益.磁性金属材料的基础物理研究及其器件应用,已经为磁硬盘工业以及信息技术(I T)的发展带来了革命性的技术更新.正因为如此,2007年诺贝尔物理学奖授予了巨磁电阻G MR的发现者A lbert Fert和Peter Grünberg,以表彰他们为当代凝聚态物理和信息科学技术发展所做出的杰出贡献.可以说,分别于1988年和1995年发现的G MR和T MR新材料,导致计算机信息存储技术在21世纪进入了一个G MR和T MR时代.目前,基于G MR和T MR磁电阻材料的各种磁敏传感器,成为国际上众多公司大力开发和研制的高新技术产品目标,特别是为发展基于磁性隧道结材料和T MR效应的256Mbit以上的实用型磁随机存储器(MRAM芯片),美国、日本等发达国家竞相巨额投资,全面开展了相关的材料、物理和器件应用研究,加速研发和生产相关重要产品.I B M等公司在2004年已做到了16Mbit MRAM演示器件,美国Mot or ola和Freescale公司在2006年已推出了4Mbit MRAM标准器件产品并进入市场,美国Head way和MagI C公司生产的4MbitMRAM标准器件产品预计2008年将进入市场.高密度和高容量MRAM芯片的实现,以其低功耗、断电下信息不丢失、抗辐射、高速度、高稳定、使用寿命长等优点,将会使计算机科学和信息产业以及人们日常生活中使用的众多电器产品进入一个新的智能化时代.因此,研究和发展自旋电子学材料、物理及其自旋相关器件,探索和研究新的人工磁电阻结构和功能材料及其器件应用,不仅是过去20年也是当前和今后一个相当长时期的国际研究热点和重要领域之一.新型和高性能的自旋电子学人工合成材料及其新的物理效应的进一步发现,能给自旋电子学材料及其自旋相关器件的研制,提供新的生长点,注入新的发展动力.正是在这样一个国内外热点研究持续发展的环境下,在国家自然科学基金委基金项目、国家科技部973《自旋电子学材料、物理和器件研究》项目、中国科学院“知识创新工程”等相关项目的支持下,中国科学院物理研究所磁学国家重点实验室有关研究人员,在巨磁电阻(G MR)材料、隧穿磁电阻(T MR)材料、钙钛矿锰氧化物庞磁电阻(C MR)薄膜材料、高自旋极化率材料和半金属Husler合金及其单晶材料的制备和功能特性等研究方面,开展了深入系统的研究工作,取得了丰硕的研究成果,通过十几年的努力和积累,目前建立了以自旋电子学材料的制备、微结构和磁结构表征、自旋相关输运性质研究、原理型器件设计为主要发展方向的研究基地和实验平台.过去二十年来,作者所在实验室在以G MR、T MR、C MR等材料体系为发展主线的自旋电子学研究领域,取得了一系列有代表性的研究成果和显著进展,受到国内外同行的高度关注和积极评价,促进了国内外有关自旋电子学材料、物理和器件设计原理的研究工作的开展.文章仅以本实验室最近五年获得的一些有代表性的最新研究进展为例,达到抛砖引玉的目的.1 高性能磁性隧道结材料的制备和性能优化如何在大面积基片上获得均匀优质的磁性隧道结材料是目前磁性隧道结材料制备科学中的关键问题之一,关系到磁性材料能否成功应用于自旋电子器件上.2003—2006年,基于国内现有条件和工艺技术,磁学室相关课题组可在4英寸硅衬底上直接沉积制备出隧穿磁电阻达20%—30%的非晶A l 2O 势垒磁性隧道结,结电阻与面积的积矢(RA )可调控在1—10kΩμm 2左右,磁电阻均匀性的误差可控制在10%以内,可以满足在4英寸衬底上研制MRAM存储单元演示器件的基本要求.利用深紫外光刻方法或者电子束曝光(E BL )方法及微加工制备工艺,并结合真空带磁场的热处理工艺,磁隧道结功能特性已达到:结面积在2μm ×4μm 和6μm ×12μm (光刻)或者30nm ×60n m 和300nm ×600n m (EBL )之间,室温下T MR =50%—80%,结电阻R s ≤10kΩμm 2,反转场≤50Oe,偏置场≥200Oe .如图1所示,我们基于国内现有条件制备的A l 2O 势垒磁性隧道结材料,其中T MR 磁电阻比值室温超过80%,4.2K 超过100%的Co 2Fe 2B /A l 2O /Co 2Fe 2B 非晶磁性隧道结,其性能指标是目前国际上同类A l 2O 势垒磁性隧道结材料中获得的最好结果[13,14].为基于国内现有条件研制和开发MRAM 、磁逻辑器件、自旋晶体管等具有重要应用价值的自旋电子学原理型器件奠定了材料基础.图1 国际上基于非晶A l 2O 势垒且采用不同Fe,Co,N i 2Fe,Co 2Fe,Co 2Fe 2B 等铁磁电极材料制备磁性隧道结材料的发展历程相关课题组还与英国牛津大学Roger .C .C .W ard 教授的课题组合作,利用英方的分子束外延生长设备和中方的微加工制备技术,制备出微米和亚微米长方形或椭圆形的单晶磁性隧道结Fe (001)/Mg O (001)/Fe (001),室温隧穿磁电阻为170%(低温为318%)的单晶磁性隧道结,如图2所示,这样的结果达到国际同类材料的先进水平[日本A I ST 课题组,T MR =188%(低温为247%);法国LP M课题组,T MR =185%(低温为330%)][15—18].研究发现,单晶Fe (001)/Mg O (001)/Fe (001)体系的T MR 温度依赖关系,平行态电阻随温度基本没有变化,而反平行态电阻随温度降低迅速增加.平行态型电导在正负0.4V 范围内基本是平的,但反平行态电导呈现典型的抛物线型偏压依赖关系.基于两电极铁磁无序的温度依赖关系以及它们对自旋相关隧穿的影响,提出一个新模型来描述T MR 比值和电阻的这种温度依赖关系,该模型与实验数据符合得很好.该项工作为今后基于国内条件开展相关Mg O (001)单晶磁性隧道结材料与物理研究,积累了必要的经验和关键技术知识[19].图2 国际上基于单晶Mg O (001)势垒且采用不同Fe,Co,Co 2Fe 和Co 2Fe 2B 等铁磁电极材料制备磁性隧道结材料的发展历程2 FePt 垂直磁记录介质和新型反铁磁钉扎材料的设计和制备FePt 薄膜目前是发展100Gbit/inch 2以上高密度垂直磁记录介质的重要候选材料组成部分之一.降低有序化温度是实现FePt 薄膜材料作为超高密度磁记录介质必须克服的三大难题之一.磁学室研究人员提出并利用相干生长的多层膜中有序-无序转变过程的彼此关联作用,将FePt 薄膜的有序转变温度降低了200度以上,为FePt 薄膜的低温有序化开劈了一条新途径[20].磁学室研究人员在层状反铁磁钉扎材料方面也不断获得重要进展,发现L10有序相CrPt 反铁磁作为钉扎层的交换偏置体系表现出前所未有的温度与化学稳定性,其钉扎截止温度比目前常规反铁磁钉扎材料的最高值高出200度;并通过界面原子层调控使其室温交换偏置作用增强了4倍,达到目前实用反铁磁钉扎体系的最好值,具有很好的稳定性[21].在反铁磁CrPt的基础上,再次研发出了一种拥有更强的交换配置效应、极高的钉扎截止温度且制备过程非常简单的L1相有序结构三元反铁磁钉扎材料(Cr25Mn25)Pt50,比现有常规反铁磁钉扎材料(Mn50Pt50)的钉扎作用几乎大了50%,温度稳定性高出250度,同时该材料是一种与高性能Mg O磁性隧道结所需的高温处理过程(360度或以上)完全一致的反铁磁钉扎材料,可望成为磁电子和自旋电子材料及器件工业中新的重要钉扎材料.3 纳米结构材料体系中自旋散射和翻转长度观测及量子阱共振隧穿效应的研究如何有效地观测自旋翻转的长度(s p in2fli p length)既是自旋电子学中的一个非常重要的基本科学问题,也是人工设计自旋电子学材料结构和研制各种自旋电子学器件的基础.2006年,相关研究人员发展出一种利用纳米尺度的自旋电子学器件有效观测自旋翻转长度可达微米量级的新方法,即通过高质量单势垒和双势垒隧道结的隧穿磁电阻,有效获取自旋翻转的信息,发现在4.2K温度下、位于双势垒隧道结两个双势垒层中间的厚度小于1n m的超薄Cu层中,测出电子自旋翻转的长度可达到1—2μm的量级,这个自旋翻转的长度比Cu层本身厚度大千倍以上,并且这个自旋翻转长度与声子对电子的散射相关(如图3).这种观测方法对各种非磁性金属具有普适性[22].相关研究人员还基于KK R方法的第一性原理计算程序,定量计算研究了自旋阀型双势垒磁性隧道结Fe(001)/Mg O(001)/Fe(001)/Mg O(001)/Fe(001)中的量子阱以及量子阱共振隧穿效应.计算给出,随着双势垒磁性隧道结中间Fe(001)(d n m)自由层厚度d的变化而存在的上百个量子阱态,以及这些量子阱态与偏置电压之间的关系和量子阱共振隧穿下的高隧穿磁电阻效应[23](见图4).上述准确观测和研究自旋翻转长度的方法以及量子阱共振隧穿效应的方法,对解决自旋电子学材料中的重要科学问题,进行自旋电子学异质结构层状功能材料的人工设计,特别是对当前设计和研制磁敏感传感器、磁随机存储器、自旋晶体管和磁逻辑等,具有重要的参考价值.4 锰氧化物电致磁电阻在高密度存储材料方面的应用特性锰氧化物是典型的强关联电子体系,以庞磁电阻效应以及一系列与自旋、轨道、电荷相关的新物理效应引起人们的极大关注.2005年,有关研究人员在经过强电流处理下的单层锰氧化物薄膜中获得了类p2n结行为,正向电阻远远小于反向电阻,偏压为1V时整流比高达1762(见图5).与此同时,薄膜的整流行为强烈依赖于外加磁场,磁场增加整流变弱.相关研究人员还发现,相反极性的电脉冲可以使锰氧化物薄膜电阻在两确定电阻态间可逆切换(见图6).上述单层氧化物薄膜的电致磁电阻特性与导电载流子的库仑阻塞、量子序的变化以及自旋极化电子在界面穿越势垒的输运行为有关,不但具有深刻的物理内涵,同时具有明确的应用前景,在磁场、电场可控新型微电子材料/器件、电阻型随机存储器的设计与研制等方面具有广阔的发展空间,为氧化物电子学等新型材料的实际应用奠定了基础[24,25].5 自旋电子学材料的电子自旋共振谱的研究很多自旋电子学材料,如过渡金属氧化物,由于同时存在电荷、自旋、轨道、晶格等多种自由度的关联与耦合,表现出非常丰富的物理现象,如庞磁电阻、金属-绝缘体转变、电荷/轨道有序等等.电荷/自旋/轨道多种有序度的共存与竞争往往会导致局域的短程有序和相分离.宏观的物性测量难以区分与探测局域的有序与相变,需要利用微观的研究技术与方法.相关课题组研究人员制备了高质量的单晶样品,并利用电子自旋共振(ESR )技术对微观有序和各向异性的敏感性,通过对ESR 谱的共振场、共振线宽与线型、共振强度等参数随温度、角度变化的分析,研究了一系列过渡金属氧化物中长程与短程的自旋/电荷/轨道有序相变、局域的自旋-晶格弛豫、自旋-自旋耦合、自旋-轨道耦合、相分离等等物理问题.实验发现,铁磁共振峰在超过居里温度以上很宽的温区内依然存在,表明在顺磁态存在局域的铁磁耦合并形成Griffiths 相(图7,8).而庞磁电阻效应的发生温区与Griffiths 相的温区相吻合,表明本征的电子相分离与庞磁电阻效应有着密切的关联.此外,还发展了利用电子自旋共振研究层状过渡金属氧化物中磁各向异性和层间耦合的方法.首次实验观察到层状锰氧化物的面内自旋共振谱出现光学模,表明存在反铁磁层间耦合.光学模随温度的变化以及光学模与声学模的相对强度反映了层间耦合随温度的演化[26].上述实验结果和方法表明,电子自旋共振对研究自旋电子学材料中的重要物理问题,特别是对宏观技术难以探测的微观的自旋结构和各向异性,提供了重要的研究方法和手段.6 高自旋极化率材料和铁磁形状记忆合金材料的研究半金属材料的特性在于其能带结构中自旋向上与自旋向下的电子具有不同的导电性质:自旋向上的电子能带呈现金属的导电特性,而自旋向下的电子能带则呈现半导体或绝缘体的特性.Heusler 合金为其特有的高有序结构,成为开发新型半金属材料的重要材料体系.相关课题组研究人员通过快淬甩带方法首次得到了Fe 2CrSi 的高有序L21单相,并通过第一性原理计算和实验测量详细研究了它们的电子结构与磁性.图9给出了Fe 2CrSi 的能态密度图,它表明Fe 2CrSi 是一个很好的半金属材料,其向下自旋能带在费米能级处有一个能隙,而在向上自旋有态密度峰,这使费米能级处的传导电子有完全的自旋极化.计算表明,Fe 2CrSi 有2μB /f .u .的自旋磁矩,与5K 下的饱和磁矩2.05μB /f.u .符合很好.其居里温度为520K,远高于室温.同时能带计算表明,Fe 2CrSi 的自旋极化率对于晶格畸变与原子反占位不是十分敏感,这有利于实际应用[27].图9 半金属材料Fe 2CrSi 的电子结构表明它是一个很好的半金属材料,费米能级处的传导电子有完全的自旋极化2006年初,人们在N i M n I n 掺Co 后观察到了由磁场诱发的马氏体相变.这是首次在数特斯拉磁场的范围内观察到马氏体相变温度的明显移动,也是铁磁形状记忆材料领域的研究热点.相关课题组研究人员采用提拉法和电弧炉熔炼的方法分别制备了高质量的N i 50Mn 50-x I n x 系列单晶和多晶样品.在单晶N i 50Mn 34I n 16中得到了由磁场诱发相变带来的高达80%的磁电阻[28](见图10).图10 在单晶N i 50Mn 34I n 16中观测到的由磁场诱发相变带来的高达80%的磁电阻7 磁性金属多层膜超高灵敏度反常霍尔效应半导体霍尔器件已经广泛用于传感器中,但是半导体的高电阻率、低工作频率(MHz )、高的温度系数以及复杂的制备工艺都阻碍其进一步发展.金属器件能很好地克服这些问题,不过金属的载流子浓度很高,其正常霍尔效应非常微弱.磁性金属的反常霍尔效应(EHE )较正常金属的数值大3个数量级以上,但其磁场灵敏度仍大大低于半导体霍尔器件的对应值.相关课题组研究人员一方面利用了Pt 基磁性多层膜界面附近非常有效的自旋-轨道散射,获得较高的霍尔电阻率;另一方面利用纳米多层膜的可调的表面或界面各向异性,通过调节各层膜厚和周期数来调节界面各向异性和形状各向异性,从而改变饱和场的大小,最终大大增加了霍尔斜率以及灵敏度.具体地说,多层膜由厚度小于0.5n m 的磁性金属层和厚度为1nm 左右的Pt 层交替周期生长而成.对于[CoFe (2.8!)/Pt (12!)]3,在室温下,霍尔斜率达到545μΩc m /T,灵敏度可以达到1200V /A T,这一结果使反常霍尔效应传感器的磁场灵敏度首次超过半导体霍尔器件的灵敏度.进一步,采用CoFe /Pt 和Fe /Pt 多层膜的组合结构,通过调节膜厚和周期数,还可以得到适用于不同磁场范围(从50Oe 到1500Oe )的霍尔器件[29].图11 [CoFe(2.8!)/Pt(12!)]3多层膜的霍尔斜率达到545μΩc m/T,灵敏度可以达到1200V/AT8 新型纳米环磁随机存储器原理型器件的设计和研制基于磁性隧道结作为存储单元的磁随机存储器件(MRAM),是国际上近十年发展自旋电子学器件的最重要几个目标之一[30].鉴于MRAM具有断电情况下的数据非易失性、高集成度、高速读取写入的能力、重复可读写次数近乎无穷大的稳定性、功耗小、优异的抗辐照能力,成为新一代随机存储器(RAM芯片)的最佳研发目标.有无能力和实力自主研制MRAM,已成为当前衡量一个国家信息和功能材料及纳米微加工技术发展水平是否处于先进水平的重要标志之一.鉴于MRAM在计算机科学、信息科学和工业、民用、军事以及国防等方面的应用重要性,近十年研制磁随机存储器件(MRAM)一直是自旋电子学材料和科学技术领域中的一个重点课题.2002—2006年相关课题组研究人员首先设计、制备出了室温高性能的100nm左右的小尺寸环状阵列式磁性隧道结;其次在小于正负1mA的电流反复驱动下,获得了T MR为20%—50%的接近长方型的电流驱动的磁电阻T MR2I或R2I曲线,从物理原理上证实了极化电流驱动MRAM的可靠性;最后研制出一种基于“1个纳米环状磁性隧道结+1个晶体管”结构的新型4×4bit MRAM原理型演示器件,并成功实现了纳米环状磁性隧道结存储单元的读写操作和演示,证实了该项设计的合理性和实用性,这是MRAM原理型器件研制的一个有代表性的重要进展[31,32].利用纳米环状磁性隧道结存储单元及自旋极化电流驱动的MRAM设计和工作原理,可以克服目前常规MRAM设计上的缺陷和发展障碍,并在现有半导体工艺技术的基础上,有望实现密度和容量可达1—4Gbit/inch2以上的MRAM器件产品,并可以进一步得到提高.图12 (a)在一个自旋极化脉冲DC电流驱动下得到的内外径分别为50nm和100nm的纳米环状磁性隧道结的T MR2I和R2I 曲线(D为直径,W为宽度,T为温度,Rp为平行状态电阻,T MR为隧穿磁电阻,Ic为临界电流);(b)采用纳米环状磁性隧道结存储单元的2×2bit MRAM原理结构示意图9 结束语对新型自旋电子学材料、物理和原理型器件的研究,不仅具有重大基础科学研究价值,而且由于其重要的功能特性和新技术应用特性,已超过十年连续推动了超高密度存储、微机电传感系统和自旋电子器件等领域的技术变革和飞速进步.该研究领域不但是目前国际上磁学、磁性材料和磁电阻功能材料及器件研究领域里的热点,也是整个凝聚态物理领域的重要研究方向.积极探索新型自旋电子学功能材料,并以新材料为重点开展广泛的磁特性、电子自旋、磁电、磁热、磁光效应和自旋量子调控等方面的应用基础研究,探索微观电子结构、自旋相关的微磁结构、交换耦合、表面和界面效应等对材料功能特性的影响,可以引领新型自旋电子学原理型器件的研制.新型的自旋电子学元器件及其构成的系统,对推动工业和信息产业发展,提高国民经济中低能耗-可环保-高效益产业链比例成分,改善国民文化。

Interpersonal interaction(人际交往)-2023年中考英语话题复习课件

Interpersonal interaction(人际交往)-2023年中考英语话题复习课件

say(said,said)说;讲
词汇导图

汇 过
Invite邀请& Ask请求
关 answer回答
call 打电话
accept 接受
attend 出席
receive接待
reply答复
express 表达 interview采访
decision 决定 report报道
require需求
promise 承诺
18._l_ea_v_e__o_u_t_____忽略;
不提及;不包括
应对建议 23.b_e_l_ie_v_e__in_________信任;信赖 24.w__o_r_k_o_u_t_________成功地发展;解决 25.d_e_a_l_w__it_h_________应对;处理 26.t_u_r_n__d_o_w_n________拒绝
词汇导图

汇 过
Interpersonal relationship 人际关系
关 parents 父母
friend朋友
alone独自;单独
single单身的
personal个人的;私人的
private私人的;私密的
friendship友谊;友情
neighbor邻居 stranger陌生人 member成员;分子 guest客人;宾客 enemy敌人;仇人 *interviewer面试官 *interviewee接受面试者
and health. It can also help people to learn skills in interpersonal (人际之间的)
4._c_o_m_m__u_n__ic_a_t_i_o_n_. Most of the time, people will not use their names, and will

社会互动英语

社会互动英语

社会互动英语以下为您提供 20 个关于“社会互动”的相关内容:---**一、英语释义**Social interaction: The process of communication, exchange, and mutual influence among individuals or groups in a society.**二、短语**1. social interaction skills 社会互动技能2. face-to-face social interaction 面对面的社会互动3. online social interaction 在线社会互动4. positive social interaction 积极的社会互动5. negative social interaction 消极的社会互动6. enhance social interaction 增强社会互动7. promote social interaction 促进社会互动8. limit social interaction 限制社会互动9. avoid social interaction 避免社会互动10. facilitate social interaction 促进社会互动11. lack of social interaction 缺乏社会互动12. rich social interaction 丰富的社会互动13. meaningful social interaction 有意义的社会互动14. daily social interaction 日常社会互动15. workplace social interaction 工作场所的社会互动**三、单词**1. interaction [ˌɪntərˈækʃn] n. 互动;相互作用2. communication [kəˌmjuːnɪˈkeɪʃn] n. 交流;通讯;传达3. exchange [ɪksˈtʃeɪndʒ] n. & v. 交换;交流4. influence [ˈɪnfluəns] n. & v. 影响;有影响5. connection [kəˈnekʃn] n. 联系;连接6. relationship [rɪˈleɪʃnʃɪp] n. 关系;联系7. contact [ˈkɒntækt] n. & v. 接触;联系8. engagement [ɪnˈɡeɪdʒmənt] n. 参与;约定;订婚9. interactional [ˌɪntərækʃəˈnəl] adj. 相互作用的;互动的10. communicative [kəˈmjuːnɪkətɪv] adj. 爱说话的;健谈的;交际的**四、用法**1. “interaction” 常用作不可数名词,表示“互动;相互作用”,如:“The interaction between the two groups was very productive.”(这两个小组之间的互动非常富有成效。

Gate_of_Heaven

Gate_of_Heaven

Culturehinese CultureC82 | China Book Internationalthree ears form an equilateral triangle, creating a circular pattern that complements the motif. This ingenious design seamlessly unifies the dynamic scene, bringing it to the center of vision. Surrounding the double-layered lotus pattern are eight red-garbed apsaras dancing in the clouds, positioned in different directions, their fluid and elegant lines breaking the central stable layout, as if the entire lotus revolves with the flying apsaras. The caisson’s core is adorned with neatly arranged triangular drapes, representing the outermost decoration. The precision and varying colors of these drapes exemplify the traditional Chinese concept of unity in diversity. The overall pattern moves beyond the simplicity of the Northern Dynasties, with extensive use of cold tones of stone green and blue, interspersed with touches of red and white, creating a strong visual impact through complementary and contrasting colors, thereby enhancing its artistic appeal. The motif of the three rabbits often appears as the main pattern in Sui Dynasty caisson ceilings, with remarkably similar designs found in Mogao Caves 407, 406, and 420. Various-sized beads from Western Asia are meticulously arranged around and diagonally to thecaisson pattern, visually enhancing its brightness and depth.Sui Dynasty caisson patterns exhibit significant changes in pictorial structure, thematic content, decorative techniques, and color application compared to the Northern Dynasties,adding a sense of lively natural beauty to the dignified simplicity. Simultaneously, they laid a solid foundation for the flourishing of Tang Dynasty caisson art.Flourishing Period: Dazzling IntricacyIn the Tang Dynasty, with increased interaction between the Central Plains and the Western Regions, new developments emerged in Dunhuang caisson patterns, characterized by complexstructures, intricate decorations, and lavish colors.Early Tang caisson patterns,while maintaining the structural framework of the Sui Dynasty, began to subtly evolve, notably with a broader central area, fewer decorative layers on the periphery, and a focus onhighlighting the central motif. The central motifs typically featured grape pomegranate patterns, pomegranate lotus patterns, and lotus patterns. The lotus pattern remained the mainstream caisson motif of this period, with its diverse forms leading to different types like the flat-petal lotus pattern, peach-shaped petal lotus pattern, and irregular lotus pattern caissons. The pomegranate and grape patterns come from exotic lands. Thepomegranate or grape lotus caisson patterns are arranged in a “cross” or “X” shape. The realistic grape patterns are often used with lotus patterns. The gaps are filled with small lotus flowers, cloud patterns,A caisson ceiling with three rabbits and lotus flower patterns, Cave No. 407, Sui Dynasty。

【word】考虑范德华力曲率效应的双壁碳纳米管外压屈曲

【word】考虑范德华力曲率效应的双壁碳纳米管外压屈曲

考虑范德华力曲率效应的双壁碳纳米管外压屈曲第26卷第4期2005年12月力学季刊CHINESEQUARTERL YOFMECHANICSVOl,26No,4Dec.2005考虑范德华力曲率效应的双壁碳纳米管外压屈曲钱浩,徐凯宇(上海市应用数学和力学研究所.上海大学力学系,上海200444)摘要:针对双壁碳纳米管外压屈曲问题,研究了层间范德华力的曲率效应对临界外压的影响.应用弹性双层圆柱壳模型,考虑层间范德华力不仅与层间距有关而且与挠度曲率的变化有关,导出了外压屈曲临界压力解析公式.计算得出在不同半径,不同长细比下,外压屈曲临界压力的数值结果,并与经典壳的结果和忽略范德华力曲率效应的结果做了比较.结果显示,对于小半径的双壁碳纳米管曲率效应对外压屈曲有效明显的影响.关键词:双壁碳纳米管;屈曲;范德华力;曲率效应中图分类号:0343.9文献标识码:A文章编号:0254—0053(2005)04—664—5CurvatureEffectofV anDerWaalsForcesonBucklingofDouble—Walled CarbonNanotubesunderExternalPressureQL4NHao,XUKai—yu (ShanghaiInstituteofAppliedMathematicsandMechanics. DepartmentofMechanics,ShanghaiUniversity,Shanghai200444,China)) Abstract:ThecurvatureeffectsofinterlayervanderWaals(vdW)forcesonexter nalpressure.inducedbucklingofadouble.walledcarbonnanotubes(DWNTs)werestudied.Theanal ysiswasbasedonadouble elasticshellmodelandassumedthattheinterlayervdWpressureatapointbetwe entheinnerandouter tubesdependsnotonlyonthechangeofinterlayerspacing,butalsoonthechange ofthecurvaturesofin-nerandoutertubesatthatpoint.Anexplicitformulawasobtainedfortheexternal bucklingpressureofDWNTs.Thecriticalexternalpressurewascalculatedforvariousinterna1.to.e xternalpressureratioswithvariousradii.withdetailedcomparisontotheclassicalresultsandtheresultswhi chneglectthecurvatureeffectsoftheinterlayervdWforces.Itshowedthatthecurvatureeffectsplayasignificantroleinbuckling problemsunderexternalpressureforsmallradiiDWNTs.Keywords:double-walledcarbonnanotubes;buckling;vanderWaalsforce;cu rvatureeffect自1991年首次发现碳纳米管以来,碳纳米管因其优异的力学,电磁学和化学性能被誉为最有发展前景的材料.近年来,在高外压条件下碳纳米管的各种性能是理论界关注的热点研究课题j.有结果表明,碳纳米管的屈曲有可能会导致其在电导率方面的突变.碳纳米管力学性能的研究常用实验,分子动力学模拟,修正的连续介质力学等方法.它们各有自己的优缺点.其中通过修正的连续介质模型研究碳管的力学性能具有成本低,高效的优点.在研究屈曲问题时,大多基于弹性圆柱壳Donnell模型.双壁(多壁)碳纳米管区别于经典弹性壳之处主要在于它的多层嵌套结构以及管问的范德华力的相互作用.Ru提出相邻层间范德华力与层间距成线性关系的模收稿日期:2005—04—30基金项目:上海市重点基础研究项目(04JC14034);上海市重点学科建设项目资助(Y0103)作者简介:钱浩(1982一),男.上海人,硕士研究生.研究方向:纳米力学.第4期钱浩,等:考虑范德华力曲率效应的双壁碳纳米管外压屈曲型,并在外压屈曲,振动等问题n..中得到的结果与实验或分子动力学结果吻合较好.He等在Ru的基础上提出了更为精致的模型,给出了层间范德华力系数和碳管半径之间的关系式,并考虑了不相邻层间的范德华力.Kiang等.通过实验观测到多壁碳纳米管管壁曲率的变化对层间范德华力的影响,Feng等u和Qian等基于此现象提出了考虑曲率对范德华力影响的模型,讨论了曲率效应对碳纳米管轴压屈曲的影响.本文应用考虑曲率效应的范德华力模型,研究双壁碳纳米管受外界侧向压力时的屈曲临界载荷.1力学模型和临界压力考虑受侧向外压双壁碳纳米管的屈曲问题,使用考虑层间范德华作用的双层圆柱壳模型(如图1).分别用下标1和2表示内管和外管的物理量.设圆柱壳半径为R厚度(碳管名义厚度)t(名义)杨氏模量E,壳的有效弯曲刚度D用(,)分别表示轴向和环向坐标,P,P分别表示外管对内P管和内管对外管的范德华力作用.则双壁碳纳米管受外压屈曲的控制方程为pl2+筹嘉一可Etl,D=+F{o2,~2一Et2(1)图1外压作用双壁碳纳米管的圆柱壳模型其:嘉+击嘉愀普拉斯C…ylindricalshel…lmodelforadoubl—u甜w,为两管沿法线方向的挠度,F是单位长度上轴向和环向薄膜力,由平衡方程可得关系F¨=一PR=一PR(k:1,2)(2)其中P为碳管屈曲前一刻作用在第k管上的法向净压力(层间范德华力和外界压力的合力),P为法向净压力与外压的比值,P为外压.外管对内管和内管对外管的范德华力作用近似存在作用力与反作用力的关系p2l一Pl2(3)层间范德华力与层间距有关,考虑到作用对应点附近邻域曲率变化对范德华力的影响.因此可以假设范德华力与挠度的变化和挠度曲率的变化成线性关系n.(]+cEw~~vl][+](4)其中范德华系数C可以通过对L—J模型建立的层间势能求二阶导得到Hc:—32—0—x—er—g/c~m2(d:1.42×10-8cm)(5)0.16d’’一.Qian等使用Kiang等的试验现象和数据估算出范德华曲率系数n.Cl=一C(0.2nm)兰一4kg/s(6)当长为L的碳纳米管受简支边约束时,其屈曲后的挠度为=A,sicosnO(kWsinCOSnu=-1,2)(7)A—一(,Z)(/)力学季刊第26卷其中轴向半波数m≥1,环向波数≥2,A是买数.双壁碳管的内外层的厚度和芎曲刚度利l司,记为tl:t=t,D=D=D.将碳管屈曲模态函数(7)及层问范德华力方程(4)代入屈曲控制方程(1)中,整理后得到[?P]A一[(c+是)c脚zIAz—o,一R1J2[(c+是)J]A1+[2?P]A=.其中;+c+惫¨丽Et()(9)B=+爱(c+是)一爱cJ.+Et()c.,()+(击)=()+(黉).Ⅲ,碳纳米管屈曲时.方程M[(m,),P](A,A)=0存在非零解,即系数行列式等于零:detM=0,得到关于求解外压P的二次方程,从中可导出屈曲模态(m,)对麻的屈曲外压P=2P+箍2P一2√[等P一P]+PP(c+][(c+]2L坨J订r2L\.R/Ⅵ儿\.R;/ⅥJ (12)式中法向净压力与外压的比值p俺由前屈曲静力分析得到,求解过程与Wang等的不同之处在于前屈曲分析中也考虑了曲率项对层问范德华力的影响,结果为p=—R—干—R—j{乏REtR,p.=—R_FR吾;笔REtRc3,(1+2)(c1+cR12)+2’.(1+2)(c1+cR12)+2u通过c与c的关系式(6),可以分析得到通常在碳纳米管可能的尺寸(R&gt;0.2nm)下,公式(12)根号内的式子为正;当根号前符号取负号时,得到的外压P为正值.因此公式(12)为方程的最小正解.真实的屈曲临界外压为可能屈曲模态(Ⅲ,)(川≥1,≥2)对应的屈曲外压中最小的一个正值,此时对应的模态(Ⅲ,)为真实的屈曲模态.真实的屈曲临界外压力是碳纳米管半径,长细比(长度/外半径)的函数.当碳管半径较大时,R≈R,并且P坨≈P心≈0.5,式(12)退化为经典弹性柱壳副或单壁碳纳米管屈曲临界外压力值的两倍.2数值计算和讨论这里用数值结果显示曲率效应对双壁碳纳米管外压屈曲的影响.所取的材料常数同Wang等H,取Et=360J/m,D=0.85eV,t=0.34nm.图2显示了屈曲临界外压忽略曲率效应引起的误差,即本文模型结果与Ru模型结果的比较.可见,碳管在小半径,小长细比下,曲率效应对屈曲临界外压的影响较大.这是因为小半径,小长细比下,屈曲发生时,碳管的屈曲环向和轴向波长较小,曲率较大.图中误差关于长细比的曲线不连续是由于模态(m,)不连续引起的.图3对双壁碳管的屈曲外压值与单壁碳管的2倍结果做了比较,表明当碳管半径较大时,双壁碳管的结果可由单壁碳管结果的2倍来近似得到.与轴压屈曲问题不同,在侧压屈曲中,前屈曲的分析对临界外压有较大影响.图4给出了屈曲前法向净压力与外压的比值P俺.表明半径较小时,外压不能很好的通过层问范德华力传至内管,前屈曲时外压主要由外管承担.但半径大于4nm时,在前屈曲中内外管几乎均匀承担外压.假设前屈曲时外压全由外第4期钱浩,等:考虑范德华力曲率效应的双壁碳纳米管外压屈曲667 一簧5-1015长细比(IJR2)图2临界外压忽略曲率效应引起的误差Fig.2Therelativeerrorsofthecriticalexternal pressureduetoneglectingthevdWinteractioncurvaturecoefficient一jIIli翟长细比(UR2)图3单壁碳纳米管屈曲外压值的两倍相对精确解的误差Fig.3Therelativeerrorsofthecriticalexternal pressureusingthedoubleresultofsingle-wallednanotubes管承担或内外管均担外压两种情况,它们对屈曲的影响见图5.可见侧压屈曲分析中,前屈曲分析不能忽略.内管半径(nm)图4屈曲前净压力分布Fig.4Netpressuredistributionpriortobuckling3结论一jIIli翟长细比(UR2)图5临界外压忽略前屈曲分析带来的误差Fig.5Therelativeerrorsofthecriticalexternal pressureduetoneglectingthepre-bucklinganalysis基于弹性圆柱壳Donnell模型,考虑层间范德华力不仅与层间距有关而且与挠度曲率的变化有关,研究了双壁碳纳米管的屈曲临界外压值.在小半径,小长细比下,曲率效应对屈曲临界外压的影响较大.结果还表明侧压屈曲分析中前屈曲分析的必要性.考虑曲率效应的范德华作用模型,同样寄期望于其在多壁碳纳米管侧压屈曲分析,组合压屈曲分析以及碳纳米管变形过程中伴随比较大曲率变化时力学问题的分析.参考文献:E1][2][3]E4][5]BaughmanRH,ZakhidovAA,deHeerWA.Carbonnanotubes.theroutetoward applications[J].Science,2002,297:787—792.TangDS,BaoZX,WangLJ,ChenLC,SunLF,LiuZQ,ZhouWY,XieSS.Theelec tricalbehaviorofcarbonnanotubesunderhighpressureI-J].JPhysChemSolids,2000,61:1175—1178..ThomsenC,ReichS,JantoljakH,LoaI,SyassenK,BurghardM,DuebergG,Rot hetSS.RamanspectroscopyODsingle-andmulti- wallednanotubesunderhighpressure[J].ApplPhysA,1999,69:309—312.PetersMJ,McNeilLE,LuJP,KahnD.Structurephasetransitionincarbonnanot ubesbundlesunderpressure~J].PhysRevB,2000,61:5939—5944.QianD,WagnerGJ,LiuWK,Y uMF,RuoffRS.Mechanicsofcarbonnanotubes~ J].ApplMechRev,2002,55:495—533.∞∞∞加加0∞挝g出蠹坷!日668力学季刊第26卷[6]RuCQ.EffectofvanderWaalsforcesonaxialbucklingofadoublewallcarbo nnanotube[J].JApplPhys,2000,87:7227—7231.[7]RuCQ.Effectivebendingstiffnessofcarbonnanotubes[,J]PhysRevB,2000 ,62:9973—9976..[8]HeXQ,KitipornbchaiS,LiewKM.Bucklinganalysisofmulti—walledcarb onnanotubes:acontinuummodelaccountingforvander Waalsinteraction[,J].JMechPhysSolids,2005,53:303—326.E9]WangCY,RuCQ,MioduchowskiA.Elasticbucklingofmultiwallcarbonna notubesunderhighpressure[,J].JNanosciNanotechnol,2003,3:199—208.[10]RuCQ.Elasticmodelsforcarbonnanotubes[,A].NalwaHS.Encyclop#dia ofNanoscienceandNanotechnology[C].V o1.2,American ScientificPublishers.2004.731—744.El1]KiangCH,EndoM,AjayanPM,DresselhausG,DresselhausMS.Sizeeffe ctsincarbonnanotubes[J].PhysRevLett,1998,81:1869—1872.[12]FengJT,XuKY,RuCQ.CurvatureeffectofinterlayervanderWallsforceso naxialbucklingofadouble.walledcarbonnanotube_J].IntJStructStabilDyn,2004,4:515—526.[13]QianH,XuKY,RuCQ.Curvatureeffectsonaxiallycompressedbucklingof asmall—diameterdouble.walledcarbonnanotubeEJ].Int JSolidsStruct,2005,42:5426—5440.[14]WangCY,RuCQ,MioduchowskiA.Axiallycompressedbucklingofpress uredmultiwallcarbonnanotubes[J].IntJSolidsStruct,2003,40:3893—3911.[15]陈铁云,陈伯真.弹性薄壳力学[M].湖北:华中工学院出版社,1983.。

Unit2RoadstoeducationReadingandinteractionAnexperi

Unit2RoadstoeducationReadingandinteractionAnexperi
often cause trouble ...
Can unteachable students be turned into teachable students?
teacher’s role
• Schoolteacher of the Year
P3
P1
P4
P2
someone who takes part in an activity
• Name: _______________ • Age: _________________ • Work experience: _______________
eight years ago; ________________now; Award: ______________________
Open space, close to nature, free to explore
Relaxed, creative, active in mind
vs.
Limited/closed space Less movement
Boring, nervous, sleepy
Assignments
1. Finish the summary in the textbook on Page 26. 2. Listen to the audio recording of the text and read the text out loud at least twice.
Activity 3
Students’ They p_o_i_n_t_ed__a_t_ They
Activitie each other and said __re_a_d__a_b_r_ie_f_q_u_o_t_e

氮磷钾配施对茶叶品质的影响

氮磷钾配施对茶叶品质的影响

氮磷钾配施对茶叶品质的影响田甜;韦锦坚;赵德恩;梁伟埃;文金华【摘要】以茶叶品种金牡丹为试验材料,采用二次饱和D-最优设计(311)进行盆栽试验,对茶叶主要品质指标进行2次回归拟合,探求茶叶适宜的氮磷钾施用量和配比.结果表明:氮磷钾配施对茶叶各品质指标均有显著影响,且对于游离氨基酸、茶多酚和咖啡碱含量,氮素影响最大,磷次之,钾最小;对于水浸出物,氮素影响最大,钾次之,磷最小.单因素施肥效应分析表明,茶叶各品质指标均随氮、磷、钾施用量的增加而增加,达到最高值后,又随施用量的增加而降低.氮磷钾双因素施肥效应分析表明,氮钾互作对茶叶水浸出物和游离氨基酸总量有显著影响,磷钾互作对茶叶游离氨基酸总量影响显著,氮磷互作对茶多酚和咖啡碱含量有显著影响.本试验条件下,茶叶优质的氮、磷、钾施肥方案为N 0.55 g/(kg·土), P2O50.24 g/(kg·土), K2O 0.22g/(kg·土),适宜的氮磷钾施用比例约为N:P2O5:K2O=2.75:1.2:1.1.%Tea cultivar Jinmudan was pot cultured in a quadratic saturation D-optimal design (311) and a quadratic regression fitting of main quality indexes of the tea was made to find optimal application rates of N, P and K and their ratio in pot culture of the tea. The results showed that combined application of N, P and K had significant effect on the quality of tea. N element showed the highest effect on free amino acids, tea polyphenols and caffeine, followed by P and then K. N element also had the highest impact on the water extract, followed by K and then P. Single factor fertilizer experiment showed that the quality of tea increased with the application rate of N, Por K, and then, after reaching the highest value, decreased with an increase in application rate of N, P or K. Double factor fertilizer experiment showedthat the N and K interaction, P and N interaction and N and P interaction had significant effects on the water extract and total free amino acid content of the tea, on the total free amino acid content of the tea, and on tea polyphenols and caffeine, respectively. Under the condition of this experiment, it was concluded that the optimal rates of N, P, K fertilizer applied to the tea was N 0.55 g/kg, P2O50.24 g/kg, K2O 0.22 g/kg, with an appropriate proportion of N, P and K being N: P2O5: K2O=2.75: 1.2: 1.1.【期刊名称】《热带农业科学》【年(卷),期】2018(038)004【总页数】10页(P36-45)【关键词】氮磷钾配施;茶;品质【作者】田甜;韦锦坚;赵德恩;梁伟埃;文金华【作者单位】广西南亚热带农业科学研究所广西龙州532406;广西南亚热带农业科学研究所广西龙州532406;广西民生中联检检测有限公司广西南宁530000;广西民生中联检检测有限公司广西南宁530000;广西民生中联检检测有限公司广西南宁530000【正文语种】中文【中图分类】S571.1;S606+.2茶叶作为桂西南重要的经济作物,已经成为当地经济的重要支柱和农民收入的主要来源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :n u c l -t h /0410005v 1 1 O c t 2004n-p Interaction Effects on the Double Beta Decay NuclearMatrix Elements for Medium Mass NucleiP.K.Raina and A.Shukla Department of Physics and Meteorology,IIT Kharagpur-721302,India P.K.Rath,B.M.Dixit,K.Chaturvedi,and R.Chandra.Department of Physics,University of Lucknow,Lucknow-226007,India S.K.Dhiman and A.J.Singh.Department of Physics,H.P.University,Shimla-171002,India.Abstract The quality of HFB wave functions are tested by comparing the theoretically calculated results with the available experimental data for a number of spectroscopic properties like yrast spectra,reduced B(E2)transition probabilities,quadrupole moments and g-factors for the nuclei involved in 2νββdecay.It is observed that the np interactions vis-`a -vis the deformations of the intrinsic ground states of medium mass nuclei play a crucial role in the fine tuning of the nuclear matrix elements,M 2ν.It is well established by now that the implications of nuclear ββdecays are far reaching in nature in general.0νββdecay in particular is one of the very rare promising processes to test the physics beyond the standard model (SM)of fundamental particles.These aspects of nuclear ββdecay have been excellently elaborated in a number of review articles over the past years [1-8].The 2νββdecay,a second order process of weak interaction that conserves the lepton number exactly,is allowed in the SM.The half life of 2νββdecay is a product of accurately known phase space factor and appropriate nuclear transition matrix element M 2ν.The half lives of 2νββdecayhave been already measured for about ten nuclei and the values of M 2νcan be extracted directly.Consequently,the validity of different models employed for nuclear structure calculations can be tested by calculating the M 2ν.It is observed that in all cases the 2νββdecay matrix elements are sufficiently quenched.The main motive of all the theoretical calculations is to understand the physical mechanism responsible for the suppression of the M 2ν.The M 2νis calculated mainly in three types of models.One is the shell model and its variants.The second is the quasiparticle random phase approximation (QRPA)and extensions their of.The third type of models is classified as the alternative models.The details about these models -their advantages as well as shortcomings -have been discussed excellently by Suhonen and Civitarese [5]and Faessler and Simkovic [6].All the nuclei undergoing ββdecay are even-even type.Hence the pairing degrees of freedom play an important role.Moreover,it has been conjectured that the deformation can play a crucial role in ββdecay rates.Hence it is desirable to have a model that incorporates the pairing and deformation degrees of freedom on equal footing in its formalism.For this purpose the Projected Hartree-Fock-Bogoliubov (PHFB)model is one of the most natural choices.Coincidentally,most of the ββdecaying nuclei fall in medium mass region.The success of the PHFB model in explaining the observed experimental trends in this mass region has motivated us to apply the PHFB wave functions to the study of nuclear ββdecay as well.The mass region A ≈100provides us with a nice example of shape transitions [9],where,at one end,nuclei can be described in terms of shell model wave functions involving a small number ofconfigurations and,at the other end of this region,wefind good evidence of rotational collectivity. These nuclei lie between doubly magic132Sn and the strongly deformed100Zr,near which the structural changes are rather rapid with the addition of protons and neutrons.In the past there have been many attempts,[10-15]to explore the factors responsible for the structural changes in this mass region.Federman and Pittel[14]computed the deformation energy in the framework of Hartree-Fock-Bogoliubov(HFB)theory in conjunction with the surface delta interaction(SDI),suggesting that the neutron-proton(n-p)interaction in the spin-orbit partner(SOP)orbits-1g9/2and1g7/2in this case may be instrumental vis-`a-vis the onset of deformation in Mo isotopes with A>100.A systematic study of the behavior of the low-lying collective states of neutron-rich even Cd, Pd,Ru,and Mo isotopes has lead to the conclusion that these structural changes are related to the exceptionally strong n-p interaction in this region.It has also been observed that the n-p interactions among the SOP orbits have a deformation producing tendency and the systematics of low-lying states are intricately linked with the nature of n-p interaction.The sensitivity of the yrast spectra and the transition charge densities(TCD)to the neutron-proton interaction strength has lead to thefixing of these strengths very accurately and has been demonstrated[15]through the examples of110Cd and114Cd.We have adopted this method for fixing the p-n strength of QQ interaction by looking at the spectra of2+state of the nuclei involved inββdecay.A large number of theoretical as well as experimental studies of2νββdecay have already been done forβ−β−of96Zr,100Mo,110Pd,128,130Te nuclei and e+ββ(β+β+,β+EC and ECEC)in case of96Ru,106Cd,124Xe and130Ba nuclei over the past few years with more emphasis on100Mo and106Cd cases.Theββdecay is not an isolated nuclear process.The availability of data permits a rigorous and detailed critique of the ingredients of the microscopic models used to provide a description of these nuclei.We have studied the2νββdecay not isolatedly but together with other observed nuclear phe-nomena.This is in accordance with the basic philosophy of nuclear many body theory,which is to explain all the observed properties of nuclei in a coherent manner.Hence as a test of the reliability of the wave functions,we have calculated the yrast spectra,reduced B(E2)transition probabilities, static quadrupole moments and g-factors and compared with the available experimental data.The theoretical formalism to calculate the half life of2νββdecay mode has been given by Haxton and Stephenson[1],Doi et al[2,3]and Tomoda[4].Very brief outlines of the calculation of nuclear transition matrix elements of theββdecay in the PHFB model are presented here. Details of expressions used in calculation of spectroscopic properties can be found in Dixit et al [16].The half-life of2νββdecay for0+→0+transition is given byT2ν1/2(0+−→0+) −1=G2ν|M2ν|2(1) whereM2ν= N 0+ στ+ 1+N 1+N στ+ 0+E N −(M I+M F)/2=−2M2νGTM2νGT=14 αβγδ αβ σ1.σ2τ+τ+ γδ εη 1+F(ν)Z,N(θ)f(ν)Z−2,N+2 −1εα(f(ν)Z−2,N+2)εβ× 1+F(π)Z,N(θ)f(π)Z−2,N+2 −1γη(F(π)Z,N)ηδsinθdθ(5) wheren J=π{det[1+F(π)(θ)f(π)†]}1/2×{det[1+F(ν)(θ)f(ν)†]}1/2d J00(θ)sin(θ)dθ(6)andn(Z,N),(Z−2,N+2)(θ)={det[1+F(π)Z,N (θ)f(π)†Z−2,N+2]}1/2×{det[1+F(ν)Z,N(θ)f(ν)†Z−2,N+2]}1/2(7)Theπ(ν)represents the proton(neutron).PHFB calculations are summarized by the coeffi-cients(U im,V im)and C ij,m and their matrices(F N,Z(θ))αβand(f N,Z).The details can be found in reference[16].In the present calculations we treat the doubly even nucleus76Sr(Z=N=38)as an inert core and the valence space is spanned by the orbits1p1/2,2s1/2,1d3/2,1d5/2,0g7/2,0g9/2and0h11/2 for protons and neutrons.The set of single particle energies(SPE’s)but for theε(0h11/2)which is slightly lowered,employed here is same as used in a number of successful shell model as well as variational model[10-16]calculations for nuclear properties in the mass region A=100.The effective two-body interaction is the PPQQ type[17].Table1.Variation in excitation energies in MeV of Jπ=2+,4+and6+yrast states for100Mo and100Ru nuclei with change inχpn keepingfixed G p=-0.30MeV,G n=-0.20MeV andε(0h11/2)=8.6MeV.Nucleusχpn0.018260.018660.019060.019460.01986Exp.[21]χpn0.017580.017980.018380.018780.01918comparable to those suggested by Arima on the basis of an empirical analysis of the effective two-body interactions[20].Table2.Experimental half-lives T2ν1/2,and corresponding nuclear matrix elements M2ν,along with the theoretical values in different models for0+→0+2νββdecay of100Mo.The numbers corresponding to(a)and(b)are calculated for g A=1.25and1.0respectively.ExperimentRef Projects T2ν1/2|M2ν|(1018yrs)[22]UC-Irvin 6.82+0.38−0.53±0.68a)0.125+0.012−0.009[24]SRPA(WS)0.05930.474.3[23]NEMO9.5±0.4±0.9a)0.106+0.008−0.007[25]SU3(DEF)0.1089.0922.2 [8]Average8.0±0.7Mode†Ref Model|M2ν|(T2ν1/2)†a)b)[27]>2.4×1020∗∗[28]>1.0×1019∗[29]>9.2×1017[27]>4.1×1020[28]>0.66×1019∗[29]>2.6×1017ECEC[31]PHFB0.23811.2428.42 1020yrs[33]SU(4)0.19317.0042.04[24-26].In Table2,we have compiled some of the latest available experimental and the theoretical results along with our calculated M2νand the corresponding half-life T2ν1/2.We have used a phase space factor G2ν=9.434×10−18yr−1given by Doi et al[2]and an energy denominator E d= 11.2MeV given by Haxton et al[1].In column4of Table2,we have presented the M2νextractedfrom the experimentally observed T2ν1/2using the phase space factor given above.The phase spaceintegral has been evaluated for g A=1.25by Doi et al[2].However in heavy nuclei it is more justified to use the nuclear matter value of g A around1.0.Hence,the experimental M2νas well asthe theoretical T2ν1/2are calculated for g A=1.0and1.25.The present calculation and that of Hirschet al using SU3(SPH)[25]give nearly identical value.They are close to the experimental result given by De Silva et al[22]for g A=1.25while for g A=1.0,the above two M2νare in agreement with the results of NEMO.The calculated values given by Stoica using SRPA(WS)[24]are too low and those from Suhonen et al[26]are slightly on higher side.Further the value M2νgiven by Hirsch et al using SU3(DEF)[25]favors the results of NEMO[23]for g A=1.25.Another example we take for the0+→0+positronββ(β+β+,β+EC and ECEC)decay of 106Cd→106Pd.This transition has also been investigated by many experimental groups and in different theoretical frameworks.In Table3,we have compiled some of the latest available experi-mental[27-30]and the theoretical results[31-33]along with our calculated M2νand correspondinghalf-lives T2ν1/2.We have used phase space factors given by Doi and Kotani[3]and the averageenergy from Haxton and Stephenson[1].Our calculated values are nearly half of the recently given QRPA results of Suhonen and Civitaresse[32]for all the three modes.The theoretical values of PHFB and SU(4)[33]are in better agreement(factor of roughly two third)for theβ+EC and ECEC modes.From the above discussions,it is clear that the validity of nuclear models presently employed to calculate the M2νcannot be uniquely established due to error bars in experimental results as well as uncertainty in g A.Further work is necessary both on the experimental and theoretical front to judge the relative applicability,success and failure of various models used so far for the study of double beta decay processes.As an example to see quantitatively the effect of deformation on M2νvis-a-vis the variation of the strength of pn part of the QQ interaction,the results are displayed in Fig.1for100Mo and 106Cd cases.It is observed that the deformations of the HFB intrinsic states play an importantrole in the calculations of M2νand hence on the half life.To summarize,we havefirst tested the quality of HFB wave functions by comparing the the-oretically calculated results for a number of spectroscopic properties of nuclei involved in double beta decay.To be more specific we have computed the yrast spectra,reduced B(E2)transition probabilities,quadrupole moments and g-factors.Some of the results have been presented for two very widely studied cases ofβ−β−decaying100Mo and e+ββ(β+β+,β+EC and ECEC)decaying 106Cd nuclei.Reliability of the intrinsic wave functions for calculation of2νββnuclear matrix elements,M2ν,has been discussed.Further,we have shown that the np interactions viz a viz the deformations of the intrinsic ground states of100Mo100Ru,106Cd and106Pd play important role in arriving at the appropriate nuclear matrix elements.A reasonable agreement between the calculated and observed spectroscopic properties as well as the2νββdecay rate of most of the nuclei in medium mass region makes us confident to employ the same PHFB wave functions for the study of0νββdecay.References[1]W.C.Haxton and G.J.Stephenson,Jr.,Prog.Part.Nucl.Phys.12,409(1984).[2]M.Doi,T.Kotani and E.Takasugi,Prog.Theo.Phys.Suppl.83,1(1985).[3]M.Doi and T.Kotani,Prog.Theo.Phys.Suppl.87,5(1992).[4]T.Tomoda,Rep.Prog.Phys.54,53(1991).J.D.Vergados,Phys.Rep.361,1(2002).A.S.Barabash,nucl-ex/0203001.J.D.Vergados,Phys.Rep.133,1(1986).Faessler,Prog.Part.Nucl.Phys.21,183(1988).[5]J.Suhonen and O.Civitarese,Phys.Rep.300,123(1998).[6]Faessler and F.Simkovic,hep-ph/9901215;J.Phys.G24,2139(1998).[7]H.V.Klapdor-Kleingrothaus,hep-ex/9907040,9901021&9802007;Int.J.Mod.Phys.A13,3953(1998).[8]E.R.Elliott and P.Vogel,Annu.Rev Nucl.Part.Sci.52,115(2002).[9]E.Cheifetz et al,Phys.Rev.Lett.25,38(1970).[10]A.Pandoh,R.Devi and S.K.Khosa Phys.Rev C60047302(1999).[11]Arun Bharti and S.K.Khosa,Nucl.Phys.A572,317(1994).[12]S.K.Khosa,P.N.Tripathi and S.K.Sharma,Phys.Lett.B119,257(1982).[13]S.K.Sharma,G.Mukherjee and P.K.Rath,Phys.Rev.C41,1351(1990).[14]P.Federman and S.Pittel,Phys.Lett.77B,29(1978).P.Federman,S.Pittel and R.Campos,Phys.Lett.82B,9(1979).[15]A.J.Singh and P.K.Raina,Phys.Rev.C52,R2342(1995).[16]B.M.Dixit,P.K.Rath and P.K.Raina,Phys.Rev.C65,034311(2002).Phys.Rev.C67,059901(2003).K.Chaturvedi,B.M.Dixit,P.K.Rath and P.K.Raina,Phys.Rev.C67, 064317(2003).[17]M.Baranger and K.Kumar,Nucl.Phys.A110,490(1968).[18]G.M.Heestand,R.R.Borchers,B.Herskind,L.Grodzins,R.Kalish and D.E.Murnick,Nucl.Phys.A133,310(1969).[19]W.Greiner,Nucl.Phys.80,417(1966).[20]A.Arima,Nucl.Phys.A354,19(1981).[21]M.Sakai,At.Data Nucl.Data Tables31,400(1984).[22]A.De Silva,M.K.Moe,M.A.Nelson and M.A.Vient,Phys.Rev.C56,2451(1997).[23]D.Dassie et al,(NEMO collaboration),Phys.Rev.D51,2090(1995).[24]S.Stoica,Phys.Lett.B350,152(1995).[25]J.G.Hirsch,O.Castanos,P.O.Hess and O.Civitarese,Phys.Rev.C51,2252(1995).[26]J.Suhonen and O.Civitarese,Phys.Rev.C49,3055(1994).[27]P.Belli et al,Astroparticle Phys.10,115(1999).[28]A.S.Barbash et al,Nucl.Phys.A604,115(1996).[29]F.A.Danevich et al,Z.Phys.A355,433(1996).[30]A.Sh.Georgadze et al Phys.At.Nucl58,1093(1995).[31]A.Shukla,P.K.Raina,R.Chandra and P.K.Rath,submitted for publication.[32]J.Suhonen and O.Civitarese,Phys.Lett.B497,221(2001).[33]O.A.Rumyantsev and M.G.Urin,Phys.Lett.B443,51(1998).。

相关文档
最新文档