最新人教版七年级数学下册期中考试试题
新人教版七年级数学下册期中考试卷及参考答案
新人教版七年级数学下册期中考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于()A.-23999B.-2C.-21999D.219992.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×10103.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等4.若x是3的相反数,|y|=4,则x-y的值是()A.-7 B.1 C.-1或7 D.1或-75.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A .70°B .180°C .110°D .80°7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)11x -x 的取值范围是_______.2.点P 是直线l 外一点,点A ,B ,C ,D 是直线l 上的点,连接PA ,PB ,PC ,PD .其中只有PA 与l 垂直,若PA =7,PB =8,PC =10,PD =14,则点P 到直线l 的距离是________.3.实数8的立方根是________.4.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=_______度.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣123.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了 位好友.(2)已知A 类好友人数是D 类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、D5、D6、C7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1x2、73、2.4、1205、x>3 26、1三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、5.3、(1)35°;(2)36°.4、(5a2+3ab)平方米,63平方米5、(1)30;(2)①补图见解析;②120;③70人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
新人教版七年级数学下册期中考试卷及答案【可打印】
新人教版七年级数学下册期中考试卷及答案【可打印】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.65.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.下列解方程去分母正确的是( )A .由1132x x --=,得2x ﹣1=3﹣3x B .由2124x x --=-,得2x ﹣2﹣x =﹣4 C .由135y y -=,得2y-15=3y D .由1123y y +=+,得3(y+1)=2y+6 7.已知a=2012x+2011,b=2012x+2012,c=2012x+2013,那么a 2+b 2+c 2—ab -bc -ca 的值等于( )A .0B .1C .2D .38.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知x a =3,x b =4,则x 3a-2b 的值是( )A .278B .2716C .11D .1910.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,过直线AB 上一点O 作射线OC ,∠BOC=29°18′,则∠AOC 的度数为________.3.如图所示,在等腰△ABC 中,AB=AC ,∠A=36°,将△ABC 中的∠A 沿DE 向下翻折,使点A 落在点C 处.若AE=3,则BC 的长是________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________. 6.如图,AB ∥CD ,∠1=50°,∠2=110°,则∠3=___________度.三、解答题(本大题共6小题,共72分)1.按要求解下列方程组.(1)124x y x y +=⎧⎨-=-⎩(用代入法解) (2)34225x y x y +=⎧⎨-=⎩(用加减法解)2.已知关于x 的方程m +3x =4的解是关于x 的方程241346x m x x ---=-的解的2倍,求m 的值.3.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD上的一个动点。
【人教版】七年级下册数学《期中考试题》(附答案)
【答案】B
【解析】
【分析】
如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.
【详解】解:A、 ,故本选项错误;
B、 ,故本选项正确;
C、 ,故本选项错误;
D、 ,故本选项错误;
故选B.
【点睛】本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.
答案与解析
一、选择题(共10题,每小题3分,共30分)
1.下列各数中, ,无理数的个数有
A. 1个B. 2个C. 3个D. 4个
【答案】B
【解析】
试题分析:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B.
2.下列各式中,正确的是( )
3.立方根等于它本身的有( )
A.0,1B.-1,0,1C.0,D.1
【答案】B
【解析】
【分析】
根据立方根性质可知,立方根等于它本身的实数0、1或-1.
【详解】解:∵立方根等于它本身的实数0、1或-1.
故选B.
【点睛】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.
【答案】D
【解析】
【分析】
根据非负数的性质得到x﹣2=0,y+1=0,则可确定点P(x,y)的坐标为(2,﹣1),然后根据象限内点的坐标特点即可得到答案.
【详解】∵(x﹣2)2 0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴点P(x,y)的坐标为(2,﹣1),在第四象限.
2023年人教版七年级数学下册期中试卷(附答案)
2023年人教版七年级数学下册期中试卷(附答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.黄金分割数是一个很奇妙的数, 大量应用于艺术、建筑和统计决策等方面, 请你估算﹣1的值()A. 在1.1和1.2之间B. 在1.2和1.3之间C. 在1.3和1.4之间D. 在1.4和1.5之间2.如下图, 下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5, 能判定AB∥CD的条件为()A. ①②③④B. ①②④C. ①③④D. ①②③3. 在平面直角坐标系中, 点A(﹣3, 2), B(3, 5), C(x, y), 若AC∥x 轴, 则线段BC的最小值及此时点C的坐标分别为()A. 6, (﹣3, 5)B. 10, (3, ﹣5)C. 1, (3, 4)D. 3, (3, 2)4.下列各式中, 正确的是()A. B. C. D.5.已知是整数, 当取最小值时, 的值是( )A. 5B. 6C. 7D. 86.若一个直角三角形的两直角边的长为12和5, 则第三边的长为()A. 13或 B. 13或15 C. 13 D. 157.当a<0, n为正整数时, (-a)5·(-a)2n的值为()A. 正数B. 负数C. 非正数D. 非负数8.若x, y均为正整数, 且2x+1·4y=128, 则x+y的值为()A. 3B. 5C. 4或5D. 3或4或59. 估计+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间10.如图, 在△ABC中, DE是AC的垂直平分线, 且分别交BC, AC于点D和E, ∠B=60°, ∠C=25°, 则∠BAD为()A. 50°B. 70°C. 75°D. 80°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 分解因式: =________.2. 如果是一个完全平方式, 则__________.3. 关于的不等式组恰好只有三个整数解, 则的取值范围是_____________.4. 使分式的值为0, 这时x=________.5. 2018年国内航空公司规定: 旅客乘机时, 免费携带行李箱的长, 宽, 高三者之和不超过115cm. 某厂家生产符合该规定的行李箱. 已知行李箱的宽为20cm, 长与高的比为8: 11, 则符合此规定的行李箱的高的最大值为________ cm.6. 关于x的分式方程有增根, 则m的值为__________.三、解答题(本大题共6小题, 共72分)1. 解下列方程(组):(1)321126x x-+-=(2)2. 嘉淇准备完成题目: 化简: , 发现系数“”印刷不清楚.(1)他把“”猜成3, 请你化简: (3x2+6x+8)–(6x+5x2+2);(2)他妈妈说:“你猜错了, 我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?3. 如图, AE⊥BC, FG⊥BC, ∠1=∠2, 求证: AB∥CD.4. 如图,已知直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.5. 某校为加强学生安全意识, 组织全校学生参加安全知识竞赛. 从中抽取部分学生成绩(得分取正整数值, 满分为100分)进行统计, 绘制以下两幅不完整的统计图.请根据图中的信息, 解决下列问题:(1)填空:a=_____, n=_____;(2)补全频数直方图;(3)该校共有2000名学生. 若成绩在70分以下(含70分)的学生安全意识不强, 则该校安全意识不强的学生约有多少人?6. 某校七年级社会实践小组去商场调查商品销售情况, 了解到该商场以每件80元的价格购进了某品牌衬衫500件, 并以每件120元的价格销售了400件, 商场准备采取促销措施, 将剩下的衬衫降价销售. 请你帮商场计算一下, 每件衬衫降价多少元时, 销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、D4、B5、A6、C7、A8、C9、B10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、x(x+2)(x﹣2).2.-1或33、43 32a≤≤4、15、556、4.三、解答题(本大题共6小题, 共72分)1.(1)x=16;(2)2.(1)–2x2+6;(2)5.3、略4.(1)∠PEF=57°;(2)∠EPF=90°.5、(1)75, 54;(2)补图见解析;(3)600人.6、每件衬衫降价20元时, 销售完这批衬衫正好达到盈利45%的预期目标.。
【人教版】七年级下册数学《期中考试题》附答案解析
人教版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列方程组中,属于二元一次方程组的是( )A. 31x y x z +=-⎧⎨+=-⎩B. 32x y y +=⎧⎨=⎩ C. 233x y x y +=⎧⎨-=-⎩ D. 32x y xy +=⎧⎨=-⎩2. 若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A. x 2≤B. x 1>C. 1x 2≤<D. 1x 2<≤ 3. 下面四个图形中,线段BD 是△ABC 的高的是( ) A. B. C. D.4. 如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A. 高B. 角平分线C. 中线D. 不能确定 5. 如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=76°,∠C=64°,则∠DAE 的度数是()A. 10°B. 12°C. 15°D. 18°6. 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )A . ∠BCA=∠F;B. ∠B=∠E;C. BC∥EF ;D. ∠A=∠EDF 7. 如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A. △ABC≌△CDEB. CE =ACC. AB⊥CDD. E 为BC 的中点 8. 如图,在三角形模板ABC 中,∠A=60°,D 、E 分别为AB 、AC 上的点,则∠1+∠2的度数为( ) A . 180°B. 200°C. 220°D. 240° 9. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是( )A 十三边形 B. 十二边形 C. 十一边形 D. 十边形10. 如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③1902BFC BAC ∠=︒+∠;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( )A 2个 B. 3个 C. 4个 D. 5个二、填空题11. 已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.12. 不等式2x﹣1>3的解集为_____.13. A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.14. 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.15. 如图,在△ABC中,点D在AC上,点E在BD上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC 的度数为__________.16. 一个多边形的内角和是1440°,则这个多边形是__________边形.17. 如图,在Rt三角形ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=8cm,BE=3cm,则DE=__________cm.18. 如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为__________cm.19. 已知△ABC中,∠B=40°,AD是△ABC的高,且∠CAD=10°,则∠BAC的度数为__________.20. 如图,在Rt△ABC中,∠ACB=90°,AC=BC,CH为△ABC斜边上的中线,点F为CH上一点,连接BF并延长交AC于点D,过点A作AE⊥AC,连接CE和DE,若∠ACE=2∠ABF,CE=13,CD=8,则△CDE 的面积为__________.三、解答题21. 解方程组及不等式组(1)25 437 x yx y+=-⎧⎨+=-⎩(2)211841x xx x->+⎧⎨+<-⎩22. 正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt⊿ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.23. 四川雅安发生地震后,某校学生会向全校1900名学生发起了”心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24. 如图,在△ABC中,BD,CE分别是AC,AB边上的高,在BD上截取BF=AC,延长CE至点G使CG=AB,连接AF,AG.(1)如图1,求证:AG=AF;(2)如图2,若BD恰好平分∠ABC,过点G作GH⊥AC交CA的延长线于点H,请直接写出图中所有的全等三角形并用全等符号连接.25. “双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?26. 如图,△ABC中,点E和点F在边BC上,连接AE,AF,使得∠EAC=∠ECA,∠BAE=2∠CAF.(1)如图1,求证:∠BAF=∠BFA;(2)如图2,在过点C且与AE平行的射线上取一点D,连接DE,若∠AED=∠B,求证:BE=CD;27. 如图,在平面直角坐标系中,点A 在第一象限,点B(a ,0),点C(0,b)分别在x 轴,y 轴上,其中a ,b 是二元一次方程534a b -=的解,且a 为不等式312133a a -+≤的最大整数解. (1)证明:OB=OC ;(2)如图1,连接AB ,过点A 作AD ⊥AB 交y 轴于点D ,在射线AD 上截取AE=AB ,连接CE ,取CE 的中点F ,连接AF 并延长至点G ,使FG=AF ,连接CG ,OA .当点A 在第一象限内运动(AD 不经过点C )时,证明:∠OAF 的大小不变;答案与解析一、选择题1. 下列方程组中,属于二元一次方程组的是( )A. 31x y x z +=-⎧⎨+=-⎩B. 32x y y +=⎧⎨=⎩C. 233x y x y +=⎧⎨-=-⎩D. 32x y xy +=⎧⎨=-⎩【答案】B【解析】【分析】 根据二元一次方程组的定义判断即可.【详解】A.31x y x z ,方程组中有三个未知数,不是二元一次方程组; B. 32x y y ,是二元一次方程组;C.233x y x y ,方程组中未知数的最高次是2,不是二元一次方程组;D. 32x y xy ,方程组中2xy =-不是二元一次方程,所以原方程组不是二元一次方程组;故选:B .【点睛】本题考查的是二元一次方程组的判别,熟悉二元一次方程的定义是解题的关键.2. 若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A. x 2≤B. x 1>C. 1x 2≤<D. 1x 2<≤【答案】D【解析】【分析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.【详解】解:在表示解集时”≥”,”≤”要用实心圆点表示;”<”,”>”要用空心圆点表示.因此,这个不等式<≤.组的解是1x2故选D.3. 下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.【答案】D【解析】【分析】根据三角形高的定义,过点B向AC边作垂线,点B和垂足D之间的线段是△ABC的高,逐项判断即可.【详解】∵由三角形的高线定义可知:过点B作BD⊥AC,垂足为D,则线段BD为△ABC的高;∴选项A、B、C图形中垂足不正确,都不符合题意,只有选项D符合题意.故选:D.【点睛】本题考查三角形的高线,正确理解三角形的高线是解题关键.4. 如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A. 高B. 角平分线C. 中线D. 不能确定【答案】C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD ,即AD 是中线.故选C .考点:三角形的面积;三角形的角平分线、中线和高.5. 如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=76°,∠C=64°,则∠DAE 的度数是( )A. 10°B. 12°C. 15°D. 18°【答案】B【解析】【分析】 根据直角三角形两锐角互余求出CAD ∠,再根据角平分线定义求出CAE ∠,然后根据DAE CAE CAD ∠=∠-∠,代入数据进行计算即可得解.【详解】解:AD BC ⊥,64C ∠=︒, 906426CAD ,AE ∵是ABC ∆的角平分线,76BAC, 11763822CAE BAC ,382612DAE CAE CAD .故选:B .【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.6. 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )A. ∠BCA=∠F;B. ∠B=∠E;C. BC∥EF ;D. ∠A=∠EDF【答案】B【解析】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E,只要求出∠B=∠E 即可.解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC≌△DEF,故本选项错误;B 、∵在△ABC 和△DEF 中,AB=DE ,∠B=∠E,BC=EF ,∴△ABC≌△DEF(SAS ),故本选项正确;C 、∵BC∥EF,∴∠F=∠BCA,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC≌△DEF,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC≌△DEF,故本选项错误.故选B .7. 如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A. △ABC≌△CDEB. CE =ACC. AB⊥CDD. E 为BC 的中点【答案】D【解析】【分析】 首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.8. 如图,在三角形模板ABC 中,∠A=60°,D 、E 分别为AB 、AC 上的点,则∠1+∠2的度数为( )A. 180°B. 200°C. 220°D. 240°【答案】D 【解析】 【分析】根据三角形内角和定理求出B C ∠+∠,根据多边形内角和定理求出即可. 【详解】解:60A ∠=︒,180120B C A , 12360360120240BC,故选:D .【点睛】本题考查了三角形内角和定理和多边形内角和定理,能熟记知识点的内容是解此题的关键,注意:三角形的内角和等于180︒,四边形的内角和等于360︒.9. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是( ) A. 十三边形 B. 十二边形C. 十一边形D. 十边形【答案】A 【解析】试题分析:根据多边形的对角线的定义可知,从n 边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.解:设这个多边形是n 边形.依题意,得n ﹣3=10, ∴n=13.故这个多边形是13边形. 故选A .考点:多边形的对角线.10. 如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③1902BFC BAC ∠=︒+∠;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( )A. 2个B. 3个C. 4个D. 5个【答案】D 【解析】 【分析】根据AE 平分ACD ∠,CF 平分ACB ∠,可得12ACEECDACD ,12ACF BCFACB 则易证90ECF ∠=,可判断①正确;根据BE 平分ABC ∠,BE AC ⊥于点H ,可证()ABHHBC ASA ,得到AH CH =,可证()AHE CHE SAS ,则有AE CE =,可判断②正确;根据BE 平分ABC ∠,CF 平分ACB∠,得到12ABHHBCABC ,12ACF BCFACB ,则利用BFCFHCACFABH BAC ACF 可以判断③;根据90FCHHCE,90HECHCE,得到FCHHEC ,利用ABHHBC ,CF 平分ACB ∠,得22BAC BCA FCH HEC ,可以判断④正确;根据AHECHE ,CF 平分ACB ∠,得到AHEHEC ,BCF FCH ,FCHHEC ,AEHBCF ,故可以判断⑤正确;【详解】解:∵AE 平分ACD ∠,CF 平分ACB ∠,∴12ACE ECD ACD ,12ACF BCF ACB ∴1111180902222ECF ACFACEACB ACD ACBACD,故①正确;∵BE 平分ABC ∠,BE AC ⊥于点H , ∴ABH HBC ,90AHB CHB,∴()ABHHBC ASA ,∴AH CH =, ∵90AHE CHE,HEHE ,∴()AHECHE SAS ,∴AE CE =,故②正确;∵BE 平分ABC ∠,CF 平分ACB ∠, ∴12ABH HBCABC ,12ACF BCFACB 又∵BFC FHCACFABH BAC ACF即有:1122BFCABC BAC ACB 12ABCACB BAC 11802BACBAC1902BAC ,故③正确; ∵90FCH HCE,90HECHCE∴FCH HEC ,又∵ABHHBC ,CF 平分ACB ∠,∴AB BC =, ∴22BAC BCAFCHHEC即:2BAC BEC ,故④正确;∵AHE CHE,CF平分ACB∠,∴AHE HEC,BCF FCH,FCH HEC,∴AEH BCF,故⑤正确;综上所述,正确的有:①②③④⑤,共5个,故选:D.【点睛】本题主要考查了全等三角形、角平分线的性质,能熟练应用相关性质是解题的关键.二、填空题11. 已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.【答案】5 3【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12xy=⎧⎨=⎩代入二元一次方程3210mx y--=,得:32210m,解得:53 m=.故答案为:5 3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12. 不等式2x﹣1>3的解集为_____.【答案】x>2 【解析】【分析】【详解】解:移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得x>2,∴不等式2x﹣1>3的解集为x>2.13. A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.【答案】17【解析】【分析】设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,由于A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,由此即可方程组解决问题.【详解】解:设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,依题意得771401010140x yx y,解之得:173xy=⎧⎨=⎩,∴这艘船在静水中的速度和水流速度分别为17千米/小时,3千米/小时,故答案为:17.【点睛】此题是一个行程问题,关键是知道如何求顺流和逆流的速度,如何根据速度、路程、时间即可列出方程组解决问题.14. 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.【答案】26【解析】【分析】设共有x名学生,根据每人分3本,那么余8本,可得图书共有(3x+8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x名学生,则图书共有(3x+8)本,由题意得,0<3x+8−5(x−1)<3,解得:5<x<6.5,∵x为非负整数,∴x=6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.15. 如图,在△ABC 中,点D 在AC 上,点E 在BD 上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC 的度数为__________.【答案】117︒ 【解析】 【分析】两次利用三角形的一个外角等于与它不相邻的两个内角的和,列式进行计算即可得解. 【详解】解:在ABD ∆中,70A ∠=︒,22ABD ∠=︒,702292CDE A ABD, 2592117BECDCECDE.故答案为:117︒.【点睛】本题主要考查了三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和,两次利用性质是解题的关键.16. 一个多边形的内角和是 1440°,则这个多边形是__________边形. 【答案】十 【解析】 【分析】利用多边形的内角和定理:n 边形的内角和为()2180n -⨯︒ 便可得. 【详解】∵n 边形的内角和为()2180n -⨯︒ ∴()21801440n -⨯︒=,28,10n n -==. 故答案为:十边形.【点睛】本题考查多边形的内角和公式,掌握n 边形内角和定理为本题的关键.17. 如图,在Rt 三角形ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D ,若AD=8cm ,BE=3cm ,则DE=__________cm .【答案】4 【解析】 【分析】易证CAD BCE ∠=∠,即可证明CDA BEC ,可得CD BE =,CE AD =,根据DE CE CD =-,即可解题. 【详解】解:90ACB ∠=︒,BE CE ⊥于点E ,AD CE ⊥于点D ,90ACD BCE ∴∠+∠=︒,90ACD CAD ∠+∠=︒, CAD BCE ∴∠=∠,在CDA ∆和BEC ∆中, 90CDA BEC CAD BCEACBC,()CDA BEC AAS ,CD BE ∴=,AD CE =,DECE CD ,DE AD BE ∴=-,7AD cm ,3BE cm =, 734DEcm cmcm .故答案为:4.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法和性质(全等三角形的对应边、对应角相等)是解题的关键.18. 如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若△ABC 的面积为21cm 2,AB=8cm ,AC=6cm ,则DE 的长为__________cm .【答案】3 【解析】 【分析】根据角平分线上的点到角的两边的距离相等可得DE DF =,再根据三角形的面积公式列式计算即可得解. 【详解】解:AD 为BAC ∠的平分线,DE AB ⊥,DF AC ⊥,DE DF ∴=,ABC ∆面积112122AB DEAC DF,即11862122DE DE ,解得3DE =. 故答案为:3.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的面积公式列出方程是解题的关键.19. 已知△ABC 中,∠B=40°,AD 是△ABC 的高,且∠CAD=10°,则∠BAC 的度数为__________. 【答案】40︒或60︒. 【解析】 【分析】在Rt ABD ∆中,B 与BAD ∠互余,而20CAD ∠=︒,故有BAC BADCAD .【详解】解:90D ∠=︒,40B ∠=︒,50BAD ∴∠=︒,10CAD ,当△ABC 如图一所示时:501060BAC BAD CAD ,当△ABC 如图二所示时:501040BAC BAD CAD ,故答案为:40︒或60︒.【点睛】本题考查了直角三角形的性质和三角形的内角和,熟悉相关性质是解题的关键.20. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,CH 为△ABC 斜边上的中线,点F 为CH 上一点,连接BF 并延长交AC 于点D ,过点A 作AE ⊥AC ,连接CE 和DE ,若∠ACE=2∠ABF ,CE=13,CD=8,则△CDE 的面积为__________.【答案】20 【解析】 【分析】延长BD 交CE 于G 点,作AKGD 交CE 于K ,交GD 于O ,设ABF α∠=,则2ACE,根据90ACB ∠=︒,AC BC =,可得45CBG ,902BCG ,可证CBG CGB ∠=∠,则CGCBCA,根据ASA 易证明CAKCGD,利用CK CD ,9045135CKACDG DCB CBD ,可证EK EA ,可得5EA =,再利用三角形的面积公式即可求解.【详解】解:如图示:延长BD 交CE 于G 点,作AKGD 交CE 于K ,交GD 于O ,设ABF α∠=,则2ACE,∵90ACB ∠=︒,AC BC =, ∴45ABC ∠=︒, ∴45CBG CBA ABF , 902BCGACB ACE ∴1801809024545CGB BCGCBG,∴CBG CGB ∠=∠ ∴CGCBCA在Rt△ADO 和Rt△BDC 中, ADOBDC ,90AODBCD,∴DAO DBC ,则有CAK CGD在△CAK 和△CGD 中, CAKCGD ,CA CG =,ACK GCD∴()CAK CGD ASA∴CK CD ,9045135CKACDG DCB CBD∴18018013545EKACKA又∵904545EAKEAC CAK 即有EK EA , ∴1385EAEK CE CK CE CD ∴11852022CDE S CD EA , 故答案为:20.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,解题的关键是正确寻找全等三角形解决问题.三、解答题21. 解方程组及不等式组(1)25437x y x y +=-⎧⎨+=-⎩ (2)211841x x x x ->+⎧⎨+<-⎩【答案】(1)43x y =-⎧⎨=⎩;(2)3x >. 【解析】【分析】(1)把第一个方程乘以2然后和第二个方程进行计算,利用加减消元法求解即可;(2)先求出两个不等式的解集,再求其公共解.【详解】解:(1)25437x y x y ①②, 将2①得:4210x y③,将②-③得:3y = 把3y =代入①得,235x +=-,解之得:4x =-所以,方程组的解是43x y =-⎧⎨=⎩;(2)211841x xx x①②,由①得,2x>,由②得,3x>,所以,不等式组的解集是3x>.【点睛】本题考查的是二元一次方程组的解法,一元一次不等式组解集的解集,熟悉相关解法是解题得关键.22. 正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt⊿ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.【答案】可以是:【解析】【分析】画的直角三角形的三边应符合两直角边的平方和等于斜边的平方.第一个图形和第二个图形的面积可让两条直角边的积÷2即可.【详解】解:画图如下:易得图1三边长为10、10、20=25,符合两边和的平方等于第三边的平方,图2中三边长分别为2、18=32、20=25符合两边和的平方等于第三边的平方,第三个图中,三边长分别为8=22、8=22、16=4符合两边和的平方等于第三边的平方,【点睛】本题考查直角三角形的格点画法需满足的条件;直角三角形的三边应符合两直角边的平方和等于斜边的平方.23. 四川雅安发生地震后,某校学生会向全校1900名学生发起了”心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【答案】(1)50;32;(2)16;10;15;(3)608人.【解析】【分析】(1)根据条形统计图即可得出样本容量:4+16+12+10+8=50(人);根据扇形统计图得出m的=----=;值:m100202416832(2)利用平均数、中位数、众数的定义分别求出即可.(3)根据样本中捐款10元的百分比,从而得出该校本次活动捐款金额为10元的学生人数.【详解】解:(1)根据条形图4+16+12+10+8=50(人),m=100-20-24-16-8=32;故答案为:50; 32.(2)∵1x 541016151220103081650=⨯+⨯+⨯+⨯+⨯=(), ∴这组数据的平均数为:16.∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:()11515152+=, (3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数有1900×32%=608人.∴该校本次活动捐款金额为10元的学生约有608人.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24. 如图,在△ABC 中,BD ,CE 分别是AC ,AB 边上的高,在BD 上截取BF=AC ,延长CE 至点G 使CG=AB ,连接AF ,AG .(1)如图1,求证:AG=AF ;(2)如图2,若BD 恰好平分∠ABC ,过点G 作GH ⊥AC 交CA 的延长线于点H ,请直接写出图中所有的全等三角形并用全等符号连接.【答案】(1)证明见解析;(2)ABD CBD ∆≅∆,AGC FAB ∆≅∆,HGA DAF ∆≅∆.【解析】【分析】(1)根据BD 、CE 分别是AC 、AB 两条边上的高,BF=AC ,CG=AB ,利用SAS 可证AGC FAB ∆≅∆,则可证AG AF =;(2)利用等腰三角形的对称性,可得ABD CBD ∆≅∆;根据AGC FAB ∆≅∆易证90GAF ∠=︒,则可得90HAG FAD ,即有HGA DAF ,利用AAS 可证HGA DAF ∆≅∆.【详解】(1)证明:∵BD 、CE 分别是AC 、AB 两条边上的高,90ADB AEC ∴∠=∠=︒,90ABDBAD ACE CAE ,ABD ACG , 在AGC ∆与FAB ∆中,CABF GCAABF GC AB , ()AGC FAB SAS ,∴AG AF =;(2)∵BD 平分∠ABC ,BD 是AC 边上的高,则BD 为△ABC 中三线合一的线,即△ABC 为等腰三角形,BD 为△ABC 的对称轴,根据对称性,有ABD CBD ∆≅∆AGC FAB ;AG AF ∴=,G BAF ∠=∠,90G GAE , 90BAF GAE ,90GAF ∴∠=︒,∴90HAG FAD∵GH AC ⊥,∴90HAG HGA∴HGA DAF 在HGA 与DAF ∆中,90GHAADF HGADAFGA AF ,()HGA DAF AAS ,综上所述,全等三角形有ABD CBD ∆≅∆,AGC FAB ∆≅∆,HGA DAF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质和判定和对称的性质,正确的识别图形是解题的关键.25. “双11”期间,某个体户在淘宝网上购买某品牌A 、B 两款羽绒服来销售,若购买3件A ,4件B 需支付2400元,若购买2件A ,2件B ,则需支付1400元.(1)求A 、B 两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A 、B 两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?【答案】最多让利5件.【解析】【分析】(1)设设A 款a 元,B 款b 元,根据题意列方程组求解;(2)设让利的羽绒服有x 件,总获利不低于3800元,列不等式,求出最大整数解.【详解】解:(1)设A 款a 元,B 款b 元,可得:342400221400a b a b +=⎧⎨+=⎩, 解得:400300a b =⎧⎨=⎩, 答:A 款400元,B 款300元.(2)设让利的羽绒服有x 件,则已售出的有(20﹣x )件600 (20﹣x )+600×60% x ﹣400×10﹣30×10≥3800,解得x≤5,答:最多让利5件.考点:一元一次不等式的应用;二元一次方程组的应用.26. 如图,在△ABC 中,点E 和点F 在边BC 上,连接AE ,AF ,使得∠EAC=∠ECA ,∠BAE=2∠CAF . (1)如图1,求证:∠BAF=∠BFA ;(2)如图2,在过点C 且与AE 平行的射线上取一点D ,连接DE ,若∠AED=∠B ,求证:BE=CD ;【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)设CAF α∠=,则2BAE α∠=,可得EAF EAC ,EFA EAC ,易证BAF BFA ∠=∠; (2)根据//AE CD ,EAC ECA ∠=∠,则有AED D ,AEB DCE ,AE EC =,利用AAS 可证AEB ECD ,则有BE DC =. 【详解】解:(1)设CAF α∠=,则2BAE α∠=,∴EAF EAC ,EFA ECA EAC , 22BAF EAF EAC EAC∴BAF BFA ∠=∠;(2)//AE CD ,EAC ECA ∠=∠∴AED D ,AEB DCE ,AE EC =又∵AED B ∠=∠,∴D B ∠=∠,∴()AEB ECD AAS ,∴BE DC =;【点睛】本题考查了三角形的外角,平行线的性质和三角形全等的证明,熟悉相关性质是解题的关键. 27. 如图,在平面直角坐标系中,点A 在第一象限,点B(a ,0),点C(0,b)分别在x 轴,y 轴上,其中a ,b 是二元一次方程534a b -=的解,且a 为不等式312133a a -+≤的最大整数解. (1)证明:OB=OC ;(2)如图1,连接AB ,过点A 作AD ⊥AB 交y 轴于点D ,在射线AD 上截取AE=AB ,连接CE ,取CE 的中点F ,连接AF 并延长至点G ,使FG=AF ,连接CG ,OA .当点A 在第一象限内运动(AD 不经过点C )时,证明:∠OAF 的大小不变;【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据a 为不等式312133a a -+≤的最大整数解,求解不等式,利用534ab -=推出a b =即可; (2)求出TAO 为等腰直角三角形即可;【详解】(1)解:解不等式312133a a -+≤得2a ≤ ∵a 为不等式312133a a -+≤的最大整数解 2a ∴=,将2a =代入方程534a b -=得2b =, a b ∴=,OB OC ∴=;(2)证明:连接GO ,F 为CE 中点,CF EF ∴=,在GCF ∆和AEF ∆中CF EFCFG FEAFG FAGCF AEF SAS,()CG EA,GCF AEF,GC AD,//GCD CDA,=,AB AEGC AB,⊥,⊥,OB OCAD ABCOB BAD,90ABO ADO,180ADO ADC,180ADC ABO,GCD CDA,GCD ABO,∆中在GCO和ABOGC ABGCO ABOOC OBGCO ABO SAS,()GO AO,GOC AOB,AOB AOC,90GOC AOC,90GAO为等腰直角三角形,∠的大小不变;OAF,即OAF45【点睛】本题是三角形综合题,主要考查了解不等式,全等三角形判定和性质,等腰三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.。
人教版数学七年级下册《期中考试试卷》(含答案)
【答案】D
【解析】
分析】
直接利用已知点坐标建立平面直角坐标系,进而得出答案.
【详解】解:如图所示:邮局位置的点的坐标是(﹣3,﹣1).
故选:D.
【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.
8.如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠ECA+∠BDF=( )
(1)求点A、B、C、D的坐标;
(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE∥BC.
答案与解析
一.选择题(共8小题)
1.下列实数中,属于无理数的是( )
【解析】
【分析】
命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.
【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.
A.30°B.35°C.36°D.40°
【答案】A
【解析】
【分析】
首先由直线 ,根据两直线平行,同旁内角互补,求得 ,然后由 , ,利用三角形外角的性质,求得答案.
【详解】如图,∵CE∥DF,
∴∠CEA+∠F=180°,
∵∠CAB=125°,∠ABD=85°,
【人教版】数学七年级下册《期中测试题》含答案解析
人教版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1.如图,已知AB //CD ,∠1=100︒,∠2=145︒,则∠F =( )A. 55︒B. 65︒C. 75︒D. 85︒2.下列各式中正确的是( ) A. 497=± B. 3644= X. 93-=- ∆. 84=3.如图,把长方形ABCD 沿EF 折叠后使两部分重合,若130∠=︒,则∠=AEF ( )A. 100︒B. 150︒C. 110︒D. 105︒4.已知命题A :”若a 为实数,则2a a =“.在下列选项中,可以作为”命题A 是假命题”的反例的是( ) A. a =1 B. a =0 X. a =﹣1﹣k (k 实数) ∆. a =﹣1﹣k 2(k 为实数)5.若两个角的两边分别平行,而其中一个角比另一个角的3倍少40°,那么这两个角的度数是( ) A. 20°或55° B. 20°或160° C. 20°、20°或55°、125° D. 20°、125°或20°、70° 6.如图,若AB //CD ,∠C 用含α,β,γ的式子表示为( )A. αβγ+-B. βγα+-C. 180αβγ︒++-D. 180αβγ︒-+- 7.下列命题中真命题的个数是( )①平面内,过一点有且只有一条直线与已知直线平行;②221 3.14, ,0.3010017π⋯,,这5个数中有2个是无理数;③若0m <,则点P(-m ,5)在第一象限;④16的算术平方根是4;⑤经过一点有且只有一条直线与已知直线垂直;⑥同旁内角互补.A. 2B. 3C. 4D. 58.已知:如图,点E ,F 分别在AB ,CD 上,AF ⊥CE ,垂足为点O ,∠1=∠B ,∠A +∠2=90°.求证:AB ∥CD .证明:如图,∵∠1=∠B (已知)∴CE ∥BF (同位角相等,两直线平行)______________∴∠AFC +∠2=90°(等式性质)∵∠A +∠2=90°(已知)∴∠AFC =∠A (同角或等角的余角相等)∴AB ∥CD (内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE =90°(垂直的定义)②∴∠AFB =90°(等量代换)③∵AF ⊥CE (已知)④∵∠AFC +∠AFB +∠2=180°(平角的定义)⑤∴∠AOE =∠AFB (两直线平行,同位角相等)横线处应填写的过程,顺序正确的是( )A. ⑤③①②④B. ③④①②⑤C. ⑤④③①②D. ⑤②④9.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P 1(y -1,-x -1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,,这样依次得到各点.若A 2020的坐标为(-3,2),设A 1(x ,y ),则x +y 的值是( )A. -5B. -1C. 3D. 510.如图,某校区内有甲、乙两块大小一样的长方形地块,地块长30m ,宽25m ,现要在长方形地块内分别修筑如图所示的两条平行四边形小路(图中阴影部分),余下的部分绿化.现已知AB =CD =1m ,EF =GH =1m ,记甲、乙地块的绿化面积分别为S 1、S 2,则S 1、S 2的大小关系是( )A. S 1<S 2B. S 1=S 2C. S 1>S 2D. 无法确定二、填空题(每题3分,共42分)11.若6x -在实数范围内有意义,则x 的取值范围为_________________.12.已知3 1.732, 30 5.477≈≈,则0.3≈______.13.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOE =2∠BOD ,则∠AOF 的度数为______.14.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______. 15.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a ⊥b ,b ⊥c ,则a ⊥c ;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.16.已知点M(3a -8,a -1),点M 在第二、四象限的角平分线上,则点M 的坐标为______.17.一个棱长为8cm 的正方体容器装满水,现将这个容器中的水倒入一个高度为32cm π的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm .18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a ,则2x y +的值为______. 19.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.20.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .21.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.22.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若≥PAB 的面积为18,则m ,n 满足的数量关系式为________.23.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次:10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.24.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.三、解答题(共48分)25.计算.(1)解方程:23(2)27x -=(2)计算:2382(3)|12|--++-(3)解二元一次方程组:(1)21325x y x y +=-⎧⎨-=-⎩(2)434363552(43)3(43)5344x y x y x y x y -+⎧+=⎪⎪⎨-+⎪-=⎪⎩26.在平面直角坐标系中,△ABC 的三个顶点的位置如图所示.现将△ABC 平移,使得点A 移至图中的点A'的位置.(1)平移后所得△A 'B 'C '的顶点B '的坐标为 ,C '的坐标为 ;(2)平移过程中△ABC 扫过的面积为 ;(3)将直线AB 以每秒1个单位长度的速度向右平移,则平移 秒时该直线恰好经过点C '.27.(1)如图1,AB ∥CD ,点M 为直线AB ,CD 所确定的平面内的一点,若∠A =105︒+α,∠M =108︒-α,请直接写出∠C 的度数 ;(2)如图2,AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点,点E 在直线CD 上,AN 平分∠PAB ,射线AN 的反向延长线交∠PCE 的平分线于M ,若∠P =30︒,求∠AMC 的度数;(3)如图3,点P 与直线AB ,CD 在同一平面内,AN 平分∠PAB ,射线AN 的反向延长线交∠PCD 的平分线于M ,若∠AMC =180︒-12∠P ,求证:AB ∥CD .28.在平面直角坐标系中,A (a ,b )、B (c ,d )、C (7,0),且24(2)0a c b d --+--= (1)如果a =1,d =2,①求A ,B 两点的坐标;②求线段AB 与y 轴交点N 的坐标,并求出△AOB 的面积;(2)如果b =-1,且△AOB 与△ABC 面积和为9,求a 的值或取值范围.答案与解析一、选择题(每题3分,共30分)1.如图,已知AB //CD ,∠1=100︒,∠2=145︒,则∠F =( )A. 55︒B. 65︒C. 75︒D. 85︒【答案】B【解析】【分析】 由题意先求到∠3=∠1=100°,∠4=180°-∠2=35°,再根据三角形的外角即可求出∠F .【详解】解:如图:∵AB //CD ,∠1=100︒,∠2=145︒,∴∠3=∠1=100°,∠4=180°-∠2=35°,∵∠F+∠4=∠3,∴∠F=∠3-∠4=100°-35°=65°;故选:B .【点睛】本题考查了平行线的性质和三角形内角和外角之间的关系,解题的关键是熟练的掌握三角形的内角和外角的关系.2.下列各式中正确的是( ) 497=± 3644= 93-=- 84=【答案】B【解析】【分析】根据算术平方根和立方根的定义分别进行判定即可.【详解】解:A 、497=,故本选项错误;B 、3644=,故本选项正确;C 、9-不成立,因为负数没有算术平方根,故本选项错误;D 、822=,故本选项错误;故选:B .【点睛】本题考查的是算术平方根和立方根,要注意到算术平方根的被开方数是非负数.3.如图,把长方形ABCD 沿EF 折叠后使两部分重合,若130∠=︒,则∠=AEF ( )A. 100︒B. 150︒C. 110︒D. 105︒【答案】D【解析】【分析】根据折叠的性质和∠1=30°可求出∠BFE 的度数,再由平行线的性质即可解答.【详解】解:∵把长方形ABCD 沿EF 折叠后使两部分重合,∴∠BFE=∠EFH ,∵∠BFE+∠EFH+∠1=180°,∠1=30°, 11(18030)1507522BFE EFH ∴∠=∠=︒-︒=⨯︒=︒, 又∵AD ∥BC , ∴∠AEF+∠BFE=180°,∴∠AEF=180°-75°=105°;故选:D .【点睛】本题主要考查了平行线的性质和折叠的性质,要明确折叠的不变性:折叠前后图形全等,据此找出图中相等的角是解答此题的关键.4.已知命题A:”若a为实数,a=“.在下列选项中,可以作为”命题A是假命题”的反例的是()A. a=1 B. a=0 C. a=﹣1﹣k(k为实数) D. a=﹣1﹣k2(k为实数)【答案】D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选D.a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键.5.若两个角的两边分别平行,而其中一个角比另一个角的3倍少40°,那么这两个角的度数是()A. 20°或55°B. 20°或160°C. 20°、20°或55°、125°D. 20°、125°或20°、70°【答案】C【解析】【分析】首先从两个角的两边分别平行,可得这两个角相等或者互补;然后设其中一个角是x°,由其中一个角比另一个角的3倍少40°来用含x°的式子表示出来这个角,之后根据前面的分析分情况讨论即可.【详解】解:∵两个角的两边分别平行,∴这两个角相等或者互补,设其中一个角是x°,∵其中一个角比另一个角的3倍少40°,∴另一个角是3x°-40°,若这两个角相等,则x=3x-40,解得x=20,∴这两个角的度数是20°和20°;若这两个角互补,则x+3x-40=180,解得x=55,∴这两个角的度数是55°和125°;∴这两个角的度数是20°和20°或55°和125°;故选:C .【点睛】本题考查了平行线的性质和一元一次方程的解法,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补.6.如图,若AB //CD ,∠C 用含α,β,γ的式子表示为( )A. αβγ+-B. βγα+-C. 180αβγ︒++-D. 180αβγ︒-+-【答案】D【解析】【分析】 延长FE 交DC 的延长线与G ,延长EF 交AB 于H ,由平行线的性质和三角形的外角性质得出∠G=∠AHE=∠AFE-∠A=β-α,再由三角形的外角的性质即可得出答案.【详解】解:如图,延长FE 交DC 的延长线与G ,延长EF 交AB 于H ,∵AB ∥CD ,∴∠G=∠AHE=∠AFE-∠A=β-α,∵∠CEG=180°-γ,∴∠ECD=∠G+∠CEG=β-α+180°-γ=180αβγ︒-+-;故选:D.【点睛】本题考查了平行线的性质、三角形外角性质等知识,熟练掌握平行线的性质和三角形的外角性质是解题的关键.7.下列命题中真命题的个数是()①平面内,过一点有且只有一条直线与已知直线平行;223.14,,0.3010017π⋯,这5个数中有2个是无理数;③若0m<,则点P(-m,5)4;⑤经过一点有且只有一条直线与已知直线垂直;⑥同旁内角互补.A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据平行、垂直、无理数、坐标系、算术平方根和同旁内角分别判断即可.【详解】解:①平面内,过直线外一点有且只有一条直线与已知直线平行,故本题说法错误;223.14,,0.3010017π⋯,这5个数中只有,0.301001π⋯这2个是无理数,说法正确;③若0m<,则点P(-m,5)在第一象限,说法正确;2,故本题说法错误;⑤在同一平面内,经过一点有且只有一条直线与已知直线垂直,故本题说法错误;⑥两直线平行,同旁内角互补,故本题说法错误;故只有2个是真命题;故选:A.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫假命题;判断命题的真假关键是要熟悉课本中的性质定理.8.已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A. ⑤③①②④B. ③④①②⑤C. ⑤④③①②D. ⑤②④【答案】A【解析】【分析】先证CE∥BF得∠AOE=∠AFB,由AF⊥CE得∠AOE=∠AFB=90°,利用平角定义得出∠AFC+∠2=90°,结合∠A+∠2=90°可以得出∠AFC=∠A,从而得证.【详解】证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)③∵AF⊥CE(已知)①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)④∵∠AFC+∠AFB+∠2=180°(平角的定义)∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行),故选:A.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定和性质,并灵活运用.9.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y-1,-x-1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,,这样依次得到各点.若A2020的坐标为(-3,2),设A1(x,y),则x+y的值是()A. -5B. -1C. 3D. 5【答案】C【解析】【分析】列出部分An点的坐标,根据坐标的变化寻找规律,规律和A2020的坐标结合起来,即可得出答案.【详解】解:∵设A1(x,y),∴A2(y-1,-x-1),∴A3(-x-1-1,-y+1-1),即A3(-x-2,-y),∴A4(-y-1,x+2-1),即A4(-y-1,x+1),∴A5(x+1-1,y+1-1),即A5(x ,y )与A1相同,可以观察到友好点是4个一组循环的,∵2020÷4=505, ∴A 2020(-3,2)与A4是相同的,1312y x --=-⎧∴⎨+=⎩, 解得12x y =⎧⎨=⎩, ∴x+y=1+2=3;故答案为:C .【点睛】本题考查了规律型中点的坐标变化,解题的关键是找出变化的规律,规律找到之后即可解答本题. 10.如图,某校区内有甲、乙两块大小一样的长方形地块,地块长30m ,宽25m ,现要在长方形地块内分别修筑如图所示的两条平行四边形小路(图中阴影部分),余下的部分绿化.现已知AB =CD =1m ,EF =GH =1m ,记甲、乙地块的绿化面积分别为S 1、S 2,则S 1、S 2的大小关系是( )A. S 1<S 2B. S 1=S 2C. S 1>S 2D. 无法确定【答案】C【解析】【分析】 根据图片,我们可以看到绿化面积就是长方形的面积减去阴影部分的面积,分别求出两个长方形中阴影部分的面积,就可以得出答案.【详解】解:由题意可知:两个图中左右方向的平行四边形小路的面积都是:30×1=30(m²),两个图中上下方向的平行四边形小路的面积都是:25×1=25(m²),图甲中的重叠部分是1×1=1(m²),21=3025-30-25-1=69(6m )S ∴⨯,如图,分别做PR ∥CD 、NS ∥CD 交QD 于R 、S ,过点N 做NO ⊥PR 于O ,则PRQ NSM ∠=∠,四边形RSNS 是平行西边形,PR=NS=CD=1m ,NO <GH ,GH=1m ,在平行四边形PQMN 中,PQ ∥MN ,PQR NMS ∴∠=∠,易证()PQR NMS AAS ≅,<PQMN PRSN S S PR NO PR GH ∴==⋅⋅,()2111PR GH m ⋅=⨯=,2<1m PQMN S ∴,()2230253025<696m PQMN S S ∴=⨯--+, 1>2S S ∴;故答案为:C .【点睛】本题考查的是面积的问题,这里需要注意添加平行辅助线,计算阴影部分的面积,尤其是S2的面积计算中,要仔细.二、填空题(每题3分,共42分)11.若6x -在实数范围内有意义,则x 的取值范围为_________________.【答案】6x ≥【解析】【分析】根据根式有意义的条件,得到不等式,解出不等式即可【详解】要使6x -有意义,则需要-60x ≥,解出得到6x ≥【点睛】本题考查根式有意义的条件,能够得到不等式是解题关键12.已知3 1.732, 30 5.477≈≈,则0.3≈______.【答案】0.5477【解析】【分析】根据算术平方根的小数点移动规律可直接得出.【详解】解:30 5.477≈,0.3300.010.5477∴≈⨯≈故答案为:0.5477.【点睛】本题考查了算术平方根的应用,注意:当被开方数的小数点每向左或向右移动两位,平方根的小数点就向左或向右移动一位.13.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOE =2∠BOD ,则∠AOF 的度数为______.【答案】54°【解析】【分析】设∠BOD=x ,∠BOE=2x ;根据题意列出方程2x+2x+x=180°,得出x=36°,求出∠AOC=∠BOD=36°,即可求出∠AOF=90°-36°=54°.【详解】解:设∠BOD=x ,∠BOE=2x ,∵OE平分∠BOC,∴∠COE=∠EOB=2x,则2x+2x+x=180°,解得:x=36°,∴∠BOD=36°,∴∠AOC=∠BOD=36°,∵OF⊥CD,∴∠AOF=90°-∠AOC=90°-36°=54°;故答案为:54°.【点睛】本题考查了垂线、对顶角、邻补角的知识;弄清各个角之间的数量关系是解题的关键.14.已知AB∥x轴,A(-2,4),AB=5,则B点横纵坐标之和为______.【答案】-3或7【解析】【分析】由AB∥x轴可知B点的纵坐标和A点的纵坐标相同,再根据线段AB的长度为5,B点在A点的坐标或右边,分别求出B点的坐标,即可得到答案.【详解】解:∵AB∥x轴,∴B点的纵坐标和A点的纵坐标相同,都是4,又∵A(-2,4),AB=5,∴当B点在A点左侧的时候,B(-7,4),此时B点的横纵坐标之和是-7+4=-3,当B点在A点右侧的时候,B(3,4),此时B点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B点位置的不确定得出两种情况分别求解.15.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等数有1和0;③若a⊥b,b⊥c,则a⊥c;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有___个.【答案】2【解析】根据无理数、平方根和立方根的概念、两直线的位置关系、邻补角的概念分别判断后即可得到答案.【详解】解::①无理数是无限不循环小数,本说法正确;②平方根与立方根相等的数是0,本说法错误;③若a ⊥b ,b ⊥c ,则∥c a ,本说法错误;④邻补角是互补的角,本说法正确;⑤无理数包括正无理数、负无理数,本说法错误;故答案为:2.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.16.已知点M(3a -8,a -1),点M 在第二、四象限的角平分线上,则点M 的坐标为______. 【答案】55-,44⎛⎫ ⎪⎝⎭ 【解析】【分析】根据第二、四象限的角平分线上点的横纵坐标互为相反数得到3a-8+a-1=0,然后解出a ,再计算3a-8和a-1.【详解】解:根据题意得3a-8+a-1=0, 解得9a 4=, 95383844a ∴-=⨯-=-, 951144a -=-=, ∴M 点的坐标为55-,44⎛⎫ ⎪⎝⎭; 故答案为:55-,44⎛⎫ ⎪⎝⎭. 【点睛】本题考查了坐标与图形的性质,注意到象限角平分线上的点的特殊性即可正确解答.17.一个棱长为8cm 的正方体容器装满水,现将这个容器中的水倒入一个高度为32cm π的圆柱形玻璃杯中,恰好装满,则这个圆柱形玻璃杯的底面半径为______cm .【答案】4【解析】首先根据题意设这个圆柱形玻璃杯的底面半径为rcm ,再根据水的体积不变来列出等式,解出r 值即可.【详解】解:设这个圆柱形玻璃杯底面半径为rcm ,依题意可得:23328r ππ⋅=,∴232512r =,216r∴=,∴r取正值4;故答案为:4.【点睛】本题主要考查了算术平方根的性质和应用,以及圆柱、正方体体积的求法,要熟练掌握相关内容. 18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 的值为______.【答案】3【解析】【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-, ∴=,故答案为:3. 【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.【答案】-1【解析】【分析】根据点A 和点B 的坐标以及对应点的坐标确定出平移的方法,从而求出a 、b 的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A 1(2,a),B(0,2),B 1(b ,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a 2-2b=1²-2×1=-1; 故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.20.如图,△ABC 中,∠C =90︒,AC =5cm ,CB =12cm ,AB =13cm ,将△ABC 沿直线CB 向右平移3cm 得到△DEF ,DF 交AB 于点G ,则点C 到直线DE 的距离为______cm .【答案】7513【解析】【分析】根据平移前后图形的大小和形状不变,添加辅助线构造梯形,利用面积相等来计算出答案. 【详解】解:如图,连接AD 、CD ,作CH ⊥DE 于H ,依题意可得AD=BE=3cm ,∵梯形ACED 的面积()()2131235452S cm =⨯++⨯=, ∴()1153134522ADC DCE S S CH +=⨯⨯+⨯⋅=, 解得7513CH =;故答案为:7513. 【点睛】本题考查的是图形的平移和点到直线的距离,注意图形平移前后的形状和大小不变,以及平移前后对应点的连线相等.21.如图,已知AM//CN ,点B 为平面内一点,AB ⊥BC 于B ,过点B 作BD ⊥AM 于点D ,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180︒,∠BFC =3∠DBE ,则∠EBC 的度数为______.【答案】105°【解析】【分析】先过点B 作//BG DM ,根据同角的余角相等,得出ABD CBG ∠=∠,根据角平分线的定义,得出ABF GBF ∠=∠,再设DBE α∠=,ABF β∠=,根据180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,根据AB BC ⊥,可得290ββα++=︒,最后解方程组即可得到15ABE ∠=︒,进而得出1590105EBC ABE ABC ∠=∠+∠=︒+︒=︒.【详解】解:如图,过点B 作//BG DM ,BD AM ⊥,DB BG ∴⊥,即90ABD ABG ∠+∠=︒,又AB BC ⊥,90CBG ABG ∴∠+∠=︒,ABD CBG ∴∠=∠,BF 平分DBC ∠,BE 平分ABD ∠,DBF CBF ∴∠=∠,DBE ABE ∠=∠,ABF GBF ∴∠=∠,设DBE α∠=,ABF β∠=,则ABE α∠=,2ABD CBG α∠==∠,GBF AFB β∠==∠,33BFC DBE α∠=∠=, 3AFC αβ∴∠=+,180AFC NCF ∠+∠=︒,180FCB NCF ∠+∠=︒,3FCB AFC αβ∴∠=∠=+,BCF ∆中,由180CBF BFC BCF ∠+∠+∠=︒,可得(2)3(3)180αβααβ++++=︒,①由AB BC ⊥,可得290ββα++=︒,②由①②联立方程组,解得15α=︒,15ABE ∴∠=︒,1590105EBC ABE ABC ∴∠=∠+∠=︒+︒=︒.故答案为:105°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.22.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若≥PAB 的面积为18,则m ,n 满足的数量关系式为________.【答案】3230m n +=-【解析】【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=, ∵点P (m ,n )为第三象限内一点,m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-, 1133222OBP P S OB x m m =⋅=⨯⋅=-, 33182PAB OAB OAP OBPS S S S n m ∴=++=--+=, 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.23.对于实数a ,我们规定:用符号[]a 表示不大于[]a 的最大整数,称为a 的根整数,例如:,如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次:10]33]1=→=这时候结果为1.则只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是__________.【答案】255【解析】【分析】根据材料的操作过程,以及常见的平方数,可知分别求出255和256进行几次操作,即可得出答案.【详解】解:25515,153,31,⎡⎤⎡⎤⎡⎤===⎣⎦⎣⎦⎣⎦∴对255只需要进行3次操作后变成1,25616,164,42,21,⎡⎤⎡⎤⎡⎤⎡⎤====⎣⎦⎣⎦⎣⎦⎣⎦∴对256需要进行4次操作后变成1,∴只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是255;故答案为:255.【点睛】本题考查了估算无理数的大小应用,主要考查学生的阅读能力和猜想能力,同时也要考了一个数的平方数的计算能力.24.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.【答案】45°或135°【解析】【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°. 【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.三、解答题(共48分)25.计算.(1)解方程:23(2)27x -=(2)计算23823)|12-+(3)解二元一次方程组:(1)21325x y x y +=-⎧⎨-=-⎩(2)434363552(43)3(43)5344x y x y x y x y -+⎧+=⎪⎪⎨-+⎪-=⎪⎩【答案】(1)125,1x x ==-;(2)0;(3)、(1)x 11y =-⎧⎨=⎩;(2)1213x y ⎧=-⎪⎪⎨⎪=-⎪⎩【解析】【分析】(1)等式两边同时除以3之后,两边同时开方即可;(2)利用开立方、平方和取绝对值分别计算之后,再整理即可;(3)第①个使用加减消元法直接求解,第②个先去分母,整理之后用加减消元法即可求解.【详解】解:(1)23(2)27x -=解:整理得:2(2)9x -=开方得:(2)3-=±x解得:125,1x x ==-;(22|1+-=231-+=0;(3)解二元一次方程组:(1)21325x y x y +=-⎧⎨-=-⎩①②解:①×2+②可得:7x=-7, 解得:x=-1,将x=-1代入①可得2(-1)+y=-1⨯, 解得y=1,∴方程组的解为x11y=-⎧⎨=⎩;(2)434363552(43)3(43)5 344x y x yx y x y-+⎧+=⎪⎪⎨-+⎪-=⎪⎩解:去分母可得5(43)3(43)18 8(43)9(43)15 x y x yx y x y-++=⎧⎨--+=⎩,整理得32618 45115x yx y-=⎧⎨--=⎩①②,①+②×8可得-414138y=,解得13y=-,将y值代入①可得12x=-,∴方程组的解为1213x y⎧=-⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查的是解一元二次方程、二元一次方程组以及实数的计算,掌握相关的计算法则是解题的关键.26.在平面直角坐标系中,△ABC的三个顶点的位置如图所示.现将△ABC平移,使得点A移至图中的点A'的位置.(1)平移后所得△A'B'C'的顶点B'的坐标为,C'的坐标为;(2)平移过程中△ABC扫过的面积为;(3)将直线AB以每秒1个单位长度的速度向右平移,则平移秒时该直线恰好经过点C'.【答案】(1)(5,3),(8,4);(2)232;(3)5 【解析】【分析】 (1)根据网格结构找出点B 、C 的对应点B ′、C '的位置,顺次连接之后,根据平面直角坐标系写出点B ′,C '的坐标;(2)结合图形可知所求为线段AB 扫过的图形为平行四边形ABB A ''加上三角形A B C '''的面积,分别求解之后再求和即可;(3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意,据此可解答本题. 【详解】解:(1)根据题意画图:∴(5,3)B ',(8,4)C ';(2)如图,∵1111634221422182222ABB A S ''=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯=, 1117322121312222A B C S '''=⨯-⨯⨯-⨯⨯-⨯⨯=, ∴平移过程中△ABC 扫过的面积为723822+=; (3)结合网格结构可知线段AB 向右平移时,A 点坐标变为(8,0)时满足题意,此时A 点向右平移了5个单位长度,∵直线AB 以每秒1个单位长度的速度向右平移,∴平移5秒时该直线恰好经过点C '.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.27.(1)如图1,AB ∥CD ,点M 为直线AB ,CD 所确定的平面内的一点,若∠A =105︒+α,∠M =108︒-α,请直接写出∠C 的度数 ;(2)如图2,AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点,点E 在直线CD 上,AN 平分∠PAB ,射线AN 的反向延长线交∠PCE 的平分线于M ,若∠P =30︒,求∠AMC 的度数;(3)如图3,点P 与直线AB ,CD 在同一平面内,AN 平分∠PAB ,射线AN 的反向延长线交∠PCD 的平分线于M ,若∠AMC =180︒-12∠P ,求证:AB ∥CD .【答案】(1)147C ∠=︒;(2)105AMC ∠=︒;(3)证明过程见解析【解析】【分析】(1)直接添加辅助线AC ,结合三角形的内角和以及平行线的同旁内角即可求解;(2)延长BA 与CP 交于Q ,记CQ 和AM 交于点H ,先根据AN 平分∠PAB ,利用三角形的外角和对顶角,用含∠BAN 的式子来表示∠MHC,再∵AB ∥CD ,得到2102ECQ CQA BAN ∠=∠=︒-∠,通过CM 平分∠PCE ,得到∠MCH 可以用含∠BAN 的式子来表示,最后利用三角形的内角和即可求出答案;(3)添加辅助线AC ,则180PAC PCA P ∠+∠=︒-∠,MAC MCA ∠+∠=180︒M -∠,结合已知∠AMC =180︒-12∠P ,得到12MAC MCA P ∠+∠=∠,即可求到PAM PCM ∠+∠的值,通过角平分线就知道了BAM DCM ∠+∠,即可求到180BAC DAC ∠+∠=︒,就得到了AB ∥CD .【详解】解:(1)如图,连接AC ,在AMC 中,180MAC MAC MCA ∠+∠+∠=︒,∵AB ∥CD ,180BAC ACD ∴∠+∠=︒,180180360BAM M MCD ∴∠+∠+∠=︒+︒=︒,∵∠A =105︒+α,∠M =108︒-α,∴105(108367)014a a MCD ︒++︒⎡⎤∠=︒-=︒⎣⎦-;(2)如图,延长BA 与CP 交于Q ,记CQ 和AM 交于点H ,∵AN 平分∠PAB ,BAN PAN ∴∠=∠,1802QAP BAN ∴∠=︒-∠,∵∠P =30︒,∴3018022102CQA P QAP BAN BAN ∠=∠+∠=︒+︒-∠=︒-∠, 30MHC NHP NAP P BAN ∠=∠=∠-∠=∠-︒,∵AB ∥CD ,2102ECQ CQA BAN ∴∠=∠=︒-∠,∵CM 平分∠PCE ,()11210210522MCH ECP BAN BAN ∴∠=∠=⨯︒-∠=︒-∠,180AMC MHC MCH ∠=︒-∠-∠,()18030(105)105AMC BAN BAN ∴∠=︒-∠-︒-︒-∠=︒; (3)如图,连接AC ,则180PAC PCA P ∠+∠=︒-∠,180MAC MCA M ∠+∠=︒-∠,∵∠AMC =180︒-12∠P , 12MAC MCA P ∴∠+∠=∠, 11802MAC MCA PAC PCA P ∴∠+∠+∠+∠=︒-∠, 即11802PAM PCM P ∠+∠=︒-∠, ∵AN 平分∠PAB ,MC 平分∠PCD ,,BAM PAM DCM PCM ∴∠=∠∠=∠,11802BAM DCM P ∴∠+=︒-∠, 1118018022BCA DCA P P ∴∠+∠=︒-∠+∠=︒, ∴AB ∥CD .【点睛】本题考查的平行线及三角形的综合知识,在这里要注意添加根据题意添加合适的辅助线,这里需要用到三角形的内角和、平行四边形的性质、角平分线的性质以及对顶角等综合性质,难度稍大.28.在平面直角坐标系中,A (a ,b )、B (c ,d )、C (7,0)24(2)0a c b d ----= (1)如果a =1,d =2,①求A ,B 两点的坐标;②求线段AB 与y 轴交点N 坐标,并求出△AOB 的面积;(2)如果b =-1,且△AOB 与△ABC 面积和为9,求a 的值或取值范围.【答案】(1)①A(1,4),B(-3,2);②N(0,72),7ABOS =;(2)3a=-或6a=【解析】【分析】(1)①根据非负数的性质得到a-c-4=0,b-d-2=0,根据a=1,d=2即可求出a和b的值,得到A和B的坐标;②求出直线AB的解析式,令x=0,求到y值,即可得到点N的坐标;(2)当b=-1时,可以求到d=-3,由(1)知c=a-4,即可得出A和B的坐标,算出直线AB的解析式,之后画图来计算△AOB与△ABC的面积,去讨论其和等于9的情况,发现O和C在直线同一侧的时候,面积是变化的值,不同侧的时候,面积是定值等于7,所以将同侧分别画图计算即可得到答案.【详解】解:(1)由题意知:a-c-4=0,b-d-2=0,∵a=1,d=2,∴c=1-4=-3,b=2+2=4,①易得A(1,4),B(-3,2);②设直线AB的解析式为y=kx+n,由题意得423k nk n=+⎧⎨=-+⎩,解得1272kn⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为1722y x=+,令x=0,则72y =, ∴N(0,72 ),()117(13)7222ABO a b S ON x x ∴=⋅⋅+=⨯⨯+=; (2)如果b =-1,则d=-1-2=-3,∵c=a-4,∴(),1,(4,3)A a B a ---, 同②可求得此时直线AB 的解析式为11122y x a =--, 当O 、C 两点在直线的两侧时,如图所示,则1122AOB ABC BOC OAC B A S SS S OC y OC y +=-=⋅⋅-⋅⋅, ∴1173717922AOB ABC S S +=⨯⨯-⨯⨯=≠,可以看到这种情况下不满足题意;当O 、C 两点都在直线的左侧时,如图,作BD⊥x 轴于D ,连接DA ,则AOB BOD BAD DAO S S S S =--,结合A 、B 两点的坐标可以求到1114334412222AOB Sa a a =⋅-⋅-⨯⨯-⋅-⋅=--, ∵ABC BDC BAD DAC S S S S =--,()()11174334741222ABC S a a ⎡⎤⎡⎤∴=⨯--⨯-⨯⨯-⨯--⨯⎣⎦⎣⎦,5ABC S a ∴=-, 此时,若△AOB 与△ABC 面积和为9,则259a a --+-=,解得3a =-;当O 、C 两点都在直线的右侧时,如图,延长BA 于x 轴交于点E ,由11122AB y x a =--可知, 当y=0时,求得2x a =+,()2,0E a ∴+ ,()()112321222AOB OBE OAE S S S a a a ∴=-=⋅+⋅-⋅+⋅=+, ()()11273271522ABC CBE CAE S S S a a a =-=⨯+-⨯-⨯+-⨯=-, 此时,若△AOB 与△ABC 面积和为9,则259a a ++-=,解得6a =,综上所述,3a =-或6a =.【点睛】本题考查的是平面直角坐标中点的坐标和三角形的面积,我们在计算三角形的面积的时候,要注意利用坐标轴,构造大三角形,这样便于面积的求解.。
人教版数学七年级下册《期中考试题》及答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2 2. 下列方程变形中属于移项的是( ) A 由2x =﹣1得x =﹣12 B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣b D. 由4﹣3x =0得﹣3x +4=03. 由132x y -=,可以得到用表示的式子( ) A 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- 4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x 5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x =2是不等式4x >15的一个解D. 不等式x ﹣2<6的两边都减去3,则此不等式仍成立6. 把方程0.10.20.510.30.4x x ---=的分母化成整数后,可得方程( ) A. 0.10.20.5134x x ---= B. 12510134x x ---= C. 125101034x x ---= D.120.5134x x ---= 7. 不等式325132x x ++≤-的解集表示在数轴上是( )A. B. C. D.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=9. 如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩ 10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A. B. C. D.二、填空题(每小题3分,共15分)11. 若2x ﹣3与1互为相反数,则x =_____.12. 在公式S =12n (a +b )中,已知S =5,n =2,a =3,那么b 的值是_____. 13. 一个两位数,两个数位上数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. 15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x﹣1)﹣2(1﹣x)=0.17. 解不等式52x+﹣1<322x+,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20. 如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21. 小明在解方程21134x x m-+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22. 阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x=13;②当3x<0时,原方程可化一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)答案与解析一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2[答案]D[解析][分析]先移项,再合并同类项,最后系数化为1即可得出答案.[详解]3x -1=5,移项得,3x =5+1,合并同类项得,3x =6,系数化为1得,x =2.故选D.[点睛]本题考查了一元一次方程的解法.熟练掌握解一元一次方程的步骤是解题的关键.2. 下列方程变形中属于移项的是( )A. 由2x =﹣1得x =﹣12B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣bD. 由4﹣3x =0得﹣3x +4=0 [答案]C[解析][分析]根据一元一次方程的解法直接进行排除选项即可.[详解]A 、由2x =﹣1得:x =12-,不符合题意; B 、由2x =2得:x =4,不符合题意; C 、由5x +b =0得5x =﹣b ,符合题意;D 、由4﹣3x =0得﹣3x +4=0,不符合题意.故选:C .[点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.3. 由132x y -=,可以得到用表示的式子( ) A. 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- [答案]A[解析][分析] 只需把含有y 的项移到方程的左边,其它的项移到另一边,然后合并同类项、系数化为1就可用含x 的式子表示y .[详解]解:移项,得123y x =-, 系数化为1,得223x y =-. 故选:A .[点睛]本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等.4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x[答案]C[解析][分析]出错的地方为:方程两边除以x ,没有考虑x 为0的情况,据此判断即可.[详解]解:错误的地方为:方程两边都除以x ,没有考虑x 是否为0,正确解法为:移项得:2x ﹣3x =0,合并得:﹣x =0,系数化为1得:x =0.故选:C .[点睛]本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x=2是不等式4x>15的一个解D. 不等式x﹣2<6的两边都减去3,则此不等式仍成立[答案]D[解析][分析]根据不等式的解法及不等式解集的概念直接进行排除选项即可.[详解]A、方程的解只有一个,而不等式的解有无数个;故本选项不合题意.B、不等式4x>5的解集是x>54,故本选项不合题意.C、不等式4x>15的解集是x>154不包括2,故本选项不合题意.D、不等式x﹣2<6的两边都减去3,则此不等式仍成立,正确,依据是不等式的基本性质.故选:D.[点睛]本题主要考查一元一次不等式的解集及解法,熟练掌握一元一次不等式的解集及解法是解题的关键.6. 把方程0.10.20.510.30.4x x---=的分母化成整数后,可得方程( )A. 0.10.20.5134x x---= B.12510134x x---=C. 125101034x x---= D.120.5134x x---=[答案]B[解析][分析]本题方程两边都含有分数系数,在变形的过程中,利用分数的性质将分数的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程,把含分母的项的分子与分母都扩大原来的10倍.[详解]解:把原方程的分母化为整数得,12510134x x ---=故选B.[点睛]分母化成整数的过程的依据是分数的性质,掌握相关知识是解题的关键.7. 不等式325132x x++≤-的解集表示在数轴上是( )A. B.C.D.[答案]B[解析][分析] 根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.[详解]解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .[点睛]本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=[答案]C[解析][分析]设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.[详解]解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .[点睛]本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.9. 如图,射线OC 端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩[答案]B[解析][分析]根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;然后由平角可建立方程组,则问题得解.[详解]解:根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;根据∠AOC 和∠BOC 组成了平角,得方程x +y =180.列方程组为180210x y x y +=⎧⎨=+⎩. 故选:B .[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A.B. C. D. [答案]C[解析][分析]可设第一个数为x ,根据已知对每个选项计算讨论得出.[详解]设第一个数为x,根据已知:A:得x+x+6+x+7+x+8=36,则x=6.25不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选C.[点睛]此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.二、填空题(每小题3分,共15分)11. 若2x﹣3与1互为相反数,则x=_____.[答案]1.[解析][分析]根据互为相反数的关系直接进行求解即可.[详解]解:根据题意得:2x﹣3+1=0,移项合并得:2x=2,解得:x=1.故答案:1.[点睛]本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.12. 在公式S=12n(a+b)中,已知S=5,n=2,a=3,那么b的值是_____.[答案]2.[解析][分析]求公式中的一个字母b的值,把已知其它字母的值代入,转化为关于b大的方程,解之即可.[详解]∵S=12n(a+b)中,且S=5,n=2,a=3,∴5=12×2×(3+b),解得:b=2.故答案为:2.[点睛]本题考查从公式中求某个字母值问题,关键是把给的已知字母的值代入,转化为某字母为未知数的方程.13. 一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.[答案]36[解析][分析]设十位数字为x ,个位数字为y ,由题意可进行列方程组进行求解即可.[详解]解:设十位数字为x ,个位数字为y ,由题意得:2101027y x y x x y =⎧⎨+=++⎩, 解得:36x y =⎧⎨=⎩, 原两位数是36,即:原两位数是36.故答案是:36.[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. [答案]38. [解析][分析]已知等式利用题中的新定义化简,计算即可求出解.[详解]解:根据题中的新定义化简得:3x +12=2﹣x , 去分母得:6x +1=4﹣2x ,解得:x =38. 故答案为:38. [点睛]本题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解题的关键.15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.[答案]12和20[解析][分析]足球缝合规律:五边形的5条边都与六边形缝合,六边形只有3条边与五边形缝合,所以五边形的个数乘以5应该等于六边形的个数乘以3,据此设足球有黑色五边形皮块x 个,列方程求解即可[详解]设足球有黑色五边形皮块x 个,则有白色六边形皮块(32-x)个,由题意得,5x=3(32-x)解得:x=12所以白色皮块数为20,黑色皮块数为12.故答案为:12和20.[点睛]本题主要考查一元一次方程应用,熟练掌握一元一次方程的应用是解题的关键.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x ﹣1)﹣2(1﹣x )=0.[答案]x =58 [解析][分析]先去括号合并同类项,然后直接解一元一次方程即可.[详解]解:()()321210x x ---=去括号,得6x ﹣3﹣2+2x =0,移项,得6x +2x =3+2,合并同类项,得8x =5,系数化为1,得x =58. [点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.17. 解不等式52x +﹣1<322x +,小兵的解答过程是这样的. 解:去分母,得x +5﹣1<3x +2①.移项,得x ﹣3x <2﹣5+1②.合并同类项,得﹣2x <﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.[答案](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答过程见解析,x>12.[解析][分析](1)根据解一元一次不等式的步骤,逐一判断即可得出结论;(2)根据解一元一次不等式的步骤,解不等式即可.[详解](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答是:去分母得(x+5)﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,系数化为1,得x>12.[点睛]此题考查的是解一元一次不等式,掌握解一元一次不等式的步骤是解题关键.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.[答案]33 xy=⎧⎨=-⎩.[解析][分析]先把方程组标号①②,把两个方程同一未知数的系数变绝对值相等的数,同号两式相减,异号两式相加,消去一个未知数,转化为一元一次方程,得解后再代入①或②,求另一未知数,把两个解联立起来即可.[详解]433 3315x yx y+=⎧⎨-=⎩①②,①×2得:8x+6y=6③,②×3得:9x﹣6y=45④,③+④得:17x=51,解得:x=3,把x=3代入①,得4×3+3y=3, 解得:y=﹣3,所以原方程组的解是33 xy=⎧⎨=-⎩.[点睛]本题考查加减消元法解方程组,关键是要变方程一未知数系数绝对值相等,同号两式相减,异号两式相加.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.[答案]a=﹣11.[解析][分析]两个方程中,有一个只有一个未知数,先解这个方程,求出后,代入第二个方程解之即可.[详解]解方程.3x﹣6=4x﹣5,移项,得3x﹣4x=﹣5+6,合并同类项,得﹣x=1,系数化为1得:x=﹣1,把x=﹣1代入方程a﹣5x=﹣6,得a﹣5×(﹣1)=﹣6.解得a=﹣11.[点睛]本题考查用方程确定参数问题,关键是观察两个方程中有一个方程直接求解.20. 如图1,在边长为a大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.[答案]图2中第Ⅱ部分的面积为100.[解析][分析]根据在边长为a的大正方形中剪去一个边长为b的小正方形,以及长方形的长为30,宽为20,得出a+b=30,a-b=20,进而得出答案.[详解]解:根据题意得出:3020b a a b +=⎧⎨-=⎩, 解得:255a b =⎧⎨=⎩, 故图2中Ⅱ部分的面积是:5×20=100, 答:第Ⅱ部分的面积为100.[点睛]本题考查了正方形的性质以及二元一次方程组的应用,根据已知得出a+b=30,a-b=20是解题的关键. 21. 小明在解方程21134x x m -+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x =3,请你帮助小明求出m 的值和原方程正确的解.[答案]m =4,x =45 [解析][分析]根据题意进行“将错就错”,即把方程的解是x =3代入()()42131x x m -=+-中求解m 的值,最后代入原方程进行求解即可.[详解]解:根据题意,x =3是方程()()42131x x m -=+-的解,将x =3代入得4×(2×3﹣1)=3(3+m )﹣1,解得m =4, 所以原方程为214134x x -+=-, 解方程得x =45. [点睛]本题主要考查分式方程的解及分式方程的解法,熟练掌握分式方程的解及分式方程的解法是解题的关键.22. 阅读以下例题:解方程:|3x |=1,解:①当3x ≥0时,原方程可化一元一次方程3x =1,解这个方程得x =13;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.[答案](1)x=1或x=﹣2;(2)当b<﹣1时,方程无解;当b=﹣1时,方程只有一个解;当b>﹣1时,方程有两个解.[解析][分析](1)仿照例题分情况讨论:①当2x+1≥0时,②当2x+1<0时,化简绝对值,解关于x的一元一次方程即可求解;(2)|x﹣2|≥0恒成立,①若无解,则b+1<0,解不等式即可求解;②若只有一个解,则b+1=0,求解即可;③若有两个解,则b+1>0,解不等式即可求解.[详解]解:(1)①当2x+1≥0时,原方程可化为一元一次方程2x+1=3,解这个方程得x=1;②当2x+1<0时,原方程可化为一元一次方程﹣2x﹣1=3,解这个方程得x=﹣2;所以原方程的解是x=1或x=﹣2;(2)因为|x﹣2|≥0,所以①当b+1<0,即b<﹣1时,方程无解;②当b+1=0,即b=﹣1时,方程只有一个解;③当b+1>0,即b>﹣1时,方程有两个解.[点睛]本题考查解绝对值方程,理解题意是解题的关键.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)[答案](1)甲组工作一天商店应付300元,乙组工作一天商店应付140元;(2)单独请乙组,商店所付费用较少;(3)安排甲、乙两个装修组同时施工更有利于商店.[解析][分析](1)设甲组工作一天商店应付元,乙组工作一天商店应付元,根据“若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)根据总费用每天需支付的费用工作时间,可分别求出单独请甲组和单独请乙组施工所需费用,比较后即可得出结论;(3)分单独请甲组施工、单独请乙组施工和请甲、乙两组合做施工三种情况考虑,利用损失的总钱数施工费用因装修损失收入,分别求出三种情况下损失的钱数,比较后即可得出结论.[详解](1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意,得:883520 6123480x yx y+=⎧⎨+=⎩,解得:300140xy=⎧⎨=⎩.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组需要的费用为300×12=3600(元);单独请乙组需要的费用为140×24=3360(元).∵3600>3360,∴单独请乙组,商店所付费用较少.(3)单独请甲组施工,需费用3600元,少盈利200×12=2400(元),相当于损失6000元;单独请乙组施工,需费用3360元,少盈利200×24=4800(元),相当于损失8160元;请甲、乙两组合做施工,需费用3520元,少盈利200×8=1600(元),相当于损失5120元.∵5120<6000<8160,∴甲、乙合做损失费用最少.答:安排甲、乙两个装修组同时施工更有利于商店.[点睛]本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.。
2023年人教版七年级数学下册期中考试卷(及参考答案)
2023年人教版七年级数学下册期中考试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是_____.3.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.三、解答题(本大题共6小题,共72分)1.解方程:3531 132x x-+ -=2.解不等式组()3x2x4x112⎧+≥+⎪⎨-⎪⎩<,并求出不等式组的非负整数解.3.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、C6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、40°3、(3,7)或(3,-3)4、205、1三、解答题(本大题共6小题,共72分)x .1、32、0,1,2.3、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.4、36平方米5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。
2024年最新人教版初一数学(下册)期中考卷及答案(各版本)
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
2023年人教版七年级数学下册期中考试题及完整答案
2023年人教版七年级数学下册期中考试题及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.45°B.60°C.75°D.85°5.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q7.如图,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定8.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A .①②B .②③C .①③D .①②③10.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.若多项式2x 2+3x+7的值为10,则多项式6x 2+9x ﹣7的值为________.2.如果22(1)4x m x +-+是一个完全平方式,则m =__________.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.6.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=________.三、解答题(本大题共6小题,共72分)1.求满足不等式组()32813 1322x x x x ⎧--≤⎪⎨--⎪⎩<的所有整数解.2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。
2024年 人教版七年级下册数学期中测试(含评分标准)
2023—2024学年度下学期期中测试七年级数学试卷命题学校: 考试时间:120分钟 总分:120分 一、选择题(本大题共12小题,每小题3分,共36分)1.某同学读了《庄子》中的“子非鱼,安知鱼之乐”后,兴高采烈地利用电脑画出了几幅鲸鱼的图案,由图中所示的图案通过平移后得到的图案是( )2.如图,直线a,b 相交于点O,如果∠1+∠2=60°,那么∠3=( )A.150°B.120°C.60°D.30°3.已知点(1,4)A m m −+在y 轴上,则m 的值为( ) A .4−B .1−C .1D .44.下列各式中,正确的是( ) A .255=±B .164±=C .311=±D .2(5)5−=5.一把直尺和一个含30︒,60︒角的三角板如图所示摆放,直尺一边与三角板的两直角边分别交于F ,A 两点,另一边与三角板的两直角边分别交于D ,E 两点,且50CED ∠=︒,那么BAF ∠的大小为( )A .10︒B .20︒C .30︒D .40︒6.把点(,2)A m m +先向左平移2个单位长度,在向上平移3个单位长度得到点B ,点B 正好落在x 轴上,则点B 的坐标为( ) A .(5,0)−B .(7,0)−C .(4,0)D .(3,0)7.若4m +与2m −是同一个正数的两个平方根,则m 的值为( )A .3B .3−C .1D .1−8.下列命题为真命题的是( ) A .同旁内角互补 B .若22a b =,则a b =C .在同一平面内,垂直同一条直线的两条直线互相平行D .如果一个整数能被3整除,那么这个数也能被6整除9.如图所示,点E 在BA 的延长线上,点F 在BC 的延长线上,则下列条件中能判定AB ∥CD 的是( )A .∠1=∠2B .∠DAE =∠BC .∠D +∠BCD =180°D .∠3=∠410.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( ) A .(4,0)− B .(6,0) C .(4,0)−或(6,0)D .(0,12)或(0,8)11.如图,直线l 1∥l 2,直线l 3与l 1,l 2分别交于A,B 两点,过点A 作AC ⊥l 2,垂足为C,若 ∠1=52°,则∠2的度数是( )A.32°B.38°C.48°D.52°12.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点1(1,1)A ;把点1A 向上平移2个单位,再向左平移2个单位,得到点2(1,3)A −;把点2A 向下平移3个单位,再向左平移3个单位,得到点3(4,0)A −;把点3A 向下平移4个单位,再向右平移4个单位,得到点4(0,4)A −,⋯;按此做法进行下去,则点2023A 的坐标为( )A.(2024,0)−B .(2022,0)−C .(0,2024)−D .(0,2022)−二、填空题。
人教版数学七年级下册《期中考试题》附答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共12个小题1.在实数2π, 无理数有( )个 A. 1 B. 2 C. 3 D. 42. 在平面直角坐标系中,将点()2,6P 向下平移3个单位长度,得到点的坐标为( )A ()2,3 B. ()2,9 C. ()1,6- D. ()5,6 3. 下列等式:① 2x + y = 4;② 3xy = 7;③220x y +=;④12y x -=;⑤ 2x + y + z = 1二元一次方程的个数是( )A. 1B. 2C. 3D. 44. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A. (﹣3,4)B. ( 3,﹣4)C. (﹣4,3)D. ( 4,﹣3) 5. 不等式组31027x x +>⎧⎨<⎩的整数解的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个6. 在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶5∶6,③∠A=90°-∠B ,④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有 ( )A. 1个B. 2个C. 3个D. 4个 7. 我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( ) A. 999114100097x y x y +=⎧⎪⎨+=⎪⎩ B. 100097999114x y x y +=⎧⎪⎨+=⎪⎩ C. 10009928999,x y x y +=⎧⎨+=⎩ D. 100011499997x y x y +=⎧⎪⎨+=⎪⎩8. 下列说法不一定成立的是( )A. 若a b >,则a c b c +>+B. 若a c b c +>+,则a b >C. 若a b >,则22ac bc >D. 若22ac bc >,则a b >9. 为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a 的值分别是( )A. 全面调查;26B. 全面调查;24C. 抽样调查;26D. 抽样调查;2410. 若一个多边形的内角和与外角和之和是1800°,则此多边形是( )边形.A. 八B. 十C. 十二D. 十四11. 根据下列已知条件,不能唯一画出ABC 的是( )A. AB = 5, BC = 3, AC = 6B. AB = 4, BC = 3, ∠A = 50︒C. ∠A = 50︒, ∠B = 60︒, AB = 4D. AB = 10, BC = 20, ∠B = 80︒12. 如图,ABC 中, ∠A = 20︒,沿 BE 将此三角形对折,又沿BA '再一次对折,点C 落在BE 上的处,此时74C DB '∠=︒,则原三角形的∠C 的度数为( )A. 74︒B. 76︒ X. 79︒ ∆. 83︒二、填空题(本大题共6个小题) 13. 16 ⎽⎽⎽⎽⎽.14. 已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________. 15. 若一个三角形的两边长分别为5和8,则下列长度:①14;②10;③3;④2.其中,可以作为第三边长的是_____(填序号)16. 某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打_______折.17. 已知点(1,0)A 、(0,2)B ,点P 在轴上,且PAB △的面积为5,则点P 的坐标为__________. 18. 如图,已知 CB ⊥AD ,AE ⊥CD ,垂足分别为 B 、E ,AE 、BC 相交于点 F ,AB=BC ,若 AB=8,CF=2,则 BD=______.三、解答题:本大题共8个小题.19. 计算:23(2)9813---. 20. (1)解方程组:217126x y x y x y -=⎧⎪+-⎨+=⎪⎩; (2)解不等式组:2(2)3321123x x x x +≥+⎧⎪+-⎨->⎪⎩; 21. 由于新型冠状病毒的袭击,2020 春季各个学校不得不推迟开学,但停课不停学.各地都展开了网络学习,我校为了解七年级学生上网课的情况,开学后从该年级学生中随机抽取了部分学生进行数学科目的测试(把测试结果分为四个等级: A 级:优秀; B 级:良好; C 级:合格; D 级:不合格),并将测试记录绘成如下两幅完全不同的统计图,请根据统计图中的信息解答下列问题:(1)参加本次抽样测试的学生数是多少?(2)求图1 中A级扇形的圆心角∠a的度数,并把图2 中的条形统计图补充完整;(3)我校七年级共有1700 名学生,如果全部参加这次数学科目测试,请估计不合格的人数.22. 如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上点,且AM=DN.(1)求证:△ABE≌△DBC.(2)探索BM和BN的关系,并证明你的结论.23. 某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?24. 如图,AD为ABC的高,AE,BF为ABC的角平分线,若∠CBF = 32︒,∠AFB = 72︒.(1)∠BAD =︒;(2)求∠DAE的度数;(3)若点G为线段BC上任意一点,当GFC为直角三角形时,则求∠BFG的度数.25. (1)在关于x,y的二元一次方程组中2x yx y a-=⎧⎨+=⎩中,x >1,y < 0,求a的取值范围.(2)已知x - 2 y = 4,且x > 8,y < 4,求3x + 2 y的取值范围.(3)已知a -b =m,在关于x,y二元一次方程组21258x yx y a-=-⎧⎨+=-⎩中,x < 0,y > 0,化简含有绝对值的式子2334a b m m a b+-++-++(结果用含的式子表示)26. 同学们应该都见过光线照射在平面镜上出现反射光线的现象。
新人教版七年级数学下册期中考试题及答案【各版本】
新人教版七年级数学下册期中考试题及答案【各版本】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.如图,P是直线l外一点,A,B,C三点在直线l上,且PB⊥l于点B,∠APC=90°,则下列结论:①线段AP是点A到直线PC的距离;②线段BP的长是点P到直线l的距离;③PA,PB,PC三条线段中,PB最短;④线段PC的长是点P到直线l的距离,其中,正确的是( )A.②③B.①②③C.③④D.①②③④4.如图,已知AB AD=,那么添加下列一个条件后,仍无法判定≌的是()ABC ADC∆∆A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤77.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.若320,a b -++=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.若m 2﹣2m ﹣1=0,则代数式2m 2﹣4m+3的值为________.5.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为________. 6.一个多边形的内角和是1800°,这个多边形是________边形.三、解答题(本大题共6小题,共72分)1.解不等式组:3(1)531152x x x x --≥⎧⎪-+⎨-<⎪⎩2.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.3.如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD ,若∠EFG=90°,∠E=35°,求∠EFB 的度数.4.如图,一伞状图形,已知120AOB ∠=︒,点P 是AOB ∠角平分线上一点,且2OP =,60MPN ∠=︒,PM 与OB 交于点F ,PN 与OA 交于点E .(1)如图一,当PN 与PO 重合时,探索PE ,PF 的数量关系(2)如图二,将MPN ∠在(1)的情形下绕点P 逆时针旋转α度()060α<<︒,继续探索PE ,PF 的数量关系,并求四边形OEPF 的面积.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m 名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、C5、C6、A7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、1253、135°4、55、196、十二.三、解答题(本大题共6小题,共72分)1、71x -<≤-.2、149299a b ⎧=⎪⎪⎨⎪=⎪⎩3、20°4、(1)=PE PF ,证明详略;(2)=PE PF5、(1)150,(2)36°,(3)240.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
新人教版七年级数学下册期中考试卷及答案【必考题】
新人教版七年级数学下册期中考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .92.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC3.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .15 7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13208.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .5210.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.把命题“等角的补角相等”改写成“如果…那么…”的形式是______.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 _________.4.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第________块。
人教版初一下学期数学期中考试测试题(含答案)
人教版初一下学期数学期中考试测试题(含答案)人教版初一下学期数学期中考试测试题(含答案)一、选择题1、两条直线的位置关系有()A、相交、垂直B、相交、平行C、垂直、平行D、相交、垂直、平行2、如图所示,是一个七”字形,与/ 1是同位角的是()A、/ 2B、/ 3C、/ 4D、/ 53、经过一点A画已知直线a的平行线,能画()A、0条B、1条C、2条D、不能确定4、如图4,下列条件中,不能判断直线a//b 的是()A、/ 1 = / 3B、/ 2=7 3C、/ 4= / 5D、/ 2+ / 4=180 °5、下列图形中有稳定性的是()A •正方形B.长方形C.直角三角形D.平行四边形6、一吥透明盒子装有大小一样的球,共有4 个白球,6个红球,随机从中拿一个球,拿到红球的概率是多少?()A、3/4B、3/5C、2/5D、1/27、如图,已知:7 仁7 2,7 3=7 4,7 A=80°,则/ BOC 等于()A、95 °B、120 °C、130 °D、无法确定8若a=1.1062,b=0.947是经过舍入后作为的近似值,问a*+b*有几位有效数字?()A、4B、5C、6D、79、下列说法正确的是()A、符号相反的数互为相反数B、符号相反绝对值相等的数互为相反数C、绝对值相等的数互为相反数D、符号相反的数互为倒数10、甲乙两个水平相当的技术工人需要进行三次技术比赛,规定三局两胜者为胜方,如果第一次比赛中甲获胜,那么乙最终获胜的可能性有()A、1/4B、1/3C、1/2 D 、1/6二、填空题13、如图2,要把池中的水引到D处,可过C点引CD丄AB于D,然后沿CD开渠,可使所开渠道最短,试说明设计的依据:;14、 ___________________________________________________________ 多项式4x2 +mx+36 是一个完全平方式,则m= _______________________________________ .15、如图,AC 平分7 BAD, 7 DAC= 7DCA, 填空:因为AC 平分7 BAD, 所以7 DAC= _______ ,又因为7 DAC= 7 DCA,所以7 DCA= ________ ,所以AB // _______ 。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在实数3π,﹣,0,,﹣3.14,,,0.151 551 555 1…中,无理数有()A.2个B.3个C.4个D.5个2、已知点P(﹣3,4),则P到y轴的距离为()A.﹣3B.4C.3D.﹣43、下列命题中,是真命题的是()A.0没有算术平方根B.两条直线被第三条直线所截,同位角相等C.相等的角是对顶角D.a是实数,点P(a2+1,2)一定在第一象限4、如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A,则点A表示的数是()A.2B.C.πD.45、下列图形中,由∠1=∠2,能得到AB∥CD的是()A.B.C.D.6、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣17、如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cmC.27cm D.33cm8、若方程组的解满足x+y=0,则k的值为()A.﹣1B.1C.0D.1或09、《九章算术》是中国古代重要的数学著作,其中有这样一道题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗,问醇、行酒各得几何?”译文:今有醇酒(优质酒)1斗,价格50钱;行酒(勾兑酒)1斗,价格10钱.现有30钱,买2斗酒,问能买醇酒、行酒各多少斗?设能买醇酒x斗,行酒y斗,可列二元一次方程组为()A.B.C.D.10、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2022,0)B.(﹣2022,0)C.(﹣2022,1)D.(﹣2022,2)二、填空题(每小题3分,满分18分)11、已知AB∥x轴,A的坐标为(1,6),AB=4,则点B的坐标是.12、若x|a|﹣1﹣1+(a﹣2)y=1是关于x,y的二元一次方程,则a=.13、已知=1.038,=2.237,=4.820,则=.14、已知x,y为实数,且+(y+1)2=0,则x+y的算术平方根是.15、若点P(m+1,3﹣2m)在第一、第三象限的角平分线上,则m=.16、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=°.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、解不等式组并求它的所有的非负整数解.20、已知x,y为实数,是否存在实数m满足关系式如果存在,求出m的值;如果不存在,说明理由.21、如图,在边长为1的正方形网格中,三角形ABC中任意一点P(x0,y0)经平移后对应点为P1(x0﹣4,y0+3),已知A(0,2),B(4,0),C(﹣1,﹣1),将三角形ABC作同样的平移得到三角形A1B1C1.(1)画出三角形A1B1C1并写出坐标:A1(,),B1(,),C1(,);(2)三角形A1B1C1的面积为;(3)已知点P在y轴上,且三角形P AC的面积等于三角形ABC面积的一半,则P点坐标是.22、某物流公司在运货时有A、B两种车型,如果用3辆A型车和2辆B型车载满货物一次可运17吨货物;用2辆A型车和3辆B型车载满货物一次可运18吨货物.现需要运输货物32吨,计划同时租用A型车和B型车若干辆,一次运完,且每辆车都载满货物.(1)1辆A型车和1辆B型车都载满货物,一次可分别运输货物多少吨?(2)若A型车每辆需租金200元/次,B型车每辆需租金240元/次.请帮物流公司设计租车方案,并选出最省钱的方案及最少租金.23、已知AD∥BC,AB∥CD,E为射线BC上一点,AE平分∠BAD.(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA;(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=50°.①求证:∠ABC=∠ADC;②求∠CED的度数.24、对x,y,z定义一种新运算F,规定:F(x,y,z)=ax+by+cz,其中a,b,c为非负数.(1)当c=0时,F(1,﹣1,3)=1,F(3,1,﹣2)=7,求a,b的值;(2)在(1)的基础上,若关于m的不等式组恰有3个整数解,求k的取值范围;(3)已知F(3,2,1)=5,F(2,1,﹣3)=1,设H=3a+b﹣7c,求H 的最大值和最小值.25、如图,在平面直角坐标系中,AB⊥x轴,垂足为A,BC⊥y轴,垂足为C,已知A(a,0),C(0,c),其中a,c满足关系式(a﹣6)2+|c+8|=0,点P 从O点出发沿折线OA﹣AB﹣BC的方向运动到点C停止,运动的速度为每秒2个单位长度,设点P的运动时间为t秒.(1)在运动过程中,当点P到AB的距离为2个单位长度时,t=;(2)在点P的运动过程中,用含t的代数式表示P点的坐标;(3)当点P在线段AB上的运动过程中,射线AO上一点E,射线OC上一点F(不与C重合),连接PE,PF,使得∠EPF=70°,求∠AEP与∠PFC的数量关系.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、(﹣3,6)或(5,6)12、﹣2 13、22.37 14、2 15、16、360三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、719、它的非负整数解为0,1,220、即m的值为721、(1)﹣4、5、0、3、﹣5、2(2)7(3)(0,9)或(0,﹣5)22、(1)1辆A型车载满货物一次可运输货物3吨,1辆B型车载满货物一次可运输货物4吨(2)当租用4辆A型车,5辆B型车时,租金最少,最少租金为2000元23、(1)证明(略)(2)①∠ABC=∠ADC ②120°24、(1)(2)故k的取值范围为27≤k<33(3)当c=时,H的最大值为﹣,当c=时,H的最小值为﹣25、(1)2s或8s(2)P(2t,0)P(6,6﹣2t)(20﹣2t,﹣8)(3)∠PFC+∠PEA=160°或∠PFC﹣∠AEP=20°。
人教版七年级数学下册期中考试卷及答案【完整版】
人教版七年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12B .7+7C .12或7+7D .以上都不对2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元5.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm 7.把1a a-根号外的因式移入根号内的结果是( ) A .a -B .a --C .aD .a -8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .09.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x﹣1)=15 (2)711 32x x-+-=2.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、D6、B7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、90°3、135°4、a≤2.5、±46、160°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、-4≤a<-3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。
人教版数学七年级下册期中考试试题含答案
人教版数学七年级下册期中考试试卷一、选择题:(本大题共12个小题,每小题3分,共36分)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()2.已知是二元一次方程组的解,则a﹣b 的值为()A.3B.2C.1D.﹣13.下列说法正确的是()A .相等的两个角是对顶角B .和等于180度的两个角互为邻补角C .若两直线相交,则它们互相垂直D .两条直线相交所形成的四个角都相等,则这两条直线互相垂直4.下列命题中,属于真命题的是()A.两个锐角的和是锐角B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.同位角相等D.在同一平面内,如果a//b,b//c,则a//c5.如图,已知b a //,直角三角板的直角顶点在直线a 上,若︒=∠301,则2∠等于:A.︒30B.︒40C.︒50D.︒606.如图,在数轴上表示实数7的可能是:A.点PB.点QC.点MD.点N7.若点P ),(y x 在第四象限,且3||,2||==y x ,则y x +等于:A.1-B.1C.5D.5-8.已知⎩⎨⎧-==11y x 是方程组⎩⎨⎧=-=+21by cx cyax 的解,则b a ,间的关系是:A.3=+b aB.1-=-b aC.0=+b aD.3-=-b a 9.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么7条直线最多有:A.28个交点B.24个交点C.21个交点D.15个交点10.下列四个数:31,,3,3----π,其中最大的数是()A.3-B.3-C π- D.31-11.如右图,线段AB 经过平移得到线段CD,其中A、B 的对应点分别是C、D,这四个点都在格点上,若线段AB 上有一点P ),(b a ,则点P 在CD 上的对应点P'的坐标为:A.)2,4(+-b a B.)2,4(--b a C )2,4(++b a D.)2,4(-+b a 12.张小花家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程为:A.⎩⎨⎧=++-=+95000%)101(%)151(50000y x y x B.⎩⎨⎧=--+=-95000%)101(%)151(50000y x y x C.⎩⎨⎧=+--=+95000%)101(%)151(50000y x y x D.⎩⎨⎧=+--=-95000%)101(%)151(50000y x y x 二、填空题:(本大题共6个小题,每小题3分,共18分)13.如图,要使BF AD //,则需要添加的条件是_____________(写一个即可).14.已知一个正数的两个平方根分别是62-m 和m +3,则2)(m -的值为____________.15.平面直角坐标系中,点A )7,5(-到x 轴的距离是__________.16.要把一张面值为10元的人民币换成零钱,如果现有足够的面值为2元、1元的人民币,那么有_____种换法.17.请将命题"等腰三角形的底角相等"改写为"如果……,那么……"的形式:____________________________________.18.如图,已知BE AD //,点C 是直线FG 上的动点,若在点C 的移动过程中,存在某时刻使得︒=∠︒=∠22,45DAC ACB ,则EBC ∠的度数为________.三、解答题:(本大题共7个小题,共46分)19.(本小题满分5分)计算:|21|27)4(3(322-+---+-20.(本小题满分5分)一个正方形鱼池的边长是xm ,当边长增加m 3后,这个鱼池的面积变为281m ,求x .21.(每小题4分,共计8分)按要求解下列方程组:(1)用代入法解方程组:⎩⎨⎧=-=+102322y x y x (2)用加减法解方程组:⎩⎨⎧=+=-8251153y x y x 22.(本小题满分5分)如图,已知CD AB //,C A ∠=∠.求证:BCAD //23.(本小题满分7分)甲乙两位同学在解方程组⎩⎨⎧=-=+1413y bx y ax 时,甲把字母a 看错了得到方程组的解为⎪⎩⎪⎨⎧-==472y x ;乙把字母b 看错了得到方程组的解为⎩⎨⎧-==12y x .求原方程组正确的解.24.(本小题满分8分)如图,︒=∠+∠180BCF ADE ,BE 平分ABC ∠,E ABC ∠=∠2.(1)AD 与BC 平行吗?请说明理由;(2)AB 与EF 的位置关系如何?为什么?(3)若AF 平分BAD ∠,试说明:︒=∠+∠90F E .(注:本题第(1)(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程)解:(1)BC AD //,理由如下:∵︒=∠+∠180BCF ADE (已知)︒=∠+∠180ADF ADE (平角的定义)∴=∠ADF __________(______________________)∴BC AD //(__________________________)(2)AB 与EF 的位置关系是:互相平行∵BE 平分ABC ∠(已知)∴ABE ABC ∠=∠2(角平分线定义)又∵E ABC ∠=∠2(已知)∴ABE E ∠=∠22(____________________)∴ABE E ∠=∠(____________________)∴______//_______(________________________)25.(本小题满分8分)如图平面直角坐标系内,已知点A 的坐标是)0,3(-.(1)点B 的坐标为_______,点C 的坐标为_____,=∠BAC ______;(2)求ABC ∆的面积;(3)点P 是y 轴负半轴上的一个动点,连接BP 交x 轴于点D,是否存在点P 使得ADP ∆与BDC ∆的面积相等?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案一.选择题题号123456789101112答案B D D D B C C A C D A B二.填空题13.︒=∠+∠180ABC A 或︒=∠+∠180DCB D 或EBF A ∠=∠或DCF D ∠=∠(任意写一个即可,不必写全)14.115.716.617.如果一个三角形是等腰三角形,那么它的两个底角相等18.︒︒6723或(第18题仅填一种情况并且正确的给2分,填了两种情况但其中有一种错误的不给分)三.解答题19.解:原式=12343-+++......................................3分=29+....................................................5分20.解:由题意得81)3(2=+x ...................................................................3分解得126-==x x 或(不合题意,舍去)..........................................4分答:该鱼池的边长x 等于m 6..........................................................5分21.解:(1)由①,得x y 22-=③..................................................1分将③代入②,得10)22(23=--x x 解这个方程,得2=x ...................................................2分将2=x 代入③,得2-=y ..........................................3分所以原方程组的解是⎩⎨⎧-==22y x ...................................................4分(2)①5⨯得,552515=-y x ③..........................................................5分②3⨯得,24615=+y x ④④-③,得3131-=y 1-=y .....................................................................6分将1-=y 代入①,得2=x ...........................................................7分所以原方程组的解是⎩⎨⎧-==12y x ....................................................8分22.证明:∵CDAB //∴︒=∠+∠180C B ....................................2分又∵C A ∠=∠................................................3分∴︒=∠+∠180A B ....................................4分∴BC AD //.................................................5分解:∵甲看错了字母a 但没有看错b ∴将⎪⎩⎪⎨⎧-==472y x 代入14=-y bx 得,147(42=-⨯-b ................................2分∴3-=b ....................................................................................................3分同理可求得2=a ......................................................................................4分将3,2-==b a 代入原方程组,得⎩⎨⎧=--=+143132y x y x ......................................5分解得⎩⎨⎧=-=57y x ..............................................................................................6分∴原方程组正确的解是⎩⎨⎧=-=57y x .................................................................7分解:(1)∠BCF 同角的补角相等同位角相等,两直线平行...............................1.5分等量代换等式性质AB EF 内错角相等,两直线平行...........................4分(每空0.5分,八个空共计4分)证明:由(1)知BCAD //∴︒=∠+∠180ABC DAB ...............................................................5分∵BE 平分ABC ∠,AF 平分DAB∠∴DABBAF ABC ABE ∠=∠∠=∠21,21∴︒=︒⨯=∠+∠=∠+∠90180212121DAB ABC BAF ABE ......6分由(2)知EFAB //∴F BAF E ABE ∠=∠∠=∠,.........................................................7分∴︒=∠+∠180F E ...........................................................................8分解:(1))5,2()0,5(︒45....................................................3分(2)过点B 作x BE ⊥轴于E∵点A,B,C 的坐标分别为)0,5(),5,2(),0,3(-∴5,835==+=+=BE OC OA AC ........................................5分∴20582121=⨯⨯=⋅=∆BE AC S ABC .........................................6分(3)存在点P 使得ADP ∆与的BDC ∆的面积相等........................................7分此时点P 的坐标为)5,0(-.........................................................................8分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册期中试题
一、选择题(共12小题,每小题3分,共36分)
1.9的平方根是()
A.3 B.81 C .±3 D .±81
2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()
A.30°B.25°C.20°D.15°
3.在实数:3.14159,,3.,1.010010001…,π,中,无理数有()A.1个B.2个C.3个D.4个
4.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()
A .(5,4)B.(4,5)C.(3,4)D.(4,3)
5.下列式子正确的是()
A.±=7 B.=﹣C.=±5 D.=﹣3
6.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC =()
A.30°B.60°C.90°D.120°
7.下列说法正确的个数有()
①过一点有且只有一条直线与已知直线平行;
②垂线段最短;
③坐标平面内的点与有序实数对是一一对应的;
④算术平方根和立方根都等于它本身的数是0和1;
⑤的小数部分是.
A.1 B.2 C.3 D.4
8.若|3x﹣2y﹣1|+=0,则点(x,y)在第()象限.
A.四B.三C.二D.一
9.估计5﹣的值在()
A.0和1之间B.1和2之间C.2和3之间D.3和4之间
10.已知点A(1,0),B(0,2),点P在x轴上,且△PAB 的面积为5,则点P的坐标为
()
A.(﹣4,0)B.(6,0)
C.(﹣4,0)或(6,0)D.无法确定
11.若是关于x、y的方程组的解,则(a+b)(a﹣b)的值为()
A.15 B.﹣15 C.16 D.﹣16
12.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,
1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运
动规律,经过第2019次运动后,动点P的坐标是()
A.(2018,0)B.(2017,1)C.(2019,1)D.(2019,2)
二、填空题:(每小题4分,满分16分)
13.把命题“邻补角互补”改写成“如果…,那么…”的形式.
14.把一张长方形纸片ABCD沿EF折叠后与BC相交,点D、C分别在M、N的位置上,若∠EFB
=55°,则∠1=.
15.观察下列等式:,=,…,第8
个等式是.
16.把某个式子看成一个整体,用一个字母代替它,从而使问题得到简化,这叫整体代换或
换元思想,请根据上面的思想解决下面问题:若关于x、y的二元一次方程组
的解是,则关于a.b的二元一次方程组的解是.
三、解答题:(本大题共7小题,满分66分)
17.(8分)(1)﹣()2﹣;
(2)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分,求3a
﹣b+c的平方根.
18.(8分)(1)解方程组:;
(2)对于有理数x、y定义新运算x☆y=ax+by﹣1,其中a、b是常数,已知3☆2=12,
(﹣2)☆3=﹣1,求a,b的值.
19.(9分)完善下列解题步辈.井说明解题依据.
如图,已知∠1=∠2,∠B=∠C,求证:AB∥CD.
证明:∵∠1=∠2(已知)
且∠1=∠CGD()
∴∠2=∠CGD()
∴)∥(),
∴∠C=()
又∵∠B=∠C(已知)
∴=∠B
AB∥CD()
20.(10分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)
(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′
(3)写出三个顶点坐标A′(、)、B′(、)、C′、)
(4)求△ABC的面积.
21(10分).观察下列一组等式的化简然后解答后面的问题,
提示:(a+b)(a-b)=a²-b²
(1)在计算结果中找出规律(n表示大于0的自然数)
(2)通过上述化简过程,比较与大小;
(3)利用你发现的规律计算下列式子的值:22.(10分)(1)如图1,AB∥CD,∠A=35°,∠C=40°,求∠APC的度数.(提示:作PE∥AB).
(2)如图2,AB∥DC,当点P在线段BD上运动时,∠BAP=∠α,∠DCP=∠β,求∠CPA 与∠α,∠β之间的数量关系,并说明理由.
(3)在(2)的条件下,如果点P在射线DM上运动,请你直接写出∠CPA与∠α,∠β之间的数量关系.
23.(12分)如图长方形OABC的位置如图所示,点B的坐标为(8,4),点P从点C出发向点O移动,速度为每秒1个单位;点Q同时从点O出发向点A移动,速度为每秒2个单位;
(1)请写出点A、C的坐标.
(2)几秒后,P、Q两点与原点距离相等.
(3)在点P、Q移动过程中,四边形OPBQ的面积有何变化?说明理由.。