《损伤力学基础》课程作业一(崔玮 0820020163)

合集下载

损伤力学(推荐完整)

损伤力学(推荐完整)
13:39
绪论:损伤力学的分类
基 于 细 观 的 唯 象 损 伤 力 学 ( Meso-Continuum Damage Mechanics, MCDM)
研究思想:结合连续损伤力学和细观损伤力学主要思想 建立损伤材料的宏细微观结合的本构理论,把宏观力
学行为和细观损伤演化联系起来,即表征宏观的损伤参量 能对应细观的损伤演化与累积。
按表征损伤方式分类 能量损伤理论 几何损伤理论
13:39
绪论:损伤力学的分类
连续损伤力学(Continuum Damage Mechanics, CDM)
研究思想:将具有离散结构的损伤材料模拟为连续介质模 型,引入损伤变量(场变量),描述从材料内部损伤产生、 发展到出现宏观裂纹的过程,唯像地导出材料的损伤本构 方程,形成损伤力学的初、边值问题,然后采用连续介质 力学的方法求解。
弹性损伤:弹性材料中应力作用而导致的损伤。材料发生损 伤后没有明显的不可逆变形,又称为弹脆性损伤;
塑性损伤:塑性材料中由于应力作用而引起的损伤。要产生 残余变形。
蠕变损伤:材料在蠕变过程中产生的损伤,也称为粘塑性损 伤。这类损伤的大小是时间的函数。
13:39
绪论:损伤的分类
按照材料变形和状态区分(狭义上分类) 疲劳损伤:由应力重复作用而引起的,为其循环次数的函数,
13:39
绪论:损伤的分类
按照宏观的材料变形特征分类(广义上分类) 脆性损伤、韧性损伤和准脆性损伤
脆性损伤:材料在变形过程中存在为裂纹的萌生与扩展; 韧性损伤:材料在变形过程中存在为孔洞的萌生、长大、汇
合和发展等; 准脆性损伤:介于以上二者之间。
13:39
绪论:损伤力学的分类

损伤力学ppt课件第二章 一维损伤理论(1)

损伤力学ppt课件第二章 一维损伤理论(1)

~ 0 f E 1 D0 C1 ~ E 1 D f C2 f f f u




参数确定 利用条件:
d d
0
f
1 D0
f
f
C1 1 D0 1 f

~
D

D0

~
例:单轴拉伸、线弹性本构方程
e E
~ 取代 产生损伤后,用


e
~ E

E 1 D

也可将上式记为:
受损材料的弹性模量 (有效弹性模量)
e ~ E
~ E E1 D
~ E D 1 E

e E
可得:
E0 1 DT
损伤演化方程:
f 1 AT f AT DT 1 expBT f
DT 0
0 f
损伤演化率:
f 1 AT dD AT BT T DT d 2 exp BT f
,由于当
F
1 C1 1 f 济成,1989)
模型的提出基于这样一个事实,即一般的混凝土材料只有在加载初期,应 力应变才呈现线性关系。
该模型认为无论峰值应变前还是峰值应变后,应力应变关系均为曲线。
损伤演化方程由实验结果拟合出:
D A1 f
D 1

B1
0 f
A2 C2 1 f f
B2
f
A1 , A2 , B1 为材料常数,可由边界条件确定:
f

《损伤断裂力学》课件

《损伤断裂力学》课件

选择合适的试样和材料
根据研究目的选择具有代表性的试样和材料, 确保实验结果的可靠性。
设计实验载荷和环境条件
根据研究目的和试样特性,设计适当的实验载荷和环境条件,如温度、湿度等 。
实验过程与数据分析
进行实验操作
严格按照实验设计进行实验操作,确保数据的准确性 和可靠性。
数据采集和处理
在实验过程中实时记录数据,并进行必要的处理和分 析,提取关键信息。
新材料性能要求高
新型材料往往具有更高的强度、轻质、耐高 温等特性,但同时也可能存在更复杂的断裂 行为和损伤机制,需要更深入的探究。
多场耦合下的损伤断裂问题
多场耦合现象普遍存在
在工程实际中,许多结构会受到多种物理场的作用,如温度场、压力场、磁场等,这些 场的相互作用会对材料的损伤和断裂产生影响。
多场耦合效应复杂
有限元法可以处理复杂的几何形状和边界条件,适用于各 种类型的材料和结构,具有较高的计算精度和稳定性。
有限元法在损伤断裂力学中广泛应用于模拟材料的断裂和 损伤行为,可以预测裂纹的扩展路径、应力强度因子等重 要参数。
边界元法
边界元法是一种基于边界积分的数值模拟方法,通过将问题转化为边界积 分方程,然后利用离散化的方法求解。
02
CATALOGUE
损伤断裂力学的基本理论
损伤理论
损伤定义
01
损伤是材料在服役过程中受到的不可逆变化,包括微裂纹、晶
界滑移等。
损伤分类
02
根据损伤程度和形态,可分为表面损伤和内部损伤,其中内部
损伤又可分为微裂纹和晶界损伤等。
损伤演化
03
损伤演化是指材料在服役过程中损伤不断扩大和发展的过程,
包括裂纹扩展、界面分离等。

损伤力学书目

损伤力学书目

损伤力学书目1.吴鸿遥. 损伤力学. 北京:国防工业出版社,19902.杨光松. 连续介质损伤力学讲义. 北京:国防科技大学航天技术系,19903.谢和平. 岩石、混凝土损伤力学. 北京:中国矿业大学出版社,19904.楼志文. 损伤力学基础. 西安:西安交通大学出版社,19915.李灏. 损伤力学基础. 济南:山东科学技术出版社,19926.余天庆,钱济成. 损伤理论及其应用. 北京:国防工业出版社,19937.王光钦,高庆. 固体的损伤与断裂. 成都:成都科技大学出版社,19938.沈为. 损伤力学. 武汉:华中理工大学出版社,19959.杨光松. 损伤力学与复合材料损伤. 北京:国防工业出版社,199510.余寿文,冯西桥. 损伤力学. 北京:清华大学出版社,199711.王军. 损伤力学的理论与应用. 北京:科学出版社,199712.李兆霞. 损伤力学及其应用. 北京:科学出版社,200213.冯西桥, 余寿文著. 准脆性材料细观损伤力学. 北京:高等教育出版社,200214.唐雪松,郑健龙,蒋持平著. 连续损伤理论及应用. 北京:人民交通出版社,200615.张行. 断裂与损伤力学. 北京:北京航空航天大学出版社,200616.K L Reifsnider. Damage in Composite Materials: Basic Mechanisms,Accumulation, Tolerance, and Characterization. ASTM, 198217.L M Kachanov. Introduction to continuum damage mechanics. Dordrecht,Netherlands: Martinus Nijhoff Publishers, 198618.D Krajcinovic and J Lemaitre. Continuum Damage Mechanics-Theory andApplications. Wien, New York: Springer Verlag, 198719.R Viswanathan. Damage mechanisms and life assessment ofhigh-temperature components. Metals Park, Ohio : ASM International, 1989.20.J Lemaitre, J. –L. Chaboche. Mechanics of Solid Materials. Cambridge :Cambridge University Press, 199021.J Lemaitre, H Lippmann. A course on damage mechanics. Berlin: Springer,199222.R Talreja. Damage Mechanics of Composite Materials (Composite MaterialsSeries Vol. 9). Amsterdam: Elsevier,199423.D Krajcinovic. Damage Mechanics. Amsterdam: Elsevier Science Publishers,199624.D L Mcdowell. Applications of Continuum Damage Mechanics to Fatigue andFracture. West Conshohocken: ASTM publisher,199725.G Z Voyiadjis, J W Ju and J L Chaboche. Damage Mechanics in EngineeringMaterials. Amsterdam: Elsevier Science, 199826.M H Aliabadi. Nonlinear fracture and damage mechanics. Southampton,Boston: WIT Press, 200127.A llix and F Hild .Continuum damage mechanics of materials and structures.Amsterdam: Elsevier, 200228.P I Kattan, G Z Voyiadjis. Damage mechanics with finite elements:practicalapplications with computer tools. Berlin:Springer-Verlag,200229.K hémais Saanouni . Numerical Modelling in Damage Mechanics. London:Kogan Page Science , 200330.G Z Voyiadjis and P I Kattan. Damage mechanics. Boca Raton: Taylor &Francis, 200531.J Lemaitre, R Desmorat. Engineering Damage Mechanics: Ductile, Creep,Fatigue and Brittle Failures. Berlin: Springer,200532.G Z Voyiadjis and P I Kattan. Advances in damage mechanics. Oxford:Elsevier, 2006。

损伤力学资料

损伤力学资料

Effect of manufacturing defects on mechanical properties and failure features of 3D orthogonal woven C/CcompositesAi Shigang a ,Fang Daining b ,⇑,He Rujie b ,1,Pei Yongmao ba Institute of Engineering Mechanics,Beijing Jiaotong University,Beijing 100044,PR ChinabState Key Laboratory of Turbulence and Complex System,College of Engineering,Peking University,Beijing 100871,PR Chinaa r t i c l e i n f o Article history:Received 8September 2014Received in revised form 1November 2014Accepted 3November 2014Available online 10November 2014Keywords:A.Carbon-carbon composites (CCCs)B.DefectsC.Damage mechanics C.Numerical analysisD.Non-destructive testinga b s t r a c tFor high performance 3D orthogonal textile Carbon/Carbon (C/C)composites,a key issue is the manufac-turing defects,such as micro-cracks and voids.Defects can be substantial perturbations of the ideal archi-tecture of the materials which trigger the failure mechanisms and compromise strength.This study presents comprehensive investigations,including experimental mechanical tests,micron-resolution computed tomography (l CT)detection and finite element modeling of the defects in the C/C composite.Virtual C/C specimens with void defects were constructed based on l CT data and a new progressive dam-age model for the composite was proposed.According to the numerical approach,effects of voids on mechanical performance of the C/C composite were investigated.Failure predictions of the C/C virtual specimens under different void fraction and location were presented.Numerical simulation results showed that voids in fiber yarns had the greatest influences on performance of the C/C composite,espe-cially on tensile strength.Ó2014Elsevier Ltd.All rights reserved.1.IntroductionCarbon fiber reinforced carbon composites (C/C)have high ther-mal stability,thermal shock resistance,strength and stiffness in non-oxidizing atmosphere.Due to its superior specific strength and toughness,C/C composites can be considered as favourite materials for highly demanding thermostructural lightweight applications e.g.in aerospace and nuclear industry [1–6].Nowa-days C/C components are leading candidates for applications under extreme conditions.C/C composites are produced by chemical vapor infiltration (CVI)of a textile fiber preform.After the CVI pro-cess and high temperature heart-treatments,generally,manufac-turing defects exist inner the materials.In particular,porosity/voids and micro-cracks are typical defects in C/C composites,and seriously affect the performance of the composites [7–9].So,it is mandatory to account for the effects of defects and their evolution,even in the early stages of the design process.With the increasing use of C/C composites as advanced structural materials,the deter-mination of damage criticality and structural reliability of compos-ites has become an important issue in recent years.Defects–mechanical property relationships of fiber reinforced composites have always been of interest to scientists addressing the composite performance.In Gowayed et al.’s work [10],defects in an as-manufactured oxide/oxide and two non-oxide (SiC/SiNC and MI SiC/SiC)ceramic matrix composites were categorized and their volume fraction quantified using optical imaging and image analysis.Aslan and Sahin [11]investigated the effects of delamin-ations size on the critical buckling load and compressive failure load of E-glass/epoxy composite laminates with multiple large del-aminations by experiments and numerical simulations.In Masoud et al.’s work [12]effects of manufacturing and installation defects on mechanical performance of polymer matrix composites appear-ing in civil infrastructure and aerospace applications were studied.Damage onset and propagation were studied used time-dependent nonlinear regression of the strain field.In Refs.[13–17],the finite element method (FEM)was followed by various authors to study the delamination problems.FEM is preferred than analytical solu-tions because it can handle various laminate configurations and boundary conditions.In recent decades,high-fidelity X-ray micro-computed tomog-raphy (l CT)technology has been used to characterize defects and reconstruct meso-structure of textile composites [18].In Cox et al.’s work [19–21],three-dimensional images of textile com-posites were captured by X-ray l CT on a synchrotron beamline.Based on a modified Markov Chain algorithm and the l CT data,/10.1016/positesb.2014.11.0031359-8368/Ó2014Elsevier Ltd.All rights reserved.⇑Corresponding author.E-mail addresses:sgai@ (F.Daining),rujh@ (H.Rujie).1Co-corresponding author.a computationally efficient method has been demonstrated for generating virtual textile specimens.In Fard et al.’s work [22],manufacturing defects in stitch-bonded biaxial carbon/epoxy composites were studied through nondestructive testing (NDT)and the mechanical performance of the composite structures was investigated using strain mapping technique.In Desplentere et al.’s work [23],X-ray l CT was used to characterize the micro-structural variation of four different 3D warp-interlaced fabrics.And the influence of the variability of the fabric internal geometry on the mechanical properties of the composites was estimated.In Guillaume et al.’s work [24]effects of porosity defects on the interlaminar tensile (ILT)fatigue behavior of car-bon/epoxy tape composites were studied.In that work,CT mea-surements of porosity defects present in specimens were integrated into finite element stress analysis to capture the effects of defects on the ILT fatigue behavior.In Thomas et al.’s work [25]X-ray microtomography technology was adopted to measure the dimensions and orientation of the critical defects in short-fiber reinforced composites.Generally,geometry reconstruction based on l CT data is a huge and complex work,sometimes,virtual specimens explored through this approach are difficult to use for numerical analysis.For 3D fabric composites,because of the 2.Material and experimentsMaterial studied in this article is C/C 3-D orthogonal woven ceramic composite (fabricated by National Key Laboratory of Ther-mostructure Composite Materials,Northwestern Polytechnical University,China)in which T300carbon fiber (Nippon Toray,Japan)tows rigidified by carbon matrix.The C/C composite was prepared using chemical vapor infiltration (CVI)method.T300car-bon fiber was used as reinforcement of the C/C composites with the fiber volume fraction was 56.5%.The fiber preforms,as shown in Fig.1a,were infiltrated with carbon matrix using multiple cycles of infiltration and heat treatment at 1373K,0.03MPa (the thick-ness of the fiber preforms is about 5mm).With increasing cycles,a matrix with near full density can be asymptotically approached,generally,it was about 10cycles (1200h).The C/C specimens are illustrated in Fig.1b (the thickness of the tensile specimen is 5.0mm).However,from the l CT images of the C/C materials,it was found that manufacturing defects such as voids and micro-cracks appeared inner the composites.It is because of the special material preparation process.The manufacturing defects are illus-trated in Fig.1c.Uniaxial tensile experiments were carried out under a Shima-Fig.1.C/C 3-D orthogonal woven composite.Fig.2.Stress–strain curve of the C/C composite under uniaxial tension.114 A.Shigang et al./Composites:Part B 71(2015)113–121In the tensile experiments,five specimens in total were tested and the tensile strengths were217.3,185.1,219.8,176.5and 187.3MPa correspondingly.The average value of the tensile strength was197.2MPa and the dispersion of the experimental results was less than11.5%.Other more,the fracture behaviors of thefive specimens were similar with the failure locations almost all located in the middle of the specimens.From the experiments, deformation of the C/C3-D orthogonal composite under uniaxial tension comprises with three stages:linear elastic stage,damage initiation/evolution stage and the material fracture stage.In the first stage the stress–strain curve increased linearly and in the sec-ond stage the stress–strain curve increased nonlinearly.In the frac-ture stage the stress–strain curve rapidly declined.3.Numerical programmer3.1.3Dfinite element modelFiber tows in the3-D orthogonal architecturesfit together snugly in the woven pattern by a system of periodic motions, and approximately in the same cross-sectional geometry.In this study,cross-sections of the warpfiber yarns and weftfiber yarns werefitted as rectangle.The cross-sections of the z-binder tows werefitted as circular.Geometric parameters of thefiber yarn cross-sections were recorded.For the warp yarns and weft yarns the side lengths of the cross-section rectangle were0.786mm and0.340mm.For the z-binderfiber yarns the diameter of the cross-section circular was0.790mm.The smallest repeatable rep-resentative volume element(RVE)of the textile architecture was constructed and shown in Fig.3.The lengths of the RVE model in X and Y direction both were1.96mm and the height of the RVE model in Z direction was0.76mm.To reveal the internal defects in thefinite element model,l CT technology was used to investigate the meso-structures of the fore,three local coordinates were constructed to identify the mate-rial directions.Then,an interface zone with a constant thickness 0.01mm was generated based on the geometrical model of the fiber yarns,as shown in Fig.3d.Finally,a solid block model with the same size of the composite specimen was constructed.Boolean operation were carried out among the solid block,interfaces and thefiber yarns to generate the geometrical model of the carbon matrix,which is shown in Fig.3b.A whole RVE model of the com-posite is illustrated in Fig.3a.A Monte Carlo algorithm was adopted to choose elements one-by-one randomly as‘‘void defects’’until the volume fraction of the voids satisfied the threshold values in the three zones respectively. For the C/C composite studied in this paper,the void fractions of thefiber yarns,matrix and the interfaces are0.51%,0.47%and 1.94%respectively.It must be noted out that those elements which identified as‘‘void defects’’were not moved away from the FE model,but the stiffness was degenerated by10eÀ6times in the simulation process.The void defects in the three zones are high-light as‘‘red’’,as shown in Fig.3.3.2.Progressive damage modelThe failure criterion proposed here is a strain-based continuum damage formulation with different failure criteria applied for matrix andfiber yarns.A gradual degradation of the material prop-erties is assumed.This gradual degradation is controlled by the individual fracture energies of matrix andfiber yarns,respectively. Thefiber yarn is in the X(1)–Y(2)–Z(3)Cartesian coordinate sys-tem,and the X direction corresponds to thefiber longitudinal direction.For thefiber yarns,two different modes of failure are considered:fiber failure in longitudinal direction and matrix fail-ure in transverse direction.The damage mechanism consists of two ingredients:the damage initiation criteria and the damage evolution law.orthogonal textile C/C composite,(a)RVE model,(b)carbon matrix,(c)fiber yarns and(d)fiber yarns-matrixinterpretation of the references to colour in thisfigure legend,the reader is referred to the web version of thisA.Shigang et al./Composites:Part B71(2015)113–121115failure strains infiber direction in tension and compression,F f;tX and F f;cXare the tensile and compressive strength of thefiberyarns in X direction,respectively.Once the above criterion is sat-isfied,thefiber damage variable,f Xf,evolves according to the fol-lowing equation law:d X f ¼1Àe f;t11f XfeÀC11e f;t11f X fÀe f;t11ðÞL c=G fðÞð2Þwhere L c is the characteristic length associated with the material point.For matrix failure the following failure criterion is used:f Y m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffie f;t22e f;c22ðe22Þ2þe f;t22Àe f;t222e f;c22B@1C A e22þe f;t22e f;s12!2ðe12Þ2>e f;t22v uu uu tð3Þf Z m ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffie f;t3333ðe33Þ2þe f;t33Àe f;t33233B@1C A e33þe f;t3313!2ðe13Þ2>e f;t33v uu uu tð4Þwhere e f;t22;e f;t33;e f;c22and e f;c33are the failure strains perpendicular to the fiber direction in tension and compression,respectively.The failure strain for shear are e f;s13and e f;s12.Failure occurs when f Y m exceeds its threshold value e f;t22or f Z m exceeds its threshold value e f;t33.The evolu-tion law of the matrix damage variable,d m,is:d Ym¼1Àe f;t22f YmeÀC22e f;t22f Y mÀe f;t22ðÞL c=G mðÞð5Þd Zm¼1Àe f;t33fmeÀC33e f;t33f Z mÀe f;t33ðÞL c=G mðÞð6ÞAs damage progressing,the effective elasticity matrix isreduced as functions of the three damage variables f Xf,d Ymand d Zm, as follows:3.2.2.Failure criterion for matrixDamage in thefiber is initiated when the following criterion is reached:where e f;t and e f;c are the failure strains in tension and compression respectively and e f,t=r f,t/C11,e f,c=r f,c/C11.Once the above criterionis satisfied,thefiber damage variable,f XðY=ZÞm,evolves according to the equation:d XðY=ZÞm¼1Àef;tfmeÀC11e f;t f XðY=ZÞmÀe f;tL c=G mð9ÞThe modulus matrix of the matrix will be reduced according to:In user subroutine UMAT the stresses are updated according to the following equation:C f d ¼1Àd XfC111Àd Xf1Àd YmC121Àd Xf1Àd ZmC130001Àd YmC221Àd Ym1Àd ZmC230001Àd ZmC330001Àd Xf1Àd YmC4400Symmetric1Àd Xf1Àd ZmC5501Àd Ym1Àd ZmC66ð7Þf XðY=ZÞm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffief;tef;cðe11ð22=33ÞÞ2þe f;tÀðe f;tÞ2ef;c!e11ð22=33Þþef;tef;s2ðe12ð23=13ÞÞ2þef;tef;s2ðe13ð12=23ÞÞ2v uu t>e f;tð8ÞC m d ¼1Àd XmC111Àd Xm1Àd YmC121Àd Xm1Àd ZmC130001Àd YmC221Àd Ym1Àd ZmC230001Àd ZmC330001Àd Xm1Àd YmC4400Symmetric1Àd Xm1Àd ZmC5501Àd Ym1Àd ZmC66ð10Þ116 A.Shigang et al./Composites:Part B71(2015)113–121r ¼C d :eTo improve convergence,a technique based ization (Duvaut–Lions regularization [27])of is implemented in the user subroutine.In this age variables are ‘‘normalized’’via the _d t ;X ðY =Z Þf ðm Þ¼1gd X ðY =Z Þf ðm ÞÀd t ;X ðY =Z Þf ðm Þwhere d X f and d X ðY =Z Þm are the fiber and matrix culated according to the damage evolution d t ;X f and d t ;X ðY =Z Þm are the ‘‘normalized’’the real calculations of the damaged elasticity bian matrix,and g is the viscosity parameter.and d t ;X ðY =Z Þm can be calculated according to the d t ;X ðY =Z Þf ðm Þt 0þD t¼D t t 0þt d X ðY =Z Þf ðm Þ t 0þD t þg g þt dt ;X ðY =f ðm ÞTherefore,for the fiber yarns and matrix,can be further formulated as Eqs.(14)and (15)correspondingly@r e ðf Þ¼C f d þ@C f d@d f:e !@d X f @f f Á@f Xfe!þ@C f d @d Y m :e !@d Y m @f Y m Á@f Y m @e !þ@C f d @d Z m :e !@d Z m @f Zm Á@f Z m@e !ð14Þ@r @e ðm Þ¼C m d þ@C md @d m :e !@d X m @f m Á@f X m@e!þ@C md @d m :e !@d Y m @f m Á@f Y m @e !þ@C m d @d m :e !@d Z m @f m Á@f Z m @e!ð15Þ3.3.Material parameters3D orthogonal C/C composites are composed by T300fiber yarns and carbon matrix.The fiber yarns can be regarded as unidi-rectional fiber-reinforced C/C composites and are assumed to be one transversely isotropic entity in each local material coordinate system.The mechanical properties of the fiber yarns can be calcu-lated using the properties of the component materials (fibers and matrix):E 1¼e E f 11þð1Àe ÞE mE 2¼E 3¼E m1Àffiffie p 1ÀE m =E f 22ðÞG 12¼G 13¼G m 1Àffip 1ÀG m =G f 12ðÞG 23¼G m1Àffip 1ÀG m =G f23ðÞl 12¼l 13¼e l f 12þð1Àe Þl m l 23¼E 222G 23À19>>>>>>>>>>>>=>>>>>>>>>>>>;ð16Þwhere e is the yarn pack factor,for the C/C composite studied in this paper,e =0.81.E f 11,E f 22are the Young’s elastic modulus of the fiberin the principal axis 1and 2,respectively.Axis 1is the longitudinal direction of the fiber yarns.G f 12,G f 23are the shear modulus of the fiber in the 1–2and 2–3plane,respectively.l f 12is the primary Pois-son’s ratio of the fiber,E m ,l m and G m represent the Young’s elastic modulus,Poisson’s ratio and shear modulus of the matrix,respec-tively.Materials parameters are listed in Table 1.It should be noted that the mechanical parameters of the carbon matrix and the T300fibers changed after the CVI process.In particular,strength of the fiber will had a greater decline.The tensile and com-pressive strength of the T300fiber yarns were tested with the values listed in Table 1.The elasticity modular of the carbon matrix was tested by a nanoindentor system,which developed by Fang’s research team from Peking University [28].In the carbon matrix modular tests,the experiments repeated 20times for statistical averaging.The val-ues in the 20measurements were 7.18,9.77,8.58,10.01,11.92,5.30,9.98,8.14,8.63,7.31,6.19,10.69,11.10,13.45,9.15,9.13,11.27,9.20,10.14and 10.06GPa;average value was 9.36GPa.Mate-rial parameters of the fiber/matrix interface are not very clear so far,in this study the Young’s elastic modulus and Poisson’s ratio of the inter-faces were assumed as same as the carbon matrix.G f is one of the key parameters which control the failure pro-gress of the fiber yarns,however,different values were recom-mended in reported articles.In this study,influences of G f on the mechanical properties of the C/C composite were investigated firstly.Based on the values reported in Refs.[29,30],five virtual specimens with different G f values (0.5,2.0,6.0,10.0,14.0)were constructed and numerical tested.Simulation results were com-pared with the experimental result,as illustrated in Fig.4.It was found that G f has influences on tensile strength and fracture strain of the C/C composite.When G f were 0.5,2.0,6.0,10.0and 14.0,ten-sile strengths of the specimens were 200.5,205.1,205.3,214.2and 214.8MPa.When G f were 0.5,2.0,6.0,the failure strains were 0.36%,0.43%and 0.57%correspondingly.When G f is bigger than 10.0,failure strains of the C/C specimens were bigger than 1.0%.So,by the simulation results,in the present study the value of G f was set to 6.0.Table 1Materials parameters.E 11(GPa)E 22(GPa)ˆ12G 12(GPa)G 23(GPa)F t (MPa)F c (MPa)S (MPa)G f (m )(N/mm)gT300fiber 230400.262414.389075650 6.00.001C matrix 9.360.338210050 1.00.001Interface9.360.3382100501.00.001Fig.4.Stress–strain curves of the C/C virtual specimens under different G f .4.Simulation results and discussionThe anisotropic damage model of thefiber yarns and the isotro-damage model of the matrix and the interface were carriedmaterial constitutive equations by User subroutine UMAT ABAQUS nonlinearfinite element codes.Static uniaxial tensile sim-ulations were carried out.In order to keep forces continuity and displacements compatibility of the opposite faces of the unit cell, periodic boundary conditions were imposed in the simulation. Because the opposite faces of the unit cell have the same geomet-rical features,the nodes on the faces were controlled in the same position to form the corresponding nodes in the process of meshing.The periodic BCs were imposed on the corresponding nodes by FORTRAN pre-compiler code,detailed in Ref.[26].The RVE model subjected to a constant displacement load in Y direction and the loading strain is1%.4.1.Effects of the void defectsIn order to investigate the void defects on the mechanical prop-erties and failure behaviors of the C/C composite,two RVE models of the C/C composite were numerical simulated.In one RVE model (FE_D),thefiber yarns,interface and matrix all had void defects with the void fractions are0.51%,1.94%and0.47%respectively. For the other RVE model(FE_Intact),no defect inside.The stress–strain curves of the C/C composite in the simulations and experi-ment are illustrated in Fig.5.By the experimental results,the elas-ticity modular of this C/C composite was58.4GPa.By the numerical simulations,for the intact model,the elasticity modular was56.6GPa;for the‘defected’model the modular was56.3GPa. In the view of modular,the simulation error of the two models were3.1%and3.6%compared with the experimental results.The difference between the two FE models was only0.53%,so,void defects have relatively limited effects on the elastic modular of the C/C composite.The uniaxial tensile strength of the C/C compos-ite was197.2MPa by the experiments.In the simulations,the ten-sile strengths were231.4MPa and205.3MPa corresponding to the intact model and the‘defected’model.It was about17.3%and4.1% difference compared with experimental results.It is clear that,theFig.5.Stress–strain curves of the C/C composite under uniaxial tension.Fig.6.Damage evolution infiber yarns,(a)RVE model with voids defects,(b)intact model.Part B71(2015)113–121yarns are corresponding to the three pictures‘o’,‘p’and‘q’in Fig.6. For the RVE model with defects,it was found that damages were firstly generated besides the defects.During the loading process, damages were growing in several sections in thefiber yarns.How-ever,for the intact model,damages were almost generated in one section in thefiber yarns.Damage evolution in carbon matrix and the interface zone are illustrated in Figs.7and8.From the simulation results,in all of the three zones,damages werefirstly generated in the‘defected’RVE model.For the‘defected’model,when e=0.27%damages appeared in the interface zone,while for the intact model the strain was0.33%.In the matrix zone,the strains in the two models were0.31%and0.33%,respectively,when damages appeared.In fiber yarns,the strains when damages appear for the two models were0.37%and0.44%.So,because of the internal defects,in load-ing progress damages will generate early inner the material.Fail-ure strain of the materials which with defects is comparatively small when compared with the materials without defects.4.2.Influence of void locationBy the l CT images,it is clear that voids and micro cracks exist in fiber yarns,carbon matrix and the interface zones.By statistical analysis for those defects,fraction of the voids in those three zones was calculated.To study the influence of void location on the mechanical properties of the C/C materials,threefinite elementFig.7.Damage evolution in carbon matrix,(a)model with voids defects,(b)intact model.Fig.8.Damage evolution in interface,(a)model with void defects,(b)intact model.models were constructed and numerically analyzed.In the three RVE models,one model has defects only in thefiber yarns(FE_DF) and another model has the defects only in carbon matrix(FE_DM), while the other one has defects only in the interface zone(FE_DI). Simulation results were compared with the experimental results. Stress–strain curves in the numerical simulations and experiments are illustrated in Fig.9.Tensile strength calculated by the simulations were208.5MPa, 229.7MPa and230.1MPa,corresponding to the threefinite ele-ment models:FE_DF,FE_DI and FE_DM.By the simulation results of thefinite element models FE_D and FE_Intact,as mentioned in above section,the tensile strengths were205.3MPa and 231.4MPa.It can give the conclusion that,defects infiber yarns has the biggest effects on the mechanical properties of the C/C composite.If thefiber yarns are perfect and defects only exist in carbon matrix and interfaces,void defects have limited influences on the mechanical properties of the C/C composites under the cur-rent void volume fractions.4.3.Influence of void volume fractionBy the statistical analysis in Section3.1,volume fractions of voids in thefiber yarns,matrix and the interface zones are0.51%, 0.47%and1.94%.Under this defect fraction,as calculated in Section,tensile strength of the C/C composite declined12.7%compared with the material which contains no defects.So,it is important and meaningful that if we can make sure about the mechanical behav-iors of C/C composites when we exactly know the void defect frac-tion.If so,it will be helpful for the performance evaluation of C/C composites and structures.To investigate the influence of the void defect fraction on the mechanical performance of the C/C composite,five RVE models were constructed and the defect fractions of thefiber yarns were 0.25%,0.5%,1.0%,2.0%and4.0%.In this study,void defect was assumed only exist infiber yarns.Because,as calculated in Section 4.2,voids in carbon matrix and interfaces zone had very little effects on the mechanical properties of the C/C composite.Uniaxial tension simulations were carried out and the stress–strain curves of thefive C/C virtual specimens are illustrated in Fig.10.From the simulation results,it is clear that as the defect fraction increased tensile strength of the C/C composite decreased.For the intact FE model,the tensile strength was231.4MPa.For thefive FE models with voids defects,the tensile strengths were214.8MPa, 206.6MPa,197.1MPa,182.3MPa and152.8MPa.For the FE model under the defect density0.25%,tensile strength decreased7.2% compared with the intact model.So,if there exist defects inner the C/C materials,even if the volume fraction of the defects was small,it will has obvious effects on the mechanical performance of the composite,especially on the tensile strength.When the defect density was4.0%,tensile strength of the C/C virtual speci-men declined33.9%compared with the intact specimen.5.ConclusionUniaxial tensile properties and meso-structure of the3D orthogonal C/C composite were studied by experimental approaches.Manufacturing defects inner the C/C composite were investigated though a micron-resolution computed tomography (l CT)approach.From the l CT photos of the3-D orthogonal car-bon/carbon composite,it was found that voids and microcracks are two classic type of manufacture defects inner the C/C materials. Base on the statistical analysis of the l CT data,finite element mod-els of the C/C composite were constructed.According to a new pro-gressive damage model,failure behaviors and mechanical properties of the C/C composites were studied by ABAQUS code. Effects of the void defects on the mechanical performances of the C/C material were numerically investigated.From the numerical simulation results,manufacturing defects such as voids have great effects on the mechanical performance of the carbon/carbon com-posite,especially on the tensile strength.With0.51%void volume fraction,tensile strength of the carbon/carbon composite has 13.2%declines compared with the intact material.When void defects exist infiber yarns,even if the volume fraction of the defects is small it still will has great influence on tensile strength of the C/C composite.However,the defects which exist in carbon matrix and interface have limited effects on the mechanical prop-erties of the C/C materials.So,keep the continuity and improve the density of the carbonfiber yarns in C/C composite manufacture process is the key to improve the mechanical properties of the C/ C composites.AcknowledgementsFinancial support from the National Natural Science Founda-tions of China(Nos.11202007,11232001,11402132)and the Foundation of Beijing Jiaotong University(KCRC14002536)are gratefully acknowledged.Fig.9.Stress–strain curves of the C/C composite in experiment and simulations.10.Stress–strain curves of the virtual specimens with different void defectfraction.Part B71(2015)113–121。

《损伤断裂力学》课件

《损伤断裂力学》课件

通过人造裂纹扩展实验来验证和研究材料的断裂行为。
3
纳米断裂力学
研究纳米尺度下材料的断裂行为和性能。
工程应用案例分析
1 航空航天领域
应用断裂力学研究飞机和 宇航器的裂纹扩展行为。
2 汽车制造业
通过断裂力学研究汽车零 部件的断裂行为和寿命。
3 结构工程
应用断裂力学分析建筑、 桥梁等结构的裂纹扩展问 题。
《损伤断裂力学》PPT课 件
损伤断裂力学PPT课件大纲: 1. 什么是损伤断裂力学? 2. 局部应力集中现象的引出
断裂韧性的概念
1 什么是断裂韧性?
断裂韧性是材料抵抗破裂 的能力,与材料的断裂过 程有关。
2 断裂韧性的重要性
3 断裂韧性的测定方法了解材料的断源自韧性有助 于预测和控制裂纹的扩展。
通过实验和数值模拟等方 法来确定材料的断裂韧性。
应力强度因子与断裂准则
1
应力强度因子的定义
应力强度因子是评估裂纹尖端应力状态
Griffith断裂准则
2
的参数。
Griffith提出的断裂准则描述了裂纹在材
料中扩展时的力学行为。
3
LEFM理论基础
Linear Elastic Fracture Mechanics (LEFM)为断裂行为提供了理论基础。
裂纹扩展的行为
Mode I应力状态
Mode I应力状态下的裂纹扩展行 为。
Mode II应力状态
Mode II应力状态下的裂纹扩展行 为。
Mode III应力状态
Mode III应力状态下的裂纹扩展 行为。
数值模拟与实验方法
1
裂纹扩展数值模拟
通过数值模拟来研究裂纹扩展的行为和材料的性能。

精品课程《损伤力学》ppt课件全

精品课程《损伤力学》ppt课件全

两大假设:均匀、连续
σC
评选寿
定材命
s
b 强度指标
1
应用
材料力学
SU
强度分析
强度理论
f , k , NC f C
断裂力学的韧度问题
均匀性假设仍成立,但且仅在缺陷处不连续
σC
K IC i,C Ji, JC JR TR
阻力C
选 工 维 缺陷 材 艺 修 评定
应用
断裂力学
裂纹扩展准则 f i C T TC N f f i , a,...
• 晶间开裂 • 夹杂物与基体间的分离
位错型缺陷引起微裂纹
位错运动对材料断裂有两方面的作用: • 引起塑性形变,导致应力松弛和抑制裂纹扩展; • 位错运动受阻,导致应力集中和裂纹成核。
例如:位错塞积群的前端,可产生使裂纹开裂的应力集 中。
位错塞积模型
• 滑移带前端有障碍物,领先位错到达时,受阻而停止不前; • 相继释放出来的位错最终导致位错源的封闭; • 在障碍物前形成一个位错塞积群,导致裂纹成核。
损伤的定义
损伤是指材料在冶炼、冷热工艺过程、载荷、温度、 环境等的作用下,其微细结构发生变化,引起微缺陷成胚、 孕育、扩展和汇合,从而导致材料宏观力学性能的劣化, 最终形成宏观开裂或材料破坏。
• 细观的、物理学—损伤是材料组分晶粒的位错、微孔栋、 为裂隙等微缺陷形成和发展的结果。
• 宏观的、连续介质力学—损伤是材料内部微细结构状态的 一种不可逆的、耗能的演变过程。
强度 稳定
材料 韧化 加工
二、损伤力学研究的范围和主要内容
初边值问题、变 分问题
破坏预报 寿命预报
损伤力学
本构方程与演化 方程
损伤变量的定义、 测量

叶片受软体和硬体外物撞击的损伤分析

叶片受软体和硬体外物撞击的损伤分析
撞击处在撞击方向上的位移偏转率。 由式(5)近似可得软体外物撞击叶片时的最大
撞击接触力:
P = ρs ⋅ As ⋅Vsi 2
(6)
式中Vsi为软体外物的初始撞击速度。 从两种撞击物产生的接触撞击力的近似计算所 基于的理论和计算方法来看,其撞击载荷模型存在 较大的差别。用一悬臂变截面板模拟叶片,撞击处 厚度为 8mm,分别采用质量为 0.128kg 的圆柱形明 胶和砂石外物(直径为 25mm)以 150m/s 的速度撞击 时,其最大撞击接触力分别为 41.3kN 和 303kN,可
∫ ∫ 1
2
M HVH 2
=
wmax Pdw +
0
amax Pda
0
(1)
式中MH、VH分别为硬体撞击物的质量和初始撞 击速度;w、a分别为叶片上撞击处的撞击方向上的 位移和叶片的局部变形(即为撞击物的位移与叶片 在该处的撞击方向上的位移之差)。
另外,根据修改的 Hertz 接触理论,对于局部
小变形的撞击接触力可表示成:
Yin Dong-mei, Qian Lin-fang
(School of Mechanical Engineering, NUST, Nanjing 210094,China) Abstract: Foreign object damage(FOD) often occurs while engine blades are working.The damage due to different foreign object impacting is different.The energy balance model and the fundamental hydrodynamics were used to analyse the impact force for soft body and hard body impacting on the blades. Numerical simulations of soft body and hard body impacting on the blades were done in the LS-DYNA. Gelatine and sandstone were respectively used as soft body and hard body in the simulations.The results suggest that the amplitude value of the impact contact force for sandstone impacting is bigger than the one for gelatine impacting with the same initial impacting energy and the same impacting velocity and the same impacting angle.But its duration is shorter than the one for gelatine impacting. Sandstone and blade gain the most strain energy at the moment of impacting.Because of the gelatine’s rheology during the impacting, the local damage for blades due to gelatine impacting is smaller than the one due to sandstone impacting. Keyword: blade;numerical analysis;foreign object damage;impact

损伤力学讲义

损伤力学讲义

力学中假设材料是均匀的各向同性介质,但在显微镜或光学显微
镜下看到的材料组织并非均匀,存在着如裂纹、夹渣、气泡、孔 穴等缺陷。岩石、混凝土材料由于是一种地质材料或人工合成材
料,本身就在其内部存在各种各样的缺陷。这种缺陷就是其损伤
的实质性表现。
岩体工程的失稳,大多是由断层和裂隙扩展促成的。地下工程中由于开采引起顶 板上覆岩层的破坏、围岩松动、离层的形成显然也是岩体中微裂纹扩展汇合造成的。 长期以来,人们对材料和介质宏观力学性能的劣化直至破坏全过程的机理、本构 关系、力学模型和计算方法都非常重视,并且用各种理论和方法进行了研究。材料和 物理学家从微观的角度研究微缺陷产生和扩展的机理,但是所得结果不易与宏观力学
连续介质损伤力学分析过程一般分为4个阶段 (1)选择合适的损伤变量
描述材料中损伤状态的场变量称为损伤变量,它属于本构理 论中的内部状态变量。从力学意义上说,损伤变量的选取应考虑到 如何与宏观力学量建立联系并易于测量。不同的损伤过程,可以选 取不同的损伤变量。即使同一损伤过程,也可以选取不同的损伤变 量。
方程和损伤演化方程。
宏观损伤力学用不可逆热力学内变量来描述材料内损伤缺陷及其 变化,而不去更细致地考虑其变化的机制。它从Kachanov(1958)损
伤力学基本思想的提出到80年代中期一直占主导地位,通常称之为
“连续介质损伤力学”(CDM)。经过20多年的不断发展,连续介质 损伤力学理论已日趋成熟,并在各学科、领域得以应用。
想很值得借鉴,它既包含了细观力学的基本思想,又为细观描述到宏观分析
找到桥梁。
宏观损伤力学的方法是通过引进内变量来把材料内结构的变化现 象渗透到宏观力学现象来加以分析。它基于连续介质力学和不可逆热
力学理论,将包含各种缺陷的材料视为一种连续体,认为损伤作为一

损伤力学

损伤力学
损伤力学用于岩石断裂的研究

损伤力学的基本概念



损伤变量及其确定 损伤力学的分类 损伤力学的研究方法



一维损伤理论 三维各向同性损伤理论 基于细观力学的损伤理论 损伤结构的有限元分析方法
损伤力学的基本概念和基本原理
2.2 损伤类型及损伤变量
按照材料变形和状态区分

弹性损伤( Elastic damage ):弹性材料中应力作用而导致的损伤。材料 发生损伤后没有明显的不可逆变形,又称为弹脆性损伤; 塑性损伤(Plastic damage):塑性材料中由于应力作用而引起的损伤。要 产生残余变形。 蠕变损伤(Creep damage):材料在蠕变过程中产生的损伤,也称为粘塑 性损伤。这类损伤的大小是时间的函数。 疲劳损伤(Fatigue damage):由应力重复作用而引起的,为其循环次数 的函数,往往又与应力水平有关; 动态损伤(Dynamic damage):在动态载荷如冲击载荷作用下,材料内 部会有大量的微裂纹形成并扩展。这些微裂纹的数目非常多,但一般得 不到很大的扩展(因为载荷时间非常断,常常是几个微秒)。但当某一 截面上布满微裂纹时,断裂就发生了。
2.1 一维损伤状态的描述
考虑一均匀受拉的直杆(图2.1),认为材料劣化的主要机制是由于 微缺陷导致的有效承载面积的减小。设其无损状态时的横截面面积为A, ~ 损伤后的有效承载面积减小为 A ,则连续度的物理意义为有效承载面积 与无损状态的横截面面积之比,即
~ A A
(2.1.1)
显然,连续度是一个无量纲的标量场变量, 1 对应于完全没有缺陷的理想材料状态, 0对应 于完全破坏的没有任何承载能力的材料状态。 ~ 将外加荷载F与有效承载面积 A 之比定义为有 ~ 效应力 ,即

第五章损伤的概念与理论基础

第五章损伤的概念与理论基础
第6页,共69页。
无耦合的分析方法
第7页,共69页。
* 耦合的计算方法
当宏观裂纹出现以后,材料的损伤对裂纹尖端附近及其它区域的应力和应变都有影响。
耦合的计算方法
第8页,共69页。
损伤理论,是将固体物理学、材料强度理论和连续介质力学统一起来进行研究的。因此,用损伤理论导得的结果,既反映材料微观结构的变化,又能说明材料宏 观力学性能的实际变化状况,而且计算的参数还应是宏观可测的,这一定程度上弥补了微观研究和断裂力学研究的不足,也为这些学科的发展和相互结合开拓了 新的前景。
在宏观尺度下是指裂纹的扩展,可用宏观水平的断裂力学变量进行研究。
第25页,共69页。
(a)原子、弹性与损伤 所有的材料都是由原子组成的,这些原子由电磁相互作用形成的键联结在一起。弹性与原子的相互运动直接相关,对原子点阵的物理性质进行研究导致了弹性理 论。 当结合链破坏时,便开始了损伤过程。例如金属以晶格或颗粒形式排列,除去一些原子空位处的位错线之外,原子的排列都是有规律的。如果作 用以剪切应力,由于键的位移而引起位错运动,于是便引起了由滑移而导致塑性应变,而无任何脱键现象。 如果位错运动被某一微缺或某一微应力集中处所中止,即将产生一个约束区,而另一个位错将在此处中止。位错的多次中止即形成 了微裂纹核。金属中的其他损伤机理还包括晶间开裂、夹杂物与基体之间的分离等。
微缺陷的存在与扩展,是使构件的强度、刚度、韧性下降或剩余寿命降低的原因。
第2页,共69页。
* 损 伤:在外载和环境的作用下,由于细观结构的缺陷(如微裂纹、微空洞)引起的材料与结构的劣化过程,称为损伤。
** 损伤力学: 研究含损伤材料的性质(应力、应变),以及在变形过程中损伤的演化发展直至破坏(微裂纹的萌生、扩展或演变、体积 元的破裂、宏观裂纹形成、裂纹的稳定扩展和失稳扩展)力学过程的学科。 对损伤的研究,主要是在连续介质力学和热力学的基础上,用固体力学的方法,研究材料或构件宏观力学性能的演变直至破坏的全过程,从而形 成了固体力学中一个新的分支--损伤力学。

损伤力学及应用

损伤力学及应用

[讨论]关于损伤力学[复制链接]aspen校董签到天数: 12天[LV.3]半生不熟帖子1836积分1274威望1074 点体能2553 点研究方向居住城市哈尔滨毕业学校哈工大楼主发表于2005-7-27 19:44|只看该作者|倒序浏览|打印在别的论坛看到关于损伤力学的讨论,想起来几年前毕业的一位师兄在其论文中对损伤力学的讨论,现在发出来大家探讨一下原文如下:1.3 材料疲劳分析的损伤力学方法目前,对汽轮机转子破坏过程的研究,基本采用的是线弹性断裂力学方法,其研究的是转子结构中具有明确几何边界的宏观裂纹问题。

它从整体出发,对裂纹前沿的应力、应变、位移和能量场的分析,以确定控制裂纹行为的力学参数,来实现对裂纹扩展和转子安全性进行预测。

而对裂纹萌生的宏观位置往往根据经验进行人为的假定。

事实上,实际转子服役过程中裂纹的萌生寿命往往很长,有的占总寿命的80%~90%。

在这个阶段,材料内部微细观结构逐渐劣化,并逐步发展成为宏观裂纹[25,26,27],况且有些损伤现象并不导致断裂力学所描述的临界开裂,而且崩溃、失稳等。

因此,对上述转子损伤现象进行定量的数学描述,对于转子结构的裂纹萌生及寿命预估是非常重要的。

也是断裂力学无法解决的。

目前,对于无裂纹转子虽能大致估计其致裂寿命,但不能定量描述裂纹的形成发展过程及确切位置和形貌,而且由于往往采用线性损伤累积理论,不能正确地反映转子材料的实际损伤发展情况,因此,其分析结果往往与实际偏差较大。

近三十年发展起来的连续介质损伤力学[28],它采用唯象学方法,引入表征损伤的内部状态变量,将损伤纳入热力学框架,重点研究微观缺陷对材料宏观整体平均力学特性的影响,因此,用损伤力学理论导得的结果,既能反映材料微观结构的变化,又能说明材料宏观力学性能的实际变化情况。

可用于分析微裂纹的演化,宏观裂纹形成直至构件的完全破坏的整个过程,弥补了微观研究和断裂力学研究的不足。

因此,损伤力学对于研究汽轮机转子结构在各种载荷环境条件下的灾变事故的产生和发展,进而对其进行复现与防治,有着极其重要的意义。

损伤力学(2)

损伤力学(2)
4. 总结
任晓丹
弹塑性理论基础
参考书
概述 一维弹塑性理论 多维弹塑性理论
总结
Juan C. Simo and Thomas R.J. Hughes. 1997, Computational Inelasticity. Springer, New York.
Jacob Lubliner. Plastic Theory. 2008, Dover Publication, New York.
E11 E12 E13 0
0
0
[E] = EE002311
E22 E32 0
0
E23 E33
0
0
0
0 E44 0
0 0 0 E55
0 0 0 0

0 0 0 0 0 E66
任晓丹
弹塑性理论基础
弹性本构关系
概述 一维弹塑性理论 多维弹塑性理论
总结
各向同性 (Isotropy)
任务:引入εp的表达式,建立以 σ、ε 及、εp 为状态量的闭 合的理论体系
任晓丹
弹塑性理论基础
概述 一维弹塑性理论 多维弹塑性理论
总结
一维理想弹塑性模型
理想弹塑性模型 线性硬化模型 非线性硬化模型
理想弹塑性模型
任晓丹
弹塑性理论基础
概述 一维弹塑性理论 多维弹塑性理论
总结
一维理想弹塑性模型
理想弹塑性模型 线性硬化模型 非线性硬化模型
-3 0
-2 5
-2 0
-1 5
-1 0
-5
0
0
-1 0 0 0
-2 0 0 0
-3 0 0 0
-4 0 0 0
-5 0 0 0

最新力学测试技术基础 课后习题答案(1)幻灯片课件

最新力学测试技术基础 课后习题答案(1)幻灯片课件

R4
4
1
bhE
ห้องสมุดไป่ตู้
FRB
t
B
FRB bh
航空宇航学院力学教学实验中心
力学测试技术基础
组成全桥测量电路
d 1b hE FRA(1b hE FRB1b hE FRA)1b hE FRB 2(b1hE)(FRAFRB)
因为 FRAFRB F
所以
d
2(1 )
bhE
F
F
bhE
2(1 )
d
航空宇航学院力学教学实验中心
力学测试技术基础
R3、R4在Fy对І-І 、ІІ-ІІ截面弯矩的中性层上。 R3、 R4分别感受的应变有:
, - , R3
Mxz
MFz1
t
, - , R4 Mxz
MFz2
t
3. 将R3、R4组成双臂半桥
( ) d
M xz
M Fz2
t
M xz
M Fz1
t
M Fz1
2、4 组成双臂半桥
d1
2Mz
2 Fa W1E
航空宇航学院力学教学实验中心
力学测试技术基础
a
W1E 2F
d1
2. 确定b
1、3 组成双臂半桥
d2
2Mx
Fb 2
W2E
b
W2 E 2F
d
2
航空宇航学院力学教学实验中心
力学测试技术基础
3.22 拐臂结构受载如图,设几何尺寸、材料常数均已知,用电
测法如何贴片组桥能测得Fx、Fy、Fz,并写出各方向力F 与读数应变ed的关系式。
航空宇航学院力学教学实验中心
力学测试技术基础
当应变片灵敏系数与应变仪灵敏系数一致,组成单臂 半桥测量电路时,应变仪读到的应变即为被测件表面的 应变。

损伤力学基础讲解

损伤力学基础讲解

4. 宏细微观相结合的研究(yánjiū)方法
损伤的形态及其演化的过程是发生在细观层次上的物 理现象,必须用细观观测的手段和细观力学方法加以研究; 而损伤对于材料力学(cái liào lì xué)性能上的影响是细观的成因在
宏观上的 结果和表现,因此要想从根本上解决问题,就必须运用宏细 微观相结合的方法研究损伤力学的问题。
口、孔洞附近细观微空间),颗粒的脱胶,颗粒微裂纹引起微空洞形核、扩展
剥落(散裂)损伤:冲击载荷引起弹塑性损伤;细观孔洞、微裂纹-均匀分布 (fēnbù)孔洞扩展与应力波耦合
疲劳损伤:重复载荷引起穿晶细观表面裂纹;低周疲劳-分布(fēnbù)裂纹
蠕变损伤:由蠕变的细观晶界孔洞形核、扩展,主要由于晶界滑移、扩散
拉博特诺夫,1963,损伤因子的概念 勒梅特,1971,损伤的概念重新提出 莱基 & 赫尔特,1974,蠕变损伤研究的推进(tuījìn) 70年代中末期,CDM(连续介质损伤力学)的框架逐步形成 穆拉卡米,20世纪八十年代,几何损伤理论 80年代中布伊、戴森、西多霍夫等人的工作对损伤力学的发
塑性应变小于弹性应变, 即解理力小于产生滑移的 力但大于脱键力。
特征:损伤局部化程度较 高。
精品资料
延性(yánxìng)损伤
拉伸时以“颈缩” 为先导。 细颈中心承受三向拉应力,
微孔洞首先在此形成, 随后 长大聚合成裂纹, 最终在细 颈边缘处,沿与拉伸轴45o方 向被剪断, 形成“杯锥”断 口(duànkǒu)。 损伤与大于某一门槛值的塑 性应变同时发生。
精品资料
蠕变(rú biàn)损伤
➢ 金属(jīnshǔ)在高温下承载时,塑性应变中包 含了粘性。
➢ 应变足够大时,产生沿晶开裂而引起损伤。 ➢ 通过蠕变使应变率有所增长。

【精品】断裂与损伤力学大作业.docx

【精品】断裂与损伤力学大作业.docx

多裂纹板应力强度因子分析一、问题描述含多裂纹矩形板受到垂直方向拉伸载荷的作用,如图1所示,计算中心裂纹尖端的应力强度因子K和并讨论其随几何参数L,h, a,b,。

等的变化规律, 写一篇分析报告。

要求:1、报告中计算所用的分析方法和模型应阐述清楚,并写出必要的计算公式等。

2、绘制应力强度因子随几何参数的变化曲线。

3、列出必要的参考文献。

图1含三条裂纹矩形板受垂直拉伸载荷作用二、计算分析采用ABAQUS 软件计算裂纹尖端的应力强度因子。

通过阅读ABAQUS 的 帮助文件,得到ABAQUS 基于有限元方法在线弹性范围内计算应力强度因子的 原理。

(1)线弹性断裂力学中 I 型裂纹尖端的应力场为:Ki 0.. . 0 . 3%a x = cos — (1 - sin — sin ——)2 2 2妇 e . e . 30、 (j y = cos —(1 + sin — sin——)V 2nr 2 2 2K } . e e 30SHI —COS —COS —72^7 222I 型裂纹尖端的位移场为:从上面可以看出,对于I 型裂纹而言,裂纹尖端的应力场和位移场均可以表 示成应力强度因子的形式,所以可以通过裂纹尖端的应力应变场求其裂尖应力强 度因子。

这也正是传统有限元求解应力强度因子的原理。

但是从上面的表达式同 样可以看出,在裂纹尖端应力具有1/2的奇异性,其趋向于无穷大;而位移则趋 于零,所以在裂纹尖端应力场和位移场均具有很大的梯度,所以就需要划分很精 细的网格来求解应力位移场。

有限元在计算裂纹尖端的应力应变场时,通常在裂纹尖端通过引入奇异单元 来模拟应力的奇异性,这样即使在单元数目有限的情况仍然能很好地求解出裂纹 尖端的应力应变场。

(2) J 积分求解裂纹尖端的应力强度因子传统的有限元在计算裂纹尖端的应力强度因子的时候,无可避免地遇到裂尖 复杂应力场和位移场的计算,J 积分则可以完全避免这种复杂的处理过程。

(1).0 . 30 sin —sin —— 2 2(2)‘3-4i/ 其中氏=3—v .177平面应力(3)(l+M 2E PH2E平面应变1968年由Rice 和Cherepanov 提出了一个围绕裂纹尖端的围线积分,该积分与路径无关,保持为一个常数,并且可以反映出裂纹尖端的应力应变场。

力学环境对软骨基质代谢的影响

力学环境对软骨基质代谢的影响

力学环境对软骨基质代谢的影响
张英;崔磊;刘伟;曹谊林
【期刊名称】《中国生物工程杂志》
【年(卷),期】2003(23)7
【摘要】正常关节软骨所受压力是由动态压力与静态压力交替完成。

压力引起软骨一系列生理变化包括细胞及细胞外基质成分变形、组织内液体流动、水流电位和生理生化变化。

这些变化直接调控细胞外基质代谢。

体外构建有良好功能的组织工程化软骨是目前软骨病变、缺损理想的修复方法。

研究力学环境对软骨基质代谢的影响 ,对构建组织工程化软骨有深远意义。

【总页数】4页(P80-83)
【关键词】力学环境;软骨基质;代谢;结构;功能;关节软骨
【作者】张英;崔磊;刘伟;曹谊林
【作者单位】上海第二医科大学上海组织工程研究与开发中心
【正文语种】中文
【中图分类】Q954.657;R322.72
【相关文献】
1.力学刺激对关节软骨基质代谢的影响 [J], 董江峰;于杰;陈维毅
2.力学刺激对体外立体培养软骨细胞基质代谢的影响 [J], 段王平;苑伟;孙振伟;李琦;赵昱;卫小春
3.关节镜下膝关节清理术结合去神经化治疗对膝骨关节炎合并软骨损伤患者血清软
骨代谢产物及相关基质金属蛋白酶水平的影响 [J], 张志宇;党亚军
4.不同力学刺激对软骨基质代谢的影响 [J], 邵越峰;卫小春
5.关节软骨细胞和细胞周基质的压缩特性及其对软骨细胞代谢的影响 [J], 伏治国;董启榕
因版权原因,仅展示原文概要,查看原文内容请购买。

北航损伤容限设计习题

北航损伤容限设计习题

1、绘制3种基本类型裂纹简图并分析其受力特点和位移特点P1(I)张开型(II)滑移型(III)撕开型图1裂纹的基本类型1.张开型或I型外载荷为垂直于裂纹平面的正应力,裂纹面相对位移垂直于裂纹平面。

2.滑开型或II型外载荷为面内垂直裂纹前缘的剪力。

裂纹在其自身平面内作垂直于裂纹前缘的滑动。

3.撕开型或III型外载荷为离面剪力。

裂纹面在其自身平面内作平行于裂纹前缘的错动。

2什么是应力强度因子?他们有哪几种类?给出各种类相应无限大板含中心裂纹的应力强度因子表达式P8♦应力强度因子是构件几何、裂纹尺寸与外载的函数,它表征了裂纹尖端受载和变形的强度。

是裂纹扩展趋势或裂纹扩展推动力的度量。

在线弹性断裂力学中,对结构裂纹尖端附近的应力场、位移场(或应变场)的分析可以归结为求其应力强度因子。

无限大板含中心裂纹时受双向拉伸载荷情况1.兀a(K I为应力强度因子)无限大板含中心裂纹时无穷远处受均匀剪力作用的情况K〃=T兀a为II型裂纹的应力强度因子无限大板含中心裂纹时受离面剪力的情况2.K=q兀a为III型裂纹应力强度因子III3列举三种计算应力强度因子的不同算法,并简述其原理P81.解析法2.数值解法数值方法有边界积分方程法、边界配置法、有限元法以及一些建立在能量原理上的方法。

下面简要介绍使用有限元法求解应力强度因子的原理。

用有限元法计算应力强度因子,可用两种方法:一种方法是直接应用裂纹尖端应力或位移场渐进解的表达式:另一种方法是通过能量关系,例如应用J 积分计算,用K =E'J 来计算应力强度因子。

3. 实验方法应力强度因子不可能通过实验直接求得,但可以通过它与某些可测量的量的关系求得。

应力强度因子不可能通过实验直接求得,但可以通过它与某些可测量的量(例如位移、柔度、应变等)的关系求得。

因此,任何测量应变、位移的试验方法都可以用来测量应力强度因子。

由于测量精度的限制,试验测得的应力强度因子精度不会很高,主要用于外形复杂,数值方法有困难的构件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《损伤力学基础》课程作业一:损伤力学基本概念论述班级建筑工程系2班姓名崔玮学号0820020163授课教师陈建兵副教授2009-12-7目录一阐述Lemaitre应变等效原理及其应用 (1)1.1 Lemaitre应变等效原理的描述 (1)1.2 Lemaitre应变等效原理的应用 (2)二阐述热力学第一定律及热力学第二定律原理及其应用 (2)2.1 热力学第一定律基本原理 (2)2.2 热力学第二定律—Clausius-Duhem不等式 (2)2.3 热力学第二定律在损伤力学中的应用 (3)三阐述弹性力学与塑性力学的关系 (4)3.1 全量模型 (4)3.2 增量模型 (5)四阐述损伤力学与弹塑性力学的关系,并说明塑性变形与损伤的耦合效应 (5)4.1 损伤力学与塑性力学的比较 (5)4.2 损伤与塑性变形的耦合 (7)4.2.1 耦合情况说明 (7)4.2.2 不耦合情况说明 (8)一 阐述Lemaitre 应变等效原理及其应用1.1 Lemaitre 应变等效原理的描述Lemaitre 应变等效原理可以说是损伤力学的一块基石,在后续章节一些模型的建立及理论推导等都要应用到Lemaitre 应变等效原理。

其完整描述是:对于任何受损伤材料,其在单轴或多轴应力状态下的变形状态都可以通过原始的无损材料本构定律来描述,只要在本构关系方程中用有效应力来替代通常的Cauchy 应力。

进一步的研究表明,仅在各向同性损伤条件下,应变等效原理才正确。

在物体中取出一微元体,假设横截面积为A 0,截面的一部分由于损伤产生了缺陷,受损面积为A ,即实际面积为A 0-A ,如图1所示。

考虑各向同性损伤,假设缺陷在各个方向均匀分布,定义损伤变量为:A D A = 0≤D ≤1 (D 为一标量) (1) 损伤产生后,实际Cauchy 应力仅作用于未损伤截面上,此时有效应力为:1Dσσ=- (2)图1 有效应力原理 注:图中为便于理解,将受损部分集中画在一块区域上,实际情况中损伤应视作均匀散布在整个横截面积上,否则会产生扭矩作用。

由此可见,假设未损伤面积上材料仍服从无损伤材料的应力应变关系,只需把无损材料中的Cauchy 应力σ换为有效应力σ,即可获得有损材料的应力应变关系,这一假设即为Lemaitre 应变等效原理。

以单向拉伸的线弹性材料为例,无损材料的本构方程为Eσε= (3) 式中:E —无损材料的弹性模量。

按照应变等效原理,有损材料的本构方程为Eσε= (4) 无损部分A 0-Aσ式(2)代入式(4)中,可得*(1)D E E σεε=-= (5)式中:*E —受损材料的弹性模量。

由于在损伤状态D >0,*E <E ,反映了损伤引起的材料性质劣化。

1.2 Lemaitre 应变等效原理的应用(1) 在建立无损材料自由能势e p (,,)q d ψε与有损材料自由能势e p 0(,)q ψε的关系时,根据Lemaitre 应变等效原理可得出:e p e p 0(,,)(1)(,)q d d q ψεψε=- (6)之后才能根据热力学第二定律进一步推导出损伤准则及损伤演化法则。

(2) 在建立损伤力学基本方程时,引入损伤变量D ,将Helmholtz 自由能势表示为:(,)ij D ψψε= (7)并利用热力学第二定律及等温绝热条件可得出损伤材料的应力应变本构关系:(,)ij ij ijD σψεε∂=∂ (8) 所以说在建立损伤力学本构模型基本方程,确定损伤准则及损伤演化法则时都用到了Lemaitre 应变等效原理,主要是通过引入损伤变量将Cauchy 应力转化为有效应力的概念。

二 阐述热力学第一定律及热力学第二定律原理及其应用2.1 热力学第一定律基本原理热力学第一定律即能量守恒定律,它指出物体能量的增加量恒等于输入的能量。

在热力学封闭系统中,具体指系统内能量关于时间的变化率等于外力所做功率与外界输送给系统的热能变化率之和,即:KE W q +=+ (9) 式中:K 为动能变化率,E 为内能变化率,W 为外力做功功率,q 为热能变化率。

利用散度定理和柯西公式,可得热力学第一定律的微分形式:0ij ij i,i eh ρσεργ-+-= (10) 式中:e为内能密度变化率,i,i h 为外界流入热量。

该公式的物理意义为:单位体积的内能增量等于该体积内的应变能增量加上被供给的热量再扣除通过边界流出的热量。

2.2 热力学第二定律—Clausius-Duhem 不等式热力学第二定律主要用于描述不可逆的热力学系统,它给出了能量转化过程的性质和发展方向,是关于有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。

在热力学第二定律中存在两个基本的状态函数:绝对温度T 和熵S ,其中绝对温度T 是经验温度的函数,恒为正值;熵S 是一个与温度变化有关、描述系统变化无序程度的状态变量。

系统的熵的变化d S 由外熵增量d S e 和内熵增量d S i 两部分组成,即:e i dS dS dS =+ (11)外熵增量是总的熵增量中的可逆部分,内熵增量是总的熵增量中的不可逆部分。

若熵和热量都是时间的可微函数时,将熵增量对时间t 求导可得变化率形式 的熵不等式:d 1dQ d d S t T t≥ (12) 再结合散度定理可得出关于连续介质的热力学第二定律不等式:()0ij ij h Ts g e Tρρσε-⋅--≥ (13) 2.3 热力学第二定律在损伤力学中的应用材料损伤是一个不可逆的热力学过程,所以在建立损伤材料的本构关系模型及相关准则时必须满足热力学第二定律不等式。

当不考虑沿物体表面的热耗散过程,即仅考虑等温的纯粹热力过程时,公式13可简化为::0σεψ-≥ (14) 材料Helmholtz 自由能势可分解为弹性和塑性两部分:e p e (,,)(,)(,)e p p q d d q d ψεψεψ=+ (15)将上式微分并代入公式14可得e e ():ε(:εq )0εqe pp p p d d ψψψσσ∂∂∂--+-≥∂∂∂ (16) (1) 作为一种不可逆的能量耗散过程,损伤演化必须满足热动力学原理给出的限制条件,即公式16中的第二项损伤耗散不等式:0d d Y d dψγ∂=-=⋅≥∂ (17) 式中:Y 为损伤能释放率。

根据损伤能释放率可以进一步给出损伤准则。

(2) 因塑性变形是一种不可逆的能量耗散过程,它必须满足不可逆热动力学原理的限制条件,即公式16中的第三项塑性耗散不等式::εq 0q pp pp p ψγσ∂=-≥∂ (18) 根据Lemaitre 应变等效原理将Cauchy 应力换为有效应力可得::εq 0q ppp p ψσ∂-≥∂ (19) 所以热力学第二定律对于弹塑性本构模型及相关准则的建立都起到了重要作用,损伤作为一个不可逆的热力学过程必须满足热力学第二定律不等式的限制条件。

三 阐述弹性力学与塑性力学的关系只应用弹性力学的基本内容,而不考虑混凝土应力应变关系中塑性部分的发展是对混凝土本构关系较为粗略的模拟方式,如图2所示。

利用广义虎克定律可以将混凝土弹性本构关系表达为:e ij ijkl klC σε= (20) 式中:ij σ为二阶应力张量,e kl ε为二阶弹性应变张量,ijkl C 为四阶刚度张量。

3.1 全量模型从图3混凝土应力应变全曲线可以看出,当加载到一定程度之后再卸载,会存在一部分不可恢复的变形,即塑性变形,所以要合理反映混凝土的受力性能,就应利用塑性力学的原理建立弹塑性本构关系模型。

图2 弹性应力应变关系 图3 单轴塑性应变的确立经典的塑性力学主要包括形变理论与增量理论。

形变理论主要是建立全量式应力应变关系:sec :C σε= (21)式中:sec C 是割线刚度张量。

现将混凝土应变分为弹性和塑性两部分:e p kl kl klεεε=+ (22) 根据上述弹性应力应变公式,可建立全量式弹塑性本构模型:()e ij ijkl kl kl C σεε=- (23)σσσp εe ε通过将塑性应变和弹性应变分离的方式,就可以在弹性本构模型的基础上建立弹塑性本构关系模型,相应的屈服条件为:(,)0ij f k σ= (24)式中:ij σ为应力状态,k 为硬化参数。

3.2 增量模型材料应力应变关系中的塑性变形与加载历史联系紧密,但全量模型并不能考虑加载历史的影响,仅适用于简单加载分析。

增量理论利用应力增量与应变增量之间的关系,可以考虑加载历史对后续变形的影响,所以现阶段应用较多:ep :C σε= (25) 式中:ep C 为弹塑性切向刚度张量。

将应变增量分解为弹性应变增量e ij d ε和塑性应变增量p ij d ε两部分,根据广义虎克定律有:()p ij ijkl kl kl d C d d σεε=- (26)式中:ijkl C 为弹性刚度张量。

这样就可以通过上述公式将弹塑性力学“嵌套”入弹性力学中,当然还应结合屈服条件、强化法则、流动法则与加、卸载准则几个基本假定,建立完整的弹塑性应力应变关系理论,最终弹塑性本构关系可写为:()ij ijkl ijkl kl d C D d σε=- (27)由此可见,无论是全量式或增量式弹塑性本构模型,主要是将总应变分解为弹性应变和塑性应变两部分,然后通过广义虎克定律在弹性应力应变关系的基础上建立弹塑性本构模型,并引入屈服条件、强化法则、流动法则与加、卸载准则最终形成完整的弹塑性本构模型理论体系。

四 阐述损伤力学与弹塑性力学的关系,并说明塑性变形与损伤的耦合效应4.1 损伤力学与塑性力学的比较(1) 如上所述,损伤力学主要是利用Lemaitre 应变等效原理给出损伤材料的自由能势与无损材料的自由能势的关系(公式6),之后结合热力学第二定律不等式导出本构方程及相关准则。

也可以理解为引入损伤变量d 对未损伤材料初始刚度进行修正,建立材料损伤后卸载刚度张量与初始刚度张量之间的关系,以考虑损伤对材料劣化的影响:0()(1)C d d C =- (28)则可以得到本构方程:0():(1):e e C d d C σεε==- (29)所以弹塑性损伤本构模型是建立在弹塑性本构模型的基础之上,并通过引入损伤变量对刚度退化进行修正“嵌套”入弹塑性力学。

(2) 在弹塑性本构模型和损伤本构模型中都运用了正交流动法则。

① 增量式弹塑性本构模型为:()p ij ijkl kl kl d C d d σεε=- (30)得到此方程后,应进一步确定塑性应变增量与应力状态的关系,一般通过流动法则来规定塑性应变增量各分量的比例。

正交流动法则认为塑性应变增量与屈服函数关于应力的导数成正比,即:p ij ijf d d ελσ∂=∂ (31) 式中:p ij ε为塑性应变,d λ为标量因子,f 为屈服函数。

相关文档
最新文档