Semi-Empirical Bound on the Chlorinr-37 Solar Neutrino Experiment

合集下载

Triton X_100正己醇环己烷反相微乳液体系合成纳米羟基磷灰石

Triton X_100正己醇环己烷反相微乳液体系合成纳米羟基磷灰石
不同体系的微乳液电导率测定用 DDS211C 型电导率仪 进行 ,用日本理学公司的 RAX210 型 x2射线衍射仪 、H2800 型 透射电子显微镜 、SEM 扫描电镜 (日本日立 S2570 型) 对颗粒 的形貌和尺寸进行观察和测定 。
3 结果和讨论
3. 1 微乳液制备条件的优化 为了确定 TritonX2100 、正己醇 、环己烷三元系统的相图
·275 ·
Ca (NO3 ) 2 ·4H2O 或 (NH4 ) 2 HPO4 水溶液的量 。重复试验 ,确 定制备稳定微乳液的优化条件和最佳配比 。
HA 颗粒的制备过程为 :按上述过程制备出一系列透明 稳定的 Ca (NO3 ) 2 ·4H2O 和 (NH4 ) 2 HPO4 微乳液 。浓度与体 积的设计使 CaΠP = 1. 67 (物质的量浓度之比) ,将两种微乳液 混合 ,用盐酸和氨水分别调整混合液的 pH 为 4. 5 ,7. 0 ,10 , 12 ,搅拌 2h ,获得 HA 溶胶 。用无水乙醇清洗有机物 ,离心沉 淀得到 HA 粉体 , 粉体经 750 ℃煅烧研磨后进行表征 。将 pH 为 10 的粉体分成四份 ,取一份直接干燥 ,另外三份分别于 200 ℃,500 ℃,750 ℃煅烧后进行表征 ,比较各种工艺因素对 HA 粉体型貌和尺寸的影响 。 2. 2 性能测定
肖凤娟 ,杨惠芳 ,徐 华
( 石家庄铁道学院材料科学与工程分院 ,河北 石家庄 050043)
【摘 要】 用 Triton X2100Π正己醇Π环己烷Π水四元反相微乳液体系制备了纳米羟基磷灰石 ( HA) 粉体 ,确定了影 响制备过程的最佳 pH 值和煅烧温度等工艺条件 。x2射线衍射仪 、TEM、SEM 对羟基磷灰石的颗粒进行表征和分析 表明 :颗粒分散均匀 ,呈杆状 ,a 轴尺寸为 20~40nm 左右 ,c 轴尺寸为 60~80nm ,此方法可以有效地控制和改变 HAP 的分散性和粒度大小 。

Development and Validation of a Liquid Chromatogra

Development and Validation of a Liquid Chromatogra

J. Chem. Chem. Eng. 5 (2011) 1-6.Development and Validation of a LiquidChromatography–Tandem Mass Spectrometry Method for Determination of Artemisinin in Rat PlasmaElhassan Gamal1,2, Yuen Kah1, Wong Jiawoei1, Chitneni Mallikarjun1,3, Al-Dahli Samer1, Khan Jiyauddin1 and Javed Qureshi31. School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia2. Local Pharmaceutical Manufacturing Department, General Pharmacy Directorate, MOH, 11111, Khartoum-Sudan3. School of Pharmacy and Health Sciences, International Medical University, 5700, Kula Lumpur, MalaysiaReceived: September 03, 2010 / Accepted: October 11, 2010 / Published: January 10, 2011.Abstract: Artemisinin is a potent anti-malarial drug isolated from traditional Chinese medicinal herb, Artemisia annua. The objective of this study was to develop and validate a sensitive and specific LC-MS/MS method for the determination of artemisinin in rat plasma using amlodipine as Internal Standard. The method consist of a simple liquid-liquid extraction with methyl tertiary butyl ether (MTBE) with subsequent evaporation of the supernatant to dryness followed by the analysis of the reconstituted sample by LC-MS/MS with a Z-spray atmospheric pressure ionization (API) interface in the positive ion-multiple reaction monitoring mode to monitor precursor→product ions of m/z 282.70→m/z 209.0 for artemisinin and m/z 408.9→m/z 237.0 for amlodipine respectively. The method was linear (0.999) over the concentration range of 7.8–2000 ng/mL in rat plasma. The intra and inter-day accuracy were measured to be within 94-104.2% and precision (CV) were all less than 5%. The extraction recovery means for internal standard and all the artemisinin concentrations used were between 82-85%.Key words: Artemisinin, LC-MS/MS, amlodipine, plasma, accuracy and precision.1. IntroductionArtemsinin is the name given to the active principle of qinghaosu, an extract of the Chinese medicinal plant qinghaosu or green Artemisia (Artemisinin annua L.) which has been used for many years centuries in Chinese traditional medicine for treatment of fever and malaria [1]. In 1972, Chinese researchers isolated artemisinin from Artemisia annua L. sweet wormwood) and its structure was elucidate in 1979 as show in Fig. 1.The determination of artemisinin and its derivatives in biological matrices have previously been characterized using several analytical techniques suchCorresponding author: Gamal Osman Elhassan Ph.D., research field: pharmaceutical technology. E-mail: ******************.as LC, HPLC, GC-MS etc [3-8]. However, some of these methods suffer from few drawbacks. In particulars, interference with endogenous constituents in the plasma at the absorption wave length of the derivatized compounds may render these techniques unsatisfactory and few of them lacked the required sensitivity to be used for measurement of drugFig. 1 The chemical structure of artemisinin [2].ll Rights Reserved.Development and Validation of a Liquid Chromatography–Tandem Mass Spectrometry Method forDetermination of Artemisinin in Rat Plasma2concentration in blood sample obtained from clinical investigation [9].To increase the specificity and sensitivity of HPLC-UV method, some workers combined it with a mass spectrometry (MS) and the total system is described as LC-MS technique [10, 11]. The development of LC-tandem mass spectrometry (LC-MS/MS) has made a more specific and sensitive analysis of artemisinin and its derivatives possible [12, 13]. The objective of this study was to develop a sensitive and specific LC-MS/MS method for the determination of artemisinin in rat plasma by simple liquid-liquid extraction procedure.2. Materials and Methods2.1 MaterialsArtemisinin was purchased from Kunming Pharmaceutical Corporation (Kunming, China). Amlodipine was obtained from Sigma Chemical (Louis, USA). Acetonitrile (ACN), formic acid and methyl tertiary butyl ether (MTBE) were purchased from J.T Baker (USA).3. Methods3.1 Instrumentation and ConditionsThe instrumentation comprised of Quattro-micro tandem mass spectrometer with Z-spray atomospheric pressure ionization (API) source (Micromass, Manchester, UK) using electrospray ionization (ESI) operated at positive mode. Chromatography was performed on an Alliance 2,695 separation module (Waters, M.A, USA). The delivery system consisted of an autosampler and a column heater. The chromatographic separation was obtained using an X Terra MS C8 encapped (5 μm) (150 × 2.1 mm) analytical column (Water, USA).3.2 Sample PreparationA 250 μL aliquot of plasma was pipetted into a screw-capped culture tube, followed by 100 μL of internal standard solution (50 ng/mL). To each tube, 5 mL (MTBE) extraction solvent was then added and the mixture was vortexed for 2.5 minutes followed by centrifuging for 15 minutes at 3,500 rpm. The upper layer was transferred to a reactive vial and dried under nitrogen flow at 40 °C. The residue was then reconstituted with 250 μL of mobile phase and 20 μL was injected into the LC-MS/MS system.3.3 Assay ValidationCalibration curve at a concentration range of 7.8–2,000 ng/mL were constructed by spiking blank human plasma with a known amount of artemisinin. Plasma sample spiked with artemisinin at these concentrations 7.8, 62.5, 250, 2,000 ng/mL were used to determine the within and between-day accuracy and precision. For within-day accuracy and precision, replicates analysis (n = 6) for each concentration were performed in a single day. For between-day evaluation, analysis was carried out with a single sample of each concentration daily over 6 days, with calibration curve constructed on each day of analysis. The extraction recovery of artemisinin was estimated by comparing the peak height obtained after extraction of the samples from plasma with that of aqueous artemisinin solution of the corresponding concentration.4. Results and DiscussionBoth electrospray (TIS) and atmospheric pressure chemical ionisation (APCI) methods have been reported previously for the quantification of artemisinin derivatives in biological fluids [11, 12, 14-16]. According to the previously reported methods TIS was found to be superior to APCI for the quantification of artesunate and dihydroartemisinin (DHA) mainly because of improved linearity [16]. Therefore in this method electrospray ionization was used. When artemisinin and amlodipine were injected directly into the mass spectrometer along with mobile phase in the positive mode, the protonated molecules of artemisinin and amlodipine were set as precursorll Rights Reserved.Development and Validation of a Liquid Chromatography–Tandem Mass Spectrometry Method forDetermination of Artemisinin in Rat Plasma3(a)(b)Fig. 2 (a) Positive-ionization electrospray mass spectra of precursor ion for artemisinin; (b) Positive-ionization electrospray mass spectra of product ion for artemisinin.ions with m/z of 282.7 and 408.7, respectively. The product ion that gave the highest intensity was m/z of 209.0 for artemisinin and 237.7 for amlodipine. Fig 2(a) shows the spectra precursor ion, 2(b) production for artemisinin.Artemisinin and amlodipine have retention time of approximately 6.9 and 1.65 minutes, respectively (Fig.3). The peak was well resolved and free from interference from endogenous compounds in rat plasma (Fig. 4).ll Rights Reserved.Development and Validation of a Liquid Chromatography–Tandem Mass Spectrometry Method forDetermination of Artemisinin in Rat Plasma4Fig. 3 Plasma spiked with 500 ng/ml artemisinin and amlodipine 50 ng/mL.Fig. 4 Chromatograms for analysis of artemisinin in plasma (Rat blank plasma).Calibration curve was linear over the entire range of calibration curves with a mean correlation coefficient greater than 0.9995 (Fig. 5).The limit of quantification (LOQ) of the assay method was 7.8 ng/mL being the lowest concentration used to construct the calibration curve whereas the limit of detection (LOD) was 3.9 ng/mL at a signal to noise ratio of 3. The validation data demonstrated a good precision, accuracy and recovery. The extraction recovery means for internal standard and all artemisinin concentrations used were 75-85% (Table 1). The within-day and between-day accuracy and precision values are given in Table 2.Neither artemisinin nor the internal standard producedll Rights Reserved.Development and Validation of a Liquid Chromatography–Tandem Mass Spectrometry Method forDetermination of Artemisinin in Rat Plasma5Fig. 5 Mean calibration curve of artemisinin (ng/mL).Table 1 Extraction recovery.Concentration (ng/mL) Mean recovery (%) CV (%)7.81 75.081.5062.50 82.161.94250.00 82.03 2.072000.00 85.23 1.48Table 2 Within-day and between-day precision andaccuracy.Added (ng/mL)Within-day Between-day Accuracy (%) C.V (%) Accuracy (%) C.V (%)7.81 96.00 4.60 104.11 2.30 62.50 98.10 1.60 94.10 2.20 250.00 98.10 1.50 98.10 1.60 2000.00 96.10 2.50 97.10 1.80any detectable carry-over after three injections of upper limit of quantification. Blank rat plasma showed no interference with artemisinin. Interfering signals from blank plasma contributed less than 20% of the artemisinin signal at LOQ. There was no interference of artemisinin on the internal standard or vice versa. A small enhancement for artemisinin and the internal standard could be detected when references in neat injection solvent were compared with references in extracted blank biological matrix. The normalized matrix effects (artemisinin/internal standard) were close to 1 with a low variation in accordance with international guidelines. Post-column infusion experiments confirmed the absence of regions with severe matrix effects (i.e., no sharp drops or increases in the response) for blank human plasma extracted with the developed method.Xing et al. used artmether as an internal standard for the analysis of artemisinin [17]while for the analysis of artemisinin derivatives; artemisinin was used as internal standard [14]. In the present study amlodipine was found to be suitable because it could be separated chromatographically, ionized and fragmented under the conditions that optimized the intensity of artemisinin peak (Fig. 3).The analysis of artemisinin and its derivatives with mass spectrometry are most often performed with a different mode of ionization. Xing et al. used ESI inletin the positive ion-multiple reaction monitoring mode which relatively producing a higher sensitivity than in the SIM mode. Therefore, the mass spectrometry was operated at positive ion-MRM mode.4. ConclusionThe LC-MS/MS method described in this work is suitable for the determination of artemisinin in plasma. The assay procedure is simple with a relatively shortll Rights Reserved.Development and Validation of a Liquid Chromatography–Tandem Mass Spectrometry Method forDetermination of Artemisinin in Rat Plasma6retention time allowing sufficient sample to beprocessed to be applied to pharmacokinetic and bioavailability studies of artemisinin. The accuracy and precision of the assay method, as well as the recovery of extraction procedure were found to be satisfactory.References[1] D.L. Klayman, Qinghasou (Artemisinin): An antimalaria drug from China, Science 228 (1985) 1049-1055.[2] X.D. Luo, C.C. Shen, The chemistry, pharmacology andclinical applications of Qinghaosu (artemisinin) and it’sderivatives, Med. Res. Rev. 7 (1987) 29-52.[3] K.T. Batty, M. Ashton, K.F. Llett, G . Edwards, T.M. Davis,Selective high-performance liquid chromatography ofartesunate and α-and β-dihydroartemisinin in patients withfalciparum malaria, J. Chromatog. B 677 (2-3) (1996)345-350.[4] J. Karbwang, K. Na-Bangchang, P. Molunto, V . Banmairuroi, Determination of artemisinin and its majormetabolite, dihydroartemisinin, in plasma usinghigh-performance liquid chromatography withelectrochemical detector, J. Chromatog. B 7 (1-2) (1997)259-265.[5] K.L. Chan, K.H. Yuen, H. Takayanki, S. Jinandasa, K.K. Peh, Polymorphism of artemisinin from Artemisia annua,Phytochemistry 46 (7) (1997) 1209-1214.[6] G .Q. Li, T.O. Peggins, L.L. Fleckenstein, K. Masonic,M.H. Heiffles, T.G . Brewer, The pharmacokinetics andbiovailability of dihydroartemisinin, arteether, artemether,artesunic acid and artelinic acid in rats, J. Pharm.Pharmacol 5 (1998) 173-182.[7] B.A. Avery, K.K. Venkatesh, M.A. Avery, Rapid determination of artemisinin and related analogues usinghigh-perfomance liquid chromatography and anevaporative light scattering detector, J. Chromat. B 730 (1)(1999) 71-80.[8] S.S. Mohamed, S.A. Khalid, S.A. Ward, T.S.M. Wan,H.P.O. Tang, M. Zheng, R.K. Haynes, G . Edwards,Simultaneous determination of artemether and its majormetabolite dihydroartemisinin in plasma by gaschromatography-mass spectrometry-selected ionmonitoring, J. Chromat. B 731(1999) 251-260.[9] K.T. Batty, M. Ashton, K.F. Llett, G . Edward, T.M. Davis,The pharmacokinetics of artemisinin (ART) and artesunate (ARTS) in healthy volunteers, Am J. Trop Med. Hyg. 58(2) (1998) 125-126.[10] C. Souppart, N. Gouducheau, N. Sandenan, F. Richard,Development and validation of a high-performance liquid chromatography-mass spectrometry assay for the determination of artemisinin and its metabolite dihydraartemisinin in human plasma, J. Chromat. B 774(2002) 195-203.[11] H. Naik, D.J. Murry, L.E. Kirsch, L. Fleckenstein,Development and validation of high-performance liquid chromatography-mass spectroscopy assay for determination of artesunate and dihydrroartemisinin in human plasma, J. Chromat. B 816 (1-2) (2005) 233-242. [12] J. Xing, H. Yan, S. Zhang, G . Ren, Y . Gao, A high-performance liquid chromatography/tandem mass spectrometry method for the determination of artemisinin in rat plasma, Rapid Commun in Mass Spectro. 20 (9) (2006) 1463-1468. [13] J. Xing, H.X. Yan, R.L. Wang, L.F. Zhang, S.Q. Zhang,Liquid chromatography-tandem mass spectrometry assay for the quantitation of β-dihydroartemisinin in rat plasma, J. Chromat. B 852 (1-2) (2007) 202-207. [14] M. Rajanikanth, K.P. Madhusudanan, R.C. Gupta, An HPLC-MS method for simultaneous estimation of alpha, beta-arteether and its metabolite dihydroartemisinin, in rat plasma for application to pharmacokinetic study, J Biomed. Chromat. 17 (7) (2003) 440-446. [15] Y . Gu, Q. Li, M.V . Elendez, P. Weina, Comparison of HPLC with electrochemical detection and LC–MS/for the separation and validation of artesunate and dihydroartemisinin in animal and human plasma, J. Chromatogr B 867 (2008) 213-218. [16] W. Hanpithakpong, B. Kamanikom, A.M. Dondorp, P.Singhasivanon, N.J. White, N.P. Day, N. Lindegardh, A liquid chromatographic-tandem mass spectrometric method for determination of artesunate and its metabolite dihydroartemisinin in human plasma, J. Chromatogr. B 876 (2008) 61-68. [17] Y . Xing, H. Yan, S. Zhang, G . Ren, Y . Gao, A high-performance liquid chromatography/tandem mass spectrometry method for the determination of artemisinin rat plasma, Rapid Communication in Mass Spectrometry 20 (9) (2006) 1463-1468.ll Rights Reserved.。

含氮原子双钼桥连化合物电子传递

含氮原子双钼桥连化合物电子传递

作者姓名:舒尧 指导教师姓名 及学位、职称:刘春元 (博士) 教授 学科、专业名称:物理化学 论文提交日期:2014 年 5 月 29 日 论文答辩日期:2014 年 6 月 3 日 答辩委员会主席:毛宗万 论文评阅人:杨洋溢、周立新
学位授予单位和日期:
独 创 性 声 明
本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。 除了文中特别加以标注和致谢的地方外, 论文中不包含其他人已经发表或撰写过的研究成 果,也不包含为获得
II
暨南大学硕士学位论文
by EPR and UV-Vis-NIR spectroscopies. Because the length of the conjugated bridge can affect the strength of electronic coupling, we insert one more phenylene group to increase the length of the conjugated bridging ligands, thus affording new Mo2-Mo2 compounds [Mo2(DAniF)3]2[μ1,4{C(O)NH}2C6H4C6H4] (6)and [Mo2(DAniF)3]2[μ1,4{C(S)NH}2C6H4C6H4] (7). Both compounds have been characterized by 1H NMR, electrochemistry and electronic spectroscopy. Key words :dimolybdenum compounds;asymmetry;electron transfer;electron coupling; Hush theory;CNS theory.

毕业设计论文塑料注射成型

毕业设计论文塑料注射成型

Modeling of morphology evolution in the injection moldingprocess of thermoplastic polymersR.Pantani,I.Coccorullo,V.Speranza,G.Titomanlio* Department of Chemical and Food Engineering,University of Salerno,via Ponte don Melillo,I-84084Fisciano(Salerno),Italy Received13May2005;received in revised form30August2005;accepted12September2005AbstractA thorough analysis of the effect of operative conditions of injection molding process on the morphology distribution inside the obtained moldings is performed,with particular reference to semi-crystalline polymers.The paper is divided into two parts:in the first part,the state of the art on the subject is outlined and discussed;in the second part,an example of the characterization required for a satisfactorily understanding and description of the phenomena is presented,starting from material characterization,passing through the monitoring of the process cycle and arriving to a deep analysis of morphology distribution inside the moldings.In particular,fully characterized injection molding tests are presented using an isotactic polypropylene,previously carefully characterized as far as most of properties of interest.The effects of both injectionflow rate and mold temperature are analyzed.The resulting moldings morphology(in terms of distribution of crystallinity degree,molecular orientation and crystals structure and dimensions)are analyzed by adopting different experimental techniques(optical,electronic and atomic force microscopy,IR and WAXS analysis).Final morphological characteristics of the samples are compared with the predictions of a simulation code developed at University of Salerno for the simulation of the injection molding process.q2005Elsevier Ltd.All rights reserved.Keywords:Injection molding;Crystallization kinetics;Morphology;Modeling;Isotactic polypropyleneContents1.Introduction (1186)1.1.Morphology distribution in injection molded iPP parts:state of the art (1189)1.1.1.Modeling of the injection molding process (1190)1.1.2.Modeling of the crystallization kinetics (1190)1.1.3.Modeling of the morphology evolution (1191)1.1.4.Modeling of the effect of crystallinity on rheology (1192)1.1.5.Modeling of the molecular orientation (1193)1.1.6.Modeling of theflow-induced crystallization (1195)ments on the state of the art (1197)2.Material and characterization (1198)2.1.PVT description (1198)*Corresponding author.Tel.:C39089964152;fax:C39089964057.E-mail address:gtitomanlio@unisa.it(G.Titomanlio).2.2.Quiescent crystallization kinetics (1198)2.3.Viscosity (1199)2.4.Viscoelastic behavior (1200)3.Injection molding tests and analysis of the moldings (1200)3.1.Injection molding tests and sample preparation (1200)3.2.Microscopy (1202)3.2.1.Optical microscopy (1202)3.2.2.SEM and AFM analysis (1202)3.3.Distribution of crystallinity (1202)3.3.1.IR analysis (1202)3.3.2.X-ray analysis (1203)3.4.Distribution of molecular orientation (1203)4.Analysis of experimental results (1203)4.1.Injection molding tests (1203)4.2.Morphology distribution along thickness direction (1204)4.2.1.Optical microscopy (1204)4.2.2.SEM and AFM analysis (1204)4.3.Morphology distribution alongflow direction (1208)4.4.Distribution of crystallinity (1210)4.4.1.Distribution of crystallinity along thickness direction (1210)4.4.2.Crystallinity distribution alongflow direction (1212)4.5.Distribution of molecular orientation (1212)4.5.1.Orientation along thickness direction (1212)4.5.2.Orientation alongflow direction (1213)4.5.3.Direction of orientation (1214)5.Simulation (1214)5.1.Pressure curves (1215)5.2.Morphology distribution (1215)5.3.Molecular orientation (1216)5.3.1.Molecular orientation distribution along thickness direction (1216)5.3.2.Molecular orientation distribution alongflow direction (1216)5.3.3.Direction of orientation (1217)5.4.Crystallinity distribution (1217)6.Conclusions (1217)References (1219)1.IntroductionInjection molding is one of the most widely employed methods for manufacturing polymeric products.Three main steps are recognized in the molding:filling,packing/holding and cooling.During thefilling stage,a hot polymer melt rapidlyfills a cold mold reproducing a cavity of the desired product shape. During the packing/holding stage,the pressure is raised and extra material is forced into the mold to compensate for the effects that both temperature decrease and crystallinity development determine on density during solidification.The cooling stage starts at the solidification of a thin section at cavity entrance (gate),starting from that instant no more material can enter or exit from the mold impression and holding pressure can be released.When the solid layer on the mold surface reaches a thickness sufficient to assure required rigidity,the product is ejected from the mold.Due to the thermomechanical history experienced by the polymer during processing,macromolecules in injection-molded objects present a local order.This order is referred to as‘morphology’which literally means‘the study of the form’where form stands for the shape and arrangement of parts of the object.When referred to polymers,the word morphology is adopted to indicate:–crystallinity,which is the relative volume occupied by each of the crystalline phases,including mesophases;–dimensions,shape,distribution and orientation of the crystallites;–orientation of amorphous phase.R.Pantani et al./Prog.Polym.Sci.30(2005)1185–1222 1186R.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221187Apart from the scientific interest in understandingthe mechanisms leading to different order levels inside a polymer,the great technological importance of morphology relies on the fact that polymer character-istics (above all mechanical,but also optical,electrical,transport and chemical)are to a great extent affected by morphology.For instance,crystallinity has a pro-nounced effect on the mechanical properties of the bulk material since crystals are generally stiffer than amorphous material,and also orientation induces anisotropy and other changes in mechanical properties.In this work,a thorough analysis of the effect of injection molding operative conditions on morphology distribution in moldings with particular reference to crystalline materials is performed.The aim of the paper is twofold:first,to outline the state of the art on the subject;second,to present an example of the characterization required for asatisfactorilyR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221188understanding and description of the phenomena, starting from material description,passing through the monitoring of the process cycle and arriving to a deep analysis of morphology distribution inside the mold-ings.To these purposes,fully characterized injection molding tests were performed using an isotactic polypropylene,previously carefully characterized as far as most of properties of interest,in particular quiescent nucleation density,spherulitic growth rate and rheological properties(viscosity and relaxation time)were determined.The resulting moldings mor-phology(in terms of distribution of crystallinity degree, molecular orientation and crystals structure and dimensions)was analyzed by adopting different experimental techniques(optical,electronic and atomic force microscopy,IR and WAXS analysis).Final morphological characteristics of the samples were compared with the predictions of a simulation code developed at University of Salerno for the simulation of the injection molding process.The effects of both injectionflow rate and mold temperature were analyzed.1.1.Morphology distribution in injection molded iPP parts:state of the artFrom many experimental observations,it is shown that a highly oriented lamellar crystallite microstructure, usually referred to as‘skin layer’forms close to the surface of injection molded articles of semi-crystalline polymers.Far from the wall,the melt is allowed to crystallize three dimensionally to form spherulitic structures.Relative dimensions and morphology of both skin and core layers are dependent on local thermo-mechanical history,which is characterized on the surface by high stress levels,decreasing to very small values toward the core region.As a result,the skin and the core reveal distinct characteristics across the thickness and also along theflow path[1].Structural and morphological characterization of the injection molded polypropylene has attracted the interest of researchers in the past three decades.In the early seventies,Kantz et al.[2]studied the morphology of injection molded iPP tensile bars by using optical microscopy and X-ray diffraction.The microscopic results revealed the presence of three distinct crystalline zones on the cross-section:a highly oriented non-spherulitic skin;a shear zone with molecular chains oriented essentially parallel to the injection direction;a spherulitic core with essentially no preferred orientation.The X-ray diffraction studies indicated that the skin layer contains biaxially oriented crystallites due to the biaxial extensionalflow at theflow front.A similar multilayered morphology was also reported by Menges et al.[3].Later on,Fujiyama et al.[4] investigated the skin–core morphology of injection molded iPP samples using X-ray Small and Wide Angle Scattering techniques,and suggested that the shear region contains shish–kebab structures.The same shish–kebab structure was observed by Wenig and Herzog in the shear region of their molded samples[5].A similar investigation was conducted by Titomanlio and co-workers[6],who analyzed the morphology distribution in injection moldings of iPP. They observed a skin–core morphology distribution with an isotropic spherulitic core,a skin layer characterized by afine crystalline structure and an intermediate layer appearing as a dark band in crossed polarized light,this layer being characterized by high crystallinity.Kalay and Bevis[7]pointed out that,although iPP crystallizes essentially in the a-form,a small amount of b-form can be found in the skin layer and in the shear region.The amount of b-form was found to increase by effect of high shear rates[8].A wide analysis on the effect of processing conditions on the morphology of injection molded iPP was conducted by Viana et al.[9]and,more recently, by Mendoza et al.[10].In particular,Mendoza et al. report that the highest level of crystallinity orientation is found inside the shear zone and that a high level of orientation was also found in the skin layer,with an orientation angle tilted toward the core.It is rather difficult to theoretically establish the relationship between the observed microstructure and processing conditions.Indeed,a model of the injection molding process able to predict morphology distribution in thefinal samples is not yet available,even if it would be of enormous strategic importance.This is mainly because a complete understanding of crystallization kinetics in processing conditions(high cooling rates and pressures,strong and complexflowfields)has not yet been reached.In this section,the most relevant aspects for process modeling and morphology development are identified. In particular,a successful path leading to a reliable description of morphology evolution during polymer processing should necessarily pass through:–a good description of morphology evolution under quiescent conditions(accounting all competing crystallization processes),including the range of cooling rates characteristic of processing operations (from1to10008C/s);R.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221189–a description capturing the main features of melt morphology(orientation and stretch)evolution under processing conditions;–a good coupling of the two(quiescent crystallization and orientation)in order to capture the effect of crystallinity on viscosity and the effect offlow on crystallization kinetics.The points listed above outline the strategy to be followed in order to achieve the basic understanding for a satisfactory description of morphology evolution during all polymer processing operations.In the following,the state of art for each of those points will be analyzed in a dedicated section.1.1.1.Modeling of the injection molding processThefirst step in the prediction of the morphology distribution within injection moldings is obviously the thermo-mechanical simulation of the process.Much of the efforts in the past were focused on the prediction of pressure and temperature evolution during the process and on the prediction of the melt front advancement [11–15].The simulation of injection molding involves the simultaneous solution of the mass,energy and momentum balance equations.Thefluid is non-New-tonian(and viscoelastic)with all parameters dependent upon temperature,pressure,crystallinity,which are all function of pressibility cannot be neglected as theflow during the packing/holding step is determined by density changes due to temperature, pressure and crystallinity evolution.Indeed,apart from some attempts to introduce a full 3D approach[16–19],the analysis is currently still often restricted to the Hele–Shaw(or thinfilm) approximation,which is warranted by the fact that most injection molded parts have the characteristic of being thin.Furthermore,it is recognized that the viscoelastic behavior of the polymer only marginally influences theflow kinematics[20–22]thus the melt is normally considered as a non-Newtonian viscousfluid for the description of pressure and velocity gradients evolution.Some examples of adopting a viscoelastic constitutive equation in the momentum balance equations are found in the literature[23],but the improvements in accuracy do not justify a considerable extension of computational effort.It has to be mentioned that the analysis of some features of kinematics and temperature gradients affecting the description of morphology need a more accurate description with respect to the analysis of pressure distributions.Some aspects of the process which were often neglected and may have a critical importance are the description of the heat transfer at polymer–mold interface[24–26]and of the effect of mold deformation[24,27,28].Another aspect of particular interest to the develop-ment of morphology is the fountainflow[29–32], which is often neglected being restricted to a rather small region at theflow front and close to the mold walls.1.1.2.Modeling of the crystallization kineticsIt is obvious that the description of crystallization kinetics is necessary if thefinal morphology of the molded object wants to be described.Also,the development of a crystalline degree during the process influences the evolution of all material properties like density and,above all,viscosity(see below).Further-more,crystallization kinetics enters explicitly in the generation term of the energy balance,through the latent heat of crystallization[26,33].It is therefore clear that the crystallinity degree is not only a result of simulation but also(and above all)a phenomenon to be kept into account in each step of process modeling.In spite of its dramatic influence on the process,the efforts to simulate the injection molding of semi-crystalline polymers are crude in most of the commercial software for processing simulation and rather scarce in the fleur and Kamal[34],Papatanasiu[35], Titomanlio et al.[15],Han and Wang[36],Ito et al.[37],Manzione[38],Guo and Isayev[26],and Hieber [25]adopted the following equation(Kolmogoroff–Avrami–Evans,KAE)to predict the development of crystallinityd xd tZð1K xÞd d cd t(1)where x is the relative degree of crystallization;d c is the undisturbed volume fraction of the crystals(if no impingement would occur).A significant improvement in the prediction of crystallinity development was introduced by Titoman-lio and co-workers[39]who kept into account the possibility of the formation of different crystalline phases.This was done by assuming a parallel of several non-interacting kinetic processes competing for the available amorphous volume.The evolution of each phase can thus be described byd x id tZð1K xÞd d c id t(2)where the subscript i stands for a particular phase,x i is the relative degree of crystallization,x ZPix i and d c iR.Pantani et al./Prog.Polym.Sci.30(2005)1185–1222 1190is the expectancy of volume fraction of each phase if no impingement would occur.Eq.(2)assumes that,for each phase,the probability of the fraction increase of a single crystalline phase is simply the product of the rate of growth of the corresponding undisturbed volume fraction and of the amount of available amorphous fraction.By summing up the phase evolution equations of all phases(Eq.(2))over the index i,and solving the resulting differential equation,one simply obtainsxðtÞZ1K exp½K d cðtÞ (3)where d c Z Pid c i and Eq.(1)is recovered.It was shown by Coccorullo et al.[40]with reference to an iPP,that the description of the kinetic competition between phases is crucial to a reliable prediction of solidified structures:indeed,it is not possible to describe iPP crystallization kinetics in the range of cooling rates of interest for processing(i.e.up to several hundreds of8C/s)if the mesomorphic phase is neglected:in the cooling rate range10–1008C/s, spherulite crystals in the a-phase are overcome by the formation of the mesophase.Furthermore,it has been found that in some conditions(mainly at pressures higher than100MPa,and low cooling rates),the g-phase can also form[41].In spite of this,the presence of different crystalline phases is usually neglected in the literature,essentially because the range of cooling rates investigated for characterization falls in the DSC range (well lower than typical cooling rates of interest for the process)and only one crystalline phase is formed for iPP at low cooling rates.It has to be noticed that for iPP,which presents a T g well lower than ambient temperature,high values of crystallinity degree are always found in solids which passed through ambient temperature,and the cooling rate can only determine which crystalline phase forms, roughly a-phase at low cooling rates(below about 508C/s)and mesomorphic phase at higher cooling rates.The most widespread approach to the description of kinetic constant is the isokinetic approach introduced by Nakamura et al.According to this model,d c in Eq.(1)is calculated asd cðtÞZ ln2ðt0KðTðsÞÞd s2 435n(4)where K is the kinetic constant and n is the so-called Avrami index.When introduced as in Eq.(4),the reciprocal of the kinetic constant is a characteristic time for crystallization,namely the crystallization half-time, t05.If a polymer is cooled through the crystallization temperature,crystallization takes place at the tempera-ture at which crystallization half-time is of the order of characteristic cooling time t q defined ast q Z D T=q(5) where q is the cooling rate and D T is a temperature interval over which the crystallization kinetic constant changes of at least one order of magnitude.The temperature dependence of the kinetic constant is modeled using some analytical function which,in the simplest approach,is described by a Gaussian shaped curve:KðTÞZ K0exp K4ln2ðT K T maxÞ2D2(6)The following Hoffman–Lauritzen expression[42] is also commonly adopted:K½TðtÞ Z K0exp KUÃR$ðTðtÞK T NÞ!exp KKÃ$ðTðtÞC T mÞ2TðtÞ2$ðT m K TðtÞÞð7ÞBoth equations describe a bell shaped curve with a maximum which for Eq.(6)is located at T Z T max and for Eq.(7)lies at a temperature between T m(the melting temperature)and T N(which is classically assumed to be 308C below the glass transition temperature).Accord-ing to Eq.(7),the kinetic constant is exactly zero at T Z T m and at T Z T N,whereas Eq.(6)describes a reduction of several orders of magnitude when the temperature departs from T max of a value higher than2D.It is worth mentioning that only three parameters are needed for Eq.(6),whereas Eq.(7)needs the definition offive parameters.Some authors[43,44]couple the above equations with the so-called‘induction time’,which can be defined as the time the crystallization process starts, when the temperature is below the equilibrium melting temperature.It is normally described as[45]Dt indDtZðT0m K TÞat m(8)where t m,T0m and a are material constants.It should be mentioned that it has been found[46,47]that there is no need to explicitly incorporate an induction time when the modeling is based upon the KAE equation(Eq.(1)).1.1.3.Modeling of the morphology evolutionDespite of the fact that the approaches based on Eq.(4)do represent a significant step toward the descriptionR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221191of morphology,it has often been pointed out in the literature that the isokinetic approach on which Nakamura’s equation (Eq.(4))is based does not describe details of structure formation [48].For instance,the well-known experience that,with many polymers,the number of spherulites in the final solid sample increases strongly with increasing cooling rate,is indeed not taken into account by this approach.Furthermore,Eq.(4)describes an increase of crystal-linity (at constant temperature)depending only on the current value of crystallinity degree itself,whereas it is expected that the crystallization rate should depend also on the number of crystalline entities present in the material.These limits are overcome by considering the crystallization phenomenon as the consequence of nucleation and growth.Kolmogoroff’s model [49],which describes crystallinity evolution accounting of the number of nuclei per unit volume and spherulitic growth rate can then be applied.In this case,d c in Eq.(1)is described asd ðt ÞZ C m ðt 0d N ðs Þd s$ðt sG ðu Þd u 2435nd s (9)where C m is a shape factor (C 3Z 4/3p ,for spherical growth),G (T (t ))is the linear growth rate,and N (T (t ))is the nucleation density.The following Hoffman–Lauritzen expression is normally adopted for the growth rateG ½T ðt Þ Z G 0exp KUR $ðT ðt ÞK T N Þ!exp K K g $ðT ðt ÞC T m Þ2T ðt Þ2$ðT m K T ðt ÞÞð10ÞEqs.(7)and (10)have the same form,however the values of the constants are different.The nucleation mechanism can be either homo-geneous or heterogeneous.In the case of heterogeneous nucleation,two equations are reported in the literature,both describing the nucleation density as a function of temperature [37,50]:N ðT ðt ÞÞZ N 0exp ½j $ðT m K T ðt ÞÞ (11)N ðT ðt ÞÞZ N 0exp K 3$T mT ðt ÞðT m K T ðt ÞÞ(12)In the case of homogeneous nucleation,the nucleation rate rather than the nucleation density is function of temperature,and a Hoffman–Lauritzen expression isadoptedd N ðT ðt ÞÞd t Z N 0exp K C 1ðT ðt ÞK T N Þ!exp KC 2$ðT ðt ÞC T m ÞT ðt Þ$ðT m K T ðt ÞÞð13ÞConcentration of nucleating particles is usually quite significant in commercial polymers,and thus hetero-geneous nucleation becomes the dominant mechanism.When Kolmogoroff’s approach is followed,the number N a of active nuclei at the end of the crystal-lization process can be calculated as [48]N a ;final Zðt final 0d N ½T ðs Þd sð1K x ðs ÞÞd s (14)and the average dimension of crystalline structures can be attained by geometrical considerations.Pantani et al.[51]and Zuidema et al.[22]exploited this method to describe the distribution of crystallinity and the final average radius of the spherulites in injection moldings of polypropylene;in particular,they adopted the following equationR Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi3x a ;final 4p N a ;final 3s (15)A different approach is also present in the literature,somehow halfway between Nakamura’s and Kolmo-goroff’s models:the growth rate (G )and the kinetic constant (K )are described independently,and the number of active nuclei (and consequently the average dimensions of crystalline entities)can be obtained by coupling Eqs.(4)and (9)asN a ðT ÞZ 3ln 24p K ðT ÞG ðT Þ 3(16)where heterogeneous nucleation and spherical growth is assumed (Avrami’s index Z 3).Guo et al.[43]adopted this approach to describe the dimensions of spherulites in injection moldings of polypropylene.1.1.4.Modeling of the effect of crystallinity on rheology As mentioned above,crystallization has a dramatic influence on material viscosity.This phenomenon must obviously be taken into account and,indeed,the solidification of a semi-crystalline material is essen-tially caused by crystallization rather than by tempera-ture in normal processing conditions.Despite of the importance of the subject,the relevant literature on the effect of crystallinity on viscosity isR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221192rather scarce.This might be due to the difficulties in measuring simultaneously rheological properties and crystallinity evolution during the same tests.Apart from some attempts to obtain simultaneous measure-ments of crystallinity and viscosity by special setups [52,53],more often viscosity and crystallinity are measured during separate tests having the same thermal history,thus greatly simplifying the experimental approach.Nevertheless,very few works can be retrieved in the literature in which(shear or complex) viscosity can be somehow linked to a crystallinity development.This is the case of Winter and co-workers [54],Vleeshouwers and Meijer[55](crystallinity evolution can be drawn from Swartjes[56]),Boutahar et al.[57],Titomanlio et al.[15],Han and Wang[36], Floudas et al.[58],Wassner and Maier[59],Pantani et al.[60],Pogodina et al.[61],Acierno and Grizzuti[62].All the authors essentially agree that melt viscosity experiences an abrupt increase when crystallinity degree reaches a certain‘critical’value,x c[15]. However,little agreement is found in the literature on the value of this critical crystallinity degree:assuming that x c is reached when the viscosity increases of one order of magnitude with respect to the molten state,it is found in the literature that,for iPP,x c ranges from a value of a few percent[15,62,60,58]up to values of20–30%[58,61]or even higher than40%[59,54,57].Some studies are also reported on the secondary effects of relevant variables such as temperature or shear rate(or frequency)on the dependence of crystallinity on viscosity.As for the effect of temperature,Titomanlio[15]found for an iPP that the increase of viscosity for the same crystallinity degree was higher at lower temperatures,whereas Winter[63] reports the opposite trend for a thermoplastic elasto-meric polypropylene.As for the effect of shear rate,a general agreement is found in the literature that the increase of viscosity for the same crystallinity degree is lower at higher deformation rates[62,61,57].Essentially,the equations adopted to describe the effect of crystallinity on viscosity of polymers can be grouped into two main categories:–equations based on suspensions theories(for a review,see[64]or[65]);–empirical equations.Some of the equations adopted in the literature with regard to polymer processing are summarized in Table1.Apart from Eq.(17)adopted by Katayama and Yoon [66],all equations predict a sharp increase of viscosity on increasing crystallinity,sometimes reaching infinite (Eqs.(18)and(21)).All authors consider that the relevant variable is the volume occupied by crystalline entities(i.e.x),even if the dimensions of the crystals should reasonably have an effect.1.1.5.Modeling of the molecular orientationOne of the most challenging problems to present day polymer science regards the reliable prediction of molecular orientation during transformation processes. Indeed,although pressure and velocity distribution during injection molding can be satisfactorily described by viscous models,details of the viscoelastic nature of the polymer need to be accounted for in the descriptionTable1List of the most used equations to describe the effect of crystallinity on viscosityEquation Author Derivation Parameters h=h0Z1C a0x(17)Katayama[66]Suspensions a Z99h=h0Z1=ðx K x cÞa0(18)Ziabicki[67]Empirical x c Z0.1h=h0Z1C a1expðK a2=x a3Þ(19)Titomanlio[15],also adopted byGuo[68]and Hieber[25]Empiricalh=h0Z expða1x a2Þ(20)Shimizu[69],also adopted byZuidema[22]and Hieber[25]Empiricalh=h0Z1Cðx=a1Þa2=ð1Kðx=a1Þa2Þ(21)Tanner[70]Empirical,basedon suspensionsa1Z0.44for compact crystallitesa1Z0.68for spherical crystallitesh=h0Z expða1x C a2x2Þ(22)Han[36]Empiricalh=h0Z1C a1x C a2x2(23)Tanner[71]Empirical a1Z0.54,a2Z4,x!0.4h=h0Zð1K x=a0ÞK2(24)Metzner[65],also adopted byTanner[70]Suspensions a Z0.68for smooth spheresR.Pantani et al./Prog.Polym.Sci.30(2005)1185–12221193。

线粒体功能的体外评价方法

线粒体功能的体外评价方法

线粒体功能的体外评价方法摘要】线粒体一直被认为是细胞能量生产和代谢工厂,正常的线粒体功能是维持器官的正常功能和细胞稳定的重要因素之一,对于需要高能量代谢的骨骼肌和心肌尤为重要。

线粒体相关疾病的形成及其分子生物学诊断需要临床和实验室的检测。

线粒体疾病的基因双重性,多器官系统特征以及广泛的可识别表型是目前临床诊断所面临的挑战。

为了克服这些临床诊断障碍,实验室对线粒体多方面的评价可以提供相对充足的证据,包括血液学,组织化学分析手段,神经影像分析,刺激实验检测,组织和细胞的酶学分析以及DNA检测(Mancuso M., 2009)。

本文就线粒体的功能性评价方法作以下综述,为临床线粒体相关疾病的诊断提供可行的方法学手段。

【关键词】线粒体呼吸链功能评价【中图分类号】R329 【文献标识码】A 【文章编号】2095-1752(2012)01-0130-021.活性氧族(Reactive Oxygen Species)的产生在细胞内,线粒体是超氧离子(O2-)和其他活性氧族的主要来源,病理情况下,通过异常的氧化反应,线粒体产生约85%的超氧离子(Boveris and Chance, 1973; Dr?ge, 2002). 在线粒体复合体间的电子转运过程中,约2-5%的离子逃逸并释放O2,导致了O2-在复合体I到复合体I I I中的产生,由于线粒体活性增强或呼吸链的抑制作用,氧离子会显著的增加导致了氧化损伤,这可能是脑神经退行性病变发病的机理之一。

活性氧族ROS的生理功能与脑神经元的代谢活性息息相关,过多的ROS会导致线粒体功能异常及神经损伤。

例如,在脑缺血和再灌注过程中,细胞间液中过多的ROS会产生氧化应激,氧化平衡被打破,从而导致细胞性的直接或间接的损伤(L e i e t a l.,1998)。

因此,检测ROS的产生和分布可以从一方面评价线粒体的功能。

目前有很多R O S 的标记物,如广泛应用的二氢氯荧光素dichlorodihydrofluorescein (LeBel et al.,1992),及其各种衍生物如二氢溴乙非啶(Het)(Gallop et al., 1984),和二氢罗丹明dihydrorhodamine(Duganet al., 1995)。

Endomembrane+system

Endomembrane+system

Figure 12-37. Free and membrane-bound ribosomes. A common pool of ribosomes is used to synthesize the proteins that stay in the cytosol and those that are transported into the ER. The ER signal sequence on a newly formed polypeptide chain directs the engaged ribosome to the ER membrane. The mRNA molecule remains permanently bound to the ER as part of a polyribosome, while the ribosomes that move along it are recycled; at the end of each round of protein synthesis, the ribosomal subunits are released and rejoin the common pool in the cytosol.
The structure and functions of The endoplasmic reticulum(ER)
A. A netlike labyrinth of branching tubules and flattened sacs extending throughout the cytosol
Signal Sequences and Signal Patches Direct Proteins to the Correct Cellular Address

基于核酸适配体和阳离子聚合物PAH高效聚集纳米金比色法检测牛奶中四环素

基于核酸适配体和阳离子聚合物PAH高效聚集纳米金比色法检测牛奶中四环素

基于核酸适配体和阳离子聚合物PAH高效聚集纳米金比色法检测牛奶中四环素罗艳芳;贺兰;詹深山;刘乐;支月娥;周培【摘要】为满足乳制品中四环素快速检测要求,开发了基于核酸适配体(aptamer)和阳离子聚合物PAH高效聚集纳米金比色检测牛奶中四环素(TET)的新方法.本文优化了PAH和适配体的浓度.最优实验条件下,四环素浓度在一定范围内与A520/A650呈现良好的线性关系,最低检测限(LOD)为95 nmol/L,对四环素具有良好的选择性.该方法已成功用于牛奶中四环素的检测,回收率为108%~117%,相对标准偏差为2.9%~3.6%.【期刊名称】《上海交通大学学报(农业科学版)》【年(卷),期】2014(032)006【总页数】6页(P66-70,91)【关键词】四环素;核酸适配体;PAH;纳米金;比色【作者】罗艳芳;贺兰;詹深山;刘乐;支月娥;周培【作者单位】上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240;上海交通大学农业与生物学院,上海200240【正文语种】中文【中图分类】X83四环素是一种常见的广谱抗生素类药物,被广泛运用于人类细菌感染治疗及添加于畜禽饲料中[1]。

据报道,每年有5 000 t四环素被人类和动物消耗[2]。

随着四环素使用量的增加,其在食品和环境中的残留带来了一系列的问题,如:微生物抗药性增强、超级细菌的产生,食用具有抗生素残留肉制品后导致的过敏现象及某些器官的病变等等[3-4]。

为了保障消费者食品安全,欧盟规定牛奶中四环素最大残留为225 nmol/L[5],美国食品药品监督管理局规定牛奶中四环素最大残留为900 nmol/L[6]。

2002年,我国农业部修订的《动物性食品中兽药最高残留限量》中规定,牛羊奶以及所有动物性食品中四环素类药物残留的最高残留量为225 nmol/L。

二氧化钛纳米管阵列光阳极的几何参数对染料敏化太阳能电池性能的影响_丁辉

二氧化钛纳米管阵列光阳极的几何参数对染料敏化太阳能电池性能的影响_丁辉

二氧化钛纳米管阵列光阳极的几何参数对染料敏化太阳能电池性能的影响 第 2 期 丁辉等 :
3 4
) ) 侧面的 S 图 3 阳极氧化铝模版的 ( 顶端和 ( b EM 图像以及利用此模版制备 a
[ 4 1] ) 的二氧化钛纳米管的 S EM 图像 ( c
) ) F r e a r a t i o n o f T i O i . 3 T o a a n d l a t e r a l( b i m a e s o f a n o d i c a l u m i n a t e m l a t e u s e d f o r a n o t u b e s 2n p p g p( g p ) a n o t u b e s a n d t h e c o r r e s o n d i n S EM i m a e( c o f o b t a i n e d T i O 2n p g g
3] 2 ( ) ( , ) ( ) 。 底端 ; 顶端 [ 侧面 ; b c d a
图 1 阳极氧化法制备二氧化钛纳米管阵列的 F E S EM 图 ) ) )( , , ) F i . 1 L a t e r a l( a b o t t o m( b t o c d F E S EM i m a e s o f T i O a n o t u b e a r r a s 2n g p( g y r e a r e d b e l e c t r o c h e m i c a l a n o d i z a t i o n p p y
] ] 7-1 6, 1 1 3] 4-1 6 7-2 0 , , 纳 米 线[ 纳 米 棒 和 纳 米 纸[ 等。 管[
) 制备纳米管的几何 尺 寸 由 原 始 模板辅助方法 ( 图3 模版决定 , 阳极氧化 法 制 备 纳 米 管 具 有 几 何 尺 寸 可

改性球形活性炭对氨气吸附性能的研究

改性球形活性炭对氨气吸附性能的研究

Vol.53 No.4Apr.,2021第53卷第4期2021年4月无机盐工业INORGANIC CHEMICALS INDUSTRYDoi:10.11962/1006-4990.2020-0318开放科学(资源服务)标志识码(OSID)改性球形活性炭对氨气吸附性能的研究金青青袁梁晓烽,张佳楠,周晓龙(华东理工大学化工学院,上海200237)摘 要:研究了不同金属盐溶液浸渍改性的球形活性炭对氨气的吸附性能以及同种浸渍剂的最佳浸渍比。

采用 扫描电镜、透射电镜、X 射线衍射仪、康塔吸附仪探究了不同浸渍比对浸渍炭样品的表面形貌、物相结构及孔径分布的影响。

通过固定床吸附装置对基炭和浸渍炭进行了氨气吸附性能的研究。

结果表明:浸渍剂种类对氨气吸附效果 有很大影响,同等浸渍条件下,氯化钻浸渍的活性炭具有最优氨气吸附效果,氯化钻浸渍比为50%的样品对氨气的吸附量最高,可达54.05 mg/mL ,为基炭的37倍。

对吸附氨气后样品的物化性质进行分析以及程序升温脱附表征,结 果表明氯化钻与氨气反应生成了 [Co (NH 3)6]Cl 3。

关键词:球形活性炭;氯化钻;浸渍炭;氨气;吸附性能中图分类号:0647.32 文献标识码:A 文章编号:1006-4990(2021)04-0061-06Study on adsorption performance of modified spherical activated carbon for ammoniaJin Qingqing ,Liang Xiaoyi 袁Zhang Jia'nan ,Zhou Xiaolong(School of Chemical Engineering , East China University of S cience and Technology , Shanghai 200237, China)Abstract : The adsorption performance of spherical activated carbon impregnated with different metal salt solutions for ammonia and the optimal ratio of the same impregnant were studied.The influence of different impregnation ratio on the surface morpho-logy ,phase structure and pore size distribution on impregnated carbon samples were investigated by scanning electron micro ­scopy , transmission electron microscopy , X-ray diffraction and Quanta adsorption instrument.The adsorption performance of the unmodified carbon and impregnated carbon for ammonia was studied by the fixed bed adsorption device.The results showedthat the type of impregnant had a great influence on the adsorption performance of ammonia.Under the same impregnation conditions , the activated carbon impregnated with cobalt chloride had the best adsorption performance for ammonia.The samplewith 50% impregnation ratio of cobalt chloride had the highest ammonia adsorption capacity up to 54.05 mg/mL , which was 37 times of the unmodified carbon.The physicochemical properties and temperature programmed desorption characteristics ofthe samples after ammonia adsorption were analyzed.The results showed that[Co(NH 3)6]Cl 3 was formed by the reaction of co ­balt chloride with ammonia.Key words : spherical activated carbon ; cobalt chloride ; impregnated carbon ; ammonia ; adsorption capacity氨气渊NH 3 )是一种有毒的碱性气体,对人类健 康和环境均造成严重危害[1]。

Edwards97 R包用户指南说明书

Edwards97 R包用户指南说明书

Package‘edwards97’October13,2022Title Langmuir Semi-Empirical Coagulation ModelVersion0.1.1Maintainer Dewey Dunnington<************************>Description Implements the Edwards(1997)<doi:10.1002/j.1551-8833.1997.tb08229.x> Langmuir-based semi-empirical coagulation model,which predicts the concentration of organic carbon remaining in water after treatment with an Al-or Fe-basedcoagulant.Data and methods are provided to optimise empirical coefficients. Depends R(>=3.6.0)License GPL-3Encoding UTF-8LazyData trueRoxygenNote7.2.1URL https://paleolimbot.github.io/edwards97/,https:///paleolimbot/edwards97BugReports https:///paleolimbot/edwards97/issuesImports rlang,tibble,broom,cli,withr,glueSuggests testthat(>=3.0.0),covrConfig/testthat/edition3NeedsCompilation noAuthor Dewey Dunnington[aut,cre](<https:///0000-0002-9415-4582>), Benjamin Trueman[aut](<https:///0000-0002-1539-3092>),William Raseman[aut](<https:///0000-0001-5946-8888>),Marc Edwards[ctb],Tai Tseng[ctb]Repository CRANDate/Publication2022-09-0102:20:06UTC12coagulate R topics documented:coagulate (2)dose_of_diminishing_returns (3)edwards_coefs (4)edwards_jar_tests (5)fit_edwards_optim (5)Index8 coagulate Low-level langmuir coagulation calculationsDescriptionThe Edwards(1997)model is a Langmuir-based semiempirical model designed to predict OC re-moval during alum coagulation.The model is on a non-linear function derived from physical rela-tionships,primarily the process of Langmuir sorptive removal(Tipping1981,Jekyl1986). Usagecoagulate(data,coefs)coagulate_base(DOC,dose,pH,UV254,K1,K2,x1,x2,x3,b,root=-1)Argumentsdata A data frame containing columns DOC,dose,pH,and UV254.coefs The output of edwards_coefs()or a similar named vector containing elements K1,K2,x1,x2,x3,b and root.DOC The initial DOC concentration(mg/L).dose The coagulant metal concentration(Al3+or Fe3+)in mmol/L.pH The pH of coagulation.UV254The absorbance of UV254(1/cm).With DOC,used to calculate SUV A.K1,K2Empiricalfitting coefficients relating to SUV A.x1,x2,x3Empiricalfitting coefficients relating to pH.b The Langmuir term.root The solution to the equation presented in Edwards(1997)is a quadratic with two roots.root can be1or-1to account for these roots,however we see noevidence that anything except-1here results in realistic predictions.ValueA vector of predicted organic carbon concentrations(in mg/L)following coagulation.dose_of_diminishing_returns3 ReferencesEdwards,M.1997.Predicting DOC removal during enhanced coagulation.Journal-American Water Works Association,89:78–89.https:///10.1002/j.1551-8833.1997.tb08229.xJekel,M.R.1986.Interactions of humic acids and aluminum salts in theflocculation process.Water Research,20:1535-1542.https:///10.1016/0043-1354(86)90118-1Tipping,E.1981.The adsorption of aquatic humic substances by iron oxides.Geochimica et Cosmochimica Acta,45:191-199.https:///10.1016/0016-7037(81)90162-9Examplesalum_jar_tests<-edwards_data("Al")alum_jar_tests$DOC_final_model<-coagulate(alum_jar_tests,edwards_coefs("Al"))plot(DOC_final_model~DOC_final,data=alum_jar_tests)dose_of_diminishing_returnsCalculate the dose of diminishing returnDescriptionCalculate the dose of diminishing returnUsagedose_of_diminishing_returns(dose,DOC_final,molar_mass=297,threshold=0.3/10)dose_for_criterion(dose,DOC_final,criterion)Argumentsdose The coagulant metal concentration(Al3+or Fe3+)in mmol/L.DOC_final Thefinal DOC concentration,probably modeled using fit_edwards_optim() or fit_edwards()and coagulate_grid().molar_mass The moalr mass of the coagulant,in grams per mol Al or Fe.threshold The point of diminishing return threshold,in mg/L DOC per mg/L dose.Often this is taken to be0.3mg/L DOC per10mg/L dose(Brantby2016).criterion A desiredfinal DOC concentration in mg/L4edwards_coefsValueThe dose(in mmol/L)of diminishing returns.ReferencesBratby,J.2016.Coagulation and Flocculation in Water and Wastewater Treatment.IW A Publish-ing.https://books.google.ca/books?id=PabQDAAAQBAJExamplesdose_curve<-coagulate_grid(fit_edwards("Low DOC"),DOC=4,UV254=0.2,pH=5.5) dose_of_diminishing_returns(dose_curve$dose,dose_curve$DOC_final)dose_for_criterion(dose_curve$dose,dose_curve$DOC_final,criterion=3)edwards_coefs Coagulation coefficientsDescriptionThese are coefficients intended for general e fit_edwards_optim()to optimise these co-efficients for a specific source water.Usageedwards_coefs(type)edwards_data(type)fit_edwards(type)Argumentstype One of"Low DOC","Fe","Al","General-Fe","General-Al",or"empty".ValueA named vector of empirical coefficients to be used in coagulate().ReferencesEdwards,M.1997.Predicting DOC removal during enhanced coagulation.Journal-American Water Works Association,89:78–89.https:///10.1002/j.1551-8833.1997.tb08229.xExamplesedwards_coefs("Low DOC")edwards_jar_tests5 edwards_jar_tests Example Jar TestsDescriptionExample Jar TestsUsageedwards_jar_testsFormatAn object of class tbl_df(inherits from tbl,data.frame)with1372rows and7columns. Author(s)Marc Edwards and Tai TsengReferencesEdwards,M.1997.Predicting DOC removal during enhanced coagulation.Journal-American Water Works Association,89:78–89.https:///10.1002/j.1551-8833.1997.tb08229.xfit_edwards_optim Fit Empirical CoefficientsDescriptionThe coefficients calculated by Edwards(1997)and returned by edwards_coefs()were designed to produce reasonable results for several general cases,however each source water will have a set of empirical coefficients that produce more accurate predictions than the general case.This function calculates the optimal coefficients given a test set of known initial values(DOC)Usagefit_edwards_optim(data,initial_coefs=edwards_coefs("Al"),optim_params=list())fit_edwards_coefs(coefs,data=edwards_data("empty"))##S3method for class edwards_fit_optimcoef(object,...)##S3method for class edwards_fit_coefscoef(object,...)##S3method for class edwards_fit_basepredict(object,newdata=NULL,...)coagulate_grid(object,DOC,UV254,dose=seq(0.01,2,length.out=50),pH=seq(5,8,length.out=50))##S3method for class edwards_fit_basefitted(object,...)##S3method for class edwards_fit_baseresiduals(object,...)##S3method for class edwards_fit_basetidy(x,...)##S3method for class edwards_fit_baseglance(x,...)##S3method for class edwards_fit_baseprint(x,...)##S3method for class edwards_fit_baseplot(x,...)Argumentsdata A data frame with columns DOC(mg/L),dose(mmol/L),pH(pH units),UV254 (1/cm),and DOC_final(mg/L).See coagulate()for more information.optim_params Additional arguments to be passed to stats::optim().coefs,initial_coefsA set of initial coefficients from which to start the optimisation.Most usefullyone of the coefficient sets returned by edwards_coefs().object,x Afit objected created with fit_edwards_optim()....Not used.newdata A data frame with columns DOC(mg/L),dose(mmol/L),pH(pH units),and UV254(1/cm).If omitted,the data used tofit the model is used.DOC The initial DOC concentration(mg/L).UV254The absorbance of UV254(1/cm).With DOC,used to calculate SUV A.dose The coagulant metal concentration(Al3+or Fe3+)in mmol/L.pH The pH of coagulation.ValueAn S3of type"edwards_fit_optim"with components:data,initial_coefs,optim_params References to inputs.fit_optim Thefit object returned by stats::optim().Index∗datasetsedwards_jar_tests,5 coagulate,2coagulate(),4,6coagulate_base(coagulate),2 coagulate_grid(fit_edwards_optim),5 coagulate_grid(),3coef.edwards_fit_coefs(fit_edwards_optim),5coef.edwards_fit_optim(fit_edwards_optim),5dose_for_criterion(dose_of_diminishing_returns),3dose_of_diminishing_returns,3 edwards_coefs,4edwards_coefs(),2,5,6edwards_data(edwards_coefs),4 edwards_jar_tests,5fit_edwards(edwards_coefs),4fit_edwards(),3fit_edwards_coefs(fit_edwards_optim),5 fit_edwards_optim,5fit_edwards_optim(),3,4,6fitted.edwards_fit_base(fit_edwards_optim),5 glance.edwards_fit_base(fit_edwards_optim),5plot.edwards_fit_base(fit_edwards_optim),5 predict.edwards_fit_base(fit_edwards_optim),5print.edwards_fit_base(fit_edwards_optim),5residuals.edwards_fit_base(fit_edwards_optim),5 stats::optim(),6,7tidy.edwards_fit_base(fit_edwards_optim),5 8。

边缘化学修饰锯齿型石墨烯纳米带的电子结构

边缘化学修饰锯齿型石墨烯纳米带的电子结构

1 理 论 方 法
于第一 原理 密 度 泛 函进 行模 拟 计 算 的 软 件 。结 构 优 化 过 程 中 , 用局域 密度 近似 ( D , 采 L A) 以确 定 能量 最 低 的几 何 构 型 。 在此 基础上 , 采用 广义 梯度 近似 ( G 方 法 处 理 电子 之 间相 G A)
对有限宽 Z N s其表现为半导体性 , G R, 具有 自 旋极化基态 , G R 两边局域电子态的 自 在 NS 旋方向相反。 最近 ,o 等人 报道 了外 加垂直 Z N s Sn4 G R 轴线 的 电场可使 体 系变为半 金属 态 , 即一个 自旋方 向表现 金属
性, 另一个 自旋 方 向能 隙增 大 , 相应结 果为 实验上 制备 出石 墨烯 基 自旋 开 关提 供 了重 要 的理 论 依据 。Y u等
2 2 能带结构 .
在 这部分 内容 中 , 主要 是针 对不 同边 缘饱 和 Z N s的能 带结 构进 行讨论 。 由于体 系 的 电学 性 质 主要取 GR 决 于其 费米 面附 近 的电子 结构 , 因此 , 们我 们 主要研 究 费米 面 附 近能量 在 一04 a一 .H 我 .H 0 4 a能 量 区 间的 电
其 中 -o =一70 85 aE =一 0 .2 H , E ‰ 6 .9 H 、 6 69 13 a
氧 原子 饱和 纳米 带 的结合 能
E 0= E f 一2×E 一E一 =一 5 . 5 0 6 7 9 6 4一(一2× 4 9 2— 0 . 2 )= 一1 1 1 a 7 .6 69 13 .9 H ,
过对纳米带边缘修饰来控制纳米带的电子结构 , 相应的计算结果为实验上制备石墨烯纳米带提供 了理论依
据。
参考文献 :

Al掺杂对顺铂药物分子在石墨烯上吸附性能的影响

Al掺杂对顺铂药物分子在石墨烯上吸附性能的影响

第21卷第3期北华大学学报(自然科学版)Vol.21No.32020年5月JOURNAL OF BEIHUA UNIVERSITY(Natural Science)May 2020文章编号:1009-4822(2020)03-0411-05DOI :10.11713/j.issn.1009-4822.2020.03.026Al 掺杂对顺铂药物分子在石墨烯上吸附性能的影响段颖妮1,陈建军1,张训江1,杨㊀艳2(1.新疆医科大学医学工程技术学院,新疆乌鲁木齐㊀830011;2.中北大学理学院,山西太原㊀030051)摘要:采用基于密度泛函理论的第一性原理计算方法,研究纯石墨烯(PG)和Al 掺杂修饰的石墨烯(AlG)对顺铂药物分子的吸附特性.结果表明:顺铂分子在PG 上的吸附为物理吸附,在AlG 上的吸附为化学吸附.在cis-Pt-PG 复合结构中,顺铂与PG 之间的电荷迁移很少;在cis-Pt-AlG 复合结构中,Al 掺杂增加了顺铂与基底之间的电荷转移,Pt-5d 轨道和Al-3p 轨道之间较强的轨道杂化是导致顺铂在AlG 上吸附稳定性高的原因.由此可见,掺杂Al 原子增强了顺铂分子与石墨烯基底之间的相互作用.本研究可为设计新型抗肿瘤药物载药材料提供理论参考.关键词:顺铂吸附;掺杂;石墨烯;密度泛函理论中图分类号:O485文献标志码:A收稿日期:2019-09-02基金项目:新疆维吾尔自治区自然科学基金项目(2016D01C179).作者简介:段颖妮(1984 ),女,博士,副教授,硕士生导师,主要从事原子尺度生物医学新材料设计及性能表征研究,E-mail:duanyingni @.Effect of Aluminum Doping on the Adsorption of Cisplatin on GrapheneDUAN Yingni 1,CHEN Jianjun 1,ZHANG Xunjiang 1,YANG Yan 2(1.College of Medical Engineering and Technology ,Xinjiang Medical University ,Urumqi 830011,China ;2.College of Science ,North University of China ,Taiyuan 030051,China )Abstract :The adsorption of cisplatin molecules on pristine graphene (PG )and Al-doped graphene are investigated by using the first-principles calculations based on density functional theory.The results showed that the adsorption of cisplatin on PG is physical adsorption,while on AlG is chemical adsorption.Al doping increases the charge transfer between cisplatin and base in cis-Pt-AlG system.The hybridization between Pt-5d orbital and Al-3p orbital leads to the high stability of cisplatin adsorbed on AlG.The interaction between cisplatin molecules and graphene base is enhanced by doping Al atoms.This research can provide theoretical references to design new drug carrier materials in the field of tumor treatment.Key words :cisplatin adsorption;doping;graphene;density functional theory顺铂(cisplatin,cis-Pt)可以抑制细菌分裂,具有强抗肿瘤活性,自20世纪60年代被发现以来,作为抗癌化疗药物被广泛用于膀胱癌㊁晚期宫颈癌㊁睾丸癌㊁卵巢癌㊁食道癌㊁非转移性非小细胞肺癌㊁头颈部恶性肿瘤的治疗[1-2].在临床上,顺铂对肿瘤治疗具有良好疗效.但是,化疗药物不能区分癌细胞和正常细胞之间的差异,顺铂可能对癌细胞和正常细胞都起作用,对人体产生明显的毒副作用,例如恶心㊁呕吐㊁肾毒性以及抗药性等[3],可能导致重要器官的破坏或损害[4].研究表明,通过靶向给药,可以提高药物对癌细胞的选择性,优化药物用量,提高药物在病灶部位的浓度.在达到最大治疗效果的同时,可最大限度地减小对正常器官的副作用[5].因此,深入研究先进载药系统对改善肿瘤治疗效果意义重大.石墨烯是一种由单层碳原子以sp 2轨道杂化形成的二维平面结构材料,具有大的比表面积㊁良好的化学稳定性㊁机械稳定性[6].石墨烯层内C 原子共同形成大π键,可通过π-π非共价的堆积,结合疏水相互作用吸附客体药物分子,实现难溶药物的高载药量.生物分子(如聚合物㊁蛋白质㊁碳水化合物和抗癌药物)可以成功地加载到石墨烯及其衍生物表面.因此,在生物医学领域,石墨烯有望作为药物传输系统进行体内给药.然而,石墨烯与药物分子的相互作用机制仍需要进一步探索,以实现高效载药和可控释放.密度泛函理论(Density Functional Theory,DFT)作为研究和预测材料性能的重要理论,近年来广泛用于抗肿瘤药物性质㊁输运和检测研究[7-11].ONSORI 等[7]采用DFT 研究了B 12N 12纳米团簇对顺铂抗癌药物的反应性和电子敏感性;GEORGIEVA 等[8]采用DFT 研究了顺铂的结构和振动特性;LI 等[9]采用基于密度泛函理论的第一性原理研究了顺铂在Al 掺杂碳纳米管上的吸附特性;TORNAGHI 等[10]采用DFT 研究了卡铂和顺铂的分子结构㊁电子特性和振动特性;ALBERTO 等[11]采用DFT 研究了奈达铂的水解机理.本文采用基于密度泛函理论框架下的第一性原理计算方法,研究纯石墨烯(Pure Graphene,PG)和Al 掺杂修饰的石墨烯(Al doped Graphene,AlG)对顺铂药物分子的吸附特性.通过计算差分电荷密度㊁Bader 电荷布居和态密度(DOS)分析顺铂在两种基底上的吸附机理,可为设计新型抗肿瘤药物载药材料提供理论参考.1㊀计算方法和模型本文采用基于密度泛函理论的平面波赝势方法对顺铂㊁顺铂吸附的纯石墨烯(cis-Pt-PG)和顺铂吸附的铝掺杂石墨烯(cis-Pt-AlG)展开系统研究.运用VASP 软件包[12]进行计算,采用投影缀加波来描述赝势[13].采用共轭梯度方法优化波函数,交换关联势是Perdew-Burke-Ernzerhof 形式的广义梯度近似[14].采用Methfessel-Paxton 方法进行总能收敛计算,平面波截断能取为400eV.布里渊区的数值积分采用Monkhorst-Pack 方法[15],积分网格为5ˑ5ˑ1.收敛标准为能量小于10-4eV,且受力小于0.02eV /Å.计算模型选取的真空层为15Å.2㊀计算结果和讨论2.1㊀顺铂结构分析首先,对单个顺铂分子建立初始模型并进行结构优化,优化后结构见图1,相应结构参数见表1.为了进行对比,表1中同时列出GEORGIEVA 等[8]采用PBE 计算和TING 等[16]采用X-Ray 实验得到的相关参数.本文采用PAW-PBE 方法计算得到的顺铂分子键长和键角与之前的理论和实验结果非常近似,说明本文计算选用的模型和参数正确合理.图1顺铂优化后结构Fig.1The optimized structure of cisplatin 表1㊀顺铂优化后的结构参数Tab.1㊀Structure parameters of optimized cisplatin结构参数优化结构理论计算[8]实验[16]d (Pt-Cl)/Å2.290 2.295 2.321d (Pt-N)/Å 2.091 2.090 2.048øCl 1PtCl 2/(ʎ)95.59295.191.6øNPtN /(ʎ)98.92498.190.6øN 2PtCl 1/(ʎ)178.326178.5178.4øN 1PtCl 2/(ʎ)178.338178.5179.72.2㊀顺铂分子在纯石墨烯上的吸附在建立顺铂吸附纯石墨烯(cis-Pt-PG)初始结构模型时,考虑3个高对称吸附位,包括顶位(C 原子上方)㊁洞位(六角形中心上方)㊁桥位(C C 键中心上方).同时,在充分考虑顺铂分子结构和吸附角度的基础上,共建立了6个初始结构模型并进行结构优化.总能计算得到的最稳定结构见图2.从复合结构可以看出,顺铂分子平面几乎与石墨烯平面平行,Pt 原子到石墨烯的距离为3.742Å.顺铂分子与石墨烯之间的间距较大,说明顺铂分子与石墨烯之间相互作用较弱.同时,为定量研究纯石墨烯对顺铂分子的吸附能214北华大学学报(自然科学版)第21卷图2cis-Pt-PG 优化后结构Fig.2Optimized structure of cis-Pt-PG 力,计算了顺铂分子在石墨烯上的吸附能E ads :E ads =E (PG)+E (cis-Pt)-E (cis-Pt-PG),其中:E (PG)为5ˑ5单层石墨烯的总能量;E (cis-Pt)为孤立顺铂分子的总能量;E (cis-Pt-PG)为cis-Pt-PG 复合结构的总能量.计算得到的吸附能为0.178eV.吸附能为正值,说明cis-Pt-PG 复合结构相对于孤立顺铂分子和5ˑ5单层石墨烯是稳定的,结合过程没有能量势垒,是放热过程,可自发进行;吸附能小于0.25eV,说明顺铂在纯石墨烯上的吸附为稳定性较差的物理吸附.2.3㊀顺铂分子在Al 掺杂石墨烯上的吸附由于顺铂分子在纯石墨烯上的吸附为稳定性差的物理吸附,为提高吸附稳定性,需要增加顺铂在石墨烯基底上的吸附能.研究发现,掺杂后的石墨烯对气体分子的吸附明显增强[17].本文选择增强吸附常用的Al 金属对纯石墨烯进行掺杂.用1个Al 原子替代1个C 原子,得到Al 掺杂的石墨烯基底模型,进行结构优化.从优化后的AlG 结构可见,Al 原子的掺杂导致二维石墨烯结构变形.Al C 键长(1.85Å)明显大于C C 键长(1.42Å),Al 原子向平面外凸出,这种变形是由Al 原子半径大于C 原子半径导致的.图3cis-Pt-AlG 优化后结构Fig.3Optimized structure of cis-Pt-AlG 在对顺铂吸附的AlG(cis-Pt-AlG)建模时,考虑到顺铂的分子结构及在Al 原子上吸附角度的影响,建立了多种初始结构模型进行结构优化.优化后的最稳定结构见图3.由图3可以看出,吸附后顺铂仍保持原有分子结构.吸附后的Pt Al 键长为2.545Å,与顺铂在Al 掺杂C 纳米管上吸附[9]的结果近似.计算顺铂分子在AlG 上的吸附能Eᶄads :Eᶄads =E (AlG)+E (cis-Pt)-E (cis-Pt-AlG),其中:E (AlG)为Al 掺杂石墨烯的总能量;E (cis-Pt-AlG)为cis-Pt-AlG 复合结构的总能量.计算得到的吸附能为1.402eV.吸附能计算结果表明:顺铂分子在Al 掺杂石墨烯上的吸附为化学吸附,掺杂Al 原子增强了顺铂分子与基底的相互作用.2.4㊀吸附机理分析为了探究顺铂在基底上的吸附机理,本文对cis-Pt-PG 和cis-Pt-AlG 两种稳定结构进行差分电荷密度㊁电荷布居和态密度分析.为了更直观地了解电荷转移情况,计算并绘制了cis-Pt-PG 和cis-Pt-AlG 两种最稳定复合结构的差分电荷密度图,见图4.差分电荷密度Δρ=ρ(total)-ρ(base)-ρ(cis-Pt),其中:Δρ为差分电荷密度;ρ(total)为复合结构的电荷密度;ρ(base)为石墨烯基底的电荷密度;ρ(cis-Pt)为顺铂分子的电荷密度.a㊀cis-Pt-PGb㊀cis-Pt-AlG黄色和蓝色分别代表电荷的积累和缺失;电荷等值面为0.004e /Å3.图4cis-Pt-PG 复合结构和cis-Pt-AlG 复合结构差分电荷密度Fig.4Electron charge density differences of cis-Pt-PG combined system and cis-Pt-AlG combined system 314第3期段颖妮,等:Al 掺杂对顺铂药物分子在石墨烯上吸附性能的影响㊀㊀由图4可知:在cis-Pt-AlG 复合结构中,电荷由AlG 向顺铂分子迁移.AlG 和顺铂分子复合后,在结合处可以自发地产生电荷转移,形成电子-空穴对.明显的电荷转移说明顺铂与AlG 之间存在着较强的相互作用;而在cis-Pt-PG 复合结构中,只有在取更小的等值面时才可以看到电荷转移,说明该复合结构中电荷迁移很少,顺铂与PG 的相互作用很弱.表2㊀Bader 电荷转移Tab.2㊀Bader electrons transfer 结构电荷量/e 电荷转移/e cis-Pt-PG 顺铂分子39.99976-0.00024PG 200.00024+0.00024cis-Pt-AlG 顺铂分子40.179+0.179AlG 198.821-0.179以上结论也可以通过Bader 分析得到进一步证明.表2列出了Bader 计算得到的电荷转移量.在cis-Pt-PG 复合结构中,基底和顺铂分子之间的电荷转移量非常少,说明相互作用很弱;而在cis-Pt-AlG 复合结构,顺铂分子得到电荷,AlG 失去电荷,电荷转移量为0.179e.Al 原子的掺杂增强了顺铂分子在基底上的吸附.将Al 原子掺杂入石墨烯后,掺杂原子影响了基底和顺铂分子之间的相互作用,导致顺铂分子和基底之间的成键发生变化.通过计算态密度可以深入分析Al 掺杂的影响.本文计算了孤立顺铂分子的态密度(DOS),见图5a.态密度图显示,顺铂分子的态密度在费米能级附近出现大的带隙,说明顺铂分子表现出绝缘特性,这与ONSORI 等[7]和SHAKERZADEH 等[18]的计算结果符合很好.为了深入分析顺铂分子与基底复合前后电子结构的变化及掺杂对吸附的影响,进一步计算孤立顺铂分子㊁cis-Pt-PG 复合结构及cis-Pt-AlG 复合结构的投影态密度(PDOS),见图5b ~d.图5态密度Fig.5Density of states在cis-Pt-PG 复合结构中,吸附的顺铂分子与孤立顺铂分子的投影态密度几乎一样,与基底之间没有明显杂化,说明顺铂与纯石墨烯的结合较弱;而在cis-Pt-AlG 复合结构中,Pt 原子的投影态密度与孤立顺414北华大学学报(自然科学版)第21卷铂分子明显不同,费米能级附近Pt-5d 态密度表现出轨道劈裂.在-4.5eV 和1eV 处,Pt-5d 轨道态密度劈裂出新的峰值.复合结构投影态密度图中,-3.5eV 和-2.3eV 附近,Pt-5d 和Al-3p 轨道表现出明显杂化,说明Pt 原子与Al 原子之间存在强的相互作用.Pt㊁Al 原子的稳定结合表明顺铂分子在AlG 上的吸附是结合紧密的化学吸附.以上结论和差分电荷密度㊁Bader 分析结果一致.电子结构分析表明,顺铂在AlG 上的吸附为稳定性好的化学吸附,石墨烯基底掺杂Al 原子可以增强顺铂分子吸附的稳定性.3㊀结㊀㊀论本文采用基于密度泛函理论的第一性原理计算方法,研究了Al 掺杂对顺铂药物分子在石墨烯上吸附性能的影响.得到以下结论:1)顺铂分子在PG 上的吸附为稳定性较差的物理吸附,在AlG 上的吸附为化学吸附.2)差分电荷密度和bader 电荷转移分析表明,在cis-Pt-PG 复合结构中,顺铂与PG 之间的电荷迁移很少;而在cis-Pt-AlG 复合结构中,Al 掺杂增加了顺铂与基底之间的电荷转移.3)态密度分析表明,Pt-5d 轨道和Al-3p 轨道之间较强的轨道杂化是导致顺铂在AlG 上吸附稳定性高的原因.由此可见,掺杂Al 原子增强了顺铂分子与石墨烯基底之间的相互作用.以上结论可为设计新型抗肿瘤药物载药材料提供理论参考.石墨烯及其衍生物有望作为药物传输系统进行体内给药,对其进行功能化修饰可提高载药能力.然而,影响载药材料在生物体内应用的最关键问题是使用的安全性.石墨烯及其衍生物在生物体内的长期毒性仍需要进一步进行系统研究.石墨烯及其衍生物与肿瘤细胞㊁正常细胞的相互作用机制尚需明确,与药物分子的相互作用机制仍需要进一步探索.解决这些问题,将促进石墨烯及其衍生物在抗肿瘤治疗中的有效应用.参考文献:[1]DASARI S,BERNARD T P.Cisplatin in cancer therapy:Molecular mechanisms of action [J].Journal of Physical Chemistry C,2008,112(35):13442-13446.[2]崔洁,宋丽萍,赵红,等.周剂量顺铂和奈达铂同步放疗治疗中晚期宫颈癌72例临床分析[J].北华大学学报(自然科学版),2014,15(3):358-361.[3]高传柱,王天帅,陈佳,等.铂类抗肿瘤药物作用机制研究进展[J].昆明理工大学学报(自然科学版),2014,39(4):83-92.[4]杨琨,丁大连,付勇,等.应用FLIVO 探测顺铂引起的多器官细胞凋亡[J].中华耳科学杂志,2016,14(1):104-110.[5]周鹏举,邓盛齐,龚前飞.靶向给药研究的新进展[J].药学学报,2010,45(3):300-306.[6]胡耀娟,金娟,张卉,等.石墨烯的制备㊁功能化及在化学中的应用[J].物理化学学报,2010,26(8):2073-2086.[7]ONSORI S,ALIPOUR E.A computational study on the cisplatin drug interaction with boron nitride nanocluster[J].Journal of Molecular Graphics and Modelling,2017,79:223-229.[8]GEORGIEVA I,TRENDAFILOVA N,DODOFF N,et al.DFT study of the molecular and crystal structure and vibrational analysis of cisplatin[J].Spectrochimica Acta Part A Molecular &Biomolecular Spectroscopy,2017,176:58-66.[9]LI W,LI G Q,LU X M,et al.Strong adsorption of Al-doped carbon nanotubes toward cisplatin[J].Chemical Physics Letters,2016,658:162-167.[10]TORNAGHI E,ANDREONI W,CARLONI P,et al.Carboplatin versus cisplatin:density functional approach to their molecular properties[J].Chemical Physics Letters,1995,246(4-5):469-474.[11]ALBERTO M E,LUCAS M F A,PAVELKA M,et al.The second-generation anticancer drug Nedaplatin:A theoretical investigation on the hydrolysis mechanism[J].The Journal of Physical Chemistry B,2009,113(43):14473-14479.[12]KRESSE G,HAFNER J.Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J].Phys Rev B,1994,49:14251-14269.[13]KRESSE G,JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J].Phys Rev B,1999,59:1758-1775.[14]PERDEW J P,BURKE S,ERNZERHOF M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77:3865-3868.[15]MONKHORST H J,PACK J D.Special points for Brillouin-Zone intergrations[J].Phys Rev B,1976,13:5188-5192.[16]TING V P,SCHMIDTMANN M,WILSON C C,et al.Cisplatin:Polymorphism and structural insights into an important chemotherapeutic drug [J].Angewandte Chemie,2010,49(49):9408-9411.[17]LIU X,ZHANG J M.Formaldehyde molecule adsorbed on doped graphene:A first-principles study [J].Applied Surface Science,2014,293:216-219.[18]SHAKERZADEH E,NOORIZADEH S.A first principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs [J].Physica E:Low-dimensional Systems and Nanostructures,2014,57:47-55.ʌ责任编辑:郭㊀伟ɔ514第3期段颖妮,等:Al 掺杂对顺铂药物分子在石墨烯上吸附性能的影响。

多巴胺在镍_与水杨醛谷氨酸配合物修饰的碳黑微电极上的电化学行(精)

多巴胺在镍_与水杨醛谷氨酸配合物修饰的碳黑微电极上的电化学行(精)

理化检验-化学分册PT CA(PART B:CH EM. ANAL. 2007年第43卷 7试验与研究多巴胺在镍( 与水杨醛谷氨酸配合物修饰的碳黑微电极上的电化学行为邓培红, 张军, 熊祥, 黎拒难1112(1. 衡阳师范学院化学与材料科学系, 衡阳421008; 2. 湘潭大学化学学院, 湘潭411105 摘要:制备了水杨醛谷氨酸合镍修饰碳黑微电极, 在JP -303极谱分析仪上研究了多巴胺(DA 在该修饰电极上的电化学行为, 试验结果表明, 在pH 7. 0的磷酸盐缓冲介质中, 多巴胺在该修饰电极上其峰电流增强达3倍之多。

产生一灵敏的氧化峰, 在0. 14V 处峰电流与DA 浓度在2. 0 10-7~1. 0 10-3mo l L -1范围内呈线性关系, 检出限(3 为1. 0 10-7m ol L -1, 应用于盐酸多巴胺注射剂中多巴胺的测定, 测定结果的RSD(n =7 值小于3. 5%, 回收率为96%~103%。

关键词:伏安法; 多巴胺; 水杨醛谷氨酸合镍配合物; 修饰碳黑微电极中图分类号:O 657. 31 文献标识码:A 文章编号:1001-4020(2007 07-0534-03Electrochemical Behavior of Dopamine at Carbon Black Microelectrode Modified by the Coordination Complex of Nickel( with N -Salicylidene Glutamic AcidDENG Pe-i hong 1, ZHANG Jun 1, XIONG Xiang 1, LI Ju -nan 2(1. D ep t. of Chemistr y and M ater ial Science, H engy ang N or mal College , H eng y ang 421008, China;2. Colleg e of Chemis try , X iangtan Univ er s ity , X iangtan 411005, China-Abstract:Carbon black micr oelectr ode modified by t he coo rdinat ion co mplex o f nickel ( w ith N salicy lidene g lutamic acid was pr epar ed. Electr ochem ical behavior of do pamine at this modified micr oelectr ode w as studied by using the JP -303po lar og raph. It was fo und that in a phosphate buffer o f pH 7. 0, a sensitive o xidatio n peak was obser ved at 0. 14V w ith 3times enhanced peak cur rent. L inea r relat ionship was obtained betw een the peak cur rent and the co ncentration of dopamine in the r ang e of 2.0 10-7-1. 0 10-3mo l L -1, w ith a detect ion limit (3s o f 1. 0 10-7mo l L -1. T he pro posed method was applied to the deter minat ion of do pamine in samples o f do pamine hydro chlor ide inject ion, g iv ing v alues o f RSD s (n =7 less than 3. 5%, and recov eries in t he rang e o f 96%-103%.Keywords:Vo ltammetr y; Do pamine; Coo rdinatio n complex o f N ickel( w ith N -salicylidene -g lutamic acid;M odified carbon black microelect rode;多巴胺(Dopamine, 简称DA 是人类中枢神经系统中非常重要的一种信息传递物质, 其含量的改变可导致一些重要的疾病如帕金森氏症和精神分裂症。

盐度对镭同位素在海南红树林沉积物解吸行为的影响

盐度对镭同位素在海南红树林沉积物解吸行为的影响

盐度对镭同位素在海南红树林沉积物解吸行为的影响谷河泉;赵峰;季韬;温廷宇;张经;杜金洲【摘要】天然放射性镭同位素在沉积物上的解吸行为是影响其在陆-海交换过程中的关键所在.采用沉积物室内解吸实验和现场采集间隙水测量224Ra含量两种方法,对水体盐度梯度控制镭在海南八门湾红树林沉积物的解吸行为进行了讨论.结果表明:沉积物上可交换态224Ra的最大量为0.44dpm/g,解吸比为35%.利用间隙水的224Ra含量确定镭的分配比Kd与水体盐度S呈反比例函数:Ka=8.4× 102/S,与室内解吸实验的结果相比更能代表镭在沉积物上的真实解吸行为.在深度25-40cm 内,湿地沉积物的224Ra处于与其母体228Th的平衡状态,但223Ra很可能处于相对其母体227Th亏损状态.【期刊名称】《海洋与湖沼》【年(卷),期】2015(046)001【总页数】12页(P65-76)【关键词】镭同位素;盐度;沉积物;分配比;红树林湿地【作者】谷河泉;赵峰;季韬;温廷宇;张经;杜金洲【作者单位】华东师范大学河口海岸学国家重点实验室上海200062;国家海洋局南海环境监测中心广州 510300;国家海洋局南海环境监测中心广州 510300;华东师范大学河口海岸学国家重点实验室上海200062;华东师范大学河口海岸学国家重点实验室上海200062;华东师范大学河口海岸学国家重点实验室上海200062;华东师范大学河口海岸学国家重点实验室上海200062【正文语种】中文【中图分类】X132自然界中存在四种放射性镭同位素, 226Ra (T1/2=1600a)、228Ra (T1/2=5.7a)、223Ra (T1/2=11.4d)和 224Ra(T1/2=3.7d), 是三大天然放射系238U、232Th和235U的中间体。

四种天然镭同位素化学性质相同, 但半衰期不同, 因而在海洋环境中可以示踪不同时间尺度的地球化学过程, 如沿岸地下水输送、水体交换、沉积物-水界面物质交换等, 已经在国内外海洋学研究中被得到广泛应用(Webster et al, 1994; Rama et al, 1996;Hancock et al, 2000; Krest et al, 2003; Beck et al, 2007;Colbert et al, 2008; Moore et al, 2011)。

含三稠环结构聚酰亚胺的研究现状

含三稠环结构聚酰亚胺的研究现状

含三稠环结构聚酰亚胺的研究现状何思呈;王亚辉;黄杰;钱心远;廖波【摘要】In recent years, polyimide ( PI) has attracted more and more attention in the field of flexible Organic Light-Emitting Diode ( FOLED) package due to its outstanding thermal performance and comprehensive performance. The research status of polyimide containing three fused ring structure at home and abroad was introduced, three fused ring mainly included carbazole and fluorene fluorenone, dibenzofuran and dibenzothiophene. The effects of three fused ring structure on the properties of polyimide were introduced in detail, the relationship between the thermal properties, the solubility and the photoelectric properties of polyimide containing three fused ring structure were mostly analyzed, the development of polyimide containing three fused ring structure was discussed.%聚酰亚胺( PI)因其突出的热性能和综合性能,近年来在柔性有机电致发光器件( FOLED)封装领域越来越受到重视。

双相核材料的电子墨水纳胶囊的制备及其粒径控制

双相核材料的电子墨水纳胶囊的制备及其粒径控制

双相核材料的电子墨水纳胶囊的制备及其粒径控制陈姗;赵晓鹏【摘要】In this paper,two-phase electronic ink nanocapsules with carbon black nanoparticles modified by SiO2 as dispersant phase and the mixture of tetrachloroethylence and SPAN-80 as dispersant agent were obtained via miniemulsion polymerization.The obtained nanocapsule particle sizes were in the region of about 142-1 106 nm. We investigated the effects of SiO2 modification on the particle sizes and zeta potential change of carbon black nanoparticles.Meanwhile,the behaviors of the modified carbon black particles under direct current electric field were also studied.In addition,the influences of the amount of SDS and PVA on the particle sizes of nanocap-sules were investigated,respectively.%采用细乳液聚合法制备了包有纳米炭黑颗粒(SiO2修饰)和分散剂(四氯乙烯和 Span80的混合液)的双相核材料的电子墨水纳米胶囊。

通过细乳液聚合法制备了粒径在142~1106 nm之间的纳米胶囊。

离子液体介质中钌纳米粒子催化苯乙酮及其衍生物的不对称加氢反应

离子液体介质中钌纳米粒子催化苯乙酮及其衍生物的不对称加氢反应

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.鄄Chim.Sin .,2007,23(9):1381-1386September Received:March 15,2007;Revised:May 24,2007;Published on Web:July 11,2007.∗Corresponding author.Email:scuhchen@;Tel/Fax:+8628⁃85412904.ⒸEditorial office of Acta Physico ⁃Chimica Sinica离子液体介质中钌纳米粒子催化苯乙酮及其衍生物的不对称加氢反应王金波明方永蒋维东樊光银刘德蓉陈华∗李贤均(四川大学化学学院有机金属络合催化研究所,绿色化学与技术教育部重点实验室,成都610064)摘要:采用水溶性三(间⁃磺酸钠苯基)膦(TPPTS)作稳定剂,在离子液体1⁃丁基⁃3⁃甲基⁃咪唑四氟硼酸盐([BMIM]BF 4)或1⁃丁基⁃3⁃甲基⁃咪唑对甲基苯磺酸盐([BMIM][p ⁃CH 3C 6H 4SO 3])介质中用氢气还原RuCl 3·3H 2O,得到钌纳米粒子.将此钌纳米粒子与(1S ,2S )⁃1,2⁃二苯基乙二胺(简称(1S ,2S )⁃DPEN)、KOH 在离子液体/异丙醇介质中原位生成一种不对称加氢催化剂,用于催化苯乙酮及其衍生物的不对称加氢反应.实验结果表明,离子液体介质中的纳米钌催化剂体系具有良好的催化活性和对映选择性.在优化反应条件下,催化苯乙酮获得了100%的转化率和79.1%的对映选择性.并且产物经正己烷萃取后,含有钌纳米粒子的离子液体可以循环使用.关键词:钌纳米粒子;离子液体;芳香酮;不对称加氢中图分类号:O643Asymmetric Hydrogenation of Acetophenone and Its DerivativesCatalyzed by Ruthenium Nanoparticles in Ionic Liquid MediaWANG Jin ⁃BoMING Fang ⁃Yong JIANG Wei ⁃Dong FAN Guang ⁃Yin LIU De ⁃Rong CHEN Hua ∗LI Xian ⁃Jun(Key Laboratory of Green Chemistry and Technology of the Ministry of Education,Institute of Homogeneous Catalysis,College of Chemistry,Sichuan University,Chengdu 610064,P.R.China )Abstract :Reduction of RuCl 3·3H 2O with hydrogen in ionic liquid [BMIM]BF 4(1⁃butyl ⁃3⁃methylimidazolium tetrafluoroborate)or [BMIM][p ⁃CH 3C 6H 4SO 3](1⁃butyl ⁃3⁃methylimidazolium p ⁃methylphenylsulfonate)medium using P(m ⁃C 6H 4SO 3Na)3(TPPTS)as stabilizer yielded ruthenium nanoparticles.Further treatment of the Ru nanoparticles with chiral modifier (1S ,2S )⁃1,2⁃diphenyl ⁃1,2⁃ethylene ⁃diamine((1S ,2S )⁃DPEN)and KOH in ionic liquid/i ⁃PrOH mixed solvent resulted in a novel immobilized chiral catalyst which can asymmetrically hydrogenate acetophenone and its derivatives.100%conversion and 79.1%ee (enantiomeric excess)were obtained for acetophenone under optimized conditions.The catalyst immobilized in ionic liquid not only exhibits excellent reactivities and enantioselectivities in asymmetric hydrogenation of acetophenone and its derivatives,but also can be recycled and reused by simple extraction with n ⁃hexane.Key Words :Nano ⁃Ru;Ionic liquids;Aromatic ketones;Asymmetric hydrogenation手性仲醇是合成手性药物、香精以及精细化学品的重要原料,而催化羰基的不对称加氢则是合成手性仲醇的一个重要途径[1].在羰基的不对称加氢反应中,均相催化剂具有良好的催化活性和对映选择性[2-5],但均相催化剂不仅价格昂贵,而且存在着与产物分离困难,易造成产品污染等缺点[6].离子液体作为一种环境友好溶剂,已在烯胺[7]、芳酮[8-10]以及酮酸酯[11-14]的不对称加氢反应中得到应用.据报道[6,15,16],离子液体可以将一些均相催化剂固载,从而实现催化剂的循环使用.此外,离子液体介质中的贵金属纳米粒子因其优异的催化性能,可以固载在离子液体中,正受到广泛重视[17-21].纳米金属钌的制备一般采用化学还原法与氢气还原法.Kuribara 等[22]较早利用Polyol 法制备胶态1381Acta Phys.鄄Chim.Sin.,2007Vol.23金属钌,之后Miyazaki等[23]报道了利用Polyol法制备纳米钌.然而,利用Polyol工艺制备的胶体钌并不稳定,在制备过程中就容易发生团聚.在其后的研究工作中,各种稳定剂对胶态金属钌的稳定作用有了较详细的研究[23].通过离子液体作为媒介,还原三氯化钌制得钌纳米粒子已见文献报道[24,25],但一般都负载在载体上,并且将离子液体在高温下分解除去,然后用于选择性加氢反应.本文报道了离子液体1⁃丁基⁃3⁃甲基⁃咪唑四氟硼酸盐([BMIM]BF4)、1⁃丁基⁃3⁃甲基⁃咪唑对甲基苯磺酸盐([BMIM][p⁃CH3C6H4SO3])介质中非手性膦配体TPPTS稳定的钌纳米粒子的制备,并用于催化苯乙酮及其衍生物的不对称加氢反应,获得了较高的催化活性和对映选择性.1实验部分1.1试剂与仪器离子液体[BMIM]BF4、[BMIM][p⁃CH3C6H4SO3]以及水溶性三(间⁃磺酸钠苯基)膦(TPPTS)由本实验室按文献[26-29]方法制备.苯乙酮及其衍生物(Acros, >98%)、高纯氢气(99.99%)、(1S,2S)⁃1,2⁃二苯基乙二胺((1S,2S)⁃DPEN,ee(对映体过量)>99%,成都丽凯手性技术有限公司产品),三水合三氯化钌(RuCl3·3H2O,昆明贵金属研究所)均为市售化学品,未经纯化直接使用,其它试剂均为分析纯.钌纳米粒子的粒径采用JEM⁃1200透射电子显微镜测试,加速电压100kV.底物和产物用GC⁃960型气相色谱仪分析(FID检测器,茁⁃DEX TM手性毛细管色谱柱:30m×0.25mm×0.15滋m,美国Supelco公司).金属钌的流失采用电感耦合等离子体原子发射光谱(ICP⁃AES)测试.1.2离子液体分散的钌纳米粒子的制备将0.0075mmol RuCl3·3H2O、0.5mL离子液体以及0.015mmol TPPTS加入到60mL带玻璃内衬和磁力搅拌的不锈钢高压釜中,闭釜充氢气置换几次,然后加压至4MPa,升温到120℃反应4h,得到钌纳米粒子的离子液体分散液.将上述得到的离子液体分散液用JEM⁃1200型透射电镜在加速电压100kV条件下测试钌纳米粒子的粒径.1.3苯乙酮及其衍生物的不对称加氢反应将0.5mL钌纳米粒子的离子液体分散液、0.5 mL异丙醇、0.85mmol苯乙酮及其衍生物、一定量的手性修饰剂(1S,2S)⁃DPEN和KOH加入60mL带磁力搅拌和玻璃内衬的高压反应釜中.充氢气置换数次,再导入高纯氢气到预定压力,然后在设定温度下搅拌反应一定时间.反应结束后加入正己烷萃取,催化剂和手性配体保留在离子液体介质中,产物进入有机相.加氢产物用气相色谱分析,其ee值计算公式为ee(%)=100×[C(R)-C(S)]/[C(R)+C(S)],其中C代表R或S构型产物的含量.1.4催化剂的循环使用在氮气保护下,反应液用正己烷萃取三次,每次萃取剂用量为2mL,静置分层,两相分层清晰.上层有机相取出用于分析,下层包含催化剂的离子液体相用氮气吹扫,去掉残留的正己烷后可以循环使用.2结果与讨论2.1离子液体分散的钌纳米粒子的TEM表征考察了在不同的离子液体介质、不同的还原温度和还原时间条件下制备的钌纳米粒子对苯乙酮不对称加氢反应的影响,结果见表1.从表1可以看出,还原条件对钌纳米粒子的催化活性有比较明显的影响,在低温条件下还原得到的催化剂其催化活性和对映选择性较差.图1为离子液体分散的钌纳米粒子的透射电镜图片.由图1可见,低温条件下得到的钌纳米粒子(见图1a)粒径稍大并且分散不均匀,局部有团聚现象,这是造成催化活性和对映选择性低的原因.由表1还可看出,不同的离子液体对催化剂的催化性能也有较为明显的影响,在具有两亲特性的离子液体[BMIM]BF4介质中,于120℃还原4h后,即可获得较高的催化活性和对映选择性.而同样条件下,在亲水性较强的离子液体[BMIM][p⁃CH3C6H4SO3]介质中则仅得到了78.7%的转化率和表1钌纳米粒子的制备条件对苯乙酮不对称加氢反应的影响Table1The effect of preparation conditions of nano鄄Ru on asymmetric hydrogenation of acetophenoneacetophenone:0.85mmol;n(nano⁃Ru)∶n(acetophenone):n((1S,2S)⁃DPEN)=1∶112∶9;ionic liquid:0.5mL;V(ionic liquid)∶V(i⁃PrOH)=1∶1;KOH:0.53mol·L-1;p H2=5.0MPa,T=30℃,t=80min Ionic liquids T/℃t/h Conversion(%)ee(%) [BMIM]BF470168.570.7 [BMIM]BF4100289.275.1 [BMIM]BF4100495.375.7 [BMIM]BF4120499.277.1 [BMIM][p⁃CH3C6H6SO3]120478.774.71382No.9王金波等:离子液体介质中钌纳米粒子催化苯乙酮及其衍生物的不对称加氢反应74.7%的ee 值.这与手性修饰剂在离子液体介质中的溶解度不同有关,(1S ,2S )⁃DPEN 在[BMIM]BF 4中具有更好的溶解性,所以能更好地发挥催化剂的催化性能.2.2离子液体分散的钌纳米催化剂催化苯乙酮及其衍生物的不对称加氢反应以制备的在离子液体介质中分散的钌纳米粒子为催化剂,在手性二胺修饰剂和KOH 作用下,考察了催化剂对苯乙酮及其衍生物的不对称加氢反应的催化性能.苯乙酮及其衍生物的不对称加氢反应如图2所示.2.2.1反应介质和不同手性修饰剂对苯乙酮不对称加氢反应的影响实验选取具有两亲特性的离子液体[BMIM]BF 4和亲水性的离子液体[BMIM][p ⁃CH 3C 6H 4SO 3]两种液体作为研究对象.此外,由于醇在离子液体介质中的不对称加氢反应中具有显著的共溶剂效应[9],因此选用在均相不对称加氢反应中使用的溶剂异丙醇作为离子液体的混合溶剂.催化剂于不同反应介质中,在手性修饰剂(1S ,2S )⁃DPEN 和KOH 存在下,催化苯乙酮的不对称加氢反应,结果见表2.由表2可以看出,在纯的离子液体介质中对映选择性和转化率都较低,特别是在亲水性离子液体[BMIM][p ⁃CH 3C 6H 4SO 3]介质中,仅获得了8.8%的转化率.这与离子液体本身的性质有关,手性修饰剂(1S ,2S )⁃DPEN 在离子液体[BMIM]BF 4介质中具有更好的溶解性,可以起到更好的修饰作用,从而使催化剂发挥出更高的催化活性和对映选择性.结果还发现,异丙醇的加入对反应有利,特别是对于离子液体[BMIM][p ⁃CH 3C 6H 6SO 3]而言,转化率由8.8%升至78.7%,有明显的提高.此外,加入异丙醇,还可使反应的对映选择性有较大的提高.由此可见,异丙醇在苯乙酮的不对称加氢反应中与离子液体具有明显的共溶剂效应,能明显提高催化剂在离子液体介质中的催化活性和对映选择性.异丙醇的加入增加了手性修饰剂(1S ,2S )⁃DPEN 在反应体系中的溶解度,而(1S ,2S )⁃DPEN 的浓度增加则有利于催化剂催化活性和对映选择性的提高.为了考察手性修饰剂对加氢反应的影响,实验选取了(1S ,2S )⁃DPEN 、(1R ,2R )⁃DPEN 、(1S ,2S )⁃DACH ((1S ,2S )⁃环己二胺)、(1R ,2R )⁃TsDPEN((1R ,2R )⁃N ⁃对甲苯磺酰基⁃1,2⁃二苯基乙二胺)等不同结构的手性二胺作修饰剂,在离子液体[BMIM]BF 4/i ⁃PrOH 介质中,KOH 存在下,研究了钌纳米粒子催化剂催化苯乙酮的不对称加氢反应,结果见表3.由表3可以看出,手性修饰剂对反应的催化活性和对映选择性有显著的影响.用(1S ,2S )⁃DACH 、(1R ,2R )⁃TsDPEN 作修饰剂,转化率和对映选择性都很低,而用手性DPEN 时,则获得了较高的转化率和对映选择性.特别是用(1S ,2S )⁃DPEN 做手性修饰剂时,得到了99.2%的转化率和77.1%的ee 值.在(1S ,2S )⁃DACH 结构中,氨基上的空间位阻较小,与催化剂形成钌膦二胺配合物后,不利于R 构型的苯乙醇生成.此外,当修饰图1离子液体介质中钌纳米粒子的TEM 照片Fig.1TEM micrograph of nano 鄄Ru in ionic liquids(a)[BMIM]BF 4,70℃,1h;(b)[BMIM]BF 4,100℃,2h;(c)[BMIM]BF 4,120℃,4h;(d)[BMIM][p ⁃CH 3C 6H 6SO 3],120℃,4h图2苯乙酮及其衍生物的不对称加氢反应Fig.2Asymmetric hydrogenation of acetophenoneand its derivativesR 1=H,o ⁃F,o ⁃CH 3O,p ⁃CF 3,p ⁃CH 3O;R 2=CH 3or R 1=H;R 2=C 2H 5表2不同的反应介质对苯乙酮不对称加氢反应的影响Table 2The effect of different solvents onasymmetric hydrogenationThe reaction conditions are the same as those in Table 1.Solvent Conversion(%)ee(%)Configuration[BMIM]BF 495.065.7R [BMIM][p ⁃CH 3C 6H 4SO 3]8.860.5R [BMIM]BF 4/i ⁃PrOH99.277.1R [BMIM][p ⁃CH 3C 6H 4SO 3]/i ⁃PrOH78.774.7R1383Acta Phys.鄄Chim.Sin.,2007Vol.23剂为(1R ,2R )⁃TsDPEN 时,氨基上的空间位阻虽然较大,但是氨基上带有的对甲苯磺酰基取代基使N 原子周围的空间因素和电子效应发生改变,不利于(1R ,2R )⁃TsDPEN 与催化剂配位,所以使催化剂表现出较低的催化活性和对映选择性.2.2.2温度、(1S ,2S )⁃DPEN 用量和KOH 浓度对反应的影响钌纳米粒子催化剂在离子液体[BMIM]BF 4/i ⁃PrOH 介质中,在手性修饰剂(1S ,2S )⁃DPEN 、KOH 存在下,于不同的反应温度下催化苯乙酮的不对称加氢反应结果见图3.可以看出,温度对苯乙酮的不对称加氢有较大的影响.随着温度升高,对映选择性呈下降趋势.这是因为随着温度的升高,两个对映异构体的过渡态能级差变小,致使对映选择性下降.此外,随着温度升高,反应分子变得活泼,转化率开始逐渐升高,但当温度继续升到60℃时,转化率开始明显下降.一般情况下,升高温度,可以提高催化活性,但在离子液体分散的钌纳米粒子催化体系中,过高的反应温度反而导致催化活性和对映选择性下降,这可能是在碱性条件下,过高的温度可能造成离子液体本身的变化所致.在离子液体[BMIM]BF 4/i ⁃PrOH 介质中,KOH 存在下,研究了钌纳米粒子催化剂在不同的手性修饰剂(1S ,2S )⁃DPEN 用量和KOH 浓度条件下催化苯乙酮的不对称加氢反应,结果见表4和图4.从表4可看出,当反应体系中没有(1S ,2S )⁃DPEN 时,转化率很低,得到的是消旋产物.随着(1S ,2S )⁃DPEN 用量的增加,转化率和ee 值随之升高,当与金属配比为1∶12时,达到最佳值.实验发现,(1S ,2S )⁃DPEN 不仅具有手性诱导作用,而且可以加速反应的进行.从图4可看出,在(1S ,2S )⁃DPEN 存在下,当反应体系中未加入KOH 时,苯乙酮几乎没转化,对映选择性也很低.随着KOH 浓度的增加,转化率和对映选择性都有明显的升高.但随着KOH 浓度的进一步增加,反而出现转化率和对映选择性下降的现象,可能是由于KOH 浓度过高导致碱与离子液体作用加强的缘故.由表4和图4还可看出,(1S ,2S )⁃DPEN 和KOH 在对苯乙酮的不对称加氢反应中具有协同作用.我们在用(1S ,2S )⁃DPEN 修饰的Ru/酌⁃Al 2O 3⁃2TPP表3不同的手性修饰剂对苯乙酮不对称加氢反应的影响Table 3The effect of different modifiers onasymmetric hydrogenationThe reaction conditions in [BMIM]BF 4/i ⁃PrOH media are the same asthose in Table 2,except for a change in modifier.Modifier Conversion(%)ee(%)Configuration(1S ,2S )⁃DPEN 99.277.1R (1R ,2R )⁃DPEN 96.774.9S (1S ,2S )⁃DACH 1.0 5.5R (1R ,2R )⁃TsDPEN20.03.0S图3温度对苯乙酮不对称加氢反应的影响Fig.3The effect of temperature on asymmetrichydrogenationThe reaction conditions in [BMIM]BF 4/i ⁃PrOH media are the same asthose in Table 2,except for a change in temperature.表4手性二胺与金属钌的摩尔比对苯乙酮不对称加氢反应的影响Table 4The effect of mole ratio of ruthenium to (1S ,2S )鄄DPEN on asymmetric hydrogenation ofacetophenoneThe reaction conditions in [BMIM]BF 4/i ⁃PrOH media are the same asthose in Table 2,except for a change in mole ratio ofruthenium to (1S ,2S )⁃DPEN.n (Ru)∶n ((1S ,2S )⁃DPEN)Conversion(%)ee(%)Configuration0 2.30.0-1∶334.257.7R 1∶695.071.9R 1∶999.277.1R 1∶1210079.1R图4KOH 浓度对苯乙酮不对称加氢反应的影响Fig.4Influence of KOH concentration onasymmetric hydrogenationThe reaction conditions in [BMIM]BF 4/i ⁃PrOH media are the same asthose in Table 2,except for a change in KOH concentration.1384No.9王金波等:离子液体介质中钌纳米粒子催化苯乙酮及其衍生物的不对称加氢反应(triphenyl phosphate)多相负载催化剂催化苯乙酮的不对称加氢反应[30]中,也发现了类似的现象.在一定的浓度范围内,KOH浓度的增加有利于钌膦二胺配合物的快速生成,反应的转化率也就有明显的提高.此外,大量过剩的KOH还使得OH-可能进攻带正电荷的羰基碳,K+可能进攻富电子的羰基氧,从而有利于底物C襒O的活化.同时这种作用形成的可能的过渡态(见图5)使羰基周围的空间效应受到影响,这样氢对羰基的加成就利于形成R构型过渡态,因而表现出ee值的显著提高.2.2.3苯乙酮及其衍生物的不对称加氢反应在离子液体[BMIM]BF4/i⁃PrOH介质中,在手性修饰剂(1S,2S)⁃DPEN和KOH存在下,考察了钌纳米粒子催化剂催化苯乙酮及其衍生物的不对称加氢反应,结果见表5所示.可以看出,芳环上不带取代基的苯乙酮和苯丙酮均获得了较高的转化率和对映选择性,苯乙酮和苯丙酮的转化率分别为100%和98.6%,ee值分别为79.1%和78.7%.当芳环对位上带有取代基时,不管是吸电子基团还是供电子基团,转化率和对映选择性均较无取代基的芳香酮低.当芳环邻位上带有吸电子基团或供电子基团时,得到的转化率和对映选择性都较低.由此可见,芳香酮的不对称加氢受到空间位阻的影响,羰基附近位阻较小更有利于加氢反应的进行.此外,芳香酮的不对称加氢也受到电子效应的影响.含邻甲氧基的苯乙酮由于取代基的给电子效应和空间效应共同作用它的加氢产物的构型发生了反转,生成(S)⁃构型的仲醇,这与Baiker等[31]报道的Pt⁃cinchona体系中的结果相一致.2.2.4催化循环手性二胺修饰的钌纳米粒子在离子液体/异丙醇介质中对苯乙酮的不对称加氢催化循环结果见表6.可以看出,催化剂循环4次,对映选择性变化不大,但转化率却有明显下降.这主要是手性二胺(1S, 2S)⁃DPEN随着萃取液的不断流失所致.此外, TPPTS的部分氧化也可能导致催化剂催化活性的下降.在第4次循环实验中添加手性二胺后,发现转化率略有升高.另外,我们将新制备的纳米钌催化剂在空气中放置一段时间,然后用于苯乙酮的不对称加氢反应,结果发现催化活性有明显的下降.这是因为液体介质中的TPPTS如果暴露在空气中易于氧化,而氧化的TPPTS则失去了与Ru配位的能力,从而使催化活性明显下降,这也证明催化剂的失活表5苯乙酮及其衍生物不对称加氢反应的结果Table5The results of asymmetric hydrogenation of acetophenone and its derivativesThe reaction conditions in[BMIM]BF4/i⁃PrOH media are the same as those in Table2,except that the mole ratio of ruthenium to(1S,2S)⁃DPEN is1∶12.图5钌膦二胺配合物、羰基与KOH形成的可能的过渡态Fig.5Possible transition state forming from Ru⁃P⁃diamine,carbonyl and KOHSubstrates Conversion(%)ee(%)Configuration10079.1R98.678.7R62.355.9R8248.5S97.375.7R97.760.9R表6离子液体介质中的钌纳米粒子的催化循环Table6Rcecycling and reuse of nano⁃Ru catalystin ionic liquid[BMIM]BF4/i⁃PrOH aa The reaction conditions in[BMIM]BF4/i⁃PrOH media are the same asthose in Table5.b10mg(1S,2S)DPEN was added in the fifth run.Run Conversion(%)ee(%)110079.1286.476.5363.274.3433.073.75b42.175.21385Acta Phys.⁃Chim.Sin.,2007Vol.23与TPPTS的氧化有关.萃取液经ICP⁃AES分析,结果发现金属Ru的流失仅为0.04%.3结论在离子液体[BMIM]BF4、[BMIM][p⁃CH3C6H4SO3]介质中通过加氢还原RuCl3·3H2O,制得粒径约为15nm的钌纳米粒子,并将获得的钌纳米粒子用手性修饰剂(1S,2S)⁃DPEN修饰后在离子液体/异丙醇介质中用于苯乙酮及其衍生物的不对称加氢反应.实验发现,在离子液体介质中分散的钌纳米粒子具有较高的催化活性和对映选择性,当n(Ru)∶n(1S,2S)⁃DPEN=1∶2时,对苯乙酮加氢的ee值可达79.1%,此外,还发现(1S,2S)⁃DPEN和KOH对反应有明显的加速作用和协同作用.包含钌纳米粒子的离子液体可以循环4次,对映选择性变化不大,但转化率却有明显下降,催化活性的降低主要是由于手性修饰剂的流失引起的,此外水溶性TPPTS的氧化也可能导致催化活性下降.References1Noyori,R.;Ohkuma,T.Pure Appl.Chem.,1999,71:14952Ohkuma,T.;Koizumi,M.;Doucet,H.;Pham,T.;Kozawa,M.;Murata,K.;Katayama,E.;Yokozawa,T.;Ikariya,T.;Noyori,R.J.Am.Chem.Soc.,1998,120:135293Ohkuma,T.;Ishii,D.;Takeno,H.;Noyori,R.J.Am.Chem.Soc.,2000,122:65104Ohkuma,T.;Koizumi,M.;Muniz,K.;Hilt,G.;Kabuto,C.;Noyori, R.J.Am.Chem.Soc.,2002,124:65085Doucet,H.;Okhuma,T.;Murata,K.;Yokozawa,T.;Kozawa,M.;Katayama,E.;England,A.F.;Ikariya,T.;Noyori,R.Angew.Chem.Int.Ed.,1998,37:17036Ngo,H.L.;Hu,A.;Lin,W.Tetrahedron Lett.,2005,46:5957Guernik,S.;Wolfson,A.;Herskowitz,M.;Greenspoon,N.;Geresh, mun.,2001:23148Zhu,Y.H.;Carpenter,K.;Ching,C.B.;Bahnmueller,S.;Chan,P.K.Angew.Chem.Int.Ed.,2003,42:37929Lam,K.H.;Xu,L.J.;Feng,L.C.;Ruan,J.W.;Fan,Q.H.;Chan,A.S.C.Can.J.Chem.,2005,83:90310Xiong,W.;Lin,Q.;Ma,H.X.;Zheng,H.J.;Chen,H.;Li,X.J.Tetrahedron:Asymmetry,2005,16:195911Ngo,H.L.;Hu,A.;Lin,mun.,2003:191212Hu,A.;Ngo,H.L.;Lin,W.B.Angew.Chem.,Int.Ed.,2004,43: 250113Berthod,M.;Joerger,J.M.;Mignani,G.;Vaultier,M.;Lemaire,M.Tetrahedron:Asymmetry,2004,15:221914Ngo,H.L.;Hu,A.;Lin,W.B.Tetrahedron:Lett.,2005,46:595 15Pu,L.Chem.Rev.,1998,98:240516Fan,Q.H.;Li,Y.M.;Chan,A.S.C.Chem.Rev.,2002,102:3385 17Song,mun.,2004:103318Baudequin,C.;Baudoux,J.;Levillain,J.;Cahard,D.;Gaumon,A.;Plaquevent,J.Tetrahedron:Asymmetry,2003,14:308119Wasserscheid,P.;Welton,T.Ionic liquids in synthesis.Weinheim: Wiley⁃VCH Press,2003:21420Dupont,J.;de Souza,R.F.;Suarez,P.A.Z.Chem.Rev.,2002, 102:336721Tzschucke,C.C.;Markert,C.;Bannwarth,M.;Roller,S.;Hebel,A.;Haag,R.Angew.Chem.Int.Ed.,2002,41:369422Kuribara,L.K.;Chow,G.M.;Schoen,P.E.Nanostructured Materials,1995,5:60723Miyazaki,A.;Balint,I.;Aika,K.;Nakano,Y.J.Catal.,2001,204: 36424Huang,J.;Jiang,T.;Han,B.X.;Wu,W.Z.;Liu,Z.M.;Xie,Z.L.;Zhang,J.L.Catal.Lett.,2005,103:5925Miao,S.D.;Liu,Z.M.;Han,B.X.;Huang,J.;Sun,Z.Y.;Zhang, J.L.;Jiang,T.Angew.Chem.Int.Ed.,2006,45:26626Chen,H.Ph.D.Dissertation.Chengdu:Sichuan University,1999 [陈华.博士学位论文.成都:四川大学,1999]27Bonbote,P.;Dias,A.;Papageorgiou,N.;Kalyansundaram,K.;Gratzel,M.Inorg.Chem.,1996,35:116828Xiong,W.Ph.D.Dissertation.Chengdu:Sichuan University,2005 [熊伟.博士学位论文.成都:四川大学,2005]29Lin,Q.;Fu,H.Y.;Xue,F.;Yuan,M.L.;Chen,H.;Li,X.J.Acta Phys.⁃Chim.Sin.,2006,22(4):465[林棋,付海燕,薛芳,袁茂林,陈华,李贤均.物理化学学报,2006,22(4):465]30Xiong,W.;Yang,C.F.;Yuan,M.L.;Chen,H.;Li,X.J.Chin.J.Catal.,2005,26(12):1093[熊伟,杨朝芬,袁茂林,陈华,李贤均.催化学报,2005,26(12):1093]31Hess,R.;Vargas,A.;Mallat,T.;Burgi,T.;Baiker,A.J.Catal., 2004,222:1171386。

聚合物受限结晶的研究进展

聚合物受限结晶的研究进展

功 能 高 分 子 学 报Journal of Functional Polymers Vol.21No.42008年12月收稿日期:2008208227基金项目:国家自然科学基金(20674044;20874056)资助项目作者简介:张凤波(19842),女,陕西榆林人,博士生,研究方向:高分子物理。

E 2mail :zhangfb @mails.t 通讯联系人:谢续明,E 2mail :xxm 2dce @t 综 述聚合物受限结晶的研究进展张凤波, 于佩潜, 谢续明(清华大学化学工程系,高分子研究所先进材料教育部重点实验室,北京100084)摘 要: 随着纳米材料研究的迅速发展,聚合物由于其分子固有的纳米尺度结构,无论作为纳米器件或在模板应用方面都受到广泛瞩目。

在微纳领域的应用中,特定受限环境下,结晶聚合物的结晶行为也因此受到广泛关注。

本文从均聚物(及无规共聚物)和半晶型嵌段聚合物两方面总结了近年来聚合物受限结晶领域的研究进展。

对于均聚物和无规共聚物,人们主要关注其在薄膜、超薄膜条件下的受限结晶性能,关注点为随着膜厚减小而引入的空间效应和界面效应对聚合物结晶性能的影响。

而对于半晶型嵌段共聚物受限结晶的研究则多从本体出发,来研究纳米相分离与结晶的竞争过程、纳米相分离区域对于可结晶嵌段结晶生长的几何限制(空间效应)以及嵌段连接点(结晶嵌段的末端)对于结晶嵌段结晶行为的影响。

关键词: 受限结晶;聚合物薄膜;半晶型嵌段聚合物中图分类号: O63 文献标识码: A 文章编号: 100829357(2008)0420452211Studies on Conf ined Crystallization of PolymersZHAN G Feng 2bo , YU Pei 2qian , XIE Xu 2ming(State Key Laboratory of Advanced Materials ,Instit ue of Polymer Science and Engineering ,Depart ment of Chemical Engineering ,Tsinghua University ,Beijing 100084,China )Abstract : Nowadays ,great attention has been paid to confined crystallization of polymers under specific environment due to t heir wide applications in t he field of nano materials ,such as miniat urized component s and nano 2patterned templates.The p rogress in t he st udy on confined crystallization of polymers is reviewed in t his paper.For t hin and ult ra 2t hin films of ho mopolymers and random copolymers ,t he confined crystallization is widely st udied on t he basis of geomet ry effect and interfacial effect ,which beco me dominant while t he film t hickness is reduced.As for block copolymers ,wit h unique nanop hase separation st ruct ure ,t he confined crystallization in t he bulk is due to t he competition between vit rification of amorp hous block and crystallization of crystalline block ,and t he spatial effect and chain end effect ,and t he latter one may play a more important role.K ey w ords : confined crystallization ;polymer t hin film ;semi 2crystalline block copolymer 近年来,聚合物材料在微纳领域的应用越来越引人注目,如聚合物薄膜可用作液晶显示器的序列层;嵌段聚合物自身微相分离产生高度有序的纳米图案,可以帮助人们突破传统方法的限制制备纳米掩膜或纳米模板,因此对于聚合物在各种特定的微纳环境下的性能研究成为高分子凝聚态研究的新的重要方向。

银包覆PMMA纳米核壳颗粒的局域表面等离激元共振行为的模拟计算

银包覆PMMA纳米核壳颗粒的局域表面等离激元共振行为的模拟计算
[8 , 9 ] ∞ σ sca 2 Q = = ∑ ( 2n + 1) ( an 2 + bn 2 ) , sca πR2 x2 n = 1 ∞ σ ext 2 Q = = ∑ ( 2 n + 1 ) Re( a n + b n ) , ( 1 ) ext πR2 x2 n = 1 Q abs = Q ext - Q sca ,
第 31 卷 第 7 期 2011 年 7 月
光 学 学 报 ACTA OPTICA SINICA
Vol. 31 ,No. 7 July, 2011
银包覆 PMMA 纳米核壳颗粒的局域表面 等离激元共振行为的模拟计算
李 强
1
1, 2
王连洲
1, 3
逯高清
1, 3
黄 娆
1
朱贤方
1, 3, 4*
厦门大学物理系中国澳大利亚功能纳米材料联合实验室 ,福建 厦门 361005 2 新疆大学物理科学与技术学院 ,新疆 乌鲁木齐 830046 3 ARC Centre of Excellence for Functional Nanomaterials,University of Queensland,St Lucia,Brisbane, Qld 4072 ,Australia 4 中国科学院固体物理研究所 ,安徽 合肥 230031 摘要 应用米氏理论, 对银膜包覆 PMMA 纳米核壳结构的局域表面等离激元共振行为进行了模拟计算 , 研究了颗
[1 ~ 3 ]
核壳结构 LSPR 行为的影响。 同时将其同实心银纳 米球的 LSPR 行为进行比较, 以便了解银纳米核壳 结构同实心银纳米球在作为化学生物传感器性能上 的差别。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UTAPHY-HEP-9 4/18/94
Semi-empirical bound on the
37
Cl solar neu08v1 20 Apr 1994
Waikwok Kwong and S. P. Rosen Department of Physics, University of Texas at Arlington Arlington, Texas 76019-0059 ABSTRACT The Kamiokande measurement of energetic 8 B neutrinos from the sun is used to set a lower bound on the contribution of the same neutrinos to the signal in the 37 Cl experiment. Implications for 7 Be neutrinos are discussed. Energetic 8 B neutrinos from the sun have been detected in the Kamiokande experiment [1] at about one half the rate predicted by the Standard Solar Model (SSM) [2]. These same neutrinos must also interact with the 37 Cl detector [3] and so it is important to understand their contribution to the measured 37 Cl signal. By comparing this contribution to the total signal, we can extract information about other parts of the solar neutrino spectrum, especially 7 Be. We find that, even allowing for neutrino flavor oscillations, the Kamiokande experiment imposes a bound on the 37 Cl signal that does not leave much room for a significant contribution from 7 Be neutrinos. This finding is not inconsistent with the latest results from the 71 Ga experiments [4,5], and so we may refine the statement of the solar neutrino problem to read: Where have all the 7 Be neutrinos gone? Since the basic physical process in the Kamiokande and 37 Cl experiments are different, the former being neutrino–electron scattering and the latter neutrino capture on 37 Cl, we must follow a semi-empirical method to relate them to one another. In Kamiokande, the calculated signal involves a convolution over φ(Eν ), the SSM spectrum of 8 B neutrinos with energy Eν , the differential cross section for scattered electrons with kinetic energy T , and the electron resolution function θ(T, T ′ ) which represents the probability that T will appears as T ′ in an actual measurement. We 1
where we have used the most recent result from the Kamiokande experiment [1]. This falls within the errors of the twenty-year average of the Davis value [3] RDavis = 2.32 ± 0.23 SNU , 2 (4)
but is somewhat on the high side. Note that the bound in Eq. (3) also holds in the simple case of a reduction of the total 8 B flux with no change in the spectral shape. Next, consider the case of oscillations of solar electron-neutrinos into νµ or ντ , or some combination thereof. The signal observed in Kamiokande is then given by R(Kam) = φσ (νe e; Eν )P (Eν ) + [1 − P (Eν )] φσ (νµ e; Eν ) dEν , (5)
call this function φσ (νe e; Eν ) and plot in Fig. 1 its normalized shapes as a function of Eν for two choices of θ(T, T ′ ): The first is a Gaussian shape that closely approximates the actual experimental resolution [6], the second is a δ -function representing perfect resolution, and both assume 7.5 ≤ T ′ ≤ 15 MeV. Notice that because of the experimental resolution, the first case has developed a significant tail below the 7.5 MeV threshold. Only the first case with the experimental resolution will be used for calculations below. In the 37 Cl experiment, the relevant quantity is the product of φ(Eν ) with the total capture cross section [7] for neutrinos of energy Eν on 37 Cl. We call this function φσ (37 Cl; Eν ) and plot its normalized shape also in Fig. 1. The integral of φσ (37 Cl; Eν ) gives the 8 B contribution to the SSM signal in 37 Cl, RSSM (7 Be;37 Cl). Comparing the normalized functions for the two experiments, we see that they are remarkably similar to one another, especially at the high energy end. We therefore write φσ (νe e; Eν ) φσ (37 Cl; Eν ) = α + r (Eν ) , (1) 37 φσ ( Cl; Eν )dEν φσ (νe e; Eν )dEν where α is a constant whose value is maximized subject to the condition that the remainder function r (Eν ) be everywhere positive. It turns out that the largest value of α is 0.93, and so we obtain an inequality φσ (37 Cl; Eν ) ≥ 0.93 RSSM (8 B; 37 Cl) φσ (νe e; Eν ) . RSSM (Kam) (2)
where we must now distinguish between the cross sections for electron-neutrinos and muon- or tau-neutrinos. As is well known [7] the latter cross section lies somewhere between 1/6 and 1/7 of the the former in magnitude and is very similar in shape for energetic neutrinos. For our case it is an extremely good approximation to set σ (νµ e; Eν ) = 0.148 σ (νe e; Eν ) . We can then rewrite Eq. (5) in the form φ σ (νe e; Eν ) − σ (νµ e; Eν ) P (Eν ) dEν = R(Kam) − or 0.852 φσ (νe e; Eν )P (Eν ) dEν = R(Kam) − 0.148 RSSM (Kam) . (7) φσ (νµ e; Eν ) dEν , (6)
相关文档
最新文档