(抗体电荷异构体检测用柱子)31410-07_PP_WCX_SCX_V30
protein A 柱子使用说明
编号:FC-MR1002 Protein A/G-Plus Beads 抗体纯化柱 使用(预装柱)1、 说明: protein A 与Protein G 的抗体结合结构域融合后的重组蛋白和4%浓度的琼脂糖树脂偶联制成。
由于采用了重组表达的Protein A/G ,并去除了其白蛋白结合区,基质能够特异性地结合多种免疫球蛋白的Fc 区段,作为亲和树脂,可用来纯化不同来源的抗体和抗体亚型,以及在免疫共沉实验中捕获免疫复合物。
本产品使用了多位点交联技术,稳定性好、特异性高并具有广谱结合力,每ml 基质可特异性结合6-10 毫克抗体。
2、 组分:50% Protein A/G Agarose 悬液,PBS ,20%乙醇。
3、 储存条件:4℃保存,有效期一年;常温(15-25℃)运输;切勿冻结!4、 纯化步骤:4.1 取适量Protein A/G Agarose 悬液,装入层析柱,用10倍柱体积的PBS (或者TBS ,下同)洗涤平衡层析柱。
4.2含抗体的血清或其它体液高速离心后,将上清与等体积2×PBS 缓冲液混合,调整pH 以及离子浓度后,缓慢加入层析柱。
4.3 用10倍柱体积以上的PBS 洗涤,至流出液无蛋白检出。
4.4加入2倍柱体积0.1 M 柠檬酸(Citrate Acid, pH 2.7),夹住流出管,静置5分钟后收集穿出液,重复三次。
测定OD 280估算抗体浓度,如果所得抗体较多可以使用SDS-PAGE 检测纯度。
也可以选择0.1 M 甘氨酸(Glycine, pH 3.0)洗脱。
4.5 洗脱后的抗体加入2/5体积的1 M Tris ,pH 8.0中和,使用Millipore 蛋白浓缩管切换到所需缓冲液,通常为2×PBS 含有0.02% NaN 3以及1 mM EDTA 。
4.6浓缩到所需体积,加入50%甘油;测定效价后,分装并保存在-20℃,避免冻结。
5、树脂处理:5.1 层析柱中Protein A/G Plus Bead 使用后需要及时处理,酸洗脱抗体以后,使用10倍柱体积P BS 洗柱平衡到中性,20%乙醇溶液充分洗涤后,封闭上下两端,保存在4℃。
Cellufine
MAX IBCellufine™ SPA-HC树脂是用于快速筛查rProtein A抗体亲和力的易用预装微型柱。
混合型色谱树脂与传统的IEX或HIC树脂相比,具有独特的选择性差异。
JNC Corporation开发了一种新式混合型树脂——Cellufine™ MAX IB,用于初始rProtein A捕获后单克隆抗体纯化。
该类树脂用丁基进行一定程度修饰,具有耐盐性的聚乙烯胺表面改性。
所得到的配体结构表现出一种混合模式的功能,具有混合伯胺+丁基表面化学。
除了单克隆抗体精制应用之外,该类树脂还可用于其他下游工艺,如等离子体分馏就利用了这种混合模式配体的独特选择性。
这种混合模式的树脂是以交联Cellufine纤维素基珠体为基础,非常稳定,耐碱性CIP,并可以在高流速模式、及最小背压下运行。
树脂性能见下表1概述。
表1. Cellufine MAX IB的性能特征性能特征配体部分用丁基修饰的聚丙烯胺(Polyallyl amine)基质高交联纤维素珠体粒径平均90微米(40-130微米)镜检<5流速≥500 cm/h (0.3 MPa) 内径10 cm- 长13 cm, 24℃纯净水牛血清白蛋白结合载量(毫克/毫升)64(低盐)59(高盐)建议在位清洗溶液0.5 M NaOH建议清洗条件乙醇(70%)、异丙醇(30%)、盐酸胍(6M)、尿素(6M)存储(长期)20%乙醇,2-8℃1.在显微镜下观察破碎颗粒的百分比2.50mM Tris-HCL, pH 8.5,3. 50mM Tris-HCL, pH 8.5+0.2 M NaCl使用流量适配器装柱1)当柱体积<1升时;将目标柱体积(CV)所需的足够悬浮液倒入过滤器漏斗(玻璃制)中,用至少5个柱体积的水洗涤3次,以除去存储液。
如有必要,如果装柱缓冲液与水不同,则重复上述步骤。
2)当柱体积>1升时;将存储缓冲液从容器中沉淀的树脂上方倒出,用水替换。
SPE柱子使用大全
SPE柱子大全!供应各种SPE柱子可以代替waters 安捷伦的SPE柱,广泛应用于各种前处理中的提纯,出杂质北京六角体戈立华189********通用型SPE系列1、LJ-SPE-PCX 系列吸附剂:高级混合型聚合物阳离子交换吸附剂,粒径45?m,平均孔径100A主要作用机理:阳离子交换典型应用:饲料及乳制品中三聚氰胺富集及净化、复杂生物基质中的药物分析应用领域:药物代谢,药效学,法医和毒物分析,食品安全和环境监测等领域2、LJ-SPE-C18(封端)系列C18(封端)是以硅胶为基质的反相C18萃取柱。
具有高键合密度等特点。
主要应用于血液,血浆,尿液中药物及其代谢物、蛋白,DNA等大分子样品的脱盐、环境水样中的有机物的富集等。
3、LJ-SPE-C18-N(未封端)系列ODS C18-N(未封端)是以硅胶为基质的未封端的反相C18萃取柱。
表面较多的硅醇官能团提供了额外的极性相互作用。
同时与封端的吸附剂相比,增强了对碱性化合物的保留。
是极性和非极性化合物萃取的通用型固定相。
4、LJ-SPE-C8系列C8在吸附性上与C18键合相类似,主要靠非极性碳键相互作用。
但由于C8键较C18短,所以对非性化合物保留弱于C18,有助于对非极性吸附过强的样品的洗脱。
C8小柱可以从血浆中同时萃取脂溶性和水溶性维生素,也常用于生物大分子的样品脱盐。
5、LJ-SPE-CN(氰基)系列以硅胶为基质的氰丙基萃取柱。
具有中等极性,可用于反相或正相萃取。
6、LJ-SPE-NH2 系列以硅胶为基质的氨丙基萃取柱。
它具有极性固定相和弱阴离子交换剂的性质。
可通过弱阴离子交换(水溶液)或极性吸附(非极性有机溶液)达到保留作用,因此具有双重作用。
当用在非极性溶液中(如正已烷)进行预处理时,它能与带有—OH,—NH或—SH官能团的分子形成氢键。
氨基pKa=9.8;与阴离子的作用较SAX弱,在pH<7.8水溶液中,可用做弱阴离子交换剂,可用于去除样品中的磺酸根等强阴离子。
微纯生物科技色谱柱
微纯生物科技色谱柱
微纯生物科技公司(Micro BioChips Inc.)是一家生物技术公司,专注于生物分析领域的研究和开发。
该公司可能提供各种生物分析相关的色谱柱和相关产品,用于分离和分析生物分子。
色谱柱通常用于分离和分析混合物中的不同成分。
在生物领域,色谱柱可用于分离蛋白质、核酸、多肽和其他生物分子。
这些色谱柱可以应用于生物药物开发、生物学研究、临床诊断和制药等领域。
不同类型的色谱柱适用于不同的应用,例如:
1. 亲和色谱柱:用于从混合物中分离特定的生物分子,如抗体或蛋白质。
2. 反相色谱柱:适用于水相混合物中的非极性化合物的分离。
3. 离子交换色谱柱:用于带电荷的生物分子的分离,如核酸和多肽。
4. 大孔径凝胶色谱柱:用于分离大分子,如蛋白质和多肽。
5. 逆流色谱柱:用于生物分子的分离和提纯。
微纯生物科技公司可能提供不同种类的色谱柱,以满足客户的不同需求。
如果您需要详细的产品信息或想了解他们的产品线,请直接联系该公司或访问他们的官方网站以获取更多信息。
这些信息可能会
根据时间和公司的产品线发展而有所变化。
USP色谱柱编号对应表
钙型磺化交联苯乙烯-二乙烯基苯共聚物,强阳离子交换柱
L20
二羟基丙烷基化学键合多孔硅胶微ห้องสมุดไป่ตู้固定相(Diol)
二醇基柱
L21
刚性苯乙烯-二乙烯基苯共聚物微球填料柱
L22
带有磺酸基团的多孔苯乙烯阳离子交换柱
L23
带有季胺基团的聚甲基丙烯酸甲酯或聚丙烯酸酯多孔离子交换柱
L24
表面含有大量羟基的半刚性聚乙烯醇亲水凝胶柱
L29
氧化铝,反相键合,含碳量低,氧化铝基聚丁二稀小球,5μm,孔径80Å
L30
全多孔硅胶键合乙基硅烷固定相
L31
季胺基改性孔径2000Å的交联苯乙烯和二乙烯基苯(55%)强阴离子交换树脂
L32
L-脯氨酸铜配合物共价键合于不规则形硅胶微粒的配位体的交换手性色谱填料
L33
能够分离分子量4000~40000范围蛋白质分子的球形硅胶固定相, pH稳定性好
美国药典(USP)规定的色谱柱编号对应表
USP编号
填料/说明
简称
L1
十八烷基键合多孔硅胶或无机氧化物微粒固定相
ODS柱
L2
30~50μm表面多孔薄壳型键合十八烷基固定相
C18柱
L3
多孔硅胶微粒,即一般的硅胶柱
L4
30~50μm表面多孔薄壳型硅胶柱
L5
30~50μm表面多孔薄壳型氧化铝柱
L6
30~50μm实心微球表面包覆磺化碳氟聚合物,强阳离子交换柱
L34
铅型磺化交联苯乙烯-二乙烯基苯共聚物强阳离子交换树脂,9mm球形
L35
锆稳定的硅胶微球键合二醇基亲水分子单层固定相,孔径150Å
L36
5mm胺丙基硅胶键合L-苯基氨基乙酸-3,5二硝基苯甲酰
毛细管色谱柱简介
毛细管柱简介(仅供参考)Varian(瓦里安)-Chrompack公司毛细管柱简介CP-Sil 2 CB最低极性化学键合柱对环烃具独有的选择性含高分子量烃的交联石英,近似于Squalane柱最低操作温度:25℃最高操作温度:200/200℃The CP-Sil 2 CB柱基本上根据沸点完成分离,世界上许多石化实验室已经由过去使用Squalane柱改成CP-Sil 2 CB柱,这是因为CP-Sil 2 CB柱的:由于化学键合特性,因此具极佳的稳定性更高的最高操作温度对环烃具特有的选择性更大的进样体积应用:农药除草剂抗抑郁药Antidepressants 芳香烃烃 Oxygenates PAHs 溶剂CP-Sil 5 CB 温度极限℃ 330/350组成:100%二甲基聚硅氧烷确保重现性高柱效,高惰性OV-1型柱有融合石英柱和Ultimetal柱0.15mm柱适合于快速分析等同产品:DB-1 HP-1 Rtx-1 SPB-1极性特征CP-Sil 5 CB毛细管柱几乎完全根据沸点分离,因此在该柱的温度范围内具广范围的应用,又由于固定相与色谱柱致密的交联特性,CP-Sil 5 CB能承受大体积进样,确保最大的柱寿命。
应用:醇类醛类胺类芳香烃 EPA方法610 酯类香料游离脂肪酸二醇类卤代烃烃酮 Odours 有机酸 Oxygenates PAHs农药多聚物Polymers 溶剂甾族化合物CP-Sil 5 CB 低流失/MS毛细管柱温度极限℃ 325/350特性:超低流失;100%二甲基聚硅氧烷更高柱效,尤其是用于痕量分析逐个测试,确保超低流失0.15mm微孔柱(micro-bore)专用于快速分析本柱无等同产品应用:醇类、醛类、胺类、芳香烃、EPA方法610 、酯类、香料、游离脂肪酸、二醇类、卤代烃、烃、酮、Odours、有机酸、Oxygenates、PAHs 、农药、多聚物、甾族化合物、溶剂和含硫化合物等CP-Sil 8 CB5%苯基,95%二甲基聚硅氧烷保证无误的重现性,选择性和保留时间高柱效,长寿命SE-54类型柱有熔融石英柱和Ultimetal钢柱0.15mm微孔柱(micro-bore)专用于快速分析极性特征由于加入了5%的苯基基团,CP-Sil 8 CB毛细管柱比CP-Sil 5 CB的极性要高,这就意味着对芳香族化合物具更好的选择性.而且,在建立方法时CP-Sil 8 CB通常是最好的选择,CP-Sil 8 CB柱具优越的柱柱重现性和很高的柱效。
单抗电荷异构体液相检测方法
单抗电荷异构体液相检测方法1.引言1.1 概述概述单抗电荷异构体是一类重要的生物分子,具有广泛的应用前景。
然而,目前液相检测方法对于单抗电荷异构体的检测存在一定的局限性。
因此,本文旨在开发一种新的液相检测方法,以克服目前方法的局限性,并探索其在生物医学领域中的优势和应用前景。
单抗电荷异构体是一种由多个亚基组成的抗体分子,其电荷状况可以通过改变特定位点上的氨基酸残基来调控。
这些电荷异构体的不同分子结构可能导致其在生物学功能和药理学性质上的差异。
因此,准确地检测和鉴定单抗电荷异构体对于研究其结构与功能之间的相互关系具有重要意义。
然而,目前的液相检测方法存在一些局限性。
传统的方法往往需要复杂的操作步骤和高昂的检测设备,且对于样品的纯度和浓度要求较高。
此外,某些方法在检测过程中可能会引起样品损伤或失活,从而影响结果的准确性和可靠性。
因此,本文提出了一种基于液相的单抗电荷异构体检测方法,旨在克服上述局限性。
该方法利用了先进的分析技术和敏感的检测手段,以实现对单抗电荷异构体的高效准确检测。
同时,该方法还具有操作简便、灵敏度高、样品损伤小等优点。
基于以上优势,我们相信该液相检测方法在生物医学领域中将具有广阔的应用前景。
它可以用于药物研发、药物治疗中的药效监测,以及生物学研究中的蛋白质结构与功能分析等领域。
通过该方法,我们可以更好地理解和研究单抗电荷异构体在生物体内的生物学作用机制,为相关研究提供有力的支持和参考。
文章结构部分的内容可以写作:1.2 文章结构本文将分为引言、正文和结论三个部分。
引言部分将提供对单抗电荷异构体液相检测方法的概述、文章的结构和研究目的进行介绍。
正文部分将重点探讨单抗电荷异构体在生物领域中的重要性,并分析目前液相检测方法的局限性。
结论部分则将呈现单抗电荷异构体液相检测方法的开发情况,并探讨该方法的优势和应用前景。
整个文章结构清晰,逻辑性强。
引言部分为读者提供了全文的导入和概述,使读者能够对单抗电荷异构体液相检测方法有一个整体的了解,激发其阅读兴趣。
vicam柱用法
vicam柱用法
维康-美国vicam伏马毒素免疫亲和柱的使用方法如下:
1. 样品经提取液提取、过滤、稀释。
2. 通过键合有伏马毒素特殊抗体的免疫亲和柱。
此时,伏马毒素被亲和柱中的抗体特异性的吸附,用水或缓冲液将免疫亲和柱上的杂质除去。
3. 用甲醇使抗体变性,从而将伏马毒素从亲和柱上洗脱下来。
4. 用HPLC 或荧光计进行定量检测。
需要注意的是,这些步骤应在严格遵守相关安全规定和操作规范的前提下进行,以保证实验的安全性和结果的准确性。
同时,对于具体的操作细节和参数设置,建议参考相关的使用说明或咨询专业人士。
氨基酸药典检测分析专用色谱柱
13.Cys
14.Ile
15.Leu
16.Phe
17.Trp
18.Lys
氨基酸药典检测分析专用色谱柱药典热源检测纯化水检测药典氨基酸检测检测报告专用章色谱柱液相色谱柱c18色谱柱hilic色谱柱气相色谱柱
氨基酸检测药典分析专用色谱柱|氨基酸专用柱|氨基酸色谱柱|氨基酸药典专用柱
,氨基酸检测药典分析专用色谱柱产品采用ODS键合硅胶高度可控的单分子层形成和封尾技术制备得到。通过柱前衍生化方法,18种氨基酸在柱上可获得优异的分离。重现性好,柱效高!
国达仪器设备的氨基酸检测药典分析专用色谱柱应用图谱:
色谱柱规格
4.6×250 mm
流动相:
A: ACN : 0.1 M NaAc = 7 : 93 (v/v), pH=6.5;
B: ACN : H2O = 80 : 20 (v/v)
时间(min):
B (%):
0 15 18 25 30 30.01 45
0 15 24 40L/min
柱温:
36 oC
检测波长:
UV 254nm
进样体积:
5 µL
样品:
18 Amino acids
全国热电:
400-1158-566
1.Asp
2.Glu
3.Ser
4.Gly
5.His
6.Arg
7.Thr
8.Ala
9.Pro
10.Tyr
11.Val
琼脂糖色谱柱
琼脂糖色谱柱是一种常用的生物大分子分离和纯化工具,它由琼脂糖凝胶颗粒填充而成。
琼脂糖是一种多糖,具有良好的生物相容性和稳定性,因此被广泛应用于生物化学、分子生物学等领域。
琼脂糖色谱柱的工作原理是利用不同大小的生物大分子在凝胶中的迁移速率不同来实现分离。
一般来说,较大的分子在凝胶中的迁移速率较慢,而较小的分子则较快。
通过控制凝胶的孔隙大小和浓度,可以调节分离的效果。
琼脂糖色谱柱具有以下优点:首先,它具有很高的分辨率和灵敏度,可以有效地分离和检测微量蛋白质、核酸等生物大分子;其次,它的操作简单、快速,可以在较短的时间内完成样品的处理和分析;此外,它还可以进行多种类型的分析,如SDS-PAGE电泳、免疫印迹等。
然而,琼脂糖色谱柱也存在一些局限性。
例如,它只能用于分离相对较小的生物大分子,对于较大的分子(如病毒)则不太适用;此外,由于琼脂糖凝胶的孔隙结构较为均匀,因此无法实现完全的分离效果。
总之,琼脂糖色谱柱是一种重要的生物大分子分离和纯化工具,具有广泛的应用前景。
随着技术的不断进步和完善,相信它将在未来的科学研究中发挥更加重要的作用。
两种不规则抗体筛查试验在临床输血中的应用
两种不规则抗体筛查试验在临床输血中的应用发表时间:2015-02-06T10:03:07.407Z 来源:《医药前沿》2014年第27期供稿作者:孔秀红[导读] 不规则抗体的存在对有输血史、妊娠史或短期内需要接受多次输血患者的输血治疗的安全性产生了严重的影响。
孔秀红(牡丹江市肿瘤医院黑龙江牡丹江 157000)【摘要】目的比较两种不规则抗体筛查试验的准确性和敏感性。
方法患者均采用微柱凝胶法和凝聚胺法进行不规则抗体筛查,然后用抗人球蛋白法进行验证,分析两种方法的假阳性率。
结果对比两种检测方法的假阳性率,差异性无统计学意义(P>0.05)。
结论凝聚胺法和微柱凝胶法用于不规则抗体筛查的敏感性均高,凝聚胺法有一定程度的假阳性率。
【关键词】不规则抗体;凝聚胺法;抗人球蛋白法【中图分类号】R446 【文献标识码】A 【文章编号】2095-1752(2014)27-0158-02不规则抗体就是指抗A、抗B以外的红细胞血型抗体,其能引起输血后溶血反应、习惯性流产、新生儿溶血病等临床疾病,实验室中也可引起血型定型困难、交义配血不和等情况的发生[1]。
不规则抗体的存在对有输血史、妊娠史或短期内需要接受多次输血患者的输血治疗的安全性产生了严重的影响[2]。
所以对受血者输血前进行不规则抗体筛查对安全、有效、及时地输血具有重要的意义。
临床上不规则抗体检测常采用的方法为微柱凝胶法和凝聚胺法,现对这两种方法的敏感性和准确性进行比较。
1 材料与方法1.1一般资料选择2013年6月至2014年6月在我院接受输血治疗的5208例临床患者作为研究对象。
其中男性2780例,女性2428例,年龄8-87岁,平均43.6岁。
所有患者均符合临床输血的标准并愿意接受输血治疗。
1.2试剂与仪器微柱凝胶卡、专用孵育器、卡式离心机均为瑞士达亚美公司提供;凝聚胺试剂为珠海贝索公司生产;1-3号筛选细胞、抗人球蛋白试剂均由上海市血液生物医药有限公司生产;显微镜为Olympus公司生产。
各种物质色谱分析适合的色谱柱
液相色谱环境监测Ultra IBD柱分析腺嘌呤、腺苷、 ATP, ADP和AMP Ultra IBD分析胞核嘧啶、胞啶、CTP, CDP和CMP Ultra IBD柱分析核苷等11种成分Ultra IBD柱分析尿嘧啶、尿苷、UTP、 UDP和UMP Ultra IBD柱分析鸟嘌呤、鸟苷、GTP、 GDP和GMP Ultra IBD柱分析胸腺嘧啶、胸苷、 TTP、 TDP和TMP Allure™ Acidix柱分析腺嘌呤、核苷酸Allure™ PFP Propyl 柱分析核类物质Allure™ Acidix柱分析氨基酸Allure™ Acidix柱在LC/MS上分析氨基酸Ultra Aqueous C18柱的快速分析芳香族氨基酸Ultra Aqueous C18柱分析氨基酸Pinnacle II™ CN柱按照EPA 8330分析爆炸物Pinnacle II™ C18柱按照EPA 8330分析爆炸物方法Ultra C18柱分析炸药 EPA 8330Ultra IBD柱分析杀虫剂二氟脲Pinnacle II™C8柱分析除草剂 UronUltra Cyano柱按照EPA 8330分析爆炸物Allure™ C18柱按照EPA Method 8330分析爆炸物Allure™ C18柱分析杀虫剂(法国样品)Allure™ PFP Propyl 柱分析杀虫剂(法国样品)Ultra Aqueous C18柱分析除草剂苯氧基酸Allure™ C18柱分析杀虫剂Allure™ C18柱分析除草剂(法国样品)Ultra Aqueous C18柱分析除草剂Ultra Aqueous C18柱分析除草剂 PhenoxyacidUltra C18 柱分析羰基化合物Pinnacle I I™ PAH柱分析多核芳香烃Ultra C18柱分析羰基化合物Pinnacle II™ C18柱分析BTEX混合物Ultra Aqueous C18柱分析聚核芳烃除草剂Pinnacle II™ C18柱分析多核芳香烃Pinnacle™ DB C18柱分析多核芳香烃Pinnacle II™ PAH柱分析多核芳香烃Allure™ C18柱分析醛酮DNPH 衍生 15°CAllure™ C18柱分析醛酮DNPH 衍生 25°CUltra IBD柱分析酸碱@ pH7Ultra Aqueous C18柱分析有机酸常用分析Pinnacle™ DB C18柱分析中性碱样品Pinnacle II™ C18柱分析中性碱样品Pinnacle II™ C18柱分析酸碱样品Pinnacle™ DB C18柱分析酸碱样品Pinnacle II™ C18柱分析芳香族Pinnacle™ DB C18柱分析芳香族Ultra Aqueous C18柱分析嘧啶Ultra C18柱分析嘧啶/苯酚样品Pinnacle II™ C18柱分析嘧啶/苯酚样品Pinnacle™ DB C18柱分析嘧啶/苯酚样品Ultra Aqueous C18柱分析嘧啶/苯酚样品Ultra IBD柱分析嘧啶/苯酚样品Pinnacle™ DB C18柱分析反相样品Ultra Aqueous C18柱分析反相样品Ultra IBD柱分析反相样品Pinnacle II™ C18柱对评价柱样品NIST SRM870的分析Pinnacle™ DB C18柱分析反相样品Pinnacle II™ C18柱分析反相样品Pinnacle II™ C18柱分析反相标样Pinnacle II™ C18柱分析嘧啶,二甲基苯胺,苯甲酮Pinnacle II™ C18柱分析SRM 870样品Pinnacle™ DB C18柱分析苯酚Pinnacle™ DB C18柱分析尿嘧啶, 嘧啶, 二甲基苯胺, 苯甲酮样品Pinnacle II™ C18柱分析苯酚Ultra IBD柱分析嘧啶/苯酚 @ pH7流动相 on Ultra Aqueous C18柱分析水中有机酸Ultra Aqueous C18柱分析水中有机酸Ultra PFP柱分析嘌林/嘧啶Ultra IBD柱分析酸碱@ pH3Pinnacle II™ Silica柱分析正相标样Ultra Aqueous C18柱分析羰基酸Ultra IBD柱分析羰基酸Pinnacle II™ Phenyl 柱等度洗涤分析邻苯二甲酸酯Pinnacle II™ Phenyl梯度洗涤分析邻苯二甲酸酯Pinnacle II™ C8等度洗涤分析邻苯二甲酸酯Pinnacle II™ CN柱分析正相标样Pinnacle II™ Phenyl 柱分析反相标样Pinnacle II™ C8柱分析反相标样Pinnacle™ DB C18柱分析肥皂中PCMX药物、保健品药物Pinnacle II™ Silica柱分析酱油中维生素EPinnacle II™ C18柱分析苯酚类抗氧化剂Pinnacle II™ C18柱分析St John’s麦芽糖中HyperforinAllure™ Acidix LC/MS 柱分析抗坏血栓维生素CUltra Aqueous C18柱分析卷心菜萃取物Ultra Aqueous C18柱分析豆瓣菜萃取物Ultra Aqueous C18柱分析花椰菜中硫配糖體Pinnacle II™ C18柱分析海胆Pinnacle II™ C18柱分析蒜片中的蒜素Ultra Aqueous C18柱分析烟草萃取物按照USP 25用Ultra C18柱分析退热净和酒石酸氢可酮按照USP 25用Pinnacle II™ Silica柱分析酒石酸氢可酮Pinnacle II™ C18柱分析退热净、磷酸可待因Pinnacle II™ C18柱分析退热净Allure™ Basix 柱分析止痛剂Allure™ Basix柱分析止痛剂Allure™ Basix柱分析布洛芬和假麻黄素Ultra IBD柱分析抗生素阿莫西林Ultra IBD 正相柱分析先锋霉素Ultra IBD柱在 LC/MS中分析先锋霉素Ultra IBD反相柱分析先锋霉素Ultra IBD 柱分析抗生素头孢氨卡Ultra IBD LC/MS 柱分析头孢拉定Ultra IBD LC/MS分析青霉素 VUltra IBD 柱分析抗生素青霉素Allure™ Basix柱分析抗生素新洛明Allure™ C18柱分析抗生素甲氧苄氨嘧啶和新洛明按照USP 25用Pinnacle II™ Amino柱分析乳果糖Ultra C18柱分析麻醉止痛剂和退热净按照USP 25用Pinnacle II™ C18柱分析吗啡原材料238Allure™ Basix柱分析抗心率失常药物盐酸戊脉安按照EP 2002用Ultra IBD柱分析抗心率不齐药异博定Allure™ Basix柱分析三环抗忧郁剂Allure™ PFP Propyl柱分析COC 可卡因和EME 厄告宁甲酯Allure™ Basix LC/MS柱分析抗忧郁剂Allure™ Basix柱分析抗忧郁剂盐酸舍曲林Allure™ Basix 柱分析止痛药劳拉西泮和阿普唑仓Ultra IBD柱分析优降糖类抗糖尿病药Ultra IBD LC/MS柱分析西咪替丁Allure™ Basix柱分析舒喘灵Ultra Cyano 柱分析钙类抗心率失常药物Ultra IBD柱分析抗心率失常药物地高辛Allure™ Basix柱分析抗心率失常药物阿替洛尔Ultra Phenyl 柱分析痰止咳药物可待因和愈创甘油醚Allure™ Basix柱分析抗心率失常药物依那普利Ultra IBD柱分析抗心率失常药物速尿灵Allure™ Basix柱分析抗心率失常药物美托洛尔Allure™ Basix柱分析抗心率失常药物噻吗洛尔和马来酸盐Allure™ Basix柱分析抗心率失常药物氨苯蝶啶和二氢氯噻Allure™ Basix柱分析抗心率失常药物氨苯蝶啶Ultra C18柱分析炔诺酮和雌二醇药物Ultra C18柱分析炔诺酮和雌二醇药物Allure™ Basix柱分析乙炔基雌二醇和炔诺酮Allure™ Basix柱分析乙炔基雌二醇和炔诺酮Ultra C18柱分析甲基炔诺酮和乙炔基雌二醇Ultra PFP柱分析激素左甲状腺素Ultra C4柱分析激素甲孕酮Ultra C4柱分析激素Allure™ Basix柱分析激素炔诺酮和甲孕酮Allure™ Basix柱分析镇静剂环苯扎林Allure™ C18柱分析甲基炔诺酮和乙炔基雌二醇Allure™ C18柱分析甲基炔诺酮、乙炔基雌二醇Ultra C8柱分析羟考酮原料按照USP 25用Ultra C8柱分析羟考酮原料按照USP 25用Pinnacle II™C8柱分析羟考酮原料Ultra Cyano 柱分析氯地米松Ultra C18柱分析氯地米松和二氯倍氯米松Ultra C18柱分析氯地米松和二氯倍氯米松All ure™ C18柱分析肾上腺酮Allure™ C18柱分析肾上腺皮质类脂醇用Allure™ C18柱和传统C18柱LC/MS分析皮质类固醇Ultra Aqueous C18柱分析水溶性维生素Ultra Aqueous C18柱分析脂溶性维生素Ultra Aqueous C18柱分析维生素B1和抗坏血栓维生素C Pinnacle II™ C8 柱分析对羟基物Pinnacle II™ C8 柱分析对羟基物Ultra IBD柱分析维生素B1和抗坏血栓维生素CUltra Phenyl柱分析山梨酸和安息香酸Pinnacle II™ Phenyl柱分析可的松激素Pinnacle II™ CN正相柱分离类固醇Pinnacle II™ CN反相柱分离类固醇Allure™ Acidix柱分析阿司匹林和水杨酸Allure™ Acidix柱分析止痛剂布洛芬和甲氧萘丙酸Pinnacle II™ CN柱分析胡椒碱Pinnacle™ DB Cyano柱分析萘普生Pinnacle™ DB C8柱分析萘普生Pinnacle™ DB C18柱分析萘普生Pinnacle™ DB C18柱分析氧杂蒽Pinnacle II™柱分析杂蒽食品调料Ultra C18柱分析辣椒素Ultra C18柱分析辣椒素Pinnacle II™ C18柱分析辣椒素Pinnacle II™ Cyano柱分析胡椒碱Ultra Amino柱分析枫糖浆Ultra Amino柱分析糖Pinnacle II™ Amino 高灵敏度柱分析100%枫糖浆Pinnacle II™ Amino 低灵敏度柱分析100%枫糖浆Pinnacle II™ C18柱分析减肥可乐Ultra C8柱分析香草醛和乙基香草醛Pinna cle™ DB C18柱分析快速LC回族分析香草醛和乙基香草醛Pinnacle™ DB C18柱分析快速LC香草豆萃取物Pinnacle™ DB C18快速LC柱分析香草(打假应用)Pinnacle II™ Amino柱分析糖标准Pinnacle II™ Amino 3µm柱分析糖样品Allure™ Organic Acids柱分析苹果酸和异柠檬酸Allure™ Organic Acids柱分析酸果汁有机酸Allure™ Organic Acids柱分析葡萄汁有机酸Allure™ Organic Acids柱分析果汁中有机酸Ultra™ Aqueous C18柱分析丙酮酸和乳酸Ultra™Phenyl柱分析山梨酸和安息香酸Ultra Aqueous C18柱分析有机酸Ultra Aqueous C18柱分析有机酸(100%水流动相)Pinnacle II™ Phenyl柱分析山梨酸和安息香酸Pinnacle II™ Amino柱分析脱脂牛奶糖分Pinnacle II™ C18柱3µm反相样品测试Pinnacle II™ Amino柱分析可乐中糖分Pinnacle II™ Amino柱分析饮料中糖分气相色谱石油化工芳香族化合物分析7 Rt-TCEPTM(分流进样)芳香族和脂肪烃化合物谱图例 10% TCEP 100/120 Chromosorb® PAW 填充柱高碳数烃类物质分析谱图例 C7-C42烃 Rtx®-1(直接进样)石蜡烃类物质谱图例石蜡MXT®-1冷柱头进样巴西棕榈腊分析Rtx®-1直接进样石蜡分析Rtx®-1 直接进样石油腊链烷烃分析MXT®-1 柱头进样MXT®-1 HT Sim Dist模拟蒸馏柱流失情况图模拟蒸馏分析1 C44-C100烃类 MXT®-1HT模拟蒸馏分析2 C44-C100烃类快速GCMXT®-1HT模拟蒸馏分析3 C44-C100烃类MXT®-1HT高温模拟蒸馏分析4MXT®-SIM DIST高温模拟蒸馏分5 MXT®-500 SIM DIST冷柱头进样ASTM D-2887 C5-C44标样Rtx®-2887直接进样Sim dist ASTM D-2887标准汽油#1 Rtx®2887模拟蒸馏分析6 ASTM D-2887Rtx®-1 Silcosteel®柱(直接进样)模拟蒸馏分析7 ASTM D-3710标定Rtx®-1 SimDist 2887模拟蒸馏分析8 ASTM D-3710汽油Rtx®1 SimDist 2887直接进样PrudhoeBay原油分析阿拉伯轻原油分析合成润滑油分析Stabilwax®分流进样汽油中芳烃分析 1(ASTM D-5580)汽油中芳烃分析 2(ASTM D-5580)石油氧化物分析 1 (ASTM D-4815) Rtx-1石油氧化物分析 2 Rt-TCEPTM6石油氧化物分析3 Stabilwax石油氧化物分析4 MTBE甲基叔丁基醚 Rtx-1SCD检测汽油中的硫化物用AED检测石脑油中的硫Rtx®-1含硫组分分析Rtx®-1含硫组分分析2Rt-Sulfur 填充柱含硫组分分析3 Rt-XLSulfurTM乙烯中硫杂质谱例Rt-SulfurTM丙烯中含硫杂质谱例 Rt-SulfurTM重整汽油烃类物质细部分析 Rtx®-1 PONA直接进样烃类细节分析谱例 Rtx®-1 分流进样芳香族化合物分析1 MXT®-WAX分流进样芳香族化合物分析3 Rtx®-5022分流进样芳香族化合物分析2 Rtx®-200直接进样芳香族化合物分析4 Rtx®-Wax(直接进样)芳香族化合物谱图例异丙苯中的二甲苯异构体5%RT-1200/175%丙酮34在100/120目SilcoportTM芳香族化合物谱图例二甲苯异构体BTEX 5%RT-1200/5%丙酮34在100/120目SilcoportTM 气相色谱环境监测Rtx®-VRX色谱柱按照EPA8021分析方法分析挥发性有机物谱图Rtx®-VRX色谱柱按照EPA8021分析方法分析挥发性有机物谱图Rtx®-VGC色谱柱按照EPA8021A/502.2方法分析挥发性有机物谱图Rtx®-5022色谱柱按照EPA8021A/5022方法分析挥发性有机物谱图Rtx®-VGC色谱柱按照EPA 601/602方法分析挥发性有机物谱图Rtx®-VGC色谱柱按照EPA 601/602方法分析挥发性有机物谱图240Rtx®-VGC色谱柱按照EPA 8021B方法分析挥发性有机物谱图Rtx®-5022色谱柱按照EPA 8021B方法分析挥发性有机物谱图Rtx®-5022色谱柱按照EPA 5022方法分析挥发性有机物谱图Rtx®-1色谱柱按照EPA 5022方法分析挥发性有机污染物谱图Rtx®-VRX色谱柱按照EPA 8021方法分析挥发性有机物谱图有机挥发物 EPA方法OLC 032 Rtx®-VMSRtx®-VMS色谱柱按照EPA 624方法分析VOC谱图Rtx®-VMS柱按照EPA 82408260短清单方法分析VOC谱图Rtx®-VMS柱按照EPA 8260B方法分析VOC谱图Rtx®-VMS柱按EPA 8260B方法分析VOC谱图有机挥发物EPA方法8260BRtx®-VMSRtx®-200柱按EPA 8260B方法分析VOC谱图Rtx®-VMS柱按EPA 5242修订本分析VOC谱图Rtx®-5022柱按EPA 5242方法分析VOC谱图Rtx®-624柱按EPA 5242方法分析VOC谱图EPA方法610聚环芳烃Rtx®-CLPesticides2EPA方法610 聚环芳烃 Rtx®-5Sil MSEPA方法610聚环芳烃Rtx®-5MXT®-5柱分析EPA 方法 8100的聚合芳烃(不分流进样) EPA方法528苯酚Rtx®-5Sil MS半挥发物CLP MethodRtx®-5MS半挥发物EPA方法8270Rtx®-5Sil MSEPA方法8270半挥发物Rtx®-5Sil MSEPA方法8270有机半挥发物Rtx®-5SilMSEPA方法8270 有机半挥发物 Rtx®-5Sil MS带保护柱Integra-Guard™EPA 方法 8100 聚环芳烃 MXT®-5 不分流进样半挥发物,Appendix IXRtx®-5Sil MS半挥发物Skinner ListRtx®-5Sil MSEPA方法8081含氯农药Rtx®-CLPesticides &Rtx®-CLPesticides2 053mm IDEPA方法8081含氯农药Rtx®-CLPesticides & Rtx®-CLPesticides2 w/drilled Uniliner®EPA方法8081 含氯农药Stx™-CLPesticides & Stx™-CLPesticides2EPA方法8081 含氯农药Rtx®-35EPA方法8081 含氯农药 Rtx®-CLPesticidesEPA方法8081 含氯农药 Rtx®-5EPA方法8081 含氯农药Rtx®-1701EPA方法8081 含氯农药 Rtx®-50EPA方法8141A 有机磷农药 Rtx®-OPPesticides & Rtx®-OPPesticides2EPA方法140/8141/8141A 有机磷农药 Rtx®-1701EPA方法140/8141/8141A 有机磷农药 Rtx®-35EPA方法140/8141/8141A 有机磷农药 Rtx®-CLPesticidesEPA方法140/8141/8141A 有机磷农药 Rtx®-CLPesticides2EPA方法140/8141/8141A 有机磷农药 Rtx®-1三嗪除草剂(法国)及降解产品 Rtx®-OPPesticides2有机磷农药欧洲 Rtx®-CLPesticides 588CarboPrep™ SPE Cleanup 8081A 方法分析含氯杀虫剂使用Siltek™-钝化GC柱在分析含氯杀虫剂时降解最小化使用Siltek™钝化柱解决分析物质在分析过程中由于物理和化学因素引起的降解、重复性下降等问题环境使用Rtx®-CLPesticides 和Rtx®-CLPesticides2柱按照美国EPA方法619分析三嗪除草剂环境Rtx®-CLPesticides和Rtx®-CLPesticides2柱分析聚氯联苯PCBs 环境使用CarboPrep™ SPE柱对8141A方法中的有机磷杀虫剂、除草剂进行排序环境使用Rtx®-OPPesticides柱分析有机磷农药环境使用Rtx®-OPPesticides2柱分析有机磷农药环境使用Rtx®-CLPesticides和Rtx®-CLPesticides2柱和ECD分析水样中的卤乙酸环境使用Rtx®-5Sil MS和Rtx®-CLPesticides2毛细管柱分析聚环芳烃PAHs 环境Rtx®-CLPesticides和Rtx®-CLPesticides2柱分析氯苯氧基除草剂环境汽油中有机氧化物 Rtx®-VGC石油氧化物 Rtx®-VGCAlaska方法AK101AA Rtx®-5Sil MS麻省石油烃萃取物 EPH Stx™-1HTMA EPH 芳烃标样cat# 31458无铅汽油 Rtx®-5喷气机燃料 Rtx®-5电机润滑油 Rtx®-5柴油机燃料 Rtx®-5柴油机燃料 Rtx®-5乙二醇 Rtx®-Wax乙二醇 Rtx®-200乙二醇 Stabilwax®乙二醇 Stabilwax®乙二醇 Rtx®-BAC1 & Rtx®-BAC2TO-14/TO-15 Rtx®-1麻省 APH标样 Rtx®-1二噁英 TCDD异构体 Rtx®-2330二噁英 TCDD异构体 Rtx®-2330EPA方法5522 Rtx®-CLPesticidesEPA方法5522 Rtx®-CLPesticides2高分辨MS-GC毛细柱分离二噁英和呋喃同族元素炸药 EPA方法8095 Rtx®-TNTEPA方法5511 Rtx®-5EPA方法5511 Rtx®-200气相色谱食品香料等Stabilwax®-DA柱分析有机酸Rtx®-1柱分析有机酸Rt-QPLOT™柱分析有机酸Rtx®-200柱分析有机酸有机酸自由脂肪酸Stabilwax®-DA有机酸自由脂肪酸Stabilwax®-DARtx®-65TG柱分析甘油三酸脂Rtx®-65TG柱直接进样分析黄油中的甘油三酸酯MXT®-WAX柱分析FAMEsPUFA(海产)MXT®-WAX柱分析FAMEsPUFA动物Rtx®-2330柱分析FAMEsPUFA海产Rtx®-2330柱分析FAMEsPUFA动物Stabilwax®柱分析FAMEs可可油Stabilwax®柱分析FAMEsSawPalmettoRtx®-Wax柱分析FAMEs锯棕榈Rtx®-Wax柱分析FAMEs顺/反异构体Rtx®-2330柱分析FAMEs顺/反异构体Rtx®-2330柱分析Rtx®-2330FAMEs人造黄油Stabilwax®柱分析FAMEs人造黄油FAMEWAX柱分析MarineOilFAMEsFAMEWAX™柱分析鯡鱼FAMEsPUFAFAMEWAX柱分析夜来香油FAMEWAX柱分析亚麻籽油FAMEWAX柱分析黑葡萄干籽油FAMEWAX柱分析琉璃苣籽油XTI®-5柱分析甾酮橄榄油Rtx®-225柱分析中性甾酮Rtx®-5柱分析植物甾醇类SawPalmettoXTI®-5柱分析甾酮胆固醇XTI®-5柱分析甾酮Rtx®-225柱分析糖类醛醇醋酸酯Rtx®-2330柱分析糖类醛醇醋酸酯3%Rt-101/100/120Silcoport™填充柱分析复杂糖类TMS衍生物3%Rt-101/on100/120Silcoport™填充柱分析分析糖醇TMS衍生物Rtx®-50柱分析抗氧化剂ERtx®-50柱分析抗氧化剂维生素Rtx®-1301柱分析浪姆酒样品CarboBlack™B填充柱分析浪姆酒挥发物Rtx®-1301柱分析Scotch酒CarboBlack™B填充柱分析Scotch酒Stabilwax®-DA柱分析酒精饮料的酸和酯Rt-CW20M™F&F柱分析香气香味成分Rtx®-5柱分析柠檬油Stabilwax®柱分析原产荷兰薄荷油MXT®-WAX柱分析胡椒薄荷油Rtx®-20柱分析合成蘑菇香Stabilwax®柱分析合成蘑菇香Rtx®-1柱分析香茅爪哇油Stabilwax®柱分析香茅爪哇油浓缩法Rtx®-5MS测定食品挥发物242Rt-bDEXsm™柱柠檬油分析Rt-bDEXsp™柱薄荷醇分析Rt-bDEXsm™柱薄荷醇分析Rt-bDEXcst™分析弋尾酮异构体Rt-bD EXsa™分析天竺葵油Rt-bDEXsa™柱分析1-辛-3-醇和香芹酮Rt-bDEXcst™柱分析γ-内酯Rt-βDEXsm™苹果汁分析Rt-βDEXsm™苹果汁分析Rt-bDEXsa™分析b-香茅醇Rt-dDEXcst™柱分析d-内酯Rt-bDEXse™苹果汁分析Rt-bDEXse™苹果汁分析Rt-gDEXsa™葡萄汁萃取物分析Rt-bDEXse™香柠檬油气味分析Rt-βDEXsa™木莓气味分析Rt-bDEXsa™柱分析桃香草气味自由脂肪酸Stabilwax®-DA不分流进样丙稀酸胺,炸土豆片萃取物Stabilwax®FAMEs海洋原油FAMEW AX™分流进样FAMEs海洋原油标样FAMEWAX™分流进样FAMEsNLEA《营养标签与教育法》Rt-2560分流进样FAMEsAOAC分析协会99606标样Rt-2560FAMEs顺/反异构体Rtx®-WaxFAMEs顺/反异构体Rt-2560BHA及BHTRtx®-50直接进样维生素E及不饱和生育醇Rtx®-20香料挥发物Rtx®-1分流进样香料挥发物Stabilwax®分流进样麦芽Whiskey酒Stabilwax®-DA大量进样CO2饮料中硫成分Rt-XLSulfur™微型填充柱啤酒顶空硫Rt-XLSulfur™微型填充柱5%Fragrance Materials Association MixRtx®-1分流进样5%Fragrance Materials Association MixRtx®-1701分流进样食品包装挥发物V olatiles标样Rtx®-5MS食品包装挥发物Rtx®-5MS洁净溶剂Rtx®-Wax洁净溶剂Rtx®-VMS溶剂多用途洁净剂Rtx®-VMS溶剂玻璃洁净剂Rtx®-VMS护肤香料制品Rtx®-1药物侦检酸性中性麻醉剂分析 (未衍生化)Rtx®-35酸性中性麻醉剂 (未衍生化)Rtx®-1701巴比妥酸盐分析 (未衍生化)Rtx®-35类固醇代谢分析 (未衍生化)Rtx®-5抗癫痫药物分析 (未衍生化)Rtx®-20抗癫痫药物分析(未衍生化) Rtx®-1701抗忧郁剂分析 (未衍生化)Rtx®-1701抗组胺剂分析 (未衍生化)Rtx®-5 Amine感冒药分析(未衍生化)Rtx®-5 Amine感冒药分析(未衍生化)Rtx®-35 Amine碱性麻醉剂分析(未衍生化)Rtx®-5碱性麻醉剂分析 (未衍生化)Rtx®-35(分流进样)吩噻嗪类分析 (未衍生化)Rtx®-5(分流进样)苯二氮分析 (未衍生化)Rtx®-200碱性麻醉剂分析(未衍生化)Rtx®-200手性: 布洛芬分析 (未衍生化)Rt-bDEXsm™手性:镇静剂Thalidomide分析 (未衍生化)Rt-bDEXcst™手性: 安非他明和脱氧麻黄碱分析(TFAA 衍生物)Rt-bDEXcst™手性: 巴比妥酸盐(未衍生化)Rt-bDEXcst™ (柱头进样)手性:安非他明和脱氧麻黄碱分析(TFAA 衍生物)Rt-bDEXcst™制药溶剂残留有机挥发物分析Rtx®-5制药溶剂残留有机挥发物分析Rtx®-1301制药溶剂残留分析(USP 467)Rtx®-G27制药溶剂残留分析(USP 467)Rtx®-G43制药溶剂残留分析Rtx®-G27制药溶剂残留分析 Rtx®-G43欧洲药典残余溶剂/类交感神经胺分析Rtx®-1301类交感神经胺分析 (未衍生化)Rtx®-35 Amine类交感神经胺 (未衍生化) Rtx®-5 Amine类交感神经胺分析 (衍生化) Rtx®-200类交感神经胺分析 (TFAA 衍生物)Rtx®-5类交感神经胺分析 (HFBA 衍生物)Rtx®-5滥用吸入剂分析 Rtx®-BAC1 & Rtx®-BAC2血中酒精分析 Rtx®-BAC1 & Rtx®-BAC2 (0.32mm ID 柱)血中酒精分析Rtx®-BAC1 & Rtx®-BAC2 (0.53mm ID柱)溶剂 Rtx®-BAC1 & Rtx®-BAC2麻醉剂分析Rtx®-BAC1 & Rtx®-BAC2血中酒精分析滥用大麻类分析 (TMS 衍生物) Rtx®-5可卡因及其代谢物 (TMS 衍生物)Rtx®-5鸦片 (TMS 衍生物) Rtx®-5苯环己派定(天使粉) Rtx®-5纵火分析:无铅汽油 Rtx®-1纵火润滑油分析 Rtx®-5纵火润滑油分析 (废油) Rtx®-5纵火煤油分析 Rtx®-1纵火柴油分析 Rtx®-1溶剂化工甲酚酸分析Stabilwax®-DA甲酚酸邻苯二甲酸二异癸酯分析醇类分析Rt-QPLOT™醇类分析Rtx®-502.2醇类分析Stabilwax®醇类分析Rtx®-502.2醇类分析Rtx®-5醇类分析Rtx®-Volatiles醇醛类分析Rtx®-502.2醇醛类分析Stabilwax®醛类分析Rtx®-Wax甲醛分析Rtx®-1701乙醛分析Stabilwax®乙醇胺分析Rtx®-5Amine乙胺分析Rtx®-5Amine胺、苯酚分析Rtx®-5Amine六亚甲基二胺分析tabilwax®-DB六亚甲基二胺Stabilwax®-DB胺类分析Rtx®-35Amine乙醇胺分析Rtx®-35Amine低分子量胺类分析tabilwax®-DB低分子量胺类分析tabilwax®-DB硝胺分析Stabilwax®-DB胺、醇、氯化物分析Stabilwax®芳烃类分析Rtx®502.2芳烃类分析Stabilwax®芳烃类分析Stabilwax®芳烃类分析Rtx®-502.2醚类分析Stabilwax®酮类分析Stabilwax®醚类分析Rtx®-502.2醚类分析Stabilwax®氟里昂分析Rtx®-1氟里昂分析Rtx®-1氟里昂分析Rtx®-1氟里昂分析Rtx®-200氟里昂分析5%Krytox涂于60/80CarboBlack™B 氟里昂及乙撑氧分析Rtx®-1氟里昂及乙撑氧分析Rtx®-200乙二醇分析Rtx®-200乙二醇及醇分析XTI®-5嘧啶分析Rtx®-1701嘧啶分析Stabilwax®戊烷分析MXT®-1溶剂分析HayeSep®Q含氮溶剂分析Rtx®-1701USP溶剂分析Rtx®-1USP溶剂分析Rtx®-200溶剂Mixture#1分析Rtx®-1溶剂Mixture#1分析Rtx®-200 溶剂Mixture#1分析Stabilwax® 溶剂Mixture#2分析Rtx®-1溶剂Mixture#2分析Rtx®-200 溶剂Mixture#2分析Stabilwax® 溶剂Mixture#3分析Rtx®-1溶剂Mixture#3分析Rtx®-200 溶剂Mixture#3分析tabilwax® 溶剂分析Rtx®-1溶剂分析Stabilwax®溶剂分析Rtx®-5挥发溶剂分析Rtx®-Wax溶剂分析Rt-QPLOT™溶剂分析Rtx®-200溶剂分析Rtx®-1701溶剂分析Rtx®-1701溶剂分析Rtx®-Volatiles工业溶剂分析Stabilwax®-DA 工业溶剂分析MXT®-WAX工业溶剂分析Stabilwax®极性溶剂分析Rt-QPLOT™极性溶剂分析Rt-UPLOT™苯乙烯杂质分析Stabilwax®苯乙烯杂质分析Rtx®-1701硅氧烷分析MXT®-5244聚甲基硅烷分析Rtx®-200硅烷分析Rtx®-200硅烷分析Rtx®-200丙烯酸酯分析Rtx®-1701谱图集目录。
亲和层析柱使用说明
亲和层析柱使用说明货号名称规格说明DS0101亲和层析柱1ml 含1个空管柱,上下盖和2个筛板(亲水性,孔径50um)DS0103亲和层析柱3ml DS0106亲和层析柱6ml DS0110亲和层析柱10ml DS0130亲和层析柱30ml DS0150亲和层析柱50ml一、产品说明亲和层析是利用生物分子间所具有的专一亲和力而设计的层析技术。
它是利用生物分子间存在很多特异性的相互作用(如抗原和抗体、酶和底物或抑制剂、激素和受体等),通过将具有亲和力的两个分子中的一个固定在不溶性基质上,利用分子间亲和力的特异性和可逆性,对另一个分子进行分离纯化。
本公司提供的亲和层析柱工具可应用于如下方面:①纯化重组蛋白;②纯化抗原和抗体;③纯化多肽;④纯化DNA;⑤糖蛋白的纯化;⑥纯化磷酸化蛋白和肽;⑦DNA 结合蛋白的纯化;⑧去除内毒素,等。
亲和层析柱空柱管的材质为医疗级的聚丙烯,这种工程材料通过大量的应用证明具有清洁无毒,不与生物分子结合和低溶解度的优点。
亲和层析柱空柱所用的筛板是选用纯净的UHWM-PE (超高分子量聚乙烯)为原料,经独特的工艺加工而成,具有亲水性。
筛板在装填时安置在填料基质的上下端,以阻挡昂贵的基质渗出。
亲水性筛板采用了领先的亲水性UHWM-PE 生产技术,该筛板能保证使用重力法时的流速为1-2ml/分钟或1-2滴/秒。
同时,该筛板和其它同类产品相比,不会由于亲水性基团的引入而对蛋白质产生吸附。
另外,该亲水性筛板在使用过程中不易形成气泡,气泡会使流速降低,液体通过基质不均匀。
二、产品应用1,抗体纯化纯化抗体一般用Protein A作为纯化的配体,也可以用Protein G或Protein L或异源性抗体作为配体。
2,小分子物质提取(以提取黄曲霉毒素M1为例)试样通过免疫亲和柱时,黄曲霉毒素M1被提取。
亲和柱内含有的黄曲霉毒素M1特异性单克隆抗体交联在固体支持物上,当样品通过亲和柱时,抗体选择性的与黄曲霉毒素M1(抗原)键合,形成抗体一抗原复合体。
ODS(C18)液相色谱柱的种类
不色谱柱类型
编码
白斑病填料说明*
USP
孔径
粒度(µm)
含碳量
pH
应用
ODS-A
AA
通用型高性能C18
L1
120Å
200Å
300Å
3/5/10/15/20/50
3/5/10/15
5/10/15
17%
12%
7%
2-7
通用型、药物、维生素、肽、氨基酸、PTC-氨基酸
AM
Polymer C18
PC
高效C18键合到聚合物体上(没有硅醇基)完全惰性并加强对芳香化合物的选择性
--
--6/Leabharlann 0/5010%2-13
酚、苯胺、高pH肽、药物、季胺盐
充分封端疏水性强
AL
不封端高碳C18对极性组分具强选择性
ODS-AQ
AQ
亲水C18表面,对极性组分保留强,在水流动相中性能稳定
L1
120Å
200Å
3/5/10/15/20/50
3/5/15
14%
10%
2-7
强极性化合物、药物、抗生素、肽类、蛋白质、核酸
Pro C18
AS
完全封端,硅醇基的影响减少到最小,适合所有的有机分子。高性能、高重现性、高可信度
L1
120Å
3/5
12%
2-8
强极性和碱性化合物、药物、抗生素、肽和蛋白
J'sphere ODS H80
J'sphere ODS M80
J'sphere ODS L80
JH
JM
JL
三种不同碳含量9%,14%和22%提供了三种不同保留和选择性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PRODUCT MANUALFOR PROPAC ®WCX-10 AND SCX-10PROPAC WCX-10G GUARD COLUMN(4 x 50 mm, P/N 054994)PROPAC WCX-10 ANALYTICAL COLUMN(4 x 250 mm, P/N 054993)PROPAC SCX-10G GUARD COLUMN(4 x 50 mm, P/N 054996)PROPAC SCX-10 ANALYTICAL COLUMN(4 x 250 mm, P/N 054995)Dionex ® Corporation, 2007 Document No. 031410Revision 07February 2007TABLE OF CONTENTS1INTRODUCTION (3)1.1FEATURES OF THE PROPAC CATION EXCHANGE COLUMNS (3)1.2PROPAC WCX/SCX-10 OPERATING LIMITS AND SPECIFICATIONS (3)1.2.1Operating Conditions (3)1.2.2Physical Characteristics (4)1.3FORMATS OF THE PROPAC WCX/SCX-10 COLUMNS (4)1.3.1ProPac Weak Cation-exchange Columns (Carboxylate Functionality) (4)1.3.2ProPac Strong Cation-exchange Columns (Sulfonate Functionality) (5)1.4PROPAC WCX/SCX-10 OPERATING CONDITIONS (5)1.5KEY APPLICATIONS OF THE PROPAC WCX/SCX-10 (5)2SYSTEM REQUIREMENT (6)2.1 A METAL FREE SYSTEM IS STRONGLY RECOMMENDED (6)2.2SYSTEM VOID VOLUME (6)2.3 MOBILE PHASE LIMITATIONS (6)2.4CHEMICAL PURITY REQUIREMENTS (7)2.4.1Deionized Water (7)3OPERATION (8)3.1MOBILE PHASE SELECTION (8)3.2MOBILE PHASE PREPARATION (9)3.2.1Adjusting the pH of the Mobile Phase (9)3.2.2Filtering the Mobile Phase (9)3.2.3Degassing the Mobile Phase (9)3.3VALIDATING COLUMN PERFORMANCE (9)3.3.1Procedure for Validating Column Performance (9)3.4EQUILIBRATING THE COLUMN (10)3.5CARING FOR THE COLUMN (10)4APPLICATIONS (11)4.1SEPARATION OF ACIDIC AND BASIC VARIANTS IN MONOCLONAL ANTIBODIES USINGPROPAC WCX COLUMN (11)4.2MONITORING PROCESSING OF C-TERMINAL LYSINE AND ARGININE RESIDUES OFPROTEINS ISOLATED FROM MAMMALIAN CELL CULTURE BY CATION EXCHANGECHROMATOGRAPHY (12)4.3MONITORING FORCED ASPARGINE DEAMIDATION GLYCOPROTEINS BY CATIONEXCHANGE CHROMATOGRAPHY (13)4.4ANALYSIS OF HEMOGLOBIN VARIANTS (15)5TROUBLESHOOTING GUIDE (17)5.1FINDING THE SOURCE OF HIGH SYSTEM BACKPRESSURE (17)5.2COLUMN PERFORMANCE IS DETERIORATED (17)5.2.1Loss of Resolution and efficiency for Monoclonal Antibody (MAb) separations (17)5.2.2Peak efficiency and resolution is decreasing; loss of efficiency (21)5.2.3Unidentified peaks appear as well as the expected analyte peaks (22)5.2.4Peak efficiency and resolution is poor (22)5.2.5Peak retention time varies from run-to-run (22)5.3NO PEAKS, SMALL PEAKS, NOISY BASELINE (22)5.3.1Detection Problem (22)5.3.2Chromatographic Problem (22)APPENDIX A.REFERENCES (24)APPENDIX B.PROPAC WCX-10 AND SCX-10 COLUMN CARE (25)APPENDIX C (26)1INTRODUCTION1.1FEATURES OF THE PROPAC CATION EXCHANGE COLUMNSThe ProPac protein columns are ion exchange columns designed specifically to provide high-resolution and high efficiency separations of proteins and glycoproteins (pI = 3-10, MW>10,000 DA). The stationary phase is composed of 10-mm non-porous, solvent compatible ethylvinylbenzene-divinylbenzene copolymer beads which are surrounded by a highly hydrophilic, neutral polymer to reduce non-specific interactions between the surface and the biopolymer. For the weak cation exchange column (ProPac WCX-10), the surface is grafted with carboxylic acid groups. For the strong cation exchanger (ProPac SCX-10), the surface is grafted with sulfonic acid groups.1.2PROPAC WCX/SCX-10 OPERATING LIMITS AND SPECIFICATIONS1.2.1Operating Conditionscan be injected.NOTEA ssistance is available for any problem during the shipment or operation of DIONEX instrumentation, columns, and consumables through the DIONEX North America Technical Call Center at 1-800-DIONEX-0 (1-800-346-6390) or through any of the DIONEX Offices listed in, “DIONEX Worldwide Offices” on the Dionex Reference Library CD-ROM.1.2.2Physical Characteristics1.3Formats of the ProPac WCX/SCX-10 COLUMNSProPac cation exchange columns are available in a variety of formats to suit the need of the application. Sizes range from 2 mm ID columns for analytical work, upto 22 mm ID columns for semi-prep work. The ProPac cation exchange columns are also available in lots selected for the purpose of method validation. Dionex recommends purchasing columns from at least 3 different lots before setting method specifications.1.3.1ProPac Weak Cation-exchange Columns (Carboxylate Functionality)1.3.2ProPac Strong Cation-exchange Columns (Sulfonate Functionality)1.4ProPac WCX/SCX-10 Operating ConditionsProPac cation exchange columns are stable between pH 2 and 12, and are compatible with both aqueous mobile phases and those containing solvents, such as acetonitrile. Alcohols should be avoided when operating the ProPac WCX-10 column. The ProPac cation exchange columns can be operated at any flow rate, as long as the backpressure remains below 3,000 psi. When setting up a system for use with this column, check the special precautions listed in Section 3, “Operation”. PEEK™ (polyetheretherketone) is used to make the column hardware. PEEK has excellent resistance to most organic solvents and inorganic solutions.1.5Key Applications of the ProPac WCX/SCX-10The ProPac cation exchange columns provide excellent peak efficiencies and exceptional resolution of proteins and protein variants including monoclonal antibody variants. Some typical applications for which the columns have been used are listed below.2 SYSTEM REQUIREMENT2.1 A METAL FREE SYSTEM IS STRONGLY RECOMMENDEDThe ProPac columns were designed to be used with a standard bore HPLC system having a gradient pump module, injection valve, and a UV detector.A metal-free system is recommended for halide-salt mobile phases which may otherwise cause corrosion of metallic components. Metal leaching from the system will lead to decreased performance from metal contamination. A metal-free pump is also recommended to avoid denaturation of the protein samples. Use of stainless steel tubing, ferrules, and bolt assemblies is also not recommended..Typical Flow Rate: 1 mL/minInjection Volume: 5–25 µLAutosampler: ASSystem Void Volume: Minimize the lengths of all connecting tubing and remove allunnecessary switching valves and couplers.Pumps: SP (single pump) or DP (dual pump)Detectors: VWD (Variable Wavelength Detector)2.2SYSTEM VOID VOLUMETubing between the injection valve and detector should be < 0.010” ID PEEK tubing. Minimize the length of all liquid lines, but especially the tubing between the column and the detector. The use of larger diameter and/or longer tubing may decrease peak efficiency and peak resolution.2.3 MOBILE PHASE LIMITATIONSThe ProPac cation exchange columns are compatible with typical mobile phases, such as sodium or potassium chloride salts in phosphate, MES or acetate buffers, up to the limit of their solubility. Use of organic solvents in the mobile phase is usually unnecessary. If you choose to use one, test the solubility limit of the mobile phase in the presence of the chosen organic solvent. Some combinations of salts and organic solvents are not miscible.WARNINGDo not use methanol or other alcohols as additives to the buffer when using the ProPac WCX-10, because alcohols will alter the anionic properties of this column. The formation of esters with alcohols will significantly reduce the capacity of the column. This ester formation is reversible but the regeneration process is rather time consuming.WARNINGDo not operate the ProPac WCX-10 in the absence of a minimal concentration of salt. If the ionic strength is too low, the conformation of the stationary phase will be affected, causing a significant increase in backpressure. This effect can be reversed by pumping 500 mM NaCl through the column at low flowrate (0.1-0.2mL/min) until the backpressure is reduced, but it is recommended that salt be present in the mobile phase at all times.WARNINGCationic detergents (i.e. SDS) will irreversibly bind to the ProPac cation exchange columns and their use should be avoided.REQUIREMENTS2.4 CHEMICALPURITYReliable, reproducible results require mobile phases that are free from impurities and prepared consistently.2.4.1 Deionized WaterThe deionized water used to prepare your mobile phase should be Type I reagent grade water with a specific resistance of 18 megohm-cm. The water should be free from ionized impurities, organics, microorganisms and particulate matter. UV treatment in the water purification unit is recommended. Follow the manufacturer’s instructions regarding the replacement of ion exchange and adsorbent cartridges. All filters used for water purification must be free from UV-absorbing components. Contaminated water in the mobile phase causes high background signals, gradient artifacts, and even sample degradation.3OPERATION3.1MOBILE PHASE SELECTIONThe mobile phase for the ProPac cation exchange columns consists of a buffer component and a salt component. The buffer selected depends upon the pI of the proteins to be separated, and should provide minimal UV interference at the wavelength to be monitored. Although phosphate buffers are widely used for various applications, usage of MES containing buffers is becoming increasingly popular for MAb separations between the pH range of 5 - 6.5. The advantage of using MES buffer is the buffering of the stationary phase of the column effectively with improved resolution.Proteins are eluted using a gradient of increasing ionic strength. Optimum performance is obtained if a minimum salt concentration is maintained in buffer A at all times. Dionex recommends a minimum concentration of 2mM NaCl or equivalent in buffer A. Failure to maintain a minimum ionic strength in buffer A will result in alteration of the stationary phase conformation resulting in an increase in the column backpressure beyond the maximum recommended value. If this occurs, remove the column from the system, flush the buffer from the system and replenish with buffer B containing your high salt concentration. Replace the column and pump buffer B through the column at low flow rate (0.1-0.2 mL/min), until the backpressure falls back to normal.WARNINGDo not operate the ProPac WCX-10 in the absence of a minimal concentration of salt. If the ionic strength is too low, the structure of the stationary phase will be affected, causing a significant increase in backpressure. This effect can be reversed by pumping 500 mM NaCl through the column at a low flowrate (0.1-0.2mL/min) until the backpressure is reduced, but it is recommended that salt be present in the mobile phase at all times.3.2MOBILE PHASE PREPARATION3.2.1Adjusting the pH of the Mobile PhaseThe mobile phase should contain all the electrolytes before adjusting the pH. To make sure that the pH reading is correct, the pH meter should be calibrated at least once a day. Stirring and temperature correction should be employed. (Note that pH measurements of buffers containing Tris should not be performed with a Ross electrode as this electrode produces erroneous results with amine containing solutions.)3.2.2Filtering the Mobile PhaseTo extend the lifetime of your column as well as your HPLC pump, the high salt concentration buffers must be filtered using a 0.2 mm membrane filter to remove insoluble contaminants from the eluents. 3.2.3Degassing the Mobile PhaseBefore using them, the buffers must be degassed. The degassing can be done either using the Dionex pump degas function as described in the manual, or by using a vacuum pump. Vacuum degas the solvent by placing the mobile phase reservoir in a sonicator and drawing a vacuum on the filled reservoir with a vacuum pump for 5-10 minutes while sonicating.3.3VALIDATING COLUMN PERFORMANCEDionex recommends that you perform an efficiency test on your ProPac cation exchange column before you use it. The purpose of column performance validation is to make sure that no damage has been done to the column during shipping. Test the column using the conditions described on the Quality Assurance Report enclosed in the column box, and also included in the appendix of this manual. Repeat the test periodically to track the column performance over time. Note that slight variations may be obtained on two different HPLC systems due to system electronic, plumbing, operating environment, reagent quality, column conditioning, and operator technique.Please see the example Quality Assurance Report in Appendix C.3.3.1Procedure for Validating Column Performance1.Connect the column to the LC system.2.Purge the column with the mobile phase listed on the QA report for 20 to 40 columnvolumes.3.Inject the test mix shown in the QA report and collect the data.pare your result with the QA report provided in the column box.5.If the chromatograms look similar, you can use the column for your application work.3.4EQUILIBRATING THE COLUMNEquilibrate the column after installing it for the first time. Always re-equilibrate the column prior to use following periods of storage.Purge the column of shipping or storage solvent until the baseline is stable. Equilibrate the column with at least 15 column volumes of mobile phase A, or until a stable baseline is achieved.3.5CARING FOR THE COLUMNTo ensure the high performance of the ProPac cation exchange columns, the following guidelines should be followed.1.Protect the column from contamination using a ProPac WCX/SCX guard column.2.Make sure that solvents are miscible when changing mobile phases.3.Always degas and filter mobile phases through a 0.22-mm membrane filter.4.When switching to a new mobile phase, the column should be equilibrated with at least 30column volumes before injecting the sample.5.The recommended pH range is from pH 2 to 12. However, it is preferred that the column beused between pH 3 and pH 11 to achieve longer lifetime.6.The column can be stored in mobile phase for short term storage (e.g. overnight). However,it is highly recommended that the column be stored in 20 mM Na2HPO4/H3PO, pH 6.5 wth0.1% sodium azide (more than 2 days).7.The recommended operating maximum temperature is below 50 o C. In most cases,temperature control between ambient and 30 ºC gives good results.8.The recommended maximum backpressure is 4000 psi.4APPLICATIONS4.1SEPERATION OF ACIDIC AND BASIC VARIANTS IN MONOCLONALANTIBODIES USING PROPAC WCX COLUMNMonoclonal antibodies (MAbs) are currently developed by pharmaceutical and biotechnology companies for various therapeutic applications. MAbs undergo several post-translational modifications including oxidations, deamidations, truncations as well as glycan modifications. Manufacturing of MAbs and subsequent stability testing procedures involve routine analysis and monitoring of the impurities resulting from asparagines deamidation, aspartic isomerization, disulfide interchange, peptide bond cleavage and oxidation. ProPac WCX is widely used to characterize MAb heterogeneity. One of the example applications is shown below (Figure 1).8.00Figure 1Separation of Acidic and basic variants of MAbs on ProPac WCX column4.2 MONITORING PROCESSING OF C-TERMINAL LYSINE AND ARGININERESIDUES OF PROTEINS ISOLATED FROM MAMMALIAN CELL CULTURE BY CATION EXCHANGE CHROMATOGRAPHYProcessing of C-terminal lysine and arginine residues of proteins isolated from mammalian cell culture has been described [1]. As a result of processing techniques, the presence of C-terminal Lys or Arg residues, which could be expected based on gene sequence information, are often absent in proteins isolated from mammalian cell culture. This discrepancy, which is common in plasma derived proteins, may result from the activity of one or more basic carboxypeptidases. Charge heterogeneity can result if the processing is incomplete. The resulting charge heterogeneity of the variant forms can be identified by cation exchange chromatography. C terminal processing of lysine residues from heavy chains of monoclonal antibodies from a variety of sources has been reported [2-6].In this example the ProPac WCX-10 cation exchange columns were used to separate variants of a humanized IgG, suspected of having lysine residue variation at the C-terminal of the heavy chains. As shown in Fig. 2, a shallow NaCl gradient (40-150 mM NaCl in 30 min), at neutral pH, resolves three variant forms differing by the presence of lysine at the C-terminal of the heavy chains (with either 0, 1, or 2 lysine residues).To verify that the reason for the different retention times of the three peaks was the different content of heavy chain C terminal lysine, the IgG preparation was treated with carboxypeptidase B, anexopeptidase that specifically cleaves C terminal lysine residues. This treatment of the IgG preparation resulted in the quantitative disappearance of peaks 2 and 3 (containing 1 and 2 terminal lysine residues, respectively, on their heavy chains). The decreased peak areas in peaks 1 and 2 were accompanied by a corresponding quantitative increase in peak area 1 (variant with no terminal lysine, Fig. 2), confirming that peaks 2 and 3 differed from peak 1 in that they contained IgG with 1 and 2 terminal heavy chain lysine residues, respectively.0 5.010.015.0MinutesA UA. Control MAbB. MAb treated with carboxypeptidase B ( 2hrs, 37° C)KKKFigure 2Chromatograms Obtained for MAb Sample Before and After Treatment with CarboxypeptidaseB (Boeringer Mannheim) for 2 hrs at 37º C4.3 MONITORING FORCED ASPARGINE DEAMIDATION GLYCOPROTEINS BYCATION EXCHANGE CHROMATOGRAPHYDeamidation of Asn residues or the isomerization of Asp residues occurs in a variety of protein-based pharmaceuticals including human growth hormone [7], tissue plasminogen activator [8], hirudin [9], monoclonal antibodies [10], acidic fibroblast growth factor [11], and interleukin 1 [12], with varying effects on the activity or stability of the therapeutic protein. Hence, monitoring the deamidation of Asn residues in proteins is of interest to analytical and protein chemists in quality control and process departments at biotechnology and pharmaceutical companies [13].As described by A. D. Donato et al. [14], separation of the Asn67 deamidation products of ribonuclease A required cation exchange on Mono S followed by hydrophobic interaction chromatography to resolve the two deamidation variants (Asp and isoAsp at residue 67). In contrast, using only a ProPac WCX-10 Column, deamidation variant forms having Asp or isoAsp at Asn67 were baseline-resolved from each other and from native ribonuclease A in a single chromatographic analysis (Figure 3).The chromatograms in this example show the separation of ribonuclease A and its two deamidation products at several time points during the course of the forced deamidation. The baseline separation made it possible to quantify the change in amounts of each form within the mixture as a function oftime. Based on the increase in the amount of Asn67 deamidated forms of ribonuclease A as a function of time, it was observed that the kinetics of deamidation appear to be first order with a t1/2 of 159 hours. See Figure 4.MinutesA UFigure 3Monitoring Deamidation of Glycoprotein0.10.20.30.40.50.60.70.80.91050100150200Incubation Time at 37o C. (h)A /A 0*Figure 4Fractional Amount of Deamidation Products Formed as a Function of Time when Ribonuclease A(3 mg/mL) was Incubated in 1% Ammonium Carbonate Buffer, pH 8.2, at 37 ºC4.4ANALYSIS OF HEMOGLOBIN VARIANTSClinical laboratories frequently separate and quantify the levels of different hemoglobin variants. Two very important hemoglobin variant separations are, respectively, the resolution of glycosylated hemoglobins in Figure 5 and hemoglobin sequence variants in Figure 6. For the physician, the determination of glycated hemoglobin levels in the blood of a diabetic patient serves as an excellent indication of the average glucose level in the patient’s blood during the preceding 1–2 months. Separating and identifying hemoglobins associated with serious hemopathies, including sickle cell, hemoglobin C, and Barts disease are also extremely important in the diagnosis, treatment, and counseling of afflicted children.Typically, isoelectric focusing gel electrophoresis (IEF) is used for the analysis of hemoglobin sequences, including Hb S, C, F, A, and A2. However, two IEF steps, using cellulose acetate electrophoresis with alkaline pH, followed by confirmation using citrate agar electrophoresis at acidic pH are necessary. The ProPac SCX-10 column successfully resolves these hemoglobin species in a single run within 20 minutes.Sample Volume10 µLInjected:SCX-10Column: ProPacEluent: A: 50 mM sodium phosphate and 2 mM potassium cyanide adjusted to 6.0 pH with H3PO4B: 50 mM sodium phosphate, 2 mM potassium cyanide and 0.5 mM sodiumchloride adjusted to 6.0 pH with H3PO4tables.Gradient: SeeEluent Flow Rate: Any PEEK HPLC pump capable of delivering gradientsDetection UV, 220 nmTable 1Time (min.) %A %B Initial 97 3 0.0 97 320.0 22.0 30.0 30.1 97 3 40.1 97 3Figure 5Resolution of Glycosylated HemoglobinsTable 2Time (min.) %A %B Initial 100 0 0.0 100 0 30.0 30.1 100 0 40.0 100 0Figure 6Hemoglobin Sequence VariantsNOTEDispose of the waste eluent containing potassium cyanide using basic conditions.TROUBLESHOOTING GUIDE4.5FINDING THE SOURCE OF HIGH SYSTEM BACKPRESSUREWARNING NEVER WASH THE PROPAC WCX/SCX COLUMN WITH HO.Always maintain2minimum ionic strength (20 mM Sodium phosphate, or equivalent) in the eluents.a.If you observe high back pressure, wash the column with an eluent containing high salt(Buffer containing 1M NaCl) at a lower flow rate (0.1 to 0.5 mL/ min) until the pressurebecomes normal.b. A significant increase in the system backpressure may be caused by a plugged inlet frit (bedsupport).c.Before replacing the inlet bed support assembly of the column, make sure that the column isthe cause of the excessive backpressure.d.Check for pinched tubing or obstructed fittings from the pump outlet, throughout the eluentflow path to the detector cell outlet. To do this, disconnect the eluent line at the pump outletand observe the backpressure at the usual flow rate. It should not exceed 50 psi (0.3 MPa).Continue adding components (injection valve, column, detector) one by one whilemonitoring the system backpressure. The 4 x 250 mm ProPac WCX-10 and SCX-10 shouldadd no more than 1,800 psi backpressure at 1 mL/min. The 4 x 50 mm ProPac WCX-10 andSCX-10 columns should add no more than 400 psi (2.6 MPa) back pressure at 1 mL/min. Noother component should add more than 100 psi (0.7 psi) to the system backpressure.e.If the high backpressure is due to the column, first try cleaning the column. If the highbackpressure persists, replace the column bed support at the inlet of the column.4.6COLUMN PERFORMANCE IS DETERIORATED4.6.1Loss of Resolution and efficiency for Monoclonal Antibody (MAb) separationsFor certain applications involving the characterization of monoclonal antibodies, optimum resolution of the analyte separation on the ProPac WCX-10 column is desired. If your column fails to exhibit the expected efficiency and resolution, perform the following treatments as suggested in the following steps and then try the separation again using your own optimized conditions.STEP 1: 20 mM NaOH column wash procedureEluent 1: 20 mM NaOHEluent 2: 20 mM MES (pH 6.5)Procedure:1.Prepare 20 mM MES (pH 6.5) by adding 3.9 gm of MES (Sigma M-8250) to 950 mL of 18-megohm Milli Q water or equivalent.2.Adjust the pH with NaOH to pH 6.5 and bring to volume (1 liter) with 18-megohm water.Filter and degas the solution before use.3.Treat the ProPac WCX-10 column by pumping 20 mM NaOH through it at 0.5 mL/min for15 minutes at room temperature (25 ºC to 30 ºC).4.Following the sodium hydroxide treatment, wash the column with 20 mM MES pH 6.5, 1.0mL/min for 1hr.The column should now be ready for your analysis using routine conditions. If you do not see any improvement with your column performance proceed to Step 2 (See below)STEP 2: 20 mM MES/ 50°C treatment procedurePrepare MES as described in Step 1 and treat the WCX-10 Column with 20 mM MES (pH 6.5) at 50°C for 48hr at a flow rate of 0.2 to 0.5mL/min.(Alternatively, WCX-10 column may be treated with 20 mM MES (pH 6.5) for 8 hr at a flow rate of 0.5 mL/min at 80°C.)ANALYSIS: Use your routine conditions for the analysis of the analyte. A few examples are shown below.Example 1: Effect of MES/50°C treatment on the separation of MAbs: As you can see in Fig 7, the column treated with 20 MES (pH 6.5) at 50°C for 48hrs showed improved peak shapes and efficiencies as compared to the untreated controls. The chromatography conditions are given in the figure.Figure 7Effect of MES/50 o C Treatment on WCMAb SeparationExmple 2: Time Course of MES/50 °C Treatment on WCX-MAb Separation: This experiment shows (Figure 8) treatment of ProPac WCX column with 20 mM MES at 50°C for various intervals followed by separation of MAb on the treated column. The chromatography is compared at 30°C vs 50°C to document differences in chromatography at different temperatures. The maximum benefit of treatment was observed between 41 hrs and 61 hrs of treatment. Therefore 48 hrs was chosen and recommendedfor the MES/heat treatment experiments to improve efficiency of MAb separations and performance.Figure 8Time Course of MES/50 °C Treatment on WCX-MAb SeparationExample 3: Time Course of MES/80 °C Treatment on WCX-MAb Separation. Figure 9 shows time course effect of MES/ 80°C treatment on ProPac WCX MAb separations. At 80°C it takes only about 8hrs to get the improved efficiency as compared to 48hrs treatment at 50°C. It should be noted that thechromatography was done at 30°C.5.0 10.0 15.0 20.0 25.030.035.040.045.0 50.0 55.060.0-202550751001205Figure 9Time course of MES/80C treatment on WCX-MAb separation4.6.2Peak efficiency and resolution is decreasing; loss of efficiency.WARNING One of the sources of decreased performance could be metal leaching from the system. To avoid denaturation of the protein samples and corrosion of components with halide-salt mobile phases we strongly recommend a metal-free system, including pump, tubing, ferrules, and bolt assemblies.a.If changes to the system plumbing have been made, check for excess lengths of tubing,tubing diameters larger than 0.010 ID in., larger than normal tubing diameter, and for leaks.b.Check the flow rate and the gradient profile to make sure your gradient pump is workingcorrectly.c.The column may be fouled. Clean the column using the recommended cleaning conditions.432135.075.00.0Column:ProPac WCX-10 (4x250mm)Eluents:A: 20 mM MES (pH6.5) B: 20 mM MES + 200 mM NaCl (pH6.5)Flow: 1.0 mL / minWVL:280nmSample:MAb (1mg / mL)Inj volume: 10μlGradient: 0-35%B in 35 min.8HR-80°C4HR-80°C2HR-80°C0HRChromatography was performed at 30°CmAU6HR-80°CMinutesd.If there seems to be a permanent loss of efficiency, check to see if headspace has developedin the column. This is usually due to improper use of the column such as submitting it to highbackpressure. If the resin doesn’t fill the column body all the way to the top, the resin bed hascollapsed, creating a headspace. The column must be replaced.e.If the peak shape looks good, but the efficiency number is low, check and optimize theintegration parameters. If necessary, correct the integration manually, so the start-,maximum-, and end of the peak are correctly identified.4.6.3Unidentified peaks appear as well as the expected analyte peaks.a.The sample may be degrading. Proteins tend to degrade faster in solutions; therefore, storeyour protein samples in the freezer in dry form, and prepare only a small amount ofsolution/mixture for analysis.b.The eluent may be contaminated. Prepare fresh, filtered eluent.c.Run a blank gradient to determine if the column is contaminated. If ghost peaks appear, cleanthe column.4.6.4Peak efficiency and resolution is poor.a.Try to use different eluents (buffer, pH, concentration etc.), to make sure you are using theoptimum conditions for your separation problem.b.The column may be overloaded. Dilute the sample and/or inject smaller volumes.4.6.5 P eak retention time varies from run-to-run.The column may not be adequately equilibrated or washed.a.Make sure that the equilibration time is adequate and remains constant after every gradientrun. Re-equilibration should be part of the method.b.Column washing is usually not necessary between every run, unless your sample is extremely“dirty.” If you need to use a wash, a consistent and adequate method for washing andequilibrating should be part of the method.4.7NO PEAKS, SMALL PEAKS, NOISY BASELINE4.7.1Detection ProblemMake sure that you are using the correct wavelength for your sample/buffer system. Adjust the selected detector range (AU) according to your injected sample amount. Check your lamp: aged UV lamps tends to give noisier response. Replace the lamp if necessary.4.7.2Chromatographic Problem。