Genetic Programming with One-Point Crossover

合集下载

GP(Genetic Programming)算法

GP(Genetic Programming)算法
1 2
然而在实际中,我们要限制其数目和其形态大小。比如说, 然而在实际中,我们要限制其数目和其形态大小。比如说, 我们可限制一棵树的形态大小为W(用最大结点数表示)。 我们可限制一棵树的形态大小为 (用最大结点数表示)。 一旦W给定 那么由所有不超过W个结点 给定, 个结点, 一旦 给定,那么由所有不超过 个结点,且包含特定子树 的树的集合是有限的, 的树的集合是有限的,即
一旦w给定那么由所有不超过w个结点且包含特定子树的树的集合是有限的即gp算法的模式理论在gp算法中模式的平均适应度简单地定义为该模式中所有个体适应度的平均值即gp算法的模式理论在gp算法中模式因进化而出现的数目增长或衰减取决于模式的平均适应度与群体平均适应度的比值
GP(Genetic Programming)算法 ( )
f (H , t ) m(H, t +1) ≥ m(H, t)(1−δ ) f (t)
群体平均适应度; 式中 f (t ) ――群体平均适应度; 群体平均适应度 子代模式的平均适应度; 子代模式的平均适应度 f (H, t) ――子代模式的平均适应度; 子代属于模式的个体数; 子代属于模式的个体数 m(H,t) ――子代属于模式的个体数; 模式破坏的概率。 模式破坏的概率 δ ――模式破坏的概率。
一 概述
GP算法求解问题的主要特征如下: 算法求解问题的主要特征如下: 算法求解问题的主要特征如下 1、产生的结果具有层次化的特点。 、产生的结果具有层次化的特点。 2、随着进化的延续,个体不断朝问题答案的方向动态地发展。 、随着进化的延续,个体不断朝问题答案的方向动态地发展。 3、不需事先确定或限制最终答案的结构或大小,GP算法将根 、不需事先确定或限制最终答案的结构或大小, 算法将根 据环境自动确定。这样,系统观测物理世界的窗口得以扩大, 据环境自动确定。这样,系统观测物理世界的窗口得以扩大, 最终导致找到问题的真实答案。 最终导致找到问题的真实答案。 4、输入、中间结果和输出是问题的自然描述,无需或少需对输 、输入、中间结果和输出是问题的自然描述, 入数据的预处理和对输出结果的后处理。 入数据的预处理和对输出结果的后处理。由此而产生的计算 机程序便是由问题自然描述的函数组成的。 机程序便是由问题自然描述的函数组成的。

uniprot基因组功能注释

uniprot基因组功能注释

文章标题:解读Uniprot基因组功能注释:深度解析和个人观点1. 引言在生物信息学和基因组学领域,Uniprot数据库是一个重要的资源,它包含了大量关于蛋白质序列和功能的信息。

其中,Uniprot基因组功能注释是指对基因组中每个基因所编码蛋白质的功能进行详细描述和注解。

本文将深入解读Uniprot基因组功能注释,并结合个人观点进行探讨。

2. Uniprot基因组功能注释的概念Uniprot是一个综合性的蛋白质数据库,它包括了各种生物种类的蛋白质序列、结构、功能和相关信息。

在Uniprot中,基因组功能注释是通过对基因对应的蛋白质序列进行实验和计算分析,从而确定其功能、结构和相互作用等信息,从而为研究人员提供了重要的生物信息学资源。

3. 深度评估Uniprot基因组功能注释的价值Uniprot基因组功能注释为研究人员提供了丰富的蛋白质功能信息,便于研究人员对基因组中蛋白质的功能进行深入了解和分析。

通过Uniprot的功能注释,研究人员可以更好地理解蛋白质与生物学过程和疾病的关联,为基因功能研究、生物医学研究以及新药研发提供了重要的数据支持。

4. 广度评估Uniprot基因组功能注释的实际应用在生物信息学领域,Uniprot基因组功能注释广泛应用于基因本体学、蛋白质相互作用、基因突变功能预测等研究领域。

研究人员可以通过Uniprot的功能注释数据,结合其他生物信息学工具和数据库,开展蛋白质结构预测、功能预测、基因组比较等研究,从而深入了解基因组中蛋白质的功能和相互关系。

5. 总结与回顾Uniprot基因组功能注释作为生物信息学领域重要的研究资源,对于理解基因组和蛋白质功能具有重要意义。

通过深度和广度的评估,我们可以更好地认识到Uniprot的功能注释对于生物学研究和应用具有深远影响。

在未来的研究中,可以进一步扩展Uniprot功能注释的内容和应用范围,使其成为更加综合和完善的生物信息学资源。

6. 个人观点与理解作为文章写手,我认为Uniprot基因组功能注释是非常重要的生物信息学资源,它为研究人员提供了丰富的蛋白质功能信息,有力推动了基因功能研究和生物学研究的发展。

生物大数据技术中的基因编辑工具推荐

生物大数据技术中的基因编辑工具推荐

生物大数据技术中的基因编辑工具推荐生物大数据技术的发展为我们深入研究基因组提供了强有力的工具和方法。

在这个领域中,基因编辑工具是不可或缺的工具之一。

基因编辑工具可以精确地修改和操纵基因组,从而揭示基因功能、开发新治疗方法,甚至改良农作物。

为了帮助广大研究者更好地选择适合自己的基因编辑工具,在本文中,我将推荐几个在生物大数据技术中广泛使用的基因编辑工具。

1. CRISPR-Cas9CRISPR-Cas9是最常用的基因编辑工具之一。

它基于CRISPR-Cas系统,利用一种酶(Cas9)可以准确地切割DNA链的特性,将目标DNA序列切除或修改。

CRISPR-Cas9具有快速、简单和高效的特点,因此在基因组编辑方面被广泛应用。

此外,由于其方便易用的特点,许多研究实验室都已经开发出了各种基于CRISPR-Cas9的工具套件,使得研究者可以更方便地进行基因编辑研究。

2. TALENsTALENs(Transcription Activator-Like Effector Nucleases)是一种由转录激活子样激活因子和核酸酶构成的基因编辑工具。

与CRISPR-Cas9不同,TALENs使用一种由转录激活子样蛋白组成的DNA结合域来定位和剪切DNA序列。

TALENs 具有高度的特异性和灵活性,并且允许精确定位和修改基因组。

虽然TALENs相对于CRISPR-Cas9在操作上稍微复杂一些,但它在一些特定应用的研究中仍然具有巨大的潜力。

3. ZFNsZFNs(Zinc Finger Nucleases)是一种由锌指蛋白和核酸酶构成的基因编辑工具。

类似于TALENs,ZFNs使用在DNA结合域中具有特异性的锌指蛋白来定位和剪切DNA序列。

ZFNs被广泛用于基因组编辑和插入特定DNA片段等应用。

然而,ZFNs的设计和合成比较复杂,因此在实际应用中使用较少。

4. Base EditorsBase Editors是一类新兴的基因编辑工具,可以实现对基因组中特定碱基的精确修改而无需切割DNA链。

基因英语词汇翻译

基因英语词汇翻译

基因英语词汇翻译Aactivation domain 活化结构域adapters 连接物adenine 腺嘌呤adenosine 腺ADP (adenosine diphosphate) 腺二磷酸affinity column 亲和柱AFLP (amplified fragment length polymorphisms) 增值性断片长度多态现象agrobacterium 农杆菌属alanine 丙氨酸allele 等位基因amber mutation 琥珀型突变AMP (adenosine monophosphate) 腺一磷酸ampicillin 氨?青霉素anchor primer 锚状引物annealing 退火annealing temperature 退火温度anticodon 反密码子AP-PCR (arbitrarily primed PCR) 任意引物聚合?链反应arbitrary primer 任意引物ATP (adenosine triphosphate) 腺三磷酸autosome 常染色体腺苷脱氨酶缺乏症 adenosine deaminasedeficiency (ADA) 腺病毒 adenovirusAlagille综合征 Alagille syndrome等位基因 allele氨基酸 amino acids动物模型 animal model抗体 antibody凋亡 apoptosis路-巴综合征ataxia-telangiectasia常染色体显性autosomal dominant常染色体 autosomeBbaculovirus 杆状病毒base pair ..基对base sequence ..基顺序beta-galactosidase ..-半乳糖? beta-glucuronidase ..-葡糖醛酸糖? bioluminescence 生物发光bioremediation 生物降解biotechnology 生物技术blotting 印迹法blue-white selection 蓝白斑筛选细菌人工染色体 bacterial artificial chromosome (BAC)碱基对 base pair先天缺陷birth defect骨髓移植bone marrow transplantation blunt end 平(整末)端Ccatalyst 催化剂cDNA library 反向转录DNA库centromere 着丝体centrosome 中心体chemiluminescence 化学发光chiasma 交叉chromomere 染色粒chromoplast 有色体chromosomal aberration 染色体畸变chromosomal duplication 染色体复制chromosomal fibre 染色体牵丝chromosome 染色体chromosome complement 染色体组chromosome map 染色体图chromosome mutation 染色体突变clone 克隆cloning 无性繁殖系化codon 密码子codon degeneracy 密码简并codon usage 密码子选择cohesive end 黏性末端complementary DNA (cDNA) 反向转录DNA complementary gene 互补基因consensus sequence 共有序列construct 组成cosmids 黏性质粒crossing over 互换cyclic AMP (cAMP) 环腺酸cytosine 胞嘧啶癌 cancer后选基因 candidate gene癌 carcinomacDNA文库 cDNA library 细胞cell染色体 chromosome克隆 cloning密码 codon天生的 congenital重叠群 contig囊性纤维化 cystic fibrosis 细胞遗传图 cytogenetic mapDdark band 暗带deamination 脱氨基作用decarboxylation 脱羧基作用degenerate code 简并密码degenerate PCR 退化性聚合?链反应dehydrogenase 脱氢?denaturation 变性deoxyribonucleoside diphospahte 脱氧核糖核一磷酸deoxyribonucleoside monophospahte 脱氧核糖核二磷酸deoxyribonucleoside triphospahte 脱氧核糖核三磷酸deoxyribose 去(脱)氧核糖dicarboxylic acid 二羧酸digoxigenin 洋地黄毒diploid 二倍体DNA (deoxyribonucleic acid) 去(脱)氧核糖核酸DNA binding domain DNA结合性结构域DNA fingerprinting DNA指纹图谱DNA helicase DNA解螺旋?DNA kinase DNA激?DNA ligase DNA连接?DNA polymer DNA聚合物DNA polymerase DNA聚合?double helix 双螺旋double-strand 双链缺失 deletion脱氧核糖核酸 deoxyribonucleic acid (DNA) 糖尿病 diabetes mellitus二倍体 diploidDNA复制 DNA replicationDNA测序 DNA sequencing显性的 dominant双螺旋 double helix复制 duplicationEelectroporation 电穿孔endonuclease 内切核酸? enhancer 增强子enterokinase 肠激? episome 游离基因ethidium bromide 溴乙锭eukaryotic 真核生物的euploid 整倍体exonuclease 外切核酸?expressed-sequence tags 表达的序列标记片段extron 外含子电泳electrophoresis 酶enzyme外显子exonFF factor F因子FAD (flavine adenine dinucleotide) 黄素腺嘌呤二(双)核酸feedback control 反馈控制feedback inhibition 反馈抑制feedback mechanism 反馈机制first filial (F1) generation 第一子代FISH (fluoresence in situ hybridization) 荧光原位杂交forward mutation 正向突变F-pilus F纤毛functional complementation 功能性互补作用fusion protein 融合蛋白家族性地中海热familial Mediterraneanfever 荧光原位杂交fluorescence in situhybridization (FISH) 脆性X染色体综合征Fragile X syndromeGgel electrophoresis 凝胶电泳gene 基因gene cloning 基因克隆gene conversion 基因转变gene duplication 基因复制gene flow 基因流动gene gun 基因枪gene interaction 基因相互作用gene locus 基因位点gene mutation 基因突变gene regulation 基因调节gene segregation 基因分离gene therapy 基因治疗geneome 基因组/ 染色体组genetic map 基因图genetic modified foods (GM foods) 基因食物genetics 遗传学genetypic ratio 基因型比/ 基因型比值genome 基因组/ 染色体组genomic library 基因组文库genotype 基因型giant chromosome 巨染色体globulin 球蛋白glucose-6-phosphate dehydrogenase 6-磷酸葡萄糖脱氢?GP (glycerate phosphate) 磷酸甘油酸脂GTP (guanine triphosphate) 鸟三磷酸guanine 鸟嘌呤基因扩增gene amplification基因表达gene expression基因图谱gene mapping基因库gene pool基因治疗gene therapy基因转移gene transfer遗传密码genetic code (A TGC)遗传咨询genetic counseling遗传图genetic map遗传标记genetic marker遗传病筛查genetic screening基因组genome基因型genotype种系germ lineHhaploid 单倍体haploid generation 单倍世代heredity 遗传heterochromatin 异染色质Hfr strain 高频重组菌株holoenzyme 全?homologous 同源的housekeeping gene 家务基因hybridization 杂交单倍体haploid造血干细胞hematopoietic stem cell 血友病hemophilia 杂合子heterozygous高度保守序列highly conserved sequence Hirschsprung病Hirschsprung's disease纯合子homozygous人工染色体human artificial chromosome (HAC)人类基因组计划Human Genome Project human immunodeficiency virus (HIV)/ 人类免疫缺陷病毒acquired immunodeficiency syndrome (AIDS) 获得性免疫缺陷综合征huntington舞蹈病Huntington's diseaseIimmunoglobulin 免疫球蛋白in vitro 在体外/ 在试管内in vivio 在体内independent assortment 独立分配induced mutation 诱发性突变induction 诱导initiation codon 起始密码子inosine 次黄insert 插入片段insertional inactivation 插入失活interference 干扰intergenic 基因间的interphase 间期intragenic 基因内的intron 内含子inversion 倒位isocaudarner 同尾酸isoschizomer 同切点?Kkanamycin 卡那毒素klenow fragment 克列诺夫片段Llac operon 乳糖操纵子ligase 连接? ligation 连接作用light band 明带linker 连接体liposome 脂质体locus 位点Mmap distance 图距离map unit 图距单位mature transcript 成熟转录物metaphase 中期methylase 甲基化? methylation 甲基化作用microarray 微列microinjection 微注射missense mutation 错差突变molecular genetics 分子遗传学monoploid 单倍体monosome 单染色体messenger RNA (mRNA) 信使RNA multiple alleles 复(多)等位基因mutagen 诱变剂mutagenesis 诱变mutant 突变体mutant gene 突变基因mutant strain 突变株mutation 突变mutation rate 突变率muton 突变子畸形malformation描图mapping标记marker黑色素瘤melanoma孟德尔Mendel, Johann (Gregor)孟德尔遗传Mendelian inheritance信使RNA messenger RNA (mRNA)[分裂]中期metaphase微阵技术microarray technology线立体DNA mitochondrial DNA单体性monosomy小鼠模型mouse model多发性内分泌瘤病multiple endocrine neoplasia, type 1 (MEN1)NNAD (nicotinamide adenine dinucleotide) 烟醯胺腺嘌呤二核酸NADP (nicotinamide adenine dinucleotide phosphate) 烟醯胺腺嘌呤二核酸磷酸nicking activity 切割活性nonsense codon 无意义密码子nonsense mutation 无意义突变Northern blot Northern印迹法nuclear DNA 核DNAnuclear gene 核基因nuclease 核酸?nucleic acid 核酸nucleoside 核nucleoside triphosphate 核三磷酸nucleotidase 核酸?nucleotide 核酸nucleotide sequence 核酸序列神经纤维瘤病neurofibromatosis尼曼-皮克病Niemann-Pick disease, type C (NPC)RNA印记Northern blot核苷酸nucleotide神经核nucleusOoligonucleotide 寡核酸one gene one polypeptide hypothesis 一个基因学说operon 操纵子oxidative decarboxylation 氧化脱羧作用oxidative phosphorylation 氧化磷酸化作用寡核苷酸oligo癌基因oncogenePpeptide ? peptide bond ?键phagemids 噬菌粒phosphorylation 磷酸化作用physical map 物理图谱plasmid 质粒point mutation 点突变poly(A) tail poly(A)尾polymerase 聚合?polyploid 多倍体positional cloning 位置性无性繁殖系化primary transcript 初级转录物primer 引物probe 探针prokaryotic 原核的promoter 启动子protease 蛋白?purine 嘌呤pyrimidine 嘧啶Parkinson病Parkinson's disease血系/谱系pedigree表型phenotype物理图谱physical map多指畸形/多趾畸形polydactyly聚合酶链反应polymerase chain reaction (PCR)多态性polymorphism定位克隆positional cloning原发性免疫缺陷primary immunodeficiency 原核pronucleus前列腺癌prostate cancerRrandom segregation 随机分离RAPD (rapid amplified polymorphic DNA) 快速扩增多态DNAreading frame 阅读码框recessive gene 隐性基因recombinant 重组体recombinant DNA technology 重组DNA技术recombination 重组regulator (gene) 调控基因replica 复制物/ 印模replica plating 复制平皿(板)培养法replication 复制replication origin 复制起点reporter gene 报道基因repression 阻遏repressor 阻遏物repressor gene 阻遏基因resistance strain 抗药性菌株restriction 限制作用restriction enzyme 限制性内切? restriction mapping 限制性内切?图谱retrovirus 反转录病毒reverse transcription 反转录作用RFLP (restricted fragment length polymorphisms) 限制性断片长度多态现象ribonucleotide 核糖核酸ribose 核糖ribosomal RNA (rRNA) 核糖体RNA ribosome 核糖体RNA (ribonucleic acid) 核糖核酸RNA polymerase I RNA聚合?IRNA polymerase II RNA聚合?IIRNA polymerase III RNA聚合?IIIR-plasmid R质粒/ 抗药性质粒隐性recessive逆转录病毒retrovirus核糖核酸ribonucleic acid (RNA)核糖体ribosomeSsecond filial (F2) generation 第二子代self-ligation 自我连接作用shuttle vectors 穿梭载体sigma factor ..因子single nucleotide polymorphism 单核酸多态性single-stranded DNA 单链DNAsister chromatid 姊妹染色单体sister chromosome 姊妹染色体site-directed mutagenesis 定点诱变somatic cell 体细胞Southern blot Southern印迹法splice 拼接star activity 星号活性stationary phase 静止生长期sticky end 黏性末端stop codon 终止密码子structural gene 结构基因supernatant 上层清液supressor 抑制基因序列标记位点sequence-tagged site (STS) 联合免疫缺陷severe combined immunodeficiency (SCID)性染色体sex chromosome伴性的sex-linked体细胞somatic cellsDNA印记Southern blot光谱核型spectral karyotype (SKY)替代substitution自杀基因suicide gene综合征syndromeTtelophase 末期template 模板terminator 终止子tetracycline 四环素thymine 胸腺嘧啶tissue culture 组织培养transcription 转录作用transfer RNA (tRNA) 转移RNA transformation 转化作用transgene 转基因translation 翻译/ 平移transmembrane 跨膜triplet 三联体triplet code 三联体密码triploid 三倍体技术转让technology transfer转基因的transgenic易位translocation三体型trisomy肿瘤抑制基因tumor suppressor geneVvector 载体WWestern blot Western印迹法Wolfram综合征Wolfram syndromeY 酵母人工染色体yeast artificial chromosome (YAC)。

生物博士论文利用CRISPR Cas9系统建立基因修饰猪以及在人细胞中对顺式作用元件做注释

生物博士论文利用CRISPR Cas9系统建立基因修饰猪以及在人细胞中对顺式作用元件做注释

生物博士论文利用CRISPR Cas9系统建立基因修饰猪以及在人细胞中对顺式作用元件做注释生物博士论文:利用CRISPR Cas9系统建立基因修饰猪以及在人细胞中对顺式作用元件做注释摘要:本论文旨在探讨利用CRISPR Cas9系统建立基因修饰猪的可行性,并研究该系统在人类细胞中对顺式作用元件的注释情况。

通过对CRISPR Cas9系统的细致研究,我们可以了解其应用于基因编辑和遗传疾病研究的潜力和局限性,并为相关研究提供理论和实践参考。

第一章:引言1.1 研究背景随着基因工程技术的发展,人们对基因修饰动物的研究日益深入。

CRISPR Cas9系统作为一种新兴的基因编辑工具,具有高效、精准和低成本等优势,被广泛应用于研究领域。

本研究旨在利用CRISPR Cas9系统建立基因修饰猪模型,并进一步研究其应用于人类细胞中的潜力。

1.2 研究意义基因修饰猪模型在农业、医学和生物学等领域具有重要意义。

通过对猪基因进行修饰,我们可以模拟人类遗传疾病,并进一步研究疾病的发生机制以及新药的开发。

此外,CRISPR Cas9系统在人类细胞中的应用也为研究顺式作用元件提供了新的思路和方法。

第二章:CRISPR Cas9系统原理与技术2.1 CRISPR Cas9系统简介CRISPR Cas9系统是一种原核细菌天然拒绝外源DNA侵入的免疫机制,后被开发为基因编辑技术。

该系统由Cas9蛋白和RNA引导序列组成,通过引导序列的识别和结合,实现对目标基因的特异性靶向剪切和修饰。

2.2 CRISPR Cas9系统的应用CRISPR Cas9系统在基因编辑、遗传疾病研究和农业改良等领域具有广泛的应用前景。

通过调整RNA引导序列,可以实现对基因组中特定基因的修饰和删除,从而研究基因功能和疾病机制。

第三章:基因修饰猪模型的建立3.1 基因编辑策略的设计在建立基因修饰猪模型之前,我们需要进行合理的基因编辑策略设计。

通过分析目标基因的结构和功能,选择合适的靶点和RNA引导序列,确定CRISPR Cas9系统的使用方法和引物设计。

演化

演化

genetic variation, Mutation ,Sexual reproduction1.1.內內在的改變在的改變::本身基因改變2.2.外在改變外在改變外在改變::會進行會進行::M icro icro--evolution evolution:describe changes in a polulation’s gene 造成微造成微造成微演化因素演化因素演化因素 非常大的族群1.source of new genetic variation 1.source of new genetic variation 非主要因素 封閉系統(a) 影響單個基因(mutation) 沒有突變● Gene mutation within genes that create new alleles 隨機交配● Gene duplication 天擇不存在造成Sex dimorphismintra-同性競爭(公的多)inter-母選公(mate choice)另一種少見的intersexual selection(cryptic female choice),有一種特殊的機制,雌性的生殖道會避免血緣相近的雄性授精 Macro Macro--evolutionevolution :evolutionary changes that create new species and groups that include many new species.其包含包含::species selection造成peciationS peciation1.由化石紀錄可得知二種種化的形式anagensis(phyletic evolution)物種多樣性的基礎 cladogensis(branching evolution)物種多樣性的基礎 2.為什麼發生種化?因適應分枝(adaptive divergeno)而種化因適應高峰(adaptive preak)轉移而種化3.種化的pace:gradualism:involves gradual evolution due to many small genetic changespunctuated equilibrium :is a pattern of evolution in which new species arise more rapidly and then remain unchanged for long periods of time4.種化的模式: 比地理隔離重要比地理隔離重要(a) Sympatric:生殖隔離造成新種產生,常見於植物Prezygot Prezygot Prezygotic isolating mechanisms ic isolating mechanisms ic isolating mechanisms Postzygotic isolating Postzygotic isolating Postzygotic isolating mechanismsmechanisms Habitat isolation Mechanical isolation Hybrid inviabilityTemporal isolation attempted mating isolation fertilization Hybrid sterility Interspecies hybrid Behavioral isolation Hybrid breakdown(b) Allopatric:地理隔離,造成新種產生。

pfago工作原理

pfago工作原理

PFAGO(Parallel Fast Artificial Gene Ontology)是一种用于基因本体(Gene Ontology)注释的快速算法。

它的工作原理如下:
1. 数据准备:首先,需要准备好基因序列数据和基因本体数据。

基因序列数据是待注释的基因序列,基因本体数据是描述基因功能和关系的本体结构。

2. 并行计算:PFAGO使用并行计算的方式进行注释。

它将基因序列数据分成多个片段,并将每个片段分配给不同的计算节点进行处理。

每个计算节点独立地对片段进行注释计算。

3. 特征提取:在每个计算节点上,PFAGO使用一种特征提取方法来提取基因片段的特征。

这些特征可以包括基因片段的序列特征、结构特征、功能特征等。

4. 本体匹配:PFAGO将提取的特征与基因本体数据进行匹配。

它使用一种快速的匹配算法来找到与特征相匹配的本体项。

匹配的过程可以基于特征的相似度、关联度等进行。

5. 注释结果合并:每个计算节点都会得到一部分注释结果。

PFAGO将这些结果进行合并,得到最终的注释结果。

合并的
过程可以基于注释结果的相似度、置信度等进行。

6. 结果输出:最后,PFAGO将注释结果输出,提供给用户使用。

注释结果可以包括基因的功能注释、关系注释等。

总的来说,PFAGO通过并行计算和快速匹配算法,实现了对大规模基因序列数据的快速注释。

它可以帮助研究人员理解基因的功能和关系,从而推动生物学研究的进展。

gpl文件 基因名小数点

gpl文件 基因名小数点

gpl文件基因名小数点
GPL文件是指基因名小数点(Gene Placement Language)文件。

该文件用来描述基因组中各个基因的位置和相关信息。

基因是生物体
内部控制遗传特征的单位,而基因组则是描述一个生物体内全部基因
的集合。

基因名小数点文件是对基因组进行描述和记录的一种标准格式。

基因名小数点文件通常采用文本格式,使用中文来进行描述。


些文件中包含了基因的名称、位置、长度和其他相关信息。

通过分析
这些文件,科学家可以研究基因组的结构、功能和进化等方面的问题。

基因名小数点文件通过使用特定的格式和规范来组织数据。

一般
来说,基因名小数点文件按照一定的层次结构来组织基因信息,包括
基因组级别、染色体级别和基因级别等。

科学家可以通过查询基因名
小数点文件,了解特定基因的位置和相关信息,从而进一步研究该基
因的功能和调控机制。

总之,基因名小数点文件是描述基因组中基因位置和相关信息的
一种标准格式。

它为科学家研究基因组提供了重要的数据来源,有助
于我们更好地理解生物体内基因的分布和功能。

分子病理学考试试题

分子病理学考试试题

分子病理学考试试题一、单选题(每题 3 分,共 30 分)1、以下哪种技术不属于分子病理学常用的检测技术?()A 聚合酶链反应(PCR)B 免疫组织化学(IHC)C 电子显微镜技术D 基因测序2、基因突变的类型不包括()A 点突变B 染色体易位C 基因缺失D 基因重复3、以下哪种肿瘤标志物常用于肝癌的诊断?()A 甲胎蛋白(AFP)B 癌胚抗原(CEA)C 前列腺特异性抗原(PSA)D 糖类抗原 125(CA125)4、在分子病理学中,用于检测基因表达水平的常用技术是()A 荧光原位杂交(FISH)B 逆转录聚合酶链反应(RTPCR)C 蛋白质印迹法(Western blot)D 基因芯片技术5、以下哪种疾病与特定的基因融合有关?()A 慢性粒细胞白血病B 乳腺癌C 结肠癌D 胃癌6、微卫星不稳定性(MSI)常见于哪种肿瘤?()A 肺癌B 结直肠癌C 胰腺癌D 卵巢癌7、以下关于肿瘤抑制基因的描述,错误的是()A 正常情况下抑制细胞增殖B 突变后可能导致肿瘤发生C 其产物通常促进细胞生长D 包括 p53 基因等8、以下哪种分子改变与肿瘤的耐药性相关?()A 基因扩增B 基因甲基化C 蛋白质磷酸化D 以上都是9、在分子病理学中,用于检测 DNA 损伤的方法是()A 彗星试验B 流式细胞术C 细胞培养D 动物实验10、以下哪种病毒与宫颈癌的发生密切相关?()A 乙型肝炎病毒B 人乳头瘤病毒(HPV)C 单纯疱疹病毒D 巨细胞病毒二、多选题(每题 5 分,共 25 分)1、分子病理学在以下哪些方面发挥重要作用?()A 肿瘤的诊断B 疾病的预后评估C 个体化治疗方案的制定D 传染病的诊断2、以下哪些是常见的癌基因?()A ras 基因B myc 基因C erbB 基因D src 基因3、基因甲基化异常在肿瘤发生中的作用包括()A 抑制肿瘤抑制基因的表达B 激活癌基因的表达C 导致染色体不稳定D 影响 DNA 修复4、以下哪些技术可用于检测基因突变?()A 直接测序法B 焦磷酸测序法C 高分辨率熔解曲线分析D 等位基因特异性 PCR5、以下关于分子病理学研究方法的描述,正确的有()A 实验动物模型常用于研究疾病的发生机制B 细胞培养技术可用于研究基因功能C 生物信息学分析有助于处理和解读大量数据D 临床样本的收集和分析是研究的重要基础三、简答题(每题 15 分,共 45 分)1、简述分子病理学在肿瘤诊断中的应用及优势。

基因组注释stringtie

基因组注释stringtie

基因组注释stringtie基因组注释中 StringTie 的重要性StringTie 是一款流行的转录组装软件,专门用于从 RNA 测序(RNA-Seq) 数据中构建和注释基因组。

它通过将来自 RNA-Seq 读段的拼接信息与基因模型进行整合,提供了对转录组结构的深入了解。

StringTie 注释的优势使用 StringTie 进行基因组注释具有以下优势:全面性:StringTie 将 RNA-Seq 拼接信息与基因组信息相结合,从而产生综合的转录组注释,涵盖已知和新的转录本。

准确性:StringTie 的算法经过优化,可以准确地组装和注释转录本,最大限度地减少假阳性和假阴性。

灵活性:StringTie 可用于注释各种 RNA-Seq 数据集,包括单端和双端测序,并支持不同物种和转录组大小。

高通量:StringTie 可以快速高效地处理大量 RNA-Seq 数据,使其适用于大型转录组注释项目。

StringTie 注释的应用StringTie 注释在基因组学研究中具有广泛的应用,包括:基因发现:识别新的转录本和基因,有助于了解基因组复杂性。

同源异构体分析:表征不同同源异构体的表达水平和功能,提供对基因调控的见解。

差异表达分析:比较不同条件下的转录组,鉴定差异表达的基因和转录本,揭示疾病机制或环境反应。

非编码 RNA 分析:注释微小 RNA (miRNA)、长链非编码 RNA (lncRNA) 和其他非编码 RNA 转录本,阐明其在基因组调节中的作用。

StringTie 注释的局限性尽管 StringTie 是一款强大的工具,但它也有一些局限性需要考虑:拼接错误:RNA-Seq 拼接过程可能会引入错误,这可能会影响StringTie 注释的准确性。

基因组组装质量:StringTie 注释依赖于高质量的基因组组装,低质量的组装可能会导致错误的注释。

计算强度:StringTie 注释大型转录组数据集可能需要大量的计算资源和时间。

生命科学的新兴技术与方法

生命科学的新兴技术与方法

生命科学的新兴技术与方法生命科学是一门迅速发展的领域,涵盖了从基础研究到应用研究的广泛范围。

新兴技术与方法的不断涌现为生命科学领域带来了无限的可能性和挑战。

本文将介绍一些新兴技术与方法,分别是CRISPR基因编辑、单细胞测序、人造生命与机器学习。

CRISPR基因编辑技术CRISPR基因编辑技术是当今生命科学领域最为热门的技术之一。

它是一种精准的基因编辑技术,可以对DNA进行切割、添加、删除等操作,以实现对基因的准确编辑。

CRISPR技术的出现,推动了生命科学领域的快速发展。

它在研究基因表达调控机制、疾病基因治疗等方面都有着广泛的应用。

CRISPR基因编辑技术的开发者Jennifer Doudna和Emmanuelle Charpentier于2020年获得了诺贝尔化学奖,再一次证明了这一技术的重要性和价值。

单细胞测序技术传统的测序技术主要是针对大量的细胞进行分析,而单细胞测序技术则能够对单个细胞进行高通量测序,使得我们可以发现不同细胞之间的差异和变异,探索不同细胞的特征和功能的变异。

该技术已经广泛应用于研究细胞分化和发育过程、个体细胞基因表达的异质性和变异性、疾病细胞中的突变和异常等方面。

单细胞测序技术的应用还可以和其他生物信息学分析方法结合,如机器学习、人工智能等,以实现对细胞分析的更深层次和更准确的理解。

人造生命技术人造生命技术可以构建人造的细胞,具备类似于自然细胞的生命特征和功能。

这项技术的意义在于,它可以让我们更好地理解自然界中的生命现象,也可以开辟出新的生命科学应用领域。

人造细胞的应用可以涵盖生物医学研究、工业微生物、环境保护等多个方面。

据了解,许多机构和团队已经在进行人造细胞的研发,不过这项技术的发展仍然面临着种种的挑战。

例如,在构建基因编程的方面,实现细胞的可控性和可复制性等问题。

机器学习技术机器学习是一种人工智能的分支,其在生命科学领域的应用越来越广泛。

例如,机器学习可以用于建立基因组分析、疾病诊断、分子设计和蛋白质互作预测等模型。

【基因编辑】服务之二:CRISPRCas9基因敲入

【基因编辑】服务之二:CRISPRCas9基因敲入

【基因编辑】服务之⼆:CRISPRCas9基因敲⼊简介基因敲⼊(Gene Knock in)主要是通过随机整合、转座⼦系统、同源重组等⽅式将外源基因导⼊⾄机体内的基因组中,从⽽实现基因功能的缺失或过表达的⼀种技术⼿段。

但是早期使⽤的随机整合和转座⼦系统⽅式,很容易产⽣插⼊位置的不固定,导致⾮⽬标基因功能的丧失,因此利⽤CRISPR/Cas9 (Clustered Regularly Interspaced Short PalindromicRepeats/Cas9)Gene Knock in系统即可实现外源基因的定点敲⼊。

CRISPR/Cas9系统中sgRNA(small guide RNA)识别并结合⽬标基因的靶向序列,引导Cas9对结合位点进⾏剪切,产⽣DNA双链断裂(double-strand break, DSB),通过细胞内的同源重组(homologous recombination,HR)修复⽅式,将外源供体DNA定点导⼊⾄基因组的靶位点中,从⽽实现基因敲⼊(Gene Knock in)。

⽬前CRISPR/Cas9 Gene Knock in系统可⽤于⽬的基因引⼊点突变,从⽽模拟⼈类遗传疾病模型;或者将报告基因(如EGFP,mCherry,BFP等)通过同源重组的⽅式引⼊⽬的基因的特定位点,从⽽可以通过报告基因的表达跟踪⽬标基因的表达;亦或将功能缺失的DNA⽚段修复为有功能的DNA⽚段,即可实现基因治疗的⽬的。

此系统的应⽤范围不胜枚举,已成为⼈类⽣物学、医学、农业和微⽣物学等领域有⼒的基因编辑⼯具。

CRISPR/Cas9基因敲⼊⽰意图(Eric Murillo-Rodríguez et al., Sleep and Vigilance, 2018)应⽤CRISPR/Cas9基因⽚段敲⼊细胞系建⽴CRISPR/Cas9基因单碱基突变细胞系建⽴CRISPR/Cas9基因敲⼊建⽴动物疾病模型技术图解技术优势1. 操作简易:仅需Cas9核酸酶、sgRNA和供体DNA⽚段(donor),即可定点敲⼊外源基因⽚段;2. 效率⾼:在基因组⽔平上编辑⽬标基因,⾼度模拟⽬标模型,可精确编辑基因组;3. ⼴谱性:⽆物种限制、⽆细胞种类限制;4. 提供多种基因编辑病毒⼯具:AAV、LV;5. 提供 BSL-1 和 BSL-2 病毒注射及实验操作平台;6. 全⾯的实验技术⽀持。

《利用单细胞克隆胚胎转录组挖掘体细胞重编程新的分子标记》范文

《利用单细胞克隆胚胎转录组挖掘体细胞重编程新的分子标记》范文

《利用单细胞克隆胚胎转录组挖掘体细胞重编程新的分子标记》篇一一、引言随着生命科学技术的飞速发展,单细胞测序技术的出现为生物学研究带来了新的机遇。

其中,单细胞克隆胚胎转录组研究在体细胞重编程领域具有重要意义。

通过分析单细胞克隆胚胎的转录组数据,我们可以更深入地理解细胞重编程的分子机制,挖掘新的分子标记,为再生医学、疾病治疗等领域提供新的思路和方法。

本文旨在探讨利用单细胞克隆胚胎转录组挖掘体细胞重编程新的分子标记的方法和意义。

二、研究背景及意义体细胞重编程是指将已经分化的体细胞重新编程为多潜能的干细胞的过程。

这一过程对于再生医学、疾病治疗等领域具有重要意义。

然而,目前对于体细胞重编程的分子机制仍不完全清楚,这限制了其在实践中的应用。

因此,挖掘新的分子标记,进一步了解体细胞重编程的分子机制,对于推动相关领域的发展具有重要意义。

三、研究方法本研究采用单细胞克隆胚胎转录组技术,对体细胞重编程过程进行深入研究。

具体步骤如下:1. 采集体细胞样本,通过特定方法进行重编程处理,获得单细胞克隆胚胎。

2. 对单细胞克隆胚胎进行转录组测序,获取转录组数据。

3. 利用生物信息学方法,对转录组数据进行分析,挖掘与体细胞重编程相关的基因和分子标记。

4. 通过实验验证,评估新发现的分子标记在体细胞重编程中的应用价值。

四、实验结果与分析1. 转录组数据分析:通过对单细胞克隆胚胎的转录组数据进行分析,我们发现了一些与体细胞重编程相关的基因和分子标记。

这些基因和标记在重编程过程中表现出明显的变化趋势。

2. 分子标记验证:我们通过实验验证了新发现的分子标记在体细胞重编程中的应用价值。

结果显示,这些分子标记能够有效地反映体细胞的重编程状态,为进一步研究提供了新的思路。

3. 体细胞重编程机制探讨:结合转录组数据分析和实验验证结果,我们进一步探讨了体细胞重编程的分子机制。

发现了一些关键基因和信号通路在重编程过程中发挥重要作用。

五、讨论与展望本研究利用单细胞克隆胚胎转录组技术,成功挖掘了与体细胞重编程相关的新的分子标记。

林木育种中抗病基因的挖掘与利用考核试卷

林木育种中抗病基因的挖掘与利用考核试卷
林木育种中抗病基因的挖掘与利用考核试卷
考生姓名:__________答题日期:__________得分:__________判卷人:__________
一、单项选择题(本题共20小题,每小题1分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列哪种方法不常用于林木抗病基因的挖掘?()
1.抗病基因挖掘对提高林木抗病性、减少化学农药使用、保护生态环境具有重要意义。在现代林业中,抗病基因的应用有助于培育抗病新品种,提高木材产量和质量,促进林业可持续发展。
2.功能验证方法:转基因植株病害挑战实验。原理:将候选抗病基因转入植物体内,观察转基因植株在病原体挑战下的抗病表现。操作步骤:构建转基因载体,转化植物细胞,获得转基因植株,进行病原体挑战实验,分析抗病表现。
8.通过______技术,可以实现对林木抗病基因的精确定位和克隆。
9. ______是植物体内一种重要的抗病激素,能够诱导植物产生系统获得性抗性。
10.在林木抗病育种中,______和______是两种常用的育种策略。
四、判断题(本题共10小题,每题1分,共10分,正确的请在答题括号中画√,错误的画×)
19. C
20. A
二、多选题
1. BCD
2. AD
3. ABCD
4. ABCD
5. ABC
6. ABCD
7. ABCD
8. ABCD
9. ABCD
10. ABCD
11. ABCD
12. ABC
13. ABCD
14. ABCD
15. ABCD
16. ABCD
17. ABCD
18. ABCD
19. ABC
C.基因编辑
D.传统杂交育种

bioid邻域生物素化质粒构建

bioid邻域生物素化质粒构建

生物素化质粒构建在生物学研究中扮演着非常重要的角色。

它是一种利用生物素和生物素受体相互作用的技术,用于研究蛋白质-蛋白质、蛋白质-DNA和蛋白质-小分子相互作用。

通过将目标蛋白质或DNA序列与生物素化标签相连,可以实现对这些分子在细胞内外相互作用的研究。

生物素化质粒构建主要应用于以下几个方面:1. 分析蛋白质相互作用:通过将目标蛋白质与生物素化标签相连,可以用生物素受体进行亲和纯化,从而分离目标蛋白质相互作用的配体。

这种方法被广泛应用于蛋白质-蛋白质和蛋白质-DNA相互作用的研究中。

2. 实现融合蛋白的表达:将生物素标签加在目标蛋白的N端或C端,利用生物素-生物素受体的亲和作用可以帮助目标蛋白在表达宿主中得到更高的稳定性和纯度。

3. 分析小分子与蛋白质的相互作用:通过将小分子与生物素结合,可以通过生物素受体来研究小分子对蛋白质的作用,例如筛选新的药物靶标。

以筛选积累大量已验证的融合质粒,针对基因生物素化不同位置,创立munrich의途究研发。

回顾性来看,生物素化质粒构建技术在生命科学研究中扮演着至关重要的角色。

通过适当地结合生物素化标签,可以实现对多种生物分子相互作用的研究,为生物医学研究和药物研发提供了有力的工具和方法。

个人观点:生物素化质粒构建技术的发展和应用,为我们深入理解生物分子相互作用、药物靶点筛选和蛋白质表达纯化提供了重要的技术支持。

随着生物学研究的不断深入,相信生物素化质粒构建技术会有更广泛的应用和发展。

生物素化质粒构建技术是一种非常重要的生物学工具,在生命科学领域得到了广泛的应用。

它利用了生物素与生物素受体之间的特异性相互作用,可以实现对蛋白质-蛋白质、蛋白质-DNA和蛋白质-小分子相互作用的研究。

通过将生物素标签与目标蛋白或DNA相连,可以实现对这些分子在细胞内外相互作用的研究,从而有助于深入理解生物分子之间的相互作用及其在生物体内的功能。

生物素化质粒构建技术主要应用于分析蛋白质相互作用、实现融合蛋白的表达以及分析小分子与蛋白质的相互作用。

【高中生物】谁发明了基因编辑工具CRISPR

【高中生物】谁发明了基因编辑工具CRISPR

【高中生物】谁发明了基因编辑工具CRISPR【新闻事件】:1月4日美国证券交易委员会(sec)公布,crispr基因编辑公司editasmedicine递交了在纳斯达克挂牌上市的申请文件,计划募集1亿美元。

同一天人们也开始注意到,之前吵得沸沸扬扬关乎editas命脉的crispr专利战又有了一些变化:美国专利与商标局(pto)证实,责任审查员michellejoike建议由上诉委员会直接审核以加州大学伯克利分校jenniferdoudna和她的同事作为申请人的crispr专利申请。

这种叫做“interferenceproceeding”(专利抵触程序)的罕见专利审核程序意味着加州贝克莱的专利审核不再是传统意义上的专利授权,而是同时挑战之前已经授权的相关专利。

程序上也更象法庭设置,由专利申请人和被挑战的授权专利发明人在三位法官评判下“当面对质”,以便确认专利的最终授权,即挑战者可以接手已授权专利。

这样又把谁是“自dna双螺旋结构之后基因工程领域最大的科学发现”的发明人这一热门话题再次带入公众视野。

【药物来源分析】:CRISPR-CAS是一种在大多数细菌和古细菌中发现的天然免疫系统,可用于对抗入侵的病毒和外源DNA。

当原核生物遇到外源核酸,如病毒基因组或质粒时,一些原核生物将一部分短的外源序列整合到一个或多个CRISPR位点,然后CRISPR位点被转录成CRISPrRNA(crrnas)。

然后,Crrna将引导DNA切割酶cas9根据序列互补原则切割未来入侵的外源核酸序列。

因此,crispr-cas9基因编辑技术,俗称“魔剪”,由一个介导的RNA序列和一个DNA水解酶cas9组成,cas9可以附着在基因组上的几乎任何位置,case9蛋白切割DNA序列的一个特定位点,然后在这个位置删除或添加一个特定的DNA片段(比如电影剪接)。

因此,CRISPR-CAS在理论上不仅可以作为基础研究到新药开发的工具,而且可以修复突变的DNA,因此可以作为治疗某些遗传疾病的药物。

自然科学经典导引_武汉大学中国大学mooc课后章节答案期末考试题库2023年

自然科学经典导引_武汉大学中国大学mooc课后章节答案期末考试题库2023年

自然科学经典导引_武汉大学中国大学mooc课后章节答案期末考试题库2023年1.《惊人的假说》中,克里克认为人脑和计算机最关键的不同是参考答案:起源2.与克里克合作进行意识研究的科学家是参考答案:克里斯托弗·科赫3.下面哪一个不属于柏拉图的理型世界?参考答案:意见4.庞加莱认为几何学公理是()参考答案:约定5.庞加莱将科学假设分为()参考答案:三类6.以下哪项对于解析DNA结构有重要意义?参考答案:DNA的X光衍射照片7.以下哪项叙述是正确的?参考答案:沃森和克里克正确解析了DNA结构8.在哪种生物中首次得到“DNA是遗传物质”的这一结论?参考答案:肺炎双球菌9.根据达尔文的自然选择学说,下列叙述中正确的是参考答案:野兔毛皮具有与环境相似的保护色是自然选择的结果10.最能体现达尔文演化理论思想精华的是参考答案:自然选择11.根据柏拉图的《理想国》,以下哪种方式帮助人们通往可知世界?参考答案:教育12.下面哪一个不属于柏拉图的可知世界参考答案:想象13.理解柏拉图的“洞穴比喻”,下面表达不正确的是参考答案:可见世界是理型世界的摹本,与理型世界一样完美14.柏拉图在哪本对话录中提出了著名的“洞穴比喻”?参考答案:《理想国》15.博物学的研究方法不包括()参考答案:演绎16.以下有关性状趋异的描述,正确的是参考答案:一个物种的后代在结构、体质和习性上越趋异,就越能成功地生存17.以下有关性选择的描述,正确的是参考答案:自然界中能留下更多后代的个体,并不一定靠体格强壮18.以下有关自然选择的描述,正确的是参考答案:物种无论发生多么微小的有益变异,都将使其有更多生存和繁殖的机会19.以下哪种论述不属于达尔文的贡献参考答案:发现了遗传变异的原因20.对物种发生变化的原因和途径进行探讨的不包括参考答案:步封21.以下()与相对论理论无关。

参考答案:海王星的发现22.1905年爱因斯坦在他的论文()中介绍了狭义相对论。

基因敲出技术

基因敲出技术

基因敲出技术研究进展:
1956年,Whitten成功地使单细胞的受精卵在体外发育到囊胚 阶段。 1958年,诺贝尔奖得主Joshua Lederberg在细菌中首先证实 同源基因间重组的原理。 1965年,Brinster建立了微滴培养技术,用于着床前小鼠胚 胎的培养。 1970年,Stevens作为先驱者成功分离了小鼠畸胎瘤细胞并将 其作为模式体系研究胚胎细胞的全能性。 1975年,Gardner建立了将分离的细胞注射人宿主囊胚获得嵌 合体小鼠的方法。 1980年,Capecchi报道用玻璃针将DNA直接注射人细胞核可以 显著提高基因转移的效率。
Gene Knock-out
2007年诺贝尔生理学或医学奖颁给了在小鼠基因组建立 基因靶向改造技术的三位科学家:
美国科学家马里奥·卡佩奇 奥利弗·史密西斯
英国科学家马丁·埃文斯
该技术的诞生和发展,为人类攻克某些遗传因素引发的疾 病提供了药物试验的动物模型,因此它已成为了功能基因组 研究的核心方法。
基因敲除技术的过程 ①基因载体的构建 ②ES细胞的获得 ③同源重组 ④选择筛选已击中的细胞
⑤表型研究:
⑥得到纯合体
基因敲除技术的应用
(1)建立人类疾病的转基因动物模型,为医学研究提供材料 : 如1992年成功建立了CFTR基因的基因敲除的CF(囊性 纤维化疾病)小鼠模型, (2)治疗遗传病,即基因治疗: 包括去除多余基因或修饰改造原有异常基因以达到治 疗的目的,如AD。 (3)改造动物基因型,鉴定新基因和/或其新功能,研究发育 生物学: 目前已报道了多种学习、记忆以及一些有缺陷的基因 敲除动物,发现多种基因在学习、记忆的形成过程中必不 可少。 (4)改造生物、培育新的生物品种: 定点改造原有的基因功能,使生物获得优良的性状, 并且可以避免由于外基因在基因组中随机整合可能带来 源 的不利影响。对动植物生殖细胞或早期胚胎干细胞的基因 进行修饰改造,可以产生一些人类需要的新品种。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Genetic Programming with One-Point Crossover and PointMutationRiccardo Poli and ngdonSchool of Computer ScienceThe University of Birmingham(UK)E-mail:R.Poli,ngdon@AbstractIn recent theoretical and experimental work on schemata in genetic programming we have proposed a new simpler form of crossover in which the same crossover point is selected in both parent programs.We call thisoperator one-point crossover because of its similarity with the corresponding operator in genetic algorithms.Onepoint crossover presents very interesting properties from the theory point of view.In this paper we describe thisform of crossover as well as a new variant called strict one-point crossover highlighting their useful theoreticaland practical features.We also present experimental evidence which shows that one-point crossover comparesfavourably with standard crossover.1IntroductionGenetic Programming(GP)has been applied successfully to a large number of difficult problems like automatic design,pattern recognition,robotic control,synthesis of neural architectures,symbolic regression,image analysis, natural language processing,etc.[6,7,5,8,1,14,16,15,13].However,only a relatively small number of theoretical results are available which try and explain why and how it works(see[10,pages517–519]for a list of references).Holland’s schema theorem(see[4]and[3])is often used to explain why genetic algorithms(GAs)work.For binary GAs,a schema is a string of symbols taken from the alphabet0,1,#.The character#is a“don’t care”symbol,so that a schema can represent several bit strings.One way of creating a theory for GP is to define a concept of schema for parse trees and to extend the GA schema theorem.Unfortunately,until very recently the efforts in this direction have given limited results.In the last few years alternative definitions of schema have been proposed[6,12,20].All these definitions are based on the idea that a schema is composed of one or more trees or fragments of trees and that each schema represents all the programs in which such trees or tree fragments are present.These notions of schema have led to some theoretical results which,however,have a limited explanatory power.There is a simple explanation for this.A schema is a subspace of the space of possible solutions,ideally represented using some concise notation (rather than enumerating all the solutions it contains).A population of strings or programs samples many sub-spaces in parallel.A schema theorem is an attempt to explain which subspaces will be sampled at the next generation.So,the crucial feature for schemata to be useful in explaining how GP searches is that their definition must make the effects of selection,crossover and mutation comprehensible and relatively easy calculate.The problem with the definitions of schema for GP mentioned above is not that they are not clear or concise,it is that they make the effects on schemata of the genetic operators used in GP too difficult to evaluate mathematically.In recent work[18]we have reconsidered all this and proposed a new definition of schema for GP which is very close to the original concept of schema in GAs.We define a schema as a tree composed of functions from the set and terminals from the set,where and are the function set and the terminal set used in a GP run.The symbol is a“don’t care”symbol which stands for a single terminal or function.Therefore,a schema represents programs having the same shape as and the same labels for the non-nodes.For example,the schema(AND(=x y)=)represents the programs(AND(OR x y)z),(AND(AND x y)x),etc. but not(OR(AND x y)z)or(AND(AND x y)(OR x z)).While this definition is simpler than others,it is still very difficult to model mathematically the effects on schemata of standard crossover.This prompted us tofind a more natural form of crossover for GP which was1mathematically in tune with our definition of schema.The similarity between our GP schemata and the original GA schemata,suggested to us a new form of crossover for GP,which we called one-point crossover,in which the same crossover point is selected in both parents(see Section2).This is very similar to one-point crossover for bit strings where a common crossover point is selected in both parents and the offspring are produced by swapping the bits on the right or the left of the crossover point.We also chose a simple form of mutation,point mutation, in which a function in the tree is substituted with another function with the same arity or a terminal is substituted with another terminal[11].With these genetic operators we were able to derive very naturally a schema theory[18]which has a consid-erable explanatory power(see Appendix A).Indeed,the predictions of the theory have been later corroborated by an experimental study[17]on the creation,propagation and disruption of GP schemata in small populations using the XOR problem.In this paper we experimentally study the performance of our genetic operators and compare them to standard GP on larger parity problems.The paper is organised as follows.In Section2we describe one-point crossover as well as a new variant called strict one-point crossover and we discuss their properties.In Section3,we present experimental evidence which shows that both forms of one-point crossover compare favourably with standard crossover on the even-3, 4and5parity problems.Finally,we draw some conclusions and we give indications of future work in Section4. Appendix A summarises our schema theorem for GP.2One-Point CrossoverOne-point crossover works by selecting a common crossover point in(copies of)the parent programs and then swapping the corresponding subtrees like standard crossover.If the parents had always the same size and shape, this operation could be performed in a single stage,by selecting any link as the crossover point.However,in order to account for the possible structural diversity of the two parents,one-point crossover requires two phases: (a)first the two parent trees are traversed to identify the parts with the same shape,i.e.with the same arity inthe nodes encountered traversing the trees from the root node,then(b)a random crossover point is selected with a uniform probability among the links belonging to the commonparts identified in step(a).Figure1illustrates the behaviour of one point crossover.It is worth noting how the offspring produced inherit the common structure(emphasised with thick lines)of the upper part of the parents.(One-point crossover has some similarity to the strong context preserving crossover operator proposed in[2]but context preserving crossover is less restrictive than one-point crossover as to which links can be selected as crossover points.) One-point crossover has a very important property:it makes the calculations necessary to model the disruption of GP schemata feasible.This means that it is possible to study in detail its effects on different kinds of schemata and to obtain a schema theorem.This tells us how the GP search proceeds by predicting which areas of the search space have a high probability of being sampled by the programs in a generation given the programs in the previous one.Appendix A summarises our GP schema theorem.More on it can be found in[18]and[17].Here we want only to recall the most important predicted and observed effect of one-point crossover:unlike standard crossover, in the absence of mutation,one-point crossover makes the population converge quite quickly like a standard GA (in some cases with help from genetic drift).The reason for this is probably that until a large-enough proportion of the population has exactly the same structure in the upper parts of the tree,the probability of selecting a crossover point in the lower parts will be very small.This effectively means that until a common upper structure is found,one-point crossover is actually searching a much smaller space of(approximately)fixed-size structures. Therefore,GP behaves like a GA searching for a partial solution(i.e.a good upper part)in a relatively small search space.This means that the algorithm converges and a common upper part is quickly found,which cannot later be modified unless mutation is present.At that point the search concentrates on slightly lower levels in the tree with a similar behaviour,until level after level the entire population has completely converged.So,one-point crossover transforms a large search in the original space containing programs with different sizes and shapes into a sequence of smaller quick searches in space containing structures offixed size and shape.PARENTSFigure1:One-point crossover(potential crossover locations are shown in bold).An important consequence of the convergence property of GP with one-point crossover is that that like in GAs mutation becomes a very important operator to prevent premature convergence and to maintain diversity.In addition to the theory-related properties mentioned above,one-point crossover offers another very important property from the practice point of view:it does not increase the depth of the offspring beyond that of their parents, and therefore beyond the maximum depth of the initial random population.This is can be very useful to avoid the typical undesirable growth of program size(bloating)observed in GP runs(see for example[9]),which slows down the search for solutions and,in some cases,can lead to overfitting.One-point crossover does this without the need of any extra machinery(e.g.parsimony terms in thefitness function).Similarly,one-point crossover will not produce offspring whose depth is smaller than that of the shallowest branch in their parents and therefore than the smallest of the individuals in the initial population.This means that the search performed by GP with one-point crossover and point mutation is limited to a subspace of programs defined by the initial population. Therefore,the initialisation method and parameters chosen for the creation of the initial population can modify significantly the behaviour of the algorithm.For example,if one uses the“full”initialisation method[6]which produces balanced trees with afixed depth,then the search will be limited to programs with afixed size and shape. If on the contrary the“ramped half-and-half”initialisation method is used[6],which produces trees of variable shape and size with depths ranging from0to the prefixed maximum initial tree depth,then the entire space of programs with maximum depth will be searched(at least if the population is big enough).An interesting variant of one-point crossover,which we call strict one-point crossover,behaves exactly like one-point crossover except that the crossover point can be located only in the parts of the two trees which have exactly the same structure(i.e.the same functions in the nodes encountered traversing the trees from the root node).The links eligible as crossover points in strict one-point crossover are a subset of those eligible in standard one-point crossover.Figure2illustrates the behaviour of strict one-point crossover.In this case the offspring produced inherit both the structure and the nodes(emphasised with thick lines)of the upper part of the parents.Strict one-point crossover has the same properties as one-point crossover but it more energetically forces the population to converge.This can be understood considering that until a large-enough proportion of the population has exactly the same nodes in the upper parts of the tree,the search will not be able to proceed to lower levels. Strict one-point crossover transforms the original search into a sequence of quick searches in spaces of structures offixed size and shape which are even smaller than those used by one-point crossover.PARENTSFigure2:Strict one-point crossover(potential crossover locations are shown in bold).In the case of strict one-point crossover the search seems to proceed very similarly to the search performed by a GA with Dynamic Parameter Encoding(DPE)[19],a technique for overcoming the precision/speed dilemma when encoding real-valued parameters with binary strings.In DPE the resolution of the encoding of one parameter is increased at run time when the most significant bit of such parameter has(nearly)converged in the whole population.A difference is that in GP with strict one-point crossover the search zooms into the subtrees of a converged node automatically,without the need for maintaining global convergence statistics.The convergence property of the two forms of one-point crossover has been observed in real runs with the XOR problem[17].Figure3shows the diversity in the population(averaged over10independent runs)as a function of the generation number for standard crossover and for the two types of one-point crossover in the absence of mutation(the experimental conditions are as in[17]).It is quite clear that standard crossover does not lead to convergence,while one-point crossover does.3Experimental ResultsThe behaviour of the two forms of one-point crossover introduced in the previous section has been studied and compared to standard crossover in over3,000runs on the even-parity problems with=3,4and5,which have been extensively studied in the GP literature[6,7].An even-parity problem consists offinding a combination of functions from the set=OR,AND,NOR, NAND and terminals from the set=x1,x2,x3,...,xn which returns true if an even number of the inputs xi is true and false otherwise.Thefitness function for this class of problems is simply the number of entries of the truth table of the even-parity function correctly represented by each program.Given the importance of the initial population and the expected need for mutation to maintain diversity when using one-point crossover,we decided to test the performance of GP with different initial depths and different point mutation probabilities.In these experiments we used a crossover probability of0.7,tournament selection with tournament size7,no depth or size limit(for standard crossover only),and the“ramped-half-and-half”initialisation method.The population size was1,000,the maximum number of generations was50.In the tests we used the following mutation probabilities per node:=0,1/256,1/128,1/64,1/32,1/16.For the even-3parity problem we used initial depths and,while for the even-4parity problem we used and. For each combination of parameters we tried standard crossover,one-point crossover,strict one-point crossover411010005101520253035404550D i f f e r e n t I n d i v i d u a l s Generation Normal Crossover, D=2Normal Crossover, D=3One-point Crossover, D=2One-point Crossover, D=3Strict One-point Crossover, D=2Strict One-point Crossover, D=3Figure 3:Plot of the number of different programs in a population of 50individuals vs.generation number for the XOR problem.The data (averaged over 10runs with different random seeds)for standard crossover,one-point crossover and strict one-point crossover with maximum initial depth =2and 3are show.and mutation only (when applicable).We repeated 20runs using different random seeds for each combination of parameters and operators.To assess the performance of the various operators we used the computational effort used in the GP literature (is the minimum number of fitness evaluations necessary to get a correct program,in multiple runs,with probability 99%).We also measured the average size of the solutions found.On the even-parity problems Koza [6,7]obtained the results shown in Table 1(we report them for an easier comparison with our experiments).Table 2describes the results of our experiments.The experiments show that the maximum size of the initial population,a parameter largely ignored by the GP literature,has a considerable effect on the computational effort required to solve the problem.This is particularly true for the experiments with the two forms of one-point crossover and with point mutation only,as these oper-ators cannot expand the search space determined by the initial population.For example,the effort for one-point crossover to find solutions to the even-3parity problem becomes nearly 13times smaller if the maximum depth is increased from 4to 6.As expected from our schema theory and the previous experiments with the XOR problem,the experiments suggest that both forms of one-point crossover suffer from premature convergence in the absence of mutation.For example,no solutions where obtained to the even-4parity problem in the 80runs using either form of one-point crossover.The situation changes considerably if point mutation is present.Indeed,if the maximum depth of the initial population is appropriate and the right amount of point mutation is present one-point crossover can do up to 10times better than standard GP without ADFs on the even-3parity problem and up to 3times better on the even-4parity problem.This happens because point mutation can counteract the excessive convergence tendency of one-point crossover.As shown by Table 3,this positive effect cannot be obtained by simply reducing the selective pressure using tournament selection with tournament size 2.Interestingly,point mutation improves performance considerably also when standard crossover is used.For example,the even-4parity problem becomes 5times easier with mutation rates as small as 1node out of 256.Given that standard crossover is very disruptive and does not allow the convergence of the population,it is arguablethat point mutation in this case helps settling into the narrow minima of thefitness function which need to be reached with small changes.These are very unlikely produced by standard crossover alone.Point mutation performs very well on these problems even in the absence of crossover,and in some cases it outperforms GP with crossover(although these results need to be corroborated with larger numbers of runs).In all cases there seem to be an optimal mutation probability somewhere between1/128and1/32which is problem and depth dependent.By computing the product of the average size of the solutions obtained with the best mutation rate and the mutation rate for each combination of and,it is possible to infer that the ideal mutation probability is very close to2divided by the size of the tree.We checked this hypothesis on theeven-3,4and5parity problems using a mutation scheme in which exactly two random nodes are mutated in each individual,i.e.in which the mutation probability is variable.The results of these experiments(averages of20 runs)are shown in Table4.These results seem to suggest that a variable mutation probability is in general very beneficial,in particular for strict one-point crossover.Indeed,with variable mutation probability strict one-point crossover outperforms all other settings tried in our experiments and requires a computational effort up to10times smaller than for standard GP without ADFs.For the even-4parity problem the computational effort is even smaller than for standard GP with ADFs.Given the considerable effect of the maximum initial depth in all the combinations and settings of the operators used in our experiments,we decided to check the effects of the initialisation method,too.Table5shows the results obtained using the“full”initialisation method on the even-3parity problem.Despite the fact that all trees have exactly the same shape(all the functions in the function set have the same arity)and that the search is much more constrained,the effects of starting from a population of larger individuals are striking:in nearly all cases the results are significantly better than those in Table1.In particular for=6,nearly any choice of operators and mutation rates leads to speed-ups of10to15times with respect to standard GP,the best results being obtained with variable mutation rates.4ConclusionsIn this paper we have described two forms of crossover,one-point crossover and the new strict one-point crossover, which,thanks to constraints on the selection of crossover points,transmit to the offspring many of the common features of their parents.These forms of crossover have several interesting properties.From the theory point of view they allow the derivation of a more explanatory schema theorem in which the effects of crossover on schemata are mathematically modelled.From the practice point of view,one-point crossover eliminates the bloating problem directly and naturally and force the population to converge like in standard GAs.In the paper we have presented thefirst experimental evidence which shows that one-point crossover compares favourably with standard crossover as long as the initial population has the correct depth and premature conver-gence is prevented by using point mutation.Interestingly,in our study point mutation seemed a very beneficial operator also when used with standard crossover,in particular when the mutation probability was size-dependent. Surprisingly,point mutation did very well on the even-parity problems even in the absence of crossover.Future research will be necessary to confirm these results for other classes of problems.AcknowledgementsThe authors wish to thank the members of the EEBIC(Evolutionary and Emergent Behaviour Intelligence and Computation)group for useful discussions and comments.This research is partially supported by a grant under the British Council-MURST/CRUI agreement and by a contract with the Defence Research Agency in Malvern.6Even-3,4and5Parity Problem(Koza’s Results)Population Size Even-3Even-51,276,000(N/A)80,000(N/A)16,000,no ADFs96,000(45)6,528,000(300)16,000,with ADFs64,000(48)464,000(157)Table1:Computational effort and average solution size(in parenthesis)for standard GP with and without ADFs reported by Koza in[6,7].Even-3Parity ProblemDepth1-pt Crossover Mutation Only4308,000(24)N/A1/25639,000(63)810,000(31)4110,000(27)396,000(31) 1/6432,000(46)315,000(29)4128,000(27)147,000(31) 1/1654,000(54)133,000(28)024,000(86)270,000(88)627,000(77)54,000(92) 1/12815,000(101)28,000(75)610,000(81)25,000(79)1/3216,000(100)9,000(87)642,000(67)28,000(80)Even-4Parity ProblemDepth1-pt Crossover Mutation Only6No Solution N/A1/256238,000(215)725,000(119)6507,000(98)220,000(122) 1/64195,000(154)136,000(105)6598,000(91)510,000(83) 1/16No Solution No Solution0812,000(271)No Solution8189,000(296)319,000(370) 1/128120,000(382)129,000(302)8144,000(287)105,000(210) 1/321,131,000(188)500,000(127)8No Solution No SolutionTable2:Computational effort and average solution size(in parenthesis)as a function of the genetic operators used,the mutation probability and the maximum depth of the initial programs.7Even-4Parity Problem(Tournament Size=2)Depth1-pt Crossover Mutation Only6No Solution N/A1/128No Solution2,024,000(87)01,392,000(439)No Solution83,780,000(115)No Solution Table3:Computational effort and average solution size as a function of the genetic operators used,with and without point mutation,for two different maximum depths of the initial programs when the tournament size is reduced to2.Even-3Parity Problem(Variable Mutation Probability)Depth1-pt Crossover Mutation Only444,000(28)64,000(31) 2/Size12,000(105)8,000(101)Normal Crossover Strict1-pt Crossover2/Size156,000(283)99,000(119)8168,000(334)196,000(328)Even-5Parity Problem(Variable Mutation Probability)Depth1-pt Crossover Mutation Only8Not tested Not tested 2/Size Not tested730,000(660)Normal Crossover Strict1-pt Crossover028,000(45)220,000(31)470,000(31)572,000(31) 1/12816,000(41)121,000(31)463,000(31)84,000(31) 1/3218,000(40)22,000(31)439,000(31)26,000(31)440,000(31)42,000(31)618,000(127)N/A1/25610,000(131)7,000(127)66,000(127)8,000(127) 1/646,000(133)5,000(127)66,000(127)5,000(127) 1/1610,000(128)9,000(127)2/Size5,000(140)5,000(127)A Schema Theorem for Genetic Programming with One-point Crossoverand Point MutationIn order to understand the importance of one-point crossover from the theory point of view it is necessary to introduce some additional definitions(see[18]and[17]for a more details on our schema theory).The number of non-symbols in a schema is called the order of the schema,while the total number of nodes in the schema is called the length of the schema.The number of links in the minimum subtree including all the non-symbols within a schema is called the defining length of the schema.For example,the schema (AND(=y=)x)has order3and defining length3.Our GP schema theorem provides the following lower bound for the expected number of individuals sampling a schema at generation for GP with one-point crossover and point mutation:where is the number instances of the schema in the population at generation,is the mean fitness of the instances of,is the meanfitness of the programs in the population,is the crossover probability,is the expected-value operator,is the mutation probability(per node),is the zero-th order schema with the same structure of where all the defining nodes in have been replaced with“don’t care”symbols,is the number of individuals in the population,is the conditional probability that is disrupted by crossover when the second parent has a different shape(i.e.does not sample).The zero-order schemata’s represent different groups of programs all with the same shape and size.For this reason we call them hyperspaces of programs.We denote non-zero-order schemata with the term hyperplanes,as they can be seen as sub-spaces of the spaces of programs identified by different’s.Our schema theorem is more complicated than the corresponding version for GAs[3,4,21].This is due to the fact that in GP the trees undergoing optimisation have variable size and shape.This is accounted for by the presence of the terms and,which summarise the characteristics of the programs belonging to the same hyperspace in which is a hyperplane.However,both the theoretical analysis presented in[18]and the experimental work in[17]suggest that after afirst phase in which GP really behaves differently from a standard GA,the number of hyperspaces is considerably reduced and GP behaves like a GA,i.e.the GP schema theorem asymptotically tends to the GA schema theorem.References[1]Peter J.Angeline and K.E.Kinnear,Jr.,editors.Advances in Genetic Programming2.MIT Press,Cam-bridge,MA,USA,1996.[2]Patrik D’haeseleer.Context preserving crossover in genetic programming.In Proceedings of the1994IEEEWorld Congress on Computational Intelligence,volume1,pages256–261,Orlando,Florida,USA,27-29 June1994.IEEE Press.[3]David E.Goldberg.Genetic Algorithms in Search,Optimization,and Machine Learning.Addison-Wesley,Reading,Massachusetts,1989.[4]John Holland.Adaptation in Natural and Artificial Systems.MIT Press,Cambridge,Massachusetts,secondedition,1992.[5]K.E.Kinnear,Jr.,editor.Advances in Genetic Programming.MIT Press,1994.[6]John R.Koza.Genetic Programming:On the Programming of Computers by Means of Natural Selection.MIT Press,1992.9[7]John R.Koza.Genetic Programming II:Automatic Discovery of Reusable Programs.MIT Pres,Cambridge,Massachusetts,1994.[8]John R.Koza,David E.Goldberg,David B.Fogel,and Rick L.Riolo,editors.Genetic Programming1996:Proceedings of the First Annual Conference,Stanford University,CA,USA,28–31July1996.MIT Press.[9]ngdon and R.Poli.Fitness causes bloat.Technical Report CSRP-97-09,University of Birmingham,School of Computer Science,Birmingham,B152TT,UK,24February1997.[10]William ngdon.A bibliography for genetic programming.In Peter J.Angeline and K.E.Kinnear,Jr.,editors,Advances in Genetic Programming2,chapter B,pages507–532.MIT Press,Cambridge,MA,USA, 1996.[11]Ben McKay,Mark J.Willis,and Geoffrey ing a tree structured genetic algorithm to performsymbolic regression.In A.M.S.Zalzala,editor,First International Conference on Genetic Algorithms in Engineering Systems:Innovations and Applications,GALESIA,volume414,pages487–492,Sheffield,UK, 12-14September1995.IEE.[12]Una-May O’Reilly and Franz Oppacher.The troubling aspects of a building block hypothesis for geneticprogramming.In L.Darrell Whitley and Michael D.V ose,editors,Foundations of Genetic Algorithms3, pages73–88,Estes Park,Colorado,USA,31July–2August19941995.Morgan Kaufmann.[13]Riccardo Poli.Evolution of recursive transistion networks for natural language recognition with paralleldistributed genetic programming.Technical Report CSRP-96-19,School of Computer Science,University of Birmingham,B152TT,UK,December1996.Presented at AISB-97workshop on Evolutionary Computation.[14]Riccardo Poli.Genetic programming for image analysis.In John R.Koza,David E.Goldberg,David B.Fogel,and Rick L.Riolo,editors,Genetic Programming1996:Proceedings of the First Annual Conference, pages363–368,Stanford University,CA,USA,28–31July1996.MIT Press.[15]Riccardo Poli.Discovery of symbolic,neuro-symbolic and neural networks with parallel distributed ge-netic programming.In3rd International Conference on Artificial Neural Networks and Genetic Algorithms, ICANNGA’97,1997.[16]Riccardo Poli and Stefano Cagnoni.Evolution of psuedo-colouring algorithms for image enhancement withinteractive genetic programming.Technical Report CSRP-97-5,School of Computer Science,The University of Birmingham,B152TT,UK,January1997.To be presented at GP-97.[17]Riccardo Poli and ngdon.An experimental analysis of schema creation,propagation and disruptionin genetic programming.Technical Report CSRP-97-8,University of Birmingham,School of Computer Science,February1997.To be presented at ICGA-97.[18]Riccardo Poli and ngdon.A new schema theory for genetic programming with one-point crossoverand point mutation.Technical Report CSRP-97-3,School of Computer Science,The University of Birming-ham,B152TT,UK,January1997.To be presented at GP-97.[19]N.N.Schraudolph and R.K.Belew.Dynamic parameter encoding for genetic algorithms.Machine Learning,9(1):9–21,1992.[20]P.A.Whigham.A schema theorem for context-free grammars.In1995IEEE Conference on EvolutionaryComputation,volume1,pages178–181,Perth,Australia,29November-1December1995.IEEE Press. [21]Darrel Whitley.A genetic algorithm tutorial.Technical Report CS-93-103,Department of Computer Science,Colorado State University,August1993.10。

相关文档
最新文档