Derivative corrections to Dirac-Born-Infeld and Chern-Simon actions from Non-commutativity
2007年诺贝尔生理学或医学奖简介
・诺贝尔奖工作回顾・小鼠基因修饰基本原理及其在医学研究中的应用———2007年诺贝尔生理学或医学奖及其相关工作介绍汤富磊1 冯 娟2(1北京大学精神卫生研究所,北京100083;2北京大学医学部生理学与病理生理学系,北京100083) 2007年10月8日,瑞典皇家卡罗琳医学研究院诺贝尔生理学或医学奖评审委员会宣布,美国科学家Mari o R .Capecchi 、O liver S m ithies 和英国科学家Martin J.Evans 在“涉及使用胚胎干细胞进行小鼠特定基因修饰方面的一系列突破性发现”[1]而获得2007年度诺贝尔生理学或医学奖(图1)。
图1 2007年度诺贝尔生理学或医学奖获得者Mari o R.Capecchi 1937年出生于意大利。
1967年获哈佛大学生物物理学博士学位,长期担任美国犹他大学人类遗传学和生物学教授,同时在霍华德2休斯医学研究所(Howard 2Hughes Medical I nstitute )工作。
O liver S m ithies 1925年出生于英国。
1951年获牛津大学生物化学博士学位,现在美国北卡罗来纳大学教会山分校工作。
Mari o R.Capecchi 和O li 2ver S m ithies 分别独立地发现了利用两段DNA 片段的同源重组可以对哺乳动物基因组进行可控的基因修饰。
Martin J.Evans1941年出生于英国,1963年从剑桥大学毕业后进入伦敦学院解剖与胚胎系攻读博士学位。
现在英国加的夫大学担任哺乳动物遗传学教授。
1981年,Evans 从小鼠胚胎中成功地分离出未分化的胚胎干细胞,这些细胞是生物成体所有细胞的来源。
他还建立了一系列基本技术,包括对胚胎干细胞进行细胞培养、遗传操作,以及将遗传改造过的胚胎干细胞转入代孕母鼠体内以产生经遗传操作的后代。
上述三位科学家的工作,使人们可以在哺乳动物的生殖细胞中进行特定的基因改造,并繁殖出成功表达这种新基因的后代。
分子对接参考文献
Synthesis and SAR of 20,30-bis-O -substituted N 6,50-bis-ureidoadenosine derivatives:Implications for prodrug delivery and mechanism of actionJadd R.Shelton a ,Christopher E.Cutler a ,Megan S.Browning a ,Jan Balzarini b ,Matt A.Peterson a ,⇑a Department of Chemistry and Biochemistry,Brigham Young University,Provo,UT 84602-5700,United States bRega Institute for Medical Research,KU Leuven,B-3000Leuven,Belgiuma r t i c l e i n f o Article history:Received 5June 2012Revised 1August 2012Accepted 13August 2012Available online 21August 2012Keywords:Purine nucleosidesBio-active adenosine derivatives Antiproliferative nucleosides BMPR1b inhibitorsa b s t r a c tA series of 20,30-bis-O -silylated or -acylated derivatives of lead compound 3a (20,30-bis-O -tert -butyldi-methylsilyl-50-deoxy-50-(N -methylcarbamoyl)amino-N 6-(N -phenylcarbamoyl)adenosine)were prepared and evaluated for antiproliferative activity against a panel of murine and human cancer cell lines (L1210,FM3A,CEM,and HeLa).20,30-O -Silyl groups investigated included triethylsilyl (10a ),tert -butyldi-phenylsilyl (10b ),and triisopropylsilyl (10c ).20,30-O -Acyl groups investigated included acetyl (13a ),ben-zoyl (13b ),isobutyryl (13c ),butanoyl (13d ),pivaloyl (13e ),hexanoyl (13f ),octanoyl (13g ),decanoyl (13h ),and hexadecanoyl (13i ).IC 50values ranged from 3.0±0.3to >200l g/mL,with no improvement relative to lead compound 3a .Derivative 10a was approximately equipotent to 3a ,while compounds 13e –g were from three to fivefold less potent,and all other compounds were significantly much less active.A desilylated derivative (50-deoxy-50-(N -methylcarbamoyl)amino-N 6-(N -phenylcarbamoyl)adeno-sine;5)and several representative derivatives from each subgroup (10a –10c ,13a –13c )were screened for binding affinity for bone morphogenetic protein receptor 1b (BMPR1b).Only compound 5showed appre-ciable affinity (K d =11.7±0.5l M),consistent with the inference that 3a may act as a prodrug depot form of the biologically active derivative 5.Docking studies (Surflex Dock,Sybyl X 1.3)for compounds 3a and 5support this conclusion.Ó2012Elsevier Ltd.All rights reserved.As part of research directed toward the design,synthesis,and biological evaluation of potential inhibitors of HIV integrase,we discovered potent antiproliferative activities associated with a new class of N 6,50-bis-ureidoadenosine derivatives exemplified by compounds 1–3(Fig.1).1IC 50values for 1–3a (R =Ph)ranged from approximately 1–8l M against a majority of the human cancer cell lines in the NCI-60.IC 50values for 3b –i ranged from 3–182l g/mL against a panel of tumor cell lines consisting of murine leukemia (L1210),murine mammary carcinoma (FM3A),human T-lympho-cyte (CEM),and human cervix carcinoma (HeLa).Preliminary SAR studies revealed that for optimal cytostatic activities (low l M),the N 6-and 50-urea moieties are required,and substitution with at least one 20(30)tert -butyldimethylsilyl (TBS)group is also neces-sary.Interestingly,compounds 5and 6were essentially inactive against the NCI-60screen at 10l M concentrations.Similarly,50-carbamates 4a –i were significantly less active than the analogous 50-ureas (3a –i )against L1210,FM3A,CEM,and HeLa—in spite of the fact that 4a –i possess nearly identical substitutions as the 50-ureas.1aThe above observations support the conclusion that the 20,30-O-TBS groups are necessary,but not sufficient,for biological activity and have prompted us to investigate the role of the 20,30-O -substi-tution in this class of compounds.Herein we report the synthesis and antiproliferative activities for a series of variously substituted 20,30-O -derivatives of the most potent of these compounds (3a ),and draw preliminary conclusions from the mechanistic implica-tions of this SAR study.The synthesis begins with 50-azido-50-deoxyadenosine (7)and gives 20,30-bis-O -silylated or 20,30-bis-O -acylated products in good to excellent yields (Scheme 1).The synthesis is very straightforward and is amenable to scale-up.Silylation of 7with triethylsilylchlo-ride,tert -butyldiphenylsilylchloride,or triisopropylsilylchloride gave compounds 8a –c in 42–60%yield.Acylation of compounds 8a –c with phenylisocyanate gave N 6-phenylurea derivatives 9a –c (54–82%).A one-pot,two-step reaction sequence involving reduc-tion of the 50-azido group of compounds 9a –c followed by acylation with the relatively safe and innocuous methylisocyanate surrogate,N-methyl p -nitrophenylcarbamate,2gave 10a –c in 66–77%yield.20,30-Bis-O -acylated compounds 13a –c and 13d –i were obtained via two different pounds 13a –c were obtained in good yields via a five-step protocol analogous to the one employed in preparing 10a –c .However,the more lipophilic 20,30-bis-O -acylated compounds 13g –i were obtained in very low yields following this procedure.An alternative route involving one step from compound 5was investigated.This route was generally much more efficient,0960-894X/$-see front matter Ó2012Elsevier Ltd.All rights reserved./10.1016/j.bmcl.2012.08.050Corresponding author.E-mail address:matt_peterson@ (M.A.Peterson).and yields for13d–i ranged from46–63%(the highest yield for13e was26%,even with this more efficient method,presumably due to the steric bulk of the pivaloyl esters).As a point of comparison,only trace amounts of13i were obtained when thefive-step sequence—steps e,f,b,c,and d—was attempted.Finally,compounds14a–c were obtained in moderate to good yields(31–66%)by treating 11a–c with the aforementioned one-pot,two-step reduction/acyla-tion(steps c and d).The antiproliferative activities for compounds 3a,4a,10a–c,13a–i,and14a–c are shown in Table1.Interestingly, the IC50values for20,30-bis-O-triethylsilyl derivative10a were very similar to those for the20,30-bis-O-TBS derivative3a.In contrast, IC50values for20,30-bis-O-tert-butyldiphenylsilyl and/or20,30-bis-O-triisopropylsilyl derivatives(10b and10c,respectively),were significantly inferior to3a.Acyl derivatives13a–i were generally much less active than3a,especially the O-benzoyl,O-decanoyl, and O-hexadecanoyl derivatives(13b,13h,and13i,respectively). The O-pivaloyl,O-hexanoyl,and O-octanoyl derivatives(13e,13f, and13g,respectively)exhibited nearly equivalent antiproliferative activities,but IC50values for these compounds were from three to fivefold higher than those for pounds14a–c (each of which lacks the N6-phenylurea)showed generally lower antiproliferative activity than their corresponding N6-substituted analogues(13a–c).Recently,we demonstrated that compound5(Fig.1)binds to the ATP-binding site of bone morphogenetic protein receptor1b (BMPR1b)with low l M affinity(K d=11.7±0.5l M).1a When screened against a panel of441protein kinases,compound5 exhibited its greatest activity against BMPR1b,inhibiting binding of BMPR1b to an ATP-binding site ligand by approx.50%at 10l M pound3a,in contrast,did not bind to BMPR1b at concentrations as high as30l M.1a BMPR1b is a trans-membrane receptor with serine/threonine protein kinase activity. The ATP-binding domain lies within the cytoplasm and phosphor-ylates downstream targets(SMADs1,5,and8),which in turn regulate expression of inhibitor of differentiation gene1(Id1).3 Overexpression of Id1has been reported in a number of cancers, including lung,4breast,5colon,6ovarian,7pancreas,8prostate,9 and renal cancers.10Downregulation,inhibition,and/or inactiva-tion of Id1have been shown to induce apoptosis in several of these cancers.11Inhibition of BMPR1b by the desilylated analogue of3a, compound5,could constitute a plausible mechanism for the broad-spectrum antiproliferative activity exhibited by compound 3a.12In this context,compound3a would most likely serve as a prodrug form of the active species,desilylated derivative com-pound5.A commonly used strategy for enhancing membrane permeabil-ity of nucleosides has been to increase the lipophilicity by protect-ing hydroxyls as acetyl,benzoyl,or isobutyryl esters that are cleaved once the compound has crossed the cell membrane.13 TBS-protection has been shown to enhance the activities of a num-ber of antiproliferative compounds,and activities of several of these compounds have been positively correlated with the increased lipophilicity of the biologically active derivative.14 TBS-protected cytidine has been shown to facilitate transport of guanosine50-monophosphate through a model membrane(in con-junction with a lipophilic phosphonium ion co-carrier),15and sily-lated nucleosides have been shown to penetrate the blood–brain barrier where it is presumed they are desilylated to generate the active species.16The lipophilic20,30-bis-O-TBS groups could en-hance membrane permeability of compound3a and serve as a pro-drug depot form of the active derivative compound5.Docking studies performed using the Surflex docking program (Sybyl X1.3)are supportive of such an interpretation.17As illus-trated in Fig.2,the highest ranked pose for compound5is oriented within the ATP binding cleft of BMPR1b(pdb3mdy)with the50-urea undergoing hydrogen bonding interactions with the highly conserved catalytic triad18(Lys231,Glu244,Asp350;Fig.2). The N6-phenyl urea moiety in this pose is oriented toward the sol-vent accessible surface,which is consistent with the relative lack of sensitivity of the antiproliferative activity of3a–i to the substitu-tion pattern in the N6-urea moiety.1a In contrast,the top ranked pose for compound3a had nearly the opposite orientation to com-pound5,with the N6-phenyl urea moiety undergoing nonpolar binding interactions with the‘gatekeeper’residue(Leu277;blue residue;Fig.2)near the end of the catalytic cleft,in close proximity to the catalytic triad.In this pose,the very hydrophobic20,30-bis-O-TBS groups are exposed to the solvent accessible surface.If such a pose were biologically relevant,substitution at the N6-urea posi-tion would be expected to have a much greater effect on the bio-logical activity than the negligible effect that was observed experimentally.(The nature of the R group in3a–i had very little impact on their antiproliferative activities).1a Furthermore,the hydrophobic effect resulting from protrusion of the very nonpolar TBS groups into the aqueous environment would contribute to an unfavorable entropic term in the overall free energy of binding.Consistent with these modeling results is the aforementioned observation that compound5binds to BMPR1b with K d=11.7±0.5l M),while compound3a did not bind at concentrations as high as30l M(Fig.3A and3B,respectively).1a The negative impact of the 20,30-O-substitution on binding was also illustrated for several rep-resentative members of the presently discussed series of20,30-O-derivatives of3a,none of which showed appreciable binding to BMPR1b in a competitive inhibition of binding experiment19at 10l M concentrations(Fig.3C).The relative reactivity of silyl pro-tecting groups toward hydrolysis(TES>TBS TIPS>TBDPS)20is in harmony with these results,and is consistent with a mechanism involving cleavage of the silyl moiety before the nucleoside deriva-tive can interact with its primary biological receptor.21 In conclusion,we have developed efficient methods for the preparation of a variety of20,30-O-substituted derivatives ofour 6068J.R.Shelton et al./Bioorg.Med.Chem.Lett.22(2012)6067–6071recently discovered antiproliferative N 6,50-bis-ureidoadenosine compounds.Bis-O -protection of 50-azido-50-deoxyadenosine with either silyl or acyl protecting groups,followed by sequential acyl-ation of the N 6and 50-amino groups (with phenylisocyanate or N-methyl p -nitrophenylcarbamate,respectively)gave 20,30-O -substi-tuted derivatives of lead compound 3a (10a –c and 13a –c )in good to excellent yields.An alternative route from the more advanced intermediate compound 5gave 13d –i more efficiently than the route applied for 13a –c .Screening of compounds 10a –c ,13a –i ,and 14a –c against a panel of murine and human cancer cell lines did not reveal any improved activity relative to lead compound 3a .Several representative 20,30-O -substituted derivatives were shown to lack binding affinity for BMPR1b at concentrations near the K d for desilylated analogue 5.Taken together,these results sug-gest that the role of the TBS group in compound 3a may be to facil-itate membrane permeability.Cleavage of the TBS groups within the cytoplasm could give rise to the active derivative (5)which previously published screening data 1a suggest may target BMPR1b as its primary biomolecular target.BMPR1b is part of the BMP-sig-naling pathway that regulates expression of Id1.Overexpression of Id1has been reported in numerous cancers.4–10Inhibition of the BMP-signaling cascade by desilylated derivative 5may account for the broad-spectrum activity of compound 3a.Table 1Inhibitory effects of the test compounds on the proliferation of murine leukemia cells (L1210),murine mammary carcinoma cells (FM3A),human T-lymphocyte cells (CEM)and human cervix carcinoma cells (HeLa)CompoundIC 50a (l g/ml)L1210FM3A CEM HeLa 3a 3.8±0.3 5.9±1.18.3±2.9 3.2±0.24a 160±56>200>200P 20010a 3.8±0.1 3.0±0.3 4.2±0.2 3.7±0.410b >200>200P 200104±7110c >200>200142±81P 20013a 97±17150±39107±8>20013b 154±3061±2>200>20013c 29±444±428±073±1313d 20±218±12958±2513e 9.7±3.515±12017±113f 9.5±0.320±110±215±513g 11±032±112±416±913h >100140±16>100>10013i >100>200>100>10014a 112±31>200>200>20014b 16±136±319±840±714c87±1107±1388±3399±14a50%Inhibitory concentration or compound concentration required to inhibit tumor cell proliferation by 50%.J.R.Shelton et al./Bioorg.Med.Chem.Lett.22(2012)6067–60716069We are currently designing50-analogues that may more fully exploit interactions with the catalytic triad(Lys231,Glu244,Asp350)and gatekeeper residues(Leu277),which may lead to en-hanced binding,as indicated by the docking study,and thus,in-creased antiproliferative activity.AcknowledgmentsGenerous support from the BYU Cancer Research Center and BYU College of Physical and Mathematical Sciences and the KU Leuven(GOA10/14)to J.B.is gratefully acknowledged.10010010010053100100Figure2.Docking results for3a and5docked into the active site of BMPR1b(pdb3mdy).Yellow residues:catalytic triad(K231,E244,D350);blue residue:gate-keeper(L277);magenta tube:G-loop or activation loop(I210,G211,K212,G213,R214,Y215,G216);magenta ribbon:hinge region(I278,T279,D280,Y281,H282,E283,N284,G285,S286).18(A)Space-filling model of highest ranked pose ofcompound5.(B)Tube model of highest ranked pose of compound5(G-Loopomitted for clarity).(C)Space-filling model of highest ranked pose of compound3aChem.Lett.22(2012)6067–6071Supplementary dataSupplementary data(experimental procedures and NMR data for all new for compounds)associated with this article can be found,in the online version,at /10.1016/j.bmcl. 2012.08.050.References and notes1.(a)Shelton,J.R.;Cutler,C.E.;Oliveira,M.;Balzarini,J.;Peterson,M.A.Bioorg.Med.Chem.2012,20,1008;(b)Peterson,M.A.;Oliveira,M.;Christiansen,M.A.;Cutler,C.E.Bioorg.Med.Chem.Lett.2009,19,6775;(c)Peterson,M.A.;Oliveira, M.;Christiansen,M. A.Nucleosides Nucleotides Nucleic2009,28,394;(d) Peterson,M.A.;Ke,P.;Shi,H.;Jones,C.;McDougal,B.R.;Robinson,W.E.Nucleosides Nucleotides Nucleic2007,26,499.2.Peterson,M.A.;Shi,H.;Ke,P.Tetrahedron Lett.2006,47,3405.3.(a)Ruzinova,M.B.;Benezra,R.Trends Cell Biol.2003,13,410;(b)Ying,Q.L.;Nichols,J.;Chambers,I.;Smith,A.Cell2003,115,281;(c)Korchynskyi,O.;ten Dijke,P.J.Biol.Chem.2002,277,4883;(d)López-Rovira,T.;Chalaux, E.;Massagúe,J.;Rosa,J.L.;Ventura,F.J.Biol.Chem.2002,277,3176.4.Cheng,Y.J.;Tsai,J.W.;Hsieh,K.C.;Yang,Y.C.;Chen,Y.J.;Huang,M.S.;Yuan,S.S.Cancer Lett.2011,307,191.5.Schoppmann,S.F.;Schindl,M.;Bayer,G.;Aumayr,K.;Dienes,J.;Horvat,R.;Rudas,M.;Gnant,M.;Jakesz,R.;Birner,P.Int.J.Cancer2003,104,677.6.Zhao,Z.R.;Zhang,Z.Y.;Zhang,H.;Jiang,L.;Wang,M.W.;Sun,X.F.Oncol.Rep.2008,19,419.7.Schindl,M.;Schoppmann,S.F.;Ströbel,T.;Heinzl,H.;Leisser,C.;Horvat,R.;Birner,P.Clin.Cancer Res.2003,9,779.8.Lee,K.T.;Lee,Y.W.;Lee,J.K.;Choi,S.H.;Rhee,J.C.;Paik,S.S.;Kong,G.Br.J.Cancer2004,90,1198.9.Ling,M.T.;Lau,T.C.;Zhou,C.;Chua,C.W.;Kwok,W.K.;Wang,Q.;Wang,X.;Wong,Y.C.Carcinogenesis2005,26,1668.10.Li,X.;Zhang,Z.;Xin,D.;Chua,C.W.;Wong,Y.C.;Leung,S.C.L.;Na,Y.;Wang,X.Histopathology2007,50,484.11.(a)Wong,Y.-C.;Wang,X.;Ling,M.-T.Apoptosis2004,9,279;(b)Ling,M.-T.;Kwok,W.K.;Fung,M.K.;Wang,X.H.;Wong,Y.C.Carcinogenesis2006,27,205;(c)Ling,Y.X.;Tao,J.;Fang,S.F.;Hui,Z.;Fang,Q.R.Eur.J.Cancer Prev.2011,20,9;(d)Mern,D.S.;Hoppe-Seyler,K.;Hoppe-Seyler,F.;Hasskarl,J.;Burwinkel,B.Breast Cancer Res.2010,124,623;(e)Mern,D.S.;Hasskarl,J.;Burwinkel,B.Br.J.Cancer2010,103,1237.12.Shelton,J.R.;Burt,S.R.;Peterson,M.A.Bioorg.Med.Chem.Lett.2011,21,1484.13.(a)Li,F.;Maag,H.;Alfredson,T.J.Pharm.Sci.2008,97,1109;(b)Mackman,R.L.;Cihlar,T.Ann.Rep.Med.Chem.2004,305.14.(a)Pungitore,C.R.;León,L.G.;García,C.;Martín,V.S.;Tonn,C.E.;Padrón,J.M.Bioorg.Med.Chem.Lett.2007,17,1332;(b)Donadel,O.J.;Martín,T.;Martín,V.S.;Villarc,J.;Padrón,J.M.Bioorg.Med.Chem.Lett.2005,15,3536;(c)Szilágyi,A.;Fenyvesi,F.;Majercsik,O.;Pelyvás,I.F.;Bácskay,I.;Fehér,P.;Váradi,J.;Vecsernyés,M.;Herczegh,P.J.Med.Chem.2006,49,5626.15.Lee,S.B.;Choo,H.;Hong,J.–I.J.Chem.Res.1998,304.16.Montana,J.G.;Bains,W.Internatl.Patent App.PCT/GB2003/005056,2003;Internatl.Pub.WO2004/050666A1.17.Surflex has been validated as a robust molecular docking method.In terms ofdocking accuracy,it performs as well as other commonly used methods;and in terms of screening utility,its performance has been shown to be superior to other methods for which comparative data are available(a)Jain, A.N.J.Comput.Aided Mol.Des.2007,21,281;(b)Jain,A.N.J.Med.Chem.2003,46,499.18.BMPR1b is a member of the TGF b super family of protein kinases.BMPR1b(also known as Alk6)has68%sequence homology with Alk5(unpublished results).Assignments for the catalytic triad,gatekeeper,G-loop,and hinge region are consistent with published assignments for Alk5and for known sequences for protein kinases in general(a)Goldberg,F.W.;Ward,R.A.;Powell,S.J.;Debreczeni,J.É.;Norman,R.A.;Roberts,N.J.;Dishington,A.P.;Gingell,H.J.;Wickson,K.F.;Roberts,A.L.J.Med.Chem.2009,52,7901;(b) Ghose,A.K.;Herbertz,T.;Pippin,D.A.;Salvino,J.M.;Mallamo,J.P.J.Med.Chem.2008,51,5149.19.Fabian,M.A.;Biggs,W.H.I.I.I.;Treiber,D.K.;Atteridge,C.E.;Azimioara,M.D.;Benedetti,M.G.;Carter,T.A.;Ciceri,P.;Edeen,P.T.;Floyd,M.;Ford,J.M.;Galvin,M.;Gerlach,J.L.;Grotzfeld,R.M.;Herrgard,S.;Insko,D.E.;Insko,M.A.;Lai,A.G.;Lélias,J.-M.;Mehta,S.A.;Milanov,Z.V.;Velasco,A.M.;Wodicka,L.M.;Patel,H.K.;Zarrinkar,P.P.;Lockhart,D.J.Nature Biotech.2005,23,329.20.Nelson,T.D.;Crouch,R.D.Synthesis1996,1031.21.The possibility exists that BMPR1b may not be the primary biomolecular targetfor this class of compounds.However,from a panel of441protein kinases, compound5bound to BMPR1b with greatest affinity(see Ref.1a).Thus, amongst this class of receptors,BMPR1b certainly shows greatest potential.Optimization of binding to BMPR1b could lead to discovery of more potent derivatives and/or discovery of additional related inhibitors.J.R.Shelton et al./Bioorg.Med.Chem.Lett.22(2012)6067–60716071。
matrix_cookbook
Kaare Brandt Petersen Michael Syskind Pedersen Version: October 3, 2005
What is this? These pages are a collection of facts (identities, approximations, inequalities, relations, ...) about matrices and matters relating to them. It is collected in this form for the convenience of anyone who wants a quick desktop reference . Disclaimer: The identities, approximations and relations presented here were obviously not invented but collected, borrowed and copied from a large amount of sources. These sources include similar but shorter notes found on the internet and appendices in books - see the references for a full list. Errors: Very likely there are errors, typos, and mistakes for which we apologize and would be grateful to receive corrections at cookbook@2302.dk. Its ongoing: The project of keeping a large repository of relations involving matrices is naturally ongoing and the version will be apparent from the date in the header. Suggestions: Your suggestion for additional content or elaboration of some topics is most welcome at cookbook@2302.dk. Acknowledgements: We would like to thank the following for discussions, proofreading, extensive corrections and suggestions: Esben Hoegh-Rasmussen and Vasile Sima. Keywords: Matrix algebra, matrix relations, matrix identities, derivative of determinant, derivative of inverse matrix, differentiate a matrix.
2005年诺贝尔化学奖--歧化
2005年诺贝尔化学奖蔡蕴明译自诺贝尔化学奖委员会公布给大众的参考资料:/chemistry/laureates/2005/info.html若要参考更深入的说明请见:/chemistry/laureates/2005/adv.html今年的诺贝尔化学奖由三位化学家所共同获得,他们是法国的Yves Chauvin,以及两位美国的学者Robert H. Grubbs及Richard R. Schrock,得奖的原因在表彰他们发展歧化(metathesis)反应在有机合成上的运用所造成的卓越贡献。
得奖者的成就已经在化学工业上成为一项重要的方法,并在合成化合物上开启了新的机会而将使工业上制造药物、塑料以及其它材料的生产更为方便,这些物质的价格会因此降低而且减少对环境的冲击。
歧化—一个更换伴侣的舞蹈什么是歧化?在化学的反应中,原子之间的键结会断裂而新的键结会生成。
今年诺贝尔化学奖的焦点是称为“歧化”的反应,这个名词具有“改变位置”的意义。
如图1所示,在烯﹝一种含有碳-碳双键的化合物﹞的歧化反应中,形成双键的两个碳会与另外一组双键的两个碳交换伴侣,形成另一个新的组合。
在所示的反应中,一个丙烯的分子将其中的一个CH2基团与另一分子的丙烯中之CH3CH交换,结果就产生了丁烯及乙烯。
这个反应需要使用一个催化剂﹝催化剂是一个能使反应加速进行但却不会成为产物的一部份的分子﹞才会发生。
图1. 两个丙烯借着催化剂的帮助进行烯的歧化反应,产生两个新的烯化物即丁烯和乙烯。
其实化学家早就知道可以透过这种反应来制造新的化合物,只是他们并不了解催化剂在这个反应中扮演的角色为何。
Yves Chauvin提出的反应机制在对这个反应的认知上跨出了一大步,因为他解释了催化剂是如何的运作。
此时,研究者获得了一个新的挑战机会,那就是如何的去创造一个新的且更有效的催化剂。
紧接着,Robert H. Grubbs及Richard R. Schrock的基础研究进场,由于他们的贡献,才有今日那些非常有用的催化剂可供使用。
量子力学索引英汉对照
21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫-玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, 衰变;Alpha particle, 粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥-沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色-爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克-高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, 势垒Delta-function well, 势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量-时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米-狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼-海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g-因子Gamma function, 函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, "好"量子数"Good" states, "好"的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆-施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克LLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g-因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维-西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦-玻尔兹曼分布Maxwell's equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, 子Muon-catalysed fusion, 子催化的聚变Muonic hydrogen, 原子Muonium, 子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置-动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋-轨道耦合Spin-orbit interaction, 自旋-轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋-自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番-玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩-盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。
量子力学索引英汉对照
21-centimeter line, 21厘米线AAbsorption, 吸收Addition of angular momenta, 角动量叠加Adiabatic approximation, 绝热近似Adiabatic process, 绝热过程Adjoint, 自伴的Agnostic position, 不可知论立场Aharonov-Bohm effect, 阿哈罗诺夫—玻姆效应Airy equation, 艾里方程;Airy function, 艾里函数Allowed energy, 允许能量Allowed transition, 允许跃迁Alpha decay, α衰变;Alpha particle, α粒子Angular equation, 角向方程Angular momentum, 角动量Anomalous magnetic moment, 反常磁矩Antibonding, 反键Anti-hermitian operator, 反厄米算符Associated Laguerre polynomial, 连带拉盖尔多项式Associated Legendre function, 连带勒让德多项式Atoms, 原子Average value, 平均值Azimuthal angle, 方位角Azimuthal quantum number, 角量子数BBalmer series, 巴尔末线系Band structure, 能带结构Baryon, 重子Berry's phase, 贝利相位Bessel functions, 贝塞尔函数Binding energy, 束缚能Binomial coefficient, 二项式系数Biot-Savart law, 毕奥—沙法尔定律Blackbody spectrum, 黑体谱Bloch's theorem, 布洛赫定理Bohr energies, 玻尔能量;Bohr magneton, 玻尔磁子;Bohr radius, 玻尔半径Boltzmann constant, 玻尔兹曼常数Bond, 化学键Born approximation, 玻恩近似Born's statistical interpretation, 玻恩统计诠释Bose condensation, 玻色凝聚Bose-Einstein distribution, 玻色—爱因斯坦分布Boson, 玻色子Bound state, 束缚态Boundary conditions, 边界条件Bra, 左矢Bulk modulus, 体积模量CCanonical commutation relations, 正则对易关系Canonical momentum, 正则动量Cauchy's integral formula, 柯西积分公式Centrifugal term, 离心项Chandrasekhar limit, 钱德拉赛卡极限Chemical potential, 化学势Classical electron radius, 经典电子半径Clebsch-Gordan coefficients, 克—高系数Coherent States, 相干态Collapse of wave function, 波函数塌缩Commutator, 对易子Compatible observables, 对易的可观测量Complete inner product space, 完备内积空间Completeness, 完备性Conductor, 导体Configuration, 位形Connection formulas, 连接公式Conservation, 守恒Conservative systems, 保守系Continuity equation, 连续性方程Continuous spectrum, 连续谱Continuous variables, 连续变量Contour integral, 围道积分Copenhagen interpretation, 哥本哈根诠释Coulomb barrier, 库仑势垒Coulomb potential, 库仑势Covalent bond, 共价键Critical temperature, 临界温度Cross-section, 截面Crystal, 晶体Cubic symmetry, 立方对称性Cyclotron motion, 螺旋运动DDarwin term, 达尔文项de Broglie formula, 德布罗意公式de Broglie wavelength, 德布罗意波长Decay mode, 衰变模式Degeneracy, 简并度Degeneracy pressure, 简并压Degenerate perturbation theory, 简并微扰论Degenerate states, 简并态Degrees of freedom, 自由度Delta-function barrier, δ势垒Delta-function well, δ势阱Derivative operator, 求导算符Determinant, 行列式Determinate state, 确定的态Deuterium, 氘Deuteron, 氘核Diagonal matrix, 对角矩阵Diagonalizable matrix, 对角化Differential cross-section, 微分截面Dipole moment, 偶极矩Dirac delta function, 狄拉克δ函数Dirac equation, 狄拉克方程Dirac notation, 狄拉克记号Dirac orthonormality, 狄拉克正交归一性Direct integral, 直接积分Discrete spectrum, 分立谱Discrete variable, 离散变量Dispersion relation, 色散关系Displacement operator, 位移算符Distinguishable particles, 可分辨粒子Distribution, 分布Doping, 掺杂Double well, 双势阱Dual space, 对偶空间Dynamic phase, 动力学相位EEffective nuclear charge, 有效核电荷Effective potential, 有效势Ehrenfest's theorem, 厄伦费斯特定理Eigenfunction, 本征函数Eigenvalue, 本征值Eigenvector, 本征矢Einstein's A and B coefficients, 爱因斯坦A,B系数;Einstein's mass-energy formula, 爱因斯坦质能公式Electric dipole, 电偶极Electric dipole moment, 电偶极矩Electric dipole radiation, 电偶极辐射Electric dipole transition, 电偶极跃迁Electric quadrupole transition, 电四极跃迁Electric field, 电场Electromagnetic wave, 电磁波Electron, 电子Emission, 发射Energy, 能量Energy-time uncertainty principle, 能量—时间不确定性关系Ensemble, 系综Equilibrium, 平衡Equipartition theorem, 配分函数Euler's formula, 欧拉公式Even function, 偶函数Exchange force, 交换力Exchange integral, 交换积分Exchange operator, 交换算符Excited state, 激发态Exclusion principle, 不相容原理Expectation value, 期待值FFermi-Dirac distribution, 费米—狄拉克分布Fermi energy, 费米能Fermi surface, 费米面Fermi temperature, 费米温度Fermi's golden rule, 费米黄金规则Fermion, 费米子Feynman diagram, 费曼图Feynman-Hellman theorem, 费曼—海尔曼定理Fine structure, 精细结构Fine structure constant, 精细结构常数Finite square well, 有限深方势阱First-order correction, 一级修正Flux quantization, 磁通量子化Forbidden transition, 禁戒跃迁Foucault pendulum, 傅科摆Fourier series, 傅里叶级数Fourier transform, 傅里叶变换Free electron, 自由电子Free electron density, 自由电子密度Free electron gas, 自由电子气Free particle, 自由粒子Function space, 函数空间Fusion, 聚变Gg-factor, g—因子Gamma function, Γ函数Gap, 能隙Gauge invariance, 规范不变性Gauge transformation, 规范变换Gaussian wave packet, 高斯波包Generalized function, 广义函数Generating function, 生成函数Generator, 生成元Geometric phase, 几何相位Geometric series, 几何级数Golden rule, 黄金规则"Good" quantum number, “好”量子数"Good" states, “好”的态Gradient, 梯度Gram-Schmidt orthogonalization, 格莱姆—施密特正交化法Graphical solution, 图解法Green's function, 格林函数Ground state, 基态Group theory, 群论Group velocity, 群速Gyromagnetic railo, 回转磁比值HHalf-integer angular momentum, 半整数角动量Half-life, 半衰期Hamiltonian, 哈密顿量Hankel functions, 汉克尔函数Hannay's angle, 哈内角Hard-sphere scattering, 硬球散射Harmonic oscillator, 谐振子Heisenberg picture, 海森堡绘景Heisenberg uncertainty principle, 海森堡不确定性关系Helium, 氦Helmholtz equation, 亥姆霍兹方程Hermite polynomials, 厄米多项式Hermitian conjugate, 厄米共轭Hermitian matrix, 厄米矩阵Hidden variables, 隐变量Hilbert space, 希尔伯特空间Hole, 空穴Hooke's law, 胡克定律Hund's rules, 洪特规则Hydrogen atom, 氢原子Hydrogen ion, 氢离子Hydrogen molecule, 氢分子Hydrogen molecule ion, 氢分子离子Hydrogenic atom, 类氢原子Hyperfine splitting, 超精细分裂IIdea gas, 理想气体Idempotent operaror, 幂等算符Identical particles, 全同粒子Identity operator, 恒等算符Impact parameter, 碰撞参数Impulse approximation, 脉冲近似Incident wave, 入射波Incoherent perturbation, 非相干微扰Incompatible observables, 不对易的可观测量Incompleteness, 不完备性Indeterminacy, 非确定性Indistinguishable particles, 不可分辨粒子Infinite spherical well, 无限深球势阱Infinite square well, 无限深方势阱Inner product, 内积Insulator, 绝缘体Integration by parts, 分部积分Intrinsic angular momentum, 内禀角动量Inverse beta decay, 逆β衰变Inverse Fourier transform, 傅里叶逆变换KKet, 右矢Kinetic energy, 动能Kramers' relation, 克莱默斯关系Kronecker delta, 克劳尼克δLLCAO technique, 原子轨道线性组合法Ladder operators, 阶梯算符Lagrange multiplier, 拉格朗日乘子Laguerre polynomial, 拉盖尔多项式Lamb shift, 兰姆移动Lande g-factor, 朗德g—因子Laplacian, 拉普拉斯的Larmor formula, 拉摩公式Larmor frequency, 拉摩频率Larmor precession, 拉摩进动Laser, 激光Legendre polynomial, 勒让德多项式Levi-Civita symbol, 列维—西维塔符号Lifetime, 寿命Linear algebra, 线性代数Linear combination, 线性组合Linear combination of atomic orbitals, 原子轨道的线性组合Linear operator, 线性算符Linear transformation, 线性变换Lorentz force law, 洛伦兹力定律Lowering operator, 下降算符Luminoscity, 照度Lyman series, 赖曼线系MMagnetic dipole, 磁偶极Magnetic dipole moment, 磁偶极矩Magnetic dipole transition, 磁偶极跃迁Magnetic field, 磁场Magnetic flux, 磁通量Magnetic quantum number, 磁量子数Magnetic resonance, 磁共振Many worlds interpretation, 多世界诠释Matrix, 矩阵;Matrix element, 矩阵元Maxwell-Boltzmann distribution, 麦克斯韦—玻尔兹曼分布Maxwell’s equations, 麦克斯韦方程Mean value, 平均值Measurement, 测量Median value, 中位值Meson, 介子Metastable state, 亚稳态Minimum-uncertainty wave packet, 最小不确定度波包Molecule, 分子Momentum, 动量Momentum operator, 动量算符Momentum space wave function, 动量空间波函数Momentum transfer, 动量转移Most probable value, 最可几值Muon, μ子Muon-catalysed fusion, μ子催化的聚变Muonic hydrogen, μ原子Muonium, μ子素NNeumann function, 纽曼函数Neutrino oscillations, 中微子振荡Neutron star, 中子星Node, 节点Nomenclature, 术语Nondegenerate perturbationtheory, 非简并微扰论Non-normalizable function, 不可归一化的函数Normalization, 归一化Nuclear lifetime, 核寿命Nuclear magnetic resonance, 核磁共振Null vector, 零矢量OObservable, 可观测量Observer, 观测者Occupation number, 占有数Odd function, 奇函数Operator, 算符Optical theorem, 光学定理Orbital, 轨道的Orbital angular momentum, 轨道角动量Orthodox position, 正统立场Orthogonality, 正交性Orthogonalization, 正交化Orthohelium, 正氦Orthonormality, 正交归一性Orthorhombic symmetry, 斜方对称Overlap integral, 交叠积分PParahelium, 仲氦Partial wave amplitude, 分波幅Partial wave analysis, 分波法Paschen series, 帕邢线系Pauli exclusion principle, 泡利不相容原理Pauli spin matrices, 泡利自旋矩阵Periodic table, 周期表Perturbation theory, 微扰论Phase, 相位Phase shift, 相移Phase velocity, 相速Photon, 光子Planck's blackbody formula, 普朗克黑体辐射公式Planck's constant, 普朗克常数Polar angle, 极角Polarization, 极化Population inversion, 粒子数反转Position, 位置;Position operator, 位置算符Position-momentum uncertainty principles, 位置—动量不确定性关系Position space wave function, 坐标空间波函数Positronium, 电子偶素Potential energy, 势能Potential well, 势阱Power law potential, 幂律势Power series expansion, 幂级数展开Principal quantum number, 主量子数Probability, 几率Probability current, 几率流Probability density, 几率密度Projection operator, 投影算符Propagator, 传播子Proton, 质子QQuantum dynamics, 量子动力学Quantum electrodynamics, 量子电动力学Quantum number, 量子数Quantum statics, 量子统计Quantum statistical mechanics, 量子统计力学Quark, 夸克RRabi flopping frequency, 拉比翻转频率Radial equation, 径向方程Radial wave function, 径向波函数Radiation, 辐射Radius, 半径Raising operator, 上升算符Rayleigh's formula, 瑞利公式Realist position, 实在论立场Recursion formula, 递推公式Reduced mass, 约化质量Reflected wave, 反射波Reflection coefficient, 反射系数Relativistic correction, 相对论修正Rigid rotor, 刚性转子Rodrigues formula, 罗德里格斯公式Rotating wave approximation, 旋转波近似Rutherford scattering, 卢瑟福散射Rydberg constant, 里德堡常数Rydberg formula, 里德堡公式SScalar potential, 标势Scattering, 散射Scattering amplitude, 散射幅Scattering angle, 散射角Scattering matrix, 散射矩阵Scattering state, 散射态Schrodinger equation, 薛定谔方程Schrodinger picture, 薛定谔绘景Schwarz inequality, 施瓦兹不等式Screening, 屏蔽Second-order correction, 二级修正Selection rules, 选择定则Semiconductor, 半导体Separable solutions, 分离变量解Separation of variables, 变量分离Shell, 壳Simple harmonic oscillator, 简谐振子Simultaneous diagonalization, 同时对角化Singlet state, 单态Slater determinant, 斯拉特行列式Soft-sphere scattering, 软球散射Solenoid, 螺线管Solids, 固体Spectral decomposition, 谱分解Spectrum, 谱Spherical Bessel functions, 球贝塞尔函数Spherical coordinates, 球坐标Spherical Hankel functions, 球汉克尔函数Spherical harmonics, 球谐函数Spherical Neumann functions, 球纽曼函数Spin, 自旋Spin matrices, 自旋矩阵Spin-orbit coupling, 自旋—轨道耦合Spin-orbit interaction, 自旋—轨道相互作用Spinor, 旋量Spin-spin coupling, 自旋—自旋耦合Spontaneous emission, 自发辐射Square-integrable function, 平方可积函数Square well, 方势阱Standard deviation, 标准偏差Stark effect, 斯塔克效应Stationary state, 定态Statistical interpretation, 统计诠释Statistical mechanics, 统计力学Stefan-Boltzmann law, 斯特番—玻尔兹曼定律Step function, 阶跃函数Stem-Gerlach experiment, 斯特恩—盖拉赫实验Stimulated emission, 受激辐射Stirling's approximation, 斯特林近似Superconductor, 超导体Symmetrization, 对称化Symmetry, 对称TTaylor series, 泰勒级数Temperature, 温度Tetragonal symmetry, 正方对称Thermal equilibrium, 热平衡Thomas precession, 托马斯进动Time-dependent perturbation theory, 含时微扰论Time-dependent Schrodinger equation, 含时薛定谔方程Time-independent perturbation theory, 定态微扰论Time-independent Schrodinger equation, 定态薛定谔方程Total cross-section, 总截面Transfer matrix, 转移矩阵Transformation, 变换Transition, 跃迁;Transition probability, 跃迁几率Transition rate, 跃迁速率Translation,平移Transmission coefficient, 透射系数Transmitted wave, 透射波Trial wave function, 试探波函数Triplet state, 三重态Tunneling, 隧穿Turning points, 回转点Two-fold degeneracy , 二重简并Two-level systems, 二能级体系UUncertainty principle, 不确定性关系Unstable particles, 不稳定粒子VValence electron, 价电子Van der Waals interaction, 范德瓦尔斯相互作用Variables, 变量Variance, 方差Variational principle, 变分原理Vector, 矢量Vector potential, 矢势Velocity, 速度Vertex factor, 顶角因子Virial theorem, 维里定理WWave function, 波函数Wavelength, 波长Wave number, 波数Wave packet, 波包Wave vector, 波矢White dwarf, 白矮星Wien's displacement law, 维恩位移定律YYukawa potential, 汤川势ZZeeman effect, 塞曼效应。
益生菌对阿尔茨海默病作用的研究进展
益生菌对阿尔茨海默病作用的研究进展发布时间:2021-12-14T06:08:15.523Z 来源:《中国结合医学杂志》2021年12期作者:宋鑫萍1,2,李盛钰2,金清1[导读] 阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。
近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。
宋鑫萍1,2,李盛钰2,金清11.延边大学农学院,吉林延吉 1330022.吉林省农业科学院农产品加工研究所,吉林长春 130033摘要:阿尔茨海默病已成为威胁全球老年人生命健康的主要疾病之一,患者数量逐年攀升,其护理的经济成本高,给全球经济造成重大挑战。
近年来研究显示,益生菌在适量使用时作为有益于宿主健康的微生物,在防治阿尔茨海默病方面具有积极影响,其作用机制可能通过调节肠道菌群,影响神经免疫系统,调控神经活性物质以及代谢产物,通过肠-脑轴影响该病发生和发展。
本文综述了近几年来国内外益生菌对阿尔茨海默病的作用进展,以及其预防和治疗阿尔茨海默病的潜在作用机制。
关键词:益生菌;阿尔茨海默病;肠道菌群;机制Recent Progress in Research on Probiotics Effect on Alzheimer’s DiseaseSONG Xinping1,2,LI Shengyu2,JI Qing1*(1.College of Agricultural, Yanbian University, Yanji 133002,China)(2.Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Chanchun 130033, China)Abstract:Alzheimer’s disease has become one of the major diseases threatening the life and health of the global elderly. The number of patients is increasing year by year, and the economic cost of nursing is high, which poses a major challenge to the global economy. In recent years, studies have shown that probiotics, as microorganisms beneficial to the health of the host, have a positive impact on the prevention and treatment of Alzheimer’s disease. Its mechanism may be through regulating intestinal flora, affecting the nervous immune system, regulating the neuroactive substances and metabolites, and affecting the occurrence and development of the disease through thegut- brain axis. This paper reviews the progress of probiotics on Alzheimer’s disease at home and abroad in recent years, as well as its potential mechanism of prevention and treatment.Key words:probiotics; Alzheimer’s disease; gut microbiota; mechanism阿尔茨海默病(Alzheimer’s disease, AD),系中枢神经系统退行性疾病,属于老年期痴呆常见类型,临床特征主要包括:记忆力减退、认知功能障碍、行为改变、焦虑和抑郁等。
Introduction to Computational Chemistry (2)
• What can we predict with modern Ab Initio methods?
– Geometry of a molecule – Dipole moment – Energy of reaction – Reaction barrier height – Vibrational frequencies – IR spectra – NMR spectra – Reaction rate – Partition function – Free energy – Any physical observable of a small molecule
Born-Oppenheimer Approximation
• The potential surface is a Born-Oppenheimer potentials surface, where the potential energy is a function of geometry. Motion of the nuclei is assumed to be independent of the motion of the electrons
– There is an enormous toolbox of theoretical methods available, and it will take skill and creativity to solve real-world problems.
Electronic Structure Theory
! $ =
c e"#ir2 i
i
Electronic Structure Theory
• A plane-wave basis set is a common choice for predicting properties of a crystal
翡翠贻贝多糖对衰老模型小鼠的抗氧化和免疫功能调节作用
[ src] 0be tv To e po e t eefc fPen iii p ls c h r e ( Ab ta t jcie x lr h fe to r avrds oy a c ai s PVPS o h n ixd to n d ) n t ea t ia in a d o
血 清 l一 、F 和 及 脾 淋 巴 细 胞 增 殖 反 应 率 均 显 著性 降低 , 时血 清 MD 水 平 显 著 性 升 高差 异 有 统 计 学 意 义 ( I 2 IN 同 A P
d 0 0 ) VP . 1 。P S各 剂 量 组 均 可 不 同程 度 地 升 高 S OD、 S P I 2 I N - 和 脾 淋 巴 细 胞 增 殖 反 应 率 , 时 降 低 G H— x、 I 、F 一 , / 同
H0UGa 。 1 I siueo 』a)r tr d cn 2 1 siu f Bic e sr n lc l r Bilg 3 I siu f n . . n ttt J t a o y Me iie; . ntt to oh mity a d Moe ua o o y; . n tt t o o
g l c o e, e nwhie. h e i a i d i s r to o a ve hehi aa ts m a l t e m d c ton a m nita in gr up w sgi n t gh, e um d l m di an ow os d eofPV PS.Afe tr6 we ks,he i ex s o ntox d to n m m un unci n i l i g S D , DA , SH — e t nd e fa i i a i n a d i ef to ncud n O M G PX , L一 I 一 a d s i ulto I 2, FN n tm a i n i de SI ofs e n l p n x( ) ple ym hpr ie a i e p s r t r i d. s ls Ih o e D , SH — olf r ton r s on e we ede e m ne Re u t ' e c nt ntofSO G PX , I一 I I 2, FN一 an p e n l p d s l e ym hpr ie a i r s ns we e e c d obvou l n a ng m o l ie,bu t on e M D A i olf r ton e po e r r du e i s y i gi de m c t he c t nt of n—
Moment methods for structural reliability
Abstract F ir st-order reliability method (FORM) is considered to be one of the most reliable computational methods. In the last decades, researchers have examined the shortcomings of FORM, primarily accuracy and the difficulties involved in searching for the design point by iteration using the derivatives of the performance function. In o rde r to improve upon FORM, several structural reliability methods have been developed based on FORM, such as second-order reliability method (SORM), importance sampling Monte~Carlo simulation, first-order third-moment reliability method (FOTM), and response surface approach (RSA). In the present paper, moment methods for structural reliability are investigated. Five moment method formulas are presented a nd investigated, and the accuracy and efficiency of these methods are demonstrated using numerical examples. The moment methods, being very simple, have no shortcomings with respect to design points, and requires neither iteration nor the computation of derivatives, and thus are convenient to be applied to structural reliability analysis. © 2001 Elsevier Science L td. All rights reserved.
sigma
Institut fur Kernphysik, Johannes Gutenberg-Universitat Mainz, J. J. Becher-Weg 45, D-55099 Mainz, Germany (June 3, 1996)
2 2 2 2 2 2 2 2 2 2
2
takes account of a number of nucleon resonances and of and correlated 2 exchange in the t channel. Our calculation is based on the pion{nucleon linear sigma model (LSM) 20] in the limit of an in nite sigma mass. Though this model is not a very realistic description of the nucleon, it has built in all the relevant symmetries like Lorentz, gauge and chiral invariance. In particular it ful lls the PCAC relation, which is quite crucial to describe hadron physics at low energies. Evaluating the spin{independent amplitude of VCS in the one{loop approximation we have determined the generalized scalar polarizabilities of the nucleon. In particular, this leads to the rst model prediction of these quantities for the neutron.
QED$_{4}$ Ward Identity for fermionic field in the light-front
a r X i v :0808.1015v 1 [h e p -t h ] 7 A u g 2008QED 4Ward Identity for fermionic field in the light-frontJ.H.O.Sales1Funda¸c ˜a o de Ensino e Pesquisa de Itajub´a ,Av.Dr.Antonio Braga Filho,CEP 37501-002,Itajub´a ,MG,BrazilA.T.Suzuki and J.D.BolzanInstituto de F´ısica Te´o rica-UNESP,Rua Pamplona 145,CEP 01405-900S˜a o Paulo,SP,Brazil(Dated:August 7,2008)In a covariant gauge we implicitly assume that the Green’s function propagates information from one point of the space-time to another,so that the Green’s function is responsible for the dynamics of the relativistic particle.In the light front form,which in principle is a change of coordinates,one would expect that this feature would be preserved.In this manner,the fermionic field propagator can be split into a propagating piece and a non-propagating (“contact”)term.Since the latter (“contact”)one does not propagate information,and therefore,assumedly with no harm to the field dynamics we wanted to know what would be the impact of dropping it off.To do that,we investigated its role in the Ward identity in the light front.PACS numbers:11.10.Gh,03.65.-w,11.10.-zI.INTRODUCTIONOne of the most important concepts in quantum field theories is the question of renormalizability.In QED (Quantum Electrodynamics)specifically,the electric charge renormalization is guaranteed solely by the renormalization of the photon propagator.This result is a consequence of the so-called Ward identity,demonstrated by J.C.Ward in 1950[1,2,3].The importance of this result can be seen and emphasized in the fact that without the validity of such an identity,there would be no guarantee that the renormalized charge of different fermions (electrons,muons,etc.)would be the same.In other words,without such identity,charges of different particles must have different renormalization constants,a feature not so gratifying nor elegant.Moreover,without the Ward identity,renormalizability would have to be laboriously checked order by order in perturbation theory.What the Ward identity does is to relate the vertex function of the theory with the derivative of the self-energy function of the electron,and this important correlation is expressed in terms of equality between the renormalization constants,namely,Z 1=Z 2,where Z 1and Z 2are the renormalization constants related to the vertex function and the fermionic propagator respectively.Since the renormalized electric charge is given in terms of the bare electric chargevia the product e R =Z 1/23Z 2Z −11e 0,it follows immediately that e R =Z 1/23e 0,i.e.,electric charge renormalization depends solely on the renormalization of the photon propagator.We know that light-front dynamics is plagued with singularities of all sorts and because of this the connection between the covariant quantities and light-front quantities cannot be so easily established.If we want to describe our theory in terms of the light-front coordinates or variables,we must take care of the boundary conditions that fields must obey.Thus,a simple projection from the covariant quantities to light-front quantities via coordinate transformations is bound to be troublesome.This can be easily seen in our checking of the QED Ward identity in the light-front,where the fermionic propagator does bear an additional term proportional to γ+(p +)−1oftentimes called “contact term”in the literature,which,of course,is conspicuously absent in the covariant propagator.This term,as we will see,is crucial to the Ward identity in the light-front.The covariant propagating term solely projected onto the light-front coordinates therefore violates Ward identity,and therefore breaks gauge invariance.Such result is obviously wrong and unwarranted.The outline of our paper is as follows:We begin by considering the standard derivation for the covariant case Ward identity and show explicitly that the fermionic propagator there cannot be analytically regularized,otherwise Ward identity cannot be achieved.Then we explicitly construct our fermionic propagator in terms of the light-front coordinates,with the proper contact term in it and in the following section we deal with the checking of the Ward identity proper.Finally,the next two sections are devoted to the concluding remarks and Appendix;in the latter we define our light-cone coordinates convention and notation and include explicit calculations showing that without the contact term in the fermionic propagator,Ward identity is not satisfied,and thus gauge invariance is violated.II.THE W ARD IDENTITYThere are several ways to write down the Ward identity for fermions,and one of them is inferred from manipulations of their propagator,namely,S(p).Multiplying by its inverse,we get the identityS(p)S−1(p)=I,Deriving both sides with respect to pµwe get∂S(p)=0∂pµwhich leads to∂S(p)∂pµFinally,multiplyng both sides from the left by the propagator itself∂S(p)S(p)(1)∂pµiNow,using S(p)==−iγµ∂pµwhich inserted into(1)leads to the differential form of the Ward Identity,namely,∂S(p),withσ=1,the identity(2)would not be fulfilled.(p/−m)σIII.FERMION PROPAGATOR IN THE LIGHT-FRONTWith the light-front coordinate transformations given in Appendix A,we canfind the corresponding fermionic propagator,beginning with the term p/,as in(11):p/=pµγµ= γ+p−+γ−p+ −(−→γ⊥·−→p⊥),theniS(p)=p2−m2,i[(γ+p−+γ−p+)−(−→γ⊥·−→p⊥)+m]S(p)=iγ+2p+(p−−p on)+.2p+IV.THE W ARD IDENTITY ON THE LIGHT-FRONTThere are two manners to test if the propagator(3)on the light-front satisfy the Ward identity(2).The simplestand most direct one is to do the derivatives ∂S−1(p)∂p+=−iγ−∂S−1(p)∂p1,2=−iγ1,2.(4)∂S(p)∂p−=iS(p)γ+S(p)∂S(p)∂p+=iS(p)γ−S(p)=−ip−(p/+m)2p+(p−−pon),(6)∂S(p)2p+(p−−p on)2,(7)∂S(p)2[p+(p−−p on)]2+iγ1,2p+(p−−p on)as some authors do,the Ward Identity is not fulfilled,as shown in Appendix C.V.CONCLUSIONSWe have shown here that the Ward identity for the fermionicfield in the light-front is preserved to guarantee that the charge renomalization constant depends solely on the photon renormalization constant,as it is expected. However,one important point emerges in our computation,and that is that the Ward identity in the light-front is valid provided the fermionicfield propagator bears the relevant“contact”term piece,which is absent in the covariant propagator and its straightforward projection into light-front variables.Our computation has demonstrated once again the significance of the light-front zero-mode contribution that the so-called“contact”term bears in it,without which Ward identity would be violated.Although the zero-mode term does not carry physical information,its non-vanishing contribution nonetheless is crucial to the validity of the Ward identity in the light-front formalism.In other words,“contact”term may not carry information from one space-time point to another in the light front,but contains relevant physical information needed to ensure the Ward identity, and therefore,for the correct charge renormalization.VI.APPENDIXA.Light-front CoordinatesThe Light-front is characterized by the null-plane x+=t+z=0,which is its time coordinate.All of the coordinates are set regarding this plane,and one has new definitions of the scalar product,for example.The basic relations on the light-front arex+=12 x0+x3x−=12 x0−x3−→x⊥=x1−→i+x2−→j,(9) so,the scalar product is given byaµbµ= a+b−+a−b+ −−→a⊥·−→b⊥.(10) Using(10),one can write the product p/on the light-front:p/=pµγµ= γ+p−+γ−p+ −(−→γ⊥·−→p⊥).(11)B.Checking the Ward IdentityIn this Appendix,we show the details of the algebra necessary to arrive at(6-8).In thefirst place,we list the numerous properties that Dirac gama matrices in the light-front obey and should be used:γ+γ+=γ−γ−=0γ1γ±γ2+γ2γ±γ1=0γ+γ−γ+=2γ+γ∓γ±γ1,2+γ1,2γ±γ∓=2γ1,2γ−γ+γ−=2γ−{(γ⊥p⊥),γ±}=0γ1γ±γ1=γ±{γ+,γ−}=2Iγ2γ±γ2=γ±(γ⊥p⊥)γ±(γ⊥p⊥)=(p⊥)2γ±γ±,γ1,2 =0 (γ⊥p⊥),γ1,2 =2p1,2γ±γ1,2γ±=0γ±γ∓(γ⊥p⊥)+(γ⊥p⊥)γ∓γ±=2(γ⊥p⊥)γ1γ1=γ2γ2=−Iγ±γ1,2(γ⊥p⊥)+(γ⊥p⊥)γ1,2γ±=2γ±p1,2γ±γ1γ2+γ2γ1γ±=0γ+γ1,2γ−+γ−γ1,2γ+=−2γ1,2γ1,γ2 =0(γ⊥p⊥)γ1,2(γ⊥p⊥)=∓(p1)2γ1,2±(p2)2γ1,2−2p1p2γ2,1(12)Next,some useful relations:∂p on2(p+)2=−p on∂p+=−γ+p on∂p1=p1p+(p−−p on)+iγ+5∂S(p)∂p+ 2(p+)2(p−−p on)+i(p/on+m)∂p+ −iγ+∂p+=−iγ+p on2p+(p−−p on)−i(p/on+m)2(p+)2(p−−p on)2−iγ+∂p+=−iγ+(p−)2−iγ−p+p on+i(γ⊥p⊥)p−−imp−∂p+=−ip−(p/+m)+i2[p+(p−−p on)]2∂S(p)2[p+(p−−p on)]2+iγ−4[p+(p−−p on)]2+(p/on+m)γ−γ+4(p+)2(p−−p on)+γ+γ−γ+4[p+(p−−p on)]2+p/onγ−γ++γ+γ−p/on+m{γ+,γ−}2(p+)2=−i 2γ+(p on)2−2p on(γ⊥p⊥)+(p⊥)2γ−+2mp on+m2γ−4(p+)2(p−−p on)+γ+4[p+(p−−p on)]2=−ip−(p/+m)2p+(p−−pon ).(17)One can the see that,from(16)and(17),∂S(p)∂p−=−i(p/on+m)4[p+(p−−p on)]2=−i 2γ−(p+)2−2p+(γ⊥p⊥)+2p+p onγ++2mp+2p+(p−−p on)2(19) and again one has∂S(p)∂p1=i ∂p/on2p+(p−−p on)+i(p/on+m)∂p1∂S(p)p++γ1 (p+)2(p−−p on)2∂S(p)2[p+(p−−p on)]2∂S(p)2[p+(p−−p on)]2+iγ14[p+(p−−p on)]2+p/onγ1γ++γ+γ1p/on+m γ1,γ− 4(p+)2 =−i −2γ1p+p on−2γ+p1p on−2γ−p+p1−γ1(p1)2+γ1(p2)2−2γ2p1p2+m2γ1−2mp1 4(p+)2(p−−p on)=−i −2p1[γ+p−+γ−p+−(γ⊥p⊥)+m]+γ1(p1)2+γ1(p2)2−2γ1p+p−+m2γ14[p+(p−−p on)]2=−i −2p1(p/+m)−2γ1(p+p−−p+p on)2[p+(p−−p on)]2+iγ1∂p1,2=iS(p)γ1,2S(p).C.The Ward Identity for the propagator without contact term Here we work on the Ward Identity for the simplified propagator S(p)=i(p/on+m)∂p−=−i(p/on+m)2p+do not contribute due to thepropertyγ+γ+=0:iS(p)γ+S(p)=−i(p/on+m)∂p−=iS(p)γ+S(p).For the plus component,one has∂S(p)p++iγ−2(p+)2(p−−p on)−ip on(p/on+m)∂p+=ip+p−γ−−p+p onγ−−p−p onγ++(p on)2γ+−p−(p/on+m)∂p+=−ip−(p/on+m)2p+(p−−pon)−iγ+p on2p+(p−−p on) γ− i(p/on+m)4[p+(p−−p on)]2=−i 2γ+(p on)2γ+−2p on(γ⊥p⊥)+(p⊥)2γ−+2mp on+m2γ−4[p+(p−−p on)]2=−ip−(p/on+m)2p+(p−−pon )+iγ+p on2(p+)2(p−−p on);(25)and because of the presence of the last term and the wrong signal of the third,one has∂S(p)∂S(p)2[p+(p−−p on)]2−iγ12p+(p−−p on) γ1 i(p/on+m)4[p+(p−−p on)]2=−i −2p1[γ+p−+γ−p+−(γ⊥p⊥)+m]+2γ+p−p1+γ1(p1)2+ 4[p+(p−−p on)]2=ip1(p/+m)2(p+)2(p−−p on),(27)then,comparing(26)and(27),one has∂S(p)。
DFT介绍
+ Local density
+ Density gradient
+ Inexplicit occupied orbital information
+ Explicit occupied orbital information
+Unoccupied orbital information
jacob's ladder
underestimates Ec but overestimates Ex, resulting in unexpectedly good values of Exc.
So we have:
Fermi and Amaldi1934(the first version of SIC)
固体能隙问题
准粒子方程
零级近似,plasmon-pole模型,自洽
TDKS方程
外场微扰
一阶密度响应响应函数
线性响应方程
交换相关核,绝热局域密度近似
轨道序:
et al.:惩罚泛函
单格点动力学Anderson杂质模型
量子电动力学的单粒子方程:Dirac Dirac-Coulomb(DC)哈密顿量
Dirac-Coulomb-Breit(DCB)哈密顿量
两分量准相对论方法
ECP)方法
冻声方法,分子动力学谱分析方法
赝势(PP)方法
USPP or PAW? (VASP, ABINIT, ...)
提高FD方法的计算效率
多分辨分析
semicardinal)基组
轨道最小化
优基组密度矩阵最小化。
DERIVATIVES OF [1, 3] OXAZIN- 2-ONE USEFUL FOR TH
专利名称:DERIVATIVES OF [1, 3] OXAZIN- 2-ONE USEFUL FOR THE TREATMENT OFMETABOLIC DISEASES SUCH AS LIPIDDISORDERS发明人:CLAREMON, David, A.,ZHUANG,Linghang,LEFTHERIS, Katerina,YE,Yuanjie,SINGH, Suresh, B.,TICE, Colin, M.申请号:US2010023021申请日:20100203公开号:WO10/091067P1公开日:20100812专利内容由知识产权出版社提供摘要:This invention relates to novel compounds of an 11 β-HSD1 inhibitor disclosed herein, pharmaceutically acceptable salts thereof, and pharmaceutical compositions thereof, which are useful for the therapeutic treatment of diseases associated with the modulation or inhibition of 11/3-HSD1 in mammals. The invention further relates to pharmaceutical compositions of the novel compounds and methods for their use in the reduction or control of the production of Cortisol in a cell or the inhibition of the conversion of cortisone to Cortisol in a cell.申请人:CLAREMON, David, A.,ZHUANG, Linghang,LEFTHERIS, Katerina,YE, Yuanjie,SINGH, Suresh, B.,TICE, Colin, M.地址:US,US,US,US,US,US,US国籍:US,US,US,US,US,US,US代理机构:DAVIS, Steven, G.更多信息请下载全文后查看。
ANDROSTANE DERIVATIVES
专利名称:ANDROSTANE DERIVATIVES 发明人:ARTHUR FRIEDRICH MARX申请号:AU4791072申请日:19721018公开号:AU4791072A公开日:19740426专利内容由知识产权出版社提供摘要:1410767 Androsten-17α-ol derivatives GISTBROCADES NV 18 Oct 1972 [19 Oct 1971] 48648/71 Heading C2U The invention comprises compounds of formula wherein the 8,14-bond is saturated, in which case R 1 is H, Me or halo, or unsaturated, in which case R 1 is H or halo; and R 2 is H or the acyl radical of a pharmaceutically acceptable organic carboxylic acid Compounds I (R 1 is H or halo) are prepared by 1,2-methylenation(e.g. using dimethylsulphoxium methylide) of either (a) a compound of formula (wherein R1 1 is H or halo) in which case I is obtained directly; or (b) a 14α-hydroxy derivative of a compound III, with 8,14-dehydration of the resulting product to give a #8(14)-compound I; or (c) a compound of formula in which case the 14,17-bridge is hydrolysed concurrently to give 1α,2α-methylene-14α,17α- dihydroxyandrosta-4,6-dien-3-one which is converted to a compound I either (i) by 17-acylation and then 8,14-dehydration to give I(#8(14); R 1 =H), or (ii) by 6α,7α-epoxidation, 17-acylation and reaction with hydrogen halide to give a 1α-halomethyl-6-halo-17α-acyloxyandrosta-4,6,8 (14)-trien-3-one which, upon refluxing in symcollidine, gives I (#8(14); R 1 =halo). Compound I (R 1 =Me; R2 =H) is prepared from the mesylate of its 17#-epimer by heating with an alkali metal acetate in an inert organic medium, e.g. N-methylpyrrolidone. Compounds I (R 2 =H or acyl) are interconvertible by acylation and hydrolysis. Compounds I (R 1 =halo) are prepared from compounds I (R 1=H; R 2 =acyl) by epoxidation to give a 1α,2α-methylene-6α,7α-epoxy-17α-acyloxyandrost-4-en-3-one which upon reaction with a hydrogen halide yields either (i) a 1α-halomethyl-6-halo-17α-acyloxyandrosta-4,6-dien-3-one which upon refluxing in sym-collidine yields I; or (ii) a 1α,2α-methylene-6#-halo-7α-hydroxy-17α- acyloxyandrost-4-en-3-one which upon 7-mesylation and then refluxing in sym-collidine yields I. Compounds III (wherein R 1 1=H) are prepared from 17α-hydroxyandrosta-1,4-dien-3-one by 17-acylation followed by 6,7-dehydrogenation which may be effected either directly using a quinone or indirectly by 6#-halogenation with N.B.S. and 6,7-dehydrohalogenation by refluxing in sym-collidine. Compounds III (wherein R 1 1=halo) are prepared from III (R 1 1=R 2 =H) by 6α,7α-epoxidation followed by 17-acylation and reaction with a hydrogen halide. Compounds III are interconvertible by acylation and de-acylation at the 17-position. Compound IV (R 1 1=H) is prepared from the corresponding #4-monoene by 3-enol etherification followed by 1,2; 6,7-dehydrogenation with DDQ.14α,17α-Phenylborylenedioxy-androst-4-en-3- one is prepared as described in Examples Ia, IXa, and IXb of Specification 1,314,191. 1α,2α - Methylene - 6 - methyl - 17# -mesyloxyandrosta-4,6-dien-3-one (XI) is prepared from androsta-1,4-diene-3,17-dione (X) by the sequence: X#17,17 - ethylenedioxyandrosta - 1,4- dien - 3 - one#6# - bromo - 17,17 - ethylenedioxyandrosta - 1,4 - dien - 3 - one#17,17 - ethylenedioxyandrosta - 1,4,6 - trien - 3 - one#1α,2α- methylene - 17,17 - ethylenedioxyandrosta - 4,6- dien - 3 - one#1α,2α -methylene - 6α,7α - epoxy- 17,17 - ethylenedioxyandrost - 4 - en - 3 - one# 1α,2α -methylene - 3 - methoxyimino - 6α,7α- epoxy - 17,17 - ethylenedioxyandrost - 4 - ene#1α,2α - methylene - 3 - methoxyimino - 6# - methyl- 7α - hydroxyandrost - 4 - en - 17 -one#1α,2α- methylene - 3 - methoxyimino - 6# - methyl - 7α- mesyloxyandrost - 4 - en -17 - one#1α,2α- methylene - 3 - methoximino - 6 - methylandrosta- 4,6 - dien - 17 -one#1α,2α - methylene - 6 - methyl androsta - 4,6 - diene - 3,17 - dione (+ the 17-methoxime thereof as - by-product)#1α,2α- methylene - 6 - methyl - 17# -hydroxyandrosta- 4,6-diene-3-one#XI. Oral, parenteral and topical antiandrogenic compositions comprise I and a carrier.申请人:GIST BROCADES N.V.更多信息请下载全文后查看。
基因魔剪改写生命密码新工具
2020年度诺贝尔奖评介\化学奖J贮存•检索fA R C H I V E S 基因魔剪:改写生命密码新工具C?王俏琦章元兵张子恒周爽刘冀珑2020年度诺贝尔化学奖授予法国生物化字家沙彭蒂耶和美国生物化学家杜德纳,她们开发的高效率.模块化基因编辑系统CRISPR/Cas掀起了一场生物技本的革命,为基因工程的发展指引了方向2020年10月7日,2020年度诺贝尔化学奖授予德国马克斯•普朗克病原学研究室的生物化学家沙彭蒂 耶(E.Charpemier)和美国加州大学伯克利分校的生 物化学家杜德纳U A.Doudna),以表彰两人“开发了 一种基因组编辑方法”。
她们是第6位和第7位获得诺 贝尔化学奖的女性。
沙彭蒂耶1968年出生于法国,1995年在巴黎巴 斯德研究所获得博士学位,过去20年在5个不同国家 9所不同大学工作过,已获得10项久负盛名的科学奖项,目前是德国马克斯•普朗克病原学研究所所长。
杜 德纳1964年出生于美国,1989年从哈佛医学院毕业获得博士学位,曾在2016年获得世界杰出女科学家成就奖,目前是加州大学伯克利分校教授、霍华德•休斯医 学研究所研究员。
当细菌和病毒人侵人体,人体的免疫系统就会反击。
同样,细菌在漫长的进化过程中,也形成了一套防御病毒人侵的“免疫系统”—CRISPR/Cas 系统,CR1S P R是成簇的规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats)的缩写,Cas 是 CRISPR 相关(CRISPR-associated)基因的缩写。
病毒侵入细菌后把自身的王俏琦,博士研究生;章元兵,博士研究生;张子恒,博士研究生;周爽,博士研究生;刘冀珑,教授:上海科技大学生命科学与技术学院 上海 201210 ***********************.cnWang Qiaoqi, Doctoral Candidate; Zhang Yuanbing, Doctoral Candidate; Zhang Ziheng, Doctoral Candidate; Zhou Shuang, Doctoral Candidate; Liu Ji-Long, Professor: School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210.基因整合到细菌基因组中,利用细菌细胞复制自己的基因,而细菌的CRISPR/C a s系统可以识别病毒的基因,并将其从自己的基因组上切除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :h e p -t h /0108104v 4 6 S e p 2001IP/BBSR/2001-21hep-th/0108104Derivative corrections to Dirac-Born-Infeld and Chern-Simon actions from Non-commutativityShesansu Sekhar Pal e-mail:shesansu@iopb.res.inInstitute of Physics Bhubaneswar -751005,IndiaAbstractWe show that the higher order derivative α′corrections to the DBI and Chern-Simon action is derived from non-commutativity in the Seiberg-Witten limit,and is shown to agree with Wyllard’s (hep-th/0008125)result,as conjec-tured by Das et al.,(hep-th/0106024).In calculating the corrections,we haveexpressed ˆFin terms F,ˆA in terms of A up to order O (A 3),and made use of it.1IntroductionThere are several interesting developments has taken place in recent years,one of them is non-commutativity in position coordinates.In string theory,if we take a Dp brane in a flat background metric g ij and suspend it in a constant second rank an-tisymmetric tensor B ij field background,then one realizes a non-commutative string theory[1,2],i.e.the ends of the open string that ends on Dp brane satisfy the follow-ing non-commutative algebra,[X i ,X j ]=iθij .Where X i ’s are the coordinate of the open string,and θij is a function of the g ij ,B ij [2],the background fields.In string theory with the above mentioned background,we know that there exists two different kind of descriptions,namely,commutative and non-commutative theory.These different kind of theories arises depending on the kind of regularisation schemes that we adopt.This can be seen as:the interaction of the gauge field with the string world sheet is gauge invariant,under the gauge transformation δA i =∂i λ,at the tree as well as the loop level in the Pauli-Villar regularisation scheme.If we shall adopt the Point-Splitting regularisation scheme instead of the Pauli-Villar regularisation scheme then the above mentioned interaction is gauge invariant only if the form ofthe gauge transformation is ˆδˆλˆA i =∂i ˆλ+i [ˆλ,ˆA i ]∗[2].Moreover,it is well-knownthat,in quantum field theory,different regularisation schemes do not yield different S-matrix elements,also,the S-matrix element is unchanged under field redefinition in the effective action.Although,we are dealing with two seemingly different kind of descriptions but actually they are equivalent as discussed in [2],which can be realized by the well-known Seiberg-Witten map,and it implies that the actions described by the above two descriptions are related up to total derivative modulo field redefinition,i.e.ˆS−S =Total derivative +O (∂F ),in the DBI approximation.So,these two ways of describing the same theory can be written in a more general way[2,3],in which the parameters of the open string,g,B,g s ,and closed strings,G,θ,G s ,are related as,1G +2πα′Φ+θdet (G +2πα′Φ)B,the value of G s and G can be determined from the above equation.To find the gauge invariant coupling of the bulk modes with the gauge fields one1needs to introduce Wilson lines[6].The Wilson line is defined as:W(x,C)=P∗e i 10dσ∂σξi(σ)ˆA i(x+ξ(σ))(1.2) Whereξi(σ)=θij k jσ,i.e.a straight Wilson line C,and P∗is the path ordering with respect to∗product,andˆA i is the gauge potential in non-commutative space. In passing,we should mention that comparison between the R-R couplings in differ-ent descriptions yields the Seiberg-Witten map and the other topological identities[8].We know that the low energy limits of the string theory on the brane is described by an effective theory in theα′→0limit of the string theory and the effective action has two parts,DBI and Chern-Simon actions.Whenα′=0then one expects to have α′corrections to the action,and these corrections might be useful in the study of dualities.In this paper,we shall verify the conjecture made by Das et al.,that the deriva-tive corrections to the Chern-Simon and the DBI action can be derived from non-commutativity.Recently,it has been conjectured[10]that derivative corrections to DBI and Chern-Simon action can be found from non-commutativity,and the calculation has already been done to check it,to some order in F.In this report,we have not only extended this calculation but have presented the form of the Seiberg-Witten map to O(A3), namely,we have expressedˆF in terms of F andˆA in terms of A to order A3.We should mention en passant that it’s important to know the Seiberg-Witten map,be-cause the non-commutative action is written in non-commutative variables,ˆF andˆA, but to make a comparison with[9],we have to express all the terms in commutative variables i.e.in terms of F and A.As we shall try to check this conjecture by calculating the4-derivative correc-tions to the F3term for DBI action and4-form4-derivative corrections at F4,6-form 4-derivative corrections at F4,8-form8-derivative corrections at F4to the Chern-Simon action.Since Das et al.,has already derived the4-derivative corrections at F2to DBI action and4-form4-derivative corrections at F3,6-form6-derivative cor-rections at F3,and8-form8-derivative corrections at F4to the Chern-Simon action. Evaluating the derivative corrections to Chern-Simon and DBI action,calculated by Wyllard[9],in the Seiberg-Witten limit shows an agreement of result coming from non-commutativity.The plan of the paper is as follows:In section2,we shall calculate the4-derivative corrections at F3along with the4-derivative corrections at F2to DBI action,and in section3,we shall calculate the derivative corrections to Chern-Simon action,and2conclude in section4.We shall derive the Seiberg-Witten map and the kernels of the ∗n product of n functions in position space in appendix A and B respectively.2Corrections to the DBI actionThe correction to the DBI action,has been calculated[9]using boundary state tech-nique,and it is:S DBI=1det(g+2πα′(B+F))[1+(2πα′)42h ij h kl S jk S li)](2.3)Where S npjk=∂n∂p F jk+2.2πα′h rs∂n F jr∂p F ks and S jk=h mn S jkmn,and h ij= (1det(g+2πα′(B+F))= det(1+2πα′NF)(2.4) Where N is defined in eq.(2.10).Let’s evaluate the above action in the Seiberg-Witten limit,where the Seiberg-Witten limit is defined in eq.(2.8).Using2πα′h|SW= (1+θF)−1θ,and keeping terms to order A3i,we get:S DBI|SW=−1det(g+2πα′B)[θijθklθmnθpq{∂n∂p F jk∂q∂m F li−12F rs∂n∂p F jk∂q∂m F li−1can also be derived from non-commutativity,as conjectured by Das et.al.The DBI action in the commutative and non-commutative theory are[7]:S DBI=T9P fθdetθ.Here,we are dealing with a space-filling brane,to avoid the appearance of scalars through pull-back.The Seiberg-Witten limit is defined as,α′∼√g s .Hence Eq.(2.6)can bewritten as1det(g+2πα′B)g+2πα′B )ij=θijG+2πα′Φ)ij(2.10)In the Seiberg-Witten limit,N ij|SW→θijg s det(1+θF)(2.11)Where as the corresponding non-commutative DBI action eq.(2.7)can be rewritten as:1det(1−θˆF) det(1+2πα′NˆF1g s L∗[Therefore,in order tofind the derivative corrections we have tofind the difference between eq.(2.13)and eq.(2.11).But its not easy tofind the difference,since one of the equation is written using non-commutative variables where as the other one is in commutative variables.In order tofind the difference we shall use the Seiberg-Witten map,to convert the non-commutative variables into its commutative form.Eq.(2.11)can be written up to O(A3),asS DBI|SW=1det(g+2πα′B)[1+14tr(θF)2+16tr(θF)3−148(tr(θF))3](2.14) Rearranging the terms,we get:S DBI|SW=1det(g+2πα′B)[1−θij∂i A j−θijθkl6(2∂j A k∂l A m∂n A i−2∂j A k∂l A m∂i A n−2∂k A j∂l A m∂n A i +6g s 2θijθkl∂j∂l ˆA i,ˆA k+1The non-commutative,and commutative DBI action to the order we are working in is:ˆSDBI|SW=1det(g+2πα′B)[1+θij∂j A i−θijθklg s2(∂j A k∂l A i−∂j A k∂i A l−∂i A j∂k A l)](2.17)and the difference between them is :ˆSDBI |SW −S DBI |SW =1det (g +2πα′B )[−θij θkl2F jk ,F li −14F ij ,F kl +1g s2{θmn θpq2∂m ∂p F ij ∂n ∂q F kl )+θmn θpq θrs θuv2∂m ∂p ∂r ∂u F ij ∂n ∂q ∂s ∂v F kl )}](2.19)The difference between these two actions at the next order,at A 3i is:ˆS DBI |SW −S DBI |SW =1det (g +2πα′B )[θij θkl θmn θpq θrs 2∂p ∂r F jk ∂q ∂s F lm F ni +18F ij ∂p ∂r F lm ∂q ∂s F nk −14F pm ∂r ∂n F lk ∂q ∂s F ji +12F pk ∂q ∂s F jm ∂l ∂r F ni −∂p F kj ∂r F ml ∂q ∂s F in }](2.20)We can see that the equation (2.5)is same as the corrections that we found from non-commutativity,namely,the sum of equation (2.19)and equation (2.20),up to 4-derivative in F 3.3Corrections to the Chern-Simon actionThe Chern-Simon action in two different descriptions,namely in the θ=0,Φ=B and Φ=−B,θ=1g snC(n )∧e 2πα′(B +F )(3.21)ˆSCS =1P fθnC(n )∧e2πα′Q −1W (x,C )](3.22)The Non-commutative Chern-Simon action is written in momentum space,butwhile calculating the difference between the above two action,we shall do so in6position space.To make comparison with the results of[9],we shall parametrise the Chern-Simon action with correction as follows:1S CS=2W4∧W4of ours.For completeness,we shall mention the W’s that we shall use to calculate the corrections,and they are:W4≡W48π2h ij h kl S jk∧S liW6≡W624π3h ij h kl h mn S lm∧S jk∧S niW8≡W864π4h ij h kl h mn h pq S np∧S lm∧S jk∧S qi(3.24) Where the S ij is a two form and defined as1S ij=The difference between the two actions(3.21)and(3.22)for this case gives rise to a topological identity,which is[8]:δ(k)= dxL∗[Onfinding the difference here,between(3.21)and(3.22)gives us the Seiberg-Witten map[4,8].F(k)= dxL∗[Interaction with C (6):2g s L ∗[P fQ2g sC (6)∧2πα′(B +F )∧2πα′(B +F )(3.28)The difference between these two actions,in position space,to order O (A 4)is:∆S CS ≡∆S CS8g sC (6)[ ˆFab ,ˆF cd +2θij ˆF ab ,ˆF ci ,ˆF jd +18ˆFij ,ˆF kl ,ˆF ab ,ˆF cd −12∂j ∂l ˆFab ,ˆF cd ,ˆA i ,ˆA k +2∂j ˆF ab ,ˆF ck ,ˆF ld ,ˆA i +18g sC (6)∧[ F ab ,F cd −F ab F cd−2θmn { F ab , A m ,∂n F cd + F ab , F cm ,F nd − F ab ,F cm ,F nd − F ab ,∂n F cd ,A m }]dx a ∧dx b ∧dx c ∧dx d (3.30)Where (in general)the expression f, g,h ∗2 ∗2is written as f, g,h and f,g,h ∗3as f,g,h to avoidclumsiness 3.On substituting the expression for ∗2,∗2within ∗2and for ∗3into the above equation,we get:∆S CS =124∂i ∂k F ab ∂j ∂l F cd −θij θkl θmn2F im ∂k ∂n F cd ∂j ∂l F ab +∂i F cm ∂k F nd ∂j ∂l F ab }]dx a ∧dx b ∧dx c ∧dx d (3.31)Let’s compare this with the result that will come from W 4in the Seiberg-Witten limit,i.e.the 4-form 4-derivative correction to the Chern-Simon action in the Seiberg-Witten limit is:W 4|SW =12The Seiberg-Witten map is derived in Appendix A.3The exact form of ∗2,∗3,and ∗2within ∗2,is derived in Appendix B.8On inclusion of tension as well as the integration,we can very easily see that both the above equations are same.Interaction with C (4):6g s L ∗[P fQ6g sC (4)∧2πα′(B +F )∧2πα′(B +F )∧2πα′(B +F )(3.33)In position space,the difference between the above two actions,to order O (A 4),is :∆S CS ≡∆S CS48g sC (4)∧{ ˆFab ,ˆF cd ,ˆF ef −F ab F cd F ef −148g sC (4)∧{ F ab ,F cd ,F ef −F ab F cd F ef −3θgh A g ,∂h F ab , F cd ,F ef+3θgh F ag ,F bh ,F cd ,F ef +148{ F ab ,F cd ,F ef −F ab F cd F ef −3θgh A g ,∂h F ab , F cd ,F ef+3θgh F ag ,F bh ,F cd ,F ef +14These expressions are written in Appendix B.9Interaction with C(2):4!g s L∗[P fQ4!g s C(2)∧2πα′(B+F)∧2πα′(B+F)∧2πα′(B+F)∧2πα′(B+F)(3.38) Using the Seiberg-Witten map,the difference between them,to order F4,becomes:∆S CS≡∆S CS4!gs C(2)∧{ F∧F∧F∧F −F∧F∧F∧F}(3.39) Using eq.(3.23)the corrections to the Chern-Simon action is parametrized as:112W4∧W4+14! F∧F∧F∧F −F∧F∧W4|SW−12∂i∂k F ab∂m∂p F cd∂j∂n F ef∂l∂q F gh dx a∧...∧dx h(3.42)5760It is easy to check that the W8of eq.(3.24)in the Seiberg-Witten limit reproducesthe above result with the same coefficient.4ConclusionWe have demonstrated the conjecture that the derivative corrections to the com-mutative theory can be found from non-commutativity in the Seiberg-Witten limit.It’s important to take this limit because in this limit all the corrections to the non-commutative action vanishes and left with the derivative corrections to the commu-tative theory.Also,to do the calculation at higher order infield strength we needto know the Seiberg-Witten map,i.e.the expression ofˆF ij in terms of F ij andˆA i in10terms of A i .Moreover,we shall explain the 4-form 4-derivative corrections to the Chern-Simon action at F 4.Let’s explain it in detail.The corrections to the Chern-Simon action at this order,fromeq.(3.24)is :θij θkl θmn θpq8g sC (6)∧θef θgh [− ∂g ∂e F cd ,A h ,A f ,F ab−2 ∂g F cd ,∂e A h .A f ,F ab − F cd ,∂e A h ,p g A f ,F ab −4 F cg ,∂e F dh ,A f ,F ab −12F ge ,F hf ,F ab ,F cd −2 A g ,∂h A e ,∂f F ab ,F cd − ∂f A g ,∂h A e ,F ab ,F cd + A g ,∂e A h ,∂f F ab ,F cd +14F fg ,F he ,F ab ,F cd + ∂f ∂h F ab ,F cd ,A g ,A e + ∂f F ab ,∂h F cd ,A g ,A e +2 F ab ,∂f F cd ,A g ,∂h A e +1192[4∂i F am ∂k F bn ∂j F cp ∂l F dq −4F pm ∂i F cn ∂k F dq ∂j ∂l F ab+8∂l F dq ∂j F cp F mi ∂k ∂n F ab −F qi F kn ∂j ∂l F ab ∂m ∂p F cd +2∂i ∂p F cd F mq F kn ∂j ∂l F ab −2∂i ∂k F ab A m ∂j ∂p A n ∂l ∂q F cd ]dx a ∧...∧dx d (4.45)11We can see that to order θ4,the result of the calculation from non-commutativity matches with that of eq.(4.43),i.e.we reproduced all the terms that appear in eq.(4.43),but along with these terms,we have an extra term in eq.(4.45),from non-commutativity,and this extra term vanishes due to symmetry arguments.AcknowledgementsWe would like to thank S.R.Das,J.Maharana,S.Mukhi,S.Mukherji,N.Surya-narayana and N.Wyllard for useful discussions and correspondence,and to Niclas Wyllard for pointing out an error in eq.(4.43).5Appendix AIn this section we shall derive the Seiberg-Witten map,namely,expressing ˆFij in terms of F ij and ˆAi in terms of A i ,by solving the equation(3.27)along with the expression of A i in terms of ˆAi [5].Moreover,it’s easy to check that the expression of ˆFij in terms of F ij is consistent with the form of ˆA i in terms of A i .Let’s expand the eq.(3.27)to order A 3,and writing in position space,we get the field strength as:F ab =ˆFab +θij {∂j ˆA i ,ˆF ab +12θij θkl {∂i ∂k ˆFab ,ˆA l ,ˆA j −∂k ˆF ij ,ˆF ab ,ˆA l +2∂k ˆF ai ,ˆF bj ,ˆA l }−θij θkl {18ˆFab ,ˆF kl ,ˆF ij −12θij ˆAi ,(∂j ˆA b +ˆF jb ) +12θcd θef [∂c ∂e F ab ,A d ,A f −∂e F cd ,F ab ,A f +2∂e F ac ,F bd ,A f ]+θcd θef [18F ab ,F cd ,F ef −12∂d A e ,∂c A f ,F ab +1andˆA b =A b −θij A i ,∂j A b +12θij θkl [−2 A i ,∂k A b ,∂j A l + A i ,∂k A b ,∂l A j + ∂k ∂i A b ,A j ,A l +2 ∂k A i ,∂b A j ,A l ]+θij θkl [ A i ,∂j A k ,∂l A b + A k ,∂l A i ,∂j A b −12A k ,∂i A l ,∂j A b−14A i ,∂b A k ,∂j A l −14A k ,∂i A l ,∂b A j −12)2f 1g 2|1=2(6.50)Where ∂1∧∂2=∂1i θij ∂2j ,and f 1=f (x 1).It’s infinitesimal form,up to 8-derivative is:f,g =fg −θij θkl1920∂i ∂k ∂m ∂p f∂j ∂l ∂n ∂q g −...(6.51)The form of ∗3is:f,g,h ={sin(∂2∧∂32)2∂1∧(∂2+∂3)2)sin(∂2∧(∂1+∂3)(∂1+∂2)∧∂32}f 1g 2h 3(6.52)The infinitesimal form of this,up to 8-derivative is:fgh −θij θkl1920(∂i ∂k ∂m ∂p f∂j ∂l ∂n ∂q gh +∂i ∂k ∂m ∂p fg∂j ∂l ∂n ∂q h+f∂i ∂k ∂m ∂p g∂j ∂l ∂n ∂q h )+1720(∂i ∂k ∂p f∂j ∂m ∂q g∂l ∂n h −∂i ∂k ∂p f∂j ∂m g∂n ∂l ∂q h+∂i ∂k f∂j ∂m ∂p g∂l ∂n ∂q h )}...(6.53)13The expression of the ∗4is:f,g,h,p =sin(∂1∧∂4(∂1+∂2+∂3)∧∂42)sin((∂1+∂3+∂4)∧∂2(∂1+∂2+∂4)∧∂32+sin(∂2∧∂32)2(∂1+∂4)∧(∂2+∂3)2)2(sin(∂1∧∂32)2((∂1+∂3)∧(∂2+∂4)2)sin(∂1∧(∂2+∂3+∂4)(∂1+∂2+∂4)∧∂32)+sin(∂3∧∂4(∂1+∂2+∂3)∧∂42)sin((∂1+∂3+∂4)∧∂2(∂1+∂2)∧(∂3+∂4)2+sin(∂2∧(∂3+∂4)2)2∂1∧(∂2+∂3+∂4)24{∂i ∂k f∂j ∂l ghp +∂i ∂k fg∂j ∂l hp +∂i ∂k fgh∂j ∂l p +f∂i ∂k g∂j ∂l hp+f∂i ∂k gh∂j ∂l p +fg∂i ∂k h∂j ∂l p }+θij θkl θmn θrs576{∂i ∂k ∂m ∂r f∂j ∂l g∂n ∂s p +∂i ∂k ∂m ∂r f∂j ∂l gh∂n ∂s p +∂i ∂k f∂j ∂l ∂n ∂s g∂m ∂r hp +∂i ∂k f∂j ∂l ∂n ∂s gh∂m ∂r p +∂i ∂k f∂j ∂l g∂m ∂r h∂n ∂s p +∂i ∂k ∂m ∂r fg∂j ∂l h∂n ∂s p +∂i ∂k f∂m ∂r g∂j ∂l ∂n ∂s hp +∂i ∂k f∂m ∂r g∂j ∂l h∂n ∂s p +∂i ∂k fg∂j ∂l ∂n ∂s h∂m ∂r p +∂i ∂k f∂m ∂r g∂n ∂s h∂j ∂l p +∂i ∂k f∂m ∂r gh∂j ∂l ∂n ∂s p +∂i ∂k fg∂m ∂r h∂j ∂l ∂n ∂s p +f∂i ∂k ∂m ∂r g∂j ∂l h∂n ∂s p +f∂i ∂k g∂j ∂l ∂n ∂s h∂m ∂r p +f∂i ∂k g∂m ∂r h∂j ∂l ∂n ∂s p }+θij θkl θmn θrs 720{∂i ∂k f∂m ∂r g∂j ∂n h∂l ∂s p−∂i ∂k f∂j ∂m g∂n ∂r h∂l ∂s p +∂i ∂k f∂j ∂m g∂l ∂r h∂n ∂s p }(6.55)From now onwards,we shall write down only the infinitesimal form of ∗n within ∗m for n ≤m .The infinitesimal form of f,g ,h ,up to 4-derivative is: f,g ,h =fgh −1+2(∂i f)(∂k g)(∂j∂l h)]+...(6.56) The infinitesimal form of f,g,h ,Q ,up to4-derivative is:θijθklfghQ−24{∂i∂k f∂j∂l ghQ+∂i∂k fg∂j∂l hQ+∂i∂k fgh∂j∂l Q+f∂i∂k g∂j∂l hQ+f∂i∂k gh∂j∂l Q+fg∂i∂k h∂j∂l Q+2∂i∂k f∂j g∂l hQ+2∂i∂k f∂j gh∂l Q+2∂i∂k fg∂j h∂l Q+2f∂i g∂k h∂j∂l Q}(6.58) The infinitesimal form of f,g , h,Q ,up to4-derivative is:θijθklfghQ−24{∂i∂k f∂j∂l ghQ+∂i∂k fg∂j∂l hQ+∂i∂k fgh∂j∂l Q+f∂i∂k g∂j∂l hQ+f∂i∂k gh∂j∂l Q+fg∂i∂k h∂j∂l Q+2∂i f∂k g∂j∂l hQ+2∂i f∂k gh∂j∂l Q}(6.60)References1.C-S.Chu,P-M.Ho,“Noncommutative open strings and D-branes”,Nucl.Phys.B550151,(1999),hep-th/9812219.2.N.Seiberg,E.Witten,“String theory and Noncommutative Geometry”,JHEP09(1999)032,hep-th/9908142.153.N.Seiberg,“A Note on Background Independence in Noncommutative GaugeTheories,Matrix Model and Tachyon Condensation”,JHEP0009,003(2000), hep-th/0008013.4.H.Liu,“*-Trek II:∗n Operations,Open Wilson Lines and the Seiberg-WittenMap”,hep-th/0011125.5.T.Mehen and M.Wise,“Generalised*-products,Wilson Lines and the Solutionof the Seiberg-Witten equations”,JHEP0012,008(2000),hep-th/0010204. 6.S.R.Das and S.Trivedi,“Supergravity Couplings to Noncommutative Branes,Open Wilson Lines and Generalised Star Products”,JHEP0102,046(2001);S.R.Das,“Bulk Couplings to Noncommutative Branes”,hep-th/0105166;D.J.Gross,A.Hashimoto,and N.Itzhaki,“Observables of Non-Commutative Gauge Theories”,hep-th/0008075;Sumit Das,Soo-Jong Rey,“Open Wilson Lines in Noncommutative Gauge Theory and Tomography of Holographic Dual Supergravity”,Nucl.Phys.B590(2000)453-470,hep-th/0008042.7.S.Mukhi and N.V.Suryanarayana,“Chern-Simons Terms on NoncommutativeBranes”,JHEP0011,006(2000),hep-th/0009101;“Ramond-Ramond Cou-plings of Noncommutative Branes”,hep-th/0107087.8.Y.Okawa and H.Ooguri,“An Exact Solution to Seiberg-Witten Equations ofNoncommutative Gauge Theory”,hep-th/0104036;S.Mukhi and N.V.Surya-narayana,“Gauge-invariant Couplings of Noncommutative Branes to Ramond-Ramond Backgrounds”,JHEP0105,023(2001),hep-th/0104045;H.Liu and J.Michelson,“Ramond-Ramond Couplings of Noncommutative D-branes”,hep-th/0104139.9.N.Wyllard,“Derivative corrections to D-brane actions with constant back-groundfields”,Nucl.Phys.B598,247(2001),hep-th/0008125,“Derivative corrections to the D-brane Born-Infeld action:non-geodesic embeddings and the Seiberg-Witten map”,JHEP0108(2001)027,hep-th/0107185.10.Sumit R.Das,S.Mukhi and N.V.Suryanarayana,“Derivative Corrections fromNoncommutativity”,hep-th/0106024,Sunil Mukhi,“Star Products from Com-mutative String Theory”,hep-th/0108072.16。