山东省邹平县实验中学九年级数学上册课件:2414圆周角定理及其运用(2)(共16张PPT)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
∵AO=BO, CO= 2 AB,
A
·
B
O
∴AO=BO=CO.
∴点C在⊙O上.
又∵AB为直径,
∴∠ACB=
1 2
×180°=
90°.
∴ △ABC 为直角三角形.
课堂练习
• 1.如图,OA、OB、OC都是⊙O的半径, ∠AOB=2∠BOC,∠ACB与∠BAC的大小有 什么关系?为什么?
C
O
B
A
•2.如图,A、B、C、D是⊙O上的四个点,且
C、90°;
D、100°
BO C
2、如图,△ABC是等边三角形,
C
动点P在圆周的劣弧AB上,且不
与A、B重合,则∠BPC等于( B )
A、30°;
B、60°;
A
B
C、90°;
D、45°
P
练一练
3、如图,∠A=50°, ∠AOC=60 °
BD是⊙O的直径,则∠AEB等于( B)
A、70°;
B、110°;
又在Rt△ABD中,AD2+BD2=AB2,
AD BD 2 AB 2 13 13 2(cm)
2
2
2
练习
5.如图,你能设法确定一个圆形纸片的圆心吗?你有多
少种方法?与同学交流一下.
方法三
方法一
O
A
B
C
O
方法二
A D
·
B
方法四
O
• 圆周角∠ABC与圆心角∠AOC,它们的大小有什么 关系?并证明
例题
例 如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平分
线交⊙O于D,求BC、AD、BD的长.
解:∵AB是直径,
∴ ∠ACB= ∠ADB=90°.
C
在Rt△ABC中,
BC AB2 AC2 102 62 8
A
O
B
∵CD平分∠ACB,
ACD BCD.
D
∴AD=BD.
又在Rt△ABD中,AD2+BD2=AB2,
C、90°;
D、120°
B
4、如图,△ABC的顶点A、B、C
都在⊙O上,∠C=30 °,AB=2,
则⊙O的半径是 2 。
解:连接OA、OB
A
∵∠C=30 ° ,∴∠AOB=60 °
又∵OA=OB ,∴△AOB是等边三角形 ∴OA=OB=AB=2,即半径为2。
A ED
O
C
C
O
B
练习
5.如图,你能设法确定一个圆形纸片的圆心吗?你有多
在同圆或等圆中,如果两个 圆周角相等,它们所对的弧 一定相等.
巩固练习:
如图,点A,B,C,D在同一个圆上,四 边形ABCD的对角线把4个内角分成 8个角,这些角中哪些是相等的角?
D
A1
87
2
3
6
45
B
C
练一练
1、如图,在⊙O中,∠ABC=50°,
A
则∠AOC等于( )
A、50°;
BD、80°;
(2)如果点P在⊙O内, ∠P与∠AQB有怎样 的关系?为什么?
A
Qp O
B
24.1.4 圆周 角
如图,⊙O直径AB为13cm,弦AC为5cm,∠ACB的平分线
交⊙O于D,求BC、AD、BD的长.
解:∵AB是直径,
∴ ∠ACB= ∠ADB=90°.
C
在Rt△ABC中,
BC AB2 AC2 132 52 12
A
O
B
∵CD平分∠ACB,
ACD BCD.
D
∴AD=BD.
∠BCD=100°,求∠BOD( 所对的圆心角)
和∠BAD的大小。
A
O
D
B
C
探究
3、如图,AB是⊙O的直径,BD是⊙O的弦,延长 BD到点C,使DC=BD,连接AC交⊙O于点F,点 F不与点A重合。
(1)AB与AC的大小有什么关系?为什么?
(2)按角的大小分类,请你判断△ABC属于哪一类
三角形,并说明理由。
A
解:(1)AB=AC。
证明:连接AD ∵AB是直径,∴∠ADB=90°,
O· F
又∵DC=BD,∴AB=AC。
BDC
(2)△ABC是锐角三角形。
由(1)知,∠B=∠C<90 °
连接BF,则∠AFB=90 °,∴∠A<90 ° ∴△ABC是锐角三角形
拓展练习
如图,点P是⊙O外一点,点A、B、Q是⊙O上 的点。(1)求证∠P< ∠AQB
A C
●O
B
A C
A C
●O
●O
B
B
结结论论::
圆圆周周角角的的定定理理::
在在同同圆圆或或等等圆圆中中,,同同弧弧或或等等弧弧所所对对 的 的的 的圆 圆圆 圆周 心周心角角角角相的相的等一等一,半, 半都 。都 。等等于于这这条条弧弧所所对对
在同圆或等圆中,如果两个圆周角相等, 它们所对弧一定相等吗?为什么?
少种方法?与同学交流一下.
方法三
方法一
O
A
B
C
O
方法二
A D
·
B
方法四
O
第二课时 应用
• 回顾:圆周角定理及推论?
• 思考:判断正误:
1.同弧或等弧所对的圆周角相等( )
2.相等的圆周角所对的弧相等( )
3.90°角所对的弦是直径( )
4.直径所对的角等于90°(

ቤተ መጻሕፍቲ ባይዱ
5.长等于半径的弦所对的圆周角等于30°( )
AD BD 2 AB 2 10 5 2(cm)
2
2
课本 练 习
3.求证:如果三角形一边上的中线等于这边的一半,那么这个 三角形是直角三角形.(提示:作出以这条边为直径的圆.)
已知:△ABC 中,CO为AB边上的中线,且CO= 1 AB
2
求证: △ABC 为直角三角形.
C
证明: 以AB为直径作⊙O,
相关文档
最新文档