2012 Synthesis of Active Damping for Grid-Connected Inverters with an LCL filter
Microsemi DS31407 3-Input, 4-Output, Single DPLL T
DS31407 3-Input, 4-Output, Single DPLL Timing ICwith Sub-ps Output JitterGeneral Description The DS31407 is a flexible, high-performance timing IC for diverse frequency conversion and frequency synthesis applications. On each of its three input clocks and four output clocks, the device can accept or generate nearly any frequency between 2kHz and 750MHz.The input clocks are divided down, fractionally scaled as needed, and continuously monitored for activity and frequency accuracy. The best input clock is selected, manually or automatically, as the reference clock for the rest of the device. A flexible, high-performance digital PLL locks to the selected reference and provides programmable bandwidth, very high resolution holdover capability, and truly hitless switching between input clocks. The digital PLL is followed by a clock synthesis subsystem that has two fully programmable digital frequency synthesis blocks, a high-speed low-jitter APLL, and four output clocks, each with its own 32-bit divider and phase adjustment. The APLL provides fractional scaling and output jitter less than 1ps RMS. For telecom systems, the DS31407 has all required features and functions to serve as a central timing function or as a line card timing IC. With a suitable oscillator the DS31407 meets the requirements of Stratum 2, 3E, 3, 4E, and 4, G.812 Types I–IV, G.813, and G.8262.Applications Frequency Conversion Applications in a Wide Variety of Equipment TypesTelecom Line Cards or Timing Cards with Any Mix of SONET/SDH, Synchronous Ethernet and/or OTNPorts in WAN Equipment Including MSPPs, Ethernet Switches, Routers, DSLAMs, and Base StationsOrdering Information PART TEMP RANGE PIN-PACKAGE DS31407GN+ -40°C to +85°C 256 CSBGA+Denotes a lead(Pb)-free/RoHS-compliant package.SPI is a trademark of Motorola, Inc.Features ♦Three Input Clocks♦Differential or CMOS/TTL Format♦Any Frequency from 2kHz to 750MHz♦Fractional Scaling for 64B/66B and FECScaling (e.g., 64/66, 237/255, 238/255) or AnyOther Downscaling Requirement♦Continuous Input Clock Quality Monitoring♦Automatic or Manual Clock Selection♦Three 2/4/8kHz Frame Sync Inputs♦High-Performance DPLL♦Hitless Reference Switching on Loss of Input♦Automatic or Manual Phase Build-Out♦Holdover on Loss of All Inputs♦Programmable Bandwidth, 0.5mHz to 400Hz♦Two Digital Frequency Synthesizers♦Produce Any 2kHz Multiple Up to 77.76MHz♦Per-DFS Clock Phase Adjust♦High-Performance Output APLL♦Output Frequencies to 750MHz♦High Resolution Fractional Scaling for FECand 64B/66B (e.g., 255/237, 255/238, 66/64)or Any Other Scaling Requirement♦Less than 1ps RMS Output Jitter♦Four Output Clocks in Two Groups♦Nearly Any Frequency from < 1Hz to 750MHz♦Each Group Slaves to a DFS Clock, an APLLClock, or Any Input Clock (Divided and Scaled) ♦Each Has a Differential Output (1 CML, 1 LVDS/ LVPECL) and Separate CMOS/TTL Output ♦32-Bit Frequency Divider Per Output♦Two Sync Pulse Outputs: 8kHz and 2kHz♦General Features♦Suitable Line Card IC or Timing Card IC forStratum 2/3E/3/4E/4, SMC, SEC/EEC, or SSU ♦Accepts and Produces Nearly Any Frequency Up to 750MHz Including 1Hz, 2kHz, 8kHz, NxDS1,NxE1, DS2/J2, DS3, E3, 2.5M, 25M, 125M,156.25M, and Nx19.44M Up to 622.08M♦Internal Compensation for Local OscillatorFrequency Error♦SPI™ Processor Interface♦ 1.8V Operation with 3.3V I/O (5V Tolerant)Short Form Data Sheet April 2012Application ExampleBlock DiagramDetailed FeaturesInput Clock Features•Three input clocks, differential or CMOS/TTL signal format•Input clocks can be any frequency from 2kHz up to 750MHz•Supported telecom frequencies include PDH, SDH, Synchronous Ethernet, OTU-1, OTU-2, OTU-3•Per-input fractional scaling (i.e. multiplying by N÷D where N is a 16-bit integer and D is a 32-bit integer and N < D) to undo 64B/66B and FEC scaling (e.g., 64/66, 238/255, 237/255, 236/255) •Special mode allows locking to 1Hz input clocks•All inputs constantly monitored by programmable activity monitors and frequency monitors•Fast activity monitor can disqualify the selected reference after a few missing clock cycles•Frequency measurement and frequency monitor thresholds with 0.2ppm resolution•Three optional 2/4/8kHz frame-sync inputsDPLL Features•Very high-resolution DPLL architecture•Sophisticated state machine automatically transitions between free-run, locked, and holdover states •Revertive or nonrevertive reference selection algorithm•Programmable bandwidth from 0.5mHz to 400Hz•Separately configurable acquisition bandwidth and locked bandwidth•Programmable damping factor: 1.2, 2.5, 5, 10, or 20•Multiple phase detectors: phase/frequency and multicycle•Phase/frequency locking (±360° capture) or nearest edge phase locking (±180° capture)•Multicycle phase detection and locking (up to ±8191UI) improves jitter tolerance and lock time•Phase build-out in response to reference switching for true hitless switching•Less than 1 ns output clock phase transient during phase build-out•Output phase adjustment up to ±200ns in 6ps steps with respect to selected input reference•High-resolution frequency and phase measurement•Holdover frequency averaging over 1-second, 5.8-minute, and 93.2-minute intervals•Fast detection of input clock failure and transition to holdover mode•Low-jitter frame sync (8kHz) and multiframe sync (2kHz) aligned with output clocksDigital Frequency Synthesizer Features•Two independently programmable DFS engines•Each DFS can synthesize any 2kHz multiple up to 77.76MHz•Per-DFS phase adjust (1/256UI steps)•Approximately 40ps RMS output jitterOutput APLL Features•Simultaneously produce four different output frequencies from the same reference clock•Standard telecom output frequencies include 622.08MHz, 155.52MHz, and 19.44MHz for SONET/SDH and 156.25MHz, 125MHz, and 25MHz for Synchronous Ethernet•Very high-resolution fractional scaling (i.e., noninteger multiplication)•Less than 1ps RMS output jitterOutput Clock Features•Four output clock signals in two groups•Output clock group OC1 has a very high-speed differential output (current-mode logic, ≤ 750MHz) and a separate CMOS/TTL output (≤ 125MHz)•Output clock group OC4 has a high-speed differential output (LVDS/LVPECL, ≤ 312.5MHz) and a separate CMOS/TTL ouptut (≤ 125MHz)•Each output can be any frequency from < 1Hz to max frequency stated above•Supported telecom frequencies include PDH, SDH, Synchronous Ethernet, OTN, microprocessor clock frequencies, and much more•Internal clock muxing allows each output group to slave to its associated DFS block, an APLL output, or any input clock (after being divided and scaled)•Outputs sourced directly from the APLL have less than 1ps RMS output jitter•Outputs sourced directly from DFS blocks have approximately 40ps RMS output jitter•Optional 32-bit frequency divider per output•8kHz frame sync and 2kHz multiframe sync outputs have programmable polarity and pulse width and can be disciplined by a 2kHz or 8kHz frame sync input•Per-output delay adjustment•Per-output enable/disable•All outputs disabled during resetGeneral Features•SPI serial microprocessor interface•Four general-purpose I/O pins•Register set can be write protected•Operates from a 12.8MHz, 25.6MHz, 10.24MHz, 20.48MHz, 10MHz, 20MHz, 19.44MHz, or 38.88MHz local oscillator•On-chip watchdog circuit for the local oscillator•Internal compensation for local oscillator frequency errorMicrosemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136Fax: +1 (949) 215-4996。
Realflow2012中英文对照表2012
Realflow2012菜单中英文对照表这是主界面(为了截图我把窗口缩小了,不过大概的布局还是能看清的)最上面一排是标题栏,期待补完……从左往右依次是新建、打开、保存,这个跟大部分软件一样。
从左往右依次是选择、移动、旋转、缩放,最后一个是控制被选择物体的轴在世界轴向与自身轴向间切换。
场景缩放与节点目录。
(rf4菜单)从左往右依次为:第一个图标:添加一个新的发射器到场景中。
第二个图标:添加一个场或者消亡区域或者其他东西到场景中。
第三个图标:添加一个新的(多边形)物体到场景中。
第四个图标:添加一个约束到场景中。
第五个图标:添加一个新的网格到场景中。
第六个图标:添加一个新的摄像机到场景中。
第七个图标:添加一个RealWave(真实波浪?)到场景中。
四视图与曲线编辑器窗口Nodes(上左):节点Exclusive Links(上中):独有连接、单独连接Global Links(上右):总体连接、全局连接Node Params(下左):节点参数Messages(下右):信息时间控制区期待补完……动画控制区期待补完……发射器(emitter)篇Circle:圆形发射器Square:矩形发射器Sphere:球形发射器Linear:线形发射器Triangle:三角形发射器Spline:曲线发射器Cylinder:圆柱形发射器Bitmap:位图发射器Object emitter:物体发射器Fill Object:填充物体RW_Splash:RW飞溅RW_Particles:RW粒子Fibers:纤维发射器Binary Loader:NBinary Loader:节点参数菜单:公共参数:Node:节点Simulation:模拟Position:方位 Inactive:无效、不活动Rotation:旋转 Active:有效、活动Scale:缩放 Cache:缓存Pivot:枢轴、中心点Parent to:连接到父物体Color:颜色Xform particles:变换粒子 Yes/No:是/否(下文同)Initial state:初始状态Use initial state:使用初始状态Make initial state:生成初始状态Particles:粒子Type:类型 Gas:气体Resolution:分辨率Density:密度Int pressure:内压力Ext pressure:外压力Viscosity:粘性Temperature:温度Ext temperature:表面温度Heat capacity:热能Heat conductivity:热传导Compute vorticity:计算涡流Max particles:最大粒子数量Particles:粒子Type:类型 Liquid:液体Resolution:分辨率Density:密度Int pressure:内压力Ext pressure:外压力Viscosity:粘性Surface tension:表面张力Interpolation:插补 None:无Compute vorticity:计算涡流 Local:局部Max particles:最大粒子数量 Global:总体、全局Particles:粒子Type:类型 Dumb:哑、无声Resolution:分辨率Density:密度Max particles:最大粒子数量Particles:粒子Type:类型 Elastics:弹性体、橡皮带Resolution:分辨率Density:密度Spring:弹力Damping:阻尼Elastic limit:Break limit:Max particles:最大粒子数量Particles:粒子Type:类型 Custom:自定义Resolution:分辨率Density:密度Int pressure:内压力Ext pressure:外压力Viscosity:粘性Temperature:温度Max particles:最大粒子数量Edit:编辑Statistics:统计Existent particles:存在粒子数量Emitted particles:发射粒子数量Particle mass:粒子质量V min:V最小值V max:V最大值Display:显示Visible:可见性Point size:粒子点大小Show arrows:显示箭头Arrow length:箭头长度Property:属性Automatic range:自动距离Min range:最小距离 Velocity:速度Min range color:最小距离颜色 Velocity X:速度的X方向Max range:最大距离 Velocity Y:速度的Y方向Max range color:最大距离颜色 Velocity Z:速度的Z方向Pressure:压力Density:密度Vorticity:涡流Temperature:温度Constant:固定独立参数:Circle:圆形发射器Volume:体积Speed:速度V random:V随机H random:H随机Ring ratio:环形比例Side emission:边线发射Square:矩形发射器Volume:体积Speed:速度V random:V随机H random:H随机Side emission:边线发射Sphere:圆形发射器Speed:速度Randomness:随机Fill sphere:填充球体发射器Linear:线形发射器Height:高度Length:长度Speed:速度V random:V随机H random:H随机Triangle:三角形发射器Volume:体积Speed:速度V random:V随机H random:H随机Side emission:边线发射Bitmap:位图发射器Emission mask:发射面具File list:文件目录 Single:单帧Number of files:文件数目 Sequence-end:序列末端Affect:影响 Sequence-keep:保持序列Val min:最小值 Sequence-loop:循环序列Val max:最大值Volume:体积Speed:速度V random:V随机 None:无H random:H随机 Viscosity:可见Spline:曲线发射器Affect:影响Creation:创建Speed:速度 Force:力Randomness:随机 Velocity:速度Kill leaving:消除残留Edit:编辑Insert CP:插入CPDelete CP:删除CP@ CP index:CP索引 Axis:轴@ CP axial:CP轴向 Tube:圆管@ CP radial:CP放射 Edge:边@ CP vortex:CP涡流@ CP radius:CP半径@ CP rotation:CP旋转@ CP link:CP连接Cylinder:圆柱形发射器Speed:速度V random:V随机H random:H随机Object emitter:物体发射器Object:物体Parent velocity per:每父物体速度Distance threshold:距离起点Jittering:抖动Speed:速度Randomness:随机Smooth normals:平滑法线Use texture:使用纹理Select Faces:选择面Select Vertex:选择点Clear selection:清除选择Fill Object:填充物体Object:物体Fill Volume:填充体积Fill X radio:填充X半径Fill Y radio:填充Y半径Fill Z radio:填充Z半径Remove # layers:移除层Jittering:抖动@ seed:种子值Particle layer:粒子层RW_Splash:RW飞溅Object:物体Waterline mult:吃水线倍率@ H strength:H强度@ V strength:V强度@ Side emission:边线发射@ Normal speed:法线速度Underwater mult:水下倍率@ Depth threshold:深度起点Speed mult:速度倍率Parent Obj Speed:父物体速度Speed threshold:速度起点Speed variation:速度变化Drying speed:干燥速度RW_Particles:RW粒子Speed:速度Speed variation:速度变化Height for emission:发射高度Speed for emission:发射速度Fibers:纤维发射器Object:物体Length:长度Length variation:长度变化Threshold:起点Stiffness:硬度Fiber damping:纤维阻尼Interpolate:窜改Select Vertex:选择点Clear selection:清除选择Create:创建Mesh tube:网格圆管@ Mesh width:网格宽度@ Mesh width end:网格末端宽度@ Mesh section:网格切片Binary Loader:二进制装入程序BIN sequence:本系列Mode:形式方法Reverse:反向的Number of files:文件数Frame Offset:帧偏移Release particles:释放粒子Load particles:负荷粒子Reset xform:变换重置Subdivisions:分支机构@ Output sequence:输出序列NBinary Loader:****装载机BIN sequences:本序列Load Bin Seq:负载箱序列Remove Bin Seq:删除本条Mode:模式Reverse:反向的Number of files:文件数Frame offset:帧偏移Reset xform:变换重置力场与消亡区域(daemon)篇k Volume:体积消亡k Age:年龄消亡k Speed:速度消亡k Isolated:隔离消亡k Collision:碰撞消亡k Sphere:球形消亡Gravity:重力场Attractor:吸引器DSpline:曲线力场Wind:风力场Vortex:漩涡场Layered Vortex:分层漩涡Limbo:不稳定状态Tractor:牵引器Coriolis:向心力场Ellipsoid force:椭球力场Drag force:拖动力场Surface tension:表面张力Noise field:噪波场Heater:加热器Texture Gizmo:Magic:魔术Object field:物体场Color plane:色彩平面Scripted:脚本节点参数菜单:公共参数:(请参考发射器篇公共参数节点一栏,一模一样,在此省略)独立参数:k Volume:体积消亡Fit to object:适配到物体Fit to scene:适配到场景Inverse:翻转k Age:年龄消亡Iife:生命值Variation:变化Split:分裂@ # child:子物体数量k speed:速度消亡Min speed:最小速度Max speed:最大速度Limit & keep:限制与保持Split:分裂@ # child:子物体数量Bounded:边界Boundary:边界范围k Isolated:隔离消亡Isolated time:隔离时间k Collision:碰撞消亡All objects:所有物体Select objects:选择物体Split:分裂@ # child:子物体数量k Sphere:球形消亡Fit to object:适配到物体Fit to scene:适配到场景Radius:半径Inverse:翻转Gravity:重力场Affect:影响Strength:强度 Force:力Bounded:边界 Velocity:速度Underwater:水下No:无Box:立方体Plane:平面Push:扩展Attractor:吸引器Affect:影响Internal force:内力 Force:力Internal radius:内半径 Velocity:速度External force:外力External radius:外半径Attenuated:衰减Attractor type:吸引类型Planet radius:圆球半径 Spherical:球形Axial strength:轴向强度 Axial:轴向Bounded:边界 Planetary:不定向Dspline:曲线力场Affect:影响Vortex strength:涡流强度Axial strength:轴向强度 force:力Radial strength:辐射强度 velocity:速度Bounded:边界Edit:编辑Insert CP:插入CPDelete CP:删除CP@ CP index:CP索引@ CP axial:CP轴向@ CP radial:CP放射@ CP vortex:CP涡流@ CP radius:CP半径@ CP link:CP连接Wind:风力场Affect:影响Strength:强度Noise strength:噪波强度Noise scale:噪波缩放 Force:力Bounded:边界 Velocity:速度@ radius 1:半径1@ radius 2:半径2@ height:高度Vortex:漩涡场Affect:影响Rot strength:旋转强度 Force:力Central strength:中心强度 Velocity:速度Attenuation:衰减Bounded:边界Boundary:边界范围Vortex type:涡流类型Radius:半径 Linear:线性Bound Sup: Square:平方Bound Inf: Cubic:立方Classic:经典Complex:复合Layered Vortex:分层漩涡Affect:影响Num layers:分层数量Offset:偏移 Force:力Current Layer:当前层 Velocity:速度@ Vortex type:涡流类型@ Strength:强度@ Radius:半径@ Width:宽度 Classic:经典@ Bounded:边界 Complex:复合@ Boundary:边界范围Limbo:不稳定状态Affect:影响Width:宽度Strength 1:强度1 Force:力Attenuate 1:衰减1 Velocity:速度Strength 2:强度2Attenuate 2:衰减2Tractor:牵引器Affect:影响F1 Force:力F2 Velocity:速度F3F4Coriolis:向心力场Affect:影响 Force:力Strength:强度 Velocity:速度Ellipsoid force:椭球力场Min velocity:最小速度Min gain:最小增量Max velocity:最大速度Max gain:最大增量Clamp:钳紧Drag force:拖动力场Drag strength:拖动强度Shield effect:盾效果 No:无@ shield inverse:盾翻转 Square:正方形Force limit:力量限制 Sphere:圆形Bounded type:边界类型Attenuation:衰减 No:无Affect vertex:影响点 linear:线性Square:平方Cubic:立方Surface tension:表面张力Strength:强度balanced:平衡Noise field:噪波场Affect:影响Strength:强度 Force:力Scale Factor:缩放系数 Velocity:速度Bounded:边界Radius:半径多边形物体(object)篇Null:点Sphere:球体Hemisphere:半球体Cube:立方体Cylinder:圆柱体Vase:花瓶、杯子、碗Cone:圆锥体Plane:平面Torus:圆环体Rocket:火箭Capsule:胶囊Import:导入节点参数菜单:公共参数:Node:节点Simulation:模拟 Inactive:无效、不活动Dynamics:动力学 Active:有效、活动Position:方位 Cache:缓存Rotation:旋转Scale:缩放Pivot:枢轴、中心点Parent to:连接到父物体Color:颜色 No:无SD<->Curve:SD文件与曲线互转 Rigid body:刚体Initial state:初始状态Soft body:柔体Use initial state:使用初始状态Make initial state:生成初始状态Texture:纹理Load Texture:读取纹理WetDry texture:@ resolution:分辨率@ filter loops #:过滤循环@ filter strength:过滤强度@ pixel strength:像素浓度@ ageing:时效Display:显示Visible:可见性Show normals:显示法线Show particles:显示粒子Normal size:法线大小 Face:面Normal type:法线类型 Vertex:点Reverse normals:翻转法线 VtxFace:Show texture:显示纹理独立参数:无约束(constraint)篇Ball_socket:球形槽Hinge:铰链Slider:滑动Fixed:固定Rope:捆绑Path_follow:跟随路径Car_wheel:滚动Limb:网格(mesh)篇节点参数菜单:Mesh:网格Build:创建 Metaballs:变形球Type:类型 Mpolygons:Clone obj:复制物体 Clone obj:复制物体Polygon size:多边形大小@ Num Faces:面数LOD resolution:细节级别分辨率@ Camera:摄像机 No:无@ Min distance:最小距离 Camera:摄像机@ Min Polygon size:最小多边形大小@ Max distance:最大距离@ Max Polygon size:最大多边形大小Texture:纹理UVW Mapping:UVW贴图Load texture:读取纹理Tiling:贴砖Appy map now:现在应用贴图Speed info:速度信息 None:无Filters:过滤 UV particle:UV粒子Filter method:过滤方法 UV sprite:UV精灵Relaxation:松弛 Speed:速度Tension:张力、拉紧 Pressure:压力Steps:步数 Temperature:温度Clipping:限制、剪裁Clipping box:限制立方体Clipping objects:限制物体InOut clipping:内外限制Camera clipping:摄像机限制Camera:摄像机 Inside:内部Realwave clipping:Realwave限制 Outside:外部Optimize:优化Optimize:优化Camera:摄像机Merge Iterations:融合迭代次数@ Ite threshold:迭代阈值 No:无Face subdivision:表面细分 Curvature:曲率@ Sub threshold:细分阈值 Camera:摄像机Display:显示Color:颜色Transparency:透明度Back face culling:背面消隐与网格关联的粒子发射器(比如:)节点参数菜单:Field:区域Blend factor:融合系数Radius:半径Subtractive field:负(相反)区域Noise:噪波Fractal noise:分型噪波@ Amplitude:振幅@ Frequency:频率@ Octaves:倍频程Deformation:变形Speed stretching:拉伸速度Min str scale:最小拉伸缩放Max str scale:最大拉伸缩放Speed flattening:压扁速度Min flat scale:最小压扁速度Max flat scale:最大压扁速度Min speed:最小速度Max speed:最大速度摄像机(camera)篇Realwave篇节点参数菜单:显示网格流体菜单范围,领域发射体泡沫飞溅湿泡沫泼溅湿的下雨的泡沫船的吃水线雾水汽每段的飞溅每段的泡沫每段的雾菜单栏第二排(rf2012)1.transformations:变换2.position :位置3.scale :刻度尺度4.shear:剪切5.rotation :旋转6. 最近的侧面7.最近的侧面(拓展)8. 粒子工具9. 粒子的选择10. 测量工具11 创建数组12 破裂13. 回复时间模拟14 设置选定可见15 设置选定的隐藏16. 设置选定的包围盒17. 设置选定的线框18. 设置选定的闪光阴影19. 设置选定的平滑阴影20. 设置选定的活动21. 设置选定的缓存22. 设置选定的无效23.设置选定的出口数据24. 禁用数据输出选择25. 改变分辨率26.计算vorticiy27.正常年龄28. 建立网格右下角控制栏1.建立网格2. 硬化方法3. 可视化细节层次4. 发送给招聘经理5. 去上关键帧6. 去下个关键帧7. 设置一个关键帧中的当前位置图层1.可见物视程2. 模仿模拟3. 层4. 可见的已有的5. 显示模式6.增加新的层与选定的节点7.流体动力学对象的动态显示网格菜单粒子网格粒子网格(标准)网格网格显示的菜单单一的多样的。
激活陨簇振动吸收系统的机器工具说明说明书
Abstract—Isolating the ultra-precision machine from vibrating base is importance in engineering fields. And the vibration isolation system is applied to reduce transmission of vibratory forces to the machine or the foundation. With the development of the vibration control techniques and force actuator in industry, active vibration isolation provides very high vibration isolation performance. In this paper, the theory and practice of vibration isolation reducing vibration transmitted from vibrating base to sensitive equipment have been studied in the paper. And a Zdirection isolation system is designed and provided by using proportional-integral-derivative controller and piezoelectric element. The approach is validated using experimental data. Results show that this vibration cancellation system can get good performance to reduce the effect of unwanted vibration and disturbances.
encyclopediaofvibration
Encyclopedia of VibrationBraun, Simon GISBN-13: 9780122270857Table of ContentsAbsorbers, VibrationValder Steffen, Jr, and Domingo Rade, Federal University of Uberlandia, BrazilActive Control of Civil StructuresT T (Larry) Soong, MCEER, SUNY Buffalo, USA, and B F Spencer, Jr, USAActive Control of Vehicle VibrationMehdi Ahmadian, Virginia Polytechnic Institute & State University, USAActive IsolationSteve Griffin, AFRL/VSSV, USA, and Dino Sciulli, Virginia, USAActive Vibration SuppressionDaniel Inman, Virginia Polytechnic Institute & State University, USAActuators and Smart StructuresVictor Giurgiutiu, University of South Carolina, USAAdaptive FiltersStephen J Elliott, University of Southampton, UKAeroelastic ResponseJ E Cooper, University of Manchester, UKAveragingSimon Braun, Technion - Israel Institute of Technology, IsraelBalancingR Bigret, Drancy, FranceBasic PrinciplesGiora Rosenhouse, Technion City, IsraelBeamsRichard A Scott, University of Michigan, USABearing DiagnosticsK McKee and C James Li, Rensselaer Polytechnic Institute, USABearing VibrationsR Bigret, Drancy, FranceBeltsL Zhang and J W Zu, University of Toronto, CanadaBlades and Bladed DisksR Bigret, Drancy, FranceBoundary ConditionsGiora Rosenhouse, Technion City, IsraelBoundary Element MethodsFriedel Hartmann, University of Kassel, GermanyBridgesSingiresu S Rao, University of Miami, USACablesNoel C Perkins, University of Michigan, USACepstrum AnalysisBob Randall, University of New South Wales, AustraliaChaosPhilip J Holmes, Princeton University, USAColumnsIsaac Elishakoff, Florida Atlantic University, USA, and C W Bert, University of Oklahoma, USACommercial SoftwareGuy Robert, Liege, BelgiumComparison of Vibration Properties: Comparison of Spatial PropertiesMircea Rades, University Politechnica of Bucharest, RomaniaComparison of Vibration Properties: Comparison of Modal PropertiesMircea Rades, University Politechnica of Bucharest, RomaniaComparison of Vibration Properties: Comparison of Response PropertiesMircea Rades, University Politechnica of Bucharest, RomaniaComputation for Transient and Impact DynamicsDavid J Benson, University of California, San Diego, USA, and John Hallquist, Livermore Software Technology Corporation (LSTC), USAContinuous MethodsC W Bert, University of Oklahoma, USACorrelation FunctionsSimon Braun, Technion - Israel Institute of Technology, IsraelCrashVictor H Mucino, West Virginia University, USACritical DampingDaniel Inman, Virginia Polytechnic Institute & State University, USADamping in FE ModelsGeorge A Lesieutre, Pennsylvania State University, USADamping MaterialsEric E Ungar, Acentech, Inc, USADamping MeasurementD J Ewins, Imperial College of Science, Technology and Medicine, UKDamping ModelsDaniel Inman, Virginia Polytechnic Institute & State University, USADamping MountsJian-Qiao Sun, University of Delaware, USADamping, ActiveAmr Baz, University of Maryland, USAData AcquisitionBob Randall and M J Tordon, University of New South Wales, AustraliaDiagnostics and Condition Monitoring, Basic ConceptsM Sidahmed, Université de Compiegne, France, and Giorgio Dalpiaz, University of Bologna, Italy Digital FiltersTony Constantinides, Imperial College of Science, Technology and Medicine, UKDiscrete ElementsSingiresu S Rao, University of Miami, USADisksD J Ewins, Imperial College of Science, Technology and Medicine, UKDisplays of Vibration PropertiesMircea Rades, University Politechnica of Bucharest, RomaniaDynamic StabilityA Steindl, Vienna University of Technology, Austria, and Hans Troger, Vienna, Austria Earthquake Excitation and Response of BuildingsFarzad Naeim, John A Martin & Associates, Inc, USAEigenvalue AnalysisOliver Bauchau, Georgia Institute of Technology, USAElectrorheological and Magnetorheological FluidsR Stanway, The University of Sheffield, UKElectrostrictive MaterialsKenji Uchino, Pennsylvania State University, USA, and H S Tzou, University of Kentucky, USA Environmental Testing, ImplementationP S Varoto, Escola de Engenharia de Sao Carlos, USP, BrazilEnvironmental Testing, OverviewDavid Smallwood, Sandia National Laboratories, USAFatigueAlbert Kobayashi and M Ramula, University of Washington, USAFeed Forward Control of VibrationChristopher R Fuller, Virginia Polytechnic Institute & State University, USAFinite Difference MethodsSingiresu S Rao, University of Miami, USAFinite Element MethodsSingiresu S Rao, University of Miami, USAFluid/Structure InteractionSabih Hayek, Pennsylvania State University, USAFlutterJan Wright, University of Manchester, UKFlutter, Active ControlFrank H Gern, Virginia Polytechnic Institute & State University, USAForced ResponseN A J Lieven, Bristol University, UKFriction DampingRaouf Ibrahim, Wayne State University, USAFriction Induced VibrationsRaouf Ibrahim, Wayne State University, USAGear DiagnosticsC James Li, Rensselaer Polytechnic Institute, USAGround Transportation SystemsA K W Ahmed, Concordia University, CanadaHand-transmitted VibrationM Griffin, University of Southampton, UKHelicopter DampingNorman M Wereley, University of Maryland at College Park, USAHilbert TransformsM Feldman, Technion - Israel Institute of Technology, IsraelHybrid ControlKon-Well Wang, Pennsylvania State University, USAHysteretic DampingH T Banks, North Carolina State University, USA and G A Pinter, North Carolina State University, USA Identification, Fourier-based MethodsSimon Braun, Technion - Israel Institute of Technology, IsraelIdentification, Model Based MethodsSpilios D Fassois, University of Patras, GreeceInverse ProblemsY M Ram, Louisiana State University, USAKrylov-Lanczos MethodsRoy Craig, University of Texas, USALaser Based MeasurementsP Castellini, E P Tomasini, and G M Revel, Università di Ancona, ItalyLinear AlgebraCharbel Farhat, University of Colorado, USA, and Daniel Rixen, Delft, BelgiumLinear Damping Matrix MethodsFai Ma, University of California, Berkeley, USALiquid SloshingRaouf Ibrahim, Wayne State University, USALocalizationChristophe Pierre, University of Michigan, USAMagnetostrictive MaterialsAlison Flatau, National Science Foundation, USAMembranesArthur W Leissa, Ohio State University, USAMEMs ApplicationsI Stiharu, Concordia University, CanadaMEMs, Dynamic ResponseI StiharuMEMs, General PropertiesI StiharuModal Analysis, Experimental: Basic PrinciplesD J Ewins, Imperial College of Science, Technology and Medicine, UKModal Analysis, Experimental: Measurement TechniquesJ M Silva, Institute Superior Technico, PortugalModal Analysis, Experimental: Parameter Extraction MethodsN M Maia, Institute Superior Technico, PortugalModal Analysis, Experimental: Construction of Models from TestsN M Maia, Institute Superior Technico, PortugalModal Analysis, Experimental: ApplicationsD J Ewins, Imperial College of Science, Technology and Medicine, UKMode of VibrationD J Ewins, Imperial College of Science, Technology and Medicine, UKModel Updating and ValidatingM Link, Universität Gesamthoschule Kassel, GermanyMotion SicknessM Griffin, University of Southampton, UKNeural Networks, Diagnostic ApplicationsM Zacksenhouse, Technion - Israel Institute of Technology, IsraelNeural Networks, General PrinciplesB Dubuisson, La Croix Saint Ouen, FranceNoise, Noise Radiated from Elementary SourcesMichael Peter Norton and J Pan, University of Western Australia, AustraliaNoise, Noise Radiated by Baffled PlatesMichael Peter Norton and J pan, University of Western Australia, AustraliaNondestructive Testing, SonicScott Doebling and Charles Farrar, Los Alamos National Laboratory, USANondestructive Testing, UltrasonicL W Schmerr Jr, Iowa State University, USANonlinear Normal ModesAlexander Vakakis, University of Illinois, USANonlinear System IdentificationB F Feeny, Michigan State University, USANonlinear System Resonance PhenomenaAnil Bajaj and Charles M Krousgrill, Purdue University, USANonlinear Systems AnalysisAnil Bajaj, Purdue University, USANonlinear Systems, OverviewNoel C Perkins, University of Michigan, USAObject Oriented Programming in FE AnalysisIgor Klapka, Université de Liège, Belgium, Alberto Cardona, INTEC, Argentina, and Philipee Devloo, Universidade Estadual de Campinas, BrazilOptimal FiltersStephen J Elliott, University of Southampton, UKPackagingJorge Marcondes, San Jose University, USAParallel ProcessingDaniel Rixen, Delft, BelgiumParametric ExcitationAlexandra David and Subhash Sinha, Auburn University, USAPerturbation Techniques for Non-linear SystemsSteve Shaw, Michigan State University, USAPiezoelectric MaterialsH S Tzou, University of Kentucky, USA, and M C Natori, Institute of Space & Astronautical Science, JapanPipesSingiresu S Rao, University of Miami, USAPlatesArthur W Leissa, Ohio State University, USARandom ProcessesMikhail F Dimentberg, Worcester Polytechnic Institute, USARandom Vibration, Basic TheoryMikhail F Dimentberg, Worcester Polytechnic Institute, USAResonance and AntiresonanceMircea Rades, University Politechnica of Bucharest, RomaniaRobot VibrationsWayne Book, Georgia Institute of Technology, USARotating Machinery, Essential FeaturesR Bigret, Drancy, FranceRotating Machinery, Model CharacteristicsR Bigret, Drancy, FranceRotating Machinery, MonitoringR Bigret, Drancy, FranceRotor DynamicsR Bigret, Drancy, FranceRotorstator InteractionsR Bigret, Drancy, FranceSeismic Instruments, Environmental FactorsKenneth McConnell, Iowa State University, USASensors and ActuatorsH S Tzou, University of Kentucky, USA, and C S Chou, National Taiwan University, Republic of ChinaShape Memory AlloysM Baz, University of Maryland, USAShellsW Soedel, Purdue University, USAShip VibrationsWilliam S Vorus, University of New Orleans, USAShockJorge Marcondes, San Jose University, USAShock Isoloation SystemsMircea Rades, University Politechnia of Bucharest, RomaniaSignal Generation Models for DiagnosticsGiorgio Dalpiaz, University of Bologna, Italy, and M Sidahmed, Université de Compiegne, FranceSignal Integration and DifferentiationStuart Dyne, University of Southampton, UKSignal Processing, Model Based MethodsSimon Braun, Technion - Israel Institute of Technology, IsraelSpectral Analysis, Classical MethodsSimon Braun, Technion - Israel Institute of Technology, IsraelStandards for Vibrations of Machines and Measurement ProceduresJohn Niemkiewicz, Maintenance and Diagnostic (M&D) LLC, USAStochastic Analysis of Nonlinear SystemsY K Lin and C Q Cai, Florida Atlantic University, USAStochastic SystemsMikhail F Dimentberg, Worcester Polytechnic Institute, USAStructural Dynamic ModificationsA Sestieri, Universita Degli Studi di Roma, Italy, and W D'Amorogio, Universita Be L'Aquila, ItalyStructure-Acoustic Interaction, High FrequenciesA Sestieri, Universita Degli Studi di Roma, ItalyStructure-Acoustic Interaction, Low FrequenciesA Sestieri, Universita Degli Studi di Roma, ItalyTesting, Non-linear SystemsAlan Haddow, Michigan State University, USATheory of Vibration, FundamentalsBingen Yang, University of Southern California, USATheory of Vibration, SuperpositionM G Prasad, Stevens Institute of Technology, USATheory of Vibration, Duhamel's Principle and ConvolutionG Rosenhouse, Technion - Israel Institute of Technology, IsraelTheory of Vibration, Energy MethodsSingiresu S Rao, University of Miami, USATheory of Vibration, Equations of MotionJonathan Wickert, Carnegie Mellon University, USATheory of Vibration, SubstructuringMehmet Sunar, King Fahd University of Petroleum and Minerals, Saudi ArabiaTheory of Vibration, Impulse Response FunctionRakesh Kapania, Virginia Polytechnic Institute & State University, USATheory of Vibration, Variational MethodsSingiresu S Rao, University of Miami, USATime-Frequency MethodsPaul White, University of Southampton, UKTire VibrationsG D Shteinhauz, The Goodyear Tire & Rubber Company, USATool Wear MonitoringM Sidahmed, Université de Compiegne, FranceTransducers for Absolute MotionKenneth McConnell, Iowa State University, USATransducers for Relative MotionKenneth McConnell, Iowa State University, USA, Simon Braun, Technion - Israel Institute of Technology, Israel, and Gene E Maddux, Tipp City, USATransform MethodsSimon Braun, Technion - Israel Institute of Technology, IsraelTransforms, WaveletsPaul White, University of Southampton, UKUltrasonicsM J S Lowe, Imperial College of Science, Technology and Medicine, UKVibration Generated Sound, FundamentalsMichael Peter Norton and S J Drew, University of Western Australia, AustraliaVibration Generated Sound, Radiation by Flexural ElementsMichael Peter Norton and S J Drew, University of Western Australia, AustraliaVibration IntensitySabih Hayek, Pennsylvania State University, USAVibration Isolation, Applications and CriteriaE Rivin, Wayne State University, USAVibration Isolation TheoryE Rivin, Wayne State University, USAVibration TransmissionSabih I Hayek, Pennsylvania State University, USAVibro-impact SystemsF Peterka, Academy of Sciences of the Czech Republic, Czech RepublicViscous DampingFarhan Gandhi, Pennsylvania State University, USAWave Propagation, Waves in an Unbound MediumM J S Lowe, Imperial College of Science, Technology and Medicine, UKWave Propagation, Interaction of Waves with BoundariesM J S Lowe, Imperial College of Science, Technology and Medicine, UKWave Propagation, Guided Waves in StructuresM J S Lowe, Imperial College of Science, Technology and Medicine, UKWhole-body VibrationM Griffin, University of Southampton, UKWind-Induced VibrationsAhsan Kareem, University of Notre Dame, USAWindowsSimon Braun, Technion - Israel Institute of Technology, Israel。
Literature-Review-Matrix7.docx
Literature Review MatrixSource 1:Citation:P. Walker, N. Zhang, " Active damping of transient vibration in dual clutch transmission equipped powertrains: A comparison of conventional and hybrid electric vehicles," Mechanism and Machine Theory, Vol. 77, pp. 1-12, 11 February 2014 [Accessed 2 February 2015] Purpose: To investigate the active damping of automotive powertrains for suppression of gear shift related transient vibrations. This paper presents an approach for active suppression of transient responses utilizing only the current sensors available in the powertrain. An active control strategy for manipulating engine or electric machine output torque post gear change via a proportional-integral-derivative controller is developed and implemented.Why is this Study necessary? The major trends in the automotive industry is to improve the overall efficiency of passenger vehicles. Majority of these losses in efficiency is through the powertrain, but this efficiency comes at a cost. The more efficient a powertrain is, the more uncomfortable the drive quality becomes. This study is used to make the more efficient duel-clutch transmission a more pleasurable driving experience, therefore more acceptable to be introduced to a widermarket.Methods: By studying the rotational speeds of the two clutches and vehicle speed with respect to time, the powertrain oscillations become very clear. The process is broken up into four parts; the shift preparation phase, the torque phase, inertia phase, and the post shift phase. By adjusting certain sensors, already incorporated into the transmission, and rewriting the throttle programming a smoother shift can occur. This experiment was performed on a standard duel-clutch transmission on a conventional internal combustion engine and a duel-clutch transmission installed on anelectric/hybrid vehicle.Results: Using the active vibration reduction control strategies discussed in this paper, the vibration reduction was significant. The electric motor of the hybrid motor was capable of faster response to varying torque demands, as the internal combustion engine was limited by the delay in piston firing and the ability to supply high torque variation while maintaining vehicle speed. Conclusion: While powertrain vibration during gearshifts can never be eliminated, the suppression of this vibration can provide a dramatic difference in the overall driving experience. On the electric motors an inertia phase control motor was able to be greatly reduce powertrain vibration due to its ability to adjust torque almost instantaneously due to its motor feed-back loops. This reduction in vibration will provide the driver a more comfortable driving experience without sacrificing any performance.Project Integration: While the focus of our project is to design a duel clutch transmission we must not overlook the importance of the control system. This paper will be referenced when it comes time to begin developing the control system. This paper has inspired me to try to develop, in its control system, a way to monitor engine torque and use this information and control to better time the clutch switching process. While developing an inertia phase controller is not possible for aninternal combustion engine, the slight adjusting of throttle position during shifts could provide a smoother transmission system.Citation:Y. Hu, L. Tian, B. Gao, H. Chen, ” Nonlinear gearshifts control of dual-clutch transmissions during inertia phase,” ISA Transactions, Vol. 53, pp 1320-1331, 31 March 2015 [Accessed 2 February 2015]Purpose: To investigate the effects of a nonlinear gearshift controller by using the back stepping method to improve shift quality of vehicles with a duel-clutch transmission. The controller is rearranged into a concise structure which contains a forwarding control and a feedback control. This closed loop error system is then input to a state stability theory, to improve the overall effectiveness of the controller.Why is this Study necessary? The major trends in the automotive industry is to improve the overall efficiency of passenger vehicles. Majority of these losses in efficiency is through the powertrain, but this efficiency comes at a cost. The more efficient a powertrain is, the more uncomfortable the drive quality becomes. This study is used to make the more efficient duel-clutch transmission a more pleasurable driving experience, therefore more acceptable to be introduced to a widermarket.Methods:Using simulation software, a complex car was designed using a model to simulate the engine, transmission, drivetrain, and road conditions. The proposed nonlinear controller was then used to calculate clutch response during the inertial stage of the gear shift. This experiment was thenconducted at various speeds and different road conditions to track the error within the controller for different dynamic situations. An experiment rig was built with a hydraulic pump and was used to simulate the real responsiveness of the hydraulic actuated clutches.Results:Using the nonlinear system controller the overall error within the back stepping and forwarding control was equal or reduced compared to the traditional controller. The nonlinear controllerachieved this faster and required less computational power to achieve these results. The backstepping controller is robust enough to handle driving condition variations, and can obtain better control performance than the PID controller.Conclusion:The back stepping technology integrated into the system controller allowed the controller to converge on the tracking error more quickly than the more conservative, current systemcontroller. This improves the overall shift quality of the transmission while performing on various road conditionsProject Integration:The design and fabrication of a duel-clutch transmission is going to be no easy feat. I hope that we will get to the point of having to reference this paper to achieve a more effective and faster system controller. This paper can be referenced to aid in the setup of our own mat lab and Simulink experiments. The mathematical formulas noted in this paper will go a long way to helping us understand the intricacies of the whole simulation process.Citation:P. Walker, N. Zhang, “Modelling of dual clutch transmission equipped powertrains for shift transient simulations," Mechanism and Machine Theory, Vol. 60, pp. 47-59, 13 September 2012 [Accessed 2 February 2015]Purpose: To investigate the two main assumptions when vibration tests are performed on powertrain systems. The first assumption to be tested is the application of minimal degrees of freedom for the powertrain model and second, the use of a mean engine torque model to describe enginetorque. These assumptions will be compared to a truer to life twelve degrees of freedom and a variable engine torque model that will better simulate the engine of an automobile.Why is this Study necessary?With more and more research being conducted in the field of powertrain control and integration, the ability to properly analysis these new controllers needs to be as true to life as possible. Why perform research based on a simulated transmission that is perfectlymachined with exact tolerances or perform these simulations on perfectly flat strait roads? None of these things exist. More true to life simulations need to be performed to aid in the research and development of these new technologies.Methods: Using simulation software, a more accurate model was made to simulate the vibrations that occur within the engine, transmission, and clutches. These test were then compared to same tests used following the two basic assumptions listed above. They added ten new degrees of freedom within the transmission to accomplish a more thorough analysis. Simulations where performed on two different transmission designs with two different engines to achieve the most accurate results. Results:The more accurate model indicated a more true to life representation of the vibrational analysis of the duel-clutch transmission. The added degrees of freedom allows for further analysis ofdifferent components of the transmission. Further vibration analysis of the clutches and clutchhousing allow for more developments in further research. The more accurate model will provide a better baseline for further development.Conclusion: The comparison of different modeling strategies were used to investigate two assumptions made for dynamic modelling and control of duel-clutch transmissions and the impact that themore accurate model had on vibration analysis and variations to system controllers. Simulation of the engine harmonics using the detailed model will allow for much more accurate results in future model testing.Project Integration:Once we design our duel clutch transmission this paper will be referenced to aid in the setup and performance of our simulations. The higher degree of detail will further aid inindicating areas that need improvement and will result in an overall better product. This form of in-depth simulation will simulation will help us locate potential problems before we move on to the prototyping stage.Source 4:Citation:X. Lu, H. Chen, B. Gao, Z. Zhang, W. Jin, “Data-Driven Predictive Gearshift Control for Dual-Clutch Transmissions and FPGA Implementation,” IEEE Transactions on Industrial Electronics, Vol.62, no. 1, pp. 599-610, 19 December 2014, [Accessed 2 February 2015]Purpose: To investigate the effect on shift shock and shift quality using a data-driven predictive gearshift control. This controller will aim to pursue a real-time improvement of the hardware computing speed of the data-driven predictive controller based on a field-programmable gate array. Thiscontroller will rely on other sensors around the vehicle to predict the next gear that will beselected, allowing for even faster shifts into the next gear by pre-loading it.Why is this Study necessary?The duel-clutch transmission is the perfect balance between efficiency and performance. This predictive transmission controller will increase the performance of an already very fast shifting transmission. This will entice the market share that still values the overallperformance of their automobiles to transition to the duel-clutch transmission, which is moreefficient than previous automatic transmissions. Since we are designing this transmission to go ona future Formula SAE competition racecar, the quicker our car can shift, the better we will be incompetitionMethods: Using simulation software, a simulated engine, transmission, and rear tire set were used to analyze the vibrations and shift speeds of the duel-clutch transmission. Using a predictivealgorithm based on throttle position, clutch speeds, and output torque to pre-load the next gear based upon the inputs to the control system. The system was tested on different drivingconditions and under different engine loads.Results:The comparison between a well-tuned standard controller and the predictive controller were much the same when it comes to shift speeds, but the predictive system had lower fluctuations and performed better under fluctuating loads. The predictive controller handles the varying input-output data more quickly and adapted to the road conditions in a faster manner. Conclusion: Aiming to improve the overall shift quality of the duel-clutch transmission, the predictive control system tries to accommodate the conflicting control requirements of a faster shift time while minimizing vibrations felt within the drivetrain. The robustness of the predictive controller is proven by the simulations of various road conditions. Further analysis will be performed on ahardware-in-the-loop experiment along with a real vehicle testProject Integration:Our group has discussed the possibility of using a somewhat predictive system by using the throttle position sensor and engine speed to preload the next gear to be used. This is a very complicated program and this study will be referenced when it comes time to start designing the control system.Source 5:Citation:M. Farish,“ Changing up a gear,” Automotive Manufacturing Solutions, Vol. 15, no. 3, pp. 53-55, March 2014, [Accessed 2 February 2015]Purpose: To discuss the logistical and technological requirements to place a transmission manufacturer into operation. The 90,000 sq.m factory will produce 500,000 highly sophisticated nine speedtransmissions. The paper covers the methodology for selecting the workforce and the need for two-way development between the engineers and the manufacturers.Why is this Study necessary?The manufacture and production of the transmission is a highly complex undertaking. The need to have the proper machines and personnel to operate them efficiently and safely is paramount. This paper also explains that the necessity for engineers to workalongside there more hands on counterparts. A breakdown in communication could cause a plant to have to shut down or worse someone could be injured.Methods:Using top of the line mills, lathes and CNC machines, the factory is able to produce top of line transmissions of very high quality. The plant plans to implement a certain degree of automation that will aid in the production process. By having properly trained machinists and engineers the product is of high enough quality to be sold to Aston Martin and Audi.Results:The production floor of this plant in South Carolina is able to produce over 500,000 transmissions a year, with that number rising to 800,000 by the end of 2016. The skills andflexibility of the South Carolina workforce is a crucial asset for the operation of the plant. The two-way development in personnel has yielded an overall more powerful workforce that will be able to handle any situation safely and efficiently.Conclusion: The advanced training and constant communication between the engineers and the shop floor have allowed the production plant to manage the mix of widely varying product volumes and identities. Then plant intends to increase its ability to handle the mechatronic capability of the plant to be able to build a complete assembly. This may very well dictate the final overall price of the vehicle and where it will be assembled and tested.Project Integration:To me, the most important part of this article is the strategic operations between the engineers and machinists. Much in the same way as the factory, we have people within our group that may not be on the same level academically, but those people are generally better at the machining and manufacturing process. A balance must be reached between the two groups for this project to succeed, and as this paper points out, the way to bridge the gap between the two groups is to have constant and productive communication.References1.P. Walker, N. Zhang, " Active damping of transient vibration in dual clutch transmissionequipped powertrains: A comparison of conventional and hybrid electric vehicles," Mechanism and Machine Theory, Vol. 77, pp. 1-12, 11 February 2014 [Accessed 2 February 2015]2.Y. Hu, L. Tian, B. Gao, H. Chen, ” Nonlinear gearshifts control of dual-clutch transmissions duringinertia p hase,” ISA Transactions, Vol. 53, pp 1320-1331, 31 March 2015 [Accessed 2 February 2015]3.P. Walker, N. Zhang, “Modelling of dual clutch transmission equipped powertrains for shifttransient simulations," Mechanism and Machine Theory, Vol. 60, pp. 47-59, 13 September 2012 [Accessed 2 February 2015]4.X. Lu, H. Chen, B. Gao, Z. Zhang, W. Jin, “Data-Driven Predictive Gearshift Control for Dual-ClutchTransmissions and FPGA Implementation,” IEEE Transactions on Industrial Electronics, Vol. 62, no. 1, pp. 599-610, 19 December 2014, [Accessed 2 February 2015]5.M. Farish,“ Changing up a gear,” Automotive Manufacturing Solutions, Vol. 15, no. 3, pp. 53-55,March 2014, [Accessed 2 February 2015]。
分子对接参考文献
Synthesis and SAR of 20,30-bis-O -substituted N 6,50-bis-ureidoadenosine derivatives:Implications for prodrug delivery and mechanism of actionJadd R.Shelton a ,Christopher E.Cutler a ,Megan S.Browning a ,Jan Balzarini b ,Matt A.Peterson a ,⇑a Department of Chemistry and Biochemistry,Brigham Young University,Provo,UT 84602-5700,United States bRega Institute for Medical Research,KU Leuven,B-3000Leuven,Belgiuma r t i c l e i n f o Article history:Received 5June 2012Revised 1August 2012Accepted 13August 2012Available online 21August 2012Keywords:Purine nucleosidesBio-active adenosine derivatives Antiproliferative nucleosides BMPR1b inhibitorsa b s t r a c tA series of 20,30-bis-O -silylated or -acylated derivatives of lead compound 3a (20,30-bis-O -tert -butyldi-methylsilyl-50-deoxy-50-(N -methylcarbamoyl)amino-N 6-(N -phenylcarbamoyl)adenosine)were prepared and evaluated for antiproliferative activity against a panel of murine and human cancer cell lines (L1210,FM3A,CEM,and HeLa).20,30-O -Silyl groups investigated included triethylsilyl (10a ),tert -butyldi-phenylsilyl (10b ),and triisopropylsilyl (10c ).20,30-O -Acyl groups investigated included acetyl (13a ),ben-zoyl (13b ),isobutyryl (13c ),butanoyl (13d ),pivaloyl (13e ),hexanoyl (13f ),octanoyl (13g ),decanoyl (13h ),and hexadecanoyl (13i ).IC 50values ranged from 3.0±0.3to >200l g/mL,with no improvement relative to lead compound 3a .Derivative 10a was approximately equipotent to 3a ,while compounds 13e –g were from three to fivefold less potent,and all other compounds were significantly much less active.A desilylated derivative (50-deoxy-50-(N -methylcarbamoyl)amino-N 6-(N -phenylcarbamoyl)adeno-sine;5)and several representative derivatives from each subgroup (10a –10c ,13a –13c )were screened for binding affinity for bone morphogenetic protein receptor 1b (BMPR1b).Only compound 5showed appre-ciable affinity (K d =11.7±0.5l M),consistent with the inference that 3a may act as a prodrug depot form of the biologically active derivative 5.Docking studies (Surflex Dock,Sybyl X 1.3)for compounds 3a and 5support this conclusion.Ó2012Elsevier Ltd.All rights reserved.As part of research directed toward the design,synthesis,and biological evaluation of potential inhibitors of HIV integrase,we discovered potent antiproliferative activities associated with a new class of N 6,50-bis-ureidoadenosine derivatives exemplified by compounds 1–3(Fig.1).1IC 50values for 1–3a (R =Ph)ranged from approximately 1–8l M against a majority of the human cancer cell lines in the NCI-60.IC 50values for 3b –i ranged from 3–182l g/mL against a panel of tumor cell lines consisting of murine leukemia (L1210),murine mammary carcinoma (FM3A),human T-lympho-cyte (CEM),and human cervix carcinoma (HeLa).Preliminary SAR studies revealed that for optimal cytostatic activities (low l M),the N 6-and 50-urea moieties are required,and substitution with at least one 20(30)tert -butyldimethylsilyl (TBS)group is also neces-sary.Interestingly,compounds 5and 6were essentially inactive against the NCI-60screen at 10l M concentrations.Similarly,50-carbamates 4a –i were significantly less active than the analogous 50-ureas (3a –i )against L1210,FM3A,CEM,and HeLa—in spite of the fact that 4a –i possess nearly identical substitutions as the 50-ureas.1aThe above observations support the conclusion that the 20,30-O-TBS groups are necessary,but not sufficient,for biological activity and have prompted us to investigate the role of the 20,30-O -substi-tution in this class of compounds.Herein we report the synthesis and antiproliferative activities for a series of variously substituted 20,30-O -derivatives of the most potent of these compounds (3a ),and draw preliminary conclusions from the mechanistic implica-tions of this SAR study.The synthesis begins with 50-azido-50-deoxyadenosine (7)and gives 20,30-bis-O -silylated or 20,30-bis-O -acylated products in good to excellent yields (Scheme 1).The synthesis is very straightforward and is amenable to scale-up.Silylation of 7with triethylsilylchlo-ride,tert -butyldiphenylsilylchloride,or triisopropylsilylchloride gave compounds 8a –c in 42–60%yield.Acylation of compounds 8a –c with phenylisocyanate gave N 6-phenylurea derivatives 9a –c (54–82%).A one-pot,two-step reaction sequence involving reduc-tion of the 50-azido group of compounds 9a –c followed by acylation with the relatively safe and innocuous methylisocyanate surrogate,N-methyl p -nitrophenylcarbamate,2gave 10a –c in 66–77%yield.20,30-Bis-O -acylated compounds 13a –c and 13d –i were obtained via two different pounds 13a –c were obtained in good yields via a five-step protocol analogous to the one employed in preparing 10a –c .However,the more lipophilic 20,30-bis-O -acylated compounds 13g –i were obtained in very low yields following this procedure.An alternative route involving one step from compound 5was investigated.This route was generally much more efficient,0960-894X/$-see front matter Ó2012Elsevier Ltd.All rights reserved./10.1016/j.bmcl.2012.08.050Corresponding author.E-mail address:matt_peterson@ (M.A.Peterson).and yields for13d–i ranged from46–63%(the highest yield for13e was26%,even with this more efficient method,presumably due to the steric bulk of the pivaloyl esters).As a point of comparison,only trace amounts of13i were obtained when thefive-step sequence—steps e,f,b,c,and d—was attempted.Finally,compounds14a–c were obtained in moderate to good yields(31–66%)by treating 11a–c with the aforementioned one-pot,two-step reduction/acyla-tion(steps c and d).The antiproliferative activities for compounds 3a,4a,10a–c,13a–i,and14a–c are shown in Table1.Interestingly, the IC50values for20,30-bis-O-triethylsilyl derivative10a were very similar to those for the20,30-bis-O-TBS derivative3a.In contrast, IC50values for20,30-bis-O-tert-butyldiphenylsilyl and/or20,30-bis-O-triisopropylsilyl derivatives(10b and10c,respectively),were significantly inferior to3a.Acyl derivatives13a–i were generally much less active than3a,especially the O-benzoyl,O-decanoyl, and O-hexadecanoyl derivatives(13b,13h,and13i,respectively). The O-pivaloyl,O-hexanoyl,and O-octanoyl derivatives(13e,13f, and13g,respectively)exhibited nearly equivalent antiproliferative activities,but IC50values for these compounds were from three to fivefold higher than those for pounds14a–c (each of which lacks the N6-phenylurea)showed generally lower antiproliferative activity than their corresponding N6-substituted analogues(13a–c).Recently,we demonstrated that compound5(Fig.1)binds to the ATP-binding site of bone morphogenetic protein receptor1b (BMPR1b)with low l M affinity(K d=11.7±0.5l M).1a When screened against a panel of441protein kinases,compound5 exhibited its greatest activity against BMPR1b,inhibiting binding of BMPR1b to an ATP-binding site ligand by approx.50%at 10l M pound3a,in contrast,did not bind to BMPR1b at concentrations as high as30l M.1a BMPR1b is a trans-membrane receptor with serine/threonine protein kinase activity. The ATP-binding domain lies within the cytoplasm and phosphor-ylates downstream targets(SMADs1,5,and8),which in turn regulate expression of inhibitor of differentiation gene1(Id1).3 Overexpression of Id1has been reported in a number of cancers, including lung,4breast,5colon,6ovarian,7pancreas,8prostate,9 and renal cancers.10Downregulation,inhibition,and/or inactiva-tion of Id1have been shown to induce apoptosis in several of these cancers.11Inhibition of BMPR1b by the desilylated analogue of3a, compound5,could constitute a plausible mechanism for the broad-spectrum antiproliferative activity exhibited by compound 3a.12In this context,compound3a would most likely serve as a prodrug form of the active species,desilylated derivative com-pound5.A commonly used strategy for enhancing membrane permeabil-ity of nucleosides has been to increase the lipophilicity by protect-ing hydroxyls as acetyl,benzoyl,or isobutyryl esters that are cleaved once the compound has crossed the cell membrane.13 TBS-protection has been shown to enhance the activities of a num-ber of antiproliferative compounds,and activities of several of these compounds have been positively correlated with the increased lipophilicity of the biologically active derivative.14 TBS-protected cytidine has been shown to facilitate transport of guanosine50-monophosphate through a model membrane(in con-junction with a lipophilic phosphonium ion co-carrier),15and sily-lated nucleosides have been shown to penetrate the blood–brain barrier where it is presumed they are desilylated to generate the active species.16The lipophilic20,30-bis-O-TBS groups could en-hance membrane permeability of compound3a and serve as a pro-drug depot form of the active derivative compound5.Docking studies performed using the Surflex docking program (Sybyl X1.3)are supportive of such an interpretation.17As illus-trated in Fig.2,the highest ranked pose for compound5is oriented within the ATP binding cleft of BMPR1b(pdb3mdy)with the50-urea undergoing hydrogen bonding interactions with the highly conserved catalytic triad18(Lys231,Glu244,Asp350;Fig.2). The N6-phenyl urea moiety in this pose is oriented toward the sol-vent accessible surface,which is consistent with the relative lack of sensitivity of the antiproliferative activity of3a–i to the substitu-tion pattern in the N6-urea moiety.1a In contrast,the top ranked pose for compound3a had nearly the opposite orientation to com-pound5,with the N6-phenyl urea moiety undergoing nonpolar binding interactions with the‘gatekeeper’residue(Leu277;blue residue;Fig.2)near the end of the catalytic cleft,in close proximity to the catalytic triad.In this pose,the very hydrophobic20,30-bis-O-TBS groups are exposed to the solvent accessible surface.If such a pose were biologically relevant,substitution at the N6-urea posi-tion would be expected to have a much greater effect on the bio-logical activity than the negligible effect that was observed experimentally.(The nature of the R group in3a–i had very little impact on their antiproliferative activities).1a Furthermore,the hydrophobic effect resulting from protrusion of the very nonpolar TBS groups into the aqueous environment would contribute to an unfavorable entropic term in the overall free energy of binding.Consistent with these modeling results is the aforementioned observation that compound5binds to BMPR1b with K d=11.7±0.5l M),while compound3a did not bind at concentrations as high as30l M(Fig.3A and3B,respectively).1a The negative impact of the 20,30-O-substitution on binding was also illustrated for several rep-resentative members of the presently discussed series of20,30-O-derivatives of3a,none of which showed appreciable binding to BMPR1b in a competitive inhibition of binding experiment19at 10l M concentrations(Fig.3C).The relative reactivity of silyl pro-tecting groups toward hydrolysis(TES>TBS TIPS>TBDPS)20is in harmony with these results,and is consistent with a mechanism involving cleavage of the silyl moiety before the nucleoside deriva-tive can interact with its primary biological receptor.21 In conclusion,we have developed efficient methods for the preparation of a variety of20,30-O-substituted derivatives ofour 6068J.R.Shelton et al./Bioorg.Med.Chem.Lett.22(2012)6067–6071recently discovered antiproliferative N 6,50-bis-ureidoadenosine compounds.Bis-O -protection of 50-azido-50-deoxyadenosine with either silyl or acyl protecting groups,followed by sequential acyl-ation of the N 6and 50-amino groups (with phenylisocyanate or N-methyl p -nitrophenylcarbamate,respectively)gave 20,30-O -substi-tuted derivatives of lead compound 3a (10a –c and 13a –c )in good to excellent yields.An alternative route from the more advanced intermediate compound 5gave 13d –i more efficiently than the route applied for 13a –c .Screening of compounds 10a –c ,13a –i ,and 14a –c against a panel of murine and human cancer cell lines did not reveal any improved activity relative to lead compound 3a .Several representative 20,30-O -substituted derivatives were shown to lack binding affinity for BMPR1b at concentrations near the K d for desilylated analogue 5.Taken together,these results sug-gest that the role of the TBS group in compound 3a may be to facil-itate membrane permeability.Cleavage of the TBS groups within the cytoplasm could give rise to the active derivative (5)which previously published screening data 1a suggest may target BMPR1b as its primary biomolecular target.BMPR1b is part of the BMP-sig-naling pathway that regulates expression of Id1.Overexpression of Id1has been reported in numerous cancers.4–10Inhibition of the BMP-signaling cascade by desilylated derivative 5may account for the broad-spectrum activity of compound 3a.Table 1Inhibitory effects of the test compounds on the proliferation of murine leukemia cells (L1210),murine mammary carcinoma cells (FM3A),human T-lymphocyte cells (CEM)and human cervix carcinoma cells (HeLa)CompoundIC 50a (l g/ml)L1210FM3A CEM HeLa 3a 3.8±0.3 5.9±1.18.3±2.9 3.2±0.24a 160±56>200>200P 20010a 3.8±0.1 3.0±0.3 4.2±0.2 3.7±0.410b >200>200P 200104±7110c >200>200142±81P 20013a 97±17150±39107±8>20013b 154±3061±2>200>20013c 29±444±428±073±1313d 20±218±12958±2513e 9.7±3.515±12017±113f 9.5±0.320±110±215±513g 11±032±112±416±913h >100140±16>100>10013i >100>200>100>10014a 112±31>200>200>20014b 16±136±319±840±714c87±1107±1388±3399±14a50%Inhibitory concentration or compound concentration required to inhibit tumor cell proliferation by 50%.J.R.Shelton et al./Bioorg.Med.Chem.Lett.22(2012)6067–60716069We are currently designing50-analogues that may more fully exploit interactions with the catalytic triad(Lys231,Glu244,Asp350)and gatekeeper residues(Leu277),which may lead to en-hanced binding,as indicated by the docking study,and thus,in-creased antiproliferative activity.AcknowledgmentsGenerous support from the BYU Cancer Research Center and BYU College of Physical and Mathematical Sciences and the KU Leuven(GOA10/14)to J.B.is gratefully acknowledged.10010010010053100100Figure2.Docking results for3a and5docked into the active site of BMPR1b(pdb3mdy).Yellow residues:catalytic triad(K231,E244,D350);blue residue:gate-keeper(L277);magenta tube:G-loop or activation loop(I210,G211,K212,G213,R214,Y215,G216);magenta ribbon:hinge region(I278,T279,D280,Y281,H282,E283,N284,G285,S286).18(A)Space-filling model of highest ranked pose ofcompound5.(B)Tube model of highest ranked pose of compound5(G-Loopomitted for clarity).(C)Space-filling model of highest ranked pose of compound3aChem.Lett.22(2012)6067–6071Supplementary dataSupplementary data(experimental procedures and NMR data for all new for compounds)associated with this article can be found,in the online version,at /10.1016/j.bmcl. 2012.08.050.References and notes1.(a)Shelton,J.R.;Cutler,C.E.;Oliveira,M.;Balzarini,J.;Peterson,M.A.Bioorg.Med.Chem.2012,20,1008;(b)Peterson,M.A.;Oliveira,M.;Christiansen,M.A.;Cutler,C.E.Bioorg.Med.Chem.Lett.2009,19,6775;(c)Peterson,M.A.;Oliveira, M.;Christiansen,M. A.Nucleosides Nucleotides Nucleic2009,28,394;(d) Peterson,M.A.;Ke,P.;Shi,H.;Jones,C.;McDougal,B.R.;Robinson,W.E.Nucleosides Nucleotides Nucleic2007,26,499.2.Peterson,M.A.;Shi,H.;Ke,P.Tetrahedron Lett.2006,47,3405.3.(a)Ruzinova,M.B.;Benezra,R.Trends Cell Biol.2003,13,410;(b)Ying,Q.L.;Nichols,J.;Chambers,I.;Smith,A.Cell2003,115,281;(c)Korchynskyi,O.;ten Dijke,P.J.Biol.Chem.2002,277,4883;(d)López-Rovira,T.;Chalaux, E.;Massagúe,J.;Rosa,J.L.;Ventura,F.J.Biol.Chem.2002,277,3176.4.Cheng,Y.J.;Tsai,J.W.;Hsieh,K.C.;Yang,Y.C.;Chen,Y.J.;Huang,M.S.;Yuan,S.S.Cancer Lett.2011,307,191.5.Schoppmann,S.F.;Schindl,M.;Bayer,G.;Aumayr,K.;Dienes,J.;Horvat,R.;Rudas,M.;Gnant,M.;Jakesz,R.;Birner,P.Int.J.Cancer2003,104,677.6.Zhao,Z.R.;Zhang,Z.Y.;Zhang,H.;Jiang,L.;Wang,M.W.;Sun,X.F.Oncol.Rep.2008,19,419.7.Schindl,M.;Schoppmann,S.F.;Ströbel,T.;Heinzl,H.;Leisser,C.;Horvat,R.;Birner,P.Clin.Cancer Res.2003,9,779.8.Lee,K.T.;Lee,Y.W.;Lee,J.K.;Choi,S.H.;Rhee,J.C.;Paik,S.S.;Kong,G.Br.J.Cancer2004,90,1198.9.Ling,M.T.;Lau,T.C.;Zhou,C.;Chua,C.W.;Kwok,W.K.;Wang,Q.;Wang,X.;Wong,Y.C.Carcinogenesis2005,26,1668.10.Li,X.;Zhang,Z.;Xin,D.;Chua,C.W.;Wong,Y.C.;Leung,S.C.L.;Na,Y.;Wang,X.Histopathology2007,50,484.11.(a)Wong,Y.-C.;Wang,X.;Ling,M.-T.Apoptosis2004,9,279;(b)Ling,M.-T.;Kwok,W.K.;Fung,M.K.;Wang,X.H.;Wong,Y.C.Carcinogenesis2006,27,205;(c)Ling,Y.X.;Tao,J.;Fang,S.F.;Hui,Z.;Fang,Q.R.Eur.J.Cancer Prev.2011,20,9;(d)Mern,D.S.;Hoppe-Seyler,K.;Hoppe-Seyler,F.;Hasskarl,J.;Burwinkel,B.Breast Cancer Res.2010,124,623;(e)Mern,D.S.;Hasskarl,J.;Burwinkel,B.Br.J.Cancer2010,103,1237.12.Shelton,J.R.;Burt,S.R.;Peterson,M.A.Bioorg.Med.Chem.Lett.2011,21,1484.13.(a)Li,F.;Maag,H.;Alfredson,T.J.Pharm.Sci.2008,97,1109;(b)Mackman,R.L.;Cihlar,T.Ann.Rep.Med.Chem.2004,305.14.(a)Pungitore,C.R.;León,L.G.;García,C.;Martín,V.S.;Tonn,C.E.;Padrón,J.M.Bioorg.Med.Chem.Lett.2007,17,1332;(b)Donadel,O.J.;Martín,T.;Martín,V.S.;Villarc,J.;Padrón,J.M.Bioorg.Med.Chem.Lett.2005,15,3536;(c)Szilágyi,A.;Fenyvesi,F.;Majercsik,O.;Pelyvás,I.F.;Bácskay,I.;Fehér,P.;Váradi,J.;Vecsernyés,M.;Herczegh,P.J.Med.Chem.2006,49,5626.15.Lee,S.B.;Choo,H.;Hong,J.–I.J.Chem.Res.1998,304.16.Montana,J.G.;Bains,W.Internatl.Patent App.PCT/GB2003/005056,2003;Internatl.Pub.WO2004/050666A1.17.Surflex has been validated as a robust molecular docking method.In terms ofdocking accuracy,it performs as well as other commonly used methods;and in terms of screening utility,its performance has been shown to be superior to other methods for which comparative data are available(a)Jain, A.N.J.Comput.Aided Mol.Des.2007,21,281;(b)Jain,A.N.J.Med.Chem.2003,46,499.18.BMPR1b is a member of the TGF b super family of protein kinases.BMPR1b(also known as Alk6)has68%sequence homology with Alk5(unpublished results).Assignments for the catalytic triad,gatekeeper,G-loop,and hinge region are consistent with published assignments for Alk5and for known sequences for protein kinases in general(a)Goldberg,F.W.;Ward,R.A.;Powell,S.J.;Debreczeni,J.É.;Norman,R.A.;Roberts,N.J.;Dishington,A.P.;Gingell,H.J.;Wickson,K.F.;Roberts,A.L.J.Med.Chem.2009,52,7901;(b) Ghose,A.K.;Herbertz,T.;Pippin,D.A.;Salvino,J.M.;Mallamo,J.P.J.Med.Chem.2008,51,5149.19.Fabian,M.A.;Biggs,W.H.I.I.I.;Treiber,D.K.;Atteridge,C.E.;Azimioara,M.D.;Benedetti,M.G.;Carter,T.A.;Ciceri,P.;Edeen,P.T.;Floyd,M.;Ford,J.M.;Galvin,M.;Gerlach,J.L.;Grotzfeld,R.M.;Herrgard,S.;Insko,D.E.;Insko,M.A.;Lai,A.G.;Lélias,J.-M.;Mehta,S.A.;Milanov,Z.V.;Velasco,A.M.;Wodicka,L.M.;Patel,H.K.;Zarrinkar,P.P.;Lockhart,D.J.Nature Biotech.2005,23,329.20.Nelson,T.D.;Crouch,R.D.Synthesis1996,1031.21.The possibility exists that BMPR1b may not be the primary biomolecular targetfor this class of compounds.However,from a panel of441protein kinases, compound5bound to BMPR1b with greatest affinity(see Ref.1a).Thus, amongst this class of receptors,BMPR1b certainly shows greatest potential.Optimization of binding to BMPR1b could lead to discovery of more potent derivatives and/or discovery of additional related inhibitors.J.R.Shelton et al./Bioorg.Med.Chem.Lett.22(2012)6067–60716071。
电脑音乐和录音英文词汇
高科技音乐和录音英文词汇AC: 交流电A/D CONVERTER: 模拟/数字转换器。
将模拟波形转变成一系列间隔相等的二进制数字的电路,具有更多“比特”的转换器具有更高的采样处理精度。
ACTIVE: 有源。
描述带有晶体管,集成电路,电子管和其他设备的电路,工作时要求功给电源,具有放大功能。
ADDITIVE SYNTHESIS: 加法合成。
一个发生波形或声音的系统,在用滤波器和包络进行处理之前首先联合基本的波形或采样声音。
ADSR: Attack, Decay,Sustain, Release四个单词的缩写,上冲,衰退,保持,释放。
典型的包络发生器用这4个参数描绘包络的各阶段。
这一形式的包络最先在模拟合成器时代就已经广为使用,在现代乐器上仍继续使用。
ACTIVE SENSING: 活动检测。
一种在工作中检验MIDI连接的系统,发送设备频繁发送短信息使接收设备确认它的存在。
如果检测信号因为任何原因停止,接收设备将认为出现故障而关断全部音符。
并不是全部MIDI设备都支持活动检测。
AFL: After Fade listen的简写,推子之后的监听。
一种调音台使用的系统,允许规定的信号在经过推子的电平控制之后进入监听。
辅助发送(Aux sends)一般使用AFL。
AFTERTOUCH: 触後。
MIDI键盘根据手指的压力发生出来的控制信号。
许多乐器不支持各键发生独立的压力信号而是发送一个键盘上的平均值。
触後经常用来控制颤音深度、滤波器亮度、响度等功能。
ALGORITHM: 算法,设计执行一个规定任务的计算机程序。
ALIASING: 混淆。
对模拟信号进行采样,转变成数字数据流的时候最低采样频率需要高于输入信号最高频率成分2倍以上,否则采样处理将因为采样点不够分配到每个波形周期而变得模糊,结果是等音的频率叠加到信号上。
AMBIENCE: 氛围。
声音在有限的空间被反射之后叠加到原声的结果。
使用数字混响器可以用电子方法创建需要的氛围。
基于虚拟电阻的并网逆变器谐振抑制措施的研究
基于虚拟电阻的并网逆变器谐振抑制措施的研究慕昆;何国锋【摘要】由于电网阻抗的耦合作用,基于LCL滤波器并网的光伏逆变器会产生谐振.为了抑制逆变器并网时产生的谐振,文章首先分析了滤波电容串联电阻的无源阻尼的控制,并在此基础上推导出等效的有源阻尼的控制方法,同时对比了无源阻尼和有源阻尼的特点,分析了阻尼系数、虚拟电阻和电容电流反馈系数之间的关系.建立了包含有源阻尼的逆变器并网闭环数学模型,在此模型基础上,分析了阻尼系数对控制系统性能的影响.最后在10 kW并网逆变器上进行了实验,实验结果表明,文章采用的有源阻尼控制策略能够有效地抑制并网谐振.%For the influence of grid impedance,the resonance will occur in the PV inverters which are connected to grid with LCL filters.To suppress the resonance of grid inverter,the damping method is usually adopted,including passive damping method and active damping one.Firstly,the passive damping control method is analyzed,in which the passive resistor is connected to the capacitor of LCL filter in series.The equivalent active damping method is derived from the above-mentioned passive damping circuit by the feedback of capacitor current of LCL filter.Meanwhile,the difference between active and passive damping is compared,and the corresponding relationships among damping coefficient,virtual resistor and feedback gain of filter capacitor are conducted successively.Then the closed-loop control mathematical modei of the resonant circuit is established.and the influence of virtual resistor on control system is studied.Finally,the presented control method is verified by experiments on 10 kW grid inverter.The experimentalresults show that the presented control strategy can effectively suppress the resonance between the grid inverter and the main grid.【期刊名称】《可再生能源》【年(卷),期】2016(034)006【总页数】6页(P815-820)【关键词】无源阻尼;有源阻尼;并网谐振;电容电流反馈;谐振机理【作者】慕昆;何国锋【作者单位】河南工程学院计算机学院,河南郑州 451191;河南城建学院电气与信息工程学院,河南平顶山 467036【正文语种】中文【中图分类】TM46在并网运行模式下,LCL滤波的并网逆变器在公共耦合点(PCC)和电网相连。
金纳米管阵列修饰玻碳电极用于示差脉冲伏安法测定多巴胺
金纳米管阵列修饰玻碳电极用于示差脉冲伏安法测定多巴胺徐国良;李羚;杨光明【摘要】Using polycarbonate template as Working electrode, gold nanotubes were prepared by electro deposition from a solulion of HAuCl, and HCIO. The template deposited with Au nanotubes was fixed on surface of glassy carbon electrode (GCE) and the GCE modified with arrayed Au nanotubes was prepared by dissolving the template from the electrode with CHCI:; for 7 min. The electrochemical behavior of dopamine (DA) at the modified electrode was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that DA showed a pair of oxidation and reduction peaks at the modified electrode. A sensitive method for determination of DA by DPV was proposed. 1,inear relationship between values of oxidation peak current at + 0. 170 V and concentration of DA was obtained in the range of 4.95×10^- 7 --9.9×10^-2mol·L^-1 , with detection limit (3σ) of l. 06×10^-8mol·L^-1. The proposed method was applied to the determination of DA in human urine, giving values of recovery and RSD's (n=5) in ranges of 96.9% 101.4% and 3. 1%--4.2% respectively.%以聚碳酸酯模板为工作电极,采用电沉积法从氯金酸和高氯酸溶液中制得金纳米管。
自动化控制论文参考文献范例
自动化控制论文参考文献一、自动化控制论文期刊参考文献[1].长距离渠系融冰期自动化控制模式研究.《水利学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2013年9期.刘孟凯.邢领航.黄明海.郭辉.[2].包覆燃料颗粒制备的自动化控制系统设计与研制.《原子能科学技术》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2013年6期.刘马林.邵友林.刘兵.[3].CYCIAE100回旋加速器测磁仪自动控制系统的研制.《原子能科学技术》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2013年2期.曹磊.殷治国.吕银龙.钟俊晴.[4].中子单色器姿态调整台.《原子能科学技术》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2013年1期.刘蕴韬.高建波.李峻宏.刘晓龙.李际周.陈东风.[5].吐哈油田油气集输系统的自动化控制.《油气田地面工程》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.2015年2期.莫兵.[6].智能化技术在电气工程自动化控制中的应用.《科技创新导报》.2012年2期.耿英会.[7].电热管制造工艺自动化控制与检测技术.《制造业自动化》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.2012年18期.蒋萍萍.[8].生物滴滤床净化含H2S废气自动化控制.《解放军理工大学学报(自然科学版)》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2008年3期.於建明.沈国江.沙昊雷.[9].浅谈计算机在煤化工自动化控制中的应用.《电子测试》.被中信所《中国科技期刊引证报告》收录ISTIC.2016年9期.李兴旺.[10].热镀锌助镀剂中亚铁离子在线检测技术.《天津大学学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2009年10期.二、自动化控制论文参考文献学位论文类[1].DQ90型顶驱的自动化控制研究.作者:古晖晖.机械设计及理论兰州理工大学2014(学位年度)[2].隧道窑自动化控制的研究与实现.作者:赵伟.计算机技术西安电子科技大学2013(学位年度)[3].Φ720mm无缝钢管工业炉自动化控制及监控.作者:金磊.软件工程天津大学2013(学位年度)[4].基于Labview的仪表自动化控制及特性分析.作者:张晓颖.物理电子学烟台大学2013(学位年度)[5].内蒙古西部天然气长输管道自动化控制集成系统构建研究.被引次数:1作者:杨建功.工商管理内蒙古大学2012(学位年度)[6].高炉自动化控制的设计与研究.作者:谭天雷.电气工程江苏大学2012(学位年度)[7].基于LabVIEW的低噪声超快泵浦探测系统开发及应用.作者:曾贤贵.电子科学与技术湖南大学2015(学位年度)[8].节能型自动化控制茶叶滚筒杀青机的研究.被引次数:5作者:宋志禹.茶学安徽农业大学2010(学位年度)[9].序批式活性污泥工艺(SBR)自动化控制及工艺性能研究.被引次数:18作者:董国日.矿物加工工程中南大学2007(学位年度)[10].光伏驱动一体式分散型农村污水生物处理及其自动化控制研究.作者:蔡铭杰.环境工程陕西科技大学2012(学位年度)三、相关自动化控制论文外文参考文献[1]ConstantFractionDiscriminatorInvolvingAutomaticGainControltoRe duceTimeWalk.Lim,H.《IEEETransactionsonNuclearScience》,被EI收录EI.被SCI收录SCI.20144[2]AnAdaptiveZoneDivisionBasedAutomaticVoltageControlSystemWithAp plicationsinChina.Sun,H.Guo,Q.Zhang,B.Wu,W.Wang,B.《IEEETransactionsonPowerSystems:APublicationofthePowerEngineeringSoc iety》,被EI收录EI.被SCI收录SCI.20132[3]SuboptimalAutomaticGenerationControlofInterconnectedPowerSyste mUsingOutputVectorFeedbackControlStrategy. IBRAHEEMPRABHATKUMARNAIMULHASANNIZAMUDDIN 《ElectricPowerComponentsandSystems》,被EI收录EI.被SCI收录SCI.20129/12[4]OptimalAutomaticGenerationControlofInterconnectedPowerSystemCo nsideringNewStructuresofMatrixQ. NAIMULHASANIBRAHEEMPRABHATKUMAR《ElectricPowerComponentsandSystems》,被EI收录EI.被SCI收录SCI.20131/4[5]AdirectionalcontrolsystemforUCAVautomatictakeoffroll. YunpengZhangHaibinDuan《Aircraftengineeringandaerospacetechnology》,被EI收录EI.被SCI收录SCI.20131[6]AGCSignalModelingforEnergyStorageOperations.Donadee,J.Wang,J.《IEEETransactionsonPowerSystems:APublicationofthePowerEngineeringSoc iety》,被EI收录EI.被SCI收录SCI.20145[7]OptimalautomatictuningofactivedampingPIDregulators. Papadopoulos,K.G.Margaris,N.I.《JournalofProcessControl》,被EI收录EI.被SCI收录SCI.20136[8]SensitivityAnalysisofLoadDampingCharacteristicinPowerSystemFre quencyRegulation.Huang,H.Li,F.《IEEETransactionsonPowerSystems:APublicationofthePowerEngineeringSoc iety》,被EI收录EI.被SCI收录SCI.20132[9]AdvancedAutomaticGenerationControlwithAutomaticCompensationofT ieLineLosses.MILANS.CALOVIC《ElectricPowerComponentsandSystems》,被EI收录EI.被SCI收录SCI.20125/8[10]ResearchonAutomaticFaultDiagnosisofEnvironmentalControlandLif eSupportSystems.WeiHuQingEWuJianhuaZou 《Journalofcomputationalandtheoreticalnanoscience》,被EI收录EI.被SCI收录SCI.20145四、自动化控制论文专著参考文献[1]沂沭泗局水闸自动化控制设施维修养护探讨.吴正松,2013中国水利学会2013年学术年会[2]券商集中监控与自动化控制平台的研究.俞枫.赵佳宝,2013中国计算机用户协会信息系统分会2013年第二十三届信息交流大会[3]燃气聚乙烯管道热熔焊机的自动化控制要求.麦钧汉.席丹,20132013中国燃气运营与安全研讨会[4]开封市三水厂成功实现全自动化控制的探讨.杜丽.邵秀梅.杨海涛,2013中国城镇供水排水协会设备材料工作委员会第三届调度监测、自动控制设备技术应用研讨会[5] 泵房排水系统自动化控制.朱正茂,2012第22届全国煤矿自动化与信息化学术会议暨第4届中国煤矿信息化与自动化高层论坛[6]生物发酵连消、水消工艺自动化控制的实现与方法.李献军,20132013中国生物发酵产业年会[7]选矿过程自动化控制应用研究.余明正.倪尔波,2012中国仪器仪表学会东北过程自动化设计专业委员会第二十二次年会暨2012年学术会议[8]小型环模设备真空系统的自动化控制.杨瑞洪.茹晓勤.王宇.王军伟,20112011北京真空学会真空学术交流会[9]以太环网+现场总线在煤矿自动化控制中的应用.李宗磊.马亮.姜妍,2011山东煤炭学会工业信息化专业委员会2011年度工作会议暨物联网技术推进煤矿信息化学术论坛[10]中平能化集团综采设备自动化控制的应用.张宇,2011第21届全国煤矿自动化与信息化学术会议暨第3届中国煤矿信息化与自动化高层论坛。
通用宽带信号产生和分析方案
Models
Bandwidth
DPO7354C
3.5 GHz
DPO7254C
2.5 GHz
DPO7104C
1 GHz
DPO7054C
500 MHz
Sample Rate
(3, 4 ch) (2 ch) (1 ch)
10 GS/s 20 GS/s 40 GS/s
10 GS/s 20 GS/s 40 GS/s
AWG7000C
8 GS/s 和12 GS/s,每通道64M点深度 1 和2 通道 在两通道型号上可选的 16 & 24 GS/s 交 叉功能 10/8 bit 垂直分辨率 2 或 4 个标尺输出 序列,子序列和动态跳转能力 1GHz带宽下54dBc无杂散动态范围 调制带宽高达3.5GHz(1dB)
40M 20M 10M 200M / 100M / 50M >250,000 TekVPI
40M 20M 10M 200M / 100M / 50M >250,000 TekVPI
Max opt Record Length (1/2/3,4) Max Waveform Capture Rate Probing Interface
– – – – 支持射频校准——用户指定校准频率范围 支持中频校准——同时校准中频和混频器频响 基带校准——同时校准调制器和基带频响 实测校准结果:± 0.5dB的平坦度
14
完善简洁的预失真技术
15
校准
16
AWG在高速串行数字信号中的应用
Digital Patterns
1111100001111100000 Clk 01101001101101001 DATA 00101101100101101 DATA 10111001010111001 DATA n
电子信息工程专业英语(第三版)词汇表
电子信息工程专业英语(第三版)词汇表Aa portion of一部分a variety of各种各样的a mass of 大量的AC abbr. Alternating Current交流电accidental adj.意外的accumulator n.累加器acquisition n.获取,采集acquisition time采集时间acquisition time采集时间activate vt.激活active adj.有源的actuator n 致动器,执行器add-on n.附件administration邮电管理局address vt.从事,忙于address generator地址产生器address pointer地址指针addressing mode寻址模式adjustment n 调整,调节ADSL abbr. Asymmetrical Digital Subscriber Loop非对称数字用户线adverse adj 不利的,相反的AFG Arbitrary Function Generator任意函数发生器aggregate v.聚集,合计AGP Accelerated Graphic Port 加速图形接口akin adj.同族的,类似的algorithm n.算法aliasing n.混叠现象alkaline adj.碱性的all in all 总而言之all of a sudden突然allocate vt.分配allocate vt.分配allow for 虑及,体谅allow for虑及,酌留alphanumeric adj.包括文字与数字的alter v.改变alternative n.选择ALU abbr Arithmetic Logic Unit算术逻辑单元aluminium n.铝ambient adj.周围的n.周围环境analogous adj.类似的analogy n.类似,类推ancillary adj.辅助的,副的anguish n 痛苦,苦恼angular frequency角频率annotation n.标注,注解antenna n.触角,天线anti-aliasing filter抗亍昆叠滤波器anti-aliasing filter抗混叠滤波器appliance n.用具,器具appliance n.用具,器县application interface 应用程序接口approach n. 方法appropriate adj.适当的approximation n.近似(值)approximation n.逼近,近似值archive vt.存档n.档案文件arena n.竞技场,舞台arena n.竞技场舞台arise from 由...引起;从...中产生arithmetic n 算数array n.阵列,数组array n.数组,阵列artificial adj.不自然的as a consequence 因此as always照常as opposed to .. 与...相反as yet到目前为止ASIC abbr. Application Specific Integrated Circuit专用集成电路ASIC Application Specific Integrated CircuitASIC Application-Specific Integrated Circuit专用集成电路assembler n 汇编器assembly language汇编语言assignment n.赋值ASSP abbr. Application Specific Standard Product专用标准器件ASSP Application-Specific Standard Parts 专用标准器件assume vt 假定asynchronous adj.异步的asynchronous adj.异步的attenuator n.衰减器audiophile n.高保真音响爱好者auditorium n.会堂,礼堂auditory system听觉系统automatic variable自动变量automotive adj.汽车的AWG Arbitrary Waveform Generator任意波形发生器B(be) known as…称作……(be) capable of…具备……的能力(be) equivalerit to相当于……,等价于……(be) proportional to与……成比例back bias 反向偏压backplane n.背叛backside n.背部,后方backward compatible向下兼容bar graph条形图bargain n.交易,协议,廉价品barrier n.隔板,势垒,阻挡层base station 基站base station基站baseband n.基带baud n 波特be concerned with…对……关心be encumbered with为……所累be mad e up of由……组成be referred to as.... 被称作...be thought of as…被认为……beam splitter 分光镜behavioral synthesis 行为综合beneficial adj.有益的,受益的Bessel filter贝塞耳滤波器biased adj.加偏压的,有偏向的bill of materials材料单BIOS abbr.Basic Input Output System基本输入输出系统bipolar adj.双极性的bit vector位向量bland adj.平淡的block diagram方框图blow up 爆炸,放大blur v 使……模糊BNC bayonet neill-concelman 同轴电缆卡环形接头boast v.夸耀Bode plot伯德图bond n. 接头Boolean variable 布尔变量boost n.升压,放大boot n.启动,引导,自举boot sector引导扇区bootstrap n. 引导程序bootstrap loader 引导装入程序brake n.刹车branch instruction分支指令brief adj.短暂的bring up 捉出,引出browse v.浏览budget n.预算budget n.预算budgetary adj.预算的buffer n 缓冲器buffer n.缓冲器,缓冲区building block 构件,模块built-in adj.内置的bulky adj.体积大的bulky adj 容量大的,体积大的bunching n.聚束bus interface总线接口bus interface总线接口by one’s (own)bootstraps 通过自己的努力by way of 经由;作为Ccable n.电缆cable modem 线缆调制解调器cable TV 有线电视cache n.高速缓存CAD Computer Aided Design 计算机辅助设计calculable adj.可计算的,能预测的calculation-intensive algorithm运算密集型算法camcorder n.便携式摄像机candid adj.非排演的,偷拍的capacitive adj.电容性的capacitor n.电容器capacity n.容量,电容capture v .记录,输入carrier wave 载波cascade n 级联cathode n.阴极cauldron n.大锅炉CB citizens'band 民用波段CCD Charge Coupled Device 电荷耦合器件CD Compact Disc 光盘cell n.细胞,蜂房,电池cellular adj.蜂窝状的characterization n.描述,表征charge pump电荷泵chat n.聊天Chebyshev Type l filter切比雪夫1型滤波器chip rate码片速率chrominance n.色度circular adj.圆形的,循环的circular adj.循环的,环形的circular buffer循环缓冲区class n.类clear-cut adj.界限分明的clever adj.精巧的,灵巧的,巧妙的cliché n 空话,套话,废话clock jitter 时钟抖动clump n.块,团CMOS abbr. Complementary Metal-Oxide-Semiconductor互补金属氧化物半导体coding theory 编码理论coexist vi.共存cold boot 冷启动collide vi.碰撞,抵触collision n.碰撞,冲突combat v.反对防止come down to归结为,涉及commute v 通勤comparable adj.可比较的,比得上的comparator n.比较器comparator n 比彰芝器compatibility n.兼容性compelling adj.强制的compiler n.编译器complex plane复平面complex-frequency variable复频率变量complicate vt使复杂,使难做,使恶化comply vi.遵守comply with同意,遵守component n 组件computing n.计算,处理concerned adj.有关的concisely adv.简明地concurrent adj.并发的concurrent process并发进程conditional adj.条件的conditioning n 调节,调整conduct v传导conductivity n. 传导性,传导率configure vt.配置,设定conflict n.冲突,抵触conformance n.顺应,一致conjugate adj.共轭的consequently adv.从而,因此consist of...由……组成consolidated adj。
TA Instrument ARES-G2 智能测试机说明书
New Castle, DE USA Lindon, UT USA Elstree, United Kingdom Shanghai, China Beijing, China Taipei, Taiwan Tokyo, JapanSeoul, South Korea Bangalore, IndiaParis, France Eschborn, Germany Brussels, BelgiumEtten-Leur, Netherlands Sollentuna, Sweden Milano, Italy Barcelona, Spain Melbourne, Australia Mexico City, MexicoARES-G2 Rheometer1Technology3 Temperature Systems7Accessories91ARES-G2RHEOMETERT he only Rheometer to independently measure stressand strainThe ARES-G2 is the most advanced rheometer for research and materialdevelopment. It is the only rheometer with dual-head, or separate motor andtransducer, technology for the PUREST rheological measurements. No otherrheometer is capable of measuring stress independently of the applied sheardeformation. It is recognized by the rheological community as the industrystandard to which all other measurements are compared for accuracy. TheARES-G2 platform offers an array of new features including unrivaled dataaccuracy, unmatched strain and new stress control, fully integrated fast datasampling, new Smart Swap™ environmental systems with patented activetemperature control, powerful new TRIOS Software, and NEW LAOS and FTRheology Analysis.2Force/Torque Rebalance Transducer (Sample Stress)Transducer Type Force/Torque RebalanceTransducer Torque Motor Brushless DCTransducer Normal/Axial Motor Brushless DCMinimum Transducer Torque in Oscillation 0.05 μN.mMinimum Transducer Torque in Steady Shear 0.1 μN.mMaximum Transducer Torque 200 mN.mTransducer Torque Resolution 1 nN.mTransducer Normal/Axial Force Range 0.001 to 20 NTransducer Bearing Groove Compensated Air Separate Motor (Sample Deformation)Maximum Motor Torque 800 mN.mMotor Design Brushless DCMotor Bearing Jeweled Air, SapphireDisplacement Control/Sensing Optical EncoderStrain Resolution 0.04 μradMin. Angular Displacement in Oscillation 1 μradMax. Angular Displacement in Steady Shear UnlimitedAngular Velocity Range 1 x 10-6rad/s to 300 rad/sAngular Frequency Range 1 x 10-7rad/s to 628 rad/sStep Change in Velocity 5 msStep Change in Strain 10 msStepper MotorMovement/Positioning Micro-stepping Motor/Precision lead ScrewPosition Measurement Linear Optical EncoderPositioning Accuracy 0.1 micron Temperature SystemsSmart Swap StandardForced Convection Oven, FCO -150 to 600°CFCO Camera Viewer OptionalAdvanced Peltier System, APS -10 to 150°CPeltier Plate -40 to 180°CSealed Bath -10 to 150°CSPECIFICATIONSARES-G2TECHNOLOGYLower Geometry Mount Thrust Air BearingRadial Air BearingBrushless DC Motor Motor Non-ContactTemperature Sensor Electronics Optical EncoderForce Rebalance andMagnetic SuspensionNon-Contact TemperatureSensor Electronics Torque Rebalance MotorTorque/Normal ForceRebalance ElectronicsUpper Geometry MountRadial Air Bearing TransducerOnly ARES-G2 provides independent measurements of stress and strain rateWhen it comes to making the most accurate rheological measurements, two heads are simply better than one! Consider that the rheological behavior of materials is described by material functions such as the modulus or viscosity. Modulus is the ratio of stress to strain and viscosity is the ratio of stress to strain rate. In order for a rheometer to make the purest and most accurate rheological measurements, it is best to measure the fundamental parameters of stress and strain or strain rate independently . The ARES-G2 provides rheological measurements free of instrument artifacts over wide ranges of stress, strain, and frequency.Frame, Vertical Movement, and AlignmentThe ARES-G2 frame and vertical movement assembly is built to deliver maximum stiffness, low axial compliance (0.1 μm/N), and the most accurate geometry positioning and alignment.• The steel frame provides high strength, optimum damping for high frequency testing, and dimensional stability over a wide temperature range.• The transducer mount is held rigidly against the frame by two hardened steel cross roller slides.• The slides deliver smooth vertical movement of the head while maintainingconcentricity and parallelism. This is critical when setting a gap in parallel plates.• The transducer head is positioned vertically via a precision ground lead screw.It is attached to a micro-stepping motor by a rigid, preloaded, duplex bearing, which eliminates backlash.• A linear optical encoder is mounted directly between the stationary frame and moving bracket for precision head positioning, independent of the lead screw movement, to an accuracy of 0.1 micron. Optical EncoderLead ScrewDuplex Bearing Micro-Stepping MotorARES-G2TECHNOLOGYHigh-Speed Electronics and Data ProcessingThe ARES-G2 is equipped with new high-speed electronics with digital signal processing for transducer measurements and motor control. While many manufacturers cut costs by combining the test station and electronics into a single box, the separate electronics approach of TA Instruments ARES-G2 isolates the precision measurements from heat and vibration. This approach ensures the best sensitivity and data quality from the test station. The electronics enable fully integrated high speed data acquisition for transient (up to 8,000Hz) and oscillation (up to 15,000Hz) measurements. The high sampling speed provides superior resolution of magnitude and phase of the measured signals. This allows much better higher harmonic resolution for automatic analysis during oscillation tests or post Fourier transformation analysis. Higher odd harmonics that occurin the stress (force) signal in oscillation tests are a result of non-linear response. The ratioof the fundamental frequency to odd harmonics, such as 3rd, 5th, etc. can be calculatedand stored as a signal. In addition, the real-time waveforms during oscillation tests canbe displayed and saved with data points. The intensity ratio and quality and shape ofthe waveform are invaluable data integrity and validation tools.Touch-Screen and KeypadThis graphical interface adds a new dimension in ease-of-use. Interactive activities, suchas geometry zeroing, sample loading, and setting temperature, can be performed at thetest station. Important instrument status and test information such as temperature, gap,force and motor position are displayed. The touch-screen also provides easy access toinstrument settings and diagnostic reporting. A keypad, at the base of the instrument,allows for easy positioning of the measurement head.New Advanced Peltier Plate, APSThe APS is a Smart Swap™ Peltier temperature controlled environmental system with atemperature range of -10 to 150°C, with a maximum heating rate of 20°C/min and atemperature accuracy of +/- 0.1°C. Unlike other Peltier temperature systems, the APSfeatures parallel plate (cone and plate) as well as DIN conforming concentric cylindergeometries to meet the most demanding applications. The new quick-change lower platecomes standard with a 60 mm diameter hardened chromium surface and a uniquebayonet fixture that allows the user to quickly and easily adapt the plate surfaces suchas crosshatched or sandblasted. The APS also features an efficient heated solvent trapcover for blocking evaporation during testing of volatile materials.Electrorheology Accessory, ERER fluids are suspensions of extremely fine non-conducting particles in an electrically insulating fluid, which show dramatic and reversible rheological changes when the electric field is applied. The ARES-G2 ER accessory provides the ability to apply up to 4,000 volts during the course of an experiment using either parallel plate or concentric cylinder geometry. The voltage is applied to the sample via a Trek Amplifier through a high voltage cable. An insulator block between the transducer hub and the upper geometry isolates it from the circuit. Tests can be run with Peltier temperature control providing a range of -40˚C to 180˚C.UV Curing AccessoryUV curing adhesives and radiation curable adhesives use ultraviolet light or other radiation sources to initiate curing, which allows a permanent bond without heating. The ARES-G2 UV Curing option uses a light guide and reflecting mirror assembly to transfer UV radiation from a high-pressure mercury light source. The accessory includes upper and lower geometry with removable 20 mm diameter plates, waveguide and collimator, 5 mm waveguide, and remote radiometer/dosimeter. The system interfaces with a UV light source (Exfo Omnicure S2000) with wavelengths in the range of 320 to 500 nm. Optional temperature control to a maximum of 150°C is available using the Advanced Peltier System, APS. Disposable plates are available.Extensional Viscosity Fixture, EVFThe EVF is a patented fixture for measuring the extensional viscosity of high viscosity materials, such as polymer melts, dough,adhesives, etc. The fixture consists of a fixed and rotating drum, which winds up the sample at constant strain rate, while measuring the force generated in the sample. Since the torque measurement is decoupled from the motor, no beating friction correction is required. The maximum Henky strain with one rotation is four. Temperature control of the EVF requires the ARES-G2 Forced Convection Oven. The maximum use temperature is 350°C.SER2 Universal Testing PlatformThe SER2 is used to perform extensional rheology measurements and a range of physical material testing. Samples are secured to the surfaces of the two windup drums, such that for a constant drum rotation speed, a constant Hencky strain rate is achieved. As the sample is stretched across the drum surfaces, it offers a resistant force on the windup drums that translates into a torque about the primary axis of rotation. For a given extensional rate, the measured torque signal is directly related to the extensional viscosity of the sample.In addition to extensional measurements on polymer melts, the SER2 is capable of performing a range of physical propertymeasurements such as tensile, peel, tear and friction measurements on small hard and soft solid samples.NOTES© 2011 TA Instruments. All rights reserved.L50013.001。
大象泵车技术参数表英文
13 242870001 oil hydraulic pump R180,0 A4VG180HDo.Durchtrieb 1.2 12479
8 C26989000 Air Filter Assembly BSA2100 9.8 C14378
9 C00032100 Air Filter Assembly KW2448B3-0000
5 271029001 Sheng Da elastic coupling BF6M1013CP-A4VG180
6 271030003 Sheng Da elastic coupling - mounting flange FL-SAE2-27
7 C26964801 exhaust valve BSA2100 Байду номын сангаас 9.8 C14379
3 C00155800 Transmission 181KW BF6M 1013 CPMOLI 2109
4 423996 Diesel Engine 181,0KW/2300 BF6M1013CP 100673691
14 242946003 slippage pump SAE-B A4VG180 1.1 14051 15 255201007 Hydraulic pump assembly Rkpl.A10V28(21)DR 1.3 13434 49526717
邮编:201613 电话:021-57741000 -1146 邮编:201613 电话:021-57741000 -1146 Machine model 机器类型 MOLI BSF2109 Machine no 机器编号 214501306 Manufacture no 制造令号 60006187 Delivery line max 最大输送管 DN125/133X4MM Chassis make / type 车制造商/型号 ZZ1124G5415C1 -Wheel base 轴距 5400 Number of axles 桥数 2 -Voltage 电压 24v Chassis serial no. 车架号 LZZMBBGH08C075360 Engine(motor )make /Type 发动机公司/类型 J6518800091 Motor serial no 发动机编号. YC6J190-30 Gear unit type of veh. 汽车变速箱类型 DC6J75T171-00030 No. of gear unit of veh 汽车变速箱编号. DC6J707-025 Circuit diagrams 线路图 Hydraulic system 液压图 C438462H Main control cabinet 电器箱 429031_F Pos Item ID Description Part group Serial Nr
三(8-羟基喹啉)铝(Alq3)发光性能的调控
三(8-羟基喹啉)铝(Alq3)发光性能的调控1施跃文,施敏敏,陈红征,汪茫浙江大学高分子科学与工程学系,硅材料国家重点实验室,浙江杭州 (310027)E-mail:hzchen@摘要:三(8-羟基喹啉)铝(Alq3)是有机电致发光器件的基础材料。
本文评述了如何通过分子的化学修饰和聚集态结构的改变来调控其发光光谱,提高发光效率。
这将为开发高性能的有机电致发光材料及器件提供参考与依据。
关键词:三(8-羟基喹啉)铝 有机电致发光 化学修饰 聚集态结构1.前言有机电致发光(Organic electroluminescence, EL)技术是当前国际上研究的一个热点问题。
相对于无机电致发光器件,有机电致发光器件具有低驱动电压、高亮度、高效率、快响应、宽视角等优点, 并且可以制备大面积柔性可弯曲的器件和实现全色显示,因此最有可能成为新一代主流的平板显示技术,同时也具有作为下一代照明光源的潜力[1-4]。
1987年,美国柯达公司的邓青云博士等人[8]首次以Alq3为发光材料获得了低驱动电压、高亮度和高效率的双层有机发光二极管(Organic light emitting diodes, OLEDs)。
这一具有里程碑意义的开创性工作,使人们看到了OLEDs实用化和商业化的美妙前景,受到了科技界和工业界的广泛关注,各国都投入了大量的人力和物力进行研究和开发。
经过近二十年的发展,OLEDs已进入产业化的前期,已有许多OLEDs产品推向市场,但是,现有蓝光OLEDs 的效率和寿命还不尽如人意。
在Alq3分子中,中心Al3+离子和周围的三个八羟基喹啉的配体形成分子内络盐。
因而性质稳定分解温度高。
在DMF溶液中的荧光量子效率大约为11%,室温下固态薄膜的荧光量子效率大约为32%[9]。
Alq3一般认为是一种电子传输材料,电子迁移率大约为10-5 cm2/v⋅s[10]。
Alq3作为OLEDs基础材料的地位至今仍无法动摇,它几乎满足了OLEDs对发光材料的所有要求:1)本身具有一定的电子传输能力;2)可以真空蒸镀成致密的薄膜;3)具有较好的稳定性;4)有较好的荧光量子效率。
ACTIVE SOUND CONTROL
专利名称:ACTIVE SOUND CONTROL 发明人:SEYMOUR, Shafer,GEE, Robert 申请号:US2012/02974 5 申请日:20120320 公开号:WO2012/14 5110A2 公开日:20121026
摘要:An apparatus for controlling sound within a vehicle includes an acoustical damping device operable to determine a measured sound. The acoustical damping device is operable to output a noise canceling signal to a vehicle audio system to dampen the measured sound. A sound controller is operably coupled to the acoustical damping device and is configured to automatically receive an environment signal from an environment sensor. The sound controller is configured to determine an operating mode of the vehicle based on the environment signal. The operating mode is selectable from an operating mode list that includes a stress operating mode and a calm operating mode. The sound controller is configured to cause alteration of the noise canceling signal and reduction in damping in the stress operating mode with respect to the calm operating mode.
弱电网下抑制谐波谐振的LCL_型并网逆变器鲁棒性CCFAD_方法
第27卷㊀第11期2023年11月㊀电㊀机㊀与㊀控㊀制㊀学㊀报Electri c ㊀Machines ㊀and ㊀Control㊀Vol.27No.11Nov.2023㊀㊀㊀㊀㊀㊀弱电网下抑制谐波谐振的LCL 型并网逆变器鲁棒性CCFAD 方法杨明1,㊀杨杰1,㊀赵铁英1,㊀郑晨2,㊀韦延方1(1.河南理工大学电气工程与自动化学院,河南焦作454003;2.河南省电力公司电力科学研究院,河南郑州450052)摘㊀要:LCL 型并网逆变器采用电容电流反馈有源阻尼在弱电网下进行并网电流控制时,如果系统环路谐振频率高于1/6的采样频率,数字控制延时会导致并网逆变器在较宽范围变化的电网阻抗影响下鲁棒性较差甚至失稳㊂通过分析指出,电容电流反馈有源阻尼环路可等效为并联在滤波电容两端的虚拟阻抗Z eq (s ),表现出的负阻特性是造成系统失稳的主要原因㊂鉴于此,提出一种采用负一阶惯性环节进行电容电流反馈有源阻尼的鲁棒性方法,在电容电流阻尼环路中引入惯性环节,利用频率稳定性分析对所提方法进行详细论述,并给出相关参数的设计过程㊂理论分析表明,该方法可保证Z eq (s )在LCL 滤波器谐振频率有效范围内始终处于正阻特性范围,不仅提高系统的稳定裕度,并网系统的谐波谐振也得到抑制㊂此外,该方法具有较好的灵活性,当采用电容电压反馈有源阻尼控制并进行锁相时,可节省一组电流传感器的使用㊂最后,通过实验验证了所提方法的有效性㊂关键词:电容电流反馈有源阻尼;数字控制延时;谐波谐振;负一阶惯性环节;电容电压反馈有源阻尼DOI :10.15938/j.emc.2023.11.013中图分类号:TM464文献标志码:A文章编号:1007-449X(2023)11-0125-13㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀收稿日期:2021-11-26基金项目:国家自然科学基金(U1804143,61703144);河南理工大学青年骨干教师资助计划(2020XQG -18);河南省矿山电力电子装置与控制创新型科技团队基金(CXTD2017085)作者简介:杨㊀明(1982 ),男,博士,副教授,研究方向为新能源并网发电技术㊁电能质量控制;杨㊀杰(1997 ),男,硕士研究生,研究方向为并网逆变器的稳定性控制技术;赵铁英(1977 ),女,博士,研究方向为电力系统状态监控及故障限流;郑㊀晨(1990 ),男,博士,研究方向为光伏并网发电系统稳定性分析等;韦延方(1982 ),男,博士,副教授,研究方向为电力系统及其新型输配电的分析和控制㊂通信作者:杨㊀杰Robust CCFAD method for suppressing harmonic resonance ofLCL grid-connected inverter in weak gridYANG Ming 1,㊀YANG Jie 1,㊀ZHAO Tieying 1,㊀ZHENG Chen 2,㊀WEI Yanfang 1(1.School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454003,China;2.State Grid Henan Electric Power Research Institute,Zhengzhou 450052,China)Abstract :LCL filter grid connected inverter adopts capacitive current feedback active damping for net-work access control under weak current network.When the system resonance frequency is higher than1/6of the sampling frequency,the digital control delay will lead to poor robustness and even instability of grid connected inverter under the influence of wide-range varying grid impedance.Through analysis,it ispointed out that the capacitive current feedback active damping method is equivalent to the virtual imped-ance Z eq (s )connected in parallel at both ends of the filter capacitor,and the system instability is mainlycaused by the negative resistance characteristic of Z eq (s ).A robust method was proposed by using nega-tive first-order inertia link for capacitive current feedback active damping.The inertia link was introduced into the capacitive current damping loop,and the frequency stability analysis method was used to discuss it in detail,and the design process of related parameters was further given.Theoretical analysis shows that this method can ensure that Z eq(s)is always in the range of positive resistance characteristics within the effective range of the resonance frequency of the LCL filter,which not only improves the stability mar-gin of the system,but also suppresses the harmonic resonance of the grid-connected system.In addition, this method has better flexibility.If capacitive voltage feedback active damping control is used and phase-locked,the use of a set of current sensors is saved.Finally,effectiveness of the proposed method is veri-fied through experiments.Keywords:capacitive current feedback active damping;digital control delay;harmonic resonance;nega-tive first-order inertia link;capacitive voltage feedback active damping0㊀引㊀言LCL型并网逆变器是连接可再生能源发电单元与电网的关键接口设备,用来将直流电能转化为高质量的交流电能并馈入电网,其性能优劣对入网电能质量具有重要影响[1-2]㊂然而,LCL滤波器是一个欠阻尼三阶系统,其固有的谐振尖峰易引发控制系统失稳[3]㊂通常,对谐振尖峰的阻尼方式可分为无源阻尼与有源阻尼两种㊂其中,无源阻尼是在滤波器的滤波元件两端并联或串联无源电阻器,该方式具有可靠性强㊁实现简单等优点,但会产生不同程度的功率损耗,而在滤波电容两端串联无源电阻器因其功率损耗较小被广泛应用[4]㊂为进一步减小无源阻尼带来的功率损耗,可将无源阻尼方式通过反馈控制相应的电流或电压状态变量进行等效实现,便产生了有源阻尼方式,其中,电容电流比例有源阻尼方式不会改变滤波器在低频域和高频域的幅频衰减特性,被大范围推广使用,这与电容两端并联电阻的无源阻尼方式是等效的[5-8]㊂然而,随着数字控制技术的发展,数字控制延时将对并网逆变器控制系统的稳定性运行产生威胁㊂一般,系统常采用不对称规则采样方式进行脉冲宽度调制,会引入1.5拍的等效控制延时[9]㊂此时,电容电流有源比例有源阻尼回路等效为并联在滤波电容两端的虚拟阻抗,控制延时的存在导致该虚拟阻抗在一定频域范围内呈现负阻特性,造成并网逆变器对弱电网下较宽范围变化的电网阻抗鲁棒性较差[10]㊂当系统稳定裕度降低时,电网电压中含有的背景谐波电压将在并网电流中得到放大,甚至引发谐波谐振,劣化入网电能质量,严重威胁并网系统的稳定运行㊂目前,针对数字控制延时导致系统失稳的问题,已有诸多学者从不同角度加以分析并提出相应的解决方法,主要分为两类:1)改变传统采样方式,减小数字控制延时㊂例如:双采样模式实时运算方法[11]㊁及时采样方法[12]㊁基于过采样的控制方法[13]等减小数字控制延时的举措,可有效改善并网逆变器的稳定性,然而,不同采样方式的实现依赖于高精度的处理设备,增加处理器的运行复杂度,并不利于大规模应用㊂2)改变传统电容电流比例有源阻尼方式,通过引入具有相位超前环节对控制延时导致的相位滞后进行补偿[14-18]㊂但相位超前环节往往具有微分特性,即该环节传递函数分子部分的阶数大于等于分母部分的阶数,钳制了该方式实现的灵活性㊂综上所述,已有的改善数字控制延时引发并网逆变器稳定性降低的方法,在实现简单化和灵活性上仍有欠缺㊂鉴于此,本文提出一种利用负一阶惯性环节电容电流反馈有源阻尼(capacitive-current-feedback-active-damping,CCFAD)鲁棒性方法,该方法可有效扩大阻尼环路等效虚拟阻抗的正阻范围,极大地提高并网逆变器对电网阻抗的鲁棒性,并网系统谐波谐振亦得到抑制㊂此外,该方法具有较好的灵活性,仅通过反馈控制电容电压状态变量,即可实现滤波器的有源阻尼及锁相并网的功能,节省一组电流传感器的使用,降低并网逆变器的硬件成本㊂1㊀LCL型并网逆变器CCFAD控制模型建立㊀㊀图1为CCFAD双闭环LCL型并网逆变器总体控制结构图㊂图1中:V dc为直流侧电压;C dc为直流侧电容;V PCC和V g分别代表公共并网点(point of621电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀common coupling,PCC)电压与电网电压;逆变器机侧电感L 1㊁网侧电感L 2和滤波电容C 组成LCL 滤波器;i c 和i 2分别为电容电流与网侧电流;H i1为电容电流有源阻尼系数;H i2为网侧电流反馈系数;通常,电网阻抗呈阻感特性,但阻性分量有利于并网系统的稳定性,因此本文仅考虑电网阻抗为纯感抗的最恶劣工况,L g 代表电网等效电感;i ref 为参考电流信号,由给定参考幅值I ref 与锁相环(phase locked-loop,PLL)输出V PCC 相位信息sin θ相乘获得;G c (s )代表准比例谐振(quasi-proportional resonance,QPR)电流控制器的传递函数,表达式为G c (s )=K p +2K r ωi ss 2+2ωi s +ω20㊂(1)式中:K p 为比例系数;K r 为谐振系数;ω0ʈ314rad /s 为电网电压基波角频率;ωi 代表谐振宽度,为适应电网基频(1ʃ5%)ω0的波动,通常选取ωi =3.14㊂图1㊀LCL 型并网逆变器CCFAD 控制结构图Fig.1㊀CCFAD control structure diagram of LCL typegrid-connected inverter根据图1所示总体控制结构图,可以得到如图2所示的LCL 型并网逆变器系统结构图㊂图2中,K pwm =V dc /V tri 代表逆变桥等效增益(V tri 为脉冲宽度调制过程中的三角载波幅值);等效电感L T =L 2+L g ㊂为避免开关噪声对控制系统的影响,并网逆变器常采用不对称规则采样进行数字控制,其采样频率f s 为开关频率f sw 的2倍,这将引入1拍的计算延时与0.5拍的调制延时㊂G d (s )代表数字控制延时在s 域中的等效传递函数,常近似表示为G d (s )=1T s 1-e -sT s se -sT sʈe -1.5sT s ㊂(2)式中T s 代表采样周期㊂图2㊀LCL 型并网逆变器CCFAD 系统结构图Fig.2㊀CCFAD system structure diagram of LCL typegrid-connected inverter根据图1可以推导出i ref (s )到i 2(s )的开环传递函数T 0(s ),其表达式为T 0(s )=H i2G c (s )K pwmsL 1L T CG d (s )s 2+sH i1K pwm G d (s )L 1+2πf r ()2㊂(3)式中f r 代表LCL 滤波器的谐振频率,表示为f r =(L 1+L T )/(L 1L T C )2π㊂(4)为便于后续分析,本文以一台3kW 的单相LCL 型并网逆变器为例,主电路参数见表1㊂需要说明的是,电流控制器G c (s )仅对开环系统在基频附近的特性产生影响,本文主要分析数字控制延时与电网阻抗交互作用下在高频域对控制系统稳定性的影响,因此后续不考虑电流控制器(G c (s )=1)的作用㊂表1㊀并网逆变器主电路参数Table 1㊀Circuit parameters of grid-connected inverter1.1㊀传统CCFAD 控制的稳定性分析对图2进行等效变换,得到如图3(a)所示的系统结构图㊂由此可见,CCFAD 环路等效为并联在滤波电容支路两端的虚拟阻抗Z eq (s ),等效电路模型如图3(b)所示,其表示为Z eq (s )=R A e 1.5T s s ㊂(5)式中R A =L 1/(CK pwm H i1)不考虑数字控制延时(G d (s )=1)的情况下,Z eq (s )为纯电阻R A ,等效为滤波电容并联电阻的无721第11期杨㊀明等:弱电网下抑制谐波谐振的LCL 型并网逆变器鲁棒性CCFAD 方法源阻尼方式;数字控制延时的引入,Z eq (s )变成一个与频率相关的虚拟阻抗,势必会对控制系统的稳定性造成影响㊂图3㊀并网逆变器的等效模型Fig.3㊀Equivalent model of grid-connected inverter令s =j ω并代入式(5)得到Z eq (j ω),将其等效为虚拟电阻R eq (ω)与虚拟电抗X eq (ω)的并联形式,即Z eq (j ω)=R eq (ω)//j X eq (ω),R eq (ω)与X eq (ω)的表达式分别为:R eq (2πf )=R A /cos(3πT s f );X eq(2πf )=R A/sin(3πT sf )㊂}(6)根据式(6),如图4给出了R eq (ω)与X eq (ω)的频率特性曲线㊂观察图4可见,R eq (ω)在频域(0,f s /6)与(f s /6,f s /2)范围内分别呈现出正阻和负阻特性,分界频率为f s /6;X eq (ω)在频域(0,f s /3)与(f s /3,f s /2)范围内分别呈现出感抗和容抗特性,分界频率为f s /3㊂其中R eq (ω)与系统谐振尖峰的阻尼密切相关,而X eq (ω)会等效改变滤波电容的容值,造成系统谐振频率f r ᶄ偏离LCL 滤波器谐振频率f r ㊂文献[10]表明,T 0(s )存在一对右半平面极点与R eq (ω)在f ᶄr 处呈负阻特性是等价的㊂图4㊀R eq (ω)与X eq (ω)的频率特性曲线Fig.4㊀Frequency characteristic curve of R eq (ω)andX eq (ω)通常,为有效滤除网侧电流中的谐波分量,LCL滤波器谐振频率一般要求f r ɤf s /4㊂如图5所示,给出了开环传递函数T 0(s )的伯德图㊂从图5可以看出,当f s /6<f r ɤf s /4时,T 0(s )的相位曲线分别在f s /6与f r 处产生一次负穿越和一次正穿越,由于X eq (ω)呈感性,故f ᶄr >f r ㊂为保证并网系统闭环稳定,根据奈奎斯特稳定性判据,需使负穿越失效而正穿越有效㊂然而,电网阻抗的变化导致f r 向f s /6偏移,当f r =f s /6时,虚拟电阻R eq (ω)无穷大,这意味着断路,此时系统始终无法保持稳定㊂图5㊀开环传递函数T 0(s )的伯德图Fig.5㊀Bode diagram of T 0(s )分别记T 0(s )在f s /6和f r 处对应的幅值裕度为GM 1㊁GM 2,通过式(3)可以推导出二者的表达式为:GM 1=-20lgH i2K pwm(2πf s /6)L 1L T C [(2πf r )2-(2πf s /6)2+(2πf s /6)H i1K pwm /L 1]{};(7)GM 2=-20lgH i2L1H i1(L 1+L T)[]㊂(8)由此可以绘制出GM 1㊁GM 2关于L g 的变化曲线,如图6所示㊂从图6可以看出,GM 1随着L g 的增加逐渐减小,而GM 2随着L g 的增加逐渐增大,并且GM 1关于L g 的变化速率高于GM 2关于L g 的变化速率,即在L g 变化过程中GM 1率先为0dB㊂令GM 1=0dB,根据式(7)易推导出使系统处于临界稳定状态时L g 的值为L gm =H i2K pwm /(2πf s /6)-L 11+(2πf s /6)H i1K pwm C -(2πf s /6)2L 1C-L 2㊂(9)由此可见,当LCL 滤波器谐振频率f s /6<f r ɤf s /4时,在数字控制延时与电网阻抗的交互影响下,系统满足闭环稳定的条件较为苛刻,且无法适应较821电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀宽范围变化的电网阻抗,并网逆变器控制系统鲁棒性极差㊂图6㊀GM 1㊁GM 2关于L g 的变化曲线Fig.6㊀Curve of GM 1and GM 2with respect to L g1.2㊀并网系统的谐波谐振分析实际上,网侧电流包括激励参考电流产生的响应分量,还含有扰动电网电压产生的响应分量,由于参考电流具有较好的正弦度,因此在系统稳定性良好的情况下,使网侧电流发生畸变的主要原因是电网电压的扰动作用㊂根据图2可以推导出V g (s )到i 2(s )的扰动闭环传递函数Y (s ),表达式为Y (s )=i 2(s )V g (s )=-1sL g +H i2G x1(s )+1/G x2(s )㊂(10)其中:G x1(s )=K pwm G d (s )s 2L 1C +sCH i1K pwm G d (s )+1;(11)G x2(s )=s 2L 1C +sCH i1K pwm G d (s )+1s 3L 1L 2C +s 2L 2CH i1K pwm G d (s )+s (L 1+L 2)㊂(12)将s =j ω代入式(10),并进行简化可得|Y (j2πf )|=1R e1R e2+I m1I m2R2e2+I 2m2()2+2πfLg+R e2I m1-R e1I m2R 2e2+I 2m2()2㊂(13)其中:R e1=[H i2-(2πf )2L 2CH i1]K pwm cos(3πT s f );R e2=1-(2πf )2L 1C +2πfCH i1K pwm sin(3πT s f );I m1=2πf (L 1+L 2)-(2πf )3L 1L 2C +[(2πf )2L 2CH i1-H i2]K pwm sin(3πT s f );I m2=2πfCH i1K pwm cos(3πT s f )㊂üþýïïïïïïï(14)令L g =L gm ,将式(9)代入式(13),可以得到在频率f =f s /6处有1/|Y (j2πf )|=0成立,意味着当电网阻抗L g =L gm 时,电网电压在频率f s /6处的背景谐波将得到无限放大,这被称为并网系统的谐波谐振㊂根据式(13)可以绘制出|Y(j2πf )|关于变量L g ㊁f 的函数图像,如图7所示㊂观察图7可知,随着L g 的增加,|Y (j2πf )|的谐振尖峰逐渐向f s /6发生偏移,并且谐振程度逐渐加深,电网电压背景谐波将得到放大,此时网侧电流发生严重畸变㊂图7㊀|Y (j2πf )|关于L g ㊁f 的变化曲线Fig.7㊀Curve of |Y (j2πf )|with respect to L g and f为了验证|Y (j2πf )|对电网电压背景谐波的放大作用,在电网电压V g 中分别注入微量60~80频次谐波电压,其大小为基波幅值的0.25%,并网逆变器在不同电网阻抗条件下的网侧电流仿真波形如图8所示㊂从图8可以看出,随着L g 的增加,网侧电流质量逐渐劣化,对其进行快速傅里叶变换分析(fast Fourier transform,FFT)可见,谐波含量亦有所增大,并且谐波频次放大现象逐渐向低频域发生偏移,这与前述理论分析吻合㊂图8㊀传统CCFAD 方法网侧电流仿真波形Fig.8㊀Grid-side current simulation waveform of tradi-tional CCFAD method921第11期杨㊀明等:弱电网下抑制谐波谐振的LCL 型并网逆变器鲁棒性CCFAD 方法2㊀鲁棒性CCFAD 方法根据第二节分析可知,并网逆变器采用传统电容电流比例有源阻尼方法工作时,随着L g 的增加系统稳定裕度逐渐降低,同时电网电压中的背景谐波将被放大,易引发谐波谐振现象进而劣化并网电能质量㊂鉴于此,本节提出一种鲁棒性CCFAD 方法,可有效提高控制系统在弱电网下的稳定裕度,增强并网逆变器对电网阻抗的适应能力㊂图9给出了所提方法的系统结构图,其中H (s )的传递函数表达式为H (s )=-Ks +2πf n㊂(15)式中:K 为比例系数;f n 代表转折频率㊂图9㊀鲁棒性CCFAD 的系统结构图Fig.9㊀Robust CCFAD system structure diagram根据图9,可以得到所提方法的系统开环传递函数T 1(s )表达式,为T 1(s )=H i2G c (s )K pwmsL 1L T CG d (s )s 2+sH (s )K pwm G d(s )L 1+(2πf r )2㊂(16)2.1㊀鲁棒性CCFAD 的等效虚拟阻抗将式(5)中的H i1替换为H (s ),即可得鲁棒性CCFAD 方法并联在滤波电容支路两端的等效虚拟阻抗Z eq1(s )表达式,为Z eq1(s )=-L 1(s +2πf n )CKK pwm G d (s )㊂(17)同样地,将s =j ω代入式(17)得到Z eq1(j ω)=R eq1(ω)//X eq1(ω),其等效并联虚拟电阻R eq1(ω)与虚拟电抗X eq1(ω)分别为:R eq1(2πf )=-2πL 1CKK pwm f 2n+f2f n cos(3πT s f )-f sin(3πT s f );X eq1(2πf )=-2πL 1CKK pwm f 2n +f2f cos(3πT s f )+f n sin(3πT s f )㊂üþýïïïï(18)根据式(18)可知,K 值与虚拟阻抗Z eq1(j ω)的幅值有关,而R eq1(ω)和X eq1(ω)的特性分界频率仅由f n 决定㊂图10给出了R eq1(ω)与X eq1(ω)在奈奎斯特频率(f s /2)范围内关于f n 的特性曲线㊂从图10可以看出,R eq1(ω)存在两个分界频率,在频域(0,f R1)㊁(f R2,f s /2)范围内均表现为负阻特性,而在频域(f R1,f R2)范围内为正阻特性,并且0<f R1<f s /6㊁f s /3<f R2<f s /2,随着f n 的增加f R1与f R2逐渐向高频域发生偏移;X eq1(ω)仅存在一个分界频率,在频域(0,f X )㊁(f X ,f s /2)范围内分别表现为容抗特性与感抗特性,同样地,随着f n 的增加f X 亦逐渐向高频域发生偏移,并且f s /6<f X <f s /3㊂图10㊀R eq1(2πf )与X eq1(2πf )的频率特性曲线Fig.10㊀Frequency characteristic curve of R eq1(ω)and X eq1(ω)因此,为保证在系统谐振频率f ᶄr 变化范围内虚拟电阻R eq1(ω)均表现为正阻特性,需满足f R1ɤf r1㊂其中f r1为L g 趋于无穷大时LCL 滤波器的谐振频率,其值由式(4)获得㊂根据式(18)可求得f n 为f n =f R1tan(3πT s f R1)ɤf r1tan(3πT s f r1)㊂(19)2.2㊀参数设计将式(16)改写为T 1(s )=H i2G c (s )s 2L T C G (s )1+H (s )G (s )=H i2G c (s )s 2L T Cψ(s )㊂(20)其中G (s )=sK pwm G d (s )L 1[s 2+(2πf r )2]㊂(21)根据式(20)可知,ψ(s )等效为前向增益G (s ),反馈增益为H (s )的闭环负反馈系统,其开环传递函数为φ(s )=G (s )H (s )㊂因此,T 1(s )不包含右半平面极点与ψ(s )闭环稳定是等价的㊂将式(17)代入031电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀φ(s ),得φ(s )=sCZ eq1(s )[s 2+(2πf r )2]㊂(22)图11㊀开环传递函数φ(s )的伯德图Fig.11㊀Bode diagram of φ(s )由式(22)可见,φ(s )的相位曲线分别在f R1与f R2处各产生一次穿越,记幅值裕度分别为GM R1㊁GM R2,其伯德图如图11所示㊂GM R1与GM R2分别表示为:GM R1=-20lgf R1KK pwm(2π)2f 2n +f 2R1(f 2r -f 2R1);(23)GM R2=-20lgf R2KK pwm(2π)2f 2n+f 2R2(f2R2-f 2r)㊂(24)由于φ(s )不包含右半平面极点,为保证ψ(s )闭环稳定,需满足GM R1>0dB 且GM R2>0dB㊂根据式(23)㊁式(24)可知,GM R1是关于L g 的减函数,而GM R2是关于L g 的增函数,故在L g 变化过程中,仅需满足GM R1>0dB 即可保证ψ(s )闭环稳定,由式(23)可得K =(2π)2f 2n +f 2R1(f 2r -f 2R1)f R1K pwm10-GMR120㊂(25)将式(19)代入式(25),得K <(2π)2(f 2r1-f 2R1)f R1K pwm cos(3πT s f R1)㊂(26)如图12阴影部分所示,给出了f R1与K 的可取区域㊂显然,在频域(0,f r1)范围内,K 是关于f R1的单调减函数㊂由于K 值会改变虚拟电阻R eq1(ω)的幅值大小,势必影响系统谐振尖峰的阻尼效果㊂因此,为便于设计电流控制器,可适当选取较小的f R1,以此获得较大范围K 值,增强系统谐振尖峰的阻尼效果㊂图12㊀f R1与K 的可取区域Fig.12㊀Desirable area of f R1and K此外,滤波电容支路为高次谐波提供了低阻抗通路,导致电容电流中含有大量高次谐波电流,为提高脉冲宽度调制的可靠性,可选取分界频率f R1=325Hz,利用H (s )的低通幅频特性滤除谐波电流,通过(19)可求得f n =50Hz,此时0<K <898.88㊂事实上,电网阻抗不可能无穷大,并网逆变器接入电网时,电网强弱可由交流系统短路容量比(short-circuit ratio,SCR)来评定,并网逆变器需要在SCR ȡ10的复杂工况下稳定运行,因此本文考虑L g 的变化范围为0到2.6mH(SCR =10)㊂由于电网阻抗不利于系统稳定性,如图13所示,给出了T 1(s )在L g =2.6mH 时的伯德图㊂从图13可以看出,随着K 值增加,系统谐振尖峰阻尼效果越来越显著,并且开环截止频率随着K 值的增加而提高㊂因此,为了增强阻尼效果且提高系统带宽,可选取K =898㊂显然,T 1(s )不含右半平面极点,根据奈奎斯特稳定性判据,需使一次负穿越失效,才能够保证并网逆变器控制系统闭环稳定㊂此时易设计网侧电流反馈系数H i2=0.0447,QPR 电流控制器的参数为K p =1㊁K r =40[19]㊂图13㊀开环传递函数T 1(s )的伯德图Fig.13㊀Bode diagram of T 1(s )131第11期杨㊀明等:弱电网下抑制谐波谐振的LCL 型并网逆变器鲁棒性CCFAD 方法根据前述参数设计,如图14所示,给出了鲁棒性CCFAD 方法的开环传递函数T 1(s )伯德图㊂从图14可以看出,当电网电感分别为L g =0㊁1.3㊁2.6mH 时,系统的稳定裕度分别为PM =66ʎ㊁62.7ʎ㊁60.1ʎ,GM =8.06㊁4.75㊁4.24dB,此时系统具有较强的稳定性,并网逆变器对弱电网适应能力得到极大地提高㊂图14㊀补偿后T 1(s )的伯德图Fig.14㊀Bode diagram of T 1(s )after compensation为避免在L g 变化过程中,系统可能出现局部失稳现象,如图15所示,给出了系统闭环主导极点根轨迹㊂其中,延时环节采用三阶Pade 近似进行线性化处理[20]㊂图15㊀CCFAD 方法的主导极点根轨迹Fig.15㊀Dominant pole root locus of CCFAD method从图15可以看出,随着L g 的增加,传统电容电流比例有源阻尼方法的闭环主导极点逐渐向虚轴靠近,直至出现右半平面极点,并网逆变器失稳;然而,鲁棒性CCFAD 方法在L g 变化过程中,系统闭环主导极点始终处于左半平面,系统稳定性得到保证㊂同理,将式(7)中的H i 1替换为H (s ),如图16所示给出了在所提方法下,|Y (j2πf )|关于变量L g ㊁f的函数图像㊂比较图7和图16可以看到,所提鲁棒性CCFAD 方法在L g 较宽范围变化时,并网系统对电网电压背景谐波具有极强的抑制作用,并且随着L g 的增加,谐振程度逐渐变弱,避免了谐波谐振现象的发生㊂由此可见,所提方法不仅提高了并网系统在数字控制延时与电网阻抗交互作用下的稳定性,还增强了电网电压背景谐波抑制效果,有效改善并网电能质量㊂图16㊀所提方法下|Y (j2πf )|关于L g ㊁f 的变化曲线Fig.16㊀Change curve of |Y (j2πf )|with respect to L gand f under the proposed method与图8类似,在电网电压V g 中分别注入微量60~80频次谐波电压,此时谐波大小为基波幅值的0.5%,并网逆变器在不同电网阻抗条件下的网侧电流仿真波形如图17所示㊂图17㊀鲁棒性CCFAD 方法网侧电流仿真波形Fig.17㊀Grid-side current simulation waveform of ro-bust CCFAD method231电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀从图17可以看出,并网逆变器在所提鲁棒性CCFAD 方法下运行时,电网电压背景谐波得到抑制,并且随着L g 的增加,网侧电流谐波含量亦逐渐降低,并网系统在适应弱电网能力提升的同时,具有较好的并网电能质量㊂2.3㊀鲁棒性CVFAD 方法及其PF 校正LCL 型并网逆变器采用传统CCFAD 方法及鲁棒性CCFAD 方法进行电能变换时,需要使用三组传感器分别采集电容电流i c ㊁网侧电流i 2以及并网点电压V PCC 的信息㊂为了降低并网逆变器的硬件成本并增强设备可靠性,所提鲁棒性CCFAD 方法可转换为电容电压反馈有源阻尼(capacitive-voltage-feedback-active-damping,CVFAD)控制,系统结构图如图18所示㊂其中,有源阻尼环节H 1(s )=sCH (s )㊂此时,可通过采集电容电压信息进行锁相,减少了一组电流传感器的使用㊂然而,并网逆变器将处于非单位功率因数(power factor,PF)并网,为提高电能利用率,需要对并网功率因数进行校正㊂图18㊀鲁棒性CVFAD 方法的系统结构图Fig.18㊀System structure diagram of robust CVFADmethod需要说明的是,逆变器接入电网的并网功率因数测定是在公共并网点进行的,因此在分析并网系统PF 时可以忽略电网阻抗的存在㊂图19为LCL 滤波器的电路模型,以网侧电流i 2为参考向量,由于采用电容电压V c 锁相,则电容电压与网侧电流同相位㊂根据基尔霍夫电压定律(Kirchhoff s voltage law,KVL),如图20给出了V c 和V PCC 的矢量关系图㊂图19㊀LCL 滤波器电路模型Fig.19㊀Circuit model of LCLfilter图20㊀LCL 滤波器矢量关系图Fig.20㊀Vector diagram of LCL filter由图20可以求得V PCC 与V c 的相位差为γ=actanω0L 2I 2V c㊂(27)式中I 2和V c 分别代表网侧电流与电容电压的基频有效值,可通过电流㊁电压传感器采集的信息进行求取㊂由此可见,相位差γ是造成逆变器无法单位功率因数并网的原因㊂为减少并网点处的无功功率,应对功率因数进行校正㊂如图21所示,给出了传统前置二阶广义积分器(second-order generalized inte-grator,SOGI)的同步旋转坐标系锁相环(synchronous reference frame PLL,SRF-PLL)原理示意图㊂显然,根据图20和图21可知,电容电压的相位信息θ0超前并网点电压γ,为保证并网逆变器单位功率因数并网,实际参考电流的相位信息应为θ=θ0-γ,PF 校正如图21所示㊂图21㊀锁相环原理示意图Fig.21㊀Schematic diagram of phase-locked loop principle3㊀实验验证本文采用Rtuit 公司开发的实时数字控制器RTU-BOX204控制平台,搭建了如图1所示的3kW 单相LCL 型并网逆变器实验样机,主电路参数与表1一致,对所提鲁棒性CCFAD 方法进行实验验证,具体实验结构图如图22所示㊂其中,DCPS8022数字控制直流电源可提供400V ˑ20A 的输出功率,电流和电压霍尔传感器分别采用ACS712与LV25P,开关管选用两个二单元的IGBT 模块2MBI75VA,开关管驱动采用大功率IGBT 驱动模块TX-DA962,示波器采用泰克Tektronix MDO3014示波器100MHz 四通道混合域㊂331第11期杨㊀明等:弱电网下抑制谐波谐振的LCL 型并网逆变器鲁棒性CCFAD 方法图22㊀单相LCL型并网逆变器实验结构图Fig.22㊀Experimental structure diagram of single-phase LCL grid-connected inverter3.1㊀鲁棒性CCFAD方法的实验结果为验证所提鲁棒性CCFAD方法的有效性,本节给出相应的实验结果,此时仍采用并网点电压进行锁相㊂如图23所示,给出了并网逆变器运行在传统电容电流比例反馈有源阻尼控制下的网侧电流i2和并网点电压V PCC的稳态实验波形㊂可以看出,当电网电感L g=0.2mH时,并网逆变器的网侧电流质量已然较差,测得网侧电流总谐波畸变率(total harmonic distortion,THD)的值为4.65%;然而,随着L g增加至0.3mH,此时开环系统稳定裕度较低,电网电压中含有的背景谐波得到相应的放大,网侧电流与并网点电压波形发生明显畸变,并网电能质量较差,此时网侧电流与并网点电压的THD值分别达到了62.35%和20.83%,无法满足相应的并网要求(网侧电流THD<5%)㊂这与前述理论分析相吻合㊂图23㊀传统CCFAD方法下的并网实验波形Fig.23㊀Grid-connected experimental waveform under traditional CCFAD method当并网逆变器在所提鲁棒性CCFAD方法下运行时,网侧电流i2和并网点电压V PCC的稳态实验波形如图24所示㊂显然,并网系统分别在L g=0㊁1.3㊁2.6mH条件下均具有良好的入网电能质量,测得的相应网侧电流THD值均小于4%,验证了所提方法可显著提高并网逆变器对弱电网的适应能力,系统鲁棒性得到增强㊂此外,图25给出了网侧电流跳变的动态实验波形㊂从图25可以看出,当设置参考电流进行满载/半载动态跳变的情况时,网侧电流在跳变瞬间出现短暂的调节过程,但很快进入稳态,系统具有良好的动态性能㊂图24㊀鲁棒性CCFAD方法下的并网实验波形(V PCC锁相) Fig.24㊀Grid-connected experimental waveform under robust CCFAD method3.2㊀鲁棒性CVFAD方法的实验结果为验证所提方法的灵活性,本节给出了鲁棒性CVFAD方法相应的实验结果,此时仍采用并网点电压进行锁相㊂分别设置电网电感L g=0㊁1.3㊁2.6mH,当并网逆变器采用鲁棒性CVFAD进行并网运行时,其网侧电流i2和并网点电压V PCC的稳态实验波形如图26所示㊂431电㊀机㊀与㊀控㊀制㊀学㊀报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第27卷㊀。
一种用于解决风电机组涡激振动的方法
英文回答:An effective approach for mitigating the vortex-induced vibration of wind turbine generators involves the implementation of active damping control. This advanced technique entails the utilization of sensors to detect the vibrations initiated by vortex shedding, followed by the application of forces using actuators to counteract these vibrations. Through meticulous control of the forces exerted on the wind turbine blades, it bes feasible to attenuate the vibrations and alleviate their detrimental impact on the structural integrity of the turbine. The successful implementation of this method necessitates the employment of sophisticated control algorithms, as well as the precise placement of sensors and actuators to effectivelybat the vortex-induced vibrations.减轻风力涡轮发电机涡流引起的振动的有效办法,包括实施主动坝管控制。
这一先进技术要求利用传感器来探测涡旋抛射引发的振动,然后运用起动器来抵消这些振动。
多逆变器并网系统谐振特性分析
多逆变器并网系统谐振特性分析胡伟;孙建军;马谦;刘飞;查晓明【摘要】基于闭环传递函数法建立了LCL并网逆变器诺顿等效模型,利用所建立的模型分析了并联逆变器数量、组成和系统控制参数对系统谐振特性的影响.分析结果表明:和传统单逆变器系统相比,多逆变器并网系统存在多个谐振频率,谐振频率个数和系统中的逆变器种类相关,较低的谐振频率随着逆变器数量的增加而减小,随着并网阻抗的增大而减小;谐振频率随着电容电流内环参数的增大而减小,随着并网电流外环控制参数Kp的增大而增大,基本不受并网电流外环控制参数K1的影响.仿真分析结果证明了理论分析的正确性.【期刊名称】《电力自动化设备》【年(卷),期】2014(034)007【总页数】6页(P93-98)【关键词】分布式发电;LCL滤波器;并网;逆变器;谐振;模型【作者】胡伟;孙建军;马谦;刘飞;查晓明【作者单位】武汉大学电气工程学院,湖北武汉430072;武汉大学电气工程学院,湖北武汉430072;武汉大学电气工程学院,湖北武汉430072;武汉大学电气工程学院,湖北武汉430072;武汉大学电气工程学院,湖北武汉430072【正文语种】中文【中图分类】TM4640 引言基于可再生能源(如风能、太阳能等)的分布式发电技术是人类应对能源危机和环境污染的重要手段,近年来越来越受到重视[1-2]。
并网逆变器因其灵活的运行模式和良好的可控性,成为可再生能源发电系统并网的主要接口之一[3-4]。
由于可再生能源具有分布式接入特点,各逆变器间大多满足并联关系。
并网逆变器通常采用脉冲宽度调制PWM(Pulse Width Modulation)方式,因此在输出波形中存在开关频率整数倍附近的高频谐波。
为抑制高频开关产生的电压和电流纹波,通常在并网逆变器和电网之间加入LCL滤波器。
与单电感L滤波器相比,LCL滤波器对电流高频分量具有更强的抑制能力[5-6],但LCL滤波器是一个三阶系统,具有一个阻尼系数很低的谐振尖峰。
金纳米棒的制备及其表面增强拉曼活性研究
金纳米棒的制备及其表面增强拉曼活性研究马亚丹;段化珍;叶伟林;邓维;李丹【摘要】采用种子生长法制备不同长径比金纳米棒,通过单一调控AgNO3的用量制备了长度为(80±18)nm、长径比为2.1~4.0、长轴表面等离子体共振吸收波长为600~900nm的金纳米棒;研究AgNO3诱导生长剂对金纳米棒的影响,探讨金纳米棒的生长机理.以对巯基苯胺作为探针分子,运用拉曼光谱对不同长径比金纳米棒的表面增强拉曼活性进行研究.结果表明,吸收波长为790nm的金纳米棒的表面增强拉曼活性最强,这主要是因为拉曼光谱仪的激发波长与金纳米棒的长轴表面等离子体共振吸收波长实现匹配.该研究成果为不同长径比金纳米棒的SERS活性研究提供了重要的理论基础.【期刊名称】《应用技术学报》【年(卷),期】2017(017)003【总页数】5页(P274-278)【关键词】种子生长法;金纳米棒;长径比;表面增强拉曼【作者】马亚丹;段化珍;叶伟林;邓维;李丹【作者单位】上海应用技术大学化学与环境工程学院,上海201418【正文语种】中文【中图分类】O65作为贵金属纳米材料家族之一的金纳米棒(AuNR)是近年来的研究热点.由于其独特的光学性质和良好的生物相容性,广泛应用于传感技术、光电材料、生物检测等领域[1].金纳米棒作为特殊的等离子体,具有两个表面等离子体共振吸收峰,一个是由电子纵向共振产生的长轴等离子体共振(LSPR)吸收峰,另一个是电子横向振动产生的短轴等离子体共振(TSPR)吸收峰,对应的纵轴长度和横轴直径之比为金纳米棒的长径比[2].通过调控金纳米棒的长径比,可使其等离子体共振吸收峰调至对生物组织透明的近红外光区,因而在光热治疗、药物运输、疾病治疗等方面都显示出了巨大的应用潜力[3].表面增强拉曼(surface-enahanced raman scattering,SERS)活性基底因具有较大的增强因子,能获得单分子水平的检测灵敏度,在生物、化学等领域得到了广泛应用[4].金纳米棒的SERS基底由于其光学特性和局域表面等离子体振动,其基底的增强因子可达106~1014,广泛应用于高敏感和更低检出限的化学传感技术[5].对于不同长径比的金纳米棒都具有一定的SERS增强效果,但是探讨激发波长与等离子体的共振效应这方面研究还是欠缺,因此研究共振效果能为利用不同激发波长的拉曼光谱仪选择最优长径比金纳米棒作为SERS活性基底提供一定的基础,目前金纳米棒的合成方法包括模板合成法、电化学合成法、光化学合成法、晶种诱导法等[6].其中JANA等[7]改进种子生长法,提供高产率大长径比金纳米棒的制备,因操作简单,条件温和,被广泛应用.但是该方案投料配比繁琐,不能够单一调控制备出不同长径比的金纳米棒,并且纯化步骤简单,难以得到纯度高的金纳米棒溶胶,因此调控单一的投料比进行不同长径比的金纳米棒研究具有重要意义[8].本文通过种子生长法单一调控硝酸银浓度,制备出分散性好、不同长径比金纳米棒,同时考察和比较不同长径比金纳米棒的SERS活性,分析获得与激光波长共振效果最佳的SERS基底材料,从而为金纳米棒广泛应用于生物传感和表面增强拉曼检测等领域奠定了重要的理论基础.试剂:四氯金酸(HAuCl4)、十六烷基三甲基溴化铵(CTAB)、硼氢化钠(NaBH4)、抗坏血酸(AS)、对氨基苯硫酚(ATP)等均为分析纯试剂;实验用水均为双蒸水.仪器:紫外-可见分光光度计;磁力搅拌水浴锅;高速离心机;透射电子显微镜(Tecnai G2 F30-TWIN,德国);扫描电子显微镜(JSM-7500F,日本);拉曼光谱仪(BWTEK,中国).室温条件下(25~28 ℃),称取0.5 g四氯金酸于100 mL容量瓶,用双蒸水定容成质量浓度为10 mg/mL的四氯金酸水溶液.称取300 mg CTAB溶于15 mL水,配成物质的量浓度为0.1 mol·L-1水溶液,均匀搅拌至透明,滴加220 μL四氯金酸水溶液,待其在溶液中均匀分散后,快速加入新鲜配制的1.0 mL 0 ℃的0.02 mol·L-1 NaBH4溶液,溶液的颜色由浅黄色变成棕黄色,均匀搅拌10 min,室温静置2 h后备用.此时金种子溶液的浓度为0.25 mmol·L-1.室温条件下,称取125 mg CTAB溶于20 mL水配成0.05 mol·L-1水溶液,均匀搅拌至透明,再加入100 μL四氯金酸水溶液,混合均匀后,再加入200 μL 0.05 mol·L-1 AgNO3溶液,100 μL 0.5 mol·L-1 盐酸,充分搅拌,加入120 μL 0.2 mol·L-1抗坏血酸,均匀搅拌,溶液由深黄色变为无色,再加入50 μL已制备好的金种子溶液,均匀搅拌3 min,室温静置生长3 h.室温条件下,根据上述制备金纳米棒的方案,调节硝酸银量分别为30,50,80,100,120 μL 0.05 mol·L-1 AgNO3溶液,制备出不同长径比金纳米棒.金纳米棒溶液在温度为20 ℃、转速为8 000 r/min条件下离心5 min,去除上清液,以除去反应溶液中其他反应物和大量CTAB;在20 ℃、8 000 r/min条件下离心5 min,去除上清液,用双蒸水轻微洗涤溶胶表面,去除溶液中多余的CTAB,达到纯化的最终效果,富集溶胶.用水稀释至吸光度为0.5,紫外分光光度计测量不同长径比金纳米棒的表面等离子体共振吸收波长.称取50 mg对巯基苯胺溶于1 mL双蒸水配出0.5 mol·L-1对巯基苯胺溶液,依次稀释100倍,最终配置成浓度为50 mmol·L-1对巯基苯胺溶液.根据文献[9-10]对制备的不同长径比金纳米棒的摩尔吸光系数进行对照,结合紫外光谱的吸光度,按照朗伯-比尔定律,分别计算不同长径比金纳米棒溶胶的最终浓度.根据浓度差异,加入一定量去离子水使得各种金纳米棒浓度一致.再分别取10 μL金纳米棒与10μL 1 mmol·L-1对巯基苯胺溶液室温下反应5 min.准确移取10 μL上述混合样品溶液于硅片,将硅片放在拉曼光谱仪的激光镜头下,激发波长为785 nm,打开光学摄像头,采用白光调节焦距,达到最大分辨率.再调节拉曼积分时间为10 s,激光强度为10 mW.分别对不同长径比金纳米棒和对巯基苯胺的混合样品进行检测,研究探针分子对巯基苯胺的出峰位置和强度,分析和比较不同长径比金纳米棒的SERS活性.采用种子生长法,AgNO3作为生长诱导剂,Ag+引导金种子纵向生长,通过单一调控不同AgNO3浓度,最终制备出不同长径比金纳米棒.表1为不同AgNO3用量制备出不同长径比的金纳米棒.由表1中数据可知,随着AgNO3用量的增加,金纳米棒长径比增大,纵向吸收峰波长也增大.将表1中不同长径比金纳米棒样品,采用紫外-可见分光光度计进行表征.图1分别表示长径比为2.1~4.0两个紫外(ultraviolet,UV)特征吸收峰,530 nm左右的吸收峰为TSPR吸收峰,620、690、740、790、830 nm分别为2.1、2.8、3.2、3.8、4.0长径比金纳米棒的LSPR吸收峰.因此通过单一调控AgNO3的用量,即可达到对LSPR吸收波长在600~900 nm范围变化的金纳米棒.图2所示为两个长径比为2.1和3.8金纳米棒的透射电镜图(transmission electron microscopy,TEM),由TEM可见,金纳米棒的长度范围为62~90 nm,并随长径比的增加而递增.图3为长径比为3.8金纳米棒的扫描电镜图(scanning electron microscope,SEM),从图3可以看出,制备出的金纳米棒的分散性较好且形貌均一.图4所示为金纳米棒的生长机制示意图.CTAB作为一种表面活性剂,当NaBH4还原[AuCl4]-为纳米金晶种时,金种子被CTAB包覆,抑制金纳米颗粒团聚.CTAB选择性吸附在晶种的晶面上[11],从而抑制金纳米棒向其他方向生长,而只允许其在金纳米棒的末端生长.CTAB 分子倾向于用头部吸附于金棒的侧面,而其尾部则通过范德华力与其他CTAB 分子作用,尾巴越长,双分子层越稳定,金纳米棒就越稳定.这种生长方式就像“拉链”一样,利用CTAB形成的双分子层来稳定金纳米棒的生长从而得到更长的金纳米棒.但是停止生长并不是由CTAB决定,因此对于AgNO3的诱导作用就非常重要.通过调控AgNO3的用量可知,Ag+的存在对于棒的形成十分重要,银离子的浓度与棒的长径比、尺寸大小及单分散性具有密切关系.在无Ag+离子辅助条件下合成的金纳米棒具有五重孪晶结构[12],而用Ag+离子辅助条件下合成的金纳米棒具有单晶结构.图4也显示金纳米棒的{100}和{110}方向指向棒的拐角而不是棒的侧面,开始生长时表面曲率越大,电位梯度越大,生长速率快,一旦种子长到一定的尺寸,孪晶层积缺陷便会产生,以降低体系的表面能,达到生长饱和,从而完成金纳米棒生长.通过图5拉曼光谱图分析,从下往上分别为Au和长径比为2.1、2.8、3.2、4.0、3.8的拉曼谱图,强度依次增加,可见不同长径比金纳米棒对探针分子对巯基苯胺都有一定的增强效果,其SERS基底增强因子公式可表示为:式中:ISERS/Ibulk分别代表其增强拉曼光谱与无增强材料的拉曼光谱,Nbulk/Nsurf为溶液分子数与吸附的分子数.通过对金纳米棒长径比为3.8且拉曼位移在1 082 cm-1的拉曼光谱强度计算表明,其增强因子可达到3.2×107.因此,金纳米棒作为拉曼增强基底具有非常好的SERS活性.同时长径比为3.8(吸收波长为790 nm)的金纳米棒增强效果比其他长径比金纳米棒具有更强的SERS 效果,这主要由于吸收波长与拉曼光谱仪激发波长785 nm达到良好的匹配,从而实现激发波长与LSPR共振效应,该研究结果为不同长径比金纳米棒的SERS活性研究提供了重要的理论基础.本文通过单一调控AgNO3的浓度制备出分散性好、长径比为2.1~4.0、LSPR吸收波长为600~900 nm的金纳米棒.探讨出CTAB利用双分子层控制金纳米棒的横向生长,AgNO3的银离子辅助生成单晶金纳米棒,控制金纳米棒的长径比、尺寸大小及单分散性.同时运用拉曼光谱对不同长径比金纳米棒的SERS活性进行研究,实现激发波长与LSPR吸收峰的共振效应,为不同长径比金纳米棒的SERS活性研究提供了重要的理论基础.【相关文献】[1] 柯善林,阚彩侠,莫博,等.金纳米棒的光学性质研究进展[J].物理化学学报,2012,28(6):1275-1290.[2] 刘津升.基于金纳米棒结构的合成及其等离激元特性研究[D].南京:南京航空航天大学,2015.[3] PÉREZ-JUSTE J,PASTORIZA-SANTOS I,LIZ-MARZN L M,et al.Goldnanorods:Synthesis,characterization and applications[J].Coordination Chemistry Reviews,2005,249(17):1870-1901.[4] VON MALTZAHN G,CENTRONE A,PARK J H,et al.SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating[J].Advanced Materials,2009,21(31):3175-3180.[5] SU X,WANG Y,WANG W,et al.Phospholipid encapsulated AuNR@Ag/Au nanosphere SERS tags with environmental stimulus responsive signal property[J].Acs Applied Materials &Interfaces,2016,8(16):10201-10211.[6] 麻鹏,肖湘云,聂立波.金纳米棒的制备与影响因素研究[J].湖南工业大学学报,2014,28(4):18-21.[7] JANA N R,GEARHEART L,MURPHY C J.Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J].Advanced Materials,2001,13(18):1389.[8] 高倩,钱勇,夏炎,等.一种制备高长径比金纳米棒的新方法[J].化学学报,2011,69(14):1617-1621.[9] HAISS W,THANH N T,AVEYARD J,et al.Determination of size and concentration of gold nanoparticles from UV-vis spectra[J].Analytical Chemistry,2007,79(11):4215-4221.[10] ORENDORFF C J,MURPHY C J.Quantitation of metal content in the silver-assisted growth of gold nanorods[J].The Journal of Physical Chemistry B,2006,110(9):3990-3994. [11] CAO J,SUN T,GRATTAN K T V.Gold nanorod-based localized surface plasmon resonance biosensors:A review[J].Sensors and Actuators B:Chemical,2014,195:332-351. [12] 鲁闻生,王海飞,张建平,等.金纳米棒的制备、生长机理及纯化[J].化学进展,2015,27(7):785-793.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Identify applicable sponsor/s here. (sponsors)
978-1-4673-0803-8/12/$31.00 ©2012 IEEE
550
which stayed in exploration and finding stage. Literature [18] introduces an analysis method of AD to unify AD strategies of literatures [9] and [10], and providing a good research idea. Unfortunately, the literature [18] only fixes feedback variable on the state of filter capacitor, thus limiting the breadth of the paper, so the novel AD structure was not discovered.
active damping (AD) is repeatedly reported in some literature [9-15], but the LCL filter with AD and grid-side inductor current control is very rare in practical applications. Therefore, in order to popularize LCL filter with AD in the large-scale applications, there is still a long way to go.
Synthesis of Active Damping for Grid-Connected Inverters with an LCL filter
Huafeng Xiao, Xiaohui Qu
School of Electrical Engineering , China Xiaohf@
I. INTRODUCTION
Voltage source inverter is an important interface with the grid for renewable energy, which is widely installed in distributed generation systems [1] (such as photovoltaic power generation systems, direct-drive wind power generation system, fuel cell system, etc.), AC micro-grid [2], and DC micro-grid [3], et al.
In order to reduce and limit their impact on the grid quality, international standards such as IEEE Std 929-2000, UL1741, etc., do a strict specification limits [4, 5], including total harmonic content and single harmonic content. Considering the realization technology of grid-connected inverter, the switching frequency harmonic current suppression is the most difficult targets, involving in-grid filter selection. In-grid filter structure has two kinds of topologies: L, LC, and LCL, and their filtering performance and control features are discussed in the literature [6]. At present, the L-filter is commonly used in the small power grid-connected inverter; the LC-type filter or LCL type filter with a damping resistor are used in middle and high power grid-connected inverter [7]; Although the LCL filter with
Shaojun Xie, Jinming Xu
College of Automation Engineering Nanjing University of Aeronautics and Astronautics
Nanjing, China
Abstract—LCL filter characterized with high harmonic current attenuating performance and low cost are suitable for medium and high power grid-connected inverters. But, the resonance poles endanger the safety of operation, and the active damping (AD) is an effective means to increase the system security. This paper focus on the theoretical exercise of possible strategies to damp the resonance of grid-connected inverter with LCL-filter, the systematical synthesis method for AD is presented, and a unified analytical model for AD is proposed. The AD structures are listed based on single-state variable and single-compensator, and the effective AD strategies are distinguished by root locus. And then, the published AD approaches can be involved in derived AD structures, and the novel AD approach is successfully proposed. The characteristics and performance of the proposed AD approach is analyzed, and its validity is verified by experiment results to demonstrate the success of the theoretical exercise of active damping strategies.
Compared to the L-type filter, LCL type filter bring one pair of resonance poles into the grid-connected inverter system, its damping factor as zero and the oscillation frequency is higher. Obviously, the pair of resonance poles will hurt grid-connected inverter control system stability [17]. AD is the idea that through increasing conjugate zeros to cancel the conjugate poles or adding an independent zero to attract the conjugate poles to stable region with a certain safety margin [14]. Considering the roles of damping resistance in system transfer function of the LCL-type gridconnected inverter, the actual resistance can be transferred to the controller by signal flow graph transform [8]. Further, the concept “virtual resistor” and four kinds of virtual resistor implementations are proposed by Dahono [8]. Another way to increase the system damping is by increasing the filter state variable feedback. An AD approach is proposed by using lead - lag module of capacitor voltage feedback of the LCL filter [9]; Literature [10] proposes an AD approach with proportional feedback of the filter capacitor current; In literature [11], the partial feedback of grid-side inductor current and capacitor current downs the third-order LCL to first-order L, the resonance poles are cancelled in theory; The simplified first-order system is also achieved by feedback converter-side inductor current with the admittance compensator plus quasi - resonance proportion controller [12]; The AD is achieved through feedback converter-side inductor voltage with integral module in literature [13]; In above described ways, the sensor is generally required, the literatures [14] and [15] study the sensorless algorithm of AD to reduce system cost and improve reliability.