2016邯郸市初中一模数学试题
河北省2016届中考数学模拟试卷(一)含答案解析
2016年河北省中考数学模拟试卷(一)一、选择题:本大题共16题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算4﹣(﹣4)0的结果是()A.0 B.2 C.3 D.42.下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣103.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF 的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.104.下列说法中,不正确的是()A.5是25的算术平方根B.m2n与mn2是同类项C.多项式﹣3a3b+7ab+1的次数是4D.﹣8的立方根为﹣25.已知不等式组,则该不等式组的解集(阴影部分)在数轴上表示正确的是()A.B.C.D.6.如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′C.AB=A′B′D.OA=OA′7.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A.150πcm2B.200πcm2C.300πcm2D.400πcm28.将抛物线y=x2先向右平移2个单位长度,再向上平移4个单位长度,得到的新的抛物线的解析式为()A.y=(x+2)2+4 B.y=(x+2)2﹣4 C.y=(x﹣2)2+4 D.y=(x﹣2)2﹣49.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A.B.C.D.10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π11.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N 两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°12.如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0) B.(0,1) C.(1,﹣1)D.(1,0)13.若关于x的一元二次方程kx2﹣4x+2=0有实数根,则k的非负整数值为()A.1 B.0,1 C.1,2 D.0,1,214.如图,在△ABC中,∠ABC>90°,∠C=30°,BC=12,P是BC上的一个动点,过点P作PD⊥AC 于点D,设CP=x,△CDP的面积为y,则y与x之间的函数图象大致为()A.B.C.D.15.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM 即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确16.如图,四边形OABC是菱形,对角线OB在x轴负半轴上,位于第二象限的点A和第三象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作y轴的垂线,垂足分别为E和F.下列结论:①|k1|=|k2|;②AE=CF;③若四边形OABC是正方形,则∠EAO=45°.其中正确的有()A.0个B.1个C.2个D.3个二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.17.分解因式:x3﹣2x2y+xy2=.18.若x=﹣2,则代数式x2+1的值为.19.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为.20.如图,在矩形ABCD中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF、FG、AE三边的中点,得到三角形①;连接矩形GMCH对边的中点,又得到四个矩形,顺次连接GQ、QP、GN三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.22.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.24.为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是班;(2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.25.2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?26.四边形ABCD是⊙O的内接正方形,AD=8,EB、EC是⊙O的两条,切点分别为B、C,P是边AB上的动点,连接DP.(1)如图1,当点P与点B重合时,连接OC.①求∠E的度数;②求CE的长度;(2)如图2,当点P在AB上,且AP<AB时,过点P作FP⊥DP于点P,交BE于点F,连接DF.①试判断DP与FP之间的数量关系,并说明理由;②若,求DP的长度.2016年河北省中考数学模拟试卷(一)参考答案与试题解析一、选择题:本大题共16题,1-10小题,每小题3分,11-16小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算4﹣(﹣4)0的结果是()A.0 B.2 C.3 D.4【考点】零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:原式=4﹣1=3,故选:C.【点评】本题考查了零指数幂,利用非零的零次幂等于1得出(﹣4)0=1是解题关键.2.下列各数中,最小的数是()A.1 B.﹣|﹣2| C.D.2×10﹣10【考点】实数大小比较.【分析】根据绝对值、算术平方根、负整数指数幂的性质判断各数的符号,根据正实数大于一切负实数解答即可.【解答】解:∵1、、2×10﹣10都是正数,﹣|﹣2|是负数,∴最小的数是﹣|﹣2|.故选:B.【点评】本题考查的是实数的大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.3.如图,已知直线a∥b,点A、B、C在直线a上,点D、E、F在直线b上,AB=EF=2,若△CEF 的面积为5,则△ABD的面积为()A.2 B.4 C.5 D.10【考点】平行线之间的距离;三角形的面积.【分析】△CEF与△ABD是等底等高的两个三角形,它们的面积相等.【解答】解:∵直线a∥b,点A、B、C在直线a上,∴点D到直线a的距离与点C到直线B的距离相等.又∵AB=EF=2,∴△CEF与△ABD是等底等高的两个三角形,∴S△ABD=S△CEF=5,故选:C.【点评】本题考查了平行线间的距离和三角形的面积.注意:平行线间的距离处处相等.4.下列说法中,不正确的是()A.5是25的算术平方根B.m2n与mn2是同类项C.多项式﹣3a3b+7ab+1的次数是4D.﹣8的立方根为﹣2【考点】算术平方根;立方根;同类项;多项式.【分析】分别利用算术平方根以及多项式的次数、同类项的定义、立方根的定义分别分析得出答案.【解答】解:A、5是25的算术平方根,正确,不合题意;B、m2n与mn2不是同类项,故此选项错误,符合题意;C、多项式﹣3a3b+7ab+1的次数是4,正确,不合题意;D、﹣8的立方根为﹣2,正确,不合题意.故选:B.【点评】此题主要考查了算术平方根以及多项式的次数、同类项的定义、立方根的定义等知识,正确掌握相关定义是解题关键.5.已知不等式组,则该不等式组的解集(阴影部分)在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:由x+2>1,得x>﹣1,由x+3≤5,得x≤2,不等式组的解集为﹣1<x≤2,故选:D.【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.如图,已知△ABC与△A′B′C′关于点O成中心对称图形,则下列判断不正确的是()A.∠ABC=∠A′B′C′B.∠BOC=∠B′A′C′C.AB=A′B′D.OA=OA′【考点】中心对称.【分析】根据中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,来求解可得即可.【解答】解:因为△ABC与△A′B′C′关于点O成中心对称图形,所以可得∠ABC=∠A′B′C′,AB=A′B′,OA=OA',故选B.【点评】本题主要考查了中心对称的定义,解题的关键是熟记中心对称的定义.也可用三角形全等来求解.7.某商品的外包装盒的三视图如图所示,则这个包装盒的侧面积为()A.150πcm2B.200πcm2C.300πcm2D.400πcm2【考点】由三视图判断几何体.【分析】首先根据商品的外包装盒的三视图确定几何体的形状是圆柱,然后根据圆柱的侧面积=底面周长×高,求出这个包装盒的侧面积即可.【解答】解:根据图示,可得商品的外包装盒是底面直径是10cm,高是15cm的圆柱,则这个包装盒的侧面积为:10π×15=150π(cm2);故选:A.【点评】此题主要考查了由三视图判断几何体,关键是分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.8.将抛物线y=x2先向右平移2个单位长度,再向上平移4个单位长度,得到的新的抛物线的解析式为()A.y=(x+2)2+4 B.y=(x+2)2﹣4 C.y=(x﹣2)2+4 D.y=(x﹣2)2﹣4【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=x2先向右平移2个单位长度,得:y=(x﹣2)2;再向上平移4个单位长度,得:y=(x﹣2)2+4.故选C.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.9.如图是小鹏自己制作的正方形飞镖盘,并在盘内画了两个小正方形,则小鹏在投掷飞镖时,飞镖扎在阴影部分的概率为()A.B.C.D.【考点】几何概率.【分析】先求出阴影部分的面积占整个大正方形面积的,再根据概率公式即可得出答案.【解答】解:∵阴影部分的面积占总面积的,∴飞镖落在阴影部分的概率为;故选A.【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比;关键是求出阴影部分的面积.10.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为()A.2πB.4πC.5πD.6π【考点】弧长的计算;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠ADC=60°,∴∠AOC=2∠ADC=120°,则劣弧AC的长为:=4π.故选:B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式l=.11.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N 两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°【考点】勾股定理的逆定理;方向角.【专题】应用题.【分析】求出OM2+ON2=MN2,根据勾股定理的逆定理得出∠MON=90°,根据平角定义求出即可.【解答】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°,故选C.【点评】本题考查了勾股定理的逆定理的应用,能根据勾股定理的逆定理求出∠MON=90°是解此题的关键.12.如图,已知△ABC在平面直角坐标系中,点A的坐标为(0,3),若以点B为位似中心,在平面直角坐标系内画出△A′BC′,使得△A′BC′与△ABC位似,且相似比为2:1,则点C′的坐标为()A.(0,0) B.(0,1) C.(1,﹣1)D.(1,0)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质结合位似比得出△BA′C′,进而得出C′点坐标.【解答】解:如图所示:△A′BC′与△ABC位似,相似比为2:1,点C′的坐标为:(1,0).故选:D.【点评】此题主要考查了位似变换以及坐标与图形的性质,正确得出对应点位置是解题关键.13.若关于x的一元二次方程kx2﹣4x+2=0有实数根,则k的非负整数值为()A.1 B.0,1 C.1,2 D.0,1,2【考点】根的判别式;一元二次方程的定义.【分析】根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集得到k的范围,即可确定出k的非负整数值.【解答】解:根据题意得:△=16﹣8k≥0,且k≠0,解得:k≤2且k≠0,则k的非负整数值为1或2.故选:C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.如图,在△ABC中,∠ABC>90°,∠C=30°,BC=12,P是BC上的一个动点,过点P作PD⊥AC 于点D,设CP=x,△CDP的面积为y,则y与x之间的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】由含30°角的直角三角形的性质得出PD=PC=x,求出CD=PD=x,由三角形的面积公式得出y=x2(0<x≤12),由二次函数的图象和自变量的取值范围即可得出结果.【解答】解:∵PD⊥AC,∴∠CDP=90°,∵∠C=30°,∴PD=PC=x,∴CD=PD=x,∴△CDP的面积y=PD•CD=×x×x=x2,x的取值范围为:0<x≤12,即y=x2(0<x≤12),∵>0,∴二次函数图形的开口向上,顶点为(0,0),图象在第一象限.故选:A.【点评】本题考查动点问题的函数图象、含30°角的直角三角形的性质、三角形面积的计算、二次函数的图象;求出y是x的二次函数是解决问题的突破口.15.张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM 即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求,对于两人的作法,下列判断正确的是()A.小平的作法正确,张萌的作法不正确B.两人的作法都不正确C.张萌的作法正确,小平的作法不正确D.两人的作法都正确【考点】翻折变换(折叠问题).【分析】在图1中,由BM=2BF推出∠BMF=30°,所以∠MBF=60°,再根据等边三角形的判定方法即可证明.在图2中,证明方法类似.【解答】解:图1中,∵四边形ABCD是正方形,∴AB=AD=BC∵AE=ED=BF=FC,AB=BM,∴BM=2BF,∵∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC,∴△MBC是等边三角形,∴张萌的作法正确.在图2中,∵BM=BC=2BF,∠MFB=90°,∴∠BMF=30°,∴∠MBF=90°﹣∠BMF=60°,∵MB=MC∴△MBC是等边三角形,∴小平的作法正确.故选D.【点评】本题考查正方形的性质、翻折不变性、直角三角形的性质,解题的关键是在一个直角三角形中如果斜边是直角边的两倍那么这条直角边所对的锐角是30度.16.如图,四边形OABC是菱形,对角线OB在x轴负半轴上,位于第二象限的点A和第三象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作y轴的垂线,垂足分别为E和F.下列结论:①|k1|=|k2|;②AE=CF;③若四边形OABC是正方形,则∠EAO=45°.其中正确的有()A.0个B.1个C.2个D.3个【考点】反比例函数综合题.【分析】连接AC交OB于D,由菱形的性质得出AC⊥OB,AD=CD,BD=OD,得出△AOD的面积=△COD的面积,由三角形的面积与k的关系即可得出①正确;证出四边形ADOE是矩形,得出AE=DO,同理:CF=DO,得出AE=CF,②正确;若四边形OABC是正方形,则∠AOB=45°,得出∠AOE=45°,求出∠EAO=45°,③正确;即可得出结论.【解答】解:连接AC交OB于D,如图所示:∵四边形OABC是菱形,∴AC⊥OB,AD=CD,BD=OD,∴△AOD的面积=△COD的面积,∵△AOD的面积=|k1|,△COD的面积=|k2|,∴|k1|=|k2|,①正确;∵AE⊥y轴,AC⊥BD,∴∠AEO=∠ADO=90°,∵∠DOE=90°,∴四边形ADOE是矩形,∴AE=DO,同理:CF=DO,∴AE=CF,②正确;若四边形OABC是正方形,则∠AOB=45°,∴∠AOE=90°﹣45°=45°,∵∠AEO=90°,∴∠EAO=45°,③正确;正确的有3个,故选:D.【点评】本题是反比例函数的综合题,考查了反比例函数的图象、反比例函数k的几何意义、菱形的性质、矩形的判定与性质以及正方形的性质;熟练掌握菱形的对角线互相垂直平分的性质是解题的关键.二、填空题:本大题共4个小题,每小题3分,共12分,把答案写在题中横线上.17.分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【考点】提公因式法与公式法的综合运用.【专题】常规题型.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.若x=﹣2,则代数式x2+1的值为10﹣4.【考点】二次根式的化简求值.【分析】把x的值代入所求的代数式进行化简求值即可.【解答】解:把x=﹣2代入x2+1,得(﹣2)2+1=()2﹣4+4+1=10﹣4.故答案是:10﹣4.【点评】本题考查了二次根式的化简求值.解题的关键是数学完全平方差公式.19.如图,鹏鹏从点P出发,沿直线前进10米后向右转α,接着沿直线前进10米,再向右转α,…,照这样走下去,他第一次回到出发地点P时,一共走了100米,则α的度数为36°.【考点】多边形内角与外角.【分析】第一次回到出发点A时,所经过的路线正好构成一个的正多边形,用100÷10=10,求得边数,再根据多边形的外角和为360°,即可求解.【解答】解:∵第一次回到出发点A时,所经过的路线正好构成一个的正多边形,∴正多边形的边数为:100÷10=10,根据多边形的外角和为360°,∴则他每次转动的角度为:360°÷10=36°,故答案为:36°.【点评】本题考查了多边形的内角与外角,解决本题的关键是明确第一次回到出发点A时,所经过的路线正好构成一个正多边形.20.如图,在矩形ABCD中,AD=4,AB=2,连接其对边中点,得到四个矩形,顺次连接AF、FG、AE三边的中点,得到三角形①;连接矩形GMCH对边的中点,又得到四个矩形,顺次连接GQ、QP、GN三边的中点,得到三角形②;…;如此操作下去,得到三角形,则三角形的面积为.【考点】矩形的性质.【专题】规律型.【分析】根据矩形的性质和三角形的面积公式求出三角形①、②、③的面积,得出规律写出第n 个三角形的面积.【解答】解:∵矩形ABCD的长AD=4,宽AB=2,∴AF=2,AE=1,=×2×=;则S三角形①S=×1×=;三角形②=××=;S三角形③…=,∴S三角形n故答案为:.【点评】本题考查的是矩形的性质,掌握三角形的面积公式、通过计算找出规律是解题的关键.三、解答题:本大题共6个小题,共66分,解答应写出文字说明、证明过程或演算步骤.21.请你根据王老师所给的内容,完成下列各小题.(1)如果x=﹣5,2◎4=﹣18,求y的值;(2)若1◎1=8,4◎2=20,求x、y的值.【考点】解二元一次方程组;解一元一次方程.【专题】新定义;一次方程(组)及应用.【分析】(1)已知等式根据题中的新定义化简,将x的值代入即可求出y的值;(2)已知等式利用题中的新定义化简组成方程组,求出方程组的解即可得到x与y的值.【解答】解:(1)根据题意得:2◎4=2x+4y=﹣18,把x=﹣5代入得:﹣10+4y=﹣18,解得:y=﹣2;(2)根据题意得:,②﹣①得:x=2,把x=2代入得:y=6.【点评】此题考查了解二元一次方程组,弄清题中的新定义是解本题的关键.22.如图,已知AD∥BC,按要求完成下列各小题(保留作图痕迹,不要求写作法).(1)用直尺和圆规作出∠BAD的平分线AP,交BC于点P.(2)在(1)的基础上,若∠APB=55°,求∠B的度数.(3)在(1)的基础上,E是AP的中点,连接BE并延长,交AD于点F,连接PF.求证:四边形ABPF是菱形.【考点】作图—复杂作图;菱形的判定.【专题】作图题;证明题.【分析】(1)利用基本作图(作已知角的平分线)作AP平分∠DAB;(2)先利用平行线的性质得∠DAP=∠APB=55°,再利用角平分线定义得∠BAP=∠DAP=55°,然后根据三角形内角和计算∠ABP的度数;(2)先由∠BAP=∠APB得到BA=BP,再判断△ABF为等腰三角形得到AB=AF,所以AF=BP,则可判断四边形ABPF是平行四边形,然后加上AB=BP可判断四边形ABPF是菱形.【解答】(1)解:如图,AP为所作;(2)解:∵AD∥BC,∴∠DAP=∠APB=55°,∵AP平分∠DAB,∴∠BAP=∠DAP=55°,∴∠ABP=180°﹣55°﹣55°=70°;(2)证明:∵∠BAP=∠APB,∴BA=BP,∵BE=FE,AE平分∠BAF,∴△ABF为等腰三角形,∴AB=AF,∴AF=BP,而AF∥BP,∴四边形ABPF是平行四边形,∵AB=BP,∴四边形ABPF是菱形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.23.如图,直线l1在平面直角坐标系中,直线l1与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C恰好也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)若将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,请你判断点D是否在直线l1上;(3)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】一次函数图象与几何变换.【分析】(1)根据平移的性质得到点C的坐标;把点B、C的坐标代入直线方程y=kx+b(k≠0)来求该直线方程;(2)根据平移的性质得到点D的坐标,然后将其代入(1)中的函数解析式进行验证即可;(3)根据点B的坐标求得直线l2的解析式,据此求得相关线段的长度,并利用三角形的面积公式进行解答.【解答】解:(1)∵B(﹣3,3),将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,∴﹣3+1=﹣2,3﹣2=1,∴C的坐标为(﹣2,1),设直线l1的解析式为y=kx+c,∵点B、C在直线l1上,∴代入得:解得:k=﹣2,c=﹣3,∴直线l1的解析式为y=﹣2x﹣3;(2)∵将点C先向左平移3个单位长度,再向上平移6个单位长度得到点D,C(﹣2,1),∴﹣2﹣3=﹣5,1+6=7,∴D的坐标为(﹣5,7),代入y=﹣2x﹣3时,左边=右边,即点D在直线l1上;(3)把B的坐标代入y=x+b得:3=﹣3+b,解得:b=6,∴y=x+6,∴E的坐标为(0,6),∵直线y=﹣2x﹣3与y轴交于A点,∴A的坐标为(0,﹣3),∴AE=6+3=9,∵B(﹣3,3),∴△ABE的面积为×9×|﹣3|=13.5.【点评】本题考查了用待定系数法求一次函数的解析式,平移的性质,一次函数图象上点的坐标特征,三角形的面积的应用,能理解每个点的求法是解此题的关键.24.为普及消防安全知识,预防和减少各类火灾事故的发生,2015年11月,河北内丘中学邀请邢台市安全防火中心的相关人员,为全校教师举行了一场以“珍爱生命,远离火灾”为主题的消防安全知识讲座.在该知识讲座结束后,王老师组织了一场消防安全知识竞赛活动,其中九年级有七个班参赛.在竞赛结束后,王老师对九年级的获奖人数进行统计,得到每班平均有10人获奖,王老师将每班获奖人数绘制成如图所示的不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出九年级获奖人数最多的班级是(3)班;(2)求九年级七个班的获奖人数的这组数据的中位数;(3)若八年级参赛的总人数比九年级的多50名,获奖总人数比九年级多10名,但八年级和九年级获奖人数的百分比相同,求八年级参加竞赛的总人数.【考点】折线统计图;中位数.【分析】(1)先求出九年级有七个班的获奖人数,减去给出的6个班的获奖人数,可得(3)班获奖人数,依此将折线统计图补充完整,再比较大小可得九年级获奖人数最多的班级;(2)根据中位数的定义求出九年级七个班的获奖人数的这组数据的中位数;(3)设八年级参加竞赛的总人数为x人,根据等量关系:八年级和九年级获奖人数的百分比相同,列出方程求解即可.【解答】解:(1)10×8﹣(8+11+6+9+12+10)=80﹣66=14(人),如图所示:故九年级获奖人数最多的班级是(3)班;故答案为:(3)(2)从小到大排列为6,8,9,10,11,12,14,正中间的数是10,九年级七个班的获奖人数的这组数据的中位数是10;(3)设八年级参加竞赛的总人数为x人,依题意有=,解得x=400,经检验x=400是原分式方程的解.故八年级参加竞赛的总人数为400人.【点评】本题考查的折线统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,用到的知识点是中位数的定义.25.2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB、折线CDB分别表示葵花籽每千克的加工成本y1(元)、销售价y2(元)与产量x(kg)之间的函数关系;(1)请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0<x≤90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?。
2016年河北省邯郸市中考一模各科试题
2016年邯郸市初中毕业生模拟考试(一)理科综合参考答案及评分标准一、选择题(本大题共22个小题,共47分;)二、填空及简答题(本大题共9个小题,34 分)23.(1)流体中流速大的位置压强小(2)飞机在上升过程中能量是如何转化的?内能转化成机械能。
其他正确答案参照给分。
24.图略 增大25.汽化(或蒸发) 凝华 减小26.金属外壳 电能表的标定电流为3A(其他正确答案参照给分) 1kW 27. 不可再生 CH 4+2O2 CO 2+2H 2O 聚变28.(1)2H 2O 2 2H 2O +O 2↑(2)温度没有达到着火点或氧气浓度不够 (3)铁丝燃烧消耗了瓶中的氧气,同时放出大量的热,使气体逸出,冷却后瓶内压强小于外界大气压 29.(1)燃烧,乳化 (2)温度 (3)吸附 (4)涂油 30.(1)氧气 1:2 (2)引流 (3)偏右 是 31.(1)H 2O 高炉炼铁(2)CO 2 Na 2CO 3+Ca(OH)2=CaCO 3↓+2NaOH(其他合理答案也可) 三、实验探究题(本大题共4个小题,共22分)32.(1)匀速直线 二力平衡 (2)①B ②D 33.(1)杠杆平衡条件 3F 1 (2) 水能完全浸没金属块但又没有水溢出 变小 3F 1-3F 2 (3) F 1ρ水/ (F 1−F 2) 34.(1)图略 (2)断开 B (3)A 1.52 (4)不成 灯丝电阻随温度的升高而增大 35. [实验探究1] 氢气 检验纯度[猜想与假设] CuO[实验验证] 稀硫酸或稀盐酸 固体全部溶解形成蓝色溶液 [实验结论] 2NaOH + CuSO 4 = Na 2SO 4 + Cu(OH)2↓[反思与交流] 钠和水反应放热,使氢氧化铜分解,产生氧化铜。
四、计算应用题(本大题共3个小题,共18分。
) 36.解:(1)用这瓶浓盐酸来配制100g 溶质质量分数为7.3%的稀盐酸,需量取这种浓盐酸的质量是=20g ;(2)设 参加反应的碳酸钙的质量为xCaCO 3 + 2HCl = CaCl 2 + H 2O + CO 2↑100 44gx3.344100 MnO 2点燃x 3.3 g x = 7.5gCaCO 3 + 2HCl = CaCl 2 + H 2O + CO 2↑100 73%3.7g 7573100⨯=x x 75g×7.3% x = 7.5g答:该石灰石中碳酸钙的质量为7.5g ; 物23由于重物始终匀速上升,所以在第一阶段中,重物在水中上升的高度为:h 1=υt 1=0.05m/s×40s=2m ...........................................(1分)38. 解:(1)保温状态.......................................................(1分)(2)设加热所需时间为t :热胆内水的质量:m =ρV =1.0×103kg/m 3×2×10﹣3m 3=2kg ................(1分) 由题意得,ηW =Q 吸 即ηPt =cm (t 2﹣t 1)则t =P t t cm η)(12-s 7351000W80%C 20-C (90kg 2C kg J/102.43=⨯︒︒⨯⨯︒∙⨯=))(......(2分)(3)当开关闭合时,R 1被短路,此时处于加热状态,由P =UI =RU 2得,R 2===48.4Ω.................................(1分)S 1断开时,饮水机处于保温状态,两电阻串联,由P =UI =RU 2得,R 总===1210Ω..............................(1分)则R 1=R 总﹣R 2=1210Ω﹣48.4Ω=1161.6Ω.......................(1分)。
邯郸市初三中考数学第一次模拟试题【含答案】
邯郸市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=.12.(3分)不等式组的解集是.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S S;比较3月份与5月份,月份的更稳定.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.【分析】根据:a0=1(a≠0)可得结论.【解答】解:20=1,故选:B.【点评】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a6【分析】直接利用完全平方公式以及积的乘方运算法则分别判断得出答案.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点评】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±1【分析】直接利用分式的值为零则分子为零,分母不等于零,进而得出答案.【解答】解:∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.5.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=6【分析】根据一元一次方程的解法即可求出答案.【解答】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点评】本题考查一元一次方程,解题的关键是熟练运用分式的运算法则,本题属于基础题型.6.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【解答】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点评】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.【分析】根据四边形CDEF是正方形,即可得出CD==2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【解答】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD==2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC==,故选:C.【点评】本题主要考查了折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(3分)如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A.△AOB∽△CODB.∠AOB=∠ACBC.四边形BDCE是平行四边形D.S△AOD=S△BOC【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【解答】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点评】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.9.(3分)在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A.B.C.D.【分析】具体折一折,从中发挥想象力,可得正确的答案.【解答】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点评】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.(3分)k≠0,函数y=kx﹣k与y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当k>0时,y=kx﹣k过一、三、四象限;y=过一、三象限;②当k<0时,y=kx﹣k过一、二、四象象限;y=过二、四象限.观察图形可知,只有A选项符合题意.故选:A.【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)计算:6ab2÷3ab=2b.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2b,故答案为:2b【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(3分)不等式组的解集是x>0.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式﹣x<0得x>0,解不等式3x+5>0得x>﹣,所以不等式组的解集为x>0,故答案为:x>0.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(3分)如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=15.【分析】根据平行线分线段成比例解答即可.【解答】解:∵AE∥BD,CD=20,CE=36,AC=27,∴,即,解得:BC=15,故答案为:15【点评】此题考查平行线分线段成比例,关键是根据平行线分线段成比例解答.14.(3分)某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是0.28.【分析】直接利用5各小组的频率之和为1,进而得出答案.【解答】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点评】此题主要考查了频率的意义,正确得出第4组和第5组的频率和是解题关键.15.(3分)一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了19道题.【分析】设他做对了x道题,则小英做错了(25﹣x)道题,根据总得分=4×做对的题数﹣1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.【点评】本题考查了一元一次方程的应用,根据总得分=4×做对的题数﹣1×做错的题数列出关于x的一元一次方程是解题的关键.16.(3分)如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F是AC上一动点,则EF+BF的最小值是2.【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【解答】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=BE=1,AH=AB=2,∴BG=,BH=2,GH=,∴DH=2,DG=3,∴Rt△DEG中,DE===2,故答案为:2.【点评】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)计算:2sin30°﹣(﹣)﹣1﹣.【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣(﹣2)﹣6=1+2﹣6=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(9分)如图,在▱ABCD中,点E,F分别在BC,AD上,且DF=BE.求证:四边形AECF是平行四边形.【分析】在▱ABCD中,AD=BC,又BE=DF,可得AF=EC,得出AF平行且等于EC,根据平行四边形的判定,可得出四边形AECF是平行四边形.【解答】证明:∵四边形ABCD平行四边形∴AD=BC.又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.【点评】此题主要要掌握平行四边形的判定与性质;熟练掌握平行四边形的判定与性质是解决问题的关键.19.(10分)已知a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,求﹣的值.【分析】利用平方差公式可将原式化简成a+b,再根据方程的系数结合根的判别式可得出a+b=5,此题得解.【解答】解:﹣=,=,=a+b.∵a、b(a>b)是方程x2﹣5x+4=0的两个不相等的实数根,∴a+b=5,∴原式=a+b=5.【点评】本题考查了根与系数的关系以及平方差公式,利用平方差公式将原式化简成a+b是解题的关键.20.(10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是3℃;(3)图③是5月份的折线统计图.用S表示5月份的方差;用S表示3月份的方差,比较大小:S<S;比较3月份与5月份,3月份的更稳定.【分析】(1)最低气温14℃的有3天,据此补充频数分布直方图;(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃);(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定.【解答】解:(1)最低气温14℃的有3天,所以补充频数分布直方图如下:(2)3月13日与10日这两天的最低气温之差是15﹣12=3(℃),故答案为3;(3)根据折线统计图分布,可知3月份最低气温波动比3月份最低气温波动小,所以所以S32<S,3月份更稳定,故但为<,3.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.(12分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)【分析】(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【解答】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=240,∴w=﹣6t+240.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+240;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.(12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是小路,小东同学进行如下测量:D点在A点的正北方向,B 点在A点的北偏东60°方向,C点在B点的北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(结果保留根号)【分析】过点B作BF⊥AD、BE⊥CD,垂足分别为E、F,已知AD=AF+FD,则分别求得AF、DF的长即可求得AD的长.【解答】解:过点B作BF⊥AD、BE⊥CD,垂足分别为E、F.在Rt△ABF中,∵∠F AB=60°,AB=20,∴AF=AB cos∠F AB=20×=10.在Rt△BCE中,∵∠EBC=45°,BC=40,∴BE=BC cos∠EBC=40×=20.在矩形BEDF中,FD=BE=20,∴AD=AF+FD=10+20.答:AD的长为(10+20)米.【点评】本题考查了解直角三角形的应用﹣方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.(12分)如图,⊙O的半径为5,点A在⊙O上,过点A的直线l与⊙O相交于点B,AB=6,以直线l为图象的一次函数解析式为y=kx﹣8k(k为常数且k≠0).(1)求直线l与x轴交点的坐标;(2)求点O到直线AB的距离;(3)求直线AB与y轴交点的坐标.【分析】(1)令y=0,得kx﹣8k=0,解出即可;(2)作OD⊥AB,垂足为D.可知点O到直线AB的距离为线段OD的长度,利用勾股定理可得OD的长;(3)介绍两种方法:方法一,先根据勾股定理计算DN的长,证明Rt△OMD∽Rt△NOD,列比例式求OM的长,可得结论;方法二:先得∠OND=30°.根据30度的正切列式可得OM的长,可得结论.【解答】解:(1)令y=0,得kx﹣8k=0,∵k≠0,解得x=8,∴直线l与x轴的交点N的坐标为(8,0).(2)连接OB,过点O作OD⊥AB,垂足为D.∴点O到直线AB的距离为线段OD的长度,∵⊙O的半径为5,∴OB=5.又∵AB=6,∴BD=AB==3.在Rt△OBD中,∵∠ODB=90°,∴OD===4.答:点O到直线AB的距离为4.(3)由(1)得N的坐标为(8,0),∴ON=8.由(2)得OD=4.方法一:∴在Rt△ODN中,DN===4.又∵∠OMD+∠MOD=90°,∠NOD+∠MOD=90°,∴∠OMD=∠NOD.∵∠ODM=∠ODN,∴Rt△OMD∽Rt△NOD,∴.∴OM=•NO=×8=.∴直线AB与y轴的交点为(0,).方法二:∴在Rt△OND中,sin∠OND==.∴∠OND=30°.∵在Rt△OMN中,tan30°=∴OM=ON•tan∠OND,∴OM=8tan30°=.∴直线AB与y轴的交点为(0,).【点评】此题考查了一次函数的综合题,考查了待定系数法和解直角三角形,三角形相似的性质和判定,同时也利用了垂径定理和勾股定理解决问题,难度适中.24.(14分)如图①,△ABC表示一块含有60°角的直角三角板,60°所对的边BC的长为6,以斜边AB所在直线为x轴,AB边上的高所在直线为y轴,建立平面直角坐标系.等腰直角△DEF的直角顶点F初始位置落在y轴的负半轴,斜边DE始终在x轴上移动,且DE=6.抛物线y=ax2+bx+c经过A、B、C三点.(1)求a、b、c;(2)△DEF经过怎样的平移后,点E与点B重合?求出点E与点B重合时,点F的坐标;(3)△DEF经过怎样的平移后,⊙E与直线AC和BC均相切?(参考数据:=,=)【分析】(1)通过解直角三角形可求出点A,B,C的坐标,根据点A,B,C的坐标,利用待定系数法可求出a,b,c的值;(2)求出当等腰直角△DEF的直角顶点F在y轴负半轴时点E,F的坐标,结合点B的坐标可得出将△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度可使点E与点B 重合,再结合点F的坐标即可得出平移后点F的坐标;(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,分两种情况考虑:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,则四边形Q1CR1P1是正方形,设Q1C=CR1=R1P1=P1Q1=r1,在Rt△P1R1B中通过解直角三角形BR1=r1,进而可得出BC=(+1)r1,结合BC=6可求出r1的值,由BR1=r1,结合OP1=OB﹣BP1可求出点P1的坐标,再结合点E的坐标即可得出把△DEF 沿x轴负方向(向左)平移(3﹣3)个单位长度可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,则四边形Q2CR2P2是正方形,同理,可求出点P2的坐标,再结合点E的坐标即可得出把△DEF沿x轴负方向(向左)平移(9+3)个单位长度可使⊙E与直线AC 和BC均相切.综上,此题得解.【解答】解:(1)在Rt△ABC中,∠CAB=60°,∠ACB=90°,BC=6,∴∠ABC=30°,OC=BC•sin∠ABC=6×sin30°=3,∴点C的坐标为(0,3);在Rt△COB中,OC=3,∠OBC=30°,∴OB=OC•cot∠OBC=3×cot30°=3,∴点B的坐标为(3,0);在Rt△AOC中,OC=3,∠CAO=60°,∴AO=OC•cot∠CAO=3×cot60°=,∴点A的坐标为(﹣,0).将A(﹣,0),B(3,0),C(0,3)代入y=ax2+bx+c,得:,解得:,∴a=﹣,b=,c=3.(2)当等腰直角△DEF的直角顶点F在y轴负半轴时,∵DE=6,∴OE=OF=DE=×6=3,∴点F起始位置的坐标为(0,﹣3),点E起始位置的坐标为(3,0).∵点B的坐标为(3,0),∴BE=OB﹣OE=3﹣3,∴△DEF沿x轴正方向(向右)平移(3﹣3)个单位长度,可使点E与点B重合,∴当点E与点B重合时,点F的坐标为(3﹣3,﹣3).(3)设⊙P的半径为r,⊙P与直线AC和BC都相切,有两种情况:①圆心P1在直线AC的右侧时,过点P1作P1Q1⊥AC,垂足为Q1,作P1R1⊥BC,垂足为R1,如图③所示.∵∠ACB=90°,∴四边形Q1CR1P1是矩形.∵⊙P1与AC、BC相切于点Q1、R1,∴R1P1=P1Q1,∴矩形Q1CR1P1是正方形.设Q1C=CR1=R1P1=P1Q1=r1,∴在Rt△P1R1B中,BR1=R1P1cot∠CBA=r1cot30°=r1,∴BC=CR1+BR1=r1+r1=(+1)r1,又∵BC=6,∴(+1)r1=6,∴r1===3(﹣1)=3﹣3.∴P1B=2R1P1=2r1=2(3﹣3)=6﹣6,∴OP1=OB﹣BP1=3﹣(6﹣6)=6﹣3,∴P1的坐标为(6﹣3,0).∵OE=3,∴EP1=OE﹣OP1=3﹣(6﹣3)=3﹣3,∴把△DEF沿x轴负方向(向左)平移(3﹣3)个单位长度,可使⊙E与直线AC和BC均相切;②当圆心P2在直线AC的左侧时,过点P2作P2Q2⊥AC,垂足为Q2,作P2R2⊥BC,垂足为R2,如图④所示.∵∠ACB=90°,∴∠R2CQ2=90°,∵⊙P2与AC、BC相切于点Q2、R2,∴矩形Q2CR2P2是正方形.设Q2C=CR2=R2P2=P2Q2=r2,∴在Rt△P2R2B中,BR2=R2P2cot∠CBA=r2cot30°=r2,∴BC=BR2﹣CR2 =r2 ﹣r2=(﹣1)r2,又∵BC=6,∴(﹣1)r2=6,∴r2===3(+1)=3+3,∴P2B=2R2P2=2r2=2(3+3)=6+6,∴OP2=BP2﹣OB=6+6﹣3=6+3,∴P2的坐标为(﹣6﹣3,0).∵OE=3,OP2=6+3,∴EP2=OE+OP2=3+(6+3)=9+3,∴把△DEF沿x轴负方向(向左)平移(9+3)个单位长度,可使⊙E与直线AC和BC均相切.综上所述,把△DEF沿x轴负方向(向左)平移(3﹣3)或(9+3)个单位长度,可使⊙E与直线AC和BC均相切.【点评】本题考查了解直角三角形、待定系数法求二次函数解析式、等腰直角三角形、正方形的判定与性质以及平移的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出a,b,c的值;(2)利用等腰直角三角形的性质求出点E,F的坐标;(3)分两种情况求出点P的坐标(即点E移动到的位置).25.(14分)已知:如图①,四边形ABCD是正方形,在CD的延长线上任取一点E,以CE为边作正方形CEFG,使正方形ABCD与正方形CEFG分居在CD的两侧,连接AF,取AF的中点M,连接EM、DM,DM的延长线交EF于点N.(1)求证:△ADM≌△FNM;(2)判断△DEM的形状,并加以证明;(3)如图②,将正方形CEFG绕点C按逆时针方向旋转n°(30<n<45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.【分析】(1)根据正方形的性质和全等三角形的判定解答即可;(2)①根据全等三角形的性质和等腰直角三角形的判定和性质解答即可;②在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H,根据全等三角形的判定和性质以及等腰直角三角形的判定解答即可.【解答】(1)证明:∵四边形ABCD和四边形CGFE是正方形,∴CE=FE,AD=DC,∠CEF=90°,AD∥EF.∴∠1=∠2.在△AMD和△FMN中,∵∴△AMD≌△FMN(ASA)(2)答:△DEM是等腰直角三角形.由(1)得△AMD≌△FMN,∴MD=MN,AD=FN.在正方形ABCD中,∵AD=DC,∴DC=NF,又∵EC=EF,∴EC﹣DC=EF﹣NF,即ED=EN.又∵∠DEN=90°,∴△DEN是等腰直角三角形.∴EM⊥MD,ME=MD.∴△DEM是等腰直角三角形;(3)答:仍然成立.如图,在MN上截取MP=MD,连结EP、FP,延长FP与DC延长线交于点H.在△AMD和△FMP中,∵∴△AMD≌△FMP(SAS).∴∠3=∠4,AD=PF,又∵四边形ABCD、四边形CGFE均为正方形,∴CE=FE,AD=DC,∠ADC=90°,∠CEF=∠ADC=∠EFG=∠ECG=90°.∴DC=PF.∵∠3=∠4,∴AD∥FH.∴∠H=∠ADC=90°.∵∠G=90°,∠5=∠6,∠GCH=180°﹣∠H﹣∠5,∠GFH=180°﹣∠G﹣∠6,∴∠GCH=∠GFH.∵∠GCH+∠DCE=∠GFH+∠PFE=90°,∴∠DCE=∠PFE,在△DCE和△PFE中,∵∴△DCE≌△PFE(SAS).∴ED=EP,∠DEC=∠PEF,∵∠CEF=90°,∴∠DEP=90°.∴△DEP是等腰直角三角形.∴EM⊥MD,ME=MD,∴△DEM是等腰直角三角形.【点评】本题考查的是四边形的综合题,关键是根据正方形的性质、全等三角形的判定定理和性质定理以及等腰直角三角形的判定进行解答.中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算20的结果是()A.0B.1C.2D.2.(3分)下列运算正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2C.a2b2=(ab)4D.(a3)2=a63.(3分)下列调查方式,合适的是()A.要了解一批灯泡的使用寿命,采用普查方式B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式C.要了解我国15岁少年身高情况,采用普查方式D.要选出某校短跑最快的学生参加全市比赛,采用普查方式4.(3分)若分式的值为0,则x的值为()A.﹣1B.0C.1D.±15.(3分)解方程+时,去分母后得到的方程是()A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=66.(3分)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y=C.y=﹣2x2+1D.y=2x7.(3分)如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD 的面积为6,四边形CDEF的面积为4,则AC=()A.B.C.D.。
2016年河北省初中毕业生升学文化课模拟考试数学试卷(带答案 Word版)
2016年河北省初中毕业生升学文化课模拟考试数学试卷试卷说明:本试卷满分120分,考试时间120分钟.第I卷(选择题共42分)一.选择题(共16小题)1.与﹣3的积为1的数是()A.3 B.C.﹣ D.﹣32.下列各式可以写成a﹣b+c的是()A.a﹣(+b)﹣(+c) B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)3.2016年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是()A.23.2×108B.2.32×109C.232×107 D.2.32×1084.已知a﹣b=1,则代数式2a﹣2b+2013的值是()A.2015 B.2014 C.2012 D.20115.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离S(km)与慢车行驶时间t (h)之间的函数图象如图所示,下列说法:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km其中正确的个数是()A.1个B.2个C.3个D.4个6.某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A.2x% B.1+2x% C.(1+x%)•x% D.(2+x%)•x%7.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A.7:20 B.7:30 C.7:45 D.7:508.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③B.①③④C.①②④D.①②③④9.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1 D.010.如图,嘉淇同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()A.B.C. D.11.如图,挂着“庆祝人民广场竣工”条幅的氢气球升在广场上空,已知气球的直径为4m,在地面A点测得气球中心O的仰角∠OAD=60°,测得气球的视角∠BAC=2°(AB、AC为⊙O的切线,B、C为切点).则气球中心O离地面的高度OD为()(精确到1m,参考数据:sin1°=0.0175,=1.732)A.94m B.95m C.99m D.105m12.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径13.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正多边形的边数为x,y,z,则++的值为()A.1 B.C.D.14.如图,已知∠A的平分线分别与边BC、△ABC的外接圆交于点D、M,过D任作一条与直线BC不重合的直线l,直线l分别与直线MB、MC交于点P、Q,下列判断错误的是()A.无论直线l的位置如何,总有直线PM与△ABD的外接圆相切B.无论直线l的位置如何,总有∠PAQ>∠BACC.直线l选取适当的位置,可使A、P、M、Q四点共圆D.直线l选取适当的位置,可使S△APQ<S△ABC15.点C是半径为1的半圆弧AB的一个三等分点,分别以弦AC、BC为直径向外侧作2个半圆,点D、E也分别是2半圆弧的三等分点,再分别以弦AD、DC、CE、BE为直径向外侧作4个半圆.则图中阴影部分(4个新月牙形)的面积和是()A.B.C.D.16.正实数a1,a2,…,a2011满足a1+a2+…+a2011=1,设P=,则()A.p>2012 B.p=2012C.p<2012 D.p与2012的大小关系不确定第II卷(非选择题共78分)二.填空题(共4小题)17.今年3月12日植树节活动中,我市某单位的职工分成两个小组植树,已知他们植树的总数相同,均为100多棵,如果两个小组人数不等,第一组有一人植了6棵,其他每人都植了13棵;第二组有一人植了5棵,其他每人都植了10棵,则该单位共有职工人.18.对正实数a,b作定义,若4*x=44,则x的值是.19.今年我省5月份进行了中考体育测试,考生考试顺序和考试项目(考生从考试的各个项目中抽取一项作为考试项目)由抽签的方式决定,具体操作流程是①每位考生从写有A,B,C的三个小球中随机抽取一个小球确定考试组別;②再从写有“掷实心球””立定跳远”“800/1000米长跑”的抽签纸中抽取一个考试项目进行测试,则考生小明抽到A组“掷实心球”的概率是.20.如图,正方形ABCD的边长为2,对角线AC、BD交于点O,E为DC上一点,∠DAE=30°,过D作DF⊥AE于F点,连接OF.则线段OF的长度为.三.解答题(共6小题)21.观察第一行3=4﹣1第二行5=9﹣4第三行7=16﹣9第四行9=25﹣16…(1)如果等式左边为2015,那么是第几行?求这一行的完整等式(等式右边用平方差的形式标书)(2)第n行的等式为(等式右边用平方差的形式)(3)说明(2)中等式的正确性.22.为了了解学生关注热点新闻的情况,“两会”期间,小刚对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是,女生收看“两会”新闻次数的中位数是;(2)对于某个群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体多某热点新闻的“关注指数”,如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小刚给出了男生的部分统计量,根据你所学过的统计知识,适当计算女生的有关统计量,进而23.如图,AB为⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG 是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC;(2)过点A作AE∥PC,交⊙O于点E,交CD于点F,连接BE.若sin∠P=,CF=5,求BE的长.地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(3)在(2)的条件下,若七年级师生共有195人,写出所有可能的租车方案,并确定最省钱的租车方案.25.如图,在平面直角坐标系xoy中,直线y=x+3交x轴于A点,交y轴于B 点,过A、B两点的抛物线y=﹣x2+bx+c交x轴于另一点C,点D是抛物线的顶点.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一点,(不与点A、B重合),过点P作x 轴的垂线交x轴于点H,交直线AB于点F,作PG⊥AB于点G.求出△PFG的周长最大值;(3)在抛物线y=ax2+bx+c上是否存在除点D以外的点M,使得△ABM与△ABD 的面积相等?若存在,请求出此时点M的坐标;若不存在,请说明理由.26.我们初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:平方差公式、完全平方公式.【提出问题】如何用表示几何图形面积的方法推证:13+23=32?【解决问题】A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=32【递进探究】请仿用上面的表示几何图形面积的方法探究:13+23+33=.要求:自己构造图形并写出详细的解题过程.【推广探究】请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(参考公式:)注意:只需填空并画出图形即可,不必写出解题过程.【提炼运用】如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,如图(1)中,共有1个小立方体,其中1个看的见,0个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8个看不见;求:从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数.2016年河北省初中毕业生升学文化课模拟考试数学试卷参考答案一.选择题(共16小题)1.C.2.B.3.B.4.A.5.B.6. D .7.A.8.C.9.A.10.A.11.C.12.B.13.C.14.C.15.B.16.A.二.填空题(共4小题)17.32.18.36.19..20.﹣.三.解答题(共6小题)21.解:观察发现:第1行2×1+1=22﹣12,第2行2×2+1=32﹣22,第3行2×3+1=42﹣32,第4行2×4+1=52﹣42,…第n行2n+1=(n+1)2﹣n2,(1)当2n+1=2015时,解得:n=1007,所以如果等式左边为2015,那么是第1007行;这一行的完整等式为:2015=10082﹣10072;(2)答案为:2n+1=(n+1)2﹣n2;(3)(n+1)2﹣n2=(n+1﹣n)(n+1+n)=2n+1;22.解:(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是3;故答案为:20,3.(2)由题意:该班女生对“两会”新闻的“关注指数”为所以,男生对“两会”新闻的“关注指数”为60%设该班的男生有x人则,解得:x=25答:该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为=3,女生收看“两会”新闻次数的方差为:=,∵2>,∴男生比女生的波动幅度大.23.解:(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=,∴sin∠FAD=,在R t△AFD中,AF=5,sin∠FAD=,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=,∴,∵AB=20,∴BE=12.24.解:(1)∵载客量=汽车辆数×单车载客量,租金=汽车辆数×单车租金,∴B型客车载客量=30(5﹣x);B型客车租金=280(5﹣x);故填:30(5﹣x);280(5﹣x).(2)根据题意,400x+280(5﹣x)≤1900,解得:x≤4,∴x的最大值为4;(3)由(2)可知,x≤4,故x可能取值为0、1、2、3、4,①A型0辆,B型5辆,租车费用为400×0+280×5=1400元,但载客量为45×0+30×5=150<195,故不合题意舍去;②A型1辆,B型4辆,租车费用为400×1+280×4=1520元,但载客量为45×1+30×4=165<195,故不合题意舍去;③A型2辆,B型3辆,租车费用为400×2+280×3=1640元,但载客量为45×2+30×3=180<195,故不合题意舍去;④A型3辆,B型2辆,租车费用为400×3+280×2=1760元,但载客量为45×3+30×2=195=195,符合题意;⑤A型4辆,B型1辆,租车费用为400×4+280×1=1880元,但载客量为45×4+30×1=210,符合题意;故符合题意的方案有④⑤两种,最省钱的方案是A型3辆,B型2辆.25.解:(1)∵直线AB:y=x+3与坐标轴交于A(﹣3,0)、B(0,3),代入抛物线解析式y=﹣x2+bx+c中,∴∴抛物线解析式为:y=﹣x2﹣2x+3;(2)∵由题意可知△PFG是等腰直角三角形,设P(m,﹣m2﹣2m+3),∴F(m,m+3),∴PF=﹣m2﹣2m+3﹣m﹣3=﹣m2﹣3m,△PFG周长为:﹣m2﹣3m+(﹣m2﹣3m),=﹣(+1)(m+)2+,∴△PFG周长的最大值为:.(3)点M有三个位置,如图所示的M1、M2、M3,都能使△ABM的面积等于△ABD的面积.此时DM1∥AB,M3M2∥AB,且与AB距离相等,∵D(﹣1,4),∴E(﹣1,2)、则N(﹣1,0)∵y=x+3中,k=1,∴直线DM1解析式为:y=x+5,直线M3M2解析式为:y=x+1,∴x+5=﹣x2﹣2x+3或x+1=﹣x2﹣2x+3,∴x1=﹣1,x2=﹣2,x3=,x4=,∴M1(﹣2,3),M2(,),M3(,).26.解:【递进探究】如图,A表示一个1×1的正方形,即:1×1×1=13,B、C、D表示2个2×2的正方形,即:2×2×2=23,E、F、G表示3个3×3的正方形,即:3×3×3=33,而A、B、C、D、E、F、G恰好可以拼成一个大正方形,边长为:1+2+3=6,∵S A+S B+S C+S D+S E+S F+S G=S大正方形,∴13+23+33=62;【推广探究】由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=,∴13+23+33+…+n3=()2=.【提炼运用】图(1)中,共有1个小立方体,其中1个看的见,0=(1﹣1)3个看不见;如图(2)中,共有8个小立方体,其中7个看的见,1=(2﹣1)3个看不见;如图(3)中,共有27个小立方体,其中19个看的见,8=(3﹣1)3个看不见;…,从第(1)个图到第(101)个图中,一切看不见的棱长为1的小立方体的总个数为:(1﹣1)3+(2﹣1)3+(3﹣1)3+…+(101﹣1)3=03+13+23+…+1003==26532801.故一切看不见的棱长为1的小立方体的总个数为26532801.故答案为:62;.。
河北省邯郸市2016-2017学年八年级下第一次月考数学试卷(含答案)
10、平行四边形的一个内角平分线将该平行四边形的一边分为
3cm 和 4cm 两部分,则该平行四边形的周长为(
)
A. 20 cm B. 21cm C. 20cm 或 22cm D. 20 cm 或 21cm
22、( 10 分)如图,长方形 ABCD 沿对角线 AC 折叠,设点 D 落在 D′处, BC 交 AD′于点 E, AB=4 , BC=8
( 1)求 BE 的长度; ( 2)求阴影部分的面积。
23、( 12 分)如图, E, F 分别是矩形 ABCD 的边 AD , AB 上的点,若 EF=EC,且 EF⊥ EC。 ( 1)求证: AE=DC ;
另一轮船以 12 海里 /时的速度同时从港口 A 出发向东南方向航行,
离开港口 2 小时后,则两船相距(
)
5、如图,矩形 OABC 的边 OA 长为 2,边 AB 长为 1,OA 在 数轴上,以原点 O 为原心,对角线 OB 的长为半径画弧, 交数轴上原点右边于一点, 则这个点表示的实数是 ( )
A. 25 海里
( 1)填空,以补全已知和求证; ( 2)按嘉琪的想法写出证明; ( 3)用文字叙述所证命题的逆命题。
”是正确的, 她先用
线交 BE 的延长线与点 F,连接 CF. ( 1)求证: AF=DC ; ( 2)若 AB ⊥ AC ,试判断四边形 ADCF 的形状,并证明你的结论。 ( 3)要使四边形 ADCF 是矩形,则在三角形 ABC 中应添加什么条件?(不需要说明理由)
20、在平面直角坐标系内已知点 O( 0,0)A ( 3,0) B( 1,1),已 知以 O、A 、B 、 C 为顶点的四边形为平行四边形,则 C 点坐标 为 ____________________________________ 。
河北省邯郸市邯山区2016届中考数学一模试卷(解析版)
2016年河北省邯郸市邯山区中考数学一模试卷一.选择题(共16小题,每小题3分,共42分) 1.与﹣3的积为1的数是( ) A .3B .C .﹣D .﹣32.计算﹣3(x ﹣2y )+4(x ﹣2y )的结果是( ) A .x ﹣2yB .x+2yC .﹣x ﹣2yD .﹣x+2y3.2015年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是( ) A .23.2×108 B .2.32×109 C .232×107 D .2.32×1084.已知m ﹣n=100,x+y=﹣1,则代数式(n+x )﹣(m ﹣y )的值是( ) A .99B .101C .﹣99D .﹣1015.2015年十一国庆长假提前到9月29日,黄金周期间外出旅游更为火爆,若旅游区的门票为60元/张,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是9月30日对进入旅游区人数的7次抽样统计数据:那么从9月29日至10月5日旅游区门票收入是多少?( ) A .900000元 B .129600元 C .191600元 D .162000元6.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的( ) A .南偏西30°方向 B .南偏西60°方向 C .南偏东30°方向D .南偏东60°方向7.下列四个命题中,假命题是( ) A .两角对应相等,两个三角形相似 B .三边对应成比例,两个三角形相似C .两边对应成比例且其中一边的对角相等,两个三角形相似D .两边对应成比例且夹角相等,两个三角形相似8.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.9.如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则∠1=()A.35°B.40°C.45°D.50°10.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数11.下列命题正确的个数是()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)半径相等的两个圆是等圆.(4)面积相等的两个圆是等圆.(5)同一条弦所对的两条弧一定是等弧.A.2 B.3 C.4 D.512.已知x为实数,且﹣(x2+x)=2,则x2+x的值为()A.0 B.1 C.2 D.x213.如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1﹣19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A.3个B.2个C.1个D.0个14.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.15.已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A.a>0 B.0≤a<1 C.0<a≤1 D.a≤116.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依次规律,点A2016的纵坐标为()A.0 B.﹣3×()2015C.(2)2016D.3×()2015二.填空题(共5小题,每小题3分,共12分)17.已知ab<0,,则=.18.昨天,有一人拿了一张100元钱到商店买了25元的东西,店主由于手头没有零钱,便拿这张100元钱到隔壁的小摊贩那里换了100元零钱,并找回那人75元钱.那人拿着75元钱走了.过了一会儿隔壁小摊贩找到店主,说刚才那100元是假钱,店主仔细一看,果然是假钱.店主只好又找了一张真的100元钱给小摊贩.问:在整个过程中,如果不计商品的成本和利润,店主一共亏了元.19.如图,在边长为6的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH.若BH=8,则FG=.20.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF=.21.如图,在平面直角坐标系中,直线交x轴于A点,交y轴于B点,点C是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥OC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依此类推,后面的三角形面积分别是S3,S4…,那么S1=,若S=S1+S2+S3+…+S n,当n无限大时,S的值无限接近于.三.解答题(共13小题,共66分)嘉淇遇到了一些问题,想请大家帮她解决一下:22.如果单项式5mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.求(1)(7a﹣22)2013的值;(2)若5mx a y﹣5nx2a﹣3y=0,且xy≠0,求(5m﹣5n)2014的值.23.计算:﹣22﹣(﹣2)2+|﹣5|+2cos30°﹣()﹣1+(9﹣)0+.24.先化简,再求值:÷(2﹣),其中x=+1.25.设m是不小于﹣1的实数,关于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有两个不相等的实数根x1、x2,(1)若x12+x22=6,求m值;(2)求的最大值.26.嘉淇想证明三角形内角和是180°和其他一些的命题.请完成下列一些命题和证明.(1)怎样证明三角形内角和是180°呢?(2)已知命题:等腰三角形底边上的中线和顶角的角平分线重合,证明这个命题,并写出它的逆命题,逆命题成立吗?命题:证明:由此我们不难发现:那么怎样证明呢?请写出证明过程.(可以画出作图痕迹.)27.2001年亚洲铁人三项赛在徐州市风光秀丽的云龙湖畔举行.比赛程序是:运动员先同时下水游泳1.5千米到第一换项点,在第一换项点整理服装后,接着骑自行车行40千米到第二换项点,再跑步10千米到终点.下表是2001年亚洲铁人三项赛女子组(19岁以下)三名运动员在比赛中的成绩(游泳成绩即游泳所用时间,其它类推,表内时间单位为秒)(1)填空(精确到0.01):第191号运动员骑自行车的平均速度是米/秒;第194号运动员骑自行车的平均速度是米/秒;第195号运动员骑自行车的平均速度是米/秒;(2)如果运动员骑自行车都是匀速的,那么在骑自行车的途中,191号运动员会追上195号或194号吗?如果会,那么追上时离第一换项点有多少米(精确到0.01)?如果不会,为什么?(3)如果长跑也都是匀速的,那么在长跑途中这三名运动员中有可能某人追上某人吗?为什么?28.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.29.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解析式;(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由;(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.30.(2015•黄冈中学自主招生)观察下列各个等式:12=1,12+22=5,12+22+32=14,12+22+32+42=30,….(1)你能从中推导出计算12+22+32+42+…+n2的公式吗?请写出你的推导过程;(2)请你用(1)中推导出的公式来解决下列问题:已知:如图,抛物线y=﹣x2+2x+3与x、y轴的正半轴分别交于点A、B,将线段OAn等分,分点从左到右依次为A1、A2、A3、A4、A5、A6、…、A n﹣1,分别过这n﹣1个点作x轴的垂线依次交抛物线于点B1、B2、B3、B4、B5、B6、…、B n﹣1,设△OBA1、△A1B1A2、△A2B2A3、△A3B3A4、…、△A n﹣1B n﹣1A的面积依次为S1、S2、S3、S4、…、Sn.①当n=2013时,求s1+s2+s3+s4+…+s2013的值;②试探究:当n取到无穷无尽时,题中所有三角形的面积和将是什么值?为什么?31.【数学思考】如图1,A、B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)【问题解决】如图2,过点B作BB′⊥l2,且BB′等于河宽,连接AB′交l1于点M,作MN⊥l1交l2于点N,则MN就为桥所在的位置.【类比联想】(1)如图3,正方形ABCD中,点E、F、G分别在AB、BC、CD上,且AF⊥GE,求证:AF=EG.(2)如图4,矩形ABCD中,AB=2,BC=x,点E、F、G、H分别在AB、BC、CD、AD上,且EG⊥HF,设y=,试求y与x的函数关系式.【拓展延伸】如图5,一架长5米的梯子斜靠在竖直的墙面OE上,初始位置时OA=4米,由于地面OF较光滑,梯子的顶端A下滑至点C时,梯子的底端B左滑至点D,设此时AC=a米,BD=b米.(3)当a=米时,a=b.(4)当a在什么范围内时,a<b?请说明理由.32.如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH 的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2?33.设边长为2a的正方形的中心A在直线l上,它的一组对边垂直于直线l,半径为r的⊙O的圆心O在直线l上运动,点A、O间距离为d.(1)如图①,当r<a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:所以,当r<a时,⊙O与正方形的公共点的个数可能有个;(2)如图②,当r=a时,根据d与a、r之间关系,将⊙O与正方形的公共点个数填入下表:所以,当r=a时,⊙O与正方形的公共点个数可能有个;(3)如图③,当⊙O与正方形有5个公共点时,试说明r=a.34.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.2016年河北省邯郸市邯山区中考数学一模试卷参考答案与试题解析一.选择题(共16小题,每小题3分,共42分)1.与﹣3的积为1的数是()A.3 B.C.﹣D.﹣3【考点】倒数.【分析】乘积是1的两数互为倒数,然后求得﹣3的倒数即可.【解答】解:﹣3×(﹣)=1.故选;C.【点评】本题主要考查的是倒数的定义,掌握倒数的定义是解题的关键.2.计算﹣3(x﹣2y)+4(x﹣2y)的结果是()A.x﹣2y B.x+2y C.﹣x﹣2y D.﹣x+2y【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故选:A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3.2015年春运期间,全国有23.2亿人次进行东西南北大流动,用科学记数法表示23.2亿是()A.23.2×108B.2.32×109C.232×107D.2.32×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将23.2亿用科学记数法表示为:2.32×109.故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知m ﹣n=100,x+y=﹣1,则代数式(n+x )﹣(m ﹣y )的值是( )A .99B .101C .﹣99D .﹣101【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵m ﹣n=100,x+y=﹣1,∴原式=n+x ﹣m+y=﹣(m ﹣n )+(x+y )=﹣100﹣1=﹣101.故选D .【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.5.2015年十一国庆长假提前到9月29日,黄金周期间外出旅游更为火爆,若旅游区的门票为60元/张,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是9月30日对进入旅游区人数的7次抽样统计数据:那么从9月29日至10月5日旅游区门票收入是多少?( )A .900000元B .129600元C .191600元D .162000元【考点】用样本估计总体.【分析】从表格中的数据求出旅游区平均每小时接纳游客数,利用样本估计总体计算出总收入即可.【解答】解:旅游区平均每小时接纳游客数==300(人);所以从9月29日至10月5日旅游区门票收入是300×10×7×60=1260000.故选B .【点评】本题考查样本估计总体问题,利用了平均数的概念求解.熟记公式是解决本题的关键.6.如果从甲船看乙船,乙船在甲船的北偏东30°方向,那么从乙船看甲船,甲船在乙船的()A.南偏西30°方向B.南偏西60°方向C.南偏东30°方向D.南偏东60°方向【考点】方向角.【分析】根据题意正确画出图形进而分析得出从乙船看甲船的方向.【解答】解:如图所示:可得∠1=30°,∵从甲船看乙船,乙船在甲船的北偏东30°方向,∴从乙船看甲船,甲船在乙船的南偏西30°方向.故选:A.【点评】此题主要考查了方向角,根据题意画出图形是解题关键.7.下列四个命题中,假命题是()A.两角对应相等,两个三角形相似B.三边对应成比例,两个三角形相似C.两边对应成比例且其中一边的对角相等,两个三角形相似D.两边对应成比例且夹角相等,两个三角形相似【考点】命题与定理.【分析】根据相似三角形的判定进行解答即可.【解答】解:A、两角对应相等,两个三角形相似是真命题;B、三边对应成比例,两个三角形相似是真命题;C、两边对应成比例且两边的夹角相等,两个三角形相似,故是假命题;D、两边对应成比例且夹角相等,两个三角形相似是真命题;故选C【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.【考点】几何体的展开图.【分析】根据正方体的表面展开图进行分析解答即可.【解答】解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,正视图的斜线方向相反,故C错误,只有D选项符合条件,故选D【点评】本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.9.如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则∠1=()A.35°B.40°C.45°D.50°【考点】平行线的判定与性质.【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠BGP=∠GPC=80°,求出∠BGM=100°,根据角平分线定义求出即可.【解答】解:∵∠2=∠3=70°,∴AB∥CD,∴∠BGP=∠GPC,∵∠GPC=80°,∴∠BGP=80°,∴∠BGM=180°﹣∠BGP=100°,∵GH平分∠MGB,∴∠1=∠BGM=50°,故选D.【点评】本题考查了平行线的性质和判定的应用,能根据定理求出∠BGP=80°是解此题的关键.10.已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数【考点】抛物线与x轴的交点.【专题】压轴题.【分析】因为抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,所以令f(x)=x2﹣(4m+1)x+2m﹣1,则f(2)<0,解不等式可得m>,又因为抛物线与y轴的交点在点(0,)的下方,所以f(0)<﹣,解得m<,即可得解.【解答】解:根据题意,令f(x)=x2﹣(4m+1)x+2m﹣1,∵抛物线y=x2﹣(4m+1)x+2m﹣1与x轴有一个交点的横坐标大于2,另一个交点的横坐标小于2,且抛物线开口向上,∴f(2)<0,即4﹣2(4m+1)+2m﹣1<0,解得:m>,又∵抛物线与y轴的交点在点(0,)的下方,∴f(0)<﹣,解得:m<,综上可得:<m<,故选A.【点评】本题考查二次函数图象特征,要善于合理运用题目已知条件.11.下列命题正确的个数是()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)半径相等的两个圆是等圆.(4)面积相等的两个圆是等圆.(5)同一条弦所对的两条弧一定是等弧.A.2 B.3 C.4 D.5【考点】命题与定理;圆的认识.【分析】利用圆的有关定义分别判断后即可确定正确的选项.【解答】解:(1)直径是圆中最大的弦,正确.(2)长度相等的两条弧一定是等弧,错误.(3)半径相等的两个圆是等圆,正确.(4)面积相等的两个圆是等圆,正确.(5)同一条弦所对的两条弧一定是等弧,错误,故选B.【点评】本题考查了命题与定理的知识,解题的关键是能够了解圆的有关定义,难度不大.12.已知x为实数,且﹣(x2+x)=2,则x2+x的值为()A.0 B.1 C.2 D.x2【考点】换元法解分式方程.【分析】根据换元法,可得u=x2+x,根据解分式方程,可得答案.【解答】解:设u=x2+x,得﹣μ=2.3﹣u2=2u,解得u1=﹣3,u2=1.当x2+x=﹣3时,即x2+x+3=0,△=12﹣4×3=﹣11<0,故不符合题意.故x2+x的值为1.故选:B.【点评】本题考查了用换元法解方程,解题关键是能准确的找出可用替换的代数式x2+x,再用字母u代替解方程.13.如图是近年来我国年财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元.下列命题:①2007年我国财政收入约为61330(1﹣19.5%)亿元;②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.其中正确的有()A.3个B.2个C.1个D.0个【考点】折线统计图.【专题】压轴题.【分析】折线统计图表示的是增长率,每个数据是后一年相对于上一年的增长结果,且都是正增长,所以财政收入越来越高,从而可得结果.【解答】解:①2007年的财政收入应该是,不是2007年我国财政收入约为61330(1﹣19.5%)亿元,所以①错.②因为是正增长所以2009年比2007年和2008年都高,所以②错.③2010年我国财政收入约为61330(1+11.7%)(1+21.3%)亿元.所以③正确.故选C.【点评】本题考查折线统计图,折线统计图表现的是变化情况,根据图知都是正增长,所以越来越多的财政收入以及增长率都是相对上一年来说的.14.电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y条,则解此问题所列关系式正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程.【分析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可.【解答】解:设“一少”的狗有x条,“三多”的狗有y条,可得:,故选:B.【点评】此题考查二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组.15.已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A.a>0 B.0≤a<1 C.0<a≤1 D.a≤1【考点】一元一次不等式组的整数解.【分析】首先解关于x的不等式组,确定不等式组的解集,然后根据不等式组只有一个整数解,确定整数解,则a的范围即可确定.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,∴不等式组的解集为a<x<2,∵关于x的不等式组有且只有1个整数解,则一定是1,∴0≤a<1.故选B.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依次规律,点A2016的纵坐标为()A.0 B.﹣3×()2015C.(2)2016D.3×()2015【考点】规律型:点的坐标.【分析】根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2016=3×()2015.【解答】解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,∴OA2016=3×()2015.而点A2016在y轴的负半轴上,故选B.【点评】本题考查了规律型,点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.二.填空题(共5小题,每小题3分,共12分)17.已知ab<0,,则=.【考点】分式的化简求值.【专题】计算题;压轴题.【分析】对已知等式整理得到=,从而得到b4+a4=3a2b2,又∵()2可以化简成为,由此可以求出()2的值,又由ab<0可以确定的值.【解答】解:对已知等式整理得=,∴b2﹣a2=ab,∴(b2﹣a2)2=a2b2,∴b4+a4=3a2b2,又∵()2=()2=,∴()2==5,又∵ab<0,∴<0,即=﹣.故答案为﹣.【点评】此题主要考查了分式的化简求值,利用整体代入法解答是解题的关键,对中等生比较困难.18.昨天,有一人拿了一张100元钱到商店买了25元的东西,店主由于手头没有零钱,便拿这张100元钱到隔壁的小摊贩那里换了100元零钱,并找回那人75元钱.那人拿着75元钱走了.过了一会儿隔壁小摊贩找到店主,说刚才那100元是假钱,店主仔细一看,果然是假钱.店主只好又找了一张真的100元钱给小摊贩.问:在整个过程中,如果不计商品的成本和利润,店主一共亏了100元.【考点】有理数的混合运算.【专题】应用题.【分析】分析整个交易过程中,每个人得失状态:买主:得到价值25元商品+75元真币,没有任何付出(假币不算),店主:被拿走了价值25元商品+75元真币,先从小摊贩那得到100元真币,后又还给小摊贩100元真币,与小摊贩互不相欠,小摊贩:先给店主100元,后又从店主那获得100元,没有任何损失,所以店主只亏100元.【解答】解:根据题意,从店主的角度知,其损失应为价值25元的商品+找给那个人的75元真币,所以一共亏了:25+75=100(元).故答案为:100.【点评】本题主要考查实际问题中有理数的混合运算的思维,解答关键是理清每个人的得失状态,不能相互混淆,注意整个交易过程与小摊贩间是没有任何利益得失的.19.如图,在边长为6的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH.若BH=8,则FG=5.【考点】全等三角形的判定与性质;等腰直角三角形;正方形的性质;相似三角形的判定与性质.【专题】几何图形问题;压轴题.【分析】如解答图,连接CG,首先证明△CGD≌△CEB,得到△GCE是等腰直角三角形;过点H 作AB、BC的垂线,垂足分别为点M、N,进而证明△HEM≌△HCN,得到四边形MBNH为正方形,由此求出CH、HN、CN的长度;最后利用相似三角形Rt△HCN∽Rt△GFH,求出FG的长度.【解答】解:如图所示,连接CG.在△CGD与△CEB中∴△CGD≌△CEB(SAS),∴CG=CE,∠GCD=∠ECB,∴∠GCE=90°,即△GCE是等腰直角三角形.又∵CH⊥GE,∴CH=EH=GH.过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,又∵∠EHC=90°,∴∠1=∠2,∴∠HEM=∠HCN.在△HEM与△HCN中,∴△HEM≌△HCN(ASA).∴HM=HN,∴四边形MBNH为正方形.∵BH=8,∴BN=HN=4,∴CN=BC﹣BN=6﹣4=2.在Rt△HCN中,由勾股定理得:CH=2.∴GH=CH=2.∵HM∥AG,∴∠1=∠3,∴∠2=∠3.又∵∠HNC=∠GHF=90°,∴Rt△HCN∽Rt△GFH.∴,即,∴FG=5.故答案为:5.【点评】本题是几何综合题,考查了全等三角形、相似三角形、正方形、等腰直角三角形、勾股定理等重要知识点,难度较大.作出辅助线构造全等三角形与相似三角形,是解决本题的关键.20.如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF=.【考点】全等三角形的判定与性质;矩形的性质;解直角三角形.【专题】压轴题.【分析】过点F作FG⊥AC于点G,证明△BCE≌△GCF,得到CG=CB=2,根据勾股定理得AC=4,所以AG=4﹣2,易证△AGF∽△CBA,求出AF、FG,再求出AE,得出AE+AF的值.【解答】解:过点F作FG⊥AC于点G,如图所示,在△BCE和△GCF中,,∴△BCE≌△GCF(AAS),∴CG=BC=2,∵AC==4,∴AG=4﹣2,∵△AGF∽△CBA∴,∴AF==,FG==,∴AE=2﹣=,∴AE+AF=+=.故答案为:.【点评】本题主要考查了三角形全等的判定和性质以及三角形相似的判定与性质,有一定的综合性,难易适中.21.如图,在平面直角坐标系中,直线交x轴于A点,交y轴于B点,点C是线段AB的中点,连接OC,然后将直线OC绕点C逆时针旋转30°交x轴于点D,再过D点作直线DC1∥OC,交AB与点C1,然后过C1点继续作直线D1C1∥OC,交x轴于点D1,并不断重复以上步骤,记△OCD的面积为S1,△DC1D1的面积为S2,依此类推,后面的三角形面积分别是S3,S4…,那么S1=,若S=S1+S2+S3+…+S n,当n无限大时,S的值无限接近于.【考点】一次函数综合题.【专题】压轴题.【分析】根据直线AB的解析式,易得OB=,OA=3,即∠OBA=60°,而C是Rt△OAB的中点,那么易得△OCB是等边三角形,则∠COD=30°,OC=;(1)首先求△OCD的面积,已知∠DCO=∠DOC=30°,那么△OCD是等腰三角形,过D作OC的垂线设垂足为E,易得OE的长,通过解直角三角形可求得DE的值,从而根据三角形的面积公式得到△OCD的面积;(2)求S的值,需要从整体出发;过O作OC0∥DC,那么OC0⊥AB,易可求出△OC0B、△OCC0的值,通过观察,△OC0C、△DCC1、△D1C1D2…都是相似三角形,△ODC、△OD1C1、△D1C2D2…也都是相似三角形,因此上述两种相似三角形的面积和将△OC0A的面积分为两部分,且它们的比为△OC0C与△ODC的面积比,可据此求出S的值.【解答】解:过O作OC0⊥AB于C0,过D作DE⊥OC于E;由直线AC的解析式可知:当y=0时,x=3,则OA=3;当x=0时,y=,则OB=;故∠OBA=60°,∠OAB=30°;由于C是Rt△AOB斜边AB的中点,所以OC=CB,则△OBC是等边三角形;∴∠BOC=60°,∠DOC=∠DCO=30°;∴OE=CE=;(1)△ODE中,OE=,∠DOE=30°,则DE=,S△OCD=OC•DE=;(2)易知:S△AOB=OA•OB=,S△BOC=S△AOB=,S△OBC0=S△OCC0=S△OBC=;∴S△OC0A=S△OAB﹣S△OBC0=﹣=;由题意易得:△OC0C、△DCC1、△D1C1D2…都相似,△ODC、△OD1C1、△D1C2D2…也都相似;设△OC0C、△DCC1、△D1C1D2…的面积和为S′,则:S′:S=S△OC0C:S△OCD=:=3:2,∴S=S△OC0A=×=;故答案为:,.【点评】此题主要考查了图形面积的求法,涉及到一次函数图象与坐标轴交点坐标的求法、直角三角形的性质、等边三角形及等腰三角形的性质等知识,注意此题中整体思想的运用.三.解答题(共13小题,共66分)嘉淇遇到了一些问题,想请大家帮她解决一下:22.如果单项式5mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.求(1)(7a﹣22)2013的值;(2)若5mx a y﹣5nx2a﹣3y=0,且xy≠0,求(5m﹣5n)2014的值.【考点】同类项.。
2016年河北省初中毕业生升学文化课模拟考试数学试卷(Word版,有答案) Word版含答案
2016年河北省初中毕业生升学文化课模拟考试数学试卷试卷说明:本试卷满分120分,考试时间120分钟.第I卷(选择题共42分)一.选择题(共16小题)1.如果+50m表示向东走50m,那么向西走40m表示为()A.﹣50m B.﹣40m C.+40m D.+50m2.民心胡有5400亩,15亩=10000平方米,用科学记数法表示民心湖面积为()A.8.1×105平方米B.8.1×106平方米C.3.6×105平方米D.3.6×106平方米3.有一列数a1,a2,a3,a4,…,a n,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若a1=2,则a2008值为()A.2 B.﹣1 C.D.20084.要使为整数,a只需为()A.奇数B.偶数C.5的倍数D.个位是5的数5.如图为我省某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中x1,x2,x3分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),则有()A.x1>x2>x3B.x1>x3>x2C.x2>x3>x1D.x3>x2>x16.下列各式,属于二元一次方程的个数有()①xy+2x﹣y=7;②4x+1=x﹣y;③+y=5;④x=y;⑤x2﹣y2=2⑥6x﹣2y ⑦x+y+z=1 ⑧y(y﹣1)=2y2﹣y2+x.A.1 B.2 C.3 D.47.小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s (单位:米)与他所用时间t(单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟④小明上课没有迟到其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,直线y=与y轴交于点A,与直线y=﹣交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2B.﹣2≤h≤1 C.﹣1D.﹣19.在“八一”军事训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于训练有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④10.如图,D、E、F内分正△ABC的三边AB、BC、AC均为1:2两部分,AD、BE、CF相交成的△PQR的面积是△ABC的面积的()A.B.C.D.11.如图,正ABC中,P为正三角形内任意一点,过P作PD⊥BC、PE⊥AB,PF⊥AC,连AP、BP、CP,如果S△AFP+S△PCD+S△BPE=,那么△ABC的内切圆半径为()A.1 B.C.2 D.12.一个正方体的表面涂满了颜色,按如图所示将它切成27个大小相等的小立方块,设其中仅有i个面(i=1,2,3)涂有颜色的小立方块的个数为x i,则x1,x2,x3之间的关系为()A.x1﹣x2+x3=1 B.x1+x2﹣x3=1 C.x1+x2﹣x3=2 D.x1﹣x2+x3=213.正实数a1,a2,…,a2011满足a1+a2+…+a2011=1,设P=,则()A.p>2012 B.p=2012C.p<2012 D.p与2012的大小关系不确定14.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H,以O为圆心,OC为半径的圆弧交OA于D,若直线GH与弧CD所在的圆相切于矩形内一点F,则下列结论:①AG=CH;②GH=;③直线GH的函数关系式y=﹣;④梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,⊙P的半径为.其中正确的有()A.1个B.2个C.3个D.4个15.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是嘉淇、小刚两同学的作业:【嘉淇】①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).【小刚】①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是()A.嘉淇对,小刚不对B.嘉淇不对,小刚对C.两人都对D.两人都不对16.《歌词古体算题》记载了中国古代的一道在数学史上名扬中外的“勾股容圆”名题,其歌词为:“十五为股八步勾,内容圆径怎生求?有人算得如斯妙,算学方为第一筹.”当中提出的数学问题是这样的:今有股长15步,勾长8步的直角三角形,试求其内切圆的直径.正确的答案是()A.3步B.4步C.5步D.6步第II卷(非选择题共78分)二.填空题(共4小题)17.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为.18.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.19.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形APEF和正方形PBGH,点O1和O2是这两个正方形的中心,连接O1O2,设O1O2的中点为Q;当点P从点C运动到点D时,则点Q移动路径的长是.20.嘉淇同学在做数学题时,发现下面有趣的结果:3﹣2=18+7﹣6﹣5=415+14+13﹣12﹣11﹣10=924+23+22+21﹣20﹣19﹣18﹣17=16…根据以上规律可知第100行左起第一个数是.三.解答题(共6小题)21.阅读下列一段话,并解决后面的问题.观察下面一列数:3,5,7,9,…我们发现这一列数从第2项起,每一项与它前一项的差都等于同一个常数2,这一列数叫做等差数列,这个常数2叫做等差数列的公差.(1)等差数列3,7,11,…的第五项是;(2)如果一列数a1,a2,a3,…是等差数列,且公差为d,那么根据上述规定,有a2﹣a1=d a3﹣a2=d a4﹣a3=d …所以,a2=a1+d;a3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d …a n=(用含有a1与d的代数式表示)(3)一个等差数列的第二项是107,第三项是135,则它的公差为,第一项为,第五项为.22.“掷实心球”是我省初中毕业生体育测试项目之一.测试时,老师记录下学生掷实心球的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男试成绩(单位:米)如下:7.398.699.417.508.507.8911.118,31 6.098.11请完成下列问题:(1)求这10名男生掷实心球成绩的平均数;(2)这10名男生掷实心球得分的众数是,中位是;(3)如果将9分(含9分)以上定为“优秀”,请你估计这500名男生在这次模拟测试中得优秀的人数.23.如图1,正方形ABCD中,点E为AD上任意一点,连接BE,以BE为边向BE右侧作正方形BEFG,EF交CD于点M,连接BM,N为BM的中点,连接GN,FN.(1)若AB=4,AE:DE=3:1,求EM的长;(2)求证:GN=FN;(3)如图2,移动点E,使得FN⊥CD于点Q时,请探究CM与DE的数量关系并说明理由.24.A、B两个水管同时开始向一个空容器内注水.如图是A、B两个水管各自注水量y(m3)与注水时间x(h)之间的函数图象,已知B水管的注水速度是1m3/h,1小时后,A水管的注水量随时间的变化是一段抛物线,其顶点是(1,2),且注水9小时,容器刚好注满.请根据图象所提供的信息解答下列问题:(1)直接写出A、B注水量y(m3)与注水时间x(h)之间的函数解析式,并注明自变量的取值范围:y A=y B=()(2)求容器的容量;(3)根据图象,通过计算回答,当y A>y B时,直接写出x的取值范围.25.数学活动课上,嘉淇和同学们共同探究学习了下面的问题,请你按要求解答.【数学思考】如图1,A、B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直)【问题解决】如图2,过点B作BB′⊥l2,且BB′等于河宽,连接AB′交l1于点M,作MN⊥l1交l2于点N,则MN就为桥所在的位置.【类比联想】(1)如图3,正方形ABCD中,点E、F、G分别在AB、BC、CD上,且AF⊥GE,求证:AF=EG.(2)如图4,矩形ABCD中,AB=2,BC=x,点E、F、G、H分别在AB、BC、CD、AD上,且EG⊥HF,设y=,试求y与x的函数关系式.【拓展延伸】如图5,一架长5米的梯子斜靠在竖直的墙面OE上,初始位置时OA=4米,由于地面OF较光滑,梯子的顶端A下滑至点C时,梯子的底端B左滑至点D,设此时AC=a米,BD=b米.(3)当a=米时,a=b.(4)当a在什么范围内时,a<b?请说明理由.26.回收废旧物品再利用是我们应养成的好习惯,剪纸课上,小明同学找来一些废旧纸片制作粉笔盒,请根据情境完成下面的探究.【操作】小明同学想制作棱长为1cm的正方体粉笔盒盒,现选用废纸片进行如下设计:【说明】方案一:图形中的圆过点A、B、C;方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点纸片利用率=×100%【发现】(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.说明:方案三中的每条边均过其中两个正方形的顶点.2016年河北省初中毕业生升学文化课模拟考试数学试卷参考答案一.选择题(共16小题)1.B.2.D.3.A.4.A.5.C.6.C.7.D.8.A.9.C.10.D.11.A.12.D.13.A.14.D.15.C.16.D.二.填空题(共4小题)17.y=.18.()n﹣1.19.3.20.10200.三.解答题(共6小题)21.解:(1)等差数列3,7,11,…的公差是4,故第4项是15,第5项是19;故答案为:19;(2)∵a2=a1+d;a3=a2+d=(a1+d)+d=a1+2da4=a3+d=(a1+2d)+d=a1+3d …∴a n=a1+(n﹣1)d.故答案为:a1+(n﹣1)d;(3)∵一个等差数列的第二项是107,第三项是135,∴则它的公差为:135﹣107=28,∴第一项为:107﹣28=79,第五项为:79+4×28=191.故答案为,28,79,191.22.解:(1)平均数为:(7.39+8.6)9+9.41+7.5+8.5+.89+11.11+8.31+6.09+8.11)=8.30(m),所以这10名男生掷实心球的成绩的平均数是8.30米;(2)这10名男生掷实心球得分的众数是10分,中位数是9分;故答案为:10,9;(3)因为这10名男生掷实心球得分钟9分及以上的共有6人,所以估计500名男生在本次模拟测试中得优秀的人数为500×=300人.23.解:(1)∵AB=4,AE:DE=3:1,∴AE=3,DE=1,∴BE==5,∵∠BEF=90°,∠BEF=90°,∠BEF=90°,∴△ABE∽△DEM,∴=,即=,解得,EM=;(2)连接EN,∵∠BEF=90°,N为BM的中点,∴EN=BM=BN=NM,∴∠NBE=∠NEB,∴∠NBG=∠NEF,在△NBG和△NEF中,,∴△NBG≌△NEF,∴GN=FN;(3)如图2,延长ED,过点F作FH⊥ED,交ED的延长线于H,∵∠BCD=90°,N为BM的中点,∴CN=BM=BN=NM,∵FN⊥CD,∴CR=MR=CM,∵∠A=∠H=90°,∴∠ABE+∠AEB=90°,∵∠BEF=90°,∴∠AEB+∠FEH=90°,∴∠ABE=∠FEH,在△ABE和△HEF中,,∴△ABE≌△HEF,∴AE=HF,∵∠H=∠RDH=∠DRF=90°,∴四边形DRFH是矩形,∴AE=HF=DR,∴AD﹣AE=CD=DR,即DE=CR,∴DE=CM.24.解:(1)∵A水管的注水速度是1m3/h,∴y A=x(0≤x≤9),;(2)容器的总容量是:x=9时,f(x)=x+(x﹣1)2+2=9+10=19(m3),(3)当x=(x﹣1)2+2时,解得:x1=5﹣2,x2=5+2,利用图象可得出:当y A>y B时,x的取值范围是:5﹣2<x<5+2.25.解:(1)作BH∥EG交CD于点H.则BH=EG.∵AF⊥EG,∴BH⊥AF,∴∠BIF=90°,∴∠IBF+∠AFB=90°,又∵直角△ABF中,∠BAF+∠AFB=90°,∴∠BAF=∠IBF,∴在△ABF和△BCH中,,∴△ABF≌△BCH,∴AF=BH,∴AF=EG;(2)同理作BM∥EG交CD于点M,作AN∥HF交BC于点N.同(1)可得∠BAN=∠MBC,又∵∠ABN=∠C,∴△ABN∽△BCM,∴==,又HF=AN,EG=BM,∴y=;(3)解:∵CO=4﹣a,DO=3+b.∴Rt△DOC中,DC2=(4﹣a)2+(3+b)2,即(4﹣a)2+(3+b)2=52.当a=b时,有(4﹣a)2+(3+a)2=25,解得a=1或a=0(不合).故答案为:1;(4)当0<a<1时,a<b.理由如下:如图5,过点B作DC的平行线,过点C作OF的平行线,两线交于点P,连接AP.∵CD∥BP,PC∥OF,∴DBPC为平行四边形,∴BP=DC,CP=BD.又AB=DC,∴BP=AB.∴∠BAP=∠3+∠1=∠BPA=∠4+∠2.若a<b,即AC<BD=CP,因而在△ACP中,∵∠1>∠2,∴∠3<∠4.又∵∠5=∠4,∴∠3<∠5.∵Rt△ABO中,sin∠3==,同理sin∠5==,∴>,解得,0<a<1.26.解:发现:(1)小明的这个发现正确.理由:解法一:如图一:连接AC、BC、AB,∵AC=BC=,AB=2∴AC2+BC2=AB2,∴∠BCA=90°,∴AB为该圆的直径.解法二:如图二:连接AC、BC、AB.易证△AMC≌△BNC,∴∠ACM=∠CBN.又∵∠BCN+∠CBN=90°,∴∠BCN+∠ACM=90°,即∠BCA=90°,∴AB为该圆的直径.(2)如图三:∵DE=FH,DE∥FH,∴∠AED=∠EFH,∵∠ADE=∠EHF=90°,∴△ADE≌△EHF(ASA),∴AD=EH=1.∵DE∥BC,∴△ADE∽△ACB,∴=,∴=,∴BC=8,∴S△ACB=16.∴该方案纸片利用率=×100%=×100%=37.5%;探究:(3)过点C作CD⊥EF于D,过点G作GH∥AC,交BC于点H,设AP=a,∵PQ∥EK,易得△APQ∽△KQE,△CEF是等腰三角形,△GHL是等腰三角形,∴AP:AQ=QK:EK=1:2,∴AQ=2a,PQ=a,∴EQ=5a,∵EC:ED=QE:QK,∴EC=a,则PG=5a+a=a,GL=a,∴GH=a,∵,解得:GB=a,∴AB=a,AC=a,∴S△ABC=×AB×AC=a2,S展开图面积=6×5a2=30a2,∴该方案纸片利用率=×100%=×100%=49.86%.。
河北邯郸中考一模五科参
河北邯郸中考一模五科参————————————————————————————————作者:————————————————————————————————日期:2016年邯郸市中考模拟(一)数学试卷参考答案及评分标准一.选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.) 题号 1 2 3 4 5 6 7 8 答案 D B B A A C B D 题号 9 10 11 12 13 14 15 16 答案DCDDACCB二.填空题(本大题共4个小题,每小题3分,共12分.) 17、6.96×105 18、1 19、53π20、5 三.解答题(本大题共6个小题,共66分.) 21、解: (1)45⊗=51﹣54-5=0…………………………………………3分(2)x 1-x2-x =1…………………………………………4分1-(x -2)= x…………………………………………6分 1-x +2=x -2x=-3 X=23…………………………………………8分 检验:当X=23时,原式≠0…………………………………………9分 所以,X=23是原方程的解…………………………………………10分 22、解:平均分 方差 中位数 合格率 优秀率 男生 6.9 2.4 7 91.7﹪ 16.7﹪ 女生71.3783.3﹪8.3﹪…………………………………………3分(2) 从平均数上看,女生的平均分高于男生;从方差上看,女生的方差低于男生,波动性较小。
…………………… 5分 (3)设:男生新增优秀人数为x 人 2+4+x +2x=48×50℅X=6 6×2=12答:男生新增优秀人数为6人,女生新增优秀人数为12人 。
........................ 10分 23、(1)四边形ABCE 是平行四边形。
(1)分理由:∵点D 是线段AC 的中点,BE =2BD ∴AD=CD,DE=BD∴四边形ABCE 是平行四边形 ……………………………………4分 ( 2 )①∵四边形ABCE 是平行四边形 ∴CE=AB∵∠MEC=∠EMC ∴CM=AB∵∠CMB=∠CAB=90°∠MNC=∠ANB ∴△ABN ≌△MCN ………………………………………… 9分②21………………………………………… 10分 24、(1)m=2,S △AOB =8; ………………………………………… 2分 (2)设:MN 与反比例函数xky =的交点为D 当ND:DN=1:3时,D(﹣1,2),代入xky =得:k=﹣2 当ND:DN=3:1时,D(1,2) ,代入xky =得:k=2………………… 7分(3)E 1(﹣1,4)F 1, (1,﹣4);E 2(﹣4,1)F 2(4,﹣1)……………………11分25、(1)①当α=0°时,连接DE ,则∠CDE=90°,CD=2n;……………………2分 ②当α=180°时,AE BD =mn.………………………………………………………………… 4分 (2)∵∠ACB=∠DCE∴∠ACE=∠BCD ∵CE CD =AC BC =mn∴△ACE ∽△BCD ∴AE BD =mn……………………………………………………………………… 8分(3)5512 ……………………………………………………………………… 9分(4)210或31142 …………………………………………………………………… 11分 参考过程:(4)∵m =6,n =24, ∴CE=3,CD=22,AB=22BC AC -=2当α=90°时,半圆O 与AC 相切,如图1; 在R t △ABC 中:BD=22CD BC +=22)22()24(+=210当α=90°+∠ACB 时,当α=90°时;半圆O 与BC 相切,如图2; 过点E 作EM ⊥AB 延长线于点M ,垂足为M ; ∵BC ⊥AB ,∴四边形BCEM 为矩形, ∴BM=EC=3,ME=24 ∴AM=5 ∴AE=22ME AM +=57由问题2可知AEBD =332 ,BD=31142 ∴CAC AB26、探究:(1)每个围巾所获得的利润是(20+x)元,这种围巾的销售量是(400-10x)个。
2016年河北省初中毕业生升学文化课模拟考试数学试卷
2016年河北省初中毕业生升学文化课模拟考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分,卷一为选择题,卷二为非选择题。
本试卷总分120分,答题时间120分钟。
卷Ⅰ 选择题(1-16题 42分)注意事项:1.答卷Ⅰ前,请将姓名,准考证号填入答题卡的相应位置内。
2.答卷Ⅰ时,请用2B 型黑色铅笔,把正确答案的序号填入答题卡指定区域内,答 在其他位置不得分,收卷时,监考人员会将试卷、答题卡一并收回。
一、选择题(本大题共16个小题,1-6小题,每小题2分;7-16小题,每小题3分,共42分。
下面给出的四个选项中,只有一个是符合题目要求的。
) (1)计算=02014A. 0B. 1C. 1007D. 2014(2)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 A.61 B. 31C.21 D. 32 (3)如果一个正多边形的中心角是72°,那么它的内角和为 A. 360° B. 540° C. 720° D. 1080° (4)已知反比例函数xy 10=,当1<x <2时,y 的范围为 A. 0<y <5 B. 1<y <2C. 5<y<10D. y>10(5)保护环境是每位公民应尽的义务,下列是回收、绿色包装、低碳、节水的标志,其中是中心对称图形的是(A)(B)(C)(D)(6)已知直线l与半径为2的⊙O相离,则点O到直线l的距离在数轴上表示正确的是(A)(B)(C)(D)(7)用一个平面截取一个几何体,不能截得三角形的截面是A. 圆柱B. 圆锥C. 三棱柱D. 正方体(8)已知25+=a,2-5=b,化简(22---aabbbaba)÷abba22+的值为A. 1B.41C.25D.105(9)如图1,点C在∠AOB的AB边上,用尺规作出了OACN∥,作图痕迹中,劣弧FG是A. 以点C为圆心,OD为半径的弧B. 以点C为圆心,DM为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DM为半径的弧图1(10)如图2,点O ,A 在数轴上表示的数分别是0,0.1。
河北省邯郸市2016年初中毕业生升学模拟考试(二)数学试卷
2016年邯郸市中毕业生升学模拟考试(二)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-2的相反数是A .2B .21C .21-D .2-2.下列图形中,是图1所示几何体的俯视图的是A .B .C .D .3.下列计算正确的是A .3632)(b a b a = B .326a a a =÷C . 532)(a a = D .333)(b a ab =-4.如图2,DE 是△ABC 的中位线,若BC =8,则DE 的长为A .2B .4C .6D .8图1BDAE C图25.对于一组统计数据:3,3,6,3,5,下列说法中正确的是A .中位数是6B .众数是3C .平均数是3D .方差是86.如图3,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A . 75°B . 55°C . 40°D . 35°7.已知直线l 的解析式为b kx y +=,如图4所示,则下列结论 正确的是A .00>>b k ,B .00<<b k ,C .00><b k ,D .00<>b k ,8.如果211-=m ,那么m 的取值范围是A .10<<mB .21<<mC .32<<mD .43<<m9.如图5,△ABC 中,∠ABC =63°,点D ,E 分别是△ABC 的边BC ,AC 上的点,且AB =AD =DE =EC ,则∠C 的度数是 A .21° B .19° C .18°D .17°10. 不等式组⎩⎨⎧≤-≤-31242x x 的整数解共有A .3个B .4个C .5个D .6个图313ab2图4D B图511.如图6,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b (a < b ),则b -a 的值为 A .5 B .6 C .7D .812.计算aa a a 2422+-+的结果是 ABCD13.如图7,画线段AB 的垂直平分线交AB 于点O ,在这条垂直平分线上截取OC =OA ,以A 为圆心,AC 为半径画弧于AB 与点P ,则线段AP 与AB 的比是 A .2:2 B .1:3 C .2:3D .3:214.已知关于x 的方程012=-+mx x 的根的判别式的值为5,则m 的值为 A .±3 B .3C .1D .±115.如图8,点P 是等边三角形ABC 外接圆⊙O 上点,在以下判断中:①PB 平分∠APC ;②当弦PB 最长时,△APC 是等腰三角形; ③若△APC 是直角三角形时,则PA ⊥AC ;④当∠ACP =300时,△BPC 是直角三角形.其中正确的有 A .①②③ B .①③④C .②③④D .①②④图6图7 CBAOPA16.如图9,在平面直角坐标系中,直线y =-3x +3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形ABCD ,双曲线xky(k>0)经过点D ,将四边形ABCD 沿x 轴负方向平移a 个单位长度后,点C 恰好落在双曲线上则a 的值是 A .1 B .2C .3D .4图9x2016年邯郸市中考模拟(二)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.若式子1-x 在实数范围内有意义,则x 的取值范围是 . 18.分式方程112=-x 的解是 .19.如图10,已知ABC △的周长是20,OB OC ,分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,△ABC 的面积是 .20.如图11,在直角坐标系中,从原点O 开始沿x 轴正半轴取线段OA =1,依次截取AB =2,BC =4,CD =8…截取的每条线段长是前一条线段的2倍(如DE =2CD ),然后分别以OA ,AB ,BC ,CD,…为直径画半圆,依次记为第1,2,3,4…个半圆,按此规律,继续画半圆,过第4个和第5个两个半圆的中点作直线l ,则直线l 与y 轴交点的纵坐标是 .图10 D三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我(1)若小明同学心里想的是数9,请帮他计算出最后结果:[]925)19()19(22÷⨯--+(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a ()0≠a ,请你帮小明完成这个验证过程.22.(本小题满分10分)2016年4月15日至5月15日,邯郸市约12万名初三毕业生参加了中考体育测试,为了了解今年初三毕业学生的体育成绩,从某校随机抽取了60名学生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A 、B 、C 、D 表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题: (1) m = ,n = ,x = ,y = ; (2) 在扇形图中,B 等级所对应的圆心角是 度;(3) 请你估计邯郸市这12万名初三毕业生成绩等级达到优秀和良好的大约有多少人? (4) 初三(1)班的甲、乙、丙、丁四人的成绩均为A ,现决定从这四名同学中选两名参加学校组织的体育活动,直接写出恰好选中甲、乙两位同学的概率.23.(本小题满分10分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到(1)甲队单独完成这项工程所需天数n = ,乙队每天修路的长度m = (米); (2)甲队先修了x 米之后,甲、乙两队一起修路,又用了y 天完成这项工程(其中x ,y为正整数).①当x=90时,求出乙队修路的天数;②求y 与x 之间的函数关系式(不用写出x 的取值范围); ③若总费用不超过22800元,求甲队至少先修了多少米.24.(本小题满分11分)如图12-1,△ABC 中,AC =BC ,∠A =30°,点D 在AB 边上且∠ADC =45°. (1)求∠BCD 的度数;(2)将图12-1中的△BCD 绕点B 顺时针旋转α(0°< α ≤360°)得到△BC′D′.①当点D′恰好落在BC 边上时,如图12-2所示,连接C′C 并延长交AB 于点E .求证:AE =B D′;②连接D D′,如图12-3所示,当△DB D′与△ACB 相似时,直接写出α的度数.DCBA图12-1图12-2EC'D'DCBA图12-3C' D' DCBA25.(本小题满分11分)如图13,抛物线l :c bx x y ++-=2 (b ,c 为常数),其顶点E 在正方形ABCD 内或边上,已知点A (1,2),B (1,1),C (2,1). (1)直接写出点D 的坐标;(2)若l 经过点B ,C ,求l 的解析式;(3)设l 与x 轴交于点M ,N ,当l 的顶点E 与点D 重合时,求线段MN 的值;当顶点E 在正方形ABCD 内或边上时,直接写出线段MN 的取值范围;(4)若l 经过正方形ABCD 的两个顶点,直接写出所有符合条件的c 的值.26.(本小题满分14分)如图14-1,矩形ABCD 中,AB =8,BC =38,半径为3的⊙P 与线段BD 相切于点M ,圆心P 与点C 在直线BD 的同侧,⊙P 沿线段BD 从点B 向点D 滚动. 发现: BD =______;∠CBD 的度数为_______;拓展:①当切点M 与点B 重合时,求⊙P 与矩形ABCD 重叠部分的面积②在滚动过程中如图14-2,求AP 的最小值;B (图14-1B 图14-2探究:①若⊙P 与矩形ABCD 的两条对角线都相切,求此时线段BM 的长, 并直接写出tan ∠PBC 的值.②在滚动过程中如图14-3,点N 是AC 上任意一点,直接写出BP +PN 的最小值.河北省邯郸市2016年初中毕业生升学模拟考试(二)数学试卷参考答案及评分标准 一.选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.)图14-3二.填空题(本大题共4个小题,每小题3分,共12分.) 17、1≥x 18、3=x19、30 20、15-三.解答题(本大题共6个小题,共66分.)21、解:(1)解原式=(100-64)×25÷9=100 …………………………………………………………4分 (2)()()a a a ÷⨯--+25]11[22…………………………………………………6分()()[]a a a a a ÷⨯+--++=25121222 ……………………………………8分a a ÷⨯=254100= …………………………………………………………………………10分注:其他计算方法结果正确均可得分22、解:(1)24, 12, 0.4, 0.2 ………………………………………………………4分(2)144 ……………………………………………………………6分 (3)由上表可知达到优秀和良好的共有21+24=45人,9604512=⨯万人. ………………………………………………………………8分 (4)61………………………………………………………………10分23、解:(1)35, 50;……………………………………………………………2分(2)①乙队修路的天数为125030901050=+-(天) ……………………5分②由题意,得10505030=++y x )( ∴y 与x 之间的函数关系式为: 801050xy -=810580+-=x y …………………………8分注:函数关系式没有化简不扣分③由题意,得22800)1160600(30600≤⨯++⨯y x22800801050176020≤-⨯+xx 解得x ≥150,答:若总费用不超过22800元,甲队至少先修了150米。
河北省邯郸市2016中考数学一模考试题及答案
2016年河北省邯郸市中考数学一模试卷一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题3分,共42分.1.(3分)(2016•邯郸一模)在3,﹣1,0,﹣2这四个数中,最大的数是()A.0 B.6 C.﹣2 D.32.(3分)(2015•河南)如图所示的几何体的俯视图是()A.B.C.D.3.(3分)(2016•邯郸一模)一元一次不等式x+1<2的解集在数轴上表示为()A.B.C.D.4.(3分)(2013•重庆)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°5.(3分)(2016•邯郸一模)在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别.从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.6.(3分)(2016•邯郸一模)下列计算正确的是()A.|﹣a|=a B.a2•a3=a6C.D.()0=07.(3分)(2011•益阳)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形8.(3分)(2007•江西)已知:是整数,则满足条件的最小正整数n为()A.2 B.3 C.4 D.59.(3分)(2015•宁夏)如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°10.(3分)(2016•邯郸一模)下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+111.(2分)(2016•邯郸一模)下列命题中逆命题是真命题的是()A.对顶角相等B.若两个角都是45°,那么这两个角相等C.全等三角形的对应角相等D.两直线平行,同位角相等12.(2分)(2013•大连)若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4 B.m>﹣4 C.m<4 D.m>413.(2分)(2009•抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C.3 D.14.(2分)(2016•邯郸一模)如图,在平面直角坐标系中,过点A与x轴平行的直线交抛物线y=于点B、C,线段BC的长度为6,抛物线y=﹣2x2+b与y轴交于点A,则b=()A.1 B.4.5 C.3 D.615.(2分)(2016•邯郸一模)已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A.外心B.内心 C.重心D.无法确定16.(2分)(2016•邯郸一模)如图是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额﹣总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中利润与销售量的函数图象,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.(3分)(2013•武汉)太阳的半径约为696 000千米,用科学记数法表示数696 000为.18.(3分)(2009•河北)若m、n互为倒数,则mn2﹣(n﹣1)的值为.19.(3分)(2016•邯郸一模)如图所示,正五边形ABCDE的边长为1,⊙B过五边形的顶点A、C,则劣弧AC的长为.20.(3分)(2016•邯郸一模)如图,在第1个△A1BC中,∠B=20°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第5个三角形中以A5为顶点的内角度数是.三、解答题(本大题共6个小题,共66分)21.(10分)(2016•邯郸一模)定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=,等式右边是通常的加法、减法及除法运算,比如:2⊗1==0(1)求5⊗4的值;(2)若x⊗2=1(其中x≠0),求x的值是多少?22.(10分)(2016•邯郸一模)为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23.(10分)(2016•邯郸一模)已知:如图1,Rt△ABC中,∠BAC=90°,点D是线段AC的中点,连接BD并延长至点E,使BE=2BD.连接AE,CE.(1)求证:四边形ABCE是平行四边形;(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠MEC=∠EMC,BM交AC于点N.①求证:△ABN ≌△MCN;②当点M恰为AE中点时sin∠ABM=.24.(11分)(2016•邯郸一模)已知函数y=﹣x+4的图象与函数的图象在同一坐标系内.函数y=﹣x+4的图象如图1与坐标轴交于A、B两点,点M(2,m)是直线AB上一点,点N与点M关于y轴对称,线段MN交y轴于点C.(1)m=,S△AOB=;(2)如果线段MN被反比例函数的图象分成两部分,并且这两部分长度的比为1:3,求k的值;(3)如图2,若反比例函数图象经过点N,此时反比例函数上存在两个点E(x1,y1)、F(x2,y2)关于原点对称且到直线MN的距离之比为1:3,若x1<x2请直接写出这两点的坐标.25.(11分)(2016•邯郸一模)平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°).(1)①当α=0°时,连接DE,则∠CDE=°,CD=;②当α=180°时,=.(2)试判断:旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)若m=10,n=8,当α=∠ACB时,线段BD=.(4)若m=6,n=,当半圆O旋转至与△ABC的边相切时,线段BD=.四、解答题(共1小题,满分14分)26.(14分)(2016•邯郸一模)【探究】:某商场秋季计划购进一批进价为每条40元的围巾进行销售根据销售经验,应季销售时,若每条围巾的售价为60元,则可售出400条;若每条围巾的售价每提高1元,销售量相应减少10条.(1)假设每条围巾的售价提高x元,那么销售每条围巾所获得的利润是元,销售量是条(用含x的代数式表示).(2)设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每条围巾的售价.【拓展】:根据销售经验,过季处理时,若每条围巾的售价定为30元亏本销售,可售出50条;若每条围巾的售价每降低1元,销售量相应增加5条,(1)若剩余100条围巾需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每条围巾的售价应是元.(2)若过季需要处理的围巾共m条,且100≤m≤300,过季亏损金额最小是元;(用含m的代数式表示)【延伸】:若商场共购进了500条围巾且销售情况满足上述条件,如果应季销售利润在不低于8000元的条件下:(1)没有售出的围巾共m条,则m的取值范围是:;(2)要使最后的总利润(销售利润=应季销售利润﹣过季亏损金额)最大,则应季销售的售价是元.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.2016年邯郸市中考模拟(一)数学试卷参考答案及评分标准一.选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.)二.填空题(本大题共4个小题,每小题3分,共12分.) 17、6.96×10518、1 19、53π20、5 三.解答题(本大题共6个小题,共66分.) 21、解: (1)45⊗=51﹣54-5=0 …………………………………………3分 (2)x 1-x2-x =1…………………………………………4分 1-(x -2)= x…………………………………………6分1-x +2=x -2x=-3 X=23…………………………………………8分 检验:当X=23时,原式≠0…………………………………………9分 所以,X=23是原方程的解…………………………………………10分…………………………………………3分 (2) 从平均数上看,女生的平均分高于男生;从方差上看,女生的方差低于男生,波动性较小。
河北省邯郸市中考数学一模试卷
河北省邯郸市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·安顺模拟) 的相反数是()A . 2B . ﹣2C .D . ﹣2. (2分)若将21000000用科学记数法表示为2.1×10n(n是正整数),则n的值为()A . 5B . 6C . 7D . 83. (2分)等式成立的条件是()A . x≠3B . x≥0C . x≥0且x≠3D . x>34. (2分)如图,下列图案是几种名车的标志,其中是轴对称图形的图案共有()A . 1个B . 2个C . 3个D . 4个5. (2分)下列调查中,适宜采用全面调查(普查)方式的是()A . 调查长江流域的水污染情况B . 调查重庆市民对中央电视台2016年春节联欢晚会的满意度C . 为保证我国首艘航母“瓦良格”的成功试航,对其零部件进行检查D . 调查一批新型节能灯泡的使用寿命6. (2分)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A . ∠C=∠EB . ∠B=∠ADEC .D .7. (2分) (2017七下·萧山期中) 方程组的解为则被遮盖的两个数分别为()A . 2,1B . 5,1C . 2,3D . 2,48. (2分)(2017·和平模拟) 如图是由3个相同的正方体组成的一个立方体图形,它的三视图是()A .B .C .D .9. (2分)一个饭店所有员工的月收入情况如下:精力领班迎宾厨房厨师助理服务员洗碗工人数/人1222382月收入/元4700190015002200150014001200你认为用来描述该饭店员工的月收入水平不太恰当的是()A . 所有员工月收入的平均数B . 所有员工月收入的中位数C . 所有员工月收入的众数D . 所有员工月收入的中位数或众数10. (2分)在平面直角坐标系中,线段AB两端点的坐标分别为A(1,0),B(3,2).将线段AB平移后,A、B的对应点的坐标可以是()A . (1,﹣1),(﹣1,﹣3)B . (1,1),(3,3)C . (﹣1,3),(3,1)D . (3,2),(1,4)11. (2分) (2018九上·梁子湖期末) 如图,抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:① ;② ;③对于任意实数m,a+b≥am2+bm总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为A . 1 个B . 2 个C . 3 个D . 4 个12. (2分)(2019·苏州模拟) 如图,直线与x、y轴分别交于A,B,与反比例函数的图像在第二象限交于点C,过A作x轴的垂线交该反比例函数图像于点D.若AD=AC,则k值为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为________.14. (1分)因式分解:3x2﹣12x+12=________15. (1分)(2019·长春模拟) 若关于x的一元二次方程kx2-2x+1=0有实数根,则k的取值范围是________。
河北省邯郸市初中毕业生升模拟考试(一)数试卷 人教版
已知:如图 121,Rt△ABC 中,∠BAC=90°,点 D 是线段 AC 的中点,连接 BD 并延长至 点 E,使 BE=2BD.连接 AE,CE。
(1)求证:四边形 ABCE 是平行四边形; (2)如图 122 所示,将三角板顶点 M 放在 AE 边上,两条直角边分别过点 B 和点 C,若
∠MEC=∠EMC,BM 交 AC 于点 N。 ①求证:△ABN≌△MCN; ②当点 M 恰为 AE 中点时 sin∠ABM=_____。
数 试卷
卷Ⅱ(非选择题,共 78 分)
注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚. 2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.
三
题号
二
21 22 23 24 25 26
得分
得分
评卷人
二、填空题(本大题共 4 个小题,每小题 3 分,共 12 分.把答案写在 题中横线上)
17.太阳的半径约为 696 000 千米,用科记数法表示数 696 000 为
A
A
A
E
O
B
D
C
B
C B
C
O
图 141
E
D
图 142
备用图
(1)①当 α=0°时,连接 DE,则∠CDE=______°,CD=______;
BD ②当 α=180°时, AE =___________. (2)试判断:旋转过程中 BD 的大小有无变化?请仅就图 142 的情形给出证明.
AE
(3)若 m=10,n=8,当 α=∠ACB 时,线段 BD=________.
y
A C
A.1 C.3
B.4.5 D.6
O
x
河北省邯郸市中考数学一模考试试卷
河北省邯郸市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七上·下陆月考) 下列各数中互为相反数的是()A . 和B . 和C . 和D . 和2. (2分)地球绕太阳每小时转动通过的路程约是1.1×105km,用科学记数法表示地球一天(以24小时计)转动通过的路程约是()A . 0.264×107kmB . 2.64×106kmC . 26.4×105kmD . 264×104km3. (2分) (2019八上·定安期末) 下列各式由左边到右边的变形中,属于分解因式的是()A .B .C .D .4. (2分)(2017·宜昌模拟) 用五块大小相同的小正方体搭成如图所示的几何体,这个几何体的俯视图是()A .B .C .D .5. (2分)(2016·黔南) 函数y= 的自变量x的取值范围在数轴上表示正确的是()A .B .C .D .6. (2分) (2019九上·长白期中) 若关于x的一元二次方程有两个相等的实数根,则a等于()A . 4B . —4C . 0或4D . 0或—47. (2分)(2018·陕西) 若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A . (-2,0)B . (2,0)C . (-6,0)D . (6,0)8. (2分) (2017九上·滕州期末) 已知反比例函数y= 的图象经过点P(﹣1,2),则这个函数的图象位于()A . 第一、三象限B . 第二、三象限C . 第二、四象限D . 第三、四象限二、填空题 (共6题;共9分)9. (1分) (2018八上·兰州期末) 已知m=-2,a , b为两个连续的整数,且a<m<b ,则a-b =________.10. (1分)小明和小丽到文化用品商店帮助同学们买文具.小明买了3支笔和2个圆规共花19元;小丽买了5支笔和4个圆规共花35元.设每支笔x元,每个圆规y元.请列出满足题意的方程组________.11. (2分)(2018·铜仁) 如图,m∥n,∠1=110°,∠2=100°,则∠3=________°.12. (2分) (2016·十堰模拟) 如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地有一艘渔船遇险,要求马上前去救援,要求马上前去救援.此时C地位于A地北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里,则A、C两地之间的距离为________.13. (2分) (2020九下·安庆月考) 如图,在平面直角坐标系中,抛物线y=-x2+3x+2与y轴交于点A,点B 是拋物线的顶点,点C与点A是抛物线上的两个对称点,点D在x轴上运动,则四边形ABCD的两条对角线的长度之和的最小值为________。
河北省邯郸市数学中考一模试卷
河北省邯郸市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七下·宜昌期中) 下列各数中,界于6和7之间的数是()A .B .C .D .2. (2分)(2018·博野模拟) 已知:a× =b×1 =c÷ ,且a、b、c都不等于0,则a、b、c中最小的数是()A . aB . bC . cD . a和c3. (2分)点M(-5,y)向下平移5个单位的点关于x轴对称,则y的值是()A . -5B . 5C .D .4. (2分) (2016九上·兴化期中) 某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为甲=82分,乙=82分,S甲2=245,S乙2=190,那么成绩较为整齐的是()A . 甲班B . 乙班C . 两班一样整齐D . 无法确定5. (2分)周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6间的大小关系是()A . S3>S4>S6B . S6>S4>S3C . S6>S3>S4D . S4>S6>S36. (2分) (2019八下·埇桥期末) 若,下列不等式一定成立的是A .B .C .D .7. (2分)某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为,则可列方程为()A .B .C .D .8. (2分)如图,在▱ABCD中,E是BC的中点,且∠AEC=∠DCE,则下列结论不正确的是()A . S△AFD=2S△EFBB . BF=DFC . 四边形AECD是等腰梯形D . ∠AEB=∠ADC9. (2分)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣, m)(m>0),则有()A . a=b+2kB . a=b﹣2kC . k<b<0D . a<k<010. (2分)如图,AB为⊙O的直径,∠ DCB=30°, ∠ DAC=70°,则∠D的度数为A . 70°B . 50°C . 40°D . 30°二、填空题 (共6题;共6分)11. (1分)(2019·镇江) 若代数式有意义,则实数的取值范围是________.12. (1分) (2020八下·兴化期末) 一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子,向上的一面的点数是1的概率为________.13. (1分)(2018·青羊模拟) 如图,已知正方形ABCD的边长是⊙O半径的4倍,圆心O是正方形ABCD的中心,将纸片按图示方式折叠,使EA'恰好与⊙O相切于点A',则tan∠A'FE的值为________14. (1分)(2019·泰州) 如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为________cm.15. (1分)(2019·玉林) 如图,一次函数y1=(k﹣5)x+b的图象在第一象限与反比例函数y2=的图象相交于A,B两点,当y1>y2时,x的取值范围是1<x<4,则k=________.16. (1分)如图,矩形ABCD中,AB=5,AD=8,E是AD上一动点,把△ABC沿BE折叠,当点A的对应点A′落在矩形ABCD的对称轴上时,则AE的长为________ .三、解答题 (共7题;共76分)17. (11分) (2020九下·北碚月考) 某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.学期末抽取学生成绩统计表学生成绩A组B组C组D组E组人数0145a分析数据:平均数中位数众数开学初抽取学生成绩16b17学期末抽取学生成绩1818.519根据以上信息,解答下列问题:(1)直接写出图表中a、b的值,并补全条形统计图;(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.18. (5分) (2017八下·卢龙期末) 综合题。
邯郸市中考数学一模试卷
邯郸市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017八上·钦州期末) 下列各数中,最小的实数是()A . ﹣3B . ﹣1C . 0D .2. (2分)(2016·南京模拟) 计算(﹣ab2)3的结果是()A . a3b5B . ﹣a3b5C . ﹣a3b6D . a3b63. (2分)一个多边形的内角和是720°,这个多边形的边数是()A . 4B . 5C . 6D . 74. (2分) (2018八下·灵石期中) 如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A . 乙比甲先到B . 甲和乙同时到 B.C . 甲比乙先到D . 无法确定5. (2分)若一个等腰三角形的两边长分别是2和5,则它的周长为()A . 12B . 9C . 12或9D . 9或76. (2分)(2013·嘉兴) 如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A . 2B . 8C . 2D . 27. (2分)(2020·玉林模拟) 如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A .B .C .D .8. (2分)(2019·双柏模拟) 在一次数学测试中,某学校小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95,关于这组数据,下列说法错误的是()A . 众数是82B . 中位数是82C . 方差8.4D . 平均数是819. (2分) (2018九上·渝中开学考) 如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3 ,且∠ECF=45°,则CF长为()A . 2B . 3C .D .10. (2分)如图,AC是电杆AB的一根拉线,测得BC=6米,∠ACB=52°,则拉线AC的长为()A . 米B . 米C . 6·cos52°米D . 米11. (2分)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A . 200(1+x)2=1000B . 200+200×2x=1000C . 200+200×3x=1000D . 200[1+(1+x)+(1+x)2]=100012. (2分) (2017八下·宣城期末) 已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论正确个数有()①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC= ﹣1.A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)13. (1分)若二次函数的图象经过点(-1,0),(1,-2),当随的增大而增大时,的取值范围是________。
邯郸市初三中考数学第一次模拟试题
邯郸市初三中考数学第一次模拟试题一、选择题(本大题共8小题,共24分)1.2的算术平方根是()A. B. C. D. 22.下列运算正确的是()A. B. C. D.3.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.4.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.5.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是26.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.7.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.8.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)9.-5的相反数是______.10.分解因式:4a2-4a+1=______.11.若在实数范围内有意义,则x的取值范围为______.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.13.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.14.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.15.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.16.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)17.计算|-6|+(-2)3+()018.化简:19.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)20.解不等式组21.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?22.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.23.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?24.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)25.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.27.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO=S△OBG,连接GP,则当BO 为何值时,四边形PKBG的面积最大?最大面积为多少?答案和解析1.【答案】B【解析】解:2的算术平方根是,故选:B.根据算术平方根的定义直接解答即可.本题考查的是算术平方根的定义,即一个数正的平方根叫这个数的算术平方根.2.【答案】C【解析】解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.分别利用同底数幂的乘除运算法则以及幂的乘方运算、合并同类项法则判断得出答案.此题主要考查了同底数幂的乘除运算以及幂的乘方运算、合并同类项等知识,正确掌握运算法则是解题关键.3.【答案】D【解析】解:将180000用科学记数法表示为1.8×105,故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形.故选:A.左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.【答案】A【解析】解:观察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选:A.先根据表格提示的数据得出50名学生读书的册数,然后除以50即可求出平均数;在这组样本数据中,3出现的次数最多,所以求出了众数;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2,根据方差公式即可得出答案.本题考查的知识点有:用样本估计总体、众数、方差以及中位数的知识,解题的关键是牢记概念及公式.6.【答案】C【解析】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=-2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.7.【答案】D【解析】解:过点P作PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO=6∴S矩形ABDO=S▱ABCD∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=-3故选:D.由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.本题考查了反比例函数k的几何意义以及平行四边形的性质,理解等底等高的平行四边形与矩形面积相等是解题的关键.8.【答案】D【解析】解:连接AC、BD、OE,∵四边形ABCD是菱形,∴AC⊥BD,AM=CM,BM=DM,∵⊙O与边AB、AD都相切,∴点O在AC上,设AM=x,BM=y,∵∠BAD<90°,∴x>y,由勾股定理得,x2+y2=25,∵菱形ABCD的面积为20,∴xy=5,,解得,x=2,y=,∵⊙O与边AB相切,∴∠OEA=90°,∵∠OEA=∠BMA,∠OAE=∠BAM,∴△AOE∽△ABM,∴=,即=,解得,OE=,故选:D.连接AC、BD、OE,根据菱形的性质、勾股定理分别求出AM、BM,根据切线的性质得到∠OEA=90°,证明△AOE∽△ABM,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、菱形的性质、相似三角形的判定和性质,掌握圆的切线垂直于经过切点的半径是解题的关键.9.【答案】5【解析】解:-5的相反数是5.故答案为:5.根据相反数的定义直接求得结果.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.【答案】(2a-1)2【解析】解:4a2-4a+1=(2a-1)2.故答案为:(2a-1)2.根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握.11.【答案】x≥2【解析】解:由题意得:x-2≥0,解得:x≥2,故答案为:x≥2.根据二次根式有意义的条件可得x-2≥0,再解即可.此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.【答案】30【解析】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案为:30.根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD-∠AOB计算即可得解.本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.13.【答案】【解析】解:∵∠BOC=2∠AOC,∠BOC+∠AOC=180°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=3,∴的长度==π,∴圆锥底面圆的半径=,故答案为:.根据平角的定义得到∠AOC=60°,推出△AOC是等边三角形,得到OA=3,根据弧长的规定得到的长度==π,于是得到结论.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.【答案】-40【解析】解:根据题意得x+32=x,解得x=-40.故答案是:-40.根据题意得x+32=x,解方程即可求得x的值.本题考查了函数的关系式,根据摄氏度数值与华氏度数值恰好相等转化为解方程问题是关键.15.【答案】(2+2)【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC,∵DP⊥BC,∴∠BPD=90°,∵PB=4cm,∴BD=8cm,PD=4cm,∵把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,∴AD=PD=4cm,∠DPE=∠A=60°,∴AB=(8+4)cm,∴BC=(8+4)cm,∴PC=BC-BP=(4+4)cm,∵∠EPC=180°-90°-60°=30°,∴∠PEC=90°,∴CE=PC=(2+2)cm,故答案为:2+2.根据等边三角形的性质得到∠A=∠B=∠C=60°,AB=BC,根据直角三角形的性质得到BD=8cm,PD=4cm,根据折叠的性质得到AD=PD=4cm,∠DPE=∠A=60°,解直角三角形即可得到结论.本题考查了翻折变换-折叠问题,等边三角形的性质,直角三角形的性质,正确的理解题意是解题的关键.16.【答案】【解析】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助线是解题的关键.17.【答案】解:原式=6-8+1=-1.【解析】直接利用零指数幂的性质以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:==a.【解析】根据分式的减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.19.【答案】【解析】解:(1)画树状图为:共有4种等可能的结果数,其中小明和小刚都在本周日上午去游玩的结果数为1,所以小明和小刚都在本周日上午去游玩的概率=;故答案为(2)画树状图为:共有8种等可能的结果数,其中他们三人在同一个半天去游玩的结果数为2,所以他们三人在同一个半天去游玩的概率=.(1)画树状图展示所有4种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解;(2)画树状图展示所有8种等可能的结果数,找出小明和小刚都在本周日上午去游玩的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.【答案】解:解不等式2x>1-x,得:x>,解不等式4x+2<x+4,得:x<,则不等式组的解集为<x<.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】200 12 36 108【解析】解:(1)∵44÷22%=200(名)∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.(2)200×30%=60(名).(3)∵3200×36%=1152(名)∴“总是”对错题进行整理、分析、改正的学生有1152名.故答案为:200、12、36、108.(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;最后根据“常常”对应的人数的百分比是30%,求出“常常”对应扇形的圆心角为多少即可.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.此题主要考查了条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)∵四边形ABCD为矩形,∴AB=CD,AD∥BC,∠B=∠D=90°,∠BAC=∠DCA.由翻折的性质可知:∠EAB=∠BAC,∠DCF=∠DCA.∴∠EAB=∠DCF.∠∠在△ABE和△CDF中,∠∠∴△ABE≌△CDF(ASA),∴DF=BE.∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形;(2)当∠BAE=30°时,四边形AECF是菱形,理由:由折叠可知,∠BAE=∠CAE=30°,∵∠B=90°,∴∠ACE=90°-30°=60°,即∠CAE=∠ACE,∴EA=EC,∵四边形AECF是平行四边形,∴四边形AECF是菱形.【解析】(1)首先证明△ABE≌△CDF,则DF=BE,然后可得到AF=EC,依据一组对边平行且相等四边形是平行四边形可证明AECF是平行四边形;(2)由折叠性质得到∠BAE=∠CAE=30°,求得∠ACE=90°-30°=60°,即∠CAE=∠ACE,得到EA=EC,于是得到结论.本题主要考查了菱形的判定,全等三角形的判定和性质,折叠的性质、矩形的性质、平行四边形的判定定理和勾股定理等,综合运用各定理是解答此题的关键.23.【答案】240【解析】解:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=-6x+300,由题意(-6x+300)x=3600,解得x=20或30(舍弃)答:参加这次旅游的人数是20人.(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.本题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.24.【答案】150° 5【解析】解:(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.∵∠DCG=60°,∴∠CDN=30°.又∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠MAD=∠CDN=30°(同角的余角相等),∴箱盖绕点A转过的角度为:360°-90°-30°-90°=150°.在直角△BCH中,∠BCH=30°,BC=10cm,则BH=BC=5cm.故答案是:150°;5;(2)在直角△AMD中,AD=BC=10cm,∠MAD=30°,则MD=AD•sin30°=×10=5(cm).∵∠DCN=30°,∴cos∠DCN=cos30°==,即=,解得EF=32.4.即箱子的宽EF是32.4cm.(1)如图,过点B作BH⊥CG于H,过点D作CG的垂线MN交AF于M,交HG于N.利用矩形的性质、直角三角形的性质以及等角的余角相等得到∠MAD=30°,根据周角的定义易求箱盖绕点A转过的角度;通过解直角△BHC来求BH的长度;(2)通过解直角△AMD得到线段MD的长度,则DN=65-EF-DM,利用解直角△DCN来求CD的长度,即EF的长度即可.本题考查了解直角三角形的应用.主要是余弦概念及运算,关键把实际问题转化为数学问题加以计算.25.【答案】解:(1)∵点A(,0)与点B(0,-),∴OA=,OB=,∴AB==2,∵∠AOB=90°,∴AB是直径,∴⊙M的半径为:;(2)∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(3)如图,过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,即AE是切线,∵在Rt△AOB中,tan∠OAB===,∴∠OAB=30°,∴∠ABO=90°-∠OAB=60°,∴∠ABC=∠OBC=∠ABO=30°,∴OC=OB•tan30°=×=,∴AC=OA-OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF=AE=,∴OF=OA-AF=,∴点E的坐标为:(,).【解析】(1)由点A(,0)与点B(0,-),可求得线段AB的长,然后由∠AOB=90°,可得AB是直径,继而求得⊙M的半径;(2)由圆周角定理可得:∠COD=∠ABC,又由∠COD=∠CBO,即可得BD平分∠ABO;(3)首先过点A作AE⊥AB,垂足为A,交BD的延长线于点E,过点E作EF⊥OA于点F,易得△AEC是等边三角形,继而求得EF与AF的长,则可求得点E的坐标.此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.26.【答案】解:(1)∵二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),∴,得,∴y=x2-x-=,∴二次函数的表达式是y=x2-x-,顶点坐标是(,);(2)①点M的坐标为(,),(,-)或(,-),理由:当AM1⊥AB时,如右图1所示,∵点A(-1,0),点B(0,-),∴OA=1,OB=,∴tan∠BAO==,∴∠BAO=60°,∴∠OAM1=30°,∴tan∠OAM1=,解得,DM1=,∴M1的坐标为(,);当BM3⊥AB时,同理可得,,解得,DM3=,∴M3的坐标为(,-);当点M2到线段AB的中点的距离等于线段AB的一半时,∵点A(-1,0),点B(0,-),∴线段AB中点的坐标为(-,),线段AB的长度是2,设点M2的坐标为(,m),则=1,解得,m=,即点M2的坐标为(,-);由上可得,点M的坐标为(,),(,-)或(,-);②如图2所示,作AB的垂直平分线,于y轴交于点F,由题意知,AB=2,∠BAF=∠ABO=30°,∠AFB=120°,∴以F为圆心,AF长为半径作圆交对称轴于点M和M′点,则∠AMB=∠AM′B=∠AFB=60°,∵∠BAF=∠ABO=30°,OA=1,∴∠FAO=30°,AF==FM=FM′,OF=,过点F作FG⊥MM′于点G,∵FG=,∴MG=M′G=,又∵G(,-),∴M(,),M′(,),∴≤t≤.【解析】(1)根据二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),可以求得该函数的解析式,然后将函数解析式化为顶点式,即可得到该函数的顶点坐标;(2)①根据题意,画出相应的图形,然后利用分类讨论的方法即可求得点M的坐标;②根据题意,构造一个圆,然后根据圆周角与圆心角的关系和∠AMB不小于60°,即可求得t的取值范围.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用分类讨论和数形结合的思想解答.27.【答案】不可能【解析】解:(1)①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②如图2中,∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°-∠AOB,在正方形ABCD中,∠BAO=90°-∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中,,∴△OFE≌△ABO(AAS),∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;③结论:OA=OE.理由:如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.∵AB=BC,BQ=BO,∴AQ=QC,∵∠QAO=∠EOC,∠AQO=∠ECO=135°,∴△AQO≌△OCE(ASA),∴AO=OE.(2)∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=S△OBG,∴=()2=,∴OP=1,∴S△POG=OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=4,∴b=,∴S△OBG=ab=a==,∴当a2=2时,△OBG有最大值1,此时S△PKO=S△OBG=,∴四边形PKBG的最大面积为1+1+=.∴当BO为时,四边形PKBG的面积最大,最大面积为.(1)①若ON过点D时,则在△OAD中不满足勾股定理,可知不可能过D点;②由条件可先判业四边形EFCH为矩形,再证明△OFE≌△ABO,可证得结论;③结论:OA=OE.如图2-1中,连接EC,在BA上取一点Q,使得BQ=BO,连接OQ.证明△AQO ≌△OCE(ASA)即可.(2)由条件可证明△PKO∽△OBG,利用相似三角形的性质可求得OP=2,可求得△POG面积为定值及△PKO和△OBG的关系,只要△CGB的面积有最大值时,则四边形PKBG的面积就最大,设OB=a,BG=b,由勾股定理可用b表示出a,则可用a表示出△OBG的面积,利用二次函数的性质可求得其最大值,则可求得四边形PKBG面积的最大值.本题为四边形的综合应用,涉及矩形的判定和性质、全等三角形的判定和性质、相似三角形的判定和性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)①中注意反中学数学一模模拟试卷一、选择题(本大题共8小题,共24分)28.2的算术平方根是()A. B. C. D. 229.下列运算正确的是()A. B. C. D.30.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A. B. C. D.31.如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.32.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:关于这组数据,下列说法正确的是()A. 中位数是2B. 众数是17C. 平均数是2D. 方差是233.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A. B. C. D.34.如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值为()A.B.C.D.35.如图,菱形ABCD的边AB=5,面积为20,∠BAD<90°,⊙O与边AB、AD都相切,AO=2,则⊙O的半径长等于()A. B. C. D.二、填空题(本大题共8小题,共24分)36.-5的相反数是______.37.分解因式:4a2-4a+1=______.38.若在实数范围内有意义,则x的取值范围为______.39.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=______度.40.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC(图中阴影部分)围成一个圆锥的侧面,则这个圆锥底面圆的半径是______.41.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为______℃.42.如图,把等边△ABC沿着DE折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC=______cm.43.如图,在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是______.三、计算题(本大题共3小题,共20分)44.计算|-6|+(-2)3+()045.化简:46.小明、小刚和小红打算各自随机选择本周日的上午或下午去兴化李中水上森林游玩.(1)小明和小刚都在本周日上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.四、解答题(本大题共8小题,共82分)47.解不等式组48.某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:请根据图中信息,解答下列问题(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°(2)请你补全条形统计图;(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?49.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)当∠BAE为多少度时,四边形AECF是菱形?请说明理由.50.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为______元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?51.如图,一种侧面形状为矩形的行李箱,箱盖打开后,盖子的一端靠在墙上,此时BC=10cm,箱底端点E与墙角G的距离为65cm,∠DCG=60°.(1)箱盖绕点A转过的角度为______,点B到墙面的距离为______cm;(2)求箱子的宽EF(结果保留整数,可用科学计算器).(参考数据:=1.41,=1.73)52.如图,在直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,-),点D在劣弧上,连接BD交x轴于点C,且∠COD=∠CBO.(1)求⊙M的半径;(2)求证:BD平分∠ABO;(3)在线段BD的延长线上找一点E,使得直线AE恰好为⊙M的切线,求此时点E的坐标.53.如图,在平面直角坐标系中,二次函数y=ax2+bx-的图象经过点A(-1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.54.正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON______(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A CDB图22016年邯郸市初中毕业生升学模拟考试(一)数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在3,-1,0,-2这四个数中,最大的数是( ) A .0 B .-1C .-2D .32.如图1所示的几何体的俯视图是( )A .B .C .D . 3.一元一次不等式x +1<2的解集在数轴上表示为( )A .B .C .D .4.如图2,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°, 那么∠ACD 的度数为( ) A .40°B .35°C .50°D .45°5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A .31B .21 C .32D .61 6.下列计算正确的是( ) A .|-a |=a B .a 2·a 3=a 6 C .()2121-=--D .(3)0=07.如图3,小聪在作线段AB 的垂直平分线时,他是这样操作的: 分别以A 和B 为圆心,大于AB 21的长为半径画弧,两弧相交 于C 、D 两点,直线CD 即为所求.根据他的作图方法可知四边 形ADBC 一定是( ) A .矩形 B .菱形C .正方形D .无法确定8.已知n 20是整数,则满足条件的最小正整数n 为( ) A .2 B .3 C .4D .59.如图4,四边形ABCD 是⊙O 的内接四边形,若∠BOD =88°, 则∠BCD 的度数是( ) A .88° B .92° C .106°D .136°10.下列因式分解正确的是( )A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+111.下列命题中逆命题是真命题的是( )A .对顶角相等B .若两个角都是45°,那么这两个角相等C .全等三角形的对应角相等D .两直线平行,同位角相等12.若关于x 的方程x 2﹣4x +m =0没有实数根,则实数m 的取值范围是( )A .m <﹣4B .m >﹣4C .m <4D .m >4图3CBAD图413.如图5所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,点P 是对角线AC 上一点, 若PD +PE 的和最小,则这个最小值为( ) A .32 B .62C .3D .614.如图6,在平面直角坐标系中,过点A 与x 轴平行的直线交抛物线2)1(31+=x y 于点B 、C ,线段BC 的长度为6,抛物线 b x y +-=22与y 轴交于点A ,则b =( ).A .1B .4.5C .3D .615.已知△ABC 在正方形网格中的位置如图7所示,点A 、B 、C 、P均在格点上,则点P 叫做△ABC 的( ) A .外心 B .内心 C .重心D .无法确定图7AB图数学试卷第4页共12页16.如图8是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额-总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中总利润与销售量的函数图像,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②图8①②④③数学试卷第5页 共12页2016年邯郸市初中毕业生升学模拟考试(一)数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.太阳的半径约为696 000千米,用科学记数法表示数696 000为 . 1819.如图9所示,正五边形ABCDE 的边长为1,⊙B 过五边形的顶点A 、C ,则劣弧AC 的长为 .20.如图10,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E,得到第3个△A 2A 3E ,…按此做法继续下去,则第5个三角形中以A 5为顶点的内角度数是 °.图912 34 图10数学试卷第6页 共12页三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)定义新运算:对于任意实数a ,b (其中a ≠0),都有ab a a b a --=⊗1,等式右边是通常的加法、减法及除法运算,比如:02122112=--=⊗ (1) 求45⊗的值;(2) 若12=⊗x (其中x ≠0),求x 的值是多少?数学试卷第7页 共12页图11分22.(本小题满分10分)为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50﹪。
如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?数学试卷第8页 共12页23.(本小题满分10分)已知:如图12-1,Rt △ABC 中,∠BAC =90°,点D 是线段AC 的中点,连接BD 并延长至点E ,使BE =2BD .连接AE ,CE 。
(1)求证:四边形ABCE 是平行四边形;(2)如图12-2所示,将三角板顶点M 放在AE 边上,两条直角边分别过点B 和点C ,若∠MEC =∠EMC ,BM 交AC 于点N 。
①求证:△ABN ≌△MCN ;②当点M 恰为AE 中点时sin ∠ABM =_____。
E图12-1数学试卷第9页 共12页24.(本小题满分11分)已知函数y =-x +4的图象与函数xky =的图像在同一坐标系内.函数y =-x +4的图象如图13-1与坐标轴交于A 、B 两点,点M (2,m )是直线AB 上一点,点N 与点M 关于y 轴对称,线段MN 交y 轴于点C .(1)m =_____,S △AOB =_____;(2)如果线段MN 被反比例函数xky =的图像分成两部分,并且这两部分长度的比为 1:3,求k 的值; (3)如图13-2,若反比例函数xky =图像经过点N ,此时反比例函数上存在两个点E (x 1,y 1)、F (x 2,y 2)关于原点对称且到直线MN 的距离之比为1:3,若x 1<x 2请直接写出这两点的坐标.图13-1数学试卷第10页共12页(2)设应季销售利润为y元,请写y与x的函数关系式;并求出应季销售利润为8000元时每条围巾的售价。
数学试卷第11页共12页数学试卷第12页 共12页拓展:根据销售经验,过季处理时,若每条围巾的售价定为30元亏本销售,可售出50条;若每条围巾的售价每降低1元,销售量相应增加5条,(1)若剩余100条围巾需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若使亏损金额最小,每条围巾的售价应是_____元。
(2)若过季需要处理的围巾共m 条,且100≤m ≤300,过季亏损金额最小是______元;(用含m 的代数式表示)延伸:若商场共购进了500条围巾且销售情况满足上述条件,如果应季..销售利润在不低于8000元的条件下:(1)没有售出的围巾共m 条,则m 的取值范围是:_________________;(2)要使最后的总利润(销售利润=应季销售利润-过季亏损金额)最大,则应季销售的售价是_____元。
参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24bac b a a --.。