高二精选题库数学 课堂训练7-3北师大版
高二精选题库数学 课堂训练_1-3北师大版
第1章 第3节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·广东汕头质量测评一]如果命题“綈(p 或q )”为假命题,则( ) A. p 、q 均为真命题 B. p 、q 均为假命题C. p 、q 中至少有一个为真命题D. p 、q 中至多有一个为真命题 答案:C解析:因为“綈(p 或q )”为假命题,所以p 或q 为真命题,即p 、q 中至少有一个为真命题. 2. 已知命题p :∃x 0∈R ,使sin x 0=52;命题q :∀x ∈R ,都有x 2+x +1>0.下列结论中正确的是( )A. 命题“p ∧q ”是真命题B. 命题“p ∧綈q ”是真命题C. 命题“綈p ∧q ”是真命题D. 命题“綈p ∨綈q ”是假命题 答案:C解析:解答此类问题的关键是对命题p 与q 的真假判断,然后再确定相应命题的真假. ∵|sin x |≤1,∴命题p 是假命题,綈p 是真命题. 又x 2+x +1=(x +12)2+34≥34>0,∴命题q 是真命题,綈q 是假命题, 故“綈p ∧q ”是真命题.3. [2012·潍坊市摸底考试]命题p :∃x ∈R ,x 2-5x +6<0,则( ) A. 綈p :∃x ∈R ,x 2-5x +6≥0 B. 綈p :∀x ∈R ,x 2-5x +6<0 C. 綈p :∀x ∈R ,x 2-5x +6>0D. 綈p :∀x ∈R ,x 2-5x +6≥0 答案:D解析:存在性命题的否定是全称命题.4. [2012·河南省辉县一中质检]下列命题中是假命题的是( ) A. ∃m ∈R ,使f (x )=(m -1)·x m 2-4m +3是幂函数,且在(0,+∞)上递减B. ∀a >0,函数f (x )=ln 2x +ln x -a 有零点C. ∃α,β∈R ,使cos(α+β)=cos α+sin βD. ∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 答案:D解析:∃φ=π2,使f (x )为偶函数,故选D.5. [改编题]设命题p :函数y =lg(x 2+2x -c )的定义域为R ,命题q :函数y =lg(x 2+2x -c )的值域为R ,若命题p 、q 有且仅有一个为真,则c 的取值范围为( )A. ØB. (-∞,-1)C. [-1,+∞)D. R答案:D解析:若函数y =lg(x 2+2x -c )的定义域为R ,则不等式x 2+2x -c >0对任意x ∈R 恒成立,则有Δ=4+4c <0,解得c <-1;若函数y =lg(x 2+2x -c )的值域为R ,则g (x )=x 2+2x -c 应该能够取到所有的正实数,因此Δ=4+4c ≥0,解得c ≥-1.当p 为真、q 为假时,有c <-1;当p 为假、q 为真时,有c ≥-1. 综上,当命题p 、q 有且仅有一个为真时,c 的取值范围为R .故选D. 6. 下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题是真命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题为( )A. ①②③B. ①②④C. ①③④D. ②③④ 答案:A解析:由x 2+2x >4x -3推得x 2-2x +3=(x -1)2+2>0恒成立,故①正确;根据基本不等式可知要使不等式log 2x +log x 2≥2成立需要x >1,故②正确;由a >b >0得0<1a <1b,又c <0,可得c a >cb ,则可知其逆否命题为真命题,故③正确;命题p 是真命题,命题q 是真命题,所以p ∧綈q 为假命题.所以选A.二、填空题(每小题7分,共21分)7. [2012·北京丰台]命题“∃x ∈R ,x ≤1或x 2>4”的否定是__________. 答案:∀x ∈R ,x >1且x 2≤4解析:已知命题为特称命题,故其否定应是全称命题.8. [2012·龙岩质检]若命题“∃x ∈R ,x 2+(a -3)x +4<0”为假命题,则实数a 的取值范围是__________.答案:[-1,7]解析:依题意得,对任意x ∈R ,都有x 2+(a -3)x +4≥0,则Δ=(a -3)2-4×4≤0,解得-1≤a ≤7.9. [2012·山西省忻州一中月考]若命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,则实数a 的取值范围是________.答案:(-∞,-1]∪[0,+∞)解析:若对于任意实数x ,都有x 2+ax -4a >0,则Δ=a 2+16a <0,即-16<a <0;若对于任意实数x ,都有x 2-2ax +1>0,则Δ=4a 2-4<0,即-1<a <1,故命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是真命题时,有a ∈(-1,0).而命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,故a ∈(-∞,-1]∪[0,+∞).三、解答题(10、11题12分、12题13分)10. 用符号“∀”与“∃”表示下面含有量词的命题,并判断真假. (1)所有的实数a 、b ,方程ax +b =0恰有惟一解. (2)存在实数x 0,使得1x 20-2x 0+3=34.解:(1)∀a 、b ∈R ,方程ax +b =0恰有惟一解. 当a =0,b =0时方程有无数解,故该命题为假命题. (2)∃x 0∈R ,使得1x 20-2x 0+3=34.∵x 2-2x +3=(x -1)2+2≥2, ∴1x 2-2x +3≤12<34.故该命题是假命题.11.[2012·湖南湘西州联考]已知命题p :曲线x 2a -2-y 26-a =1为双曲线;命题q :函数f (x )=(4-a )x 在R 上是增函数;若命题“p ∨q ”为真,命题“p ∧q ”为假,求实数a 的取值范围.解:p 真时,(a -2)(6-a )>0,解得2<a <6. q 真时,4-a >1,解得a <3.由命题“p ∨q ”为真,“p ∧q ”为假,可知命题p ,q 中一真一假. 当p 真,q 假时,得3≤a <6. 当p 假,q 真时,得a ≤2.因此实数a 的取值范围是(-∞,2]∪[3,6).12.[2012·山东日照调研]设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. 解:(1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0,当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0x 2+2x -8>0,得2<x ≤3, 即q 为真时实数x 的取值范围是2<x ≤3. 若p ∧q 为真,则p 真且q 真, 所以实数x 的取值范围是2<x <3.(2)p 是q 的必要不充分条件,即q ⇒p ,且p ⇒/ q , 设A ={x |p (x )},B ={x |q (x )},则A B , 又B =(2,3],当a >0时,A =(a,3a ); a <0时,A =(3a ,a ).所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2;当a <0时,显然A ∩B =Ø,不合题意. 所以实数a 的取值范围是1<a ≤2.。
高二精选题库 数学7-4北师大版
第7模块第4节[知能演练]一、选择题1.一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是() A.异面B.相交C.平行D.不确定解析:由线面平行的性质定理容易推出,该直线应该与交线平行.答案:C2.已知m、n是不重合的直线,α、β是不重合的平面,则下列命题是真命题的是()①若m⊂α,n∥α,则m∥n;②m⊥n,m⊥β,则n∥β;③α∩β=n,m∥n,则m∥α且m∥β;④若m⊥α,m⊥β,则α∥β.A.①③B.②③C.③④D.④解析:①中m、n可能异面,②中n可能在平面β内,③中m可能在平面α或β内.答案:D3.下列命题正确的是() A.直线a与平面α不平行,则直线a与平面α内的所有直线都不平行B.如果两条直线与平面α所成的角相等,则这两条直线平行C.垂直于同一直线的两个平面平行D.直线a与平面α不垂直,则直线a与平面α内的所有直线都不垂直解析:当直线a在平面α内时,它与平面α不平行,但a可以与平面α内的一些直线平行,故选项A错误;两条直线与平面α所成的角相等时,这两条直线可以平行,但也可能相交或异面,故选项B错误;直线a与平面α不垂直,但直线a可以与平面α内的一些直线垂直,故选项D错误,只有选项C正确.答案:C4.给出下列关于互不相同的直线m,l,n和平面α,β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若l ∥α,m ∥β,α∥β,则l ∥m ;④若l ⊂α,m ⊂α,l ∩m =A ,l ∥β,m ∥β,则α∥β. 其中为假命题的是( )A .①B .②C .③D .④解析:①为真,依据的是异面直线的判定法则;②为真,l ,m 在α内的射影为两相交直线l ′,m ′,可知l ′∥l ,m ′∥m ,又n ⊥l ,n ⊥m ,所以n ⊥l ′,n ⊥m ′,所以n ⊥α;③中l 、m 可能平行,也可能相交或异面,为假命题;④由两平面平行的判定定理可知为真命题,故假命题为③.答案:C 二、填空题5.在△ABC 中,AB =5,AC =7,∠A =60°,G 为重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN =________.解析:如下图,在△ABC 中,由余弦定理知BC =39,∵BC ∥α,∴MN ∥BC ,又G 是△ABC 的重心,∴MN =23BC =2393.答案:23936.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.解析:如图所示,连接AC ,易知MN ∥平面ABCD , ∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC , 又∵AP =a3,∴PD AD =DQ CD =PQ AC =23,∴PQ =23AC =223a . 答案:223a三、解答题7.如下图,E 、F 、G 、H 分别是正方体ABCD —A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.(1)求证:EG ∥平面BB 1D 1D ; (2)求证:平面BDF ∥平面B 1D 1H .解:(1)取B 1D 1的中点O ,连结GO ,OB ,易证四边形BEGO 为平行四边形,故OB ∥GE ,由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由正方体得BD ∥B 1D 1.如图,连结HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF .又B 1D 1∩HD 1=D ,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .8.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD .解:∵BE ⊥PC ,∴EC =BC 2-BE 2=a 2-2a 23=33a .在Rt △PBC 中,BE 2=EP ·EC ,∴EP =BE 2EC =23a 233a =233a ,∴PE EC =2.当AFFB =2时,可以使EF ∥平面P AD .证明:如下图.在PD 上取一点G ,使PG GD =2,连结EG ,AG ,则有EG 綊23AB綊23CD ,∴EG 綊AF ,∴四边形AFEG 为平行四边形.∴EF ∥AG ,又∵AG ⊂平面P AD ,EF ⊄平面P AD ,∴EF ∥平面P AD .[高考·模拟·预测]1.下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α;②若直线l 上有无数个点不在平面α内,则l ∥α;③若直线l 与平面α平行,则l 与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行; ⑤若l 与平面α平行,则l 与α内任何一条直线都没有公共点; ⑥平行于同一平面的两直线可以相交. A .1 B .2 C .3D .4解析:①②中a 可与α相交,③中l ∥α,只能说明有一系列的平行线与l 平行,④中另一条线可能在面内,⑤正确,⑥正确.答案:B2.设m ,n 是平面α内的两条不同直线;l 1、l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是() A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析:因m⊂α,l1⊂β,若α∥β,则有m∥β且l1∥α,故α∥β的一个必要条件是m∥β且l1∥α,排除A.因m,n⊂α,l1,l2⊂β且l1与l2相交,若m∥l1且n∥l2,因l1与l2相交,故m与n也相交,故α∥β;若α∥β,则直线m与直线l1可能为异面直线,故α∥β的一个充分而不必要条件是m∥l1且n∥l2,故选B.答案:B3.设α、β是两个不同的平面,l是一条直线,以下命题正确的是() A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β解析:对于选项A、B、D均可能出现l∥β,而对于选项C是正确的.答案:C4.如图,正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误..的为()A.O-ABC是正三棱锥B.直线OB∥平面ACDC.直线AD与OB所成的角为45°D.二面角D-OB-A为45°解析:将原图补为正方体不难得出B为错误,故选B.答案:B5.如下图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q 分别为AE,AB的中点.(1)证明:PQ ∥平面ACD ;(2)求AD 与平面ABE 所成角的正弦值. 解:(1)因为P ,Q 分别为AE ,AB 的中点, 所以PQ ∥EB .又DC ∥EB ,因此PQ ∥DC , 由于PQ ⊄平面ACD ,DC ⊂平面ACD 从而PQ ∥平面ACD . (2)如下图,连接CQ ,DP .因为Q 为AB 的中点,且AC =BC , 所以CQ ⊥AB .因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC . 因此CQ ⊥EB , 故CQ ⊥平面ABE .由(Ⅰ)知PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形, 故DP ∥CQ ,因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角. 在Rt △DP A 中,AD =5,DP =1, sin ∠DAP =55. 因此AD 和平面ABE 所成角的正弦值为55. [备选精题]6.如图平面内两正方形ABCD 与ABEF ,点M 、N 分别在对角线AC 、FB 上,且AM ∶MC=FN ∶NB ,沿AB 折成直二面角.(1)证明:折叠后MN ∥平面CBE ;(2)若AM ∶MC =2∶3,在线段AB 上是否存在一点G ,使平面MGN ∥平面CBE ?若存在,试确定点G 的位置.解:(1)如图,设直线AN 与BE 交于点H ,连接CH ,∵△ANF ∽△HNB , ∴FN NB =AN NH ,又AM MC =FN NB , ∴AN NH =AMMC,∴MN ∥CH . 又MN ⊄平面CBE ,CH ⊂平面CBE , ∴MN ∥平面CBE .(2)存在,过M 作MG ⊥AB ,垂足为G ,连接NG , 则MG ∥BC , ∴MG ∥平面CBE .又MN ∥平面CBE ,MG ∩MN =M , ∴平面MGN ∥平面CBE ,即G 在AB 线上,且AG ∶GB =AM ∶MC =2∶3.。
高二精选题库 数学7-1北师大版
第7模块第1节[知能演练]一、选择题1.如下图是由哪个平面图形旋转得到的()解析:几何体的上部为圆锥,下部为圆台,只有A可以旋转得到,B得到两个圆锥,C 得到一圆柱和一圆锥,D得到一圆柱和两圆锥.答案:A2.下列几种关于投影的说法不正确的是() A.平行投影的投影线是互相平行的B.中心投影的投影线是互相垂直的C.线段上的点在中心投影下仍然在线段上D.平行的直线在中心投影中不平行解析:中心投影的投影线是从一点出发的,不一定互相垂直.答案:B3.如下图所示,甲、乙、丙是三个几何体的三视图,甲、乙、丙对应的标号正确的是()①长方体;②圆锥;③三棱锥;④圆柱.A.④③②B.①③②C.①②③D.④②③解析:由三视图可知:甲为圆柱,乙为三棱锥,丙为圆锥.答案:A4.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为() A.2 2 B.2 3C.4 D.2 5解析:如图,设该棱为线段AB,其中A点在平面xOy内,点B在平面yOz内,设AB 的正视图投影为BC,侧视图投影为BE,俯视图投影为AD.由题意知AB=7,BC=6,则AC=1,设AE=x,则AD=1+x2=b,BE=7-x2=a,∴t=a+b=7-x2+1+x2≥0,∵t2=8+2-(x2-3)2+16≤16,∴t≤4,即a+b≤4.故a+b的最大值为4.答案:C二、填空题5.某几何体的三视图如下图所示:则这个几何体是________.解析:由三视图可知,这个几何体为正五棱锥.答案:正五棱锥6.用任一个平面去截正方体,下列平面图形可能是截面的是________.①正方形;②长方形;③等边三角形;④直角三角形;⑤菱形;⑥六边形.解析:如图正方体ABCD—A1B1C1D1中,平行于ABCD的截面为正方形,截面AA1C1C为长方形,截面AB1D1为等边三角形,取BB 1、DD 1的中点E 、F ,则截面AEC 1F 为菱形,取B 1C 1、D 1C 1、AB 、AD 的中点M 、N 、P 、Q ,过这四点的截面为六边形,截面不可能为直角三角形.答案:①②③⑤⑥ 三、解答题7.一个正方体内接于高为40 cm ,底面半径为30 cm 的圆锥中,求正方体的棱长. 解:如图,过正方体的体对角线作圆锥的轴截面,设正方体的棱长为x ,则OC =22x ,∴22x30=40-x 40,解得x =120(3-22),∴正方体的棱长为120(3-22) cm.8.已知正三棱锥V—ABC 的正视图和俯视图如图所示.(1)画出该三棱锥的侧视图和直观图. (2)求出侧视图的面积. 解:(1)如下图.(2)根据三视图间的关系可得BC =23, ∴侧视图中VA 为42-(23×32×23)2=12=23,∴S △VBC =12×23×23=6.[高考·模拟·预测]1.如下图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )解析:选项A 得到的几何体为正方体,其体积为1,故排除A ;而选项B 、D 所得几何体的体积都与π有关,排除B 、D ;易知选项C 符合.答案:C2.一空间几何体的三视图如下图所示,则该几何体的体积为( )A .2π+2 3B .4π+2 3C .2π+233D .4π+233解析:这个空间几何体的下半部分是一个底面半径为1、高为2的圆柱,上半部分是一个底面边长为2、高为3的正四棱锥,故其体积为π×12×2+13×(2)2×3=2π+233.答案:C3.若某几何体的三视图(单位:cm)如下图所示,则此几何体的体积是________ cm 3.解析:根据几何体的三视图,可知该几何体是由两个相同的长方体(3×3×1)组合而成的几何体,故其体积为18.答案:184.对于四面体ABCD ,下列命题正确的是________.(写出所有正确命题的编号). ①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是△BCD 三条高线的交点; ③若分别作△ABC 和△ABD 的边AB 上的高,则这两条高的垂足重合; ④任何三个面的面积之和都大于第四个面的面积;⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点. 解析:②中的四面体如果对棱垂直,则垂足是△BCD 的三条高线的交点;③中如果AB 与CD 垂直,则两条高的垂足重合. 答案:①④⑤5.已知一四棱锥P —ABCD 的三视图如下图,E 是侧棱PC 上的动点. (1)求四棱锥P —ABCD 的体积;(2)不论点E 在何位置,是否都有BD ⊥AE ?证明你的结论; (3)若E 点为PC 的中点,求二面角D —AE —B 的大小.解:(1)由三视图可知,棱锥底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC =2,∴V P —ABCD =13S ABCD ·PC =23.(2)不论点E 在何位置,都有BD ⊥AE . 证明:连结AC ,∵ABCD 是正方形, ∴BD ⊥AC .又PC ⊥底面ABCD ,且BD ⊂面ABCD , ∴BD ⊥PC .又AC ∩PC =C ,∴BD ⊥面P AC .∵不论点E 在何位置,都有AE ⊂面P AC , ∴不论点E 在何位置,都有BD ⊥AE .(3)以CD 、CB 、CP 为x 、y 、z 轴正方向建立空间直角坐标系C —xyz .可知C (0,0,0),A (1,1,0),D (1,0,0),E (0,0,1),B (0,1,0),则AD →=(0,-1,0),DE →=(-1,0,1),设平面DAE 的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AD →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧-y 1=0,-x 1+z 1=0, 设x 1=1,则n 1=(1,0,1),同理可知,平面AEB 的一个法向量n 2=(0,1,1),∴cos θ=n 1·n 2|n 1|·|n 2|=12×2=12,∴θ=60°,由题意可知,二面角D —AE —B 的大小为180°-60°=120°.。
高二精选题库数学 课堂训练8-6北师大版
第8章 第6节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2011·陕西]设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A. y 2=-8x B. y 2=8x C. y 2=-4x D. y 2=4x答案:B解析:由抛物线的准线方程为x =-2,则焦点F (2,0), ∴p2=2,∴p =4. 故抛物线的标准方程为y 2=8x ,故选B.2.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上的点P (m ,-2)到焦点的距离为4,则m 的值为( )A .4B .-2C .4或-4D .12或-2答案:C解析:设标准方程为x 2=-2py (p >0),由定义知P 到准线距离为4, 故p2+2=4,∴p =4, ∴方程为x 2=-8y ,代入P 点坐标得m =±4.3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2 B .y =-36x 2C .y =12x 2或y =-36x 2D .y =112x 2或y =-136x 2 答案:D解析:分两类a >0,a <0可得 y =112x 2,y =-136x 2. 4. [2012·湖北武汉]设抛物线y 2=4x 的焦点为F ,过点M (-1,0)的直线在第一象限交抛物线于A 、B ,且AF →·BF →=0,则直线AB 的斜率k 等于( )A.2B. 22 C. 3D.33答案:B解析:焦点F (1,0),设A (x 1,y 1),B (x 2,y 2), 直线AB :y =k (x +1),代入y 2=4x 中,得k 2(x 2+2x +1)=4x , k 2x 2+(2k 2-4)x +k 2=0, 则x 1+x 2=4-2k 2k2x 1·x 2=1.又AF →·BF →=(1-x 1)(1-x 2)+y 1y 2 =1-(x 1+x 2)+x 1x 2+2x 1·2x 2 =1-4-2k 2k 21+4×1=0, ∴k =22或k =-22(舍去), 故选B.5. 已知点P 是抛物线y 2=4x 上的点,设点P 到抛物线准线的距离为d 1,到圆(x +3)2+(y -3)2=1上的一动点Q 的距离为d 2,则d 1+d 2的最小值是( )A. 3B. 4C. 5D. 32+1答案:B解析:设抛物线焦点为F ,圆的圆心为C ,点P 到抛物线准线的距离为d 1,即点P 到抛物线焦点的距离为d 1,要使d 1+d 2的值最小,所以有d 1+d 2=|PF |+|PQ |≥|PF |+|PC |-1≥|CF |-1=5-1=4,∴d 1+d 2的最小值是4.故选B.6.已知两点M (-3,0),N (3,0),点P 为坐标平面内一动点,且|MN →|·|M P →|+MN →·N P →=0,则动点P (x ,y )到点M (-3,0)的距离的最小值为( )A. 2B. 3C. 4D. 6答案:B解析:因为M (-3,0),N (3,0),所以MN →=(6,0),|MN →|=6,MP →=(x +3,y ),NP →=(x -3,y ).由|MN →|·|MP →|+M N →·N P →=0得6(x +3)2+y 2+6(x -3)=0,化简整理得y 2=-12x ,从而可知点M 是抛物线y 2=-12x 的焦点,所以点P 到点M 的距离的最小值就是原点到点M (-3,0)的距离为3.二、填空题(每小题7分,共21分)7. [2012·北京朝阳]已知抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF |=4,则点M 的横坐标x =__________.答案:3解析:抛物线y 2=4x 的焦点为F (1,0),准线为x =-1. 根据抛物线的定义,点M 到准线的距离为4, 则M 的横坐标为3.8. 已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是__________.答案:2解析:直线l 2:x =-1为抛物线y 2=4x 的准线,由抛物线的定义知,动点P 到l 2的距离等于动点P 到抛物线的焦点F (1,0)的距离,问题转化为在抛物线y 2=4x 上找一个点P 使得P 到点F (1,0)和直线l 2的距离之和最小,最小值为点F (1,0)到直线l 1:4x -3y +6=0的距离d ,即d =|4-0+6|5=2.9.已知以坐标原点为顶点的抛物线C ,焦点在x 轴上,直线x -y =0与抛物线C 交于A 、B 两点.若P (2,2)为AB 的中点,则抛物线C 的方程为________.答案:y 2=4x解析:由题意知,抛物线的顶点为坐标原点,焦点在x 轴上,所以可设抛物线的方程为y 2=ax (a ≠0).将直线方程和抛物线方程联立⎩⎪⎨⎪⎧y 2=ax y =x ,得:x 2-ax =0,解得x 1=0,x 2=a ,故AB 中点的横坐标为x 0=12(x 1+x 2)=12a ,由题意得12a =2,解得a =4.所以该抛物线的方程为y 2=4x .三、解答题(10、11题12分、12题13分)10.顶点在原点,焦点在x 轴上的抛物线被直线y =2x +1截得的弦长为15,求抛物线的方程. 解:设所求抛物线方程为y 2=ax (a ≠0),直线y =2x +1与抛物线交于A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y 2=ax ,y =2x +1,消去y 得4x 2+(4-a )x +1=0, 则x 1+x 2=a -44,x 1x 2=14.由|AB |=(1+22)⎣⎡⎦⎤⎝⎛⎭⎫a -442-4×14=15, 解得a =12或a =-4,均满足Δ=(4-a )2-16>0. 所以抛物线方程为y 2=12x 或y 2=-4x .11. 如图,抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上.过点M (0,-2)作直线l 与抛物线相交于A 、B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 向点B 运动时,求△ABP 面积的最大值. 解:(1)根据题意可设直线l 的方程为y =kx -2, 抛物线方程为x 2=-2py (p >0),有⎩⎪⎨⎪⎧y =kx -2x 2=-2py 得x 2+2pkx -4p =0. 设点A (x 1,y 1),B (x 2,y 2)则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4, ∴OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4). ∵OA →+OB →=(-4,-12), ∴⎩⎪⎨⎪⎧-2pk =-4-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1k =2.故直线l 的方程为y =2x -2,抛物线方程为x 2=-2y .(2)据题意,当抛物线过点P 的切线与l 平行时,△APB 的面积最大. 设点P (x 0,y 0),由y ′=-x , 故由-x 0=2得x 0=-2,则y 0=-12x 20=-2,故P (-2,-2).此时点P 到直线l 的距离 d =|2×(-2)-(-2)-2|22+(-1)2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0. 故|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+22·(-4)2-4×(-4)=410, 故△ABP 的面积的最大值为 12·|AB |·d =12×410×455=8 2. 12. [2011·浙江]已知抛物线C 1:x 2=y ,圆C 2:x 2+(y -4)2=1的圆心为点M .(1)求点M 到抛物线C 1的准线的距离;(2)已知点P 是抛物线C 1上一点(异于原点),过点P 作圆C 2的两条切线,交抛物线C 1于A ,B 两点,若过M ,P 两点的直线l 垂直于AB ,求直线l 的方程.解:(1)由题意可知,抛物线的准线方程为:y =-14,所以圆心M (0,4)到准线的距离是174.(2)设P (x 0,x 20),A (x 1,x 21),B (x 2,x 22),由题意得x 0≠0, x 0≠±1,x 1≠x 2.设过点P 的圆C 2的切线方程为y -x 20=k (x -x 0), 即y =kx -kx 0+x 20.① 则|kx 0+4-x 20|1+k2=1,即(x 20-1)k 2+2x 0(4-x 20)k +(x 20-4)2-1=0.设PA ,PB 的斜率为k 1,k 2(k 1≠k 2),则k 1,k 2是上述方程的两根,所以 k 1+k 2=2x 0(x 20-4)x 20-1,k 1k 2=(x 20-4)2-1x 20-1.将①代入y =x 2,得x 2-kx +kx 0-x 20=0,由于x 0是此方程的根,故x 1=k 1-x 0,x 2=k 2-x 0,所以k AB =x 21-x 22x 1-x 2=x 1+x 2=k 1+k 2-2x 0=2x 0(x 20-4)x 20-1-2x 0,k MP =x 20-4x 0.由MP ⊥AB ,得k AB ·k MP =(2x 0(x 20-4)x 20-1-2x 0)·(x 20-4x 0)=-1,解得x 20=235,即点P 的坐标为(±235,235),所以直线l 的方程为y =±3115115x +4.。
高二精选题库数学 课堂训练7-4北师大版
第7章第4节时间:45分钟满分:100分一、选择题(每小题7分,共42分)1.下列命题中正确的是()A.过平面外一点作此平面的垂面是唯一的B.过直线外一点作此直线的垂线是唯一的C.过平面的一条斜线作此平面的垂面是唯一的D.过直线外一点作此直线的平行平面是唯一的答案:C解析:A、D中满足条件的平面是无数个,B中满足条件的直线也有无数条,故选C.2. 如图,在立体图形D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A. 平面ABC⊥平面ABDB. 平面ABD⊥平面BDCC. 平面ABC⊥平面BDE,且平面ADC⊥平面BDED. 平面ABC⊥平面ADC,且平面ADC⊥平面BDE答案:C解析:要判断两个平面的垂直关系,就需固定其中一个平面,找另一个平面内的一条直线与第一个平面垂直.因为AB=CB,且E是AC的中点,所以BE⊥AC,同理有DE⊥AC,于是AC⊥平面BDE.因为AC在平面ABC内,所以平面ABC⊥平面BDE.又由于AC 平面ACD,所以平面ACD⊥平面BDE.所以选C.3. [2011·浙江卷]下列命题中错误的是()A. 如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB. 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC. 如果平面α⊥平面γ,平面β⊥平面γ,,α∩β=l,那么l⊥平面γD. 如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案:D解析: 不妨取一个长方体,面ABB 1A 1⊥面A 1B 1C 1D 1,而 C 1D 1 平面A 1B 1C 1D 1,C 1D 1∥面ABB 1A 1,从而D 错误,故选D.4.已知正四面体A -BCD ,设异面直线AB 与CD 所成的角为α,侧棱AB 与底面BCD 所成的角为β,侧面ABC 与底面BCD 所成的角为γ,则( )A .α>β>γB .α>γ>βC .β>α>γD .γ>β>α答案:B解析:如图,取底面BCD 的中心为点O ,连接AO ,BO ,易知∠ABO =β,取BC 的中点E ,连接AE 、OE ,易知∠AEO =γ,易知0<β<γ<π2,延长BO 交CD 于F ,则BF ⊥CD ,又AO ⊥CD ,∴CD ⊥平面ABF ,∴CD ⊥AB ,即α=π2,∴α>γ>β,故选B.5. m 、n 表示两条不同的直线,α、β、γ表示三个不同的平面.下列命题中,①若m ⊥α,n ∥α,则m ⊥n ;②若α⊥γ,β⊥γ,则α∥β;③若m ∥α,n ∥α,则m ∥n ;④若α∥β,β∥γ,m ⊥α,则m ⊥γ.正确的命题是( ) A. ①③ B. ②③ C. ①④ D. ②④答案:C解析:在正方体ABCD -A 1B 1C 1D 1中AA 1⊥平面ABCD ,A 1B 1∥平面ABCD ,则AA 1⊥A 1B 1,故①正确;平面ABB 1A 1⊥平面ABCD ,平面BB 1C 1C ⊥平面ABCD ,而平面ABB 1A 1∩平面BB 1C 1C =BB 1,故②错误;A 1B 1∥平面ABCD ,B 1C 1∥平面ABCD ,而A 1B 1∩B 1C 1=B 1,故③错误;由α∥β,β∥γ,则α∥γ,如AA 1⊥平面ABCD ,平面ABCD ∥平面A 1B 1C 1D 1,则AA 1⊥平面A 1B 1C 1D 1,故若m ⊥α,则m ⊥γ,故①④正确.选C.6. [2012·海淀模拟]如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F ∥平面A 1BE ,则B 1F 与平面CDD 1C 1所成角的正切值构成的集合是 ( )A. {2}B. {255}C. {t |2≤t ≤22}D. {t |255≤t ≤2}答案:C解析:由下图可知,点F 在线段C 1D 1,C 1C 中点的连线段MP 上,不妨设正方体棱长为2,线面角为α,则tan α=B 1C 1C 1F =2C 1F ,∵C 1F ∈[22,1],∴tan α∈[2,22].二、填空题(每小题7分,共21分)7.已知平面α,β和直线m ,n ,给出条件: ①m ∥α;②m ⊥α;③m α;④α⊥β;⑤α∥β. (1)当满足条件________时,有m ∥β; (2)当满足条件________时,有m ⊥β.(填所选条件的序号) 答案:(1)③⑤ (2)②⑤解析:若m α,α∥β,则m ∥β;若m ⊥α,α∥β,则m ⊥β.8. 如图,设平面α∩β=EF ,AB ⊥α,CD ⊥α,垂足分别为B ,D ,若增加一个条件,就能推出BD ⊥EF .现有①AC ⊥β;②AC 与α,β所成的角相等;③AC 与CD 在β内的射影在同一条直线上;④AC ∥EF .那么上述几个条件中能成为增加条件的是______. 答案:①②③解析:①AC ⊥β可以得到AC ⊥EF ,又CD ⊥EF ,可得EF ⊥面ABDC ,推得BD ⊥EF .②③也可以推得BD ⊥EF ;④若AC ∥EF ,则AC 与BD 异面垂直才能推出BD ⊥EF ,又因为AB ∥CD ,故不可能成立.9. [2011·全国]已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1、CC 1上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于__________.答案:23解析:延长FE 、CB 相交于点G ,连结AG ,设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于H ,连结EH ,则∠EHB 为所求二面角的平面角.∵BH =322,EB =1,∴tan ∠EHB =EB BH =23.三、解答题(10、11题12分、12题13分)10. [2011·广东]如图,在锥体P -ABCD 中,ABCD 是边长为1的菱形,且∠DAB =60°,P A =PD =2,PB =2,E ,F 分别是BC ,PC 的中点.(1)证明:AD ⊥平面DEF ; (2)求二面角P -AD -B 的余弦值.解:(1)证明:取AD 的中点O ,连结OP ,OB . ∵四边形ABCD 是边长为1的菱形,且∠DAB =60°, ∴△ABD 是边长为1的正三角形,得OB ⊥AD ,且OB =32. ∵P A =PD =2,∴PO ⊥AD ,且OP =72,∴AD ⊥面POB ,∵E ,F 分别是BC ,PC 的中点,∴EF ∥PB ,BE 綊DO ,即四边形DEBO 为平行四边形,得DE ∥BO , ∴面DEF ∥面POB ,∴AD ⊥面DEF .(2)由(1)知:∠POB 为二面角P -AD -B 的平面角,又PB =2, ∴cos ∠POB =OP 2+OB 2-PB 22OP ·OB=74+34-42×72×32=-217,即二面角P -AD -B 的余弦值为-217. 11. [2011·全国]如图,四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的正弦值.解:(1)证明:取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2, 连结SE ,则SE ⊥AB ,SE = 3. 又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角,由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得 AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32,作FG ⊥BC ,垂足为G ,则FG =DC =1, 连结SG ,则SG ⊥BC .又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC . FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α, 则sin α=d EB =217.12.如图,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD =2,平面PBC ⊥平面ABCD ,O 是BC 的中点,AO 交BD 于点E .(1)试探求直线P A 与BD 的位置关系;(2)点M 为直线P A 上的一点,当点M 在何位置时有P A ⊥平面BDM?(3)判定平面P AD 与平面P AB 的位置关系. 解:(1)P A ⊥BD .下面给出证明:∵PB =PC ,且O 是BC 的中点,∴PO ⊥BC ,又∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,∴PO ⊥平面ABCD .∵BD 平面ABCD ,∴PO ⊥BD .在梯形ABCD 中,可得Rt △ABO ≌Rt △BCD ,∵∠BEO =∠OAB +∠DBA =∠DBC +∠DBA =90°,即AO ⊥BD . ∵PO ∩AO =O ,∴BD ⊥平面P AO . 又P A 平面P AO ,∴P A ⊥BD .(2)取P A 的中点M ,连接BM 、DM ,由于AB =PB ,则P A ⊥BM .又P A ⊥BD ,所以P A ⊥平面BDM .故当点M 为P A 的中点时,P A ⊥平面BDM . (3)平面P AD ⊥平面P AB .下面给出证明:取PB 的中点N ,连接CN .∵PC =BC ,∴CN ⊥PB , ① ∵AB ⊥BC ,且平面PBC ⊥平面ABCD , ∴AB ⊥平面PBC .∵AB 平面P AB ,∴平面PBC ⊥平面P AB . ② 由①、②可知CN ⊥平面P AB . 连接MN ,则由MN ∥AB ∥CD ,MN =12AB =CD ,得四边形MNCD 为平行四边形.∴CN ∥DM ,∴DM ⊥平面P AB .∵DM 平面P AD ,∴平面P AD ⊥平面P AB .。
高二精选题库数学 课堂训练6-6北师大版
第6章第6节时间:45分钟满分:100分一、选择题(每小题7分,共42分)1. 用反证法证明“如果a>b,那么3a>3b”假设内容应是()A. 3a=3b B.3a<3bC. 3a=3b且3a<3b D.3a=3b或3a<3b答案:D解析:因为3a>3b的否定是3a≤3b,即3a=3b或3a<3b.2. [2012·潍坊质检]设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值()A. 恒为负值B. 恒等于零C. 恒为正值D. 无法确定正负答案:A解析:由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数,由x1+x2>0,可知x1>-x2,f(x1)<f(-x2)=-f(x2),则f(x1)+f(x2)<0,故选A.3. a,b,c为互不相等的正数,且a2+c2=2bc,则下列关系中可能成立的是()A. a>b>cB. b>c>aC. b>a>cD. a>c>b答案:C解析:由a2+c2>2ac⇒2bc>2ac⇒b>a,可排除A、D,令a=2,b=52c=1或4,可知C可能成立.4. 设x,y,z∈(0,+∞),a=x+1y,b=y+1z,c=z+1x,则a,b,c三数()A.至少有一个不大于2 B.都小于2 C.至少有一个不小于2 D.都大于2 答案:C解析:a+b+c=x+1y+y+1z+z+1x≥6,因此a,b,c至少有一个不小于2.5. [2012·济南调研]若实数x ,y 满足4x +4y =2x +1+2y +1,则t =2x +2y 的取值范围是( ) A. 0<t ≤2 B. 0<t ≤4 C. 2<t ≤4 D. t ≥4答案:C解析:由题意得,2(2x+2y)=4x+4y=(2x+2y )2-2·2x·2y, ∵2x ·2y ≤14(2x +2y )2,令t =2x +2y ,于是原式可化为2t ≥t 2-12t 2,解得0≤t ≤4.结合函数y 1=2x ,y 2=4x 的图像间的关系,由实数x ,y 满足4x +4y =2x +1+2y +1可知,x ,y 至少有一个为非负数,故t >2.综上可知2<t ≤4.6. 设定义域为R 的函数f (x )满足下列条件:①对任意x ∈R ,f (x )+f (-x )=0;②对任意x 1,x 2∈[1,a ],当x 1>x 2时,有f (x 1)>f (x 2)>0,则下列不等式不一定成立的是( )A. f (a )>f (0)B. f (1+a2)>f (a )C. f (1-3a 1+a )>f (-3)D. f (1-3a 1+a)>f (-a )答案:C解析:由题意易知,f (x )为奇函数,且f (x )在(1,a ]和[-a ,-1]内单调递增,f (0)=0,f (a )>0,故A 正确;因为a >1+a 2>a >1,所以选项B 正确;因为1-3a 1+a -(-a )=(a -1)21+a >0,故-a <1-3a 1+a <-1,所以D 也正确,排除A 、B 、D ,故选C.二、填空题(每小题7分,共21分)7. 某同学准备用反证法证明如下一个问题:函数f (x )在[0,1]上有意义,且f (0)=f (1),如果对于不同的x 1,x 2∈[0,1],都有|f (x 1)-f (x 2)|<|x 1-x 2|,求证:|f (x 1)-f (x 2)|<12.那么它的反设应该是________________________________________________________________________________________________________________________________________________. 答案:“∃x 1,x 2∈[0,1],使得|f (x 1)-f (x 2)|<|x 1-x 2|且|f (x 1)-f (x 2)|≥12”8. [2012·湛江模拟]命题:“若空间两条直线a ,b 分别垂直平面α,则a ∥b .”学生小夏这样证明:设a ,b 与面α分别相交于A 、B ,连接A 、B .∵a ⊥α,b ⊥α,AB α① ∴a ⊥AB ,b ⊥AB, ② ∴a ∥b .③这里的证明有两个推理,即:①⇒②和②⇒③.老师评改认为小夏的证明推理不正确,这两个推理中不正确的是__________.答案:②⇒③解析:空间中垂直于同一条直线的两条直线可能平行,可能相交,还可能异面,因此推理②⇒③不正确.9. 如果a a +b b >a b +b a ,则a 、b 应满足的条件是________. 答案:a ≥0,b ≥0且a ≠b解析:∵a a +b b >a b +b a ⇔(a -b )2(a +b )>0⇔a ≥0,b ≥0且a ≠b . 三、解答题(10、11题12分、12题13分)10. 已知△ABC 的三个内角A ,B ,C 成等差数列,且三个内角A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c.证明:要证原式,只需证a +b +c a +b +a +b +c b +c =3,即c a +b +ab +c=1,即只需证bc +c 2+a 2+abab +b 2+ac +bc =1,而A +C =2B ,∴B =60°,∴b 2=a 2+c 2-ac .∴bc +c 2+a 2+ab ab +b 2+ac +bc =bc +c 2+a 2+ab ab +a 2+c 2-ac +ac +bc =bc +c 2+a 2+abab +a 2+c 2+bc=1.从而原式得证. 11. 已知三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0,其中至少有一个方程有实根,求实数a 的取值范围.解:若三个方程都无实根,则⎩⎪⎨⎪⎧Δ1=16a 2-4(-4a +3)<0Δ2=(a -1)2-4a 2<0Δ3=4a 2+4×2a <0,解得-32<a <-1,故当三个方程至少有一个方程有实根时,实数a 的取值范围为{a |a ≤-32或a ≥-1}.12. (1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3;(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.(1)证明:x 是正实数,由均值不等式知 x +1≥2x ,x 2+1≥2x ,x 3+1≥2x 3,故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立). (2)解:若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立. 由(1)知,当x >0时,不等式成立; 当x ≤0时,8x 3≤0,而(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0,此时不等式仍然成立.。
高二精选题库数学 课堂训练6-7北师大版
第6章 第7节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. 证明1+12+13+14+…+12n <n +1(n >1),当n =2时,左边式子等于( )A. 1B. 1+12C. 1+12+13D. 1+12+13+14答案:D解析:当n =2时,左边的式子为 1+12+13+122=1+12+13+14.2.若命题A (n )(n ∈N *)在n =k (k ∈N *)时命题成立,则有n =k +1时命题成立.现知命题对n =n 0(n 0∈N *)时命题成立,则有( )A .命题对所有正整数都成立B .命题对小于n 0的正整数不成立,对大于或等于n 0的正整数都成立C .命题对小于n 0的正整数成立与否不能确定,对大于或等于n 0的正整数都成立D .以上说法都不正确 答案:C3. [2012·辽宁沈阳质检]用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A. 7B. 8C. 9D. 10答案:B解析:左边=1+12+14…+12n -1=1-12n1-12=2-12n -1,代入验证可知n 的最小值是8.4.用数学归纳法证明“n 3+(n +1)3+(n +2)3,(n ∈N *)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( )A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3答案:A解析:假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.5. [2012·怀化模拟]用数学归纳法证明命题“当n 是正奇数时,x n +y n 能被x +y 整除”,在第二步时,正确的证法是( )A .假设n =k (k ∈N +),证明n =k +1命题成立B .假设n =k (k 是正奇数),证明n =k +1命题成立C .假设n =2k +1(k ∈N +),证明n =k +1命题成立D .假设n =k (k 是正奇数),证明n =k +2命题成立 答案:D解析:A 、B 、C 中,k +1不一定表示奇数,只有D 中k 为奇数,k +2为奇数. 6.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),而a 1=1,通过计算a 2,a 3,a 4,则猜想a n 等于( )A.2(n +1)2B.2n (n +1)C.22n-1D.22n -1答案:B解析:由S n =n 2a n 知,S n +1=(n +1)2a n +1, 所以S n +1-S n =(n +1)2a n +1-n 2a n , 所以a n +1=(n +1)2a n +1-n 2a n , 所以a n +1=nn +2a n(n ≥2).当n =2时,S 2=4a 2,又S 2=a 1+a 2,所以a 2=a 13=13,a 3=24a 2=16,a 4=35a 3=110.由a 1=1,a 2=13,a 3=16,a 4=110猜想a n =2n (n +1),故选B.二、填空题(每小题7分,共21分)7.用数学归纳法证明“2n >n 2+1对于n ≥n 0的所有正整数n 都成立”时,第一步证明中的起始值n 0应取______.答案:5解析:当n =1时,2>2不成立;当n =2时,4>5不成立;当n =3时,8>10不成立;当n =4时,16>17不成立;当n =5时,32>26成立;当n =6时,64>37成立,由此猜测n 0应取5.8. [2012·淮南调研]若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________.答案:f (k +1)=f (k )+(2k +1)2+(2k +2)2解析:∵f (k )=12+22+…+(2k )2,∴f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2, ∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.9.如下图是一系列有机物的结构简图,图中的“小黑点”表示原子,两黑点间的“短线”表示化学键,则第n 个图中所含化学键的个数为________.答案:5n +1解析:每个结构简图去掉最左边的一个化学键后,每个环上有5个化学键,故第n 个结构简图有(5n +1)个化学键.可用数学归纳法验证该结论是否正确.三、解答题(10、11题12分、12题13分) 10.用数学归纳法证明:1+122+132+…+1n 2≥3n 2n +1(n ∈N *).证明:(1)当n =1时,左边=1,右边=1, n =2,左边=54,右边=65,∴左≥右,即命题成立.(2)假设当n =k (k ∈N *,k ≥1)时,命题成立, 即1+122+132+…+1k 2≥3k2k +1.那么当n =k +1时,要证1+122+132+…+1k 2+1(k +1)2≥3(k +1)2(k +1)+1, 只要证3k 2k +1+1(k +1)2≥3(k +1)2k +3. ∵3(k +1)2k +3-3k 2k +1-1(k +1)2=1-(k +1)2(k +1)2[4(k +1)2-1] =-k (k +2)(k +1)2(4k 2+8k +3)<0,∴3k 2k +1+1(k +1)2≥3(k +1)2k +3成立, 即1+122+132+…+1k 2+1(k +1)2≥3(k +1)2(k +1)+1成立. ∴当n =k +1时命题成立.由(1)、(2)知,不等式对一切n ∈N *均成立.11. [2012·浙江宁波]是否存在常数a 、b 、c 使等式12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立,若存在,求出a 、b 、c 并证明;若不存在,试说明理由.解:假设存在a 、b 、c 使12+22+32+…+n 2+(n -1)2+…+22+12=an (bn 2+c )对于一切n ∈N *都成立.当n =1时,a (b +c )=1; 当n =2时,2a (4b +c )=6; 当n =3时,3a (9b +c )=19. 解方程组⎩⎪⎨⎪⎧a (b +c )=1,a (4b +c )=3,3a (9b +c )=19,解得⎩⎪⎨⎪⎧a =13,b =2,c =1.证明如下:①当n =1时,由以上知存在常数a ,b ,c 使等式成立. ②假设n =k (k ∈N *)时等式成立,即12+22+32+…+k 2+(k -1)2+…+22+12=13k (2k 2+1);当n =k +1时,12+22+32+…+k 2+(k +1)2+k 2+(k -1)2+…+22+12=13k (2k 2+1)+(k +1)2+k 2 =13k (2k 2+3k +1)+(k +1)2 =13k (2k +1)(k +1)+(k +1)2 =13(k +1)(2k 2+4k +3) =13(k +1)[2(k +1)2+1]. 即n =k +1时,等式成立.因此存在a =13,b =2,c =1使等式对一切n ∈N *都成立.12. 已知数列{a n }中,a 1=2,a n +1=(2-1)(a n +2),n =1,2,3,…. (1)求数列{a n }的通项公式;(2)若数列{b n }中,b 1=2,b n +1=3b n +42b n +3n =1,2,3,…,证明:2<b n ≤a 4n -3,n =1,2,3,….解:(1)因为a n +1=(2-1)(a n +2)=(2-1)(a n -2)+(2-1)(2+2)=(2-1)(a n -2)+2,所以a n +1-2=(2-1)(a n -2).所以数列{a n -2}是首项为2-2,公比为 2-1的等比数列, 所以a n -2=2(2-1)n,即{a n }的通项公式a n =2[(2-1)n +1],n =1,2,3,…. (2)用数学归纳法证明:(ⅰ)当n =1时,因为2<2=b 1=a 1=2,所以2<b 1≤a 1,结论成立;(ⅱ)假设当n =k (k ≥1且k ∈N *)时,结论成立,即2<b k ≤a 4k -3,即0<b k -2≤a 4k -3- 2. 当n =k +1时,b k +1-2=3b k +42b k +3- 2=(3-22)b k +(4-32)2b k +3=(3-22)(b k -2)2b k +3>0,又12b k +3<122+3=3-22,所以b k +1-2=(3-22)(b k -2)2b k +3<(3-22)2(b k -2)≤(2-1)4(a 4k -3-2)=a 4k +1-2.也就是说,当n =k +1时,结论成立. 根据(ⅰ)和(ⅱ)知,2<b n ≤a 4n -3,n =1,2,3,….。
【创新设计】2022届 数学一轮(文科) 北师大版 课时作业 7-3 Word版含答案
第3讲 二元一次不等式(组)与简洁的线性规划问题基础巩固题组 (建议用时:40分钟)一、选择题1.(2021·泰安模拟)不等式组⎩⎨⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为 ( ) A .1B.12C.13D.14解析 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D =12,所以S △BCD =12×(x C -x B )×12=14. 答案 D2.(2022·湖北卷)若变量x ,y 满足约束条件⎩⎨⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0,则2x +y 的最大值是 ( )A .2B .4C .7D .8解析 画出可行域如图(阴影部分).设目标函数为z =2x +y ,由⎩⎪⎨⎪⎧x +y =4,x -y =2解得A (3,1),当目标函数过A (3,1)时取得最大值,∴z max =2×3+1=7,故选C. 答案 C3.(2021·陕西卷)若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6B .-2C .0D .2解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点(-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6. 答案 A4.(2022·成都诊断)在平面直角坐标系 xOy 中,P 为不等式组⎩⎨⎧y ≤1,x +y -2≥0,x -y -1≤0所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .1 C.12D.13解析 作出可行域如图所示,当点P 位于⎩⎪⎨⎪⎧x +y =2,y =1的交点(1,1)时,(k OP )max =1,故选B.答案 B5.(2021·济南模拟)已知变量x ,y 满足约束条件⎩⎨⎧x -y ≥1,x +y ≥1,1<x ≤a ,目标函数z =x +2y 的最大值为10,则实数a 的值为( )A .2B.83C .4D .8解析 结合图形求解.作出不等式组对应的平面区域,当目标函数经过点(a ,a -1)时取得最大值10,所以a +2(a -1)=10,解得a =4,故选C. 答案 C 二、填空题6.(2021·日照调研)若A 为不等式组⎩⎨⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________. -12×22×解析 平面区域A 如图所示,所求面积为S =12×2×222=2-14=74.答案 747.在平面直角坐标系xOy 中,M 为不等式组错误!所表示的区域上一动点,则|OM |的最小值是________. 解析 如图所示阴影部分为可行域,数形结合可知,原点O 到直线x +y -2=0的垂线段长是|OM |的最小值,∴|OM |min =|-2|12+12= 2.答案28.(2021·盐城调研)设x ,y 满足约束条件⎩⎨⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为________.。
高二精选题库数学 课堂训练_2-5北师大版
第2章 第5节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江百校联考]已知0<a <1,log a (1-x )<log a x ,则( ) A. 0<x <1 B. x <12C. 0<x <12D. 12<x <1 答案:C解析:由⎩⎪⎨⎪⎧1-x >0x >01-x >x,解得:0<x <12.2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),2x (x ≤0),若f (a )=12,则a 的值为( )A.-1B. 2C.-1或12D.-1或 2答案:D解析:由题知,⎩⎪⎨⎪⎧ a >0,log 2a =12或⎩⎪⎨⎪⎧a ≤0,2a =12,可得a =2或-1.故选D. 3.已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图像可能是( )答案:B解析:由题知,a =1b ,则f (x )=(1b )x =b -x ,g (x )=-log b x ,当0<b <1时,f (x )单增,g (x )单增,B 正确;当b >1时,f (x )单减,g (x )单减.故选B.4. 函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为( ) A. 2 B. 23 C. 13 D. 1答案:B解析:由题知函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],当f (x )=0时x =1,当f (x )=1时x =3或13,所以要使值域为[0,1],定义域可以为[13,3],[1,3],[13,1],所以b -a 的最小值为23.故选B.5. 若不等式x 2-log a x <0对x ∈(0,12)恒成立,则实数a 的取值范围是( )A. {a |0<a <1}B. {a |116≤a <1}C. {a |a >1}D. {a |0<a ≤116}答案:B解析:由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈(0,12)时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在(0,12)上的图像在f 2(x )=log a x 图像的下方即可.当a >1时,显然不成立;当0<a <1时,如图,要使x 2<log a x 在x ∈(0,12)上恒成立,需f 1(12)≤f 2(12). 所以有(12)2≤log a 12,解得a ≥116,∴116≤a <1. 6. [2012·东北师大附中摸底考试]若实数a 满足a >|y -1|-|y -2|(y ∈R )恒成立,则函数f (x )=log a (x 2-5x +6)的单调减区间为( )A. (52,+∞)B. (3,+∞)C. (-∞,52)D. (-∞,2)答案: D解析:由于a >|y -1|-|y -2|(y ∈R )恒成立,又|y -1|-|y -2|的最大值是1,故a >1.设g (x )=x 2-5x +6,则函数f (x )的定义域是(-∞,2)∪(3,+∞).又函数g (x )=x 2-5x +6的单调递减区间是(-∞,52),由复合函数的单调性知,函数f (x )=log a (x 2-5x +6)的单调递减区间是(-∞,2).二、填空题(每小题7分,共21分)7. [变式题]函数f (x )=log 2(2x +6)的定义域为________. 答案:[-52,+∞)解析:由题知log 2(2x +6)≥0,即2x +6≥1,解得x ≥-52,所以函数f (x )=log 2(2x +6)的定义域为[-52,+∞).8. 已知函数f (x )=⎩⎪⎨⎪⎧3x +1x ≤0log 2x x >0,则使函数f (x )的图像位于直线y =1上方的x 的取值范围是________.答案:-1<x ≤0或x >2解析:当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,∴x >2. 综上所述:-1<x ≤0或x >2.9.设函数f (x )=|log 2x |,则f (x )在区间(m -2,2m )内有定义且不是单调函数的充要条件是________.答案:2≤m <3解析:由题意知,只需1∈(m -2,2m ),且m -2≥0即可.于是0≤m -2<1,且2m >1,于是2≤m <3.三、解答题(10、11题12分、12题13分) 10. 已知y =log 4(2x +3-x 2). (1)求定义域; (2)求f (x )的单调区间;(3)求y 的最大值,并求取得最大值的x 值. 解:(1)由真数2x +3-x 2>0,解得-1<x <3. ∴定义域是{x |-1<x <3}.(2)令u =2x +3-x 2,则u >0,y =log 4u . 由于u =2x +3-x 2=-(x -1)2+4,考虑到定义域,其增区间是(-1,1],减区间是[1,3). 又y =log 4u 在u ∈(0,+∞)上是增函数, 故该函数的增区间是(-1,1],减区间是[1,3). (3)∵u =2x +3-x 2=-(x -1)2+4≤4,∴y =log 4(2x +3-x 2)≤log 44=1.∴当x =1,u 取得最大值4时,y 就取得最大值1.11. [2012·辽宁抚顺]已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图像上任意一点P 关于原点对称的点Q 的轨迹恰好是函数f (x )的图像.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围. 解:(1)设P (x ,y )为g (x )图像上任意一点,则 Q (-x ,-y )是点P 关于原点的对称点, ∵Q (-x ,-y )在f (x )的图像上, ∴-y =log a (-x +1), 即y =g (x )=-log a (1-x )(a >1). (2)f (x )+g (x )≥m ,即log a x +11-x≥m .设F (x )=log a 1+x1-x ,x ∈[0,1),由题意知,只要F (x )min ≥m 即可.∵F (x )在[0,1)上是增函数,∴F (x )min =F (0)=0.故m ≤0即为所求.12. 定义在R 上的函数f (x )满足对任意的x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0.(1)求证:f (x )为奇函数; (2)判断f (x )的单调性并证明;(3)解不等式:f [log 2(x +1x+6)]+f (-3)≤0.解:(1)令x =y =0,则f (0)=0,令y =-x ,则f (x )+f (-x )=f (0)=0. ∴f (x )为奇函数.(2)f (x )为R 上的单调增函数,设x 1<x 2,则x 2-x 1>0,f (x 2-x 1)>0,∴f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1)>f (x 1),∴f (x )为R 上的单调增函数.(3)∵f (0)=0且f (x )在R 上单调递增,∴原不等式等价于f [log 2(x +1x +6)+(-3)]≤f (0)⇔log 2(x +1x +6)≤3⇔0<x +1x +6≤8⇔⎩⎪⎨⎪⎧ x >0x 2+6x +1>0x 2-2x +1≤0或⎩⎪⎨⎪⎧x <0x 2+6x +1<0,x 2-2x +1≥0∴原不等式的解集为{x |x =1或-3-22<x <-3+22}.。
高二精选题库数学 课堂训练8-3北师大版
第8章第3节时间:45分钟满分:100分一、选择题(每小题7分,共42分)1. 直线ax+by-b+a=0与圆x2+y2+x-3=0的位置关系是()A. 相交B. 相切C. 相离D. 无法判断答案:A解析:直线方程化为a(x+1)+b(y-1)=0,可知直线过定点(-1,1),将(-1,1)代入圆的方程,(-1)2+12-1-3=-2<0,则定点在圆内,所以直线与圆总相交.2. [2012·山东淄博]“a=b”是“直线y=x+2与圆(x-a)2+(y-b)2=2相切”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件答案:A解析:“直线y=x+2与圆(x-a)2+(y-b)2=2相切”⇔“圆心(a,b)到直线y=x+2的距离d=r”,即|a-b+2|2=2,|a-b+2|=2,解得a-b=0或a-b=-4.所以,“a=b”是“直线y=x+2与圆(x-a)2+(y-b)2=2相切”的充分不必要条件.3. [2012·武汉联考]若直线y=x+b与曲线x=1-y2恰有一个公共点,则b的取值范围是()A. b∈[-1,1]B. b=- 2C. b=±2D. b∈(-1,1]或b=- 2答案:D解析:由x=1-y2知,曲线表示如图所示的半圆,让直线y=x+b在图形中运动,可知,当-1<b≤1时与半圆有一个公共点;当直线与半圆相切时,也与半圆只有一个公共点,此时|b|2=1,求得b=2(舍去)或b=- 2.故选D.4.已知圆x2+y2=4与圆x2+y2-6x+6y+14=0关于直线l对称,则直线l的方程是() A.x-2y+1=0 B.2x-y-1=0C.x-y+3=0 D.x-y-3=0答案:D解析:两圆关于直线l 对称,则直线l 为两圆圆心连线的垂直平分线.圆x 2+y 2=4的圆心为O (0,0),圆x 2+y 2-6x +6y +14=0的圆心为P (3,-3),则线段OP 的中点为Q (32,-32),其斜率k OP =-32-032-0=-1,则直线l 的斜率为k =1,故直线l 的方程为y -(-32)=x -32,即x -y -3=0,故选D.5.直线l 与圆x 2+y 2+2x -4y +a =0(a <3)相交于A 、B 两点,若弦AB 的中点为(-2,3),则直线l 的方程为( )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .x +y -3=0答案:A解析:结合圆的几何性质处理会更简捷.由圆的一般方程可得圆心O (-1,2),由圆的性质易知O (-1,2),C (-2,3)的连线与弦AB 垂直,故有k AB ×k O C =-1⇒k AB =1,故直线AB 的方程为:y -3=x +2整理得:x -y +5=0.6. [2012·广东揭阳]已知直线l :x +y -6=0和圆M :x 2+y 2-2x -2y -2=0,点A 在直线l 上,若直线AC 与圆M 至少有一个公共点C ,且∠MAC =30°,则点A 的横坐标的取值范围是( )A. (0,5)B. [1,5]C. [1,3]D. (0,3] 答案:B 解析:如图,设点A 的坐标为(x 0,6-x 0),圆的标准方程为(x -1)2+(y -1)2=4,圆心M 到直线AC 的距离为d ,则d =|AM |sin30°,因直线AC 与圆M 有交点,所以d =|AM |sin30°≤2⇒(x 0-1)2+(5-x 0)2≤16⇒1≤x 0≤5,故选B.二、填空题(每小题7分,共21分)7.过点M (1,2)的直线l 将圆(x -2)2+y 2=9分成两段弧,其中的劣弧最短时,直线l 的方程为________.答案:x -2y +3=0解析:设圆心为N ,点N 的坐标为(2,0),由圆的性质得直线l 与MN 垂直时,形成的劣弧最短,由点斜式得直线l 的方程为x -2y +3=0.8. [2012·东北联考]若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为__________.答案:2 3解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为24-(c a 2+b2)2,由于a 2+b 2=c 2,所以所求弦长为2 3.9.设直线3x +4y -5=0与圆C 1:x 2+y 2=4交于A ,B 两点,若圆C 2的圆心在线段AB 上,且圆C 2与圆C 1相切,切点在圆C 1的劣弧AB 上,则圆C 2的半径的最大值是________.答案:1解析:圆C 1的圆心C 1(0,0)到直线3x +4y -5=0的距离为|0+0-5|32+42=1,圆C 1的半径为2,AB 弧上的点到直线3x +4y -5=0距离最大为2-1=1,因此圆C 2的半径最大为1.三、解答题(10、11题12分、12题13分)10. 已知以点C (t ,2t )(t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△OAB 的面积为定值;(2)设直线y =-2x +4与圆C 交于点M 、N ,若OM =ON ,求圆C 的方程. 解:(1)∵圆C 过原点O ,∴r 2=t 2+4t 2.设圆C 的方程是(x -t )2+(y -2t )2=t 2+4t2.令x =0,得y 1=0,y 2=4t ;令y =0,得x 1=0,x 2=2t ,∴A (2t,0),B (0,4t ),∴S △OAB =12|OA |·|OB |=12·|2t |·|4t |=4,即△OAB 的面积为定值4.(2)∵OM =ON ,CM =CN ,∴OC 垂直平分线段MN . ∵k MN =-2,∴k OC =12,∴直线OC 的方程是y =12x ,∴2t =12t ,解得t =2或-2.当t =2时,圆心C 的坐标为(2,1),OC =5,此时圆心C 到直线y =-2x +4的距离d =15<5,圆C 与直线y =-2x +4相交于两点;当t =-2时,圆心C 的坐标为(-2,-1),OC =5,此时圆心C 到直线y =-2x +4的距离d =95>5,圆C 与直线y =-2x +4不相交,∴t =-2不符合题意,舍去. ∴圆C 的方程为(x -2)2+(y -1)2=5.11.已知m ∈R ,直线l :mx -(m 2+1)y =4m 和圆C :x 2+y 2-8x +4y +16=0. (1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?解:(1)直线l 的方程可化为y =m m 2+1x -4m m 2+1,直线l 的斜率k =m m 2+1,∴|k |≤|m |m 2+1.①m =0时,k =0. ②m ≠0时,0<|k |=1|m |+|1m |≤12(当且仅当|m |=1时等号成立) ∴-12≤k ≤12且k ≠0.综合①②,∴-12≤k ≤12,所以斜率k 的取值范围是[-12,12].(2)不能.由(1)知l 的方程为y =k (x -4),其中|k |≤12.圆C 的圆心为C (4,-2),半径r =2. 圆心C 到直线l 的距离d =21+k 2. 由|k |≤12,得d ≥45>1,即d >r 2.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于2π3.所以l 不能将圆C 分割成弧长的比值为12的两段弧.12.已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA 、QB 分别切⊙M 于A 、B 两点. (1)如果|AB |=423,求直线MQ 的方程; (2)求动弦AB 的中点P 的轨迹方程. 解:(1)由P 是AB 的中点,|AB |=423, 可得|MP |=|MA |2-(|AB |2)2=1-(223)2=13.由射影定理,得|MB |2=|MP |·|MQ |,得|MQ |=3, 在Rt △MOQ 中,|OQ |=|MQ |2-|MO |2|=32-22= 5. 故Q 点的坐标为(5,0)或(-5,0)所以直线MQ 的方程是:2x +5y -25=0或2x -5y +25=0.(2)连结MB ,MQ ,设P (x ,y ),Q (a,0),点M 、P 、Q 在一条直线上,当a ≠0时,得2-a =2-y-x .②由射影定理有|MB |2=|MP |·|MQ |, 即x 2+(y -2)2·a 2+4=1.③ 由②及③消去a ,并注意到y <2,可得 x 2+(y -74)2=116(y <2).当a =0时,易得P 点为(0,32),满足方程x 2+(y -74)2=116(y <2).即中点P 的轨迹方程为x 2+(y -74)2=116(y <2).。
高二精选题库数学 课堂训练8-4北师大版
第8章 第4节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·江西联考]方程x 2sin2+cos2-y 2cos2-sin2=1所表示的曲线是( )A. 焦点在x 轴上的椭圆B. 焦点在y 轴上的椭圆C. 焦点在x 轴上的双曲线D. 焦点在y 轴上的双曲线 答案:B解析:∵π2<2<3π4,∴sin2>0,cos2<0且|sin2|>|cos2|,∴sin2+cos2>0,cos2-sin2<0且sin2-cos2>sin2+cos2,故表示焦点在y 轴上的椭圆.2. [2012·广东联考]椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A. 14B. 12C. 2D. 4答案:A解析:将原方程变形为x 2+y 21m=1,由题意知a 2=1m ,b 2=1,∴a =1m ,b =1,∴1m =2,∴m =14,故选A.3. [2012·河北唐山]P 为椭圆x 24+y 23=1上一点,F 1、F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于( )A. 3B. 3C. 2 3D. 2答案:D解析:由题意可得|F 1F 2|=2,|PF 1|+|PF 2|=4, |F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|·cos60° =(|PF 1|+|PF 2|)2-3|PF 1||PF 2|,所以4=42-3|PF 1||PF 2|,|PF 1||PF 2|=4, PF 1→·PF 2→=|PF 1→||PF 2→|·cos60°=4×12=2,故选D.4. [2012·辽宁协作体]已知椭圆x 236+y29=1上有两个动点P 、Q ,E (3,0),EP ⊥EQ ,则E P →·Q P →的最小值为( )A. 6B. 3- 3C. 9D. 12-6 3答案:A解析:设P (x 0,y 0),则EP →·Q P →=|E P →|·|QP →|cos 〈EP →,Q P →〉=|E P →|2=(x 0-3)2+y 20=(x 0-3)2+9-1420=34x 20-6x 0+18=34[(x 0-4)2-16]+18≥6,当x 0=4时取“=”,故选A. 5.[2012·抚顺一模]已知椭圆x 24y 2=1的左、右焦点分别为F 1、F 2,点M 在该椭圆上,且MF 1→·MF 2→=0,则点M 到y 轴的距离为( )A.233 B.263 C.33D. 3答案:B解析:由题意,得F 1(-3,0),F 2(3,0).设M (x ,y ),则MF 1→·MF 2→=(-3-x ,-y )·(3-x ,-y )=0,整理得x 2+y 2=3 ①.又因为点M 在椭圆上,故x 24+y 2=1,即y 2=1-x 24 ②.将②代入①,得34x 2=2,解得x =±263.故点M 到y 轴的距离为263.6. 已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是等腰直角三角形,则这个椭圆的离心率是 ( )A.32B.22C. 2-1D. 2答案:C解析:∵△ABF 2是等腰直角三角形,设点A (x 0,y 0)在x 轴上方,∴|AF 1|=|F 1F 2|.将x 0=-c 代入椭圆方程x 2a 2+y 2b 2=1,得A (-c ,b 2a ),从而b2a =2c ,即a 2-c 2=2ac ,整理得e 2+2e -1=0,解得e =-1±2.由e ∈(0,1)得e =2-1.故选C. 二、填空题(每小题7分,共21分)7. [2012·长春调研]已知抛物线y 2=2px (p >0)的焦点F 与椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点重合,它们在第一象限内的交点为T ,且TF 与x 轴垂直,则椭圆的离心率为__________.答案:2-1解析:依题意c =p 2,b2a =p ,∴b 2=2ac ,∴c 2+2ac -a 2=0, ∴e 2+2e -1=0,又∵e >0,∴解得e =2-1.8.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y29=1上,则sin A +sin C sin B=________.答案:54解析:利用椭圆定义得a +c =2×5=10,b =2×4=8,利用正弦定理得sin A +sin C sin B =a +c b =108=54.9. [2011·江西]若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12)作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是__________.答案:x 25+y 24=1解析:由图知切点A (1,0),设另一切线y -12=k (x -1),即kx -y -k +12=0,圆心(0,0)到切线距离d =|-k +12|k 2+1=1,∴k =-34,则OB 的直线方程为y =43x ,∴y =43x 与x 2+y 2=1联立得B (35,45),∴AB 方程为y =-2(x -1),得椭圆右焦点(1,0)、上顶点(0,2), ∴c =1,b =2,a 2=5, ∴椭圆方程x 25+y241.三、解答题(10、11题12分、12题13分)10.[2012·山东东营]已知F 1,F 2是椭圆C :x 2a 2+y2b 2=1(a >b >0)的左、右焦点,点P (-2,1)在椭圆上,线段PF 2与y 轴的交点M 满足PM →+F 2M →=0.(1)求椭圆C 的方程;(2)椭圆C 上任一动点M (x 0,y 0)关于直线y =2x 的对称点为M 1(x 1,y 1),求 3x 1-4y 1的取值范围. 解:(1)由已知点P (-2,1)在椭圆上, ∴2a 2+1b2=1.① 又∵PM →+F 2M →=0,M 在y 轴上, ∴M 为PF 2的中点. ∴-2+c =0,c = 2. ∴a 2-b 2=2.②由①②,解得b 2=2(b 2=-1舍去), ∴a 2=4.故所求椭圆C 的方程为x 24+y 22=1.(2)∵点M (x 0,y 0)关于直线y =2x 的对称点为M 1(x 1,y 1), ∴⎩⎨⎧ y 0-y1x 0-x 1×2=-1,y 0+y 12=2×x 0+x12,解得⎩⎨⎧x 1=4y 0-3x5,y 1=3y 0+4x5∴3x 1-4y 1=-5x 0.∵点M (x 0,y 0)在椭圆C :x 24+y221上,∴-2≤x 0≤2, ∴-10≤-5x 0≤10.即3x 1-4y 1的取值范围为[-10,10].11. [2011·辽宁]如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(1)设e =12,求|BC |与|AD |的比值;(2)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由. 解:(1)因为C 1,C 2的离心率相同,故依题意可设 C 1:x 2a 2+y 2b 2=1,C 2:b 2y 2a 4+x2a2=1(a >b >0),设直线l :x =t (|t |<a ),分别与C 1,C 2的方程联立,求得 A (t ,a b a 2-t 2),B (t ,baa 2-t 2).当e =12时,b =32a ,分别用y A ,y B 表示A ,B 的纵坐标,可知|BC |∶|AD |=2|y B |2|y A |=b 2a 2=34.(2)当t =0时的l 不符合题意,当t ≠0时,BO ∥AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即b a a 2-t 2t =a ba 2-t 2t -a . 解得t =-ab 2a 2-b 2=-1-e 2e 2·a . 因为|t |<a ,又0<e <1,所以1-e 2e 2<1,解得22<e <1. 所以当0<e ≤22时,不存在直线l ,使得BO ∥AN ;当22<e <1时,存在直线l ,使得BO ∥AN . 12. [2012·北京东城]已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率为12,且椭圆的左顶点到右焦点的距离为3.(1)求椭圆C 的标准方程;(2)若过点P (0,m )的直线l 与椭圆C 交于不同的两点A ,B ,且AP →=3PB →,求实数m 的取值范围. 解:(1)设所求的椭圆方程为x 2a 2+y2b 2=1(a >b >0),由题意知⎩⎪⎨⎪⎧c a =12,a +c =3,a 2=b 2+c 2,可得⎩⎪⎨⎪⎧a =2,b =3,c =1.所以所求椭圆方程为x 24+y23=1.(2)若过点P (0,m )的斜率不存在,则m =±32.若过点P (0,m )的直线斜率存在, 设直线l 的方程为y -m =kx ,由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12,可得(3+4k 2)x 2+8kmx +4m 2-12=0. Δ=64m 2k 2-4(3+4k 2)(4m 2-12). 因为直线l 与椭圆C 交于不同两点, 所以Δ>0,整理得4k 2-m 2+3>0. 即4k 2>m 2-3,① 设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=-8km 3+4k 2,x 1x 2=4m 2-123+4k 2.②由已知AP →=3P B →,因为AP →=(-x 1,m -y 1),P B →=(x 2,y 2-m ). 所以-x 1=3x 2.③将③代入②得-3(4km 3+4k 2)2=4m 2-123+4k 2,整理得16m 2k 2-12k 2+3m 2-9=0,将k 2=9-3m 216m 2-12代入①式得4k 2=9-3m 24m 2-3>m 2-3. 4m 2(m 2-3)4m 2-3<0,解得34<m 2<3. 所以-3<m <-32或32<m < 3. 综上可得,实数m 的取值范围为(-3,-32]∪[32,3).。
高二上学期数学北师大版(2019)选择性必修第一册 7-3 独立性检验 同步练习(解析版)
2022-2023学年高二数学北师大版(2019)选择性必修第一册同步课时训练 7.3 独立性检验一、 概念练习1.第24届冬季奥林匹克运动会将于2022年在北京举办.为了解某城市居民对冰雪运动的关注情况,随机抽取了该市100人进行调查统计,得到如下22⨯列联表.参考公式:()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:A.该市女性居民中大约有5%的人关注冰雪运动B.该市男性届民中大约有95%的人关注冰雪运动C.有95%的把握认为该市居民是否关注冰雪运动与性别有关D.有99%的把握认为该市居民是否关注冰雪运动与性别有关 2.已知两个分类变量X 与Y ,它们的22⨯列联表如下:c =附:3.某品牌公司在海外设立了多个分支机构,现需要国内公司外派大量中、青年员工该企业为了解这两个年龄层的员工是否愿意被外派,采用分层抽样的方法从中、青年员工中随机抽取了100位进行调查,得到数据如下表:A.有90%的把握认为“是否愿意被外派与年龄有关”B.有90%的把握认为“是否愿意被外派与年龄无关”C.有99%的把握认为“是否愿意被外派与年龄有关”D.有99%的把握认为“是否愿意被外派与年龄无关”4.某组织为研究爱好某项运动是否与性别有关进行了一个调查,得到如下列联表,若这两个变量没有关系,则a 的可能值为( )5.假设有两个变量X 与Y ,它们的取值分别为{}12,x x 和{}12,y y ,其2×2列联表为A.5,4,3,2a b c d ====B.5,3,4,2a b c d ====C.2,3,4,5a b c d ====D.2,2,4,5a b c d ====二、能力提升6.在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下22⨯列联表:附:2()()()()a b c d a c b d χ=++++,其中n a b c d =+++.A.95%B.99.5%C.99.9%D.99%7.春节期间,“履行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民能否做到“光盘”,得到如下的列联表:单位:人附:22()()()()()n ad bc a b c d a c b d χ-=++++,其中.n a b c d =+++ 参照附表,得到的正确结论是( )A.在犯错误的概率不超过0.01的前提下认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过0.01的前提下认为“该市居民能否做到·光盘’与性别无关”C.在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”D.在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别无关”8.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n ad bca b c d a c b dχ-=++++算得22110(40302020)7.860506050χ⨯⨯-⨯=≈⨯⨯⨯.附表:参照附表,得到的正确结论是( )A.有9%以上的把握认为“爱好该项运动和性别有关”B.有99%以上的把握认为“爱好该项运动和性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”9.下列说法中正确的是( )A.相关关系是一种不确定的关系,回归分析是对相关关系的分析,因此没有实际意义B.独立性检验对分类变量关系的研究没有100%的把握,所以独立性检验研究的结果在实际中没有多大的实际意义C.相关关系叮以对变量的发展趋势进行预报,这种预报可能会是错误的D.独立性检验如果得出的结论有99%的可信度,就意味着这个结论一定是正确的10.2019年10月18日至27日,第七届世界军人运动会在湖北武汉举办,中国代表团共获得133金64银42铜,共239枚奖牌.为了调查各国参赛人员对主办方的满意程度,研究人员随机抽取了500名参赛运动员进行调查,所得数据如下表所示:性运动员的概率为12;②在犯错误的概率不超过1%的前提下可以认为“是否对主办方表示满意与运动员的性别有关”;③没有99.9%的把握认为“是否对主办方表示满意与运动员的性别有关”.则正确说法的个数为( )附:22()()()()()n ad bca b c d a c b dχ-=++++,0.016.635x=.A.0B.1C.2D.311.某班班主任对全班50名学生进行了喜欢玩电脑游戏与认为作业多少是否有关系的调查,所得数据如下表:χ≈电脑游戏与认为作业多少有关系的把握为_________%.12.在独立性检验中,统计量2χ有两个临界值:3.841和6.635.当2 3.841χ时,至少有95%的把握说明两个事件有关,当2 6.635χ时,至少有99%的把握说明两个事件有关,当2 3.841χ<时,认为两个事件无关.在一项打鼾与心脏病的调查中,共调查了200人,经计算220.87χ=.根据这一数据分析,我们可认为打鼾与患心脏病之间是___________的(填“有关”或“无关”).13.在一次独立试验中,有200人按性别和是否色弱分类如下表所示(单位:人).附:)2kk年10月16关注的大事,因此每天有很多民众通过手机、电视等方式观看有关新闻.某机构将每天关注这件大事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,并从参与调查的人群中随机抽取了100人进行分析,得到下表(单位:人)附:()()()()()2n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.0.005的前提下认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,求其中至少有1人是“天文爱好者”的概率.15.某食品专卖店为调查某种零售食品的受欢迎程度,通过电话回访的形式,随机调查了200名年龄在18~40岁的顾客.以28岁为分界线,按喜欢不喜欢,得到下表,且年龄在18~28岁间不喜欢该食品的频率是15.(Ⅱ)能否有99%的把握认为顾客是否喜欢该食品与年龄有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.)2kk答案以及解析1.答案:C解析:由22⨯列联表中的数据可得()22352515251004.167 3.84160405050K ⨯-⨯⨯=≈>⨯⨯⨯,因此,有95%的把握认为该市居民是否关注冰雪运动与性别有关.故选:C.2.答案:B解析:有90%的把握认为X 与Y 有关系,23.841χ 2. 706≥∴>,266(3501021)3.841 2.7063135(10)(56)c c c c ⨯--∴>≥⨯⨯+-,将选项代入检验,得5c =符合题意. 3.答案:C解析:由题意,可得22100(20104030)χ16.667 6.63560405050⨯⨯-⨯=≈>⨯⨯⨯,所以有99%的把握认为“是否愿意被外派与年龄有关”,故选C. 4.答案:B解析:结合选项,知当500a =时,2221320(100600120500)χ02201100600720⨯⨯-⨯==⨯⨯⨯,所以这两个变量没有关系,故选B. 5.答案:D解析:对于同一样本,||ad bc -越小,说明X 与Y 之间关系越弱,而||ad bc -越大,说明X 与Y 之间关系越强.通过计算,知对于选项A,B,C ,都有|||1012|2ad bc -=-=.对于选项D ,有|||158|7ad bc -=-=,显然72>.故选D. 6.答案:D解析:由题表中的数据可得:22110(10302050)7.4960503080χ⨯⨯-⨯=≈⨯⨯⨯,因为0.017.49 6.635x >=,所以可以认为数学考试成绩与班级有关系的把握为99%.故选D. 7.答案:C解析:22()()()()()n ad bc a b c d a c b d χ-=++++2100(45151030) 3.03055457525⨯⨯-⨯=≈⨯⨯⨯,20.10.05x x χ<<,∴在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”.8.答案:A解析:因为20.016.635X x >=,所以有99%以上的把握认为“爱好该项运动和性别有关”,故选A. 9.答案:C解析:相关关系虽然是一种不确定的关系,但是回归分析可以在某种程度上对变量的发展趋势进行预报,这种预报在尽量减小误差的条件下可以对生产与生活起到一定的指导作用,独立性检验对分类变量的研究也是不确定的,但是其结果也有一定的实际意义.故选C. 10.答案:B解析:任取1名参赛人员,抽到对主办方表示满意的男性运动员的概率为20025005=,故①错误;220.01500(2003050220) 5.952 6.63542080250250x χ⨯⨯-⨯=≈<=⨯⨯⨯,故②错误,③正确.故选B.11.答案:5.059;95解析:由2χ的计算公式可得2χ 5.059≈. 5.059 3.841>,∴有95%的把握认为二者有关系. 12.答案:有关解析:220.87 6.635χ=>时,至少有99%的把握认为打鼾与患心脏病有关. 13.答案:0.05解析:由题意得2×2列联表为由列联表中的数据,得2200(7331177) 3.947 3.8411901080120χ⨯⨯-⨯=≈>⨯⨯⨯,所以在犯错误的概率不超过0.05的前提下可认为“是否色弱与性别有关”. 14.答案:(1)见解析 (2)910解析:(1)()()()()()22100(20153035)9.0917.87950505545n ad bc K a b c d a c b d ⨯-⨯≈>-=+++⨯⨯+⨯故能在犯错误的概率不超过0.005的前提下认为“天文爱好者”或“非天文爱好者”与性别有关;(2)按分层抽样抽取的5人中: 2名为“天文爱好者”,编号为a 、b ; 3名为“非天文爱好者”,编号为1、2、3, 则从这5人中随机选出3人,所有可能结果如下: ab 1,ab 2,ab 3,a 12,a 13,a 23,b 12,b 13,b 23,123, 共10种情况,其中至少有1人是“天文爱好者”的有9种,∴概率为910.15.答案:(1)20m =,60n =(2)有99% 解析:(1)由题中表格中数据可得1580mm=+,解得20m =, 且8040200m n +++=,解得60n =. (2)由(1)可补充列联表为则22200(80402060)2009.524 6.6351001001406021K⨯⨯-⨯==≈>⨯⨯⨯,所以有99%的把握认为顾客是否喜欢该食品与年龄有关.第 11 页共 11 页。
高二精选题库数学 课堂训练10-8北师大版
第10章 第8节时间:45分钟 满分:100分一、选择题(每小题7分,共42分) 1.随机变量ξ的分布列为,则E (5ξ+4)等于( ) A .13 B .11 C .2.2 D .2.3 答案:A 解析:由已知得E (ξ)=0×0.4+2×0.3+4×0.3=1.8, ∴E (5ξ+4)=5E (ξ)+4=5×1.8+4=13. 2. [2012·荆州质检]随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=3,则D (ξ)的值是( )A. 13B. 23 C. 59 D. 79答案:C解析:∵a ,b ,c 成等差数列,∴2b =a +c ,又a +b +c =1,且E (ξ)=-1×a +1×c =c -a =13,∴a =16,b =13,c =12,∴D (ξ)=(-1-13)2×16+(0-13)2×13+(1-13)2×12=59.3. 设ξ是离散型随机变量,P (ξ=x 1)=23,P (ξ=x 2)=13x 1<x 2,又已知E (ξ)=43,D (ξ)=29,则x 1+x 2的值为( ) A. 53B. 73C. 3D.113答案:C解析:由E (ξ)=43,D (ξ)=29得:⎩⎨⎧23x 1+13x 2=43(x 1-43)2·23+(x 2-43)2·13=29,解得:⎩⎨⎧x 1=53x 2=23或⎩⎪⎨⎪⎧x 1=1x 2=2,由于x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1x 2=2,∴x 1+x 2=3.4. [2012·浙江嘉兴]甲乙两人分别独立参加某高校自主招生面试,若甲、乙能通过面试的概率都是23,则面试结束后通过的人数ξ的期望是( )A. 43B.119C. 1D. 89答案:A解析:依题意,ξ的取值为0,1,2. 且P (ξ=0)=(1-23×(1-23)=19,P (ξ=1)=23×(1-23)+(1-23)×23=49,P (ξ=2)=23×23=49.故ξ的期望E (ξ)=0×19+1×49+2×49=129=43.5.已知三个正态分布密度函数φi (x )=12πσie-(x -μi )22σ2i(x ∈R,i =1,2,3)的图像如图所示,则( )A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3 答案:D解析:正态分布密度函数φ2(x )和φ3(x )的图像都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图像可知,正态分布密度函数φ1(x )和φ2(x )的图像一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.6. 若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数,则2D (ξ)-1E (ξ)的最大值为( )A. 2+2 2B. 2 2C. 2- 2D. 2-2 2答案:D解析:随机变量ξ的所有可能取值为0,1,且有P (ξ=1)=p ,P (ξ=0)=1-p ,∴E (ξ)=0×(1-p )+1×p =p ,D (ξ)=(0-p )2·(1-p )+(1-p )2·p =p -p 2,∴2D (ξ)-1E (ξ)=2-(2p +1p ),∵0<p <1,∴2p +1p≥ 22,当且仅当2p =1p p =22时等号成立,因此当p =22时,2D (ξ)-1E (ξ)取最大值2-2 2. 二、填空题(每小题7分,共21分)7.[2011·上海]马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=__________.答案:2解析:设P (ξ=1)=x ,则P (ξ=2)=1-2x ,P (ξ=3)=x , ∴E (ξ)=1·x +2·(1-2x )+3·x =2.8.[2012·广东江门]已知X ~N (μ,σ2),P (μ-σ<X ≤μ+σ)=0.68,P (μ-2σ<X ≤μ+2σ)=0.95,某次全市20000人参加的考试,数学成绩大致服从正态分布N (100,100),则本次考试120分以上的学生约有__________.答案:500解析:依题意可知μ=100,σ=10, 由于P (μ-2σ<X ≤μ+2σ)=0.95, 所以P (80<X ≤120)=0.95,因此本次考试120分以上的学生约有 20000×(1-0.95)2=500.9.甲、乙两工人在一天生产中出现废品数分别是两个随机变量ξ、η,其分布列分别为:若甲、乙两人的日产量相等,则甲、乙两人中技术较好的是________. 答案:乙解析:甲、乙的均值分别为Eξ=0×0.4+1×0.3+2×0.2+3×0.1=1, Eη=0×0.3+1×0.5+2×0.2=0.9,所以Eξ>Eη, 故乙的技术较好.三、解答题(10、11题12分、12题13分)10.设ξ是一个离散型随机变量,其分布列如下表,求q 的值,并求E (ξ),D(ξ)的值.解:(1)0≤P i ≤1 i =1,2,...; (2)p 1+p 2+ (1)所以有⎩⎪⎨⎪⎧12+1-2q +q 2=1,0≤1-2q ≤1,q 2≤1,解得q =1-12. 故ξ的分布列应为:所以E (ξ)=(-1)×12+0×(2-1)+1×(32-2)=1-2,D (ξ)=[-1-(1-2)]2×12+[0-(1-2)]2×(2-1)+[1-(1-2)]2×(32-2)=2-1.11. [2011·天津]学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱).(1)求在1次游戏中, ①摸出3个白球的概率; ②获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ). 解:(1)设A i =“在1次游戏中摸出i 个白球”(i =0,1,2,3),则①P (A 3)=C 23C 25·C 12C 23=15,②P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12.又A 2与A 3互斥,∴P (A 2+A 3)=P (A 2)+P (A 3)=12+15=710.即获奖的概率为710.(2)X 的可能取值为0,1,2. P (X =0)=(1-710)2=9100,P (X =1)=C 12·710·(1-710)=2150, P (X =2)=C 22(710)2=49100.所以X 的分布列是∴X 的数学期望E (X )=0×9100+1×2150+2×49100=75.12. [2011·福建]某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示:且X 1的数学期望E (X 1)(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望. (3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.解:(1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6, 即6a +7b =3.2.又由X 1的概率分布列得0.4+a +b +0.1=1, 即a +b =0.5.由⎩⎪⎨⎪⎧ 6a +7b =3.2,a +b =0.5,解得 ⎩⎪⎨⎪⎧a =0.3,b =0.2.(2)由已知得,样本的频率分布表如下:X 2的概率分布列如下:所以E (X 2)=3P 22222=7)+8P (X 2=8) =3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8. 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.现由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.据此,乙厂的产品更具可购买性.。
北师大版二年级上册数学 7-3 分糖果 平均分后有剩余 知识点梳理重点题型练习课件
分糖果▶平均分后有剩余
知 识 点 用比较简便的方法平均分,并理解剩余的含义
1.德老师有 40 块橡皮,如果平均分给 6 个小朋友, 那么每人分到几块?请你把分的过程记录下来。
典典 天天 聪聪 华华 同同 梦梦 第1次 2 2 2 2 2 2 第2次 2 2 2 2 2 2 第3次 2 2 2 2 2 2 第4次 第5次
甲乙丙丁 第1次 1 1 1 1 第2次 1 1 1 1
每个同学分到 2 个苹果,还剩 7 个苹果。( )
解析:剩下的 7 个苹果每人还够分 1 个。
提 升 点 2 总数比较大也会平均分
3.分卡通画片,把分的过程记录下来。
华华 同同 典典 聪聪
第 1 次 10 10 10 10
第 2 次 10 10 10 10
一共分了( 3 )次,每人分到( 6 )块,还剩( 4 )块。
解析:把 40 块橡皮平均分给 6 个小朋友, 因为数 量比较多,因此需要分几次来完成。如每次分 2 块, 可以分 3 次。
提 升 点 1 正确理解剩余数与除数之 间的大小关系
2.荣老师把 15 个苹果平均分给甲、乙、丙、丁 4
个同学。他分得对吗?
第3次 2 2
2
2
(分法不唯一) 第 4 次
每人分到( 22 )张,还剩( 2 )张。
解析:大数目的平均分,开始可以多个多个地分, 再 1 个 1 个地分,分法不唯一,要分到剩余的个数 不够每份再分 1 个时才能停下来,但最后每份分得 的同样多。
高二精选题库数学 课堂训练_2-2北师大版
第2章 第2节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. 函数f (x )=ln (4+3x -x 2)的单调递减区间是( ) A. (-∞,32]B. [32,+∞) C. (-1,32]D. [32,4)答案:D解析:函数f (x )的定义域是(-1,4),u (x )=-x 2+3x +4=-(x -32)2+254的减区间为[32,4),∵e>1,∴函数f (x )的单调减区间为[32,4).2. [2012·安徽省“江南十校”联考]已知函数f (x )是R 上的单调增函数且为奇函数,则f (1)的值( )A. 恒为正数B. 恒为负数C. 恒为0D. 可正可负答案:A解析:∵定义在R 上的奇函数有f (0)=0,f (x )在R 上递增, ∴f (1)>f (0)=0,故选A.3. [2012·安庆一模]函数f (x )=⎩⎪⎨⎪⎧-x +3a , x <0a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( )A. (0,1)B. [13,1) C. (0,13]D. (0,23]答案:B解析:据单调性定义,f (x )为减函数应满足:⎩⎪⎨⎪⎧0<a <1,3a ≥a 0,即13≤a <1. 4. [2012·山东济宁一模]定义在R 上的偶函数f (x )在[0,+∞)上递增,f (13)=0,则满足f (log18x )>0的x 的取值范围是( )A. (0,+∞)B. (0,12)∪(2,+∞)C. (0,18)∪(12,2)D. (0,12)答案:B解析:由f (x )=f (-x )=f (|x |)得 f (|log 18x |)>f (13),于是|log 18x |>13,解得选B.5. [2012·广东省江门市调研]已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=x ·2x ,则当x >0时,f (x )等于( )A. x ·2-xB. -x ·2xC. -x ·2-xD. x ·log 2x答案:A解析:∵x >0,∴-x <0,∴f (x )=-f (-x )=-(-x )·2-x =x ·2-x .6. [2011·湖南]已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( )A. [2-2,2+2]B. (2-2,2+2)C. [1,3]D. (1,3)答案:B解析:根据条件可得e a -1=-b 2+4b -3, ∵e a >0,∴-b 2+4b -2>0, 即b 2-4b +2<0, ∴2-2<b <2+ 2. 故选B.二、填空题(每小题7分,共21分)7. [2012·浙江省金华十校高考模拟]已知函数f (x )为奇函数,函数f (x +1)为偶函数,f (1)=1,则f (3)=__________.答案:-1解析:法一:根据条件可得f (3)=f (2+1)=f (-2+1)=f (-1)=-f (1)=-1.法二:使用特殊值法,寻求函数模型,令f (x )=sin π2x ,则f (x +1)=sin (π2x +π2)=cos π2x ,满足以上条件,所以f (3)=sin3π2=-1.8. 若在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=x +1x 在同一点取得相同的最小值,则f (x )在该区间上的最大值是________.答案:3解析:对于g (x )=x +1x 在x =1时,g (x )的最小值为2,则f (x )在x =1时取最小值2, ∴-p2=1,4q -p 24=2.∴p =-2,q =3. ∴f (x )=x 2-2x +3,∴f (x )在该区间上的最大值为3.9. [2012·安徽省淮南市第一次模拟]已知函数f (x )=⎩⎪⎨⎪⎧e -x-2,(x ≤0)2ax -1,(x >0)(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1;②函数f (x )在R 上是单调函数;③若f (x )>0在[12,+∞)上恒成立,则a 的取值范围是a >1;④对任意x 1<0,x 2<0且x 1≠x 2,恒有f (x 1+x 22)<f (x 1)+f (x 2)2.其中正确命题的序号是__________.答案:①③④解析:如图,①正确;函数f (x )在R 上不是单调函数,②错误;若f (x )>0在[12,+∞)上恒成立,则2a ×12-1>0,a >1,③正确;由图像可知在(-∞,0)上对任意x 1<0,x 2<0且x 1≠x 2,恒有f (x 1+x 22)<f (x 1)+f (x 2)2成立,④正确.三、解答题(10、11题12分、12题13分)10. 已知函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f (12)=25. (1)求函数f (x )的解析式;(2)用定义证明f (x )在(-1,1)上是增函数; (3)解不等式f (t -1)+f (t )<0.解:(1)依题意得⎩⎪⎨⎪⎧f (0)=0f (12)=25,即⎩⎪⎨⎪⎧b =0a 2+b 1+14=25,得⎩⎪⎨⎪⎧a =1b =0,∴f (x )=x1+x 2(-1<x <1).(2)设-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22). ∵-1<x 1<x 2<1,∴x 1-x 2<0,1+x 21>0,1+x 22>0,又∵-1<x 1x 2<1,∴1-x 1x 2>0,∴f (x 1)-f (x 2)<0, ∴f (x )在(-1,1)上是增函数.(3)f (t -1)+f (t )<0,即f (t -1)<-f (t )=f (-t ),∵f (x )在(-1,1)上是增函数,∴-1<t -1<-t <1,解得0<t <12.∴不等式的解集为{t |0<t <12}.11. [2012·南昌调研]设函数f (x )=tx 2+2t 2x +t -1(t ∈R ,t >0). (1)求f (x )的最小值s (t );(2)若s (t )<-2t +m 对t ∈(0,2)时恒成立,求实数m 的取值范围. 解:(1)∵f (x )=t (x +t )2-t 3+t -1(t ∈R ,t >0), ∴当x =-t 时,f (x )取得最小值f (-t )=-t 3+t -1. 即s (t )=-t 3+t -1.(2)令h (t )=s (t )-(-2t +m )=-t 3+3t -1-m . 由h ′(t )=-3t 2+3=0,得t =1或t =-1(舍去). 则有∴h (t )在(0,2)∴s (t )<-2t +m 对t ∈(0,2)时恒成立等价于h (t )<0恒成立,即1-m <0,∴m >1. 12. 已知定义在(-∞,0)∪(0,+∞)上的函数f (x )满足:①∀x ,y ∈(-∞,0)∪(0,+∞),f (x ·y )=f (x )+f (y );②当x >1时,f (x )>0,且f (2)=1.(1)试判断函数f (x )的奇偶性;(2)判断函数f (x )在(0,+∞)上的单调性; (3)求函数f (x )在区间[-4,0)∪(0,4]上的最大值;(4)求不等式f (3x -2)+f (x )≥4的解集.解:(1)令x =y =1,则f (1×1)=f (1)+f (1),得f (1)=0; 再令x =y =-1,则f [(-1)·(-1)]=f (-1)+f (-1),得f (-1)=0. 对于条件f (x ·y )=f (x )+f (y ),令y =-1, 则f (-x )=f (x )+f (-1),所以f (-x )=f (x ).又函数f (x )的定义域关于原点对称,所以函数f (x )为偶函数. (2)任取x 1,x 2∈(0,+∞),且x 1<x 2,则有x 2x 1>1.又∵当x >1时,f (x )>0,∴f (x 2x 1)>0.而f (x 2)=f (x 1·x 2x 1)=f (x 1)+f (x 2x 1)>f (x 1),∴函数f (x )在(0,+∞)上是增函数.(3)∵f (4)=f (2×2)=f (2)+f (2),又f (2)=1,∴f (4)=2.又由(1)(2)知函数f (x )在区间[-4,0)∪(0,4]上是偶函数且在(0,4]上是增函数,∴函数f (x )在区间[-4,0)∪(0,4]上的最大值为f (4)=f (-4)=2.(4)∵f (3x -2)+f (x )=f [x (3x -2)],4=2+2=f (4)+f (4)=f (16),∴原不等式等价于f [x (3x -2)]≥f (16),又函数f (x )为偶函数,且函数f (x )在(0,+∞)上是增函数,∴原不等式又等价于|x (3x -2)|≥16,即x (3x -2)≥16或x (3x -2)≤-16,解得x ≥83或x ≤-2.∴不等式f (3x -2)+f (x )≥4的解集为{x |x ≤-2或x ≥83}.。
高二精选题库 数学检测7北师大版
单元质量检测(七)一、选择题1.在空间中,“两条直线没有公共点”是“这两条直线平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在空间中,两条直线没有公共点,可能是两条直线平行,也可能是两条直线异面,两条直线平行则两条直线没有公共点,∴“两条直线没有公共点”是“这两条直线平行”的必要不充分条件.答案:B2.如下图所示为一个简单几何体的三视图,则其对应的实物是()解析:由三视图及空间想象可知选A.答案:A3.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:正方体的三视图都是正方形,不合题意;圆锥的正视图和侧视图都是等腰三角形,俯视图是圆,符合题意;三棱台的正视图和侧视图、俯视图各不相同,不合题意;正四棱锥的正视图和侧视图都是三角形,而俯视图是正方形,符合题意,所以②④正确.答案:D4.已知某个几何体的三视图如图(正视图中的弧线是半圆),根据图中标出的尺寸,可得这个几何体的表面积是()A.(4+2π)cm2B.(6+2π)cm2C.(4+3π)cm2D.(6+3π)cm2解析:由三视图可知,该几何体是底面直径和高均为2 cm的放倒的半个圆柱,其中轴截面的面积为4 cm2,半个侧面的面积为2πcm2,两底面的面积之和为π cm2,所以这个几何体的表面积是(4+3π)cm2,故应选C.答案:C5.用平行于圆锥底面的截面去截圆锥,所得小圆锥的侧面积与原来大圆锥的侧面积的比是12,则小圆锥的高与大圆锥的高的比是() A.12B.1C.22 D. 2解析:设小圆锥的高,底面半径,母线长分别为h,r,l,大圆锥的高,底面半径,母线长分别为H,R,L,则122πrl122πRL=12,∴rlRL=(rR)2=12,∴rR=22,∴hH=rR=22.答案:C6.已知直线l⊥平面α,直线m⊂平面β,下面有三个命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β.则真命题的个数为() A.0 B.1C.2 D.3解析:对于①,由直线l⊥平面α,α∥β,则l⊥β,又直线m⊂平面β,∴l⊥m,故①正确;对于②,由条件不一定得到l∥m,还有l与m相交和异面的情况,故②错误;对于③,可知正确.故正确命题的个数为2.答案:C7.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是() A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥α,则n∥αD.若n⊥α,n⊥β,则α∥β解析:对于选项A:垂直于同一平面的两个平面也可以相交,如正方体相邻的两个平面,故A错;对于选项B:设平面α与平面β相交于直线l,则在这两个平面内都存在与交线平行的直线,此时这两直线也平行,故B也错;对于选项C:应有n∥α或n⊂α两种情形;对于选项D:由线面垂直性质知,垂直于同一直线的两平面平行,故D正确.答案:D8.正六棱锥P—ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为() A.1∶1 B.1∶2C.2∶1 D.3∶2解析:由题意可知三棱锥V B-GAC=V P-GAC,V B-GAC=V G-BAC,V D-GAC=V G-ADC,又因为三棱锥G-BAC与三棱锥G-ADC等高,且S△BAC∶S△ADC=1∶2,综上可知V D-GAC∶V P-GAC=2∶1,故选C.答案:C9.如右图,设平面α∩β=EF,AB⊥α,CD⊥α,垂足分别是B、D,如果增加一个条件,就能推出BD ⊥EF ,这个条件不可能是下面四个选项中的( )A .AC ⊥βB .AC ⊥EFC .AC 与BD 在β内的射影在同一条直线上 D .AC 与α、β所成的角相等解析:选项A 、B 、C 均可推出EF ⊥平面ABCD ,从而可推出BD ⊥EF ;而由选项D 并不能推出BD ⊥EF ,故选D.答案:D10.若二面角M -l -N 的平面角大小为2π3,直线m ⊥平面M ,则平面N 内的直线与m 所成角的取值范围是( )A .[π6,π2]B .[π4,π2]C .[π3,π2]D .[0,π2]解析:直线m 与平面N 内的直线所成角最小为m 与平面N 所成的角π6,显然m 与N 内直线所成角最大为π2,因为N 内一定有直线与m 垂直.答案:A11.如下图所示,E 、F 分别为正方体的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的射影可能是下图中的( )A .四个图形都正确B .只有(2)(3)正确C .只有(4)错误D .只有(1)(2)正确解析:在面ABCD 上的射影为图(2);在面B 1BCC 1上的射影为图(3),在任何一个面上的射影都不会是图(1)和图(4).答案:B12.在正方体ABCD -A 1B 1C 1D 1中,其棱长为1,下列命题中,正确的命题个数为( )①A 1C 1和AD 1所成角为π3;②点B 1到截面A 1C 1D 的距离为233;③正方体的内切球与外接球的半径之比为1∶ 2 A .3 B .2 C .1D .0解析:连接BC 1,则BC 1∥AD 1,∴∠A 1C 1B 为异面直线A 1C 1与AD 1所成角,显然∠A 1C 1B =π3. 到平面A 1C 1D 的距离为233的点是B 不是B 1.正方形的内切球与外接球半径之比为1232=1∶ 3.答案:C 二、填空题13.如右图,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是直径为1的圆,那么这个几何体的侧面积为________.解析:由三视图可知,原几何体为底面直径为1,母线长也为1的圆柱,故由圆柱侧面积公式可得S =2π×12×1=π.答案:π14.在正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上移动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是________.解析:由题意,当P 点移动时,AP 确定的平面与BD 1垂直,∴点P 应在线段B 1C 上. 答案:线段B 1C15.如下图所示,四棱锥P -ABCD 的底面是一直角梯形,AB ∥CD ,CD =2AB ,E 为PC 的中点,则BE 与平面P AD 的位置关系为________.解析:取PD 的中点F ,连接EF ,AF ,由题中条件易得四边形ABEF 为平行四边形,从而进一步可推出BE ∥AF ,根据线面平行的判定定理可得BE ∥平面P AD (或取CD 的中点M ,连接EM ,BM ,由条件可推出平面BEM ∥平面P AD ,进一步也可得出BE ∥平面P AD ).答案:平行16.已知每条棱长都为3的直平行六面体ABCD —A 1B 1C 1D 1中,∠BAD =60°,长为2的线段MN 的一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动.则MN 中点P 的轨迹与该直平行六面体的表面所围成的几何体中体积较小的几何体的体积为________.解析:连接PD ,可得PD =1,即点P 的轨迹为以点D 为球心,半径为1的球截直平行六面体ABCD —A 1B 1C 1D 1所得的部分(如右图所示).由DD 1⊥平面ABCD 及∠ADC =2π3,可得该几何体为球体的13×12=16,所以其体积为V =16×43π×13=2π9. 答案:2π9三、解答题17.已知圆锥的底面半径为r ,高为h ,正方体ABCD -A ′B ′C ′D ′内接于圆锥,求这个正方体的棱长.解:设正方体棱长为a . 如右图作出组合体的轴截面. 则OS =h ,OP =r ,OA =2a 2, ∵△SO ′A ′∽△SOP , ∴O ′A ′OP =SO ′SO ,即2a 2r =h -ah,∴a =2rh 2r +2h ,即正方体的棱长为2rh2r +2h.18.如右图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,AC =6,BD =8,E 是PB 上任意一点,△AEC 面积的最小值是3.(1)求证:AC ⊥DE ;(2)求四棱锥P -ABCD 的体积.解:(1)连接BD ,设AC 与BD 相交于点F .因为四边形ABCD 是菱形,所以AC ⊥BD . 又因为PD ⊥平面ABCD ,AC ⊂平面ABCD , 所以PD ⊥AC .而PD ∩BD =D ,所以AC ⊥平面PDB .E 为PB 上任意一点,DE ⊂平面PDB ,所以AC ⊥DE . (2)连接EF .由(1)知AC ⊥平面PDB , EF ⊂平面PDB ,所以AC ⊥EF .S △ACE =12AC ·EF ,在△ACE 面积最小时,EF 最小,则EF ⊥PB .此时S △ACE =3,12×6×EF =3,解得EF =1.由△PDB ∽△FEB ,得PD EF =PBFB .由于EF =1,FB =4,所以PB =4PD .又PB =PD 2+64,∴PD 2+64=4PD , 解得PD =81515.∴V P -ABCD =13S 菱形ABCD ·PD=13×24×81515=641515.图甲19.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直(右图甲),图乙为该四棱锥的正视图和侧视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图乙所给的正视图、侧视图画出相应的俯视图,并求出该俯视图的面积.图乙(2)图丙中,E 为棱PB 上的点,F 为底面对角线AC 上的点,且BE EP =CFF A ,求证:EF ∥平面PDA .图丙解:(1)该四棱锥的俯视图为内含对角线,边长为6 cm 的正方形,如下图.其面积为36 cm 2.(2)连接BF 并延长交AD 于G ,连接PG , 则在正方形ABCD 中,BF FG =CF F A .又CF F A =BE EP ,∴BF FG =BE EP, ∴在△BGP 中,EF ∥PG .又EF ⊄平面PDA ,PG ⊂平面PDA , ∴EF ∥平面PDA .20.如右图,在四棱锥S —ABCD 中,底面ABCD 是正方形,SA ⊥平面ABCD ,且SA =AB ,点E 为AB 的中点,点F 为SC 的中点.(1)求证:EF ⊥CD ;(2)求证:平面SCD ⊥平面SCE . 证明:(1)连结AC 、AF 、BF 、EF . ∵SA ⊥平面ABCD ,∴AF 为Rt △SAC 斜边SC 上的中线, ∴AF =12SC .又∵ABCD 是正方形,∴CB ⊥AB . 而由SA ⊥平面ABCD ,得CB ⊥SA , 又AB ∩SA =A ,∴CB ⊥平面SAB .∴CB ⊥SB , ∴BF 为Rt △SBC 斜边SC 上的中线,∴BF =12SC . ∴△AFB 为等腰三角形,EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,∴SE =CE ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .21.如下图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 是正方形BCC 1B 1的中点,点F ,G 分别是棱C 1D 1,AA 1的中点.设点E 1,G 1分别是点E ,G 在平面DCC 1D 1内的正投影.(1)求以E 为顶点,以四边形FGAE 在平面DCC 1D 1内的正投影为底面边界的棱锥的体积;(2)证明:直线FG 1⊥平面FEE 1;(3)求异面直线E 1G 1与EA 所成角的正弦值.解:(1)由题意知EE 1⊥平面DCC 1D 1,且四边形FGAE 在平面DCC 1D 1内的正投影为四边形FG 1DE 1.∵点E 是正方形BCC 1B 1的中心,∴EE 1=1.∵SFG 1DE 1=SDCC 1D 1-S △FD 1G 1-S △E 1C 1F -S △DCE 1, 由题设知点E 1、G 1分别是CC 1、DD 1的中点,∴SFG 1DE 1=22-12×1×1-12×1×1-12×1×2=2. 故所求的四棱锥体积为VE -FG 1DE 1=13SFG 1DE 1×EE 1=13×2×1=23. (2)由(1)知,△E 1C 1F 与△G 1D 1F 均为等腰直角三角形,∴∠G 1FE 1=π2⇒G 1F ⊥FE 1. ∵EE 1⊥平面DCC 1D 1,FG 1⊂平面DCC 1D 1,∴EE 1⊥FG 1.又∵EE 1∩FE 1=E 1,∴FG 1⊥平面FEE 1.(3)由(1)的解答知E 1G 1∥AB ,∴∠EAB 即为E 1G 1与EA 所成的角. 连接EB ,由题意得EB = 2.∵AB ⊥平面BCC 1B 1,∴△EBA 为直角三角形, ∴EA =EB 2+AB 2=(2)2+22=6,∴sin ∠EAB =EB EA =26=33. 22.已知四棱台ABCD -A 1B 1C 1D 1(如右图)中,底面ABCD 是正方形,且DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值;(2)试在平面ADD 1A 1中确定一个点F ,使得FB 1⊥平面BCC 1B 1;(3)求二面角F -CC 1-B 的余弦值(F 满足(2)). 解:以D 为原点,DA 、DC 、DD 1所在的直线为x 轴,y 轴,z 轴,建立如右图所示的空间直角坐标系,则D (0,0,0),A (2a,0,0),B 1(a ,a ,a ),D 1(0,0,a ),B (2a,2a,0),C (0,2a,0),C 1(0,a ,a ).(1)∵AB 1→=(-a ,a ,a ),DD 1→=(0,0,a ),∴cos 〈AB 1→,DD 1→〉=AB 1→·DD 1→|AB 1→||DD 1→|=a 23a 2 a 2=33,即直线AB 1与DD 1所成角的余弦值为33. (2)设F (x,0,z ),∵BB 1→=(-a ,-a ,a ),BC →=(-2a,0,0),FB 1→=(a -x ,a ,a -z ),由FB 1⊥平面BCC 1B 1,得⎩⎪⎨⎪⎧ FB 1→·BB 1→=0FB 1→·BC →=0, 即⎩⎪⎨⎪⎧ -a (a -x )-a 2+a (a -z )=0-2a (a -x )=0,解得⎩⎪⎨⎪⎧x =a z =0, ∴F (a,0,0),即F 为DA 的中点.(3)由(2)知FB 1→=(0,a ,a )为平面BCC 1B 1的一个法向量.设n =(x 1,y 1,z 1)为平面FCC 1的一个法向量, CC 1→=(0,-a ,a ),FC →=(-a,2a,0).由⎩⎪⎨⎪⎧ n ·CC 1→=0,n ·FC →=0,即⎩⎪⎨⎪⎧-ay 1+az 1=0-ax 1+2ay 1=0. 令y 1=1得x 1=2,z 1=1,∴n =(2,1,1),cos 〈n ,FB 1→〉=n ·FB 1→|n ||FB 1→|= a +a 6·2a2=33,即二面角F -CC 1-B 的余弦值为33.。
高二精选题库 数学7-2北师大版
第7模块 第2节[知能演练]一、选择题1.已知A 、B 为球面上的两点,O 为球心,且AB =3,∠AOB =120°,则球的体积为( )A.9π2 B .43π C .36πD .323π解析:△AOB 为等腰三角形,∠AOB =120°,AB =3,通过解三角形解出OA 和OB ,即OA =OB =R =3,从而求出球的体积43π,故选B.答案:B2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32倍 B.92倍 C.34倍D.94倍 解析:设原棱锥高为h ,底面面积为S , 则V =13Sh ,新棱锥的高为12h ,底面面积为9S .∴V ′=13·9S ·12h =13Sh ·92,∴V ′V =92. 答案:B3.已知一个圆柱的正视图的周长为12,则该圆柱的体积的最大值等于( )A .4πB .8πC .16πD.83π 解析:圆柱的正视图是一个矩形,若设圆柱的底面半径为r ,高为h ,则依题意有4r +2h =12,且0<r <6.而其体积为V =πr 2h =πr 2(6-2r )=-2πr 3+6πr 2,V ′=-6πr 2+12πr ,令V ′=-6πr 2+12πr =0得r =2,所以当r =2时,圆柱的体积取到最大值8π.答案:B4.已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,长为定值的线段EF 在棱AB 上移动(EF <a ),若P 是A 1D 1上的定点,Q 是C 1D 1上的动点,则四面体P —QEF 的体积是( )A .有最小值的一个变量B .有最大值的一个变量C .没有最值的一个变量D .一个不变量解析:如图,显然定点P 到面ABC 1D 1的距离是常数,从而到面QEF 的距离是常数.又△QEF 的面积为定值,所以四面体P —QEF 的体积为定值.答案:D 二、填空题5.四边形ABCD 中,A (0,0),B (1,0),C (2,1),D (0,3),绕y 轴旋转一周,则所得旋转体的体积为________.解析:V 圆锥=13πr 2h =13π×22×2=83π,V 圆台=13πh (r 2+R 2+Rr )=13π×1×(22+12+2×1) =73π, ∴V =V 圆锥+V 圆台=5π. 答案:5π6.已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V =________.解析:该凸多面体由一个正方体及一个正四棱锥组成, ∵正方体的边长为1,∴V 正方体=13=1,∵正四棱锥的棱长全为1, ∴正四棱锥的底面积为1×1=1, 又∵正四棱锥的高为1-(22)2=22, 所以此凸多面体的体积V =1+13×1×22=1+26.答案:1+26三、解答题7.一几何体按比例绘制的三视图如下图所示(单位:m)(1)试画出它的直观图; (2)求它的表面积和体积. 解:(1)直观图如下图所示.(2)解法一:由三视图可知该几何体是长方体被截去一个角,且该几何体的体积是以A 1A ,A 1D 1,A 1B 1为棱的长方体的体积的34,在直角梯形AA 1B 1B 中,作BE ⊥A 1B 1, 则AA 1EB 是正方形,∴AA 1=BE =1. 在Rt △BEB 1中,BE =1,EB 1=1 ∴BB 1= 2∴几何体的表面积S =S 正方形AA 1D 1D +2S 梯形AA 1B 1B +S 矩形BB 1C 1C +S 正方形ABCD+S 矩形A 1B 1C 1D 1=1+2×12×(1+2)×1+1×2+1+1×2=7+2(m 2).∴几何体的体积V =34×1×2×1=32(m 3),∴该几何体的表面积为(7+2)m 2,体积为32m 3.解法二:几何体可以看作是以AA 1B 1B 为底面的直四棱柱,其表面积求法同法一, V 直四棱柱D 1C 1CD -A 1B 1BA =Sh =12×(1+2)×1×1=32(m 3).∴几何体的表面积为(7+2)m 2,体积为32m 3.8.如图所示,一个直三棱柱形容器中盛有水,且侧棱AA 1=8.若侧面AA 1B 1B 水平放置时,液面恰好过AC 、BC 、A 1C 1、B 1C 1的中点,当底面ABC 水平放置时,液面高为多少?解:当侧面AA 1B 1B 水平放置时,水的形状为四棱柱形,底面ABFE 为梯形. 设△ABC 的面积为S ,则S 梯形ABFE =34S ,V 水=34S ·AA 1=6S .当底面ABC 水平放置时,水的形状为三棱柱形,设水面高为h ,则有V 水=Sh , ∴6S =Sh ,∴h =6.故当底面ABC 水平放置时,液面高为6.[高考·模拟·预测]1.某几何体的三视图如图所示,根据图中数据,可得该几何体的体积是( )A .32+ 3 B.2+3 3C .22+3 3D .32+2 3解析:该几何体是上面为正四棱锥,下面为正方体的组合体,体积为V =(3)3+13×(3)2×2=33+ 2.答案:B2.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120°,底面圆的半径为1,则该圆锥的体积为________.解析:因为扇形弧长为2π,所以圆锥母线长为3,高为22,所求体积V =13×π×12×22=22π3.答案:22π33.如下图是某几何体的三视图,其中正视图是腰长为2a 的等腰三角形,俯视图是半径为a 的半圆,则该几何体的表面积是________.解析:由题目所给三视图可得,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和.又该圆锥的侧面展开图为扇形,所以侧面积为12×2a ×2πa =2πa 2,底面积为πa 2,观察三视图可知,轴截面为边长为2a 的正三角形,所以轴截面面积为12×2a ×2a ×32=3a 2,则该几何体的表面积为32πa 2+3a 2.答案:32πa 2+3a 24.如图,平行四边形ABCD 中,∠DAB =60°,AB =2,AD =4.将△CBD 沿BD 折起到△EBD 的位置,使平面EBD ⊥平面ABD .(Ⅰ)求证:AB ⊥DE ;(Ⅱ)求三棱锥E —ABD 的侧面积. 解:(Ⅰ)在△ABD 中,∵AB =2,AD =4,∠DAB =60°, ∴BD =AB 2+AD 2-2AB ·AD cos ∠DAB =2 3. ∴AB 2+BD 2=AD 2,∴AB ⊥BD . 又∵平面EBD ⊥平面ABD ,平面EBD ∩平面ABD =BD ,AB ⊂平面ABD , ∴AB ⊥平面EBD .∵DE ⊂平面EBD ,∴AB ⊥DE .(Ⅱ)由(Ⅰ)知AB ⊥BD .∵CD ∥AB ,∴CD ⊥BD ,从而DE ⊥BD .在Rt △DBE 中,∵DB =23,DE =DC =AB =2,∴S △DBE =12DB ·DE =2 3.又∵AB ⊥平面EBD ,BE ⊂平面EBD ,∴AB ⊥BE . ∵BE =BC =AD =4, ∴S △ABE =12AB ·BE =4.∵DE ⊥BD ,平面EBD ⊥平面ABD ,∴ED ⊥平面ABD . 而AD ⊂平面ABD ,∴ED ⊥AD ,∴S △ADE =12AD ·DE =4.综上,三棱锥E -ABD 的侧面积S =8+2 3.[备选精题]5.如图,四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形.(1)求证:BC ⊥AD ;(2)试问该四面体的体积是否存在最大值?若存在,求出这个最大值及此时棱长AD 的大小;若不存在,说明理由.(1)证明:取BC 的中点E ,连结AE ,DE , ∵△ABC 与△DBC 都是边长为4的正三角形, ∴AE ⊥BC ,DE ⊥BC . ∴BC ⊥平面AED .∴BC ⊥AD .(2)解:由已知得,△AED 为等腰三角形,且AE =ED =23,设AD =x ,F 为棱AD 的中点,则EF =12-(12x )2,S △AED =12x12-x 24=1448x 2-x 4.V =13S △AED ·(BE +CE )=1348x 2-x 4(0<x <43), 当x 2=24即x =26时,V max =8,∴该四面体存在最大值,最大值为8,此时棱长AD =2 6.。
专练07(理数解答题-基础,30道)-2020-2021学年北师大版高二数学
专练07(理数解答题-基础)(30道)一、解答题1.已知()223sin cos 2cos 1f x x x x =+-. (1)求()f x 的最大值及该函数取得最大值时x 的值;(2)在ABC 中,,,a b c 分别是角,,A B C 所对的边,1a =,S 是ABC 的面积,22A f ⎛⎫= ⎪⎝⎭,比较33b c +与163S 的大小. 2.已知等差数列{}n a 中,11a =,321a a -=. (1)求数列{}n a 的通项公式; (2)求数列{}n a 的前n 项和n S .3.等差数列{}n a 满足1210a a +=,432a a -=.(1)求{}n a 的通项公式.(2)设等比数列{}n b 满足23b a =,37b a =,求数列{}n b 的前n 项和.4.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足:2cos cos cos b B C Aac c a=+. (1)求B ;(2)若ABC 面积为23S =,外接圆直径为4,求ABC 的周长. 5.如图所示,△ABC 中,AB =AC =2,BC =23.(1)求内角B 的大小;(2)设函数f (x )=2sin(x +B ),求f (x )的最大值,并指出此时x 的值. 6.数列{}n a 的前n 项和为n S ,且()2*n S nn N =∈,数列{}n b 满足12b =,()*1322,n n b b n n N -=+≥∈.(1)求数列{}n a 的通项公式; (2)求证:数列{}1n b +是等比数列; (3)设数列{}n c 满足1nn n a c b =+,其前n 项和为n T ,证明:1n T <. 7.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 8.已知不等式2364ax x -+>的解集为{1x x <或}x b >. (1)求a ,b ;(2)解不等式2()0ax ac b x bc -++<.9.已知命题p :2680x x -+<,命题q :21m x m -<<+. (1)若命题p 为真命题,求实数x 的取值范围. (2)若p 是q 的充分条件,求实数m 的取值范围;10.已知a R ∈,命题p :[]0,1x ∃∈,使得(1)10a x -->;命题q :x R ∀∈使得240x ax ++>.(1)写出命题p 的否定p ⌝,并求p ⌝为真时,实数a 的取值范围; (2)若命题,p q 有且只有一个为真,求实数a 的取值范围.11.设命题p :实数满足()()30x a x a --<,其中0a >.命题q :实数x 满足302x x -≤-. (1)当1a =时,命题p ,q 都为真,求实数x 的取值范围; (2)若p 是q ⌝的充分不必要条件,求实数a 的取值范围.12.如图,四棱锥P ABCD -中,PA ⊥平面ABCD 、底面ABCD 为菱形,E 为PD 的中点.(1)证明://PB 平面AEC ;(2)设1,120PA BAD ︒=∠=,菱形ABCD 的面积为23,求二面角D AE C --的余弦值.13.在长方体1111OABC O A B C -中,2OA =,3AB =,12AA =,E 是BC 的中点,建立空间直角坐标系,用向量方法解下列问题:(1)求直线1AO 与1B E 所成的角的余弦值; (2)作1O D AC ⊥于D ,求点1O 到点D 的距离.14.如图,在四棱锥E ABCD -中,底面ABCD 为菱形,BE ⊥平面ABCD ,G 为AC 与BD 的交点.(1)证明:平面AEC ⊥平面BED ;(2)若60BAD ∠=︒,AE EC ⊥,求直线EG 与平面EDC 所成角的正弦值.15.设P 为矩形ABCD 所在平面外的一点,直线PA ⊥平面ABCD ,3AB =,4BC =,1PA =.求点P 到直线BD 的距离.16.如图,在多面体ABC—A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=2AB,B1C1=12BC,二面角A1-AB-C是直二面角.求证:(1)A1B1⊥平面AA1C;(2)AB1∥平面A1C1C.17.已知椭圆22149x y+=,一组平行直线的斜率是1.(1)这组直线何时与椭圆有公共点?(2)当它们与椭圆相交时,求这些直线被椭圆截得的线段的中点所在的直线方程. 18.已知动圆经过点F(2,0),并且与直线x=-2相切(1)求动圆圆心P的轨迹M的方程;(2)经过点(2,0)且倾斜角等于135°的直线l与轨迹M相交于A,B两点,求|AB|19.已知双曲线2222:1(0,0)x yC a ba b-=>>与双曲线22142-=y x有相同的渐近线,且经过点2,2)M.(1)求双曲线C的方程;(2)求双曲线C的实轴长,离心率,焦点到渐近线的距离.20.焦点在x轴上的椭圆的方程为2214x ym+=,点2,1)P在椭圆上.(1)求m的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率.21.已知双曲线22221x ya b-=的离心率为2e=(2,3)P(1)求双曲线的方程;(2)求双曲线的焦点到渐近线的距离22.已知中心在原点的双曲线C 的右焦点为()2,0,实轴长为2. (1)求双曲线C 的标准方程; (2)若直线l:y kx =+C 的左支交于A 、B 两点,求k 的取值范围.23.已知函数()xf x e x a =+-是偶函数. (1)求曲线()y f x =在1x =处的切线方程; (2)求不等式(x)x f ≥的解集.24.已知函数()22f x x x =-及点P ,过点P 作直线l 与曲线()y f x =相切(1)求曲线在点()1,1P 处的切线l 方程; (2)求曲线过点()1,0P 的切线l 的斜率.25.已知等差数列{}n a 满足833a a =,124a a +=. (1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 26.设等比数列{}n a 的前n 项和为n S ,已知332a =,392S =. (1)求公比q ;(2)若m n ≠时,m n a a ≠.求数列16n na ⎧⎫⎨⎬⎩⎭的前n 项和n T .27.在ABC 中,角A ,B ,C 的对边分别为a ,b ,ca =.(1)求B ;(2)若ABC的面积为()A C +,4b =,求a 和c .28.已知锐角三角形ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,2b =,3c =,三角形ABC的面积为2. (1)求BC 边上的高;29.已知正数x ,y 满足23x y +=,且12x y+的最小值为k . (1)求k .(2)若a ,b ,c 为正数,且a b c k ++=,证明:22232b c a k a b c+++≥.30.目前脱贫攻坚进入决胜的关键阶段,某扶贫企业为了增加工作岗位和增加员工收入,决定投入90万元再上一套生产设备,预计使用该设备后前()*n n ∈N年的支出成本为()2105nn -万元,每年的销售收入95万元.(1)估计该设备从第几年开始实现总盈利;(2)使用若干年后对该设备处理的方案有两种:方案一:当总盈利额达到最大值时,该设备以20万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以60万元的价格处理;问哪种方案较为合理?并说明理由.参考答案1.(1)当,6x k k Z ππ=+∈时,()f x 有最大值2;(2)33b c +≥【分析】(1)先化简函数()f x ,再根据正弦函数的性质即可求出答案;(2)先代入求出角A ,再根据立方和公式与面积公式化简代数式,再根据基本不等式即可比较大小. 【详解】解:(1)∵()2cos 2cos 1f x x x x =+-2cos2x x =+2sin 26x π⎛⎫=+ ⎪⎝⎭,∴当22,62x k k Z πππ+=+∈,即,6x k k Z ππ=+∈时,()f x 有最大值2;(2)由题意可得2sin 226A f A π⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,∴sin 16A π⎛⎫+= ⎪⎝⎭, ∴62A ππ+=,∴3A π=,由余弦定理2222cos a b c bc A =+-,代入数据得221b c bc +-=,==,∴()()3322b c b c b c bc +=++--()b c =+-0≥=, 当且仅当b c =时取等号,∴33b c +≥【点睛】关键点点睛:本题考查三角函数与解三角形,第一问的解题关键在于化简函数解析式,第二问的关键在于熟记立方和公式与基本不等式求最值,考查了学生的运算求解能力,属于中档题.2.(1)n a n =;(2)()12n n n S +=.【分析】(1)根据题中条件,先得出公差,进而可求出通项公式; (2)根据(1)的结果,由等差数列的求和公式,即可求出结果. 【详解】(1)因为等差数列{}n a 中,首项为11a =,公差为321d a a =-=, 所以其通项公式为()11n a n n =+-=; (2)由(1)可得,数列{}n a 的前n 项和()()1122n n n a a n n S ++==. 3.(1)22n a n =+;(2)224n +-. 【分析】(1)利用等差数列的通项公式求解即可;(2)根据条件计算23,b b ,从而求出1,b q ,利用等比数列前n 项和公式即可求出n s . 【详解】解:(1)∵{}n a 是等差数列,121431021022a a a d a a d +=+=⎧⎧⇒⎨⎨-==⎩⎩, ∴解出2d =,14a =, ∴1(1)n a a d n =+-422n =+- 22n =+.(2)∵232328b a ==⨯+=,3727216b a ==⨯+=,{}n b 是等比数列,322b q b ==, ∴b 1=421(1)4(12)24112n n n n b q s q +--===---4.(1)3π;(2)6+. 【分析】(1)首先将已知等式化简,再利用正弦定理将边化角,即可求出结果;(2)根据三角形面积公式可得ac , 再正弦定理可求b ,再利用余弦定理可求a c +,由此即可求出结果. 【详解】 (1)2cos cos cos 2cos cos cos b B C Ab B a Cc A ac c a=+⇒=+, 得2sin cos sin cos sin cos sin()B B A C C A A C =+=+sin B =,1sin 0cos 2B B ≠∴=()0,B π∈∴3B π=.(2)ABC 的面积1sin 82S ac B ac ==⇒=,由正弦定理可知4sin bb B=⇒=, 由222222cos 12b a c ac B a c ac =+-⇒+-=2()12336a c ac ⇒+=+=,则6a c +=,∴ABC 的周长为6+. 【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,属于基础题.5.(1)6B π=,(2)f (x )的最大值为2,此时2,3x k k Z ππ=+∈【分析】(1)利用余弦定理求解即可;(2)利用正弦函数的性质直接求其最大值 【详解】解:(1)因为△ABC 中,AB =AC =2,BC所以222cos 2AB BC AC B AB BC +-===⋅ 因为(0,)B π∈,所以6B π=,(2)由(1)可知()2sin()6f x x π=+,所以当2,62x k k Z πππ+=+∈时,()f x 取最大值2,即2,3x k k Z ππ=+∈【点睛】此题考查余弦定理的应用,考查正弦函数的性质的应用,属于基础题 6.(1)()*21n a n n N =-∈;(2)证明见解析;(3)证明见解析. 【分析】(1)当2n ≥时,221(1)21n n n a S S n n n -=-=--=-.检验,当1n =时11211a ==⨯-符合,即可得解; (2)当2n ≥时,根据()111311311n n n n b b b b ---++==++,即可得证;(3)利用错位相减法可得:11(1)3nn T n ⎛⎫=-+ ⎪⎝⎭,即可得证.【详解】(1)当1n =时,111a S ==.当2n ≥时,221(1)21n n n a S S n n n -=-=--=-.检验,当1n =时11211a ==⨯-符合. 所以()*21n a n n N=-∈.(2)当2n ≥时,()111113113213111n n n n n n b b b b b b -----++++===+++, 而113b +=,所以数列{}1n b +是等比数列,且首项为3,公比为3.(3)由(1)(2)得11333-+=⋅=n nn b ,211(21)133nn n n n a n c n b -⎛⎫===- ⎪+⎝⎭,所以1231n n n T c c c c c -=+++++23111111135(23)(21)33333n nn n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭①2341111111135(23)(21)333333nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭②由①-②得12342111111(21)23333333n nn T n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--⋅+++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 2111113311(21)213313n n n -+⎡⎤⎛⎫⎛⎫-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎣⎦=--⋅+ ⎪⎛⎫⎝⎭- ⎪⎝⎭11111(21)3333n nn +⎛⎫⎛⎫=--⋅+- ⎪ ⎪⎝⎭⎝⎭2221333nn +⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭, 所以11(1)3nn T n ⎛⎫=-+ ⎪⎝⎭. 因为1(1)03nn ⎛⎫+> ⎪⎝⎭, 所以1n T <. 【点睛】本题考查了利用n S 和n a 的关系求通项,构造法证明等比数列,以及错位相减法求和,是数列基本方法的考查,属于基础题. 7.(1)2n a n =-;(2)1n nT n =+. 【分析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=,所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n n T n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题8.(1)1a =,2b =;(2)答案见解析. 【分析】(1)根据一元二次不等式与对应方程之间的关系,利用根与系数的关系,列出方程组,求出a ,b 的值;(2)将a ,b 的值代入,并将不等式因式分解为(2)()0x x c --<,通过对c 与2的大小关系进行讨论,得出不等式的解集. 【详解】(1)因为不等式2364ax x -+>的解集为{1x x <或}x b >, 所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得3121b ab a ⎧+=⎪⎪⎨⎪⋅=⎪⎩, 解得12a b =⎧⎨=⎩; (2)原不等式化为:2(2)20x c x c -++<,即(2)()0x x c --<,①当2>c 时,不等式的解集为{}2x x c <<, ②当2c <时,不等式的解集为{}2x c x <<, ③当2c =时,不等式的解集为∅. 【点睛】本题考查了一元二次不等式的解法与应用问题,根与系数的关系的应用,考查了分类讨论的思想,属于基础题.9.(1)24x <<;(2)34m ≤≤. 【分析】(1)解不等式2680x x -+<即可求解;(2)由p 是q 的充分条件转化为集合的包含关系即可求解. 【详解】(1)由p :2680x x -+<为真,解得24x <<. (2)q :21m x m -<<+,若p 是q 的充分条件,()2,4是()2,1m m -+的子集所以22434143m m m m m -≤≤⎧⎧⇒⇒≤≤⎨⎨+≥≥⎩⎩.即[3,4]m ∈10.(1)2a ≤;(2)42a -<≤或4a ≥. 【分析】(1)根据命题p ,改量词否结论,即可得出p ⌝;由p ⌝为真,得到11-≤a x()0,1x ∀∈恒成立,进而可求出结果;(2)先分别求出命题p 为真,命题q 为真时,对应的a 的范围;根据命题,p q 有且只有一个为真,分p 真q 假,p 假q 真两种情况,分别求解,即可得出结果. 【详解】(1)由题意,p ⌝:()0,1x ∀∈,使得(1)10--≤a x ;若p ⌝为真,即11-≤a x()0,1x ∀∈恒成立,所以只需11a -≤,解得2a ≤. (2)由(1)可得,p ⌝为真时,2a ≤;所以,若命题p 为真,则2a >;若命题q 为真,则对于x R ∀∈,240x ax ++>恒成立, 因此只需∆<0,即2160a -<,解得44a -<<; 因为命题,p q 有且只有一个为真, 若p 真q 假,则有24a a >⎧⎨≤-⎩或24a a >⎧⎨≥⎩,解得4a ≥;若p 假q 真,则有244a a ≤⎧⎨-<<⎩,解得42a -<≤;综上,p 、q 有且只有一个为真时,a 的取值范围是42a -<≤或4a ≥. 11.(1)()2,3;(2)[)20,3,3⎛⎤⋃+∞ ⎥⎝⎦.【分析】(1)由 1a =,化简命题p ,q ,然后根据两个命题都为真求解.(2)化简命题p :(),3x a a ∈,q ⌝:(](),23,x ∈-∞⋃+∞,根据p 是q ⌝的充分不必要条件,由(),3a a (](),23,-∞+∞∪求解. 【详解】(1) 1a =时,p :13x <<,q :23x <≤, 因为p ,q 都为真,所以()2,3x ∈; (2) 0a >时 p :(),3x a a ∈,q ⌝:(](),23,x ∈-∞⋃+∞, 因为p 是q ⌝的充分不必要条件, 所以(),3a a (](),23,-∞+∞∪, 则32a ≤或3a ≥, 解得203a <≤或3a ≥, 所以实数a 的取值范围是[)20,3,3⎛⎤⋃+∞ ⎥⎝⎦.12.(1)证明见解析;(2)14. 【分析】(1)连接BD 交AC 于点O ,连接OE ,则//PB OE ,利用线面平行的判定定理,即可得证;(2)根据题意,求得菱形ABCD 的边长,取BC 中点M ,可证AM BC ⊥,如图建系,求得点坐标及,AE AC 坐标,即可求得平面ACE 的法向量,根据AM ⊥平面P AD ,可求得面ADE 的法向量,利用空间向量的夹角公式,即可求得答案.【详解】(1)连接BD 交AC 于点O ,连接OE ,则O 、E 分别为,AB ACAM PAD AE AC =⊥、PD 的中点,所以//PB OE , 又OE ⊂平面,ACE PB ⊄平面ACE 所以//PB 平面ACE(2)由菱形ABCD 的面积为23,120BAD ︒∠=,易得菱形边长为2, 取BC 中点M ,连接AM ,因为AB AC =,所以AM BC ⊥,以点A 为原点,以AM 方向为x 轴,AD 方向为y 轴,AP 方向为z 轴,建立如图所示坐标系.则()())10,2,0,0,0,0,0,1,,3,1,02D A E C⎛⎫ ⎪⎝⎭所以()10,1,,3,1,02AE AC ⎛⎫== ⎪⎝⎭设平面ACE 的法向量()1,,n x y z =,由11,n AE n AC ⊥⊥得10230y z x y ⎧+=⎪⎪+=⎩,令3x =3,6y z =-= 所以一个法向量()13,3,6n =-,因为AM AD ⊥,AM PA ⊥,所以AM ⊥平面P AD , 所以平面ADE 的一个法向量()21,0,0n =所以1212121cos ,43n n n n n n ⋅<>===,又二面角D AE C --为锐二面角,所以二面角D AE C --的余弦值为14【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题. 13.(1)10;(2)13. 【分析】(1)由题意写出点的坐标,求出1AO ,1B E 的坐标,利用空间向量求异面直线所成角即可; (2)由题意得,1O D AC ⊥,//AD AC ,设(),,0D x y ,求出1O D ,AD ,AC 的坐标,列出方程组,求解,x y ,得出D 点坐标,利用向量的模求解即可. 【详解】(1)由题意得()2,0,0A ,()10,0,2O ,()12,3,2B ,()1,3,0E . ∴()12,0,2AO =-,()11,0,2B E =--, ∴11cos ,10AO B E ==-, ∴1AO 与1B E 所成的角的余弦值为10. (2)由题意得,1O D AC ⊥,//AD AC , ∵()0,3,0C,设(),,0D x y ,∴()1,,2O D x y =-,()2,,0AD x y =-,()2,3,0AC =-,∴230223x y x y -+=⎧⎪-⎨=⎪-⎩,解得18131213x y ⎧=⎪⎪⎨⎪=⎪⎩,∴1812,,01313D ⎛⎫⎪⎝⎭,∴111813O D O D ⎛=== .14.(1)证明见解析;(2)10. 【分析】(1)由平面几何知识可得AC BD ⊥.,再由线面垂直的性质定理和判断可证得AC ⊥平面BED .根据面面垂直的判定可得证;.(2)在点G 建立如图所示的空间直角坐标系G xyz -.根据线面角的向量求解方法可求得答案. 【详解】(1)证明:因为四边形ABCD 为菱形,所以AC BD ⊥. 因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC BE ⊥. 又BE BD B ⋂=,所以AC ⊥平面BED .又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)解法1:设1AB =,在菱形ABCD 中,由60BAD ∠=︒,可得2==AG GC ,12BG GD ==. 因为AE EC ⊥,所以在Rt AEC △中可得2EG AG ==. 由BE ⊥平面ABCD ,得EBG 为直角三角形,则222EG BE BG =+,得2BE =. 过点G 作直线//GZ BE ,因为BE ⊥平面ABCD ,所以GZ ⊥平面ABCD ,又AC BD ⊥, 所以建立如图所示的空间直角坐标系G xyz -.()0,0,0 G,30,,02C⎛⎫⎪⎪⎝⎭,1,0,02D⎛⎫-⎪⎝⎭,12,0,22E⎛⎫⎪⎪⎝⎭,所以12,0,22GE⎛⎫= ⎪⎪⎝⎭.设平面EDC的法向量为(),,n x y z=,21,0,2DE⎛⎫= ⎪⎪⎝⎭,132,,22CE⎛⎫=-⎪⎪⎝⎭,由DE nCE n⎧⋅=⎪⎨⋅=⎪⎩,得22132222x zx y z⎧+=⎪⎪⎨⎪-+=⎪⎩,取1x=,33y=-,2z=-,所以平面EDC的一个法向量为31,,2n⎛⎫=--⎪⎪⎝.设直线EG与平面EDC所成角为θ,则11011022sin cos,1113101242323GE nθ+--====+⋅++⨯.所以直线EG与平面EDC所成角的正弦值为10.解法2:如图以点B为坐标原点,建立如图所示空间直角坐标系B xyz-.不妨设2AB=,则()3,0A-,()2,0,0C,(2E,()3,0D,132G⎛⎫⎪⎪⎝⎭,所以1,22EG ⎛= ⎝.设平面EDC 的法向量为(),n x yz =,(1,ED =,(2,0,EC =,则00n ED n EC ⎧⋅=⎪⎨⋅=⎪⎩,得020x x ⎧+=⎪⎨-=⎪⎩, 令x =1y=,z =所以平面EDC的一个法向量为(3,1,n =.设EG 与平面EDC 所成角为θ,则2sin cos ,1EG n θ===.所以直线EG 与平面EDC 15.135. 【分析】由于BP 在BD 上的射影长为()()BP BDBA AP BC BA BDBD⋅+⋅+=,结合已知条件可求出其值为95,然后利用勾股定理可求出点P 到直线BD的距离 【详解】解:因为PA ⊥平面ABCD ,所以PA AB ⊥, 所以BP==因为四边形ABCD 为矩形,所以90,4BAD AD BC ∠=︒==, 所以5BD ==,因为2|()()|9BP BD BA AP BC BA AB ⋅=+⋅+==,5BD =,所以BP 在BD上的射影长为95,又10BP =, 所以点P 到直线BD 的距离135d ==.故答案为:13516.(1)证明见解析;(2)证明见解析. 【分析】利用面面垂直的性质定理证出AB ,AC ,AA 1两两互相垂直,建立空间直角坐标系A-xyz , (1)求出平面AA 1C 的一个法向量,证出11//A B n ,即可证明. (2)求出平面A 1C 1C 的一个法向量,证明10AB m ⋅=即可证明. 【详解】因为二面角A 1-AB -C 是直二面角,四边形A 1ABB 1为正方形, 所以AA 1⊥平面BAC .又因为AB =AC ,BC 2, 所以∠CAB =90°, 即CA ⊥AB ,所以AB ,AC ,AA 1两两互相垂直. 建立如图所示的空间直角坐标系A-xyz ,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2). (1)11A B =(0,2,0),1A A =(0,0,-2),AC =(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ),则100n A A n AC ⎧⋅=⎨⋅=⎩,即2020z x -=⎧⎨=⎩,即00x z =⎧⎨=⎩,取y =1,则n =(0,1,0).所以112A B n=,即11//A B n . 所以A 1B 1⊥平面AA 1C .(2)易知1AB =(0,2,2),11AC =(1,1,0),1AC =(2,0,-2), 设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1),则11100m AC m AC ⎧⋅=⎪⎨⋅=⎪⎩,即11110220x y x z +=⎧⎨-=⎩,令x 1=1,则y 1=-1,z 1=1, 即m =(1,-1,1).所以1AB m ⋅=0×1+2×(-1)+2×1=0, 所以1AB m ⊥, 又AB 1⊄平面A 1C 1C , 所以AB 1∥平面A 1C 1C . 【点睛】本题考查了空间向量法证明线面垂直、线面平行,考查了基本运算,属于基础题. 17.(1)截距在[范围内;(2)940x y +=. 【分析】(1)由已知设直线方程y x b =+结合椭圆方程,根据有公共点即所得方程的判别式2264208(9)0b b ∆=--≥即可知直线截距在[上有交点;(2)结合(1)由中点坐标可得49(,)1313b b-,而其中必有原点即可求直线方程; 【详解】(1)设平行直线的方程为y x b =+,若直线与椭圆有公共点,则:将y x b =+代入22149x y +=,整理得:221384360x bx b ++-=,∴2264208(9)0b b ∆=--≥解得:b ≤≤;(2)令交点坐标分别为1122(,),(,)x y x y ,由(1)知:12813b x x +=-,而121218213by y x x b +=++=, 所以线段中点坐标为49(,)1313b b -,其中必有一个中点为坐标原点,故直线的斜率为94k =-,∴所在的直线方程:940x y +=; 【点睛】本题考查了直线与椭圆的位置关系,计算确定何时它们会有公共点,以及求交点弦的中点所构成直线的方程.18.(1)28y x =(2)16【分析】(1)设(,)P x y ,根据题目条件列方程可求得结果; (2)联立直线与抛物线方程,根据弦长公式可得结果. 【详解】(1)设(,)P x y |(2)|x =--, 化简得28y x =,所以动圆圆心P 的轨迹M 的方程为28y x = (2)直线l 的方程为(2)y x =--,即2y x =-+,联立228y x y x=-+⎧⎨=⎩,消去y 并整理得21240x x -+=,设11(,)A x y ,22(,)B x y , 则1212x x +=,124x x =,由弦长公式可得||AB =16==. 所以|16|AB = 【点睛】本题考查了求动点的轨迹方程,考查了直线与抛物线的位置关系,考查了韦达定理和弦长公式,属于基础题.19.(1)2212y x -=;(2)实轴长2 【分析】(1)由共渐近线双曲线方程的求法求解即可; (2)由双曲线方程及点到直线的距离求解即可. 【详解】解:(1)解:在双曲线22142-=y x 中,2a '=,b '=,则渐近线方程为a y x b''=±=,∵双曲线2222:1x y C a b -=与双曲线22142-=y x 有相同的渐近线,ba∴=, ∴方程可化为222212x y a a-=,又双曲线C 经过点M ,代入方程,222212a a∴-=,解得1a =,b = ∴双曲线C 的方程为2212y x -=.(2)解;由(1)知双曲线22:12y C x -=中,1a =,b =c =∴实轴长22a =,离心率为==ce a设双曲线C 的一个焦点为(,一条渐近线方程为y =,d ∴==,. 【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.20.(1)2(2)长轴长4、短轴长2【分析】(1)根据题意,代入点P ,即可求解.(2)由(1),写出椭圆方程,求解,,a b c ,根据椭圆长轴长、短轴长、焦距、离心率定义,即可求解. 【详解】(1)由题意,点P 在椭圆上,代入,得2114m+=,解得2m =(2)由(1)知,椭圆方程为22142x y +=,则2,a b c ===椭圆的长轴长24a =;’短轴长2b =焦距2c =;离心率c e a ==. 【点睛】本题考查(1)代入点求椭圆方程(2)求解长轴长、短轴长、焦距、离心率;考查概念辨析,属于基础题.21.(1)221x y -=;(2)1.【分析】(1)由条件得22431caa b ⎧=⎪⎪⎨⎪-=⎪⎩,从而可得方程;(2)分别写出焦点坐标和渐近线方程,再由点到直线距离公式可得解. 【详解】(1)双曲线22221x y a b-=的离心率为e =(2,P ,可得22431caa b⎧=⎪⎪⎨⎪-=⎪⎩ ,解得:2211a b ⎧=⎨=⎩,所以221x y -=;(2)双曲线的焦点为(,渐近线为0x y ±=,1=,22.(1)2213x y -=;(21k <<.【分析】(1)由条件可得a =2c =,然后可得答案;(2)联立直线与双曲线的方程消元,然后可得()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩,解出即可. 【详解】(1)设双曲线方程为22221x y a b-=(0a >,0b >).由已知得:a =2c =,再由222+=a b c ,∴21b =,∴双曲线方程为2213x y -=.(2)设()A A A x y ,,()B B B x y ,,将y kx =+2213x y -=,得()221390k x ---=,由题意知()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩解得13k <<.1k <<时,l 与双曲线左支有两个交点. 23.(1) ()1y e x =+;(2)R . 【分析】(1)根据函数()xf x e x a =+-是偶函数,则()()f x f x -=恒成立,由x a x a +=-恒成立求得0a =,进而得到0x ≥时,()xf x e x =+,然后求得(1),(1)f f ',用点斜式写出切线方程.(2)不等式(x)x f ≥,即为xe x x +≥,然后分0x ≥,0x <求解. 【详解】(1)因为函数()xf x e x a =+-是偶函数, 所以()()xxf x ex a e x a f x --=+--=+-=恒成立,即x a x a +=-恒成立, 即()()22x a x a +=-恒成立, 即40ax =恒成立, 解得0a =.所以()x f x e x =+,当0x ≥时,()xf x e x =+,所以()1xf x e '=+,(1)1,(1)1f e f e '=+=+,所以曲线()y f x =在1x =处的切线方程()()()111y e e x -+=+-, 即;()1y e x =+.(2)不等式(x)x f ≥,即xe x x +≥, 当0x ≥时,0x e ≥,此时0x ≥, 当0x <时,2x e x -≥,此时0x <, 综上:不等式(x)xf ≥的解集是R .24.(1)320x y --=(2)3+或3- 【分析】(1)根据导数的几何意义求出切线的斜率,根据点斜式求出切线方程; (2)利用导数的几何意义和斜率公式可解得结果. 【详解】(1)因为()22f x x x =-,所以()41f x x '=-,所以切线l 的斜率为(1)413f '=-=,又(1)211f =-=, 所以切线l 方程为13(1)y x -=-,即320x y --=.(2)设切点为2000(,2)x x x -,则2000020411x x x x ---=-,整理得2002410x x -+=,解得012x =+或012x =-,所以切线l的斜率为3+或3-, 综上所述:切线l的斜率为3+3- 【点睛】本题考查了导数的几何意义,属于基础题. 25.(1)21n a n =-;(2)221=+n nT n【分析】(1)设{}n a 的公差为d ,由831234a a a a =⎧⎨+=⎩,可求出1,a d ,进而可求出数列{}n a 的通项公式;(2)由(1)知2(21)(21)n b n n =-+112121n n =--+,利用裂项相消求和法可求出n T .【详解】(1)设等差数列{}n a 的公差为d ,∵831234a a a a =⎧⎨+=⎩,∴()11173224a d a d a d ⎧+=+⎨+=⎩,解得112a d =⎧⎨=⎩,∴21n a n =-.(2)由(1)知2(21)(21)n b n n =-+,∴112121n b n n =--+,∴1111112(1)()()133521212121n nT n n n n =-+-++-=-=-+++. 26.(1)1q =或12-;(2)()1146492n n ⎡⎤⎛⎫-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【分析】(1)根据题设条件可得关于q 的方程组,解方程组后可得q 的值. (2)利用错位相减法可求n T . 【详解】(1)由()22122213123210912a q q q q q q a q q ⎧=⎪++⎪⇒=⇒--=⎨⎪++=⎪⎩,∴1q =或12-. (2)易知数列非常数列,由(1)知1162n n a -⎛⎫=⨯- ⎪⎝⎭,∴11162n n na n -⎛⎫=⨯- ⎪⎝⎭.∴012111111232222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.()1211111112122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-+⋅⋅⋅+-⨯-+⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.相减得:0121311111222222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+--⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,∴()11311124641229212nn nn n T n T n ⎛⎫-- ⎪⎡⎤⎛⎫⎛⎫⎝⎭=-⨯-⇒=-+-⎢⎥ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎢⎥⎣⎦-- ⎪⎝⎭.27.(1)4B π=;(2)a =4c =或4a =,c =【分析】(1)由正弦定理的边化角公式化简得出sin cos B B =,再结合辅助角公式以及解三角方程得出4B π=;(2)根据三角形的面积公式得出ac =2248a c +=,解方程得出答案. 【详解】解(1sin A =因为sin 0A ≠,所以sin cos B B =所以sin cos 4B B B π⎛⎫+=+= ⎪⎝⎭sin 14B π⎛⎫+= ⎪⎝⎭则42B ππ+=,所以4B π=.(2)ABC的面积()1sin 82S ac B A C ===+=,ac =由4b =,得22162cos a c ac B =+-,即2248a c +=由2248ac a c ⎧=⎪⎨+=⎪⎩,解得a =4c =或4a =,c =28.(1)7(2)【分析】(1)利用三角形的面积公式可求sin A 的值,可得3A π=,由余弦定理可得a 的值,根据三角形的面积公式即可求解BC 边上的高;(2)由余弦定理可求cos C 的值,根据同角三角函数基本关系式可求sin C 的值,根据两角差的正弦公式即可求解sin (A -C )的值.【详解】(1)在A BC 中,因为S =12bc sin A ,2b =,3c =123sin 2A =⨯⨯, 解得sin A=2,又0<A <2π 所以A =3π 由余弦定理得:2a =22+23-2x 2x 3x cos3π=7,a设BC 边上的高为h ,因为S =12a h ,12,解得h =(2)由(1)知a,A =3π, 因为c sinc =a sinA, 所以sin C=314csinA a==, 因为0<C <2π, 所以cos C14,所以1sin()sin cos cos sin 21421414A C A C A C -=-=-⨯=-29.(1)3;(2)证明见解析.【分析】(1)整体代入可得12112122(2)533y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,由基本不等式可得; (2)由(1)得3a b c ++=,再利用基本不等式直接可以得证.【详解】(1)正数x ,y ,且23x y +=,所以12112122(2)533y x x y x y x y x y ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,又因为0x >,0y >,所以224y x x y +≥=,当且仅当1x y ==时取等号, ()1221554333y x x y ⎛⎫∴++≥+= ⎪⎝⎭,故3k =;(2)证明:由(1)得3a b c ++=,因为a ,b ,c 为正数,所以22b a b a +≥=①,当且仅当a b =时取等号, 同理可得22c b c b+≥②,当且仅当c b =时取等号, 22a c a c+≥③,当且仅当c a =时取等号, ①+②+③得222b c a a b c a b c +++++22232()62b c a a b c k a b c=+++≥++==,当且仅当1a b c ===时取等号.【点睛】结论点睛:利用均值不等式求最值时要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b R +∈,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.30.(1)第2年;(2)方案二较为合理,理由见详解.【分析】(1)先设()f n 为前n 年的总盈利额,由题中条件得出()f n ,列出不等式求解,即可得出结果;(2)分别求出两种方案的总利润,以及所需要的时间,即可得出结论.【详解】(1)设()f n 为前n 年的总盈利额,单位:万元;由题意可得()()()()22951059010100901019n n n f n n n n n +-=--=--=---, 由()0f n >得19n <<,又*n ∈N ,所以该设备从第2年开始实现总盈利;(2)方案二更合理,理由如下:方案一:由(1)知,总盈利额()()221009010516010f n n n n +-=--+=-,当5n =时,()f n 取得最大值160;此时处理掉设备,则总利润为16020180+=万元; 方案二:由(1)可得,平均盈利额为()21009091010010020401n n n f n n n n +-⎛⎫=-++≤-⎪-== ⎝⎭, 当且仅当9n n=,即3n =时,等号成立;即3n =时,平均盈利额最大,此时()120f n =, 此时处理掉设备,总利润为12060180+=万元;综上,两种方案获利都是180万元,但方案二仅需要三年即可,故方案二更合适.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.。
高二精选题库 数学7-6北师大版
第7模块 第6节[知能演练]一、选择题1.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式: ①(A 1D 1→-A 1A →)-AB →; ②(BC →+BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→; ④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→的是( )A .①②B .②③C .③④D .①④解析:①(A 1D 1→-A 1A →)-AB →=AD 1→-AB →=BD 1→; ②(BC →+BB 1→)-D 1C 1→=BC 1→-D 1C 1→=BD 1→; ③(AD →-AB →)-2DD 1→=BD →-2DD 1→≠BD 1→;④中(B 1D 1→+A 1A →)+DD 1→=B 1D →+DD 1→=B 1D 1→≠BD 1→, 所以选A. 答案:A2.如右图,在四棱锥S —ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2,给出以下结论:①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的个数是( )A .1B .2C .3D .4解析:容易推出:SA →-SB →+SC →-SD →=BA →+DC →=0, 所以③正确;又因为底面ABCD 是边长为1的正方形, SA =SB =SC =SD =2, 所以SA →·SB →=2·2·cos ∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确;其余三个都不正确,故选B. 答案:B3.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E 、F 分别是BC 、AD 的中点,则AE →·AF →的值为( )A .a 2 B.12a 2 C.14a 2D.34a 2 解析:AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14(a 2cos60°+a 2cos60°)=14a 2.答案:C4.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1→上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( )A.216aB.66aC.156aD.153a 解析:以D 为原点建立如右图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ), N (a ,a ,a2).设M (x ,y ,z )∵点M 在AC 1→上且AM →=12MC 1→,∴(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a 3得M (2a 3,a 3,a 3),∴|MN →|=(a -23a )2+(a -a 3)2+(a 2-a 3)2=216a . 答案:A 二、填空题5.下列命题中不.正确的所有命题的序号是________. ①若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0; ②|a |-|b |=|a +b |是a 、b 共线的充要条件; ③若a 、b 共线,则a 与b 所在直线平行;④对空间任意点O 与不共线的三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面.解析:①正确;②不正确,因为a ,b 共线,不一定有|a |-|b |=|a +b |成立;③不正确,因为a 、b 共线,也可得a 与b 所在直线重合;④不正确;若O ∉平面ABC ,则OA →、OB →、OC →不共面,由空间向量基本定理知,P 可为空间任一点,所以P 、A 、B 、C 四点不一定共面.答案:②③④6.已知三点A (1,0,0),B (3,1,1),C (2,0,1),则 (1)CB →与CA →的夹角等于________; (2)CB →在CA →方向上的投影等于________. 解析:CB →=(1,1,0),CA →=(-1,0,-1). (1)cos 〈CB →,CA →〉=CB →·CA →|CB →||CA →|=-1+0+02·2=-12,∴〈CB →,CA →〉=2π3;(2)CB →在CA →方向上的投影=CB →·CA →|CA →|=-1+0+02=-22.答案:(1)2π3 (2)-22三、解答题7.已知向量a =(1,-3,2),b =(-2,1,1),O 为原点,点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE →⊥b? 解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5), 故|2a +b |=02+(-5)2+52=5 2. (2)假设存在一点E 满足题意OE →=OA →+AE →=OA →+tAB →=(-3,-1,4)+t (1,-1,-2) =(-3+t ,-1-t,4-2t ), 若OE →⊥b ,则OE →·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得t =95,因此存在点E ,使得OE →⊥b , 此时点E 的坐标为(-65,-145,25).8.如右图,在棱长为a 的正方体OABC -O 1A 1B 1C 1中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF =x ,其中0≤x ≤a ,以O 为原点建立空间直角坐标系O -xyz .(1)写出点E 、F 的坐标; (2)求证:A 1F →⊥C 1E →;(3)若A 1、E 、F 、C 1四点共面,求证:A 1F →=12A 1C 1→+A 1E →.解:(1)E (a ,x,0),F (a -x ,a,0). (2)证明:∵A 1(a,0,a )、C 1(0,a ,a ),∴A 1F →=(-x ,a ,-a ),C 1E →=(a ,x -a ,-a ). ∴A 1F →·C 1E →=-ax +a (x -a )+a 2=0. ∴A 1F →⊥C 1E →.(3)证明:∵A 1、E 、F 、C 1四点共面, ∴A 1E →、A 1C 1→、A 1F →共面.视A 1E →与A 1C 1→为一组基向量,则存在唯一实数对λ1、λ2,使A 1F →=λ1A 1C 1→+λ2A 1E →, 即(-x ,a ,-a )=λ1(-a ,a,0)+λ2(0,x ,-a )=(-aλ1,aλ1+xλ2,-aλ2), ∴⎩⎪⎨⎪⎧-x =-aλ1,a =aλ1+xλ2,-a =-aλ2,解得λ1=12,λ2=1.于是A 1F →=12A 1C 1→+A 1E →.[高考·模拟·预测]1.如右图所示,在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +cD .-12a -12b +c解法一:B 1M →=B 1B →+BM →=A 1A →+12(BA →+BC →)=c +12(-a +b )=-12a +12b +c ,∴选A.解法二:∵B 1M →=B 1A 1→+A 1A →+AM →=(-a )+c +a +b 2=-12a +12b +c .答案:A2.已知直线AB 、CD 是异面直线,AC ⊥CD ,BD ⊥CD ,且AB =2,CD =1,则异面直线AB 与CD 所成角的大小为( )A .30°B .45°C .60°D .75°解析:∵AB →·CD →|AB →|·|CD →|=(AC →+CD →+DB →)·CD →2×1=CD →22=12.∴AB →与CD →所成角为60°.答案:C3.在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________(用a ,b ,c 表示).解析:OE →=12(OD →+OA →)=12[12(OC →+OB →)+OA →]=12a +14b +14c .答案:12a +12b +14c4.如右图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.解析:以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直角坐标系, 则A (1,0,0),A 1(1,0,1), B 1(1,1,1),B (1,1,0),C (0,1,0), ∴M (1,12,1),N (1,1,12),∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=AM →·CN →|AM →|·|CN →|=12(12)2+12×12+(12)2=25. 答案:255.在▱ABCD 中,AB =AC =CD =a ,∠ACD =90°,现将它沿对角线AC 折成60°的二面角.(1)求B 、D 两点间的距离;(2)求异面直线AC 与BD 所成角的大小. 解:(1)∵AB =AC =CD =a , ∴|AB →|=|AC →|=|CD →|=a . ∵AB ∥CD ,∠ACD =90°. ∴∠BAC =90°, ∴AB ⊥AC ,AC ⊥CD .由于二面角B -AC -D 的度数为60°,∴〈AB →,CD →〉=60°. ∴AB →·AC →=0,AC →·CD →=0, BA →·CD →=a ·a ·cos120°=-12a 2.∵BD →=BA →+AC →+CD →,∴|BD →|2=(BA →+AC →+CD →)2=|BA →|2+|AC →|2+ |CD →|2+2(BA →·AC →+AC →·CD →+CD →·BA →) =a 2+a 2+a 2+2(0+0-12a 2)=2a 2.∴|BD →|=2a .故B 、D 两点间的距离为2a . (2)设异面直线AC 与BD 所成的角为θ, 则cos θ=|cos 〈AC →,BD →〉|=|AC →·BD →|AC →||BD →||.由于AC →·BD →=AC →·(BA →+AC →+CD →) =AC →·BA →+AC →2+AC →·CD →=0+a 2+0=a 2, ∴cos θ=|AC →·BD →|AC →||BD →||=|a 2a ·2a |=22.由于0°<θ≤90°,∴θ=45°.故异面直线AC 与BD 所成角的大小为45°.[备选精题]6.如右图所示,在五面体ABCDEF 中,F A ⊥平面ABCD ,AD ∥BC ∥FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(1)求异面直线BF 与DE 所成的角的大小; (2)证明平面AMD ⊥平面CDE ; (3)求二面角A -CD -E 的余弦值.解:如题图所示,建立空间直角坐标系,点A 为坐标原点.设AB =1,依题意得B (1,0,0),C (1,1,0),D (0,2,0),E (0,1,1),F (0,0,1),M (12,1,12).(1)解:BF →=(-1,0,1),DE →=(0,-1,1), 于是cos 〈BF →,DE →〉=BF →·DE →|BF →||DE →|=0+0+12·2=12.所以异面直线BF 与DE 所成的角的大小为60°.(2)证明:由AM →=(12,1,12),CE →=(-1,0,1),AD →=(0,2,0),可得CE →·AM →=0,CE →·AD →=0.因此,CE ⊥AM ,CE ⊥AD .又AM ∩AD =A ,故CE ⊥平面AMD .而CE ⊆平面CDE ,所以平面AMD ⊥平面CDE .(3)解:设平面CDE 的法向量为u =(x ,y ,z ),则⎩⎪⎨⎪⎧u ·CE →=0,u ·DE →=0.于是⎩⎪⎨⎪⎧-x +z =0,-y +z =0.令x =1,可得u =(1,1,1).又由题设,平面ACD 的一个法向量为v =(0,0,1). 所以,cos 〈u ,v 〉=u ·v |u ||v |=0+0+13·1=33.因为二面角A -CD -E 为锐角,所以其余弦值为33.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章第3节
时间:45分钟满分:100分
一、选择题(每小题7分,共42分)
1.在梯形ABCD中,AB∥CD,AB 平面α,CD⃘平面α,则直线CD与平面α内的直线的位置关系只能是()
A.平行B.平行和异面
C.平行和相交D.异面和相交
答案:B
解析:因为AB∥CD,AB 平面α,CD⃘平面α,所以CD∥平面α,所以CD与平面α内的直线可能平行,也可能异面,故选B.
2. [原创题]已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是()
A.若α⊥γ,α⊥β,则γ∥β
B.若n⊥α,n⊥β,则α∥β
C.若m∥n,m∥α,则n∥α
D.若m∥n,m α,n β,则α∥β
答案:B
解析:A错,两平面也可相交;
B正确,垂直于同一条直线的两平面平行;
C错,直线n可能在平面α内;
D错,不符合面面平行的判定定理.
故选B.
3.给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:
①若l与m为异面直线,l α,m β,则α∥β;
②若α∥β,l α,m β,则l∥m;
③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.
其中真命题的个数为()
A.3B.2
C.1D.0
答案:C
解析:①中当α与β不平行时,也能存在符合题意的l、m.
②中l与m也可能异面.
③中
⎭
⎪⎬⎪
⎫l ∥γ
l ββ∩γ=m ⇒l ∥m ,同理l ∥n ,则m ∥n ,正确. 4. [2012·广东质检]如图,正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AB ,CC 1的中点,在平面ADD 1A 1内且与平面D 1EF 平行的直线(
)
A. 不存在
B. 有1条
C. 有2条
D. 有无数条 答案:D
解析:由题设知平面ADD 1A 1与平面D 1EF 有公共点D 1,由平面的基本性质中的公理知必有过该点的公共线l ,在平面ADD 1A 1内与l 平行的线有无数条,且它们都不在平面D 1EF 内,由线面平行的判定定理知它们都与平面D 1EF 平行,故选D.
5.如图边长为a 的等边三角形ABC 的中线AF 与中位线DE 交于点G ,已知△A ′DE 是△ADE 绕DE 旋转过程中的一个图形,则下列命题中正确的是(
)
①动点A ′在平面ABC 上的射影在线段AF 上; ②BC ∥平面A ′DE ;
③三棱锥A ′-FED 的体积有最大值. A .① B .①② C .①③ D .②③
答案:C
解析:①中由已知可得面A ′FG ⊥面ABC , ∴点A ′在面ABC 上的射影在线段AF 上. ②当A ′点与F 点重合时不符题意.
③当面A ′DE ⊥面ABC 时,三棱锥A ′-FDE 的体积达到最大.
6.正方体ABCD -A 1B 1C 1D 1中,M 、N 、Q 分别是棱D 1C 1、A 1D 1,BC 的中点.点P 在对角线BD 1上,且BP →=2
3
BD 1→
,给出下列四个命题:
(1)MN ∥平面APC ;(2)C 1Q ∥平面APC ;(3)A ,P ,M 三点共线;(4)平面MNQ ∥平面APC .其中正确命题的序号为( )
A .(1)(2)
B .(1)(4)
C .(2)(3)
D .(3)(4)
答案:C
解析:设E 、F 分别为AC 、MN 的中点,G 为EF 与BD 1的交点,显然△D 1FG ∽△BEG ,故D 1G BG =D 1F BE =12,即BG =231,又BP →=23BD 1→,即BP =23BD 1,故点G 与点P 重合,所以平面APC 和平面ACMN 重合 ,MN 平面APC ,故命题(1)不正确,命题(4)也不正确,结合选项可知选C.
二、填空题(每小题7分,共21分)
7.在△ABC 中,AB =5,AC =7,∠A =60°,G 是△ABC 的重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN =________.
答案:2393
解析:BC ∥平面α,MN ∥BC ,D 为BC 中点,从而MN BC =AG AD =2
3,
∴MN =2
3
BC .
在△ABC 中,BC 2
=52
+72
-2×5×7×cos60°=39, ∴BC =39. ∴MN =
239
3
.
8. 在空间中,下列命题:①过一点有且只有一条直线与已知直线互相平行;②平行于同一个平面的两条直线互相平行;③平行于同一条直线的两条直线互相平行;④垂直于同一条直线的两条直线互相平行;⑤垂直于同一个平面的两条直线互相平行,其中真命题有__________(写出所有真命题的序号).
答案:③⑤
解析:①过一点必须强调“过直线外一点”,当点在直线上时,不存在直线与已知直线平行,故①为假命题;②平行于“同一条直线”的两条直线平行,而不是“同一个平面”,平行于同一个平面的两条直线的位置关系可能平行、相交或异面,故②为假命题;③平行公理4阐述的是直线平行关系的传递性,无论在平面内还是在空间中都成立,故③为真命题;④在平面内,垂直于同一条直线的两条直线互相平行,在空间中,垂直于同一条直线的两条直线,不一定平行,故④为假命题;⑤为真命题.
9.如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、CD 的中点,N 是BC 的中点,点M 在四边形EFGH 上及其内部运动,则M 满足条件________时,有MN ∥平面B 1BDD 1.
答案:M ∈FH
解析:∵HN ∥DB ,FH ∥D 1D ,∴面FHN ∥面B 1BDD 1.故M ∈FH . 三、解答题(10、11题12分、12题13分)
10. [改编题]如图,四边形ABEF 与四边形ABCD 都是直角梯形,∠BAD =∠FAB =90°,BC 綊12AD ,BE 綊1
2
AF ,G 、H 分别是F A 、FD 的中点.
(1)证明:CH ∥平面BEFA ;
(2)C 、D 、F 、E 四点是否共面?为什么? 解:(1)由题意,知FG =GA ,FH =HD , 所以GH 綊12
AD .
又BC 綊1
2
AD ,故GH 綊BC ,
所以四边形BCHG 是平行四边形.
所以CH ∥BG ,又CH ⃘平面BEFA ,BG 平面BEF A , 所以CH ∥平面BEFA .
(2)C 、D 、F 、E 四点共面.理由如下: 由BE 綊1
2AF ,G 是F A 的中点知,BE 綊GF ,
所以四边形BEFG 为平行四边形,所以EF ∥BG . 由(1)知BG ∥CH ,所以EF ∥CH ,故EC ,FH 共面. 又点D 在直线FH 上,所以C 、D 、F 、E 四点共面.
11. [2011·江苏]如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:
(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面P AD .
证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD . 又因为EF ⃘平面PCD ,PD 平面PCD , 所以直线EF ∥平面PCD .
(2)连结BD .因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD .
因为平面PAD ⊥平面ABCD ,BF 平面ABCD ,平面P AD ∩平面ABCD =AD ,所以BF ⊥平面PAD .
又因为BF 平面BEF ,所以平面BEF ⊥平面PAD .
12.一个多面体的三视图和直观图如图所示,其中M 、N 分别是AB 、SC 的中点,P 是SD 上的一动点.
(1)求证:BP ⊥AC ;
(2)当点P 落在什么位置时,AP ∥平面SMC? (3)求三棱锥B -NMC 的体积.
分析:本题考查三视图与直观图,线面垂直与平行的判断、证明.
解: (1)连接BD ,∵四边形ABCD 为正方形,∴BD ⊥AC ,又SD ⊥底面ABCD ,∴SD ⊥AC ,∵BD ∩SD =D ,∴AC ⊥平面SDB ,∵BP 平面SDB ,∴AC ⊥BP .
(2)取SD 的中点P ,连接PN ,AP ,MN ,则PN ∥DC 且 PN =1
2DC .
∵底面ABCD 为正方形,∴AM ∥DC 且AM =1
2DC ,
∴AM 綊PN ,∴四边形AMNP 为平行四边形,∴AP ∥MN . 又AP ⃘平面SMC ,MN 平面SMC ,∴AP ∥平面SMC .
(3)V B -NMC =V N -MBC =13S △MBC ·12SD =13·12BC ·MB ·12SD =16×1×12×12×2=112
.。