5.3.1 平行线的性质(第1课时)教学设计
相交线与平行线教案
5.3.1 平行线的性质(第1课时)平行线的性质(一)一.教学目标1.知识与技能:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2.过程与方法:经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
3.情感态度与价值观:培养学生合作交流意识和探索精神。
二.重点、难点重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.三.教学过程(一)、引导学生逆向思维现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?(二)、实践探究1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).2.3.学生根据测量所得数据作出猜想.图中哪些角是同位角?它们具有怎样的数量关系?图中哪些角是内错角?它们具有怎样的数量关系?图中哪些角是同旁内角?它们具有怎样的数量关系?在详尽分析后,让学生写出猜想.4.学生验证猜测.学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?c b a4321平行线具有性质:性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补.教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定. 平行线的性质平行线的判定因为a∥b, 因为∠1=∠2,所以∠1=∠2 所以a∥b.因为a∥b, 因为∠2=∠3,所以∠2=∠3, 所以a∥b.因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.教师:大家能根据性质1,推出性质2成立的道理吗?结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程. 因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.例 (课本P23)如图是一块梯形铁片的线全部分,量得∠A=100°,∠B=115°,梯形另外两个角分别是多少度?教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么? 讲解按课本.(三)、巩固练习 1.课本练习(P22). (四)课堂小结: 经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算 (五)课堂作业:练习卷 (六)课堂反馈 一、判断题.1.两条直线被第三条直线所截,则同旁内角互补.( )2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.87654321DCBAFEDC B A(1) (2) (3) 2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.D C BA3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:因为∠ECD=∠E,所以CD∥EF( )又AB∥EF,所以CD∥AB( ).平行线的性质(第2课时)平行线的性质(二) 教学目标知识与技能:能够综合运用平行线性质和判定解题过程与方法.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论. 情感态度与价值观:推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用.教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么? 二、进行新课已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗? 让学生写出说理过程,师生共同评价三种不同的说理.(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F 的度数并填入表格.通过上述实践,FECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导: ①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD. ③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.E D CB AFEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行). 所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离. 教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式.师生共同分析上述四个命题的题设和结论,重点分析第②、③语句.第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设,“结果仍是等式”是结论。
《平行线的性质》优秀教案
平行线的性质(第1课时)优秀教案威宁县龙街第二中学白刻生教学目标:1、知识与技能目标: 经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力。
3、情感态度目标:在自己独立思考的基础上,积极参与小组活动。
在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益。
通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.教学过程一、复习回顾活动内容:复习已学过的同位角、内错角、同旁内角的概念及两直线平行的条件。
(1)因为∠1=∠5 (已知)所以a∥b()(2)因为∠4=∠(已知)所以a∥b(内错角相等,两直线平行)(3)因为∠4+∠=1800(已知)所以a∥b( )活动目的:平行线的性质与判定直线平行的条件是互逆的,对初学者来说易将它们混淆,因此,复习判定直线平行的条件为后面学习性质做好准备。
二、动手操作、探求新知反过来,如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这是我们这节课要探究的问题。
活动内容:课本52页的“探究”部分。
如图,直线a与直线b平行。
(1)测量同位角∠1和∠5 的大小,它们有什么关系?图中还有其他同位角吗?它们的大小有什么关系?(2)图中有几对内错角?它们的大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)换另一组平行线试试,你能得到相同的结论吗?这是本节课的主体部分,具体教学时,可把该探究细分成如下几个活动:活动1、先测量角的度数,把结果填入表内.角∠1∠2 ∠3 ∠4 ∠5∠6∠7 ∠8度数活动2、根据测量所得的结果作出猜想:同位角具有怎样的数量关系?内错角具有怎样的数量关系?同旁内角呢?活动3、验证猜测.另外画一组平行线被第三条直线所截,同样测量并计算各角的度数,检验刚才的猜想是否成立?如果直线a与b不平行,猜想还成立吗?活动4、归纳平行线的性质性质1:两条平行直线被第三条直线所截,同位角相等。
人教版七年级下册5.3.1平行线的性质教学设计
人教版七年级下册5.3.1平行线的性质教学设计一、教学背景这一章节是初中数学中的重要内容,是初中阶段固有内容之一。
本节内容是平行线的性质,是进一步提高学生的几何学习水平,培养学生学习几何并进行运用的能力,为高中学习打下基础。
二、教学目标1.了解平行线及其性质2.掌握平行线的判定方法3.理解平行线性质在实践中的运用三、教学方法1.启发法。
通过生活实例与学生交流、讨论、分析问题,引导学生主动发现规律,理解和掌握性质。
2.演示法。
通过画图、举例、模拟等方式,使学生清楚而直观地感受到性质的本质和基本概念。
3.交互式教学法。
在课堂授课中,让学生发现问题,教师及时给予引导和反馈,互相探讨,加深印象。
四、教学过程1. 导入1.蓝色背景幻灯片呈现问题:一本书和一支笔在实物上是不可能同时摆放在同一个平面内的。
请用你的观察能力,试着解释一下。
2.学生进行思考和讨论,教师及时引导,引出平行性质,并与上节课内容对接。
2. 深化1.展示两条不相交的直线和一条横截直线的图形,引导学生描绘其几何形状。
2.教师引导学生观察直线和横线的相对位置。
学生回答“这两条直线可能会有什么关系?” 并予以深入探究。
3.教师呈现两条相交的直线的图形。
蓝色背景幻灯片呈现问题:如何判断两条直线平行?4.启发式教学清晰阐明平行性质,加深对平行性质的认识。
学生自主探索得到假设,教师引导得出定义。
5.通过生活实例和多个角度的讲解掌握平行线的判定方法,梳理学习过的知识点,梳理几何优秀思路,解决学生的疑惑与困惑。
3. 总结1.举例,让学生思考这些性质的应用场景和方法。
2.教师引导学生用不同的方法总结、概括平行性质。
4. 课堂作业请学生人自己动手从生活中找出化解问题的方法,更加深入理解平行线性质,提高维度。
五、教学评估通过课堂练习、课堂互动、互相探讨、小组交流以及单独创造等多种评价方式,检验学生学习效果。
教师班长进行作业的检查和评估,判定教学质量和效果。
七年级数学下册5.3.1平行线的性质教学设计1(新版)新人教版
平行线的性质教材分析:平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。
这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要教学目标:知识技能:1.掌握平行线的三个性质2.会用平行线的性质进行有关的简单推理和计算3.通过对比,理解平行线的性质和判定的区别过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力情感、态度与价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度教学重点:平行线的三个性质的探索教学难点:平行线的性质和判定的区别以及应用它们进行简单的推理教具准备:多媒体课件、量角器、剪刀等教学过程:一、情境探究,引入新课如图,要设计一个弯形管道,求管道,那么如何设计的角度呢?也就是说,如果给你两条平行直线,你能够得到什么?这就是我们此节课所学 -----5.3平行线的性质(板书)二、动手实践,探索规律在练习本上画两条平行线,再画直线与直线相交(如下图)指出图中同位角、内错角、同旁内角?思考:你能用你自己的方法比较一下对应的同位角、内错角、同旁内角之间的数量关系吗?(两种方法:一是度量,二是裁剪)归纳:两条平行线被第三条直线所截,同位角相等。
(两直线平行,同位角相等)两条平行线被第三条直线所截,内错角相等。
(两直线平行,内错角相等)两条平行线被第三条直线所截,同旁内角互补。
(两直线平行,同旁内角互补)(此处教师要用符号语言加以说明)问:如果两条直线不平行,也被第三条直线所截,同位角、内错角还相等吗?同样,同旁内角还互补吗?(只有在两直线平行的条件下才有:同位角、内错角相等,同旁内角互补。
并不是所有的同位角、内错角都相等,同旁内角都互补)三、议一议、促进理解1.你能利用“两直线平行,同位角相等”来说明“两直线平行,内错角相等”以及“两直线平行,同旁内角互补”成立的理由吗?(重点强调:符号语言的写法)2.你能谈谈平行线的性质和判定的区别?已知结论判定同位角相等两直线平行内错角相等同旁内角互补性质两直线平行同位角相等内错角相等同旁内角互补归纳:判定:角的关系线的关系性质:线的关系角的关系四、组间、增进合作1、如图(1),直线,,那么∠2,∠3,∠4各是多少度?2、如图(2),是上一点,是上一点,,,,求的度数3、如图(3),是一条直线,,求的度数4、如图(4),点分别在的边上,且(1)试求的度数(2)如果,那么与平行吗?图(1)图(2)图(3)图(4)五、小结拓展、知识汇总1.学生自我归纳2.教师加以强调六、学后反思通过学习,你能不能解决我们课前提出的情境问题呢?七、作业布置、巩固所学P23 4、5八、板书设计:(略)。
2018年最新人教版七年级数学下册5.3.1平行线的性质(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线性质相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器来验证平行线性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它们在几何学中有着极其重要的作用,能够帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过观察图形,我们可以发现平行线之间的特殊角度关系,这些关系可以帮助我们求解未知角度。
2018容
本节课选自2018年最新人教版七年级数学下册第5章第3节第1小节,主要教学内容为平行线的性质。具体内容包括:
1.掌握平行线的定义及判定方法。
2.学习平行线的性质,包括同位角相等、内错角相等、同旁内角互补。
3.应用平行线的性质解决实际问题,如求角度、证明线段平行等。
在讲解平行线性质的理论时,我注意到了一个现象:当直接告诉学生们“同位角相等”这个性质时,他们的反应并不强烈;而当通过具体的图形和案例来引导他们自己发现这个性质时,学生们表现出更多的积极性和兴趣。这让我认识到,引导学生自主探究、发现知识,远比直接传授知识更能激发他们的学习热情。
实践活动环节,学生们在分组讨论和实验操作中表现得非常积极。他们通过实际操作,加深了对平行线性质的理解。但同时我也注意到,有些小组在讨论时可能会偏离主题,这时我需要及时介入,引导他们回到正确的讨论轨道上来。
3.增强学生的问题解决能力,使其能将平行线的性质应用于解决实际几何问题,提高数学应用意识。
平行线的性质(第1课时)教学设计
平行线的性质(第1课时)教学设计5.3平行线的性质( 第1课时)刘玲2016.5一、教学内容解析《相交线与平行线》是人教版义务教育课程标准试验教科书《数学》七年级下册的第一章,是初一学生在学习了《图形认识初步》后第二次学习几何。
它包括五大块内容:一是相交线;二是平行线及其判定;三是平行线的性质;四是平移。
前三节主要讨论平面内两条直线的位置关系,第四节是有关平移变换的内容。
本章内容都是从实际问题出发,引导学生自己多观察、多动手、勤思考,结合当地特点的一些问题,抽象出隐含在这些实际问题中的数学问题,引入本章要学习的相关内容。
通过对数学问题的研究,学习有关的数学概念和方法,并利用所学知识解决更多的实际问题,体现具体——抽象——具体的过程,培养学生学习数学的兴趣,提高他们应用所学知识解决问题的能力。
本堂课是在学生学习和掌握了平行线的判定的基础上,研究平行线的性质,它既包含了相交线的内容又包含了平行线的内容。
平行线的性质和判定既有联系也有区别,联系在于它们研究的对象都是平行线和角的关系,区别在于它们的题设和结论刚好交换,是一个互逆的命题,这种结构关系也为我们将来学习其它几何图形的性质和判定提供了范例,包括一些特殊三角形的性质与判定,平行四边形的性质和判定等等。
因此,平行线的性质既是平行线的判定的逆用, 又是将来学习几何图形性质与判定的重要基础,在本章中具有举足轻重的地位和作用。
另外,平行线的性质与现实世界中的联系也很紧密,如本节课例题“梯形残片”的问题等,通过学习可以把所学知识和实际联系起来,更好地为实现生产实际服务。
这节课以学生为主体,通过学生自己的观察、建模、操作、讨论得到平行线的性质,并加以说明和验证.锻炼学生的观察能力,动手能力和思维能力,提高学生的分析能力,增强学习数学的兴趣。
二、学生学情分析本课是在学习了平行线的判定后学习的内容,学生对平行线与角的关系有了一定的认识,因此要在基本图形中去观察出平行线与同位角、内错角、同旁内角的关系,进而猜测出平行线的性质对学生来说难度不大。
人教版七年级数学下册教案新部编本:5.3《平行线的性质》(第一课时)
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《平行线的性质》教学设计探究一:两条平行线被第三条直线截得的同位角之间的数量关系直线a∥b,c是截线.哪些是同位角?学生回答,教师点评.帮助学生回忆同位角,为下文做铺垫.(2)猜想,两条平行线被第三条直线截得的同位角会具有怎样的数量关系?你能验证你的猜想吗?教师引导学生,在两条平行线上任意做一条截线,利用手中的工具验证猜想.学生展示,教师点评;(可能的方法:度量法、叠合法)让学生经历猜想——操作——验证的探究过程,而且在这个过程中,锻炼学生的归纳能力,同时锻炼学生图形语言、文字语言、符号语言三种语言之间的转化能力及表达能力,为下一步推理性质2、性质3,及今后进一步学习推理打下基础.(3)如果改变截线的位置,你发现的结论还成立吗?总结性质1:_______符号语言:_________教师展示学生截线位置不同的作品.学生总结性质,回答符号语言.(4)如果只说“同位角相等”,对吗?学生会产生争议,请认为错的学生代表回答,并板演反例,其它同学在练习本上画反例.强调性质中的条件,加深学生对性质的理解,防止证明时忽略条件.探究二:两条平行线被第三条直线截得的内错角之间的数量关系直线a∥b,c是截线.哪些是内错角?学生回答,教师点评.帮助学生回忆内错角,为下文做铺垫.(2)如图,如果直线a∥b,c是截线,猜想∠2和∠3有什么关系?请结合性质1和相关知识说明你的猜想.总结性质2:_______符号语言:_________学生易选择测量法,引导学生类比平行线判定2的得出,运用性质1及相关知识推导.先请一位学生代表说理论证,师生共同点评.学生用数学语言表达推理过程,师生共同修改或补充;(学生易遗漏条件,直接写出∠1=∠2).学生总结性质2,并说出符号语言.先让学生想方法,加以指导点评,重视学生探究方法的生成,让学生学会找方法,然后循序渐进的引导学生思考,逐步从“说理”走向“推理”.探究三:两条平行线被第三条直线截得的同旁内角之间的数量关系(1)如图,已知直线a∥b,c是截线.哪些是同旁内角?学生回答,教师点评.帮助学生回忆同旁内角,为下文做铺垫.(2)如图2,如果直线a∥b,c是截线,猜想∠2和∠4有什么关系?你会说明吗?学生独立完成,学生代表使用展台展示,讲解.逐步培养学生的推理能力,使其能进行简单的推理,同时培养学生多角度考虑问题的思维方式.例题例1.判断对错,并说明理由:(1)内错角相等.(2)两条直线被第三条直线所截,同旁内角互补.学生代表回答,师生共同补充或修改.再次强调条件的重要性,为应用做铺垫.例2.抢答:如图,平行线AB,CD被直线AE所截,∠1=110º(1)∠2是多少度?为什么?(2)∠3是多少度?为什么?(3)∠4是多少度?为什么?学生抢答,可能会把性质说成判定.利用此题进一步阐述性质与判定的互逆关系,同时让学生总结出什么情况下用性质,什么情况下用判定.调动学生积极性,巩固平行线的性质及文字语言、符号语言、图形语言之间的相互转化,为进一步学习推理打基础,也为平行线性质的灵活应用做铺垫,同时进一步区分平行线的性质与判定.一题多变例3.如图,已知AE∥CD,AD∥BC,∠A=56°,∠C是多少度?为什么?学生代表分析题目,学生独立完成推理过程,利用展台展示、说明,师生共同补充或修改.教师引导学生把结论和其中一个条件调换,得到变式.此题为本章典型习题之一,综合了平行线的性质与判定,进一步让学生区分性质与判定,锻炼了学生灵活运用知识的能力,且渗透给学生“模型”思想,发散了学生思维,让学生学会举一反三,学数学要学数学的“魂”.变式:如图,已知AE∥CD,∠A=∠C,请问AD与BC平行吗?为什么?小组充分讨论后,小组代表用展台展示并讲解解答方法,教师总结:此题前两步用性质,后两步用判定.教师引导学生,更换条件变新题.练习:如图,已知AD∥BC,∠A=∠C,请问AE与CD平行吗?为什么?学生独立完成后,用展台展示,并说明做法,师生共同点评.EDCBA1234归纳小结(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)在探究平行线的性质的过程中,你有什么体会?让学生从知识,过程,方法,情感态度与价值观各方面感受数学.布置作业习题5.3第2,4,6,7题当堂检测1.(A组)如图,直线a∥b,∠1=54°,那么∠2、∠3、∠4各是多少度?考查学生对平行线性质的掌握,属于基础题.2.如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,∠AED=40°.(1)(B组)DE和BC平行吗?为什么?(2)(C组)∠C是多少度?为什么?考察学生性质与判定的综合应用能力,层层提升.。
人教版七年级数学下册 教学设计5.3.1 第1课时《平行线的性质》
人教版七年级数学下册教学设计5.3.1 第1课时《平行线的性质》一. 教材分析《平行线的性质》是人教版七年级数学下册第五章第三节的第一课时内容。
本节课主要让学生掌握平行线的性质,包括同位角相等、内错角相等、同旁内角互补。
这些性质是学生进一步学习几何知识的基础,对于培养学生的空间想象力具有重要意义。
教材通过生动的图片和实际的例子,引导学生探索平行线的性质,激发学生的学习兴趣。
二. 学情分析学生在学习本节课之前,已经学习了线段的性质、角的度量等基础知识,对于几何图形的认知和观察能力有所提高。
但七年级的学生在空间想象能力和逻辑推理能力方面仍有待提高。
因此,在教学过程中,教师需要注重引导学生观察、思考、交流,培养学生的主体探究能力。
三. 教学目标1.知识与技能目标:使学生掌握平行线的性质,能够运用性质解决实际问题。
2.过程与方法目标:通过观察、操作、交流、推理等过程,培养学生的空间想象能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:平行线的性质。
2.难点:同位角、内错角、同旁内角的判定和运用。
五. 教学方法1.引导探究法:教师引导学生观察、思考、交流,激发学生的探究欲望,培养学生的自主学习能力。
2.案例分析法:通过具体的例子,使学生更好地理解平行线的性质。
3.小组讨论法:培养学生团队协作能力,提高学生的沟通能力。
六. 教学准备1.准备相关图片和例子,用于引导学生观察和探究。
2.准备课件,展示平行线的性质及其应用。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示实际生活中的平行线例子,如铁路、街道等,引导学生观察并思考:这些平行线有什么特殊的性质呢?从而引出本节课的主题——平行线的性质。
2.呈现(10分钟)教师通过课件展示平行线的性质,引导学生观察、思考并总结出同位角相等、内错角相等、同旁内角互补这三个性质。
人教版七年级数学下册《平行线的性质(第一课时)》教学设计
5.3 平行线的性质(第1课时)(学生独立回忆,思考并回答问题。
)【承上启下。
】2、师:反过来:如果两条直线平行,那么同位角、内错角、同旁内角又各有什么样的关系呢?这就是我们这节课要探究的问题。
二、探究合作交流一1、画两条平行线a//b,然后画一条截线c与a、b相交,标出如图的角. 度量所形成的8个角的度数,把结果填入下表:(学生自学,独立思考并回答问题)角∠1 ∠2 ∠3 ∠4度数角∠5 ∠6 ∠7 ∠8度数2、观察、猜想两条直线被第三条直线截得的同位角有什么关系?生回答可以用度量的方法或剪切的方法来验证。
(多媒体展示)3、如果改变截线的位置,你发现的结论还成立吗?(学生分组讨论,观察、思考问题)4、如果两直线不平行,上述结论还成立吗?变式1:已知条件不变,求∠3,∠4的度数? 变式2:已知∠3 =∠4,∠1=47°,求∠2的度数? 四、走进生活1如图,是一块梯形铁片的残余部分,量∠A =100°, ∠B =115°,梯形的另外两个角分别是多少度? 【让学生独立思考,同时,通过实例,培养学生分 析问题的能力,让学生从具体的实例中发现数学问题 ,使学生懂得数学来源于实际生活,服务于实际生活。
】五、巩固提升 六、总结升华、反思提升1.回顾本节课学习的主要内容,填写下表:2.运用平行线性质的前提条件是什么?3.本节课涉及的数学思想方法有哪些?4.本节课的学习,你还有哪些收获或疑惑? 归纳:性质:线的关系←角的关系判定:角的关系→线的关系【学生对本节课进行知识梳理,巩固教学目标。
】A BCD七、板书设计:5.3平行线的性质(第1课时)。
5.3.1平行线的性质1doc
能结合一些具体内容进行说理,初步养成言之有据的习惯,从而培养逻辑性的数学思维。
重点
探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
难点
难点:能区分平行的性质和判定,正确利用平行线的性质解决有关问题
教学流程安排
活动说明
活动目的
知识链接
回顾旧知,导入新知,出示目标
新知初探
掌握平行线的性质及符号表示
老师:出示学习目标进行解读。
做好知识的铺垫,明确本节课的学习任务。
二、新知初探:(学,展:10分钟)
活动一:平行线的性质1:两直线平行,同位角相等。(2分钟)
学生:1、动手操作,完成习题1(存在适当的误差是允许的)
2、总结性质并用符号表示。
老师:1、巡视点拨,评价激励
2、板书性质一
活动二:平行线的性质2:两直线平行,内错角相等。:8分钟)
典例分析
会使用平行线的性质进行计算
题组练习
强化平行线的性质
达标Байду номын сангаас测
检测学习成果
教学过程设计
问题与情景
设计意图
一、知识回顾(导:5分钟)
问题:1、平行线的判定方法有哪些?这些判定方法中共同点是什么?
2、由已知角相等或互补能推出两直线平行,那么由两直线平行能否推出两角相等或互补呢?
学生:书写平行线的判定方法及符号表示。
平行线的性质3:两直线平行,同旁内角互补。
学生:1、独立完成习题2、3,推理发现其他性质。
提示:以性质1为依据,结合判定的推理方法。
2、对子组互助完善答案,并展示上板。
3、展讲。要求:结合图形,思路明确,条理清晰。
老师:1、巡视指导,进行点拨。
2018年最新人教版七年级数学下册5.3.1平行线的性质(一)教案
5.3.1平行线的性质(一)教案教学目标:1、知识与技能(1)经历平行线性质的探索过程,初步掌握平行线的性质。
(2)会运用平行线性质进行简单推理和计算。
2、过程与方法通过平行线的性质观察、猜想、操作、推理、交流、归纳等探究过程中,进一步发展学生空间观念和推理能力、实践探究能力。
3、情感、态度与价值观(1)通过学习平行线的性质与判定的联系与区别,让学生懂得事物之间是普遍联系,又是相互区别的这一辩证唯物主义思想,使学生逐步养成言之有理习惯。
激发学生学习数学的兴趣。
学情分析:平行线的性质是空间与图形领域的基础知识。
在以后的学习中经常要用到,这部分内容也是后续内容学习的基础,不但为三角形内角和定理的证明提供了转化的方法,而且为今后学习三角形全等、三角形相似等知识内容奠定了理论基础。
而在本节课学习之前,学生已经了解了平行线的概念以及平行线的判定方法,本节内容则是在原有知识的基础上进行进一步的探究,去发现两条平行线被第三天直线所截,截得的同位角、内错角、同旁内角之间存在着怎样的联系。
综合来看,平行线的性质在教学内容中起着承上启下的基础作用。
教学重点平行线的性质的探索及对性质的理解教学难点有条理地表达和简单推理学法引导:1、教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识。
2、学生学法:在教师的指导下,积极思维,主动发现,认真研究.教学模式:探究发现教学模式教学方法:直观教学法、发现教学法、主体互动法教学用具准备:常用画图工具、量角器、单行簿教学手段:计算机辅助教学教学过程:课前练习(1)如图,已知∠1=500,则∠2=_______,∠3=_______(2)∵∠1=∠2(已知)∠2=∠3(已知)∴∠___= ∠___(___________)(3)如图,下列条件能判定DF//BC的有______A.∠1=∠2B.∠1=∠3C.∠5=∠2D.∠1+∠4=180°设计意图:运用对顶角、邻补角、等量代换、平行线的判断旧知识解题,为新课学习做准备一、引出新课问题1:根据同位角相等可以判定两直线平行,反过来如果两直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?二、探索发现猜一猜: 如果两条平行线被第三条直线所截,同位角____,动手操作:验证猜想学生活动:小组合作交流,猜一猜、量一量、拼一拼、看一看、想一想,请小组派表展示并畅述他们小组共同研究讨论出来成果。
教案5.3.1《平行线的性质》(第一课时)
《平行线的性质》(第一课时)教案教学内容:《平行线的性质》(1)课型:新授教学目标:知识技能:探索平行线的性质,并掌握它们的图形语言、文字语言、符号语言;了解平行线的性质和判定的区别。
数学思考:通过学生动手操作、实验、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
问题解决:能用平行线的三条性质进行简单的推理和计算,情感态度:通过问题情境的创设和解决使学生感悟到几何知识来源于实践并反作用于实践及认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
教学重点、难点:重点:探究平行线的性质难点:明确平行线的性质和判定的区别教法与学法:教法:引导发现法学法:合作探究、观察测量猜想教学过程:〈一〉创设情境激发兴趣出示问题:已知公路c分别与两条互相平行的公路a,b相交,两辆汽车在公路a,b上同向行驶拐弯后上公路c又同向行驶。
(1) 如果公路c与公路a的交角为700那么公路c与公路b的交角是多少度呢?(2) 如果两条直线平行,同位角,内错角,同旁内角各有什么关系呢?设计意图:利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。
〈二〉探究新知实验猜想问题1:作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?设计意图:通过动手画图,度量角度等简单易行的操作调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。
问题2:大家解决问题的方法一样吗?得到的结论相同吗?学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:(1)用量角器进行度量;(2)通过剪纸拼图进行比较.问题3:试将你发现的结论用自己的语言叙述出来。
新人教版七年级下5.3.1平行线的性质(第1课时)教学设计
第1课时平行线的性质【教学过程】一、创设实验情境,引发学生学习兴趣,引入本节课要研究的内容.试验1:教师以窗格为例,已知窗户的横格是平行的,用三角尺进行检验,发现同位角相等.这个结论是否具有一般性呢?试验2:学生试验(发印制好的平行线纸单). (1)要求学生任意画一条直线c 与直线a 、b 相交; (2)选一对同位角来度量,看看这对同位角是否相等. 学生归纳:两条平行线被第三条直线所截,同位角相等.二、主体探究,引导学生探索平行线的其他性质以及对命题有一个初步的认识. 活动1 问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系?(分组讨论,每一小组推荐一位同学回答).教师活动设计:引导学生讨论并回答.学生口答,教师板书,并要求学生学习推理的书写格式. 活动2总结平行线的性质.性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.性质3:两条平行直线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补. 活动3如何理解并记忆性质2、3,谈谈你的看法! (1)性质2、3分别已知什么?得出什么? (2)它与前面学习的平行线的判定有什么区别? (3)性质2、3的应用格式. ∵a //b (已知)∴∠3=∠2(两直线平行,内错角相等). ∵ a //b (已知)∴∠2+∠4=180°(两直线平行,同旁内角互补).三、拓展创新、应用提高,引导学生运用知识解决问题,培养学生思维的灵活性和深刻性 活动4 解决问题.问题1:如图是举世闻名的三星堆考古中发掘出的一个梯形残缺玉片,工作人员从玉片上已经量得∠A =115°,∠D =100°.请你求出另外两个角的度数.(梯形的两底是互相平行的)ab3 c 124A DB C学生活动设计:学生思考后请学生回答,注意启发学生回答为什么,进一步细化为较为详细的推理,并书写出.〔解答〕因为ABCD是梯形.所以AD//BC.所以∠A+∠B=180°,∠D+∠C=180°.又∠A=115°,∠D=100°.所以∠B=65°,∠C=80°.问题2:如图,一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?CB学生活动设计:学生根据拐弯前后的两条路互相平行容易得到∠B和∠C相等,于是得到∠C=142°问题3:如图,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4.(1)∠1、∠3的大小有什么关系?∠2与∠4呢?(2)反射光线BC与EF也平行吗?学生活动设计:从图中可以看出:∠1与∠3是同位角,因为AB与DE是平行的,所以∠1=∠3.又因为∠1=∠2,∠3=∠4,所以可得出∠2=∠4.又因为∠2与∠4是同位角,所以BC∥EF.教师活动设计:这个问题是平行线的特征与直线平行的条件的综合应用.由两直线平行,得到角的关系用到的是平行线的特征;反过来,由角的关系得到两直线平行,用到的是直线平行的条件.同学们要弄清这两者的区别.〔解答〕略.问题4:如图,若AB//CD,你能确定∠B、∠D与∠BED的大小关系吗?说说你的看法.FBDCEA学生活动设计:由于有平行线,所以要用平行的知识,而∠B 、∠D 与∠DEB 这三个角不是三类角中的任何一类,因此要考虑构造图形,若过点E 作EF //AB ,则由AB //CD 得到EF //CD ,于是图中出现三条平行线,同时出现了三类角,根据平行线的性质可以得到:∠B =∠BEF 、∠D =∠DEF ,因此∠B +∠D =∠BEF +∠DEF =∠DEB .教师活动设计:在学生探索的过程中,特别是构造图形这个环节,适当引导,让学生养成“缺什么补什么”的意识,培养学生的逻辑推理能力.〔解答〕过点E 作EF //AB . 所以∠B =∠BEF . 因为AB //CD . 所以EF //CD . 所以∠D =∠DEF .所以∠B +∠D =∠BEF +∠DEF =∠DEB .即∠B +∠D =∠DEB .变式思考:如图,AB //CD ,探索∠B 、∠D 与∠BED 的大小关系(∠B +∠D +∠DEB =360°).四、小结与作业.小结:1.平行线的三个性质: 两直线平行,同位角相等.EDCB A两直线平行,内错角相等.两直线平行,同旁内角互补.2.平行线的性质与平行线的判定有什么区别?判定:已知角的关系得平行的关系.证平行,用判定.性质:已知平行的关系得角的关系.知平行,用性质.作业:习题5.3.。
平行线的性质(一)教学设计
2.3 平行线的性质(第 1 课时)一.学习内容分析:本节“平行线的性质”共分两课时完成,第一课时探索得出平行线的三条性质,并理解平行线的性质和判别直线平行的条件的区别和联系。
第二课时在进一步区分并熟练应用平行线的性质和判别直线平行的条件的同时,让学生逐渐理解几何推理的要领,分清推理中因为和所以表达的意义,从而初步学习有理有据地实行几何推理。
二.学习者分析:学生的知识技能基础:学生在小学就已经直观理解了角、平行与垂直,对其性质有了一定的了解。
在本章前面几节课中,在学习判定直线平行的条件的同时,自然引入了“三线八角” ,理解了同位角、内错角和同旁内角。
这些知识储备为学生本节课的学习奠定了良好的知识技能基础。
学生的活动经验基础:在七年级上学期,学生对几何知识的学习过程中,已经历了一些探索、发现的数学活动,并积累了一些直观活动经验,具备了一定的图形的识别水平和借助图形分析、解决问题的水平,初步感受了推理说明的必要性;同时七年级学生经过一个学期的合作交流,初步形成了一定的合作学习的经验,具备了一定的合作与交流的水平。
而且初中生本身好胜、好强的特点,也为他们独立思考,合作探究奠定了基础。
三.教学目标:1.课程标准:掌握平行线的性质定理:两条直线被第三条直线所截,同位角相等。
了解平行线性质定理的证明。
2.知识与技能:经历探索平行线性质的过程, 掌握平行线的三条性质, 并能用它们实行简单的推理和计算.3.过程与方法:经历观察、测量、推理、交流等活动, 进一步发展空间观点,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达水平。
4.情感态度目标:在自己独立思考的基础上, 积极参与小组活动。
在对平行线的性质实行的讨论中, 敢于发表自己的看法,并从中获益。
通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既普遍联系又相互区别的辩证唯物主义思想.四.重难点:重点:探索平行线的性质(实践操作,合作交流)难点:推理表达水平的培养(合作交流,针对练习)五.设计思路:第一环节:复习回顾、逆向猜想;第二环节:动手操作、探求新知;第三环节:巩固新知,灵活使用;第四环节:对比学习,加深理解;第五环节:联系拓广,综合应用;第六小节:课堂小结,布置作业。
平行线的性质第1课时教学方案
第五章相交线与平行线5.3 平行线的性质第 1 课时◆教材分析本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的.这节课是空间与图形领域的基础知识,在以后的学习中经常要用到.它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,也使学生进一步理解性质和判定的区别,学好本节内容至关重要.◆教学目标1.类比平行线的判定探索平行线的性质,掌握平行线的三条性质.2.运用平行线性质进行简单的推理和计算.3.区分平行线的性质和判定, 并能综合应用平行线的性质与判定.4.经历观察、猜想、测量、推理等过程,进一步发展学生的推理能力和有条理表达的能力.◆教学重难点◆【教学重点】探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.【教学难点】能区分平行线的性质和判定,并能综合应用平行线的性质与判定.教学过程一、梳理旧知,引出新课1.复习平行线的判定方法根据下图,填空:如果∠1=∠C,那么____∥_____()如果∠1=∠B,那么____∥_____()如果∠2+∠B=180°,那么____∥_____()师生活动:学生先独立完成,再抽取学生回答,弄清平行线的判定方法的条件和结论,便于区分判定和性质.2.如图,两位自行车爱好者小红、小亮分别在两条平行的公路a、b上骑行,他们要去公路c上的M处,请同学们猜一猜,图中∠1,∠2大小关系如何?师生活动:教师引导学生分析,将这个问题转化成数学问题,学生能观察图形,猜想结论.二、自主探究,发现新知教学过程:探索a//b,∠1=60°时,同位角之间的数量关系,得出结论.已知a//b,任意画一条截线,探索同位角之间的数量关系,得出结论.bac12从而得出平行线的性质1 两直线平行,同位角相等.学生通过度量比较得到各对同位角、内错角、同旁内角的数量关系,关注的问题是:1.注意性质具有一般性.不能简单从特殊的例子,就断定它具有某种性质,而需要一个从特殊到一般的推导过程 .2.鼓励学生用文字语言表述自己发现的结论.注:这两个图片是动画缩略图,如需使用此资源,请插入动画“探究平行线的性质”.设计意图:让学生充分经历动手操作—独立思考—合作交流—验证猜想的探究过程,并且在这一过程中,锻炼学生由图形语言转化为文字语言、文字语言转化为符号语言的归纳能力和表达能力,为下一步推理性质2、性质3,及今后进一步学习推理打下基础.三、应用转化,推出性质问题1已知a//b,那么∠2与∠3有什么关系?设计意图:在教师引导下逐步构建研究思路,循序渐进地引导学生思考,从“说理”向“推理”过渡.问题2已知a//b,那么∠2与∠ 4有什么关系呢?师生活动:能运用已有性质进行推导.依次探究出性质2和性质3.设计意图:逐步培养学生的推理能力.使学生初步养成言之有据的习惯,从而能进行简单推理.四、巩固新知,学以致用师生活动:回顾并解答引入的第2个问题.例1如图,AB//CD, 试说明∠1=∠3 .请把过程补充完整.证明:∵ AB//CD (已知)∴∠1=∠_____()∵∠2=∠______()∴∠1=∠3 (等量代换)师生活动:由学生独立完成,老师指导,引导学生完成例1,会运用性质解决问题.例2已知AB//CD,∠1 = 110°,求∠2的度数.师生活动:找学生板演,并同学找出错误的地方,教师指导总结.五、课堂练习练习如图,已知∠ADE=60°,∠B=60°,∠AED=40°.(1)求证:DE∥BC.(2)求∠C的度数.师生活动:学生独立探究以后,师生共同分析题意,然后学生独立书写推导过程.老师关注学生能否正确区分平行线的性质和判定.从而进一步巩固平行线的性质和判定.学生通过一道题的解决,综合运用性质和判定,使学生对性质和判定区分更加清楚.六、归纳小结本节课学习了哪些知识?你有什么收获?在知识应用过程中需要注意什么?让学生自己说出,老师再补充、归纳.使学生体会收获知识的喜悦并养成好的整理知识的学习习惯. 学生课后独立完成,及时复习巩固所学知识,进行学习效果的自我评价.七、布置作业教材习题5.3 第2,3,4,6题.◆教学反思◆略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.1 平行线的性质(第1课时)
一、教学内容解析
本节课的教学内容是平行线的性质. 平行线的性质是平面几何的一个重要内容,它是研究几何图形位置关系与数量关系的基础也是学习简单的逻辑推理的素材,是证明角相等、研究角的关系的重要依据.平行线的性质不但为三角形内角和定理的证明提供了转化的方法,也为今后学习三角形、四边形、平移等知识奠定基础.
图形的性质是研究图形构成要素之间的关系,它和图形的判定是几何中研究的两个重要方面.平行线的性质是学生对图形性质的第一次系统研究,对今后学习其他图形性质有“示范”的作用.
教科书由平行线的判定引入对平行线性质的研究,既渗透了图形的判定和性质之间的互逆关系,又体现了知识的连贯性.平行线的三条性质都是需要证明的,但是为了与学生思维发展水平相适应,性质1是通过操作确认的方式得出的(在九年级《圆》这一章中再作证明),然后在性质1的基础上经过进一步推理得到性质2和性质3,体现了由实验几何到论证几何的过渡,渗透了简单推理的思想方法,从而逐步构建起学习几何的“基本套路”,实现对逻辑思维的培养,体现数学在培养良好思维品质方面的价值.
因此可以确定本节课的重点为:平行线的三条性质.
二、学生学情分析
东直门中学是北京市示范性中学,我的授课班级数学基础较好,学生个性活泼,思维活跃,积极性高.但是,学生初次接触图形的性质,对于平行线的性质的研究过程和研究方法都是陌生的,所以,本节课学生需要在老师的引导下来构建平行线性质的研究过程.
作为培养学生推理能力章节,对于性质2和性质3的论证,学生可以做到“说理”,但把推理过程从逻辑上叙述清楚存在困难,需要老师做示范,学生进行模仿.对于证明过程的严密化,对于刚刚接触平面几何的初一学生而言,具有一定的难度,为此,在推理过程符合逻辑的前提下,对于学生在证明过程中使用文字语言或符号语言来进行表述的方式不作限制,更多关注学生对证明本身的理解.
本课的教学难点是:平行线性质推理过程的严谨表达.
三、教学目标设置
1.目标
(1)理解平行线的性质;
(2)经历平行线性质的探究过程,体会研究平行线性质的方法,感受数学活动中的探索性和创造.
2.目标解析
达成目标(1)的标志是:学生知道平行线三条性质的条件和结论并能初步运用平行线性质进行简单推理.
达成目标(2)的标志是:学生知道三条性质的关系,能独立完成由性质1推导性质2、性质3.
四、教学策略分析
(1)在学习课标、研读教材的基础上,把平行线的性质这部分内容划分为两课时,第一课时即本节课得到平行线的性质,第二课时了解平行线性质和判定的区别并综合运用平行
a b
c
1 2
线性质和判定解决问题.
(2)本节课采取教师启发引导与学生实验探究相结合的方式,使学生亲身体验平行线性质的探索和验证全过程.
(3)在学生思维最近发展区提出问题,引导学生逐步构建平行线性质的研究思路.
(4)课前要求学生准备了三角板、直尺、量角器、剪刀、图形计算器等学习用品,使学生能够根据自身需要,选择不同方法来验证性质1成为可能,在推理性质2和性质3的过程中,从说理到说清理再到书写推理过程,为学生搭建“台阶”,提供展示的机会.
(5)依据学生课上实际表现、课后完成作业及目标检测的情况,进行学生学习效果评价.
五、教学过程
1.梳理旧知,引出新课
问题1上节课,学习了哪些平行线的判定方法?
(1)你认为这三个判定方法中条件和结论分别是什么?
(2)在这三种条件下,都可以得到两条直线平行的结论,反过来,在两条直线平行的条件下,同位角、内错角、同旁内角又各有什么关系呢?
师生活动:学生代表回答,如出现错误或不完整,请其他学生修正或补充.教师点评.
设计意图:复习上节课所学的平行线的三种判定方法并引入探究课题,有意识让学生回顾上节课内容,为后面类比研究平行线判定的过程来构建平行线性质的研究过程做好铺垫.
2.动手操作,归纳性质1
类比研究平行线判定的思路,首先来研究两条直线平行时,同位角的数量关系.
问题2 两条平行线被第三条直线截得的同位角会具有怎样的数量关系?
师生活动:学生首先对结论进行猜想,然后在老师的引导下独立探究,学生代表演示、说明.
(1)猜想:在两条平行线被第三条直线所截的条件下,同位角有什么关系?(相等)(2)你能验证你的猜想吗?
说明:在此过程中教师要关注:学生能否准确标记角;能否准确找出同位角,能否正确使用工具比较角的大小.对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探究活动.
(3)你能与同学交流一下你的验证方法吗?
师生活动:给学生提供充分的展示机会,如果出现操作或表达不规范的地方教师给与指正. 学生可能想到的方法:(1)度量法:用量角器进行测量或使用图形计算器进行验证. (2)叠合法:通过剪纸、拼图进行比较.
(4)如果改变截线的位置,你发现的结论还成立吗?
说明:学生小组合作,制定方案,进行说明. 学生可能作出多个图形,分别通过度量验证,也可能使用图形计算器的相关功能让截线运动起来,发现同位角不变的数量关系.
(5)你能结合图形,表达你得到的结论吗?
如果b
a//,那么∠1= ∠2 .
(6)你能用文字语言表达这个结论吗?
(性质1 两直线平行,同位角相等.)
设计意图:让学生充分经历动手操作—独立思考—合作交流—验证猜想的探究过程得到性质1,并且在这一过程中,锻炼学生由图形语言转化为文字语言,文字语言转化
G F E D
C B A a b c 123a b c 1234E D
C B A 1234为符号语言的归纳能力和表达能力.为下一步推理性质2、性质3及今后进一步学习推理打下基础.
3.简单推理,得出性质2和性质3
问题3在两条平行线被第三条直线所截的条件下,你会采取什么样的方法来说明内错角或同旁内角的关系呢?
(1)你能用性质1和其他相关知识说明理由吗?
师生活动:学生口述推理过程(学生可能使用邻补角或对顶角的关系推导内错角的关系) 学生之间进行点评,指出问题或互相作补充.教师给予鼓励和肯定.
(2)你能写出推理过程吗?
师生活动:学生代表做板演. 根据板演情况,师生共同做修改或补充.在此更多关注推 理过程是否符合逻辑,不过多强调格式,多给学生鼓励.
(3)类比性质1,你能用文字语言表达出上述结论吗?
(性质2 两直线平行,内错角相等.)
(4)你能用符号语言表达性质2吗?
如果 b a //,那么 32∠=∠.
设计意图:在教师引导下逐步构建研究思路,
循序渐进地引导学生思考,从“说点儿理”向“说清理”过渡.
问题4在两条直线平行的条件下,我们研究了同位角和内错角,那么同旁内角之间又有什么关系呢?你能由性质1推出同旁内角之间的关系吗?
文字语言:性质3 两直线平行,同旁内角互补.
符号语言:
如果 b a //, 那么 ︒=∠+∠18043.
师生活动:学生独立完成,学生代表使用
实物投影进行展示和说明.
设计意图:逐步培养学生的推理能力.使学生初步养成言之有据的习惯,从而能进行简单的推理.
4.巩固新知,深化理解
例1 如图,平行线CD AB ,被直线AE 所截.
(1) 从︒=∠1101可以知道2∠是多少度吗?为什么?
(2) 从︒=∠1101可以知道3∠是多少度吗?为什么?
(3) 从︒=∠1101可以知道4∠是多少度吗?为什么? 例2 如图,已知C A CF AE CD AB ∠︒=∠,39,//,//是多少度?为什么?
师生活动:学生独立思考回答,教师组织学生互相补充,并演示准确形式.
设计意图:帮助学生巩固平行线的性质及文字语言、符号语言、图形语言之间的相互转
F E D C B A 3214321b
a 化,为今后进一步学习推理打下基础.
5.归纳小结,布置作业
教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:
(1)平行线的性质是什么?
(2)你能用自己的语言叙述研究平行线性质的过程吗?
(3)本节课通过简单推理得到性质2和性质3,在推理过程中需要注意哪些问题?
设计意图:通过小结,帮助学生梳理本节课所学内容,掌握本节课的核心——平行线的性质, 引领学生回顾探究平行线性质的过程,体会研究平行线性质的方法.
布置作业 : 教科书习题5.3第2,4,6题.
六、目标检测设计
1. (教科书练习第1题)如图,直线b a //,︒=∠541,
那么2∠,3∠,4∠各是多少度?
设计意图:检测学生对平行线的性质的掌握.
2.如图,填空:
①∵ AC ED //(已知),
∴C ∠=∠1 ( ) .
②∵ DF AB //(已知),
∴ ∠=∠3 ( ).
③∵ ED AC //(已知),
∴ ∠ =∠ (两直线平行,内错角相等).
设计意图:检测学生对三线八角图的识别和平行线性质的直接应用.。