09年河南中考数学试题及答案

合集下载

2009年河南省初中学业水平暨高级中等学校九年级数学招生考试试题解析

2009年河南省初中学业水平暨高级中等学校九年级数学招生考试试题解析

2009年某某省初中学业水平暨高级中等学校招生考试试卷数 学一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

1.-5的相反数是 【 】A .15B .-15C . -5D . 5 【解析】-(-5)=5.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0。

学生易把相反数的意义与倒数的意义混淆,误认为-5的相反数是-15而导致错误。

答案:D2.不等式-2x <4的解集是 【 】A .x >-2B .x <-2C .x >2D .x <2【解析】两边同除以-2,得x >-2.本题考查了不等式的性质3:不等式两边同除以同一个负数,不等号的方向改变。

在这一点上学生容易想不到改变不等号的方向误选B ,而导致错误的发生。

答案:A3.下列调查适合普查的是 【 】A .调查2009年6月份市场上某品牌饮料的质量B .了解中央电视台直播奥运会开幕式的全国收视率情况C . 环保部门调查5月份黄河某段水域的水质量情况D .了解全班同学本周末参加社区活动的时间【解析】适合普查的方式一般有以下几种:①X 围较小;②容易掌控;③不具有破坏性;④可操作性较强。

基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查。

答案:D4.方程x 2=x 的解是 【 】A .x =1B .x =0C.x1=1,x2=0D.x1=-1,x2=0【解析】x2-x=0,x(x-1)=0,x1=1,x2=0.本题主要考查一元二次方程的一般解法及等式的基本性质,学生易把方程两边都除以x,得x=1,这里忽略了x是否为0的验证,导致丢掉方程的一个根,而错误地选择A。

答案:C5.如图所示,在平面直角坐标系中,点A、B的坐标分别为(-2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A的对应点A’的坐标为【】A.(2,2)B.(2,4)C.(4,2)D.(1,2)【解析】旋转不改变图形的形状、大小及相对位置,连接A’B,由月牙①顺时针旋转90°得月牙②,可知A’B⊥AB,且A′B=AB,由A(-2,0)、B(2,0)得AB=4,于是可得A’的坐标为(2,4).本题主要考查平面直角坐标系及图形的旋转变换的相关知识,学生往往因理解不透题意而出现问题。

2009年全国各地数学中考模拟试题分类汇编—阅读、规律、代数式

2009年全国各地数学中考模拟试题分类汇编—阅读、规律、代数式

中考模拟分类汇编阅读、规律、代数式一、选择题1. (2009·浙江温州·模拟1)如图,地面上有不在同一直线上的A 、B 、C 三点,一只青蛙位于地面异于A 、B 、C 的P 点,第一步青蛙从P 跳到P 关于A 的对称点P 1,第二步从P 1跳到P 1关于B 的对称点P 2,第三步从P 2跳到P 2关于C 的对称点P 3,第四步从P 3跳到P 3关于A 的对称点P 4……以下跳法类推,青蛙至少跳几步回到原处P .( )A .4B .5C .6D .8 答案:C2. (2009·浙江温州·模拟2) 下列运算结果为2m 的式子是( ) A .63m m ÷ B .42m m -⋅C .12()m -D .42m m -答案:B3. 二次三项式2346x x -+的值为9,则2463x x -+的值为( ) A .18 B .12 C .9 D . 7 答案:D4. 如图是2007年5月的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,发现这三个数的和不可能是( )A .27B .36C .40D .54答案:C5、(2009年浙江省嘉兴市评估4). 如图,记抛物线12+-=x y 的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为P 1,P 2,…,P n-1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n-1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为S 1,S 2,…,这样就有32121n n S -=,32224nn S -=,…;记W=S 1+S 2+…+S n-1,当n 越来越大时,你猜想W 最接近的常数是( )A · ·B P ·C · 第10题A.32 B. 21 C. 31 D. 41 答案:C6、(2009年浙江省嘉兴市秀洲区6).若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有( )(A )6桶 (B )7桶 (C )8桶(D )9桶 答案:B 7、(09九江市浔阳区中考模拟)观察下列正方形的四个顶点所标的数字规律,那么2009这个数标在【 】A.第502个正方形的左下角B. 第502个正方形的右下角C. 第503个正方形的左下角D. 第503个正方形的右下角答案:D8、若 表示000, 表示001, 则 表示为 ………………………( ▲ ) (09温州永嘉县二模)A 110B 010C 101D 011 答案:C 9、(安徽桐城白马中学模拟一).有一种石棉瓦(如图4),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为( ) A. 60n 厘米 B. 50n 厘米 C. (50n+10)厘米 D. (60n -10)厘米答案: C. (50n+10)厘米 二、填空题:1、(2009年深圳市数学模拟试卷)瑞士中学教师巴尔末成功地从光谱数据59,1216,2125,3236,……中得到巴尔末公式,从而打开了光谱奥妙的大门,请按这种规律写出第七个数据是________. 解:81772、(2009年湖北随州 十校联考数学试题)观察图(1)至图(4)中小圆圈的摆放规律,并按这样的规律继续摆放,记第n 个图中小圆圈的个数为m ,则m =______________(用含n 的代数式表示)(第2题图)主视图 左视图俯视图21111===CA CC BC BB AB AA S A 1B 1C 1=1431222===CA CC BC BB AB AA 41333===CA CC BC BB AB AA 91888===CA CC BC BB AB AA答:3n+23、(2009泰兴市 济川实验初中 初三数学阶段试题)观察下列等式:第一个等式是1+2=3,第二个等式是2+3=5,第三个等式是4+5=9,第四个等式是8+9=17,……猜想:第n 个等式是 . 答:12)12(211+=++--n n n4、(2009年重庆一中摸试卷)已知1112,12323a =+=⨯⨯2113,23438a =+=⨯⨯3114,...,345415a =+=⨯⨯依据上述规律,则=99a 。

2009年河南省中考数学试卷(解析版)

2009年河南省中考数学试卷(解析版)

2009年河南省中考数学试卷一、选择题(共6小题,每小题3分,满分18分) 1.(3分)﹣5的相反数是( )A.51B.-51C.-5D.5【分析】根据相反数的定义直接求得结果. 【解答】解:﹣5的相反数是5. 故答案为:D .【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)不等式﹣2x <4的解集是( )A .x >﹣2B .x <﹣2C .x >2D .x <2【分析】利用不等式的基本性质,将两边同除以﹣2,得x >﹣2. 【解答】解:系数化为1得,x >﹣2.故选A .【点评】本题考查了不等式的性质3:不等式两边同除以同一个负数,不等号的方向改变.在这一点上学生容易想不到改变不等号的方向误选B ,而导致错误的发生.3.(3分)下列调查适合普查的是( )A .调查2009年6月份市场上某品牌饮料的质量B .了解中央电视台直播北京奥运会开幕式的全国收视率情况C .环保部门调查5月份黄河某段水域的水质量情况D .了解全班同学本周末参加社区活动的时间【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A :调查2009年6月份市场上某品牌饮料的质量具有破坏性,适合用抽样调查; B 、C :了解中央电视台直播北京奥运会开幕式的全国收视率情况以及环保部门调查5月份黄河某段水域的水质量情况,范围比较大,普查的意义或价值不大,应选择抽样调查; D :了解全班同学本周末参加社区活动的时间适合普查.故选D . 【点评】适合普查的方式一般有以下几种: ①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.4.(3分)方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=0【分析】方程移项后提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.(3分)如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)【分析】根据旋转的性质,旋转不改变图形的形状、大小及相对位置.【解答】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(﹣2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.【点评】本题主要考查平面直角坐标系及图形的旋转变换的相关知识,学生往往因理解不透题意而出现问题.6.(3分)一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为()A.3 B.4 C.5 D.6【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,也可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选B.【点评】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.二、填空题(共9小题,每小题3分,满分27分)7.(3分)16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.(3分)如图,AB∥CD,CE平分∠ACD,若∠1=25°,那么∠2的度数是50度.【分析】根据平行线的性质、角平分线的定义,可得∠2=2∠1=50度.【解答】解:∵AB∥CD,CE平分∠ACD,∠1=25°,∴∠2=∠1+∠3,∵∠1=∠3=25°,∴∠2=25°+25°=50°.【点评】本题考查平行线的性质、角平分线的定义.9.(3分)下图是一个简单的运算程序.若输入x的值为﹣2,则输出的数值为6.【分析】本题其实是代数式求值的问题,即当x=﹣2时,求x2+2的值,直接代入即可求得结果.【解答】解:由图示可得(﹣2)2+2=6.【点评】如果能理解了算式实际表达的意思,直接代入即可求得结果,学生的困难在于理解不了运算程序,从而造成失误.也有学生把(﹣2)2当成了﹣4,从而得到错误结果﹣2.10.(3分)如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB 的长是2.【分析】根据平行四边形的性质证明点O为AC的中点,而点E是BC边的中点,可证OE为△ABC的中位线,利用中位线定理解题.【解答】解:由平行四边形的性质可知AO=OC,而E为BC的中点,即BE=EC,∴OE为△ABC的中位线,OE=AB,由OE=1,得AB=2.故答案为2.【点评】本题结合平行四边形的性质考查了三角形的中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半.11.(3分)如图,AB为半圆O的直径,延长AB到点P,使BP=AB,PC切半圆O于点C,点D是上和点C不重合的一点,则∠CDB的度数为30度.【分析】连接OC,由切线的性质得OC⊥PC,于是易得Rt△OCP中,OC=OB=PB;利用30°所对的边等于斜边的一半,可得∠P=30°,于是得∠COP=60°,再由“同弧所对的圆周角等于它所对的圆心角的一半”得∠CDB=30度.【解答】解:连接OC,∵PC切半圆O于点C,∴OC⊥PC,∴OC=OB=PB,∴∠P=30°,即∠COP=60°,∴∠CDB=∠COP=30°.【点评】本题考查了直角三角形中30°角的确定及圆周角与圆心角的关系,属综合性稍强的题目,学生由于应用中的某一类知识欠缺导致出现错误.12.(3分)点A(2,3)在反比例函数的图象上,当1≤x≤3时,y的取值范围是2≤y≤6.【分析】首先根据点A(2,3)在反比例函数的图象上,求出系数k的值,可得y=,然后根据1≤x≤3,进而求出y的取值范围.【解答】解:∵点A(2,3)在反比例函数的图象上,∴3=,解得k=6,∴y=,∵1≤x≤3,∴2≤y≤6.故答案为2≤y≤6.【点评】本题主要考查反比例函数的性质,解答本题的关键是求出反比例函数的系数k的值,还要熟练掌握解不等式的知识点,此题基础题,比较简单.13.(3分)在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:∴一共有20种情况,两个球都是黑球的有两种,∴两个球都是黑球的概率为=.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(3分)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q 分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为2.【分析】本题关键在于找到两个极端,即BA′取最大或最小值时,点P或Q的位置.经实验不难发现,分别求出点P与B重合时,BA′取最大值3和当点Q与D重合时,BA′的最小值1.所以可求点A′在BC边上移动的最大距离为2.【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:2【点评】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).【分析】首先要明确S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF,然后依面积公式计算即可.【解答】解:连接OF,∵∠AOD=45°,四边形CDEF是正方形,∴OD=CD=DE=EF,于是Rt△OFE中,OE=2EF,∵OF=,EF2+OE2=OF2,∴EF2+(2EF)2=5,解得:EF=1,∴EF=OD=CD=1,∴S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF=﹣×1×1﹣1×1=.【点评】本题失分率较高,学生的主要失误在于找不到解题的切入点,不知道如何添加辅助线,也有学生对直角三角形三边关系不熟悉,误认为∠FOB=30°造成失误.三、解答题(共8小题,满分75分)16.(8分)先化简,然后从中选取一个你认为合适的数作为x的值代入求值.【分析】首先利用分式的运算方法进行化简,本题有两种方法:一是对括号里的式子先通分、合并,再将后式除法变为乘法,分解因式后约分;二是先把后式除法变乘法,再利用乘法分配律化简.在选值计算时,要保证在分式有意义的情况下选值.【解答】解:原式==,∵x﹣1≠0,x+1≠0,∴x≠±1,原式=.【点评】本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.这是个分式混合运算题,运算顺序是先乘除后加减,加减法时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.17.(9分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.【分析】首先进行判断:OE⊥AB,由已知条件不难证明△BAC≌△ABD,得∠OBA=∠OAB再利用等腰三角形“三线合一”的性质即可证得结论.【解答】解:OE垂直且平分AB.证明:在△BAC和△ABD中,,∴△BAC≌△ABD(SAS).∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.又点E是AB的中点,∴OE垂直且平分AB.【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质;解决此类问题,要熟练掌握三角形全等的判定、等腰三角形的性质等知识.18.(9分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=,n=;(2)在扇形统计图中,D组所占圆心角的度数为度;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?【分析】(1)利用总数和C所占的百分比即可求出m,进而求出n;(2)求出D组所占的百分比,再求D组所占圆心角的度数即可;(3)利用样本估计总体,先求出该校平均每周体育锻炼时间不少于6小时的学生所占的百分比,即可求出答案.【解答】解:(1)由统计表和扇形图可知:m=50×16%=8人;n=50﹣8﹣15﹣20﹣1﹣2=4人;(2)扇形统计图中,D组所占圆心角的度数=360×=144度;(3)该校平均每周体育锻炼时间不少于6小时的学生站的百分比==78%,则3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有3000×78%=2340人.【点评】解决这类问题的关键是要弄清楚频数的意义,理解频数分布表与扇形统计图的对应关系,还要掌握用样本估计总体的统计思想.19.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】先设函数式为:y=kx+b,然后利用两对数值可求出函数的解析式,把x=400代入函数解析式可得到y,有y的值就能确定是否能回到家.【解答】解:(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30,∴,解得,∴y=x+45(0≤x≤450);(2)当x=400时,y=×400+45=5>3,∴他们能在汽车报警前回到家.【点评】解题思路:本题考查一次函数的实际应用,用待定系数法求一次函数的解析式,再通过其解析式计算说明问题.由一次函数的解析式的求法,找到两点列方程组即可解决.20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78度.李师傅的身高为1.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)【分析】本题中问题的解决要弄清楚电工李师傅所站的地方离地面的高度,通过解直角三角形来解决.首先可求得点A离地面的距离,再用相似三角形对应边成比例,或者同角三角函数的比例,求得第三级离地面的高度,即可求得他头顶离房顶的距离.【解答】解:过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.∵AB=AC,∴CE=BC=0.5.在Rt△AEC和Rt△DFC中,∵tan78°=,∴AE=EC×tan78°≈0.5×4.70=2.35.又∵sinα==,DF=•AE=×AE≈1.007.∴李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90﹣2.787≈0.11.∵0.05<0.11<0.20,∴他安装比较方便.【点评】命题立意:考查利用解直角三角形知识解决实际问题的能力.要求学生应用数学知识解决问题,在正确分析题意的基础上建立数学模型,把实际问题转化为数学问题.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=30度时,四边形EDBC是等腰梯形,此时AD的长为1;②当α=60度时,四边形EDBC是直角梯形,此时AD的长为 1.5;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.【分析】(1)根据旋转的性质和等腰梯形的性质,①假设四边形EDBC是等腰梯形,根据题目已知条件及外角和定理可求α,AD;②假设四边形EDBC是直角梯形,根据题目已知条件及内角和定理可求α,AD.(2)根据∠α=∠ACB=90°先证明四边形EDBC是平行四边形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的长度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比较得BD=BC,可证明四边形EDBC是菱形.【解答】解:(1)①当四边形EDBC是等腰梯形时,∵∠EDB=∠B=60°,而∠A=30°,∴α=∠EDB﹣∠A=30°,∴△ADO是等腰三角形,∴AD=OD,过点O作OF∥BC,∵BC⊥AC,∴OF⊥AC,∴OF是△ABC的中位线,∴OF=BC=1,∵α=∠EDB﹣∠A=30°,∴∠ODF=60°=∠DOF=60°,∴△ODF是等边三角形,∴OD=OF=DF=1,∵∠A=∠α=30°,∴AD=OD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°﹣∠A=60°,此时,AD=AC×=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC∥ED,∵CE∥AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30°,∴AB=4,AC=2,∴AO==.在Rt△AOD中,∠A=30°,OD=AD,AD==,∴AD=2,∴BD=2,∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形.【点评】解决此问题,既要弄清等腰梯形、直角梯形及菱形的判定,又要掌握有关旋转的知识,在直角三角形中,30度角所对的直角边等于斜边的一半,也是解决问题的关键.22.(10分)某家电商场计划用32 400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?进价(元/台)售价(元/台)价格种类电视机20002100冰箱24002500洗衣机16001700【分析】(1)由题意可知:电视机的数量和冰箱的数量相同,则洗衣机的数量等于总台数减去2倍的电视机或洗衣机的数量,又知洗衣机数量不大于电视机数量的一半,则15﹣2x ≤x;根据各个电器的单价以及数量,可列不等式2000x+2400x+1600(15﹣2x)≤32400;根据这两个不等式可以求得x 的取值,根据x的取值可以确定有几种方案;(2)分别计算出方案一和方案二的家电销售的总额,分别将总额乘以13%,即可求得补贴农民的钱数.【解答】解:(1)设购进电视机、冰箱各x台,则洗衣机为(15﹣2x)台依题意得:解这个不等式组,得6≤x≤7∵x为正整数,∴x=6或7;方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台;(2)方案1需补贴:(6×2100+6×2500+3×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);答:国家的财政收入最多需补贴农民4407元.【点评】对于方案设计的问题,首先考虑的是如何根据已知条件列出不等式,在所求得的取值范围中找出符合题意的值,得出可能产生的几种方案.23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.【分析】(1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同;(2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答.②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形.【解答】解:(1)因为点B的横坐标为4,点D的纵坐标为8,AD∥x轴,AB∥y轴,所以点A的坐标为(4,8).将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx得,解得a=﹣,b=4.故抛物线的解析式为:y=﹣x2+4x;(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=.∴PE=AP=t.PB=8﹣t.∴点E的坐标为(4+t,8﹣t).∴点G的纵坐标为:﹣(4+t)2+4(4+t)=﹣t2+8.∴EG=﹣t2+8﹣(8﹣t)=﹣t2+t.∵﹣<0,∴当t=4时,线段EG最长为2.②共有三个时刻.(①)当EQ=QC时,因为Q(8,t),E(4+t,8﹣t),QC=t,所以根据两点间距离公式,得:(t﹣4)2+(8﹣2t)2=t2.整理得13t2﹣144t+320=0,解得t=或t==8(此时E、C重合,不能构成三角形,舍去).(②)当EC=CQ时,因为E(4+t,8﹣t),C(8,0),QC=t,所以根据两点间距离公式,得:(4+t﹣8)2+(8﹣t)2=t2.整理得t2﹣80t+320=0,t=40﹣16,t=40+16>8(此时Q不在矩形的边上,舍去).(③)当EQ=EC时,因为Q(8,t),E(4+t,8﹣t),C(8,0),所以根据两点间距离公式,得:(t﹣4)2+(8﹣2t)2=(4+t﹣8)2+(8﹣t)2,解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=.于是t1=,t2=,t3=40﹣16.【点评】抛物线的求法是函数解析式中的一种,通常情况下用待定系数法,即先列方程组,再求未知系数,这种方法本题比较适合.对于压轴题中的动点问题、极值问题,先根据条件“以静制动”,用未知系数表示各自的坐标,如果能构成二次函数,即可通过配方或顶点坐标公式求其极值.。

河南省河大附中09-10学年高一下学期期中考试(数学)Word版含答案

河南省河大附中09-10学年高一下学期期中考试(数学)Word版含答案

河大附中2009-2010学年下学期高一年级期中考数学试卷一、选择题(本题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.角︒2010是A .第一象限角B .第二象限角C .第三象限角D .第四象限角 2.下列说法中, ①与角5π的终边相同的角有有限个 ②数据2,3,4,5的方差是数据4,6,8,10的方差的一半 ③正相关是指散点图中的点散布在从左上角到右下角的区域 ④0260cos >︒ 正确的个数是A .0个B .1个C .2个D .3个 3.已知135sin -=α,且α为第三象限角,则=αcos A .1312-B .1312C .1312± D .5124.用秦九韶算法计算多项式12345)(2345---++=x x x x x x f 在4x =-时的值时,需要进行的乘法、加法的次数分别是( )A .5,14B .5,5C .5,6D .5,75.在教学调查中,甲、乙、丙三个班的数学测试成绩分布如下图,假设三个班的平均分都是75分,123s s s ,,分别表示甲、乙、丙三个班数学测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >> D.s 3>s 2>s 1 6.记事件A 发生的概率为)(A P ,定义f (A)=lg [)(A P +)(1A P ]为事件A 发生的“测度” .现随机抛掷一个骰子,则下列事件中测度最大的一个是 ( )xA .向上的点数为1B .向上的点数不大于2C .向上的点数为奇数D .向上的点数不小于3二、填空题(本题共10个小题,每小题5分,共50分)7.用系统抽样法从123个零件中,抽取容量为20的样本,则样本中每个个体的分段间隔是 .8.某校有行政人员、教学人员和教辅人员共200人,其中教学人员与教辅人员的比为10:1,行政人员有24人,现采取分层抽样容量为50的样本,那么教学人员应抽取的人数 .9.两个数228、1995的最大公约数是_______________ 10.比较大小:)6(403 )8(21711.一个三位数字的密码锁,每位上的数字都在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为 ;12. =︒+︒133sin 43sin 22; 13.分析右边的程序:若输入38,运行右边的程序后,得到的结果是 。

河南省2009年中考试题及答案

河南省2009年中考试题及答案

2009年河南省初中学业水平暨高级中等学校招生考试英语注意事项:1. 本试卷共10也。

满分120分。

考试时间100分钟。

2. 请用钢笔或圆珠笔直接答在试卷上。

二、单项选择(15小题,每小题1分,共15分)从A、B、C、D四个选项中选出一份最佳答案,并将其标号填入题前括号内。

()21.—When is Henry’s birthday party, Lynn?—The 18th , __ about three o’clock in the afternoon.A. inB. atC. onD. to()22.—What a nice MP5! Whose is it?—It’s __ . My father bought it for me.A. meB. himC. hisD. mine()23.I like __ a lot, and my mother usually cooks it in different ways.A. fishB. butterC. potatoesD. noodles()24.—Excuse me, where are we going to have our class meeting?—I’m not sure. Ask our monitor, please. He __ know.A. canB. mayC. needD. shall()25. The match was really fantastic, __ when Smith scored in the last minute.A. probablyB. exactlyC. especiallyD. mostly()26. Taiwan is part of China. We __ the same history and culture.A. explainB. expressC. connectD. share()27.—Helen, can I wear jeans and a T-shirt to the evening party?—OK. But a dress might be __ .A. goodB. betterC. badD. worse()28.—Excuse me. When does Flight CZ3391 take off?—One moment, please. I’ll ________ it ________. .A. look; upB. take; awayC. give; backD. turn; down()29. It’s quite common in Britain to say “Thank you” to the drivers __ people get off the bus.A. afterB. sinceC. untilD. when()ually John __ to school in his father’s beautiful car.A. has takenB. is takingC. is takenD. has been taken ()31.It’s time to say goodbye to my school. I’ll always remember the people _ have helped me.A. whoB. whatC. whichD. where()32. The zoo keeper is worried because the number of visitors __ smaller and smaller.A. becomeB. becameC. is becomingD. have become()33.—Have you made up your mind __ the sick kids?—By singing songs.A. what to tellB. how to cheer upC. when to helpD. where to look after()34.—You have seen the film The Dead Reading, haven’t you?—__ . How I wish to see it again!A. No, what a pityB. No, I haven’tC. Yes, I like itD. Yes, it’s boring()35.—What time will Mr Brown be back to China?—Sorry. I don’t know______.A. when did he go abroadB. why he is going abroadC. how soon will he be backD. how long he will stay abroad三、完形填空(10小题,每小题1分,共10分)先通读短文,掌握其大意,然后从A、B、C、D四个选项中选出一个可以填入相应空白处的最佳答案,并将其标号填入题前括号内。

最近四年09-12河南中招考试数学试题及详细答案

最近四年09-12河南中招考试数学试题及详细答案

2009年河南省初中学业水平暨高级中等学校招生考试试卷数 学一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内。

1.﹣5的相反数是 【 】 (A )15 (B )﹣15(C) ﹣5 (D) 5 2.不等式﹣2x <4的解集是 【 】 (A )x >﹣2 (B )x <﹣2 (C) x >2 (D) x <2 3.下列调查适合普查的是 【 】 (A )调查2009年6月份市场上某品牌饮料的质量(B )了解中央电视台直播北京奥运会开幕式的全国收视率情况 (C) 环保部门调查5月份黄河某段水域的水质量情况 (D)了解全班同学本周末参加社区活动的时间4.方程2x =x 的解是 【 】 (A )x =1 (B )x =0 (C) x 1=1 x 2=0 (D) x 1=﹣1 x 2=05.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A ’的坐标为 【 】 (A )(2,2) (B )(2,4) (C)(4,2) (D)(1,2)6.一个几何体由一些大小相同的小正方体组成,如图 是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为 【 】 (A )3 (B ) 4 (C) 5 (D)6二、填空题(每小题3分,共27分)7.16的平方根是 .8.如图,AB //CD ,C E 平分∠ACD ,若∠1=250,那么∠2的度数是 .9.下图是一个简单的运算程序.若输入X 的值为﹣2,则输出的数值为.10.如图,在ABCD 中,AC 与BD 交于点O ,点E 是BC 边的中点,OE =1,则AB 的长是 .11.如图,AB 为半圆O 的直径,延长AB 到点P ,使 BP =12AB ,PC 切半圆O 于点C ,点D 是AC 上和点 C 不重合的一点,则D ∠的度数为 . 12.点A (2,1)在反比例函数y kx=的图像上,当1﹤x ﹤4时,y 的取值范围是 .13.在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为 . 14.动手操作:在矩形纸片ABCD 中,AB =3,AD =5.如图所示, 折叠纸片,使点A 落在BC 边上的A ’处,折痕为PQ ,当点 A ’在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定 点P 、Q 分别在AB 、AD 边上移动,则点A ’在BC 边上可移 动的最大距离为 .15.450的扇形AOB 内部 作一个正方形CDEF ,使点C 在OA 上,点D 、E 在OB 上,点F 在AB 上,则阴影部分的面积为(结果保留π) . 三、解答题(本大题8个小题,共75分)16.(8分)先化简211()1122x x x x -÷-+-,1-中选取一个你认为合适..的数作为x 的值代入求值.17.(9分)如图所示,∠BAC =∠ABD ,AC =BD ,点O 是AD 、BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.18.(9分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题: (1)m =______,n =_________; (2)在扇形统计图中,D 组所占圆心角的度数为_____________; (3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有 多少名?l9.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y (升)是行驶路程x (千米)的一次函数,求y 与x 的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m 的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m .矩形面与地面所成的角α为78°.李师傅的身高为l.78m ,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)21. (10分)如图,在Rt△ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.22. (10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.2009年河南省初中学业水平暨高暨中等学校招生考试数学试题参考答案及评分标准说明:1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数.一、选择题(每小题3分,共18分)二、填空题(每小题3分,共27分)三、解答题16.原式=12-1+1 -1+1x xx x x⋅()()()()……………………4分=4x.……………………………………………………………6分当x=…………………………………8分(注:如果x取1活-1,扣2分.)17.OE⊥AB.…………………………………………1分证明:在△BA C和△ABD中,AC=BD,∠BA C=∠ABD,AB=BA.∴△BA C≌△ABD.………………………………………………………5分∴∠OBA=∠OAB,∴OA=OB.………………………………………………………7分又∵AE=BE, ∴OE⊥AB.………………………………………………………9分(注:若开始未给出判断“OE⊥AB”,但证明过程正确,不扣分)18.(1)8,4;………………………………………………………2分(2)1440;………………………………………………………5分(3)估计该校平均每周体育锻炼时间不少于6小时的学生约有:3000×2015450++=3000×3950=2340(人).……………………………9分19.(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30.b=45∴150k+b=30 ………………………………………………4分k=1 10 -解得b=45 ………………………………………………5分∴y=110-x+45.………………………………………………6分(2)当x=400时,y=110-×400+45=5>3.∴他们能在汽车报警前回到家.…………………………………9分20.过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.…………………………1分∵AB=AC,∴CE=12BC=0.5.……………………2分在Rt△ABC和Rt△DFC中,∵tan780=AE EC,∴AE=EC×tan780≈0.5×4.70=2.35. …………………4分又∵sinα=AEAC=DFDC,DF=DCAC·AE=37×AE≈1.007.……………………7分李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787 0.11. ∵0.05<0.11<0.20,∴它安装比较方便. ……………………9分 21.(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC∴AO =12AC ……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分 22.设购进电视机、冰箱各x 台,则洗衣机为(15-2x )台 …………………1分15-2x ≤12x , 依题意得:2000x +2400x +1600(15-2x )≤32400…………………5分 解这个不等式组,得6≤x ≤7∵x 为正整数,∴x =6或7 …………………7分 方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台 …………………8分 (2)方案1需补贴:(6×2100+6×2500+1×1700)×13%=4251(元); 方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);∴国家的财政收入最多需补贴农民4407元. …………………10分23.(1)点A 的坐标为(4,8) …………………1分 将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a +4b得0=64a +8b解 得a =-12,b =4 ∴抛物线的解析式为:y =-12x 2+4x …………………3分(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分2010年河南省初中学业水平暨高级中等学校招生考试试卷数 学一、选择题(每小题3分,共18分) 1.21-的相反数是【 】 (A )21 (B )21- (C )2 (D )2-2.我省200年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】 (A )11109367.1⨯元 (B )12109367.1⨯元 (C )13109367.1⨯元 (D )14109367.1⨯元3.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m )分别为: 1.71,1.85,1.85,1.96,2.10,2.31.则这组数据的众数和极差分别是【 】 (A )1.85和0.21 (B )2.11和0.46 (C )1.85和0.60 (D )2.31和0.604.如图,△ABC 中,点DE 分别是ABAC 的中点,则下列结论:①BC =2DE ; ②△ADE ∽△ABC ;③ACABAE AD =.其中正确的有【 】 (A )3个 (B )2个 (C )1个 (D )0个 5.方程032=-x 的根是【 】(A )3=x (B )3,321-==x x (C )3=x (D )3,321-==x x6.如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC ,设点A 的坐标为),(b a 则点A 的坐标为【 】(A )),(b a -- (B ))1.(---b a (C ))1,(+--b a (D ))2,(---b a二、填空题(每小题3分,共27分) 7.计算2)2(1-+-=__________________. 8.若将三个数11,7,3-表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________________. 9.写出一个y 随x 增大而增大的一次函数的解析式:__________________.10.将一副直角三角板如图放置,使含30°角的三角板的段直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________.EDBA(第4题)(第6题)(第8题)OmDC BA(第11题)(第10题)11.如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是⌒CmA 上异于点C 、A 的一点,若∠ABO =32°,则∠ADC 的度数是______________.12.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________.13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为______________.14.如图矩形ABCD 中,AD =1,AD =√2,以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为______________________.15.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是___________________. 三、解答题(本大题共8个大题,满分75分)16.(8分)已知.2,42,212+=-=-=x x C x B x A 将它们组合成C B A ÷-)(或C B A ÷-的形式,请你从中任选一种进行计算,先化简,再求值其中3=x .17.(9分)如图,四边形ABCD 是平行四边形,△AB’C 和△ABC 关于AC 所在的直线对称,AD 和B’C 相交于点O ,连接BB’.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB’O ≌△CDO .18.(9分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学(第14题)(第13题) 主视图 左视图 C D A E (第15题) A生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?图①图②19.(9分)如图,在梯形ABCD 中,AD //BC ,E 是BC 的中点,AD =5,BC =12,CD =24,∠C =45°,点P 是BC 边上一动点,设PB 的长为x .(1)当x 的值为____________时,以点P 、A 、D 、E 为顶点的四边形为直角梯形; (2)当x 的值为____________时,以点P 、A 、D 、E 为顶点的四边形为平行四边形;;(3)点P 在BC 边上运动的过程中,以P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由.P EABCD20.(9分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2.单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?21.(9分)如图,直线b x k y +=1与反比例函数xk y 2=的图象交于A )6,1(,B )3,(a 两点. (1)求1k 、2k 的值; (2)直接写出021>-+xk b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.22.(10分) (1)操作发现如图,矩形ABCD 中,E 是AD 的中点,将△AB E 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC =2DF ,求ABAD的值; (3)类比探求保持(1)中条件不变,若DC =nDF ,求ABAD的值. △23.(11分)在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.AB2010年河南省初中学业水平暨高级中等学校招生考试试卷数 学一、选择题(每小题3分,共18分) 1、A 2、B 3、C 4、A 5、D 6、D 二、填空题(每小题3分,共27分)7、5 8、7 9、答案不唯一,只要符合题意即可。

河南商丘中考数学试卷及答案

河南商丘中考数学试卷及答案

河南商丘中考数学试卷及答案一、选择题(共6小题,每小题3分,满分18分)1.(3分)计算(﹣1)3的结果是()A.﹣1 B.1C.﹣3 D.3考点:有理数的乘方.解析:本题考查有理数的乘方运算.解答:解:(﹣1)3表示3个(﹣1)的乘积,所以(﹣1)3=﹣1.故选A.点评:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.2.(3分)使分式有意义的x的取值范围为()A.x≠2B.x≠﹣2 C.x>﹣2 D.x<2考点:分式有意义的条件.解析:本题主要考查分式有意义的条件:分母不等于0,故可知x+2≠0,解得x的取值范围.解答:解:∵x+2≠0,∴x≠﹣2.故选B.点评:本题考查的是分式有意义的条件.当分母不为0时,分式有意义.3.(3分)如图,△ABC与△A′B′C′关于直线l对称,则∠B的度数为()A.30°B.50°C.90°D.100°考点:轴对称的性质;三角形内角和定理.解析:由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.解答:解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故选D.点评:主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°.4.(3分)为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数 3 421则关于这10户家庭的月用水量,下列说法错误的是()A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨考点:方差;加权平均数;中位数;众数.解析:根据中位数的确定方法,将一组数据按大小顺序排列,位于最中间的两个的平均数或最中间一个数据是中位数,众数的定义是在一组数据中出现次数最多的就是众数,极差是一组数据中最大值与最小值的差,运用加权平均数求出即可.解答:解:∵这10个数据是:4,4,4,5,5,5,5,6,6,9;∴中位数是:(5+5)÷2=5吨,故A正确;∴众数是:5吨,故B正确;∴极差是:9﹣4=5吨,故C错误;∴平均数是:(3×4+4×5+2×6+9)÷10=5.3吨,故D正确.故选C.点评:此题主要考查了极差与中位数和众数等知识,准确的记忆以上定义是解决问题的关键.5.(3分)由一些大小相同的小立方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上立方体的个数,那么该几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:压轴题.解析:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.解答:解:从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.点评:找到从左面看所得到的图形即可.6.(3分)二次函数y=ax2+x+a2﹣1(a≠0)的图象可能是()A.B.C.D.考点:二次函数的图象.专题:压轴题.解析:采用逐一排除的方法.因为a≠0,b=1,对称轴不是y轴,排除C、D;再根据开口方向,确定a的符号及对称轴的位置,排除A.解答:解:∵对称轴x=﹣≠0,故对称轴不是y轴,排除C、D;当a>0时,对称轴x=﹣<0,排除A;当a<0时,对称轴x=﹣>0,B正确.故选B.点评:应熟练掌握二次函数的图象有关性质:讨论a的取值,再利用对称轴选择答案.二、填空题(共9小题,每小题3分,满分27分)7.(3分)的相反数是﹣.考点:相反数.解析:求一个数的相反数就是在这个数前面添上“﹣”号.解答:解:根据相反数的定义,得的相反数是﹣.点评:本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.8.(3分)计算:(﹣2x2)•3x4= ﹣6x6.考点:单项式乘单项式.解析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:(﹣2x2)•3x4=﹣2×3x2•x4=﹣6x6.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.9.(3分)写出一个图象经过点(1,﹣1)的函数的表达式y=﹣.考点:反比例函数的性质.专题:开放型.解析:根据反比例函数的性质解答.解答:解:设函数的解析式为y=,把点(1,﹣1)代入得k=﹣1,故函数的表达式y=﹣.点评:用待定系数法求函数解析式.10.(3分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P=50 度.考点:切线的性质;圆周角定理.解析:连接OA,OB.根据圆周角定理和四边形内角和定理求解.解答:解:连接OA,OB.PA、PB切⊙O于点A、B,则∠PAO=∠PBO=90°,由圆周角定理知,∠AOB=2∠C=130°,∵∠P+∠PAO+∠PBO+∠AOB=360°,∴∠P=180°﹣∠AOB=50°.点评:本题利用了切线的概念,圆周角定理,四边形的内角和为360度求解.11.(3分)如图,在直角梯形ABCD中,AB∥CD,AD⊥CD,AB=1cm,AD=2cm,CD=4cm,则BC= cm.考点:直角梯形.解析:过点B作BE⊥CD,则四边形ABED是矩形,从而可得到AD,DE,CE的长,再根据勾股定理可求得BC的长.解答:如图,过点B作BE⊥CD,则四边形ABED是矩形,∴AD=BE=2cm,DE=AB=1cm∴CE=CD﹣DE=4﹣1=3cm∴BC==cm.点评:本题考查梯形,矩形、直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.12.(3分)已知x为整数,且满足,则x= ﹣1,0,1 .考点:估算无理数的大小.解析:首先找到题中的无理数在哪两个和它接近的整数之间,然后判断出所求的整数的范围.解答:解:∵﹣2<﹣<﹣1,1<<2,∴x应在﹣2和2之间,则x=﹣1,0,1.故答案为:﹣1,0,1.点评:此题主要考查了无理数的大小估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13.(3分)将图①所示的正六边形进行进行分割得到图②,再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,再将图③中最小的某一个正六边形按同样的方式进行分割…,则第n个图形中,共有(3n﹣2)个正六边形.考点:规律型:图形的变化类.解析:要求学生首先解析题意,找到规律,并进行推导得出答案.解答:解:解析可得:将图①所示的正六边形进行进行分割得到图②,增加了3个正六边形,共4个;再将图②中最小的某一个正六边形按同样的方式进行分割得到图③,又增加了3个正六边形,共4+3=7个;故每次分割,都增加3个正六边形,那么第n个图形中,共有1+3(n﹣1)=3n﹣2.点评:本题考查学生通过观察、归纳、抽象出数列的规律的能力.14.(3分)如图,四边形OABC为菱形,点B、C在以点O为圆心的上,若OA=3,∠1=∠2,则扇形OEF的面积为3π.考点:扇形面积的计算.专题:压轴题.解析:根据扇形的面积公式计算即可.解答:解:连接BO,∵四边形OABC为菱形,∴AO=CO=AB=CB,∵OEF是扇形,∴EO=BO=FO,∴OA=OB=OC=OF=3,∴△ABO和△COB是等边三角形,∴∠AOC=120°,∵∠1=∠2,∴∠EOF=∠AOC=120°故扇形OEF的面积为=3π.点评:主要考查了扇形的面积求法.解此题的关键是能利用菱形的性质求出扇形的半径和圆心角,从而求出扇形的面积.15.(3分)如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交OB于点C.若∠AOB=60°,OC=4,则点P 到OA的距离PD等于.考点:含30度角的直角三角形.专题:计算题;压轴题.解析:在△OCP中,由题中所给的条件可求出OP的长,根据直角三角形的性质可知,在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半,故PD=OP.解答:解:如图,过C点作CE⊥OA,垂足为E,∵PC∥OA,PD⊥OA,垂足为D,∴PD=CE,∵∠AOB=60°,OC=4,在Rt△OCE中,CE=OC•sin60°=4×=2,∴PD=CE=.点评:本题主要考查三角形的性质及计算技巧.三、解答题(共8小题,满分75分)16.(8分)解方程:+=3考点:解分式方程.专题:计算题.解析:观察可得方程最简公分母为:(x+2)(x﹣2).方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边同乘(x+2)(x﹣2),得3x(x﹣2)+2(x+2)=3(x+2)(x﹣2),整理得﹣6x+2x+4=﹣12,解得x=4.检验:将x=4代入(x+2)(x﹣2)≠0.∴x=4是原方程的解.点评:解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.17.(9分)如图,点E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA的中点.求证:△BEF≌△DGH.考点:全等三角形的判定;平行四边形的性质.专题:证明题.解析:由三角形全等的判定定理和平行四边形的性质,结合已知条件,利用SAS判定.解答:证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,BC=AD.又∵E、F、G、H分别是平行四边形ABCD的四边中点,∴BE=DG,BF=DH.∴△BEF≌△DGH.点评:本题重点考查了三角形全等的判定定理和平行四边形的性质的综合运用.18.(9分)下图是根据某省各类学校在校生人数情况制作的扇形统计图和不完整的条形统计图.已知该省普通高校在校生为97. 41万人,请根据统计图中提供的信息解答下列问题:(1)该省各类学校在校生总人数约多少万人;(精确到1万人)(2)补全条形统计图;(3)请你写出一条合理化建议.考点:条形统计图;扇形统计图.专题:开放型;图表型.解析:(1)由普通高校在校生人数和占的比例求出各类学校在校生总数;(2)再由普通高中在校生人数占的比例求出普通高中在校生人数;补出条形统计图,可以看出成人高校人数最少,应发展成人教育;(3)答案不唯一,回答合理即可.解答:解:(1)该省各类学校在校生总数为97.41÷4.87%≈2000(万人).(2)普通高中在校生人数约为2000×10.08%=201.6(万人).(没有计算,但图形正确者可给满分)(3)可以看出成人高校人数最少,应发展成人教育.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(9分)张彬和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到入场券;否则,王华得到入场券;王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中,从中随机取出上个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.请你运用所学的概率知识,解析张彬和王华的设计方案对双方是否公平?考点:游戏公平性.专题:阅读型;方案型.解析:本题考查概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.解答:解:张彬的设计方案:因为P(张彬得到入场券)=,P(王华得到入场券)=,因为,所以,张彬的设计方案不公平.王华的设计方案:可能出现的所有结果列表如下:∴P(王华得到入场券)=P(和为偶数)=,P(张彬得到入场券)=P(和不是偶数)=因为,所以,王华的设计方案也不公平.1 23第一次第二次1 2 342 3 453 4 56点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.(9分)如图,ABCD是边长为1的正方形,其中、、的圆心依次是A、B、C.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断直线GB与DF的位置关系,并说明理由.考点:弧长的计算;直角三角形全等的判定.专题:几何综合题.解析:本题考查的是弧长公式以及全等三角形的判定求出△FDC≌△GBC.解答:解:(1)∵AD=1,∠DAE=90°,∴的长,同理,的长,的长,所以,点D运动到点G所经过的路线长l=l1+l2+l3=3π.(2)直线GB⊥DF.理由如下:延长GB交DF于H.∵CD=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴∠F=∠G,又∵∠F+∠FDC=90°,∴∠G+∠FDC=90°,即∠GHD=90°,故GB⊥DF.点评:求出弧长后可算出周长.“化曲面为平面”.21.(10分)请你画出一个以BC为底边的等腰△ABC,使底边上的高AD=BC.(1)求tan B和sinB的值;(2)在你所画的等腰△ABC中,假设底边BC=5米,求腰上的高BE.考点:解直角三角形.专题:计算题;作图题.解析:(1)本题可根据三角形的特殊性(等腰三角形)和AD=BC,先求出AD和BD,CD的关系,进而求出tan B 和sinB的值;(2)由于是等腰三角形,∠B=∠C,求出了sinB也就是求出了sinC,直角三角形BCE中,已知了BC的长,BE就不难求出了.解答:解:如图,正确画出图形,(1)∵AB=AC,AD⊥BC,AD=BC,∴BD=BC=AD.即AD=2BD.∴AB=BD.∴tanB=,sinB=.(2)在Rt△BEC中,sinC=sin∠ABC=,又∵sinC=,∴.故(米).点评:本题考查了等腰三角形的性质,解直角三角形等知识点,只要熟练掌握这些知识点,解本题并不难.22.(10分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B 种商品最低售价为每件多少元?考点:一元一次不等式组的应用.专题:应用题;压轴题.解析:(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.解答:解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.准确的解不等式组是需要掌握的基本能力.23.(11分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.解析:(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x 的函数关系式进而可得出S与x的函数关系式.①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.解答:解:(1)因为抛物线的对称轴是x=,设解析式为y=a(x﹣)2+k.把A,B两点坐标代入上式,得,解得a=,k=﹣.故抛物线解析式为y=(x﹣)2﹣,顶点为(,﹣).(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=(x﹣)2﹣,∴y<0,即﹣y>0,﹣y表示点E到OA的距离.∵OA是OEAF的对角线,∴S=2S△OAE=2××OA•|y|=﹣6y=﹣4(x﹣)2+25.因为抛物线与x轴的两个交点是(1,0)和(6,0),所以自变量x的取值范围是1<x<6.①根据题意,当S=24时,即﹣4(x﹣)2+25=24.化简,得(x﹣)2=.解得x1=3,x2=4.故所求的点E有两个,分别为E1(3,﹣4),E2(4,﹣4),点E1(3,﹣4)满足OE=AE,所以平行四边形OEAF是菱形;点E2(4,﹣4)不满足OE=AE,所以平行四边形OEAF不是菱形;②当OA⊥EF,且OA=EF时,平行四边形OEAF是正方形,此时点E的坐标只能是(3,﹣3),而坐标为(3,﹣3)的点不在抛物线上,故不存在这样的点E,使平行四边形OEAF为正方形.点评:本题主要考查了二次函数解析式的确定、图形面积的求法、平行四边形的性质、菱形和正方形的判定等知识.综合性强,难度适中.。

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案

河南省历年中考数学试题及答案河南省历年中考数学试题及答案是许多准备参加中考的学生和家长十分关心的话题。

在这篇文章中,我们将为大家整理和介绍一些河南省历年中考数学试题,并附上详细的答案解析,希望能够为大家的复习提供帮助。

一、选择题选择题是中考数学试卷中的重要组成部分。

以下是河南省历年中考数学试卷中的一道选择题:题目:已知正比例函数y = kx,当x = 4时,y = 10;当x = 6时,y = 15。

求k的值。

解析:根据题意可得到方程组:4k = 106k = 15通过解方程可得k = 2.5,因此,选项B为正确答案。

二、填空题填空题是中考数学试卷中锻炼计算能力和应用能力的重要题型。

以下是河南省历年中考数学试卷中的一道填空题:题目:Kate利用1组花环,每个花环用3朵玫瑰和5朵郁金香制作,共制作了8个花束,请问她用了多少朵玫瑰?解析:设用了x朵玫瑰,则用了24 - x朵郁金香,由题意可得方程:3x + 5(24 - x) = 8 × 8通过解方程可得x = 15,因此,她用了15朵玫瑰,答案为15。

三、解答题解答题是中考数学试卷中考察学生分析问题和解决问题能力的重要题型。

以下是河南省历年中考数学试卷中的一道解答题:题目:如图,直线l1与直线l2相交于点O,∠AOB = 85°,求∠COB的度数。

解析:由于l1与l2相交,根据错综相交线性质,可得∠AOB =∠COE。

又∠AOB = 85°,因此∠COE = 85°。

由于角的两边是射线,所以∠COB = ∠COE - ∠BOE = 85° - 70° = 15°。

四、解析题解析题是中考数学试卷中考察学生解决复杂问题和综合运用知识的重要题型。

以下是河南省历年中考数学试卷中的一道解析题:题目:汽车维修站每天收取基本工时费80元,每小时超时费30元。

某辆车维修时间3小时30分钟,应支付多少元?解析:首先需要计算维修时间的分钟数:3小时30分钟 = 3 × 60 +30 = 210分钟。

【精品试卷】2009年河南省中招考试说明解密预测数学试卷(1) 含参考答案及评分标准

【精品试卷】2009年河南省中招考试说明解密预测数学试卷(1) 含参考答案及评分标准

2009年河南中招考试说明解密预测试卷数 学 (1)注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目填写清楚.三题号一二1617181920212223总分分数一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.下列计算正确的是【 】(A )X M +X M =X 2M (B )2M .3N =6M+N (C ) (3M )2=9M (D )X 2M ÷X M =X 22.已知地球距离月球表面约为38400千米,那么这个距离用科学记数法且保留三个有效数字表示为【 】(A )3.840×107 米 (B ) 3.84×107 米 (C ) 3.84×108米 (D )3.84×109米3.在等边三角形,平行四边形,菱形,正十二边形,圆这五种图形中,既是轴对称图形又是中心对称图形的有【 】种(A ) 2 (B ) 3 (C ) 4 (D )54.已知关于的不等式组无解,则的取值范围是【 】x ⎩⎨⎧≥--≥-0125a x x a (A )>3 (B )<3 (C ) (D )a a 3≤a 3≥a 5.如图,等边△DEF 的顶点分别在等边△ABC 的各边上,且DE ⊥BC 于E ,若AB =1,则DB 的长为【 】(A )(B ) (C ) (D )121323346.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示 ,则下列结论:a 、b 同号;当x =1和x=3时函数值相等;4a +b =0; 当y=-2时 x 的值只能取0, 其中正确的个数是【 】(A )1个 (B )2个 (C )3个 (D )4个得分评卷人二、填空题(每题3分,共 27分)7.若式子 成立,则x 满足的条件为.x x xx --118.一元二次方程一根为0,则a = .()01122=-++-a x x a 9.如果,则平方根是______________.2|1|(2)0a b -++=2006()a b +10.若直线y =a x -b 经过第一、二、四象限.则点P(a ,b)在第_______象限内.11.一个三角形的两边长分别为3和6,第三边的长是方程的一个根,则2680x x -+=这个三角形的周长是 .12.如图,在△ABC 中,AB =AC =15cm ,D 是AB 的中点,DE ⊥AB 于D 交AC 于E ,△EBC 的周长是25cm ,则BC 的长________㎝.13.如图,点P 是边长为1的菱形ABCD 对角线AC 上一个动点,点M 、N 分别是AB 、BC 边上的中点,则MP + NP 的最小值是______.(第12题) (第13题)14.一个直角三角形两条直角边的长分别为6㎝,8㎝,则这个直角三角形的内心与外心之间的距离是 ㎝.得分评卷人第5题CB第6题CBADE F15.设A 是方程X2-X-2009=0的所有根的绝对值之和,则A 2 =________.2009三、解答题:(本大题满分共75分)16.(8分)计算:││-(3-π)0+2cos60°+422 8117.(9分)如图,在平行四边形ABCD 中,DE ,BF 分别是∠ADC ,∠ABC 的角平分线,分别交AB ,CD 于点E ,F .(1)求证:EF ,BD 互相平分;(2)若∠A =60°,AE :EB =2 :1,AD =6,求四边形DEBF 的周长.得分评卷人得分评卷人得分评卷人18.(9分)年终将至,上级管理部门对甲、乙两个银行的服务情况进行了抽查.如图反映了被抽查对象对两个银行服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为0分、1分、2分、4分.(1)请问:甲银行的用户满意度分数的众数为;乙银行的用户满意度分数的中位数为.(2)分别求出甲、乙两银行的用户满意度分数的平均值.(3)请你根据所学的统计知识,判断哪个银行的用户满意度较高,并简要说明理由.很不满意不满意较满意19.(9分)如图,等腰直角△ABC 中,∠ABC =90°,点D 在AC 上, 将△ABD 绕顶点B 沿顺时针方向旋90°后得到△CBE .⑴求∠DCE 的度数;⑵当AB =4,AD :DC=1: 3时,求DE 的长.20.(9分)田忌赛马知道吧,传说战国时期齐王与田忌各有上、中、下三匹马,同等级的马中,齐王的马比田忌的马强。

最近四年09-12河南中招考试数学试题及详细答案

最近四年09-12河南中招考试数学试题及详细答案

2011年河南省初中学业水平暨高级中等学校招生考试试卷数 学参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24(,)24b ac b a a--. 一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1. -5的绝对值 【 】 (A )5 (B )-5 (C )15 (D )15- 2. 如图,直线a ,b 被c 所截,a ∥b ,若∠1=35°,则∠2的大小为 【 】(A )35° (B )145° (C )55° (D )125°3. 下列各式计算正确的是 【 】 (A )011(1)()32---=- (B=(C )224246a a a += (D )236()a a =4.不等式5. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x 甲=610千克,x 乙=608千克,亩产量的方差分别是2S 甲=29. 6, 2S 乙=2. 7. 则关于两种小麦推广种植的合理决策是 【 】(A )甲的平均亩产量较高,应推广甲(B )甲、乙的平均亩产量相差不多,均可推广(C )甲的平均亩产量较高,且亩产量比较稳定,应推广甲(D )甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙6. 如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O 旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A 在丙位置中的对应点A ′的坐标为 【 】x +2>0,x -1≤2的解集在数轴上表示正确的是 【 】(A )(3,1) (B )(1,3) (C )(3,-1) (D )(1,1)二、填空题 (每小题3分,共27分) 7. 27的立方根是 。

8. 如图,在△ABC 中,AB =AC ,CD 平分∠ACB ,∠A =36°,则∠BDC 的度数为 .9. 已知点(,)P a b 在反比例函数2y x =的图象上,若点P 关于y 轴对称的点在反比例函数ky x=的图象上,则k 的值为 .10. 如图,CB 切⊙O 于点B ,CA 交⊙O 于点D 且AB 为⊙O 的直径,点E 是ABD 上异于点A 、D 的一点.若∠C=40°,则∠E 的度数为 .11.点1(2,)A y 、2(3,)B y 是二次函数221y x x =-+的图象上两点,则1y 与2y 的大小关系为1y 2y (填“>”、“<”、“=”).12.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另—个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是 。

2009年河南省初中学业水平暨高级中等学校招生考试试卷

2009年河南省初中学业水平暨高级中等学校招生考试试卷

.如图,在ABCD中,AC1,则AB的长是于点C,点D是.20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2.90m 的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m ,矩形面与地面所成的角α为78°.李师傅的身高为1.78m ,当他攀升到头顶距天花板0.05~0.20m 时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin780.98°≈,cos780.21°≈,tan78 4.70°≈.) 21.(10分)如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.22.(10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如下表所示:价格种类进价(元/台)售价(元/台)电视机 2000 2100 冰箱 2400 2500 洗衣机16001700(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?O E C B D A α lO C B A(备用图)又∵sinα=AEAC=DFDC,DF=DCAC·AE=37×AE≈1.007.……………………7分李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90-2.787≈0.11.∵0.05<0.11<0.20,∴它安装比较方便.……………………9分21.(1)①30,1;②60,1.5;……………………4分(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED.∵CE//AB, ∴四边形EDBC是平行四边形. ……………………6分在Rt△ABC中,∠ACB=900,∠B=600,BC=2,∴∠A=300.∴AB=4,AC=23.∴AO=12AC=3 . ……………………8分在Rt△AOD中,∠A=300,∴AD=2.∴BD=2.∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形……………………10分22.设购进电视机、冰箱各x台,则洗衣机为(15-2x)台…………………1分15-2x≤12 x,。

河南省中考数学试卷(含解析答案)

河南省中考数学试卷(含解析答案)

河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FB C的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DB F为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DB F=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。

2009年中考数学试题分类汇编之02 无理数及二次根式

2009年中考数学试题分类汇编之02  无理数及二次根式

一、选择题1.(2009年绵阳市)已知n -12是正整数,则实数n 的最大值为( ) A .12 B .11 C .8 D .3 【答案】B2.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABCD 【答案】C3.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 4.(2009年广东省)4的算术平方根是( )A .2±B .2C .D 【答案】B5.(2009贺州)下列根式中不是最简二次根式的是( ).A .2B .6C .8D . 10【答案】C 6.(2009年贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B7.(2009年淄博市) D )A .B -CD .8.(2009年湖北省荆门市)2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C . 【答案】C 9.(2009年湖北省荆门市)|-9|的平方根是( ) A .81 B .±3 C .3 D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B . 【答案】B10.(2009年内蒙古包头)函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤【答案】B【解析】a 的范围是0a ≥;∴y =x 的范围由20x +≥得2x ≥-。

11.(2009威海)实数a,b 在数轴上的位置如图所示,则下列结论正确的是( )A. 0a b +>B. 0a b ->C. 0a b >D .0ab>【答案】 A12.(2009的绝对值是( ) A .3B .3-C .13D .13-【答案】A13.(2009年安顺)下列计算正确的是: A =B 1= C =D .=【答案】A 14.(2009年武汉)的值是( )A .3-B .3或3-C .9D .3【答案】D15.(2009年武汉)函数y x 的取值范围是( ) A .12x -≥B .12x ≥C .12x -≤D .12x ≤【答案】B16.(2009年眉山)2的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间【答案】C 17.(2009年常德市)28-的结果是( )A .6B .22C .2D .2【答案】C18.(2009年肇庆市)实数2-,0.3,17π-中,无理数的个数是( ) A .2 B .3 C .4 D .5 【答案】A 19.(2009 黑龙江大兴安岭)下列运算正确的是( )A .623a a a =⋅ B .1)14.3(0=-πC .2)21(1-=- D .39±=【答案】B20.(2009年黄石市)下列根式中,不是..最简二次根式的是( ) ABCD 【答案】C21.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【答案】B 22.(2009年广东省)4的算术平方根是( ) A .2± B .2C .D 【答案】B23.(2009 ( )【答案】B 24.(2009年湖北十堰市)下列运算正确的是( ). A .523=+ B .623=⨯C .13)13(2-=-D .353522-=- 【答案】B 25.(2009年茂名市)下列四个数中,其中最小..的数是( )A .0B .4-C .π-D 【答案】26.(2009 ) A .0 B .2 C .4 D .5 【答案】B27.(2009年河北)在实数范围内,x 有意义,则x 的取值范围是( ) A .x ≥0 B .x ≤0C .x >0D .x <0【答案】A28.(2009年株洲市)...,则x 的取值范围是 A . 2x ≥B .2x >C .2x <D .2x ≤【答案】A 29.(2009年台湾)若a =1.071⨯106,则a 是下列哪一数的倍数? (A) 48 (B) 64 (C) 72 (D) 81。

2009年河南省中考试题汇总及参考答案(语文,数学,英语,物理,化学)

2009年河南省中考试题汇总及参考答案(语文,数学,英语,物理,化学)

谆谆教导(zhēn)....
B. 驰骋(chéng)鞭笞(chī)伺候(cì ) 膛目结舌(tμng)....
C. 璀璨(chuǐ)刹那(sh′)哺育(bǔ)舔犊之情(shì)....
D. 濒临(bīn)忖度(cǔn)炽热(chì)潸然泪下(shān)....
2.下列词语中有错别字的一项是()(2分)
A. 无稽之谈不屑置辩按部就班相濡以沫
B.头晕目眩迫不及待别出心裁直截了当
C.左右逢源见异思迁浮想联翩一愁莫展
D.再接再厉叱诧风云谈笑风生广袤无垠
3、古诗文默写.(8分)
(1)不畏浮云遮望眼,。

(王安石《登飞来峰》)
(2)几处早莺争暖树,。

(白居易《钱塘湖春行》)
(3)人生路上有鲜花也有荆棘,但只要我们勇敢面对,胸有杜甫《望岳》中“,”的雄心和气概,就一定会欣赏到人生最灿烂的风景。

(4)唐代诗人白居易在《卖炭翁》一诗中描绘了卖炭老人的矛盾心理:“可怜身上衣正单,心忧炭贱愿天寒”,而在他的《观刈麦》一诗中也有表现农民筋疲力尽仍争分夺秒收割庄稼的句子“,”这一“冷”一“热”,异曲同工,传达了诗人对劳动人民的深切同情。

(5)徜徉于文学艺术的原野,情景交融的佳句俯拾皆是:“至于夏水襄陵,”描绘了三峡夏日水势之汹涌:“,白露未晞”(蒹葭)于浓浓的秋凉中折射出人物淡淡的凄婉之意??
4、名著阅读。

(4分)
(1)阅读选自名著《水浒》中的一段文字,做后面的题目(2分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

………………………………………………………9 分
(注:若开始未给出判断“OE⊥AB”,但证明过程正确,不扣分)
18.(1)8,4;
………………………………………………………2 分
(2)1440;
………………………………………………………5 分
(3)估计该校平均每周体育锻炼时间不少于 6 小时的学生约有:
游.出发前,汽车油箱内储油 45 升;当行驶 150 千米时,发现油箱
剩余油量为 30 升.
(1)已知油箱内余油量 y(升)是行驶路程 x(千米)的一次函数,求 y 与 x 的函数关系式;
(2)当油箱中余油量少于 3 升时,汽车将自动报警.如果往返途中不加油,他们能否在汽
车报警前回到家?请说明理由.
1.﹣5 的相反数是
【】
(A) 1 5
(B)﹣ 1 5
2.不等式﹣2x<4 的解集是
(C) ﹣5
(D) 5 【】
(A)x>﹣2
(B)x<﹣2
(C) x>2
(D) x<2
3.下列调查适合普查的是
【】
(A)调查 2009 年 6 月份市场上某品牌饮料的质量
(B)了解中央电视台直播北京奥运会开幕式的全国收视率情况
2
300 1 <y<2
1
2
10
2 5 − 1 82
三、解答题
16.原式=(x-1)1(x+1)
2(x-1)(x+1) x
……………………4 分
=4. x
……………………………………………………………6 分
当 x= 2 时,原式= 4 = 2 2 . 2
…………………………………8分
(注:如果 x 取 1 活-1,扣 2 分.)
得分 评卷人
23.(11 分)如图,在平面直角坐标系中,已知矩形 ABCD 的三个顶 点 B(4,0)、C(8,0)、D(8,8).抛物线 y=ax2+bx 过 A、C 两点. (1)直接写出点 A 的坐标,并求出抛物线的解析式; (2)动点 P 从点 A 出发.沿线段 AB 向终点 B 运动,同时点 Q 从点 C 出发,沿线段 CD 向终点 D 运动.速度均为每秒 1 个单位长度,运动时间为 t 秒.过点 P 作 PE⊥AB 交 AC 于点 E ①过点 E 作 EF⊥AD 于点 F,交抛物线于点 G.当 t 为何值时,线段 EG 最长? ②连接 EQ.在点 P、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的 t 值.

【】
(A)(2,2)
(B)(2,4)
(C)(4,2)
(D)(1,2)
6.一个几何体由一些大小相同的小正方体组成,如图
是它的主视图和俯视图,那么组成该几何体所需小正
方体的个数最少为
【】
(A)3
(B) 4
(C) 5
(D)6
得分
评卷人
二、填空题(每小题 3 分,共 27 分)
7.16 的平方根是
.
8. 如 图 , AB//CD,CE 平 分 ∠ ACD , 若 ∠ 1=250 , 那 么 ∠ 2 的 度 数
2009 年河南省初中学业水平暨高级中等学校招生考试试卷


注意事项:
1.本试卷共 8 页,三大题,满分 120 分,考试时间 100 分钟。请用钢笔或圆珠笔直接
答在试卷上。
2.答卷前将密封线内的项目填写清楚。
Байду номын сангаас
一二

题号
总分
1~6 7~15 16 17 18 19
20
21
22
23
分数
得分
评卷人
一、选择题(每小题 3 分,共 18 分) 下列各小题均有四个答案,其中只有一个是正确的,将正确答案的 代号字母填入题后括号内。
(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)
得分 评卷人
21. (10 分)如图,在 Rt△ABC 中,∠ACB=90°, ∠B =60°,BC=2.点 0 是 AC 的中点,过点 0 的直线 l 从与 AC 重合的位置开始,绕点 0 作逆时针旋转, 交 AB 边于点 D.过点 C 作 CE∥AB 交直线 l 于点 E,设直线 l 的旋转角为α. (1)①当α=________度时,四边形 EDBC 是等腰梯形,此时 AD 的长为_________; ②当α=________度时,四边形 EDBC 是直角梯形,此时 AD 的长为_________; (2)当α=90°时,判断四边形 EDBC 是否为菱形,并说明理由.
定对后面给分的多少,但原则上不超过后继部分应得分数之半.
3.评分标准中,如无特殊说明,均为累计给分.
4.评分过程中,只给整数分数.
一、选择题(每小题 3 分,共 18 分)
题号
1
2
3
4
5
6
答案
D
A
D
C
B
D
二、填空题(每小题 3 分,共 27 分)
题号
7
8
9
10 11
12
13
14
15
答案 ±4
500
6
∵CE//AB, ∴四边形 EDBC 是平行四边形.
在 Rt△ABC 中,∠ACB=900,∠B=600,BC=2,
∴∠A=300.
……………………7 分
……………………9 分 ……………………4 分 ……………………6 分
∴AB=4,AC=2 3 . ∴AO= 1 AC = 3 .
2 在 Rt△AOD 中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC. 又∵四边形 EDBC 是平行四边形,
∵AB=AC, ∴CE= 1 BC=0.5.
2 在 Rt△ABC 和 Rt△DFC 中,
……………………2分
∵tan780= AE , EC
∴AE=EC×tan780 0.5×4.70=2.35.
又∵sinα= AE = DF , AC DC
…………………4 分
DF= DC ·AE= 3 ×AE 1.007.
17.OE⊥AB. 证明:在△BAC 和△ABD 中,
…………………………………………1分
AC=BD, ∠BAC=∠ABD,
AB=BA. ∴△BAC≌△ABD.
………………………………………………………5分
∴∠OBA=∠OAB, ∴OA=OB.
………………………………………………………7 分
又∵AE=BE, ∴OE⊥AB.
2009 年河南省初中学业水平暨高暨中等学校招生考试
数学试题参考答案及评分标准
说明:
1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评
分.
2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果
考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决
20
E
7.5≤t<9
15
根据上述信息解答下列问题:
F
t≥9
n
(1)m=______,n=_________;
(2)在扇形统计图中,D 组所占圆心角的度数为_____________;
(3)全校共有 3000 名学生,估计该校平均每周体育锻炼时间不少于 6 小时的学生约有 多少名?
得分
评卷人
l9.(9 分)暑假期间,小明和父母一起开车到距家 200 千米的景点旅
……………………8 分
∴四边形 EDBC 是菱形
……………………10 分
22.设购进电视机、冰箱各 x 台,则洗衣机为(15-2x)台 …………………1 分
依题意得:
15-2x≤ 1 x , 2
2000x+2400x+1600(15-2x)≤32400
解这个不等式组,得 6≤x≤7 ∵x 为正整数,∴x=6 或 7
…………………5 分 …………………7 分
方案 1:购进电视机和冰箱各 6 台,洗衣机 3 台;
方案 2:购进电视机和冰箱各 7 台,洗衣机 1 台
…………………8 分
(2)方案 1 需补贴:(6×2100+6×2500+1×1700)×13%=4251(元);
得分 评卷人
18.(9 分)2008 年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻 炼时间,小明同学在校内随机调查了 50 名同学,统计并制作了如下的频数分布表和扇形统 计图.
组别 锻炼时间(时/周) 频数
A
1.5≤t<3
l
B
3≤t<4.5
2
C
4.5≤t<6
m
D
6≤t<7.5
3000× 20 + 15 + 4 =3000× 39 =2340(人).……………………………9 分
50
50
19.(1)设 y=kx+b,当 x=0 时,y=45,当 x=150 时,y=30.
b=45

150k+b=30
………………………………………………4 分
k= − 1 10
解得
b=45
………………………………………………5 分

.
9. 下 图 是 一 个简 单 的 运算 程 序 . 若 输入 X 的 值为 ﹣ 2, 则 输 出 的数 值

.
10.如图,在 YABCD 中,AC 与 BD 交于点 O,点 E 是 BC 边的中点,OE=1,
则 AB 的长是
.
11.如图,AB 为半圆 O 的直径,延长 AB 到点 P,使
相关文档
最新文档