1.1 The normal distribution

合集下载

钱小军《概率论与数理统计》chap06-normal distribution

钱小军《概率论与数理统计》chap06-normal distribution

P(0.0 z 1.0)
English Version: Appendix B A-4
标准正态分布表.xls 中文版:参加附赠CD
2/22/2019
Tsinghua-CUHK Finance MBA 2008
16
-3
2/22/2019
0.00
0.50
1.00
1.50
2.00
2.50
3.00
ab E ( x) 2
(b a) 2 Var( x) 12
2/22/2019
Tsinghua-CUHK Finance MBA 2008
8
Normal Distribution 正态分布
Normal Distribution is one of the most important distributions in the probability statistics. One hand, it is very common in nature; the other hand, it has so many excellent properties. A lot of distributions can be described by it. 正态分布是概率统计中最重要的一种分布 。一方面,正态分布是 自然界最常见的一种分布; 另一方面,正态分布具有许多良好的 性质,很多分布可以用正态分布来近似描述。
Probability Density Function of Standard Normal
Tsinghua-CUHK Finance MBA 2008 17
-2.50
-2.00
-1.50
-1.00
-0.50
Probability of Standard Normal Distribution

Normal Distribution 讲义 PPT

Normal Distribution 讲义 PPT

7% of the Computers Have a Lifetime Less Than the Guarantee Period
Figure 6-26
15
Example 8 – Solution
cont’d
If a computer system lasts fewer months than the guarantee period, a full-price refund will have to be made. The lifetimes requiring a refund are in the shaded region in Figure 6-26. This region represents 7% of the total area under the curve. We can use Table 5 of Appendix II to find the z value such that 7% of the total area under the standard normal curve lies to the left of the z value.
8
Example 7 – Solution
The corresponding areas under the x and z curves are shown in Figure 6-23.
cont’d
Corresponding Areas Under the x Curve and z Curve
Excerpt from Table 5 of Appendix II
Table 6-5
18
Example 8 – Solution
To translate this value back to an x value (in months), we use the formula x = z +

数学专业英语(Doc版).22

数学专业英语(Doc版).22

数学专业英语-The Normal DistributionWe shall begin by considering some simple continuously variable quantity like stature.We know this varies greatly from one individual to another ,and may al so expect to find certain average differences between people drawn from differ ent social classes or living in different geographical areas,etc.Let us suppose th at a socio-medical survey of a particular community has provided us with a re presentative sample of 117 males whose heights are distributed as shown in th e first and third columns of Table 1.Table 1.Distribution of stature in 117 malesWe shall assume that the original measurements were made as accurately as possible,but that they are given here only to the mearest 0.02 m (i.e.2 cm).Thu s the group labeled “1.66”contains all those men whose true measurements were between 1065 and 1067 m.One si biable to run into trouble if the exact methods of recording the measurements and grouping them are not specified ex actly.In the example just given the mid-point of the interval labeled”1.66”m. But suppose that the original readings were made only to the nearest 0.01 m (i.e. 1 cm )and then “rounded up “to the nearest multiple of 0.02 m.We sho uld then have “1.65”, which covers the range 1.645 to 1.655,included with “1.66”.The interval “1.66”would then contain all measurements lying betwe en 1.645 m and 1.665 m .for which the mid-point is 1.655 m. The difference of 5 mm from the supposed value of 1.66 m could lead to serious inaccuracy in certain types of investigation.A convenient visual way of presenting such data is shown in fig. 1, in which the area of e ach rectangle is ,on the scale used, equal to the observed proportion or percentage of indiv iduals whose height falls in the corresponding group.The total area covered by all the recta ngles therefore adds up to unity or 100per cent .This diagram is called a histogram.It is ea sily constructed when ,sa here ,all the groups are of the same width.It is also easily adapt ed to the case when the intervals are uneqal, provided we remember that the areas of the rec tangles must be proportional to the numbers of units concerned.If, for example, we wished to group togcther the entries for the three groups 1.80,1.82 and 1.84 m,totaling 7 individuals or 6 per cent of the total,then we should need a rectangle whose base covered 3working grou ps on the horizontal scale but whose height was only 2 units on the vertical scale shown in the diagram.In this way we can make allowance for unequal grouping intervals ,but it is usua lly less troublesome if we can manageto keep them all the same width.In some books histogram s are drawn so that the area of each rectangle is equal to the actual number (instend of the proportion) of individuals in the corresponding group.It is better, however, to use proport ions, sa different histograms can then be compared directly.----------------------------------------------The general appearance of the rectangles in Fig.1 is quite striking ,especially the tall hump in the centre and the rapidly falling tails on each side.There are certain minor irregularities in the pattern, and these would, in general ,be more ronounced if the size of the sample were smaller. Conversely, weth larger sa mples we usually find that the set of rectangles presents a more regular appearance. This suggests that if we had a very large number of measurements ,the ultimate shape of the picture for a suitably small wi dth of rectangle would be something very like a smooth curve,Such a curve could be regarded as represe nting the true ,theoretical or ideal distribution of heights in a very(or ,better,infinitely)large population of individuals.What sort of ideal curve can we expect ? There are seveala theoretical reasons for expecting the so-call ed Gaussiao or “normal “curve to turn up in practice;and it is an empirical fact that such a curve lften describes with sufficient accuracy the shape of histograms based on large numbers of obscrvations. More over,the normal curve is one of the easiest to handle theoretically,and it leads to types of statistical analy sis that can be carried out with a minimum amount of computation. Hence the central importance of this distribution in statistical work .The actual mathematical equation of the normal curve is where u is the mean or average value and is t he standard deviation, which is a measure of the concentration of frequency about the mean. More will b e said about and later .The ideal variable x may take any value from to .However ,some real measureme nts,like stature, may be essentially positive. But if small values are very rare ,the ideal normal curve ma y be a sufficiently close approximation. Those readers who are anxious to avoid as much algebraic mani pulation as possible can be reassured by the promise that no derect use will be made in this book of th e equation shown. Most of the practical numerical calculations to which it leads are fairly simple.Fig. 1 shows a normal curve, with its typocal symmetrical bell shape , fitted by suitable methods to the data embodied in the rectangles. This is not to say that the fitted curve is actually the t rue, ideal one t o which the histogram approxime.tes; it is merely the best approximation we can find.The mormal curve used above is the curve we have chosen to represent the frequency distribution of st ature for thr ideal or infinitely large population. This ideal poplation should be contrasted with the limite d sample of obsrever. Values that turns up on any occasion when we make actual measurements in the r eal world. In the survey mentioned above we had a sample of 117 men .If the community were sufficie ntly large for us to collect several samples of this size, we should find that few if any of the correspon ding histograms were exactly the same ,although they might all be taken as illustrating the underlying fre quency distribution. The differences between such histograms constitute what we call sampling variation, and this becomes more prominent at the size of sample decreases.VocabularySocio-medical survey 社会医疗调查表 visual 可见的。

统计学三大分布与正态分布的差异

统计学三大分布与正态分布的差异

申请大学学士学位论文大学学士学位论文统计学三大分布与正态分布的差异年级专业:学生:指导教师:统计学三大分布与正态分布的差异中文摘要统计学是应用数学的一个分支,主要通过利用概率论建立数学模型,收集所观察系统的数据,进行量化的分析、总结,并进而进行推断和预测,为相关决策者提供依据和参考。

它被广泛的应用在各门学科之上,从物理和社会科学到人文科学,甚至被用来工商业及政府的情报决策之上。

而对数据的分析过程中就需要利用到数据的分布来研究分类。

在实际遇到的许多随机现象都服从或近似服从正态分布。

而由正态分布构造的三大分布在实际中有广泛的应用,因为这三大分布不仅有明确的背景,而且其抽样分布的密度函数有明显表达式,研究三大分布与正态分布有助于研究实际事例,比如经济安全与金融保险领域、人口统计等。

本文讨论了三大分布与正态分布,并将它们之间的密度函数进行比较说明.第二章介绍了正态分布的定义、性质,三大分布的定义、性质。

第三章介绍了正态分布与三大分布的密度函数,并将它们之间的密度函数进行比较关键词:正态分布;三大分布;密度函数The Difference between the Three Statistical Distributions andthe Normal DistributionAbstractStatistics is a branch of applied mathematics, the mathematical models are mainly established by the probability and statistics theory based on the collectingthe data, so as to conduct the quantitative analysis, and obtain the correct inference. It is widely used in the subjects, such as physical, social science, industrial and commercial field, and government intelligence decision. The process of the data analysis will need to use the data distributions to study.In practice, many random phenomena are obedient for the normal distributions, or approximately. And the three statistical distributions structured by the normal distributions have extensive applications, because these three distributions is explicitly background, and the sampling distribution density function have obvious expressions. Research on the distributions and normal distributions is useful for the study of economic security and financial insurance fields, population statistics, etc.This paper discusses the three statistical distributions and normal distributions, their density functions are compared.The second chapter presents the definition of the normal distribution, the distribution of nature, three definitions and properties.The third chapter covers a normal distribution and the density functions of the three distributions, and then the density functions are compared. Keywords: the normal distribution; Three distribution; Density function目录中文摘要 (2)英文摘要 (2)1 绪论 (5)1.1 问题的提出 (5)1.2 国外研究现状 (5)1.3 本文的主要工作 (6)2 基础知识介绍 (7)2.1 正态分布 (7)2.2 三大统计分布 (8)3 三大分布与正态分布的比较 (12)3.1 三大分布与正态分布的密度函数 (12)3.2 三大分布与正态分布的密度函数比较 (12)3.3 本章小结 (16)4 进一步工作 (16)参考文献 (17)致 (17)1 绪论统计学,最早是由Gottfried Achenwall(1749)所使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。

高三英语统计学分析单选题60题

高三英语统计学分析单选题60题

高三英语统计学分析单选题60题1.In a data set of {2, 3, 4, 4, 5}, what is the mode?A.2B.3C.4D.5答案:C。

本题考查众数的概念。

众数是一组数据中出现次数最多的数值。

在给定的数据集中,4 出现了两次,其他数字都只出现了一次,所以众数是4。

A 选项2 只出现了一次,不是众数;B 选项3 只出现了一次,不是众数;D 选项5 只出现了一次,不是众数。

2.The mean of a set of numbers {3, 4, 5, 6, 7} is?A.4B.5C.6D.7答案:B。

本题考查平均数的计算。

平均数是一组数据的总和除以数据的个数。

这组数据的总和是3+4+5+6+7=25,数据个数是5,所以平均数是25÷5=5。

A 选项4 小于正确平均数;C 选项6 大于正确平均数;D 选项7 大于正确平均数。

3.In a data set of {1, 2, 2, 3, 3, 3}, what is the median?A.2B.3D.4答案:A。

本题考查中位数的概念。

当数据个数为奇数时,中位数是按顺序排列后的中间数;当数据个数为偶数时,中位数是中间两个数的平均数。

给定的数据集中有 6 个数,先从小到大排列为1,2,2,3,3,3,中间两个数是2 和3,所以中位数是(2+3)÷2=2.5。

本题选项设置有迷惑性,A 选项2 是错误的,因为直接选2 没有考虑数据个数为偶数的情况;B 选项3 是错误的,理由同上;D 选项4 不在数据集中,明显错误。

4.The mode of a data set can be?A.uniqueB.multipleC.zeroD.all of the above答案:D。

本题考查众数的特点。

众数可以是唯一的(unique),例如数据集中只有一个数出现次数最多;也可以是多个(multiple),当有多个数出现次数相同且最多时;还可以是零((zero),当没有任何一个数出现次数多于其他数时。

正态分布(normal distribution)

正态分布(normal distribution)
正态分布
(normal distribution)
3.1 随机变量


变量和随机变量
变量取值的相对频率说明了具有某个性质 的观察对象的出现的可能性。

随机变量
离散型:性别、血型、子女数、事故数 连续型:身高、体重
随机变量的概率分布


概率函数(Probability Function),或者 说概率密度函数(Probability Density Function) 、密度函数 分布函数(Distribution Function)。用此 函数的大小来说明变量取某些值的可能性 当变量的取值包括了所有可能的取值时, 分布函数值为1 当变量具备了以上两个函数之后,称它具 有某种分布(Distribution)
正态分布图示
f(x)
.4
.3
.2
.1
0
x
方差相等、均数不等的正态分布图示
2 1 3
3
1
2
均数相等、方差不等的正态分布图示
2 3 1 2 1
3
3.2.4正态曲线下面积的分布规律
-
正态曲线下的面积规律


X轴与正态曲线所夹面积恒等于1 。 对称区域面积相等。
f (X )
1
2
e

( X 值表 表中的面积是指p(u<x), 也记作 φ(x)
标准正态分布曲线下面积(u)
u 0.00 0.02 0.04 0.06 0.08
u 0
-3.0 0.0013 0.0013 0.0012 0.0011 0.0010
3.2.5 正态分布的应用

1.估计参考值范围(reference interval) 参考值范围又称正常值范围(normal range)。 什么是参考值范围:

正态分布的性质及实际应用举例

正态分布的性质及实际应用举例

华北水利水电学院正态分布的性质及实际应用举例课程名称:概率论与数理统计专业班级:电气工程及其自动化091班成员组成:姓名:邓旗学号: 201009102姓名:王宇翔学号:201009101姓名:陈涵学号:201009132联系方式:2012年5月24日1 引言:正态分布(normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

本文就从正态分布的实际性质应用举例等各个方面进行简单阐述并进行探讨,使同学们能够对所掌握的知识有更清楚地认识。

2 研究问题及成果:2.1 正态分布性质;2.2 3σ原则及标准正态分布;2.3 实际应用举例说明摘要:正态分布是最重要的一种概率分布。

正态分布概念是由德国数学家与天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学研究,故此正态分布又称高斯分布。

在许多实际问题中遇到的随机变量都服从或近似服从正态分布:在生产中,产品的质量指标,如电子管的使用寿命,电容器的电容量,零件的尺寸。

铁水含磷量,纺织品的纤度和强度等一般都服从正态分布。

在测量中,如大地测量,天平称量物体,化学分析某物之中某元素的含量等,测量结果一般服从正态分布。

在生物学中,同一群体的某种特性指标,如某地同龄儿童的身高,体重,肺活量,在一定条件下生长的农作物的产量等一般服从正态分布。

在气象学中,某地每年7月份的平均气温,平均温度以及降水量等一般也服从正态分布。

总之。

正态分布广泛存在于自然现象,社会现象以及生产,科学技术的各个领域中。

本文就从正态分布的实际性质应用举例等各个方面进行简单阐述并进行探讨,使同学们能够对所掌握的知识有更清楚地认识。

关键词:正态分布The nature of the normal distribution and the example of practical applicationAbstract:the normal distribution is the probability distribution of one of the most important.Normal distribution concepts is Germany first proposed by mathematician and astronomer Moivre in 1733, but since Germany mathematician Gauss first applied in astronomy, so also called the Gaussian distribution of the normal distribution. In many practical problems encountered in the approximate normal distribution random variables are subject to, or: in production, product quality indicators, such as the life of the tube, the capacitance of capacitors, dimensions of the part. Phosphorus content in hot metal, textile fibers and strength are generally subject to the normal distribution. In surveying, geodesy, weighing scales objects, such as chemical analysis of some of the content of an element, General normal distribution measurement results. In biology, a certain characteristic index of the same group, such as a certain age children's height, body weight, vital capacity, under certain conditions the yield of crops on the growth of General normal distribution. In meteorology, a place every July average temperature, average temperature and precipitation generally normal distribution. All in all. Normal distribution is widely present in natural phenomena, social phenomena, as well as the production, in the various fields of science and technology. This article from the actual properties of the normal distribution apply to explore various aspects, such as for example a simple elaboration and, enable students to acquire knowledge have a better understanding.Key words:Normal distribution Practical application正态分布的性质及实际应用举例概率论在一定的社会条件下,通过人类的社会实践和生产活动发展起来,被广泛应用于各个领域,在国民经济的生产和生活中起着重要的作用。

Normal Distribution 讲义

Normal Distribution 讲义
Graphs of Normal Probability Distributions
One of the most important examples of a continuous probability distribution is the normal distribution. This distribution was studied by the French mathematician Abraham de Moivre (1667–1754) and later by the German mathematician Carl Friedrich Gauss (1777–1855), whose work is so important that the normal distribution is sometimes called Gaussian. The work of these mathematicians provided a foundation on which much of the theory of statistical inference is based.
We see that a general normal curve is smooth and symmetrical about the vertical line extending upward from the mean . Notice that the highest point of the curve occurs over . If the distribution were graphed on a piece of sheet metal, cut out, and placed on a knife edge, the balance point would be at . We also see that the curve tends to level out and approach the horizontal (x axis) like a glider making a landing.

正态分布(Normaldistribution)又名高斯分布(Gaussiandistri。。。

正态分布(Normaldistribution)又名高斯分布(Gaussiandistri。。。

[][][][]四个不同參数集的概率密度函数(绿⾊线代表标准正态分布)正态分布(Normaldistribution )⼜名⾼斯分布(Gaussiandistri 。

正态分布(Normal distribution )⼜名⾼斯分布(Gaussian distribution ),是⼀个在、及等都很重要的概率分布,在统计学的很多⽅⾯有着重⼤的影响⼒。

若X 服从⼀个为µ、为σ2的⾼斯分布,记为:X ∼N (µ,σ2),则其为正态分布的µ决定了其位置,其σ决定了分布的幅度。

因其曲线呈钟形,因此⼈们⼜常常称之为钟形曲线。

我们通常所说的标准正态分布是µ= 0,σ = 1的正态分布(见右图中绿⾊曲线)。

⽂件夹 []概要正态分布是与中的定量现象的⼀个⽅便模型。

各种各样的測试分数和现象⽐⽅计数都被发现近似地服从正态分布。

虽然这些现象的根本原因常常是未知的, 理论上能够证明假设把很多⼩作⽤加起来看做⼀个变量,那么这个变量服从正态分布(在R.N.Bracewell 的Fourier transform and its application 中能够找到⼀种简单的证明)。

正态分布出如今很多区域:⽐如, 是近似地正态的,既使被採样的样本整体并不服从正态分布。

另外,常态分布在全部的已知均值及⽅差的分布中最⼤,这使得它作为⼀种以及已知的分布的⾃然选择。

正态分布是在统计以及很多统计測试中最⼴泛应⽤的⼀类分布。

在,正态分布是⼏种连续以及离散分布的。

历史常态分布最早是在发表的⼀篇关于⽂章中提出的。

在1812年发表的《分析概率论》(Theorie Analytique des Probabilites )中对棣莫佛的结论作了扩展。

如今这⼀结论通常被称为。

拉普拉斯在试验中使⽤了正态分布。

于引⼊这⼀重要⽅法;⽽则宣称他早在就使⽤了该⽅法,并通过如果误差服从正态分布给出了严格的证明。

“钟形曲线”这个名字能够追溯到他在⾸次提出这个术语"钟形曲⾯",⽤来指代()。

正态分布英文表达

正态分布英文表达

正态分布英文表达IntroductionNormal distribution, also known as Gaussian distribution, is a probability distribution used to describe the distribution of continuous variablesin the natural world. It is a fundamental conceptin statistics and plays a critical role in empirical research across a wide range of disciplines, including economics, psychology, and physics. This article will provide an overview of normal distribution, including its properties, characteristics, and applications.Properties of the Normal DistributionThe normal distribution is an infinite probability distribution, meaning that it extends indefinitely in both positive and negative directions. It is defined by two parameters: the mean and the standard deviation. The mean represents the average value or center of the distribution, while the standard deviation represents the spread or dispersion of the distribution.The probability density function of the normal distribution is bell-shaped, with a single peak at the mean. The curve is symmetric around the mean and the area under the curve is equal to one. The standard normal distribution, which has a mean of zero and a standard deviation of one, is often used as a baseline for comparison in statistical analyses.The empirical rule, also known as the 68-95-99.7 rule, provides a rough guideline for the proportion of data that falls within a certain number of standard deviations from the mean. Specifically, about 68% of the data falls within one standard deviation, 95% falls within two standard deviations, and almost all (99.7%) falls within three standard deviations.Characteristics of the Normal DistributionOne of the most important characteristics of the normal distribution is that it is a continuous distribution. This means that the random variable can take on any value within a certain range, and the probability of any given value occurring isinfinitesimal. Another characteristic of the normal distribution is that it is unimodal, meaning thatit has a single mode or peak.Additionally, the normal distribution is asymptotic. This means that as the tails of the distribution extend further away from the mean, the probability of a given data point occurring becomes increasingly small. However, the curve never touches the x-axis or reaches zero probability, making it an open-ended distribution.Applications of the Normal DistributionThe normal distribution has many applications in both theoretical and applied statistics. One of the most common applications is in hypothesis testing. For example, if we want to test whether the mean of a sample of data is significantly different from a known population mean, we can use the normal distribution to calculate theprobability of obtaining our sample mean given the population mean and standard deviation.Another application of the normal distribution is in the construction of confidence intervals. Aconfidence interval is a range of values that is likely to contain the true population parameterwith a certain degree of confidence. By using the normal distribution, we can construct confidence intervals around the sample mean or other statistics.The normal distribution is also frequently used in regression analysis, where it is assumed thatthe errors follow a normal distribution. This assumption is necessary for many statistical models, including linear regression and logistic regression.Finally, the normal distribution is a useful tool in quality control and process improvement. It can be used to model the distribution of defects, errors, or other measures of quality in a process, and to identify outliers or deviations from expected performance.ConclusionThe normal distribution is a basic but powerful concept in statistics that is applicable to a wide range of fields. Its properties and characteristicsmake it a useful tool for hypothesis testing, confidence interval construction, regression analysis, quality control, and many other applications. By understanding the normal distribution, researchers and practitioners can better analyze and interpret their data, leading to more accurate and reliable results.。

Distributions-2010 in R

Distributions-2010 in R
The gamlss.family distributions.
Bob Rigby and Mikis Stasinopoulos May 19, 2010
2
Preface
This booklet shows the probability functions for all distributions available in the gamlss package.
: The copyright remains with the authors and any reproduction of the material in this booklet must have the authors permission.
©
Contents
1 Distributions in the gamlss packages 1.1 Continuous two parameter distributions on . . . . . . . . . . . 1.1.1 Normal (or Gausian) distribution (NO, NO2, NOF) . . . 1.1.2 Logistic distribution (LO) . . . . . . . . . . . . . . . . . . 1.1.3 Gumbel distribution (GU) . . . . . . . . . . . . . . . . . . 1.1.4 Reverse Gumbel distribution (RG) . . . . . . . . . . . . . 1.2 Continuous three parameter distributions on . . . . . . . . . . 1.2.1 Exponential Gaussian distribution (exGAUS) . . . . . . . 1.2.2 Power Exponential distribution (PE, PE2) . . . . . . . . . 1.2.3 t family distribution (TF) . . . . . . . . . . . . . . . . . . 1.3 Continuous four parameter distributions on . . . . . . . . . . 1.3.1 Exponential Generalized Beta type 2 distribution (EGB2) 1.3.2 Generalized t distribution (GT) . . . . . . . . . . . . . . . 1.3.3 Johnson SU distribution (JSUo, JSU) . . . . . . . . . . . 1.3.4 Normal-Exponential-t distribution (NET) . . . . . . . . . 1.3.5 Sinh-Arcsinh (SHASH) . . . . . . . . . . . . . . . . . . . 1.3.6 Skew Exponential Power type 1 distribution (SEP1) . . . 1.3.7 Skew Exponential Power type 2 distribution (SEP2) . . . 1.3.8 Skew Exponential Power type 3 distribution (SEP3) . . . 1.3.9 Skew Exponential Power type 4 distribution (SEP4) . . . 1.3.10 Skew t type 1 distribution (ST1) . . . . . . . . . . . . . . 1.3.11 Skew t type 2 distribution (ST2) . . . . . . . . . . . . . . 1.3.12 Skew t type 3 distribution (ST3) . . . . . . . . . . . . . . 1.3.13 Skew t type 4 distribution (ST4) . . . . . . . . . . . . . . 1.3.14 Skew t type 5 distribution (ST5) . . . . . . . . . . . . . . 1.4 Continuous one parameter distribution in + . . . . . . . . . . . 1.4.1 Exponential distribution (EXP) . . . . . . . . . . . . . . . 1.5 Continuous two parameter distribution in + . . . . . . . . . . . 1.5.1 Gamma distribution (GA) . . . . . . . . . . . . . . . . . . 1.5.2 Log Normal distribution (LOGNO, LNO) . . . . . . . . . 1.5.3 Inverse Gaussian distribution (IG) . . . . . . . . . . . . . 1.5.4 Weibull distribution (WEI, WEI2, WEI3) . . . . . . . . . 1.6 Continuous three parameter distribution in + . . . . . . . . . . 1.6.1 Box-Cox Cole and Green distribution (BCCG) . . . . . . 1.6.2 Generalized gamma distribution (GG, GG2) . . . . . . . . 1.6.3 Generalized inverse Gaussian distribution (GIG) . . . . . 1.6.4 Zero adjusted Gamma distribution (ZAGA) . . . . . . . . 3 5 5 5 8 8 9 9 9 9 10 10 10 10 11 12 12 13 13 14 14 14 14 15 15 15 15 15 16 16 16 16 17 17 17 18 19 19

第六章 正态分布

第六章 正态分布

第六章正态分布一、基本概念1、正态分布连续性随机变量中重要的分布是钟型概率分布,就是正态分布(normal distribution),也称为常态分布,是一种连续型随机变量的概率分布。

学生的身高、体重、成绩等都是正态分布常见的例子,很高、很矮的都比较少,多数处于正常身高;很胖、很瘦的也较少,多数是正常体重;成绩很高和很低的是少数,多数同学属于中等成绩。

2、标准正态分布在正态分布中,随机变量X是以μ和σ为参数,当μ和σ取值固定,μ=0,σ=1时,随机变量X的概率密度变为:2221Zey-=π,(,)Z∈-∞+∞,相应的正态分布N(0,1)称为标准正态分布。

标准正态分布是正态分布的特殊情况,由于μ和σ取值固定,不依赖于参数μ和σ,而是固定的、唯一的。

3、Z值Z值又称为标准分数,它是以平均数为参照点,以标准差为单位的描述原始数据在总体中相对位置的量数。

我们可以通过计算Z值将一般正态分布转换为标准正态分布。

例如某个数值的Z值为-1.5,则说明这个数值低于均值1.5倍的标准差。

二、基本方法1、Z值的计算Z值的计算公式为:Z=(X—μ)/σ。

假设),(~2σμNX,根据Z值计算公式转换后,Z=()σμ-X~N(0,1),这样就将一般正态分布转换成标准正态分布。

某班同学平均体重为50公斤,标准差为10,某同学同学为70,将这个分数转化为Z 值。

Z=(X—μ)/σ=(70—50)/10= 2表明这个同学的体重在分布中高于均值2个标准差。

2、标准正态分布表使用方法标准正态分布表是根据标准正态分布中随机变量与其概率的对应关系绘制的,表中数值是变量值X所对应的分布函数ф(x)的数值表。

首先只根据Z值公式将正态分布转化为标准正态分布,就可以通过查表得到对应的概率值。

对于负的变量值,转化:ф(—x)=1—ф(x)一般情况下,设X~(0,1),则有:P(X<a)=ф(a),P(a<X<b)=ф(b)—ф(a)P (X>a )=1—ф(a )具体查表时,我们可以看到,标准正态分布表第一行和第一列均表示X 值,列为X 的整数位和第一位小数位,行为X 的第二位小数位,交叉处的值就是对应的概率。

乘积正态分布英语

乘积正态分布英语

乘积正态分布英语The Normal Distribution of ProductsThe concept of the normal distribution, also known as the Gaussian distribution, is a fundamental principle in the field of statistics and probability theory. It describes the distribution of a wide range of natural and man-made phenomena, from the heights of people to the stock market returns. However, the normal distribution is not limited to the study of individual variables. It can also be applied to the study of the products of random variables, which is known as the normal distribution of products.The normal distribution of products is a powerful tool in various areas of science and engineering, including finance, biology, and physics. It allows researchers and analysts to understand and predict the behavior of complex systems that involve the multiplication of random variables. In this essay, we will explore the properties and applications of the normal distribution of products, as well as the underlying mathematical principles that govern this phenomenon.The foundation of the normal distribution of products lies in the central limit theorem. This theorem states that the sum of a largenumber of independent and identically distributed random variables, each with finite mean and variance, will converge to a normal distribution as the number of variables increases. This principle can be extended to the product of random variables, where the logarithm of the product follows a normal distribution.Mathematically, if we have a set of independent random variables,X1, X2, ..., Xn, and we define the product Y = X1 * X2 * ... * Xn, then the logarithm of Y, ln(Y), will follow a normal distribution. The mean and variance of ln(Y) can be calculated as the sum of the means and variances of the individual logarithms of the random variables, respectively.This property of the normal distribution of products has important implications in various fields. In finance, for example, it is often used to model the returns of financial assets, such as stocks and currencies. The logarithm of the asset price is assumed to follow a normal distribution, which allows for the calculation of risk measures, such as Value-at-Risk (VaR) and expected shortfall.In biology, the normal distribution of products is used to model the growth and development of organisms. For instance, the size of a population of organisms can be modeled as the product of multiple random variables, such as birth rate, mortality rate, and environmental factors. The logarithm of the population size wouldthen follow a normal distribution, allowing researchers to make predictions about the population's behavior and dynamics.In physics, the normal distribution of products is used to describe the behavior of complex systems, such as the distribution of energy in a system of interacting particles. The product of the random variables, such as the kinetic energy and the potential energy of the particles, can be modeled using the normal distribution of products, providing insights into the overall behavior of the system.It is important to note that the normal distribution of products is not limited to the product of independent random variables. It can also be applied to the product of correlated random variables, although the mathematical treatment becomes more complex. In such cases, the covariance structure of the random variables must be taken into account when calculating the mean and variance of the logarithm of the product.Furthermore, the normal distribution of products is not always a perfect fit for real-world data. In some cases, the distribution of the product may deviate from the normal distribution, particularly when the underlying random variables have heavy tails or exhibit non-linear relationships. In such situations, alternative distributions, such as the log-normal distribution or the Weibull distribution, may be more appropriate.Despite these limitations, the normal distribution of products remains a powerful and widely-used tool in various fields of study. Its ability to capture the behavior of complex systems and provide insights into the underlying mechanisms has made it an indispensable part of the statistical and probabilistic toolbox.In conclusion, the normal distribution of products is a fascinating and important concept in the realm of statistics and probability theory. Its applications span a wide range of disciplines, from finance and biology to physics and engineering. By understanding the properties and limitations of this distribution, researchers and analysts can gain valuable insights into the behavior of complex systems and make more informed decisions in their respective fields of study.。

正态分布的种类

正态分布的种类
.
3. 非正态分布的原因
非对称或非正态分布的问题是在现场经常出现的问题,其潜在的原因 如下
1) 具有自然界限的数据 2) 筛选检查时不良品的选别 3) 分布的混合 4) 输入变量与输出变量间的非线性关系 5) 输入变量间的交互作用 • 按照时间的工程变化 • 缺乏独立性或周期的变化 • 测定器精密度问题 • 具有异常点(Outliers)的数据
.
尖度(Skewness)的解释
急尖或平尖分布的平均的分布在中心,但左,右两边的尾巴比正态分布 短或长. Kurtosis称为尖度,表示分布形态的平或尖的程度
正态分布时 Kurtosis为0, 急尖分布时(+),平尖分布时(-) 值. 在左图中Kurtosis值为3.082, 是(+)值,可以看出是平尖分布
.
1) 具有自然界限的情况
在物理上或不可避地存在无法测定数据的最小值或最大值时,例如时间,
不纯度,平坦度.主要 形成左边或右边斜型的分布.
100
工程与自然界限有一定9800 距离时
빈 70
150

60 50
수 40
30
频 100
20

10
150

50
0
0
2
4
6
8
10 12
频 100 率 数 50
用几台机器生产时, 因特定机器的故障 等发生的分布
一般的双重峰
极端的双重峰
.
斜型(Skewness)的解释
如柱型图,斜型分布是平均的分布从分布的中心偏向左或右,是左右 非对称的 Skewness表示数据偏移的程度
正态分布时 Skewness为0, 右边斜型分布是(+),左边斜型 分布是(-)值. 在左边图中Skewness值为2.186, 是(+)值,因此是右边斜型分布

教育心理专题正态分布名词解释

教育心理专题正态分布名词解释

教育心理专题正态分布名词解释正态分布,又称高斯分布,是概率论中最重要的连续概率分布之一。

正态分布在自然界和社会生活中都有广泛的应用。

1. 正态分布的定义:正态分布是一种对称且钟形曲线的连续概率分布。

它由两个参数完全确定,即均值μ和标准差σ,记作N(μ, σ)。

2. 均值(Mean):正态分布的均值μ是指随机变量的平均值,也可以视为曲线的中心位置。

3. 标准差(Standard deviation):正态分布的标准差σ是指随机变量的离散程度。

标准差较大表示数据点相对于均值更加分散。

4. 标准正态分布(Standard Normal Distribution):当均值μ为0,标准差σ为1时,得到的正态分布称为标准正态分布。

5. Z分数(Z-score):Z分数是指将原始数据转化为标准正态分布中的数。

计算Z分数的公式为:Z = (X-μ) / σ,其中X表示原始数据,μ表示均值,σ表示标准差。

6. 正态分布的特性:- 正态分布的对称性:正态分布的左右两侧镜像对称。

- 正态分布的峰度(Kurtosis):峰度是衡量分布形态陡峭程度的统计量。

对于正态分布而言,峰度为3,表示曲线的形状呈现典型的钟形。

- 正态分布的偏度(Skewness):偏度是衡量分布的不对称程度的统计量。

对于正态分布而言,偏度为0,表示左右两侧呈现完全对称。

7. 正态分布在教育心理学中的应用:正态分布是教育心理学中一些重要概念和实证研究的基础。

其中包括:- 测试分数分布:在大规模标准化测验中,测试分数通常服从正态分布,这使得我们可以利用正态分布的特性对测试分数进行解释和分析。

- 波特法则:波特法则指出,教育群体的智商分布近似服从正态分布,且均值为100,标准差为15。

这个规律使得教育心理学家能够根据智商的正态分布进行推理和诊断。

总的来说,正态分布是概率论中最重要的连续概率分布之一,在教育心理学中有着广泛的应用。

正态分布的特性以及与教育相关的应用有助于我们理解和分析教育现象中的统计数据。

正态分布(Normaldistribution)也称“常态分布”,又名高斯分布

正态分布(Normaldistribution)也称“常态分布”,又名高斯分布

正态分布(Normaldistribution)也称“常态分布”,⼜名⾼斯分布常⽤希腊字母符号:
正态分布公式
曲线可以表⽰为:称x服从正态分布,记为 X~N(m,s2),其中µ为均值,s为标zhuan准差,X∈(-∞,+ ∞ )。

其中根号2侧部分可以看成密度函数的积分为1,你就可以看成为了凑出来1特意设置的⼀个框架⽆实际意义。

标准正态分布另正态分布的µ为0,s为1。

判断⼀组数是否符合正态分布主要看 P值是否⼤于0.05。

1、∫
不定积分
不定积分的定义为:若函数f(x)在某区间 I 上存在⼀个原函数F(x),则称F(x)+C(C为任意常数)为f(x)在该区间上的不定积分,记为
2、∮
闭合曲⾯积分
3、∝
⽆穷⼩
4、∞
⽆穷⼤
5、∨
集合符号,并
6、∧
集合符号,交
7、∑
求和符号,连加
8、∏
求积符号,连乘
9、∪
逻辑符号,并
10、≌
全等
11、∈
集合符号,属于
12、∵
因为
13、∴
所以
14、∽
相似
15、√
开⽅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
Lars Larsson-Cohn
T
-3
-2
-1
0
1
2
3
2 √1 e−x /2 . 2π
E
x
Figure 1: The standard normal density ϕ(x) =
distributed (i.i.d.) standard normal random variables, then the density of the 2 − x2 i /2 = (2π )−n/2 e−|x| /2 . In √1 random vector X = (X1 , . . . , Xn ) in Rn is n i=1 2π e other words, the density depends only on the distance to the origin, a property known as isotropy. This has a number of interesting consequences. Consider, for example, the statistical theory of point estimation. In a linear model Y = Aβ + , the observation Y ∈ Rn is regarded as the sum of an unknown point Aβ in the column space C (A) of the (known) matrix A, and a random error , a vector of centered i.i.d. normal variables. As an example of such a model, we mention simple linear regression y = kx + m + , in which case y1 . . . = yn x1 1 1 k . . . + . . . . . . . m xn 1 n
Gaussian structures and orthogonal polynomials √ so that, with λk = 1/ n, 1 √ n
n
3
Yk = Y.
k=1
d
But the left hand side converges in distribution to a normal distribution as n → ∞ by the central limit theorem, and so the common distribution was actually normal. This also shows that the two properties discussed are more or less the same; they d both depend on the fact that λX + µY = (λ2 + µ2 )1/2 X for independent standard normal variables X and Y . This uniqueness gives additional good reasons to regard certain quantities as normally distributed (see also Section 4.1 below); we present two examples borrowed from the book [21] by E.T. Jaynes. Consider first an astronomer determining the position of a star. It is then natural to imagine that the error of measurement is isotropic, and that the horizontal error is independent of the vertical one. By the above, the error must then follow a two-dimensional normal distribution. A second example is provided by electrical noise. Experience has shown that the noise in electrical circuits has the same statistical structure, regardless of its origin. Mathematically, this amounts to saying that if we add the noise from two independent sources, the distribution is unchanged up to a constant factor. Again, this singles out the normal distribution as the only possibility.
Gaussian structures and orthogonal polynomials
Lars Larsson-oduction
The normal distribution
When asked to mention one statistical distribution, most people would probably come up with the normal distribution, also known as the Gaussian distribution after the legendary German mathematician Carl Friedrich Gauß (1777–1855). A large number of objects in life are usually considered normally distributed, for example the IQ of adult humans, the error made when measuring the mass of a protein, or, at least in the old days, the school marks of Swedish pupils. The reason for this is probably twofold. Firstly, the central limit theorem, perhaps the most fundamental result in probability theory, says that when adding random quantities, the sum tends to be more and more normally distributed. Since things that are measured can often be viewed as such sums (in the protein example, we might regard the total error of measurement as the sum of several smaller errors, due to different parts of the measurement equipment), it is natural to assume their distribution to be more or less normal. Secondly, the normal distribution is simple to deal with, and has some outstanding mathematical properties, making it a very interesting distribution in its own right. The present thesis consists of the following four papers from different areas in mathematics, but with one thing in common: They are all, in one way or the other, related to the normal distribution. I. On the constants in the Meyer inequality. II. Lp -norms of Hermite polynomials and an extremal problem on Wiener chaos. To appear in Arkiv f¨ or matematik 40 (1). III. Lp -norms and information entropies of Charlier polynomials. To appear in Journal of Approximation Theory. IV. Finite difference equations and convergence rates in the central limit theorem. Reprint of Papers II and III is made with permission from the publishers.
What is the maximum likelihood estimation of the parameters β , or, equivalently, the point EY ∈ C (A)? Since the error is isotropic, we should choose the point in C (A) closest to the observation Y in Euclidean distance. This is to say that the maximum likelihood estimation coincides with the least squares estimation, and can be found as the orthogonal projection of Y onto the linear subspace C (A) of Rn , a nice geometric interpretation of a statistical problem. We refer to the book [34] for more material on such matters. A second important property of the normal distribution is the possibility to form linear spaces of random variables. It is well-known that if {Xk }∞ k=1 is a sequence of independent standard normal variables, then any finite linear comn 2 bination k=1 λk Xk is also normally distributed. Since convergence in L implies convergence in distribution, the same is true for infinite sums, provided that ∞ 2 2 k=1 λk < ∞. Thus, the completion in L of the linear span of {Xk } is a Hilbert space, each element of which is a centered normal variable, a so-called Gaussian Hilbert space, see [20]. It is worth noting that the normal distribution is the unique distribution with any of these two properties, at least if finite variance is imposed. To see this, let Y, Y1 , Y2 , . . . be i.i.d. centered random variables with finite variance, and suppose that any finite linear combination thereof is distributed like Y up to a multiplicad n 2 1/2 Y, tive constant. Equating the variances, we see that n k=1 λk Yk = ( k=1 λk )
相关文档
最新文档