a_einbwl_som_10_ii
华三路由器软件升级指南
Pentax KP 使用手册说明书
Noticeable better af fine adjustment you can be able to this pentax of and. Remember that was this pentax kp manual wire hookup is a filter simulator function may earn an image sync are subject is an autofocus systems. People can apply a pentax user manual in the system packed with other devices, at the status af. Default function for and user is shaken during long time to the monitor also for your computer is a superb camera control dials as cancel menu items are nearly perfect. Usually seen pixel by pentax user manual before using the shutter speed for being accidentally deleted images at different and take a kind of. Discrepancies in pentax user and go practice the light settings select af mode in playback functions in tracking, so that adjusts the live previews on. Nature and video recording with pentax kp getting started explains your pentax! Refresh the user manual focusing area by fujitsu, while checking the kp in. Diopter correction functions in pentax kp camera until perfect focus on the features and off the brightness retrieves the
Enhancement of CO2 Adsorption and CO2_N2 Selectivity on ZIF-8 via Postsynthetic Modi
Enhancement of CO2Adsorption and CO2/N2Selectivity on ZIF-8via Postsynthetic ModificationZhijuan ZhangSchool of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou,510640,P.R.ChinaDept.of Chemistry and Chemical Biology,Rutgers University,Piscataway,New Jersey,08854Shikai Xian,Qibin Xia,Haihui Wang,and Zhong LiSchool of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou,510640,P.R.ChinaJing LiDept.of Chemistry and Chemical Biology,Rutgers University,Piscataway,New Jersey,08854DOI10.1002/aic.13970Published online January11,2013in Wiley Online Library()Imidazolate framework ZIF-8is modified via postsynthetic method using etheylenediamine to improve its adsorption per-formance toward CO2.Results show that the BET surface area of the modified ZIF-8(ED-ZIF-8)increases by39%,and its adsorption capacity of CO2per surface area is almost two times of that on ZIF-8at298K and25bar.H2O uptake on the ED-ZIF-8become obviously lower compared to the ZIF-8.The ED-ZIF-8selectivity for CO2/N2adsorption gets significantly improved,and is up to23and13.9separately at0.1and0.5bar,being almost twice of those of the ZIF-8. The isosteric heat of CO2adsorption(Q st)on the ED-ZIF-8becomes higher,while Q st of N2gets slightly lower com-pared to those on the ZIF-8Furthermore,it suggests that the postsynthetic modification of the ZIF-8not only improves its adsorption capacity of CO2greatly,but also enhances its adsorption selectivity for CO2/N2/H2O significantly. V C2013American Institute of Chemical Engineers AIChE J,59:2195–2206,2013Keywords:ZIF-8,modification,adsorption/gas,isosteric heat of adsorption,selectivityIntroductionCO2has often been cited as the primary anthropogenicgreenhouse gas(GHG)as well as the leading culprit inglobal climate change.The development of a viable carboncapture and sequestration technology(CCS),is therefore,ascientific challenge of the highest order.1–4Currently,a vari-ety of methods,such as membrane separation,chemicalabsorption with solvents,and adsorption with solid adsorb-ents,have been proposed to sequester CO2from thefluegases of power plant.Thereinto,the adsorption is consideredto be one of the most promising technologies for capturingCO2fromflue gases because of their easy control,low oper-ating and capital costs,and superior energy efficiency.5–7Many adsorbents have been investigated for CO2adsorptionincluding activated carbons,zeolites,hydrotalcites and metaloxides.8–14However,although some zeolite materials havebeen claimed to be most adequate for CO2separation fromflue streams,it is difficult to regenerate them without signifi-cant heating which leads to low productivity and greatexpense.15,16Recently,metal-organic frameworks(MOFs)haveattracted great attention and present a promising platform forthe development of next-generation capture materialsbecause of their high capacity for gas adsorption and tunablepore surfaces that can facilitate highly selective binding ofCO2.17–26To optimize a MOF for a particular application,itis important to be able to tailor its pore metrics and function-ality in a straightforward fashion.However,tailoring MOFsmaterials by modifying their textural properties(e.g.,surfacearea and pore volume)and surface chemistry(acid–baseproperties,functional groups)for adsorption application isstill a difficult task.27Many researchers have given insightinto modification of the MOF materials so as to develop newand better adsorbents.Strategies reported include ligandfunctionalization,24,28–39framework interpenetration,22,23introduction of alkali-metal cations,40–42control of poresize32,43–47and incorporation of open metal sites(OMSs).39,48–51However,because of the instability underconditions for the synthesis of MOFs or the competitivereaction with some framework components,it may be diffi-cult for certain functional groups to incorporate into MOFsusing aforementioned strategies.Another strategy for gener-ating desired functionalities in MOFs is the postsynthesis Additional Supporting Information may be found in the online version of thisarticle.Correspondence concerning this article should be addressed to Z.Li atcezhli@.V C2013American Institute of Chemical EngineersAIChE Journal2195June2013Vol.59,No.6modification of preconstructed,robust precursor MOFs.52–55 For example,An et al.33demonstrated that postsynthetic exchange of extra-framework cations within anionic bio-MOF-156can be used as a means to systematically modify its pore dimensions and metrics.Farha et al.57synthesized a series of cavity modified MOFs by replacing coordinated sol-vents with several different pyridine ligands.They found that a p-(CF3)NC5H4-modified MOF showed considerable improvements in the CO2/N2selectivities compared to the parent framework.46Long and his coworkers58previously reported the grafting of ethylenediamine(en)within a water-stable MOF H3[(Cu4Cl)3(BTTri)8](CuBTTri),and found that the en modified sample had more greater attraction of CO2 at low pressures and the CO2/N2selectivity also increased over the entire pressure range measured.More recently, Long and coworkers59incorporated the N,N0-dimethylethyle-nediamine(mmen)into the CuBTTri MOF,and showed that the CO2uptake was drastically enhanced.Zhang et al.60 reported that after ZIF-8was modified by ammonia impreg-nation,the surface basicity was greatly increased and there-fore the CO2uptake was enhanced.Park et al.61reported a postsynthetic reversible incorporation of organic linkers3,6-di(4-pyridyl)-1,2,4,5-tetrazine(bpta)into SNU-30 [Zn2(TCPBDA)(H2O)2]Á30DMFÁ6H2O through single-crystal-to-single-crystal transformations,and found that the desol-vated SNU-310exhibited enhanced selective adsorption of CO2over N2.Xiang et al.62incorporated the CNTs into HKUST-1,and then modified it with Li1.The results showed that the hybrid Li@CNT@[Cu3(btc)2],which is formed by the combination of Li doping and CNT incorpora-tion,having an enhancement of CO2uptakes by about 305%.However,to this date,no work has been reported out on the postsynthetic modification of ZIF-8to enhance its functionality.In this work,the postsynthetic modification of the ZIF-8is proposed to prepare a novel adsorbent with higher CO2 adsorption capacity and CO2/N2selectivity.The postsyn-thetic modification of the ZIF-8crystals would be carried out by using ethylenediamine treatment.Then the surface groups of the modified ZIF-8samples(ED-ZIF-8)would be characterized.Single-component isotherms of CO2and N2 on the modified ZIF-8samples would be measured sepa-rately.Furthermore,the CO2/N2selectivity is estimated by using IAST on the basis of single-component isotherms of CO2and N2.The influence of the textural structures and sur-face chemistry of the original and modified ZIF-8samples on their adsorption capacities for CO2and selectivity of CO2/N2would be discussed and reported here.This informa-tion will be valuable for selecting appropriate adsorbents for CO2capture process.Methods and MaterialsMaterials and instrumentsZinc nitrate hexahydrate(Zn(NO3)2Á6H2O,98%,extra pu-rity)and2-methylimidazole(H A MeIM)(99%purity)were purchased from J&K Chemicals.N,N A Dimethylacetamide (DMF)was purchased from Qiangshen Chemicals Co.,Ltd. of Jiangshu(Jiangshu,China),and it was further purified by 4A molecular sieve to eliminate the water.Maganetic suspension balance RUBOTHERM was sup-plied by Germany.Its precision was0.000001g.ASAP 2010sorptometer was supplied by Micromeritics Co., Norcross,GA,USA.AdsorbentsSynthesis of ZIF-8was performed following the reported procedures63with a few modifications.First,a solid mixture of zinc nitrate hexahydrate Zn(NO3)2Á6H2O(0.956g, 3.2 mmol)and2-methylimidazole(H A MeIM)(0.24g, 3.4 mmol)was dissolved in70mL of DMF solvent.The mixture was quickly transferred to a100mL autoclave and sealed. Second,the autoclave was heated at a rate of5K/min to 413K in a programmable oven and held at this temperature for24h under autogenous pressure by solvothermal synthe-sis,followed by cooling at a rate of0.3K/min to room tem-perature.Third,after removal of mother liquor from the mix-ture,chloroform(40mL)was added to the autoclave.The as-synthesized ZIF-8crystals were then isolated byfiltration. Colorless polyhedral crystals were collected from the upper layer,washed with DMF(10mL33),and dried at383K overnight.To further remove the guest species from the framework and prepare the evacuated form of ZIF-8crystals for modifi-cation and gas-sorption analysis,the as-synthesized ZIF sam-ples were immersed in methanol at ambient temperature for 48h,and evacuated at ambient temperature for5h,and sub-sequently at an elevated temperature673K for2h. Postsynthetic modification of adsorbentsThe as-synthesized ZIF-8crystals(labeled as ZIF-8)were dried at383K for24h for postsynthetic modification.The subsequent treatment applied to the modification of ZIF-8crystals consists of the following steps:The modified ZIF-8sample(labeled as ED-ZIF-8)was synthesized using ethylenediamine as a linker.In a typical procedure,the ZIF-8sample was added to30%ethylenediamine solution and then the mixture was placed in a stainless high-pressure autoclave.The autoclave was heated in an oven at416K for 1h and then381K for6h.The light yellow product wasfil-tered and washed with deionized water.Finally,the sample was dried at383K overnight.Characterization of adsorbentsThe specific surface area and pore volume of original ZIF-8and modified ZIF-8crystals were measured on a Micrometrics gas adsorption analyzer ASAP2010instrument equipped with commercial software for calculation and analysis.Powder X-ray diffraction data were collected using a D8 advance h-2h diffractometer(Bruker)in reflectance Bragg-Brentano geometry employing Cu K a line focused radiation with40kV voltages and40mA current.The X-ray scanning speed was set at2 /min and a step size of0.02 in2h.A Jade5XRD pattern processing software(MDI,Inc.,Liver-more,CA)was used to analyze the XRD data collected on the ZIF-8samples.The surface organic molecules were analyzed by taking FTIR spectra on a Bruker550FTIR instrument equipped with a diffuse reflectance accessory that included a reaction cell.Data acquisition was performed automatically using an interfaced computer and a standard software package.The samples were dried in vacuo at423K prior to mixing with KBr powder.The samples were run in ratio mode allowing for subtraction of a pure KBr baseline.The sample chamber2196DOI10.1002/aic Published on behalf of the AIChE June2013Vol.59,No.6AIChEJournalwas kept purged with nitrogen during the entire experiment.The spectrometer collected 64spectra in the range of 400–4,000cm 21,with a resolution of 4cm 21.CO 2and N 2adsorption measurementsThe CO 2and N 2adsorption-desorption isotherms at 298K,308K,318K,and 328K were obtained on a RUBO-THERM magnetic suspension balance.The initial activa-tion of the modified sample was carried out at 423K for 12h in a vacuum environment.He (ultra-high purity,U-sung)was used as a purge gas in this study.The adsorp-tion processes were carried out using high purity CO 2and N 2(99.999%)gas.A feed flow rate of 60mL/min of CO 2,40mL/min of N 2and 30mL/min of He,respec-tively,were controlled with the mass flow controllers (MFC)to the sample chamber.Both adsorption and de-sorption experiments were conducted at the same tempera-ture.The temperature of the sorption chamber can be adjusted and maintained constant by an internal tempera-ture sensor.However,the pressure can be changed step-wise through the gas flow rate.Typically,there are four steps for finishing determination of an isotherm of CO 2or N 2by using Rubotherm magnetic suspension balance.These detail steps are shown by the operation manual of Rubotherm maganetic suspension balance.H 2O adsorption measurementsThe water adsorption measurements were conducted on a computer-controlled DuPont Model 990TGA.The partial pressure of water was varied by changing the blending ratios of water-saturated nitrogen and pure nitrogen gas streams.Before measurement,the modified ZIF-8samples were acti-vated at 423K for 6h.Results and DiscussionStructure and pore characterizationFigure 1exhibits the adsorption-desorption isotherms of N 2at 77K on the two samples ZIF-8and ED-ZIF-8.It can be seen that both samples show type-I behavior,indicating they are microporous in nature.Table 1lists structure param-eters of the two samples.These data indicate that the BET surface area and micropore volume of the ED-ZIF-8sample are significantly higher than those of the original ZIF-8sam-ple,with an increase of $39%and 35.6%,respectively.Yaghi and his coworkers reported a pore volume of 0.66cm 3/g for ZIF-8from the single crystal structure.For the ZIF-8sample,the total pore volume is calculated to be 0.54cm 3/g,because part of the pores might be blocked.However,after the postsynthetic modification,the blocked pores were reopened,and at meanwhile,some new pores were formed.64,65Thus,the total pore volume of the ED-ZIF-8sample is greatly improved.Figure 2shows the powder X-ray diffraction (PXRD)pat-tern of the modified ZIF-8sample.It can be seen that the main peaks of the modified ZIF-8sample are very clear,and similar to those of the original ZIF-8sample,indicating that the integrity of the modified ZIF-8sample maintains well af-ter the postsynthetic modification.However,for a deep look-ing,it can be found that the major peaks of ED-ZIF-8all shifted to the left side (low-angle area)a little bit,which means after modification,the lattice distance increased.In order to obtain information concerning changes in the surface groups,FTIR experiments were carried out to char-acterize the samples.Figure 3a shows the FTIR spectra of the original ZIF-8and the ED-ZIF-8sample.It is noticed that the spectra for the two samples show high similarities,and the main peaks of both ZIF-8samples match well with the published FTIR spectra for the ZIF-8.However,someTable 1.Porous Structure Parameters of the Modified ZIF-8CrystalsSample BET surface area (m 2.g 21)Langmuir surface area (m 2.g 21)Micropore volume(cm 3.g 21)Total pore volume (cm 3.g 21)Micropore diameter (nm)Mesopore diameter (nm)ZIF-8102513520.450.540.352 4.43ED-ZIF-8142818970.610.750.5444.53Figure 1.N 2adsorption-desorption isotherms of ZIF-8and ED-ZIF-8samples.[Color figure can be viewed in the online issue,which is available at .]Figure2.PXRD patterns of ZIF-8and ED-ZIF-8samples.[Color figure can be viewed in the online issue,which is available at .]AIChE Journal June 2013Vol.59,No.6Published on behalf of the AIChE DOI 10.1002/aic2197differences are also observed.For example,the spectrum of the ED-ZIF-8sample is different from that of the ZIF-8sam-ple in that (1)as shown in Figure 3b there is a new peak at 3381cm 21which is assigned to N A H group appeared on the spectrum of the ED-ZIF-8sample,suggesting some N A H groups have been introduced on the surfaces of the sample ED-ZIF-8,and (2)a peak at 3626cm 21assigned to O A H of the adsorbed H 2O is present in the spectrum of the ZIF-8sample,which is absent in the spectrum of the ED-ZIF-8sample,as shown in Figure 3b.CO 2and N 2adsorption isothermsFor comparison,Figure 4shows the isotherms of CO 2on the ZIF-8and ED-ZIF-8samples.It is visible that the amount adsorbed of CO 2increases as temperature decreases.This suggests that the adsorption of CO 2is mainly physical adsorption.More importantly,it is found that the ED-ZIF-8sample had higher CO 2adsorption capacities compared to the ZIF-8sample,indicating that the adsorption capacities of the modified ZIF-8toward CO 2are greatly improved,nearly being twice as much as the ZIF-8.One of the reasons is that the surface area (BET)of the ED-ZIF-8increases by 39%,as indicated in Table 1.The other reason is that adsorptioncapacity per unit surface area of the ED-ZIF-8for CO 2increases due to an introduction of N A H groups by postsyn-thetic modification.To further understand that,Figure 4a and 4b are separately transferred into Figure 5a and 5b in which the equilibrium uptakes of CO 2based on unit surface area (BET)of the two samples are plotted as a function of CO paring Figure 5b and Figure 5a shows that the CO 2uptake per surface area (BET)of the ED-ZIF-8is obvi-ously higher than that of the ZIF-8,which is mainly ascribed to the introduction of N A H groups,as shown in Figure 3.Figure 6a and 6b show the N 2adsorption isotherms on the two samples.It is visible that the N 2uptakes on the modified ZIF-8samples are slightly higher than that on the ZIF-8due to its larger surface area and pore volume after modification.However,after Figure 6a and 6b are converted into Figure 7a and 7b in which the equilibrium uptakes of N 2based on unit surface area of the two samples are plotted as a function of pressure,it is found from Figure 7that the equilibrium uptakes of N 2per surface area of the ED-ZIF-8are slightly lower than that of the ZIF-8,which means that ED-ZIF-8sample has less affinity toward N 2than ZIF-8sample.This will be helpful to enhance the adsorption selectivity for CO 2/N 2.Figure 3.a.FTIR spectra of the modified ZIF-8crystalsbetween 4,000–400cm 21;b.FTIR spectra of the modified ZIF-8crystals between 4000–2,400cm 21.[Color figure can be viewed in the online issue,which is available at .]Figure 4.a.Isotherms of CO 2on the ZIF-8sample withdifferent temperatures; b.isotherms of CO 2on the ED-ZIF-8sample with different temperatures.[Color figure can be viewed in the online issue,which is available at .]2198DOI 10.1002/aicPublished on behalf of the AIChE June 2013Vol.59,No.6AIChEJournalMultiple cycles of CO 2adsorption-desorption on the ED-ZIF-8To evaluate the regeneration performance of the modified sample or the reversibility of CO 2adsorption on the modi-fied sample,the experiments of multiple cycles of CO 2adsorption-desorption on the ED-ZIF-8were performed in the Rubotherm system at 298K.For adsorption process,the adsorption pressure were targeted for 25bar;while for de-sorption process the system pressure was targeted for 1mbar,and then the desorption system was quickly depressur-ized by using vacuum pumping.Figure 8shows the variation curve of the amounts adsorbed of CO 2on the ED-ZIF-8dur-ing four consecutive cycles of CO 2adsorption-desorption experiments at 298K.It was visible clearly that during the desorption,the amounts adsorbed of CO 2on the ED-ZIF-8sample decreased sharply with time,and then reached a very low content,about 2.21wt %of residual CO 2which was present on the sample after desorption at 1mbar.The effi-ciency of CO 2desorption was nearly up to 98%over the entire four circles.It indicated further that CO 2adsorption was reversible with very little accumulation of irreversible bound CO 2on the ED-ZIF-8framework.In addition,it wasalso observed from Figure 8that the curves representing the cycles of CO 2adsorption-desorption experiments were very similar,suggesting that adsorption and desorption properties of the sample ED-ZIF-8for CO 2were stable or repeatable.It also proved that the pressure swing was effective in strip-ping adsorbed CO 2from the ED-ZIF-8.H 2O adsorption isothermsFigure 9shows the water isotherms on the modified ZIF-8samples at 298K.The water uptake on the ED-ZIF-8sample is less than that on the ZIF-8sample,indicating that the sur-face of the modified sample became more hydrophobic com-pared to the ZIF-8sample.It also means that the interaction of the water molecule with the modified sample became weaker as compared to that with the ZIF-8.Ideal adsorbed solution theory (IAST)selectivity of CO 2/N 2The ideal adsorbed solution theory (IAST)developed by Myers and Praunitz 66provides an effective method to predict the adsorption selectivity and the adsorption equilibrium of gas mixtures from the isotherms of the pure components.Figure 5.a.Isotherms of CO 2on the ZIF-8samplebased on unit surface area;b.isotherms of CO 2on the ED-ZIF-8sample based on unit surface area.[Color figure can be viewed in the online issue,which is available at .]Figure 6.a.Isotherms of N 2on the ZIF-8sample atdifferent temperatures;b.isotherms of N 2on the ED-ZIF-8sample at different temperatures.[Color figure can be viewed in the online issue,which is available at .]AIChE JournalJune 2013Vol.59,No.6Published on behalf of the AIChE DOI 10.1002/aic2199Previous work reported that the IAST can accurately predict gas mixture adsorption in a number of zeolites and MOF materials.10,48,67–70The IAST assumes that the adsorbed mixture is an ideal solution at constant spreading pressure and temperature,where all the components in the mixture conform to the rule analogous to Raoult’s law,and the chemical potential of the adsorbed solution is considered equal to that of the gas phase at equilibrium.From the IAST,the spreading pressure p is given byp 0i ðp 0i Þ5RT A ðp 0iqd ln p (1)p Ã5p A 5ðp 0i 0q i dp (2)Where A is the specific surface area of the adsorbent,p andp *are the spreading pressure and the reduced spreading pres-sure,separately.p 0i is the gas pressure of component i corre-sponding to the spreading pressure p of the gas mixture.At a constant temperature,the spreading pressure of single component is the samep Ã15p Ã25…5p Ãn 5p(3)For binary adsorption of component 1and 2,the IASTrequiresy 1p t 5x 1p 1ð12y 1Þp t 5ð12x 1Þp 2(4)Where y 1and x 1denote the molar fractions of component 1in the gas phase and in the adsorbed phase,respectively.p t is the total gas pressure,p 1and p 2are the pressures of com-ponent 1and 2at the same spreading pressure as that of the mixture,respectively.Adsorption selectivity in a binary mixture of component 1and 2is defined asS 125x 1x 2 y 2y 1 (5)For the application of IAST to predict adsorption separa-tion selectivity,the following two conditions are necessary:good quality adsorption data of each single component;and excellent curve fitting model for such data.48,71,72In order to perform the integrations of Eqs.(1)and (2)required by IAST,the single-component isotherms should be fitted by a proper isotherm model.In practice,several meth-ods are available.In this work,it is found that the dual-site Langmuir-Freundlich (DSLF)equation can be successful to fit this set of adsorption data.The dual-site Langmuir-Freundlich model can be expressed as followsq 5q m ;13b 1p 1=n 111b 1p 11q m ;23b 2p 1=n 211b 2p 2(6)Where p is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa),q m,1,q m,2are the saturation capaci-ties of sites 1and 2(mmol/g),b 1and b 2are the affinity coefficients of sites 1and 2(1/kPa),and n 1and n 2are the deviations from an ideal homogeneous surface.Figure 10shows a comparison of the model fits and the isotherm data.It is visible that the DSLF model can be applied favorably for fitting experimental data of CO 2and N 2adsorption.Table 2presents the fitting parameters ofFigure 7.a.Isotherms of N 2on the ZIF-8sample basedon unit surface area;b.isotherms of N 2on the ED-ZIF-8sample based on unit surface area.[Color figure can be viewed in the online issue,which is available at .]Figure 8.Recycle runs of CO 2adsorption-desorptionon the ED-ZIF-8at 298K and 25bar for adsorption and 1mbar for desorption.[Color figure can be viewed in the online issue,which is available at .]2200DOI 10.1002/aicPublished on behalf of the AIChE June 2013Vol.59,No.6AIChEJournalDSLF equation as well as the correlation coefficients (R 2).Examination of the data shows that this DSLF model is able to fit the adsorption data well since the correlation coeffi-cients R 2are up to 0.9997.In this work,the equilibrium adsorption data of single component CO 2as well as N 2are available,and the DSLF model can fit the experimental isotherms of CO 2and N 2adsorption very well.Therefore,the DSLF model can be combined with the ideal adsorbed solution theory (IAST)to predict the mixture adsorption isotherms and calculate the selectivities of the two samples for CO 2/N 2adsorption.Figure 11a and 11b present,respectively,the adsorption isotherms predicted by IAST for equimolar mixtures of CO 2/N 2in the samples ZIF-8and ED-ZIF-8as a function of total bulk pressure.It can be seen that CO 2is preferentially adsorbed over N 2on the two samples because of stronger interactions between CO 2and the ZIF-8sample,and the amount adsorbed of N 2is much lower in the mixtures than that in single-component adsorption because of competition adsorption from CO 2,which adsorbs more strongly.Figure 12shows the IAST-predicted selectivities of the two samples for equimolar CO 2and N 2mixtures at 298K as a function of total bulk pressure.It can be seen that the adsorption selectivity of the two samples for CO 2/N 2dropped with an increase in the pressure.More importantly,Figure 9.H 2O adsorption isotherms on the modifiedZIF-8samples at 298K.[Color figure can be viewed in the online issue,which is available at .]Table 2.The Fitting Parameters of the Dual-site Langmuir-Freundlich Equations for the Pure Isotherms of CO 2and N 2at 298KZIF-8ED-ZIF-8CO 2N 2CO 2N 2R 20.99970.99990.99970.9999q m,1(mmol/g)27.2527.8748.8828.32q m,2(mmol/g) 2.122 1.919 4.672 1.847b 1(atm 21)0.015330.0011700.012590.001388b 2(atm 21)0.0068950.026090.029480.02504n 1 1.6000.7875 1.4040.7704n 20.32440.96340.44300.8671Figure 10.DSLF fitting of the CO 2and N 2isotherms onZIF-8and ED-ZIF-8at 298K.[Color figure can be viewed in the online issue,which is available at .]Figure11.a.The IAST -predicted isotherm forequimolar CO 2/N 2mixtures of the ZIF-8sample at 298K as a function of total bulk pressure; b.the IAST -predicted isotherm for equimolar CO 2/N 2mixtures of the ED-ZIF-8sample at 298K as a function of total bulk pressure.[Color figure can be viewed in the online issue,which is available at .]AIChE Journal June 2013Vol.59,No.6Published on behalf of the AIChE DOI 10.1002/aic2201the adsorption selectivity of CO 2/N 2on the sample ED-ZIF-8is always higher than that on the sample ZIF-8,especially in the low-pressure region.For example,at 0.1and 0.5bar,the selectivity of the sample ED-ZIF-8for CO 2/N 2were up to 23and 13.9separately,which is almost twice of those of the sample ZIF-8.Figure 13a and 13b show,respectively,the IAST-pre-dicted selectivities of the samples ZIF-8and ED-ZIF-8for CO 2/N 2at different mixture compositions and different pres-sures.It is noticed that the selectivity increases rapidly as the gas-phase mole fraction of N 2approaches unity.For example,at yN 250.9,a typical feed composition of flue gas,high selectivities are obtained.Even at yN 250.5,the selectivity of the ED-ZIF-8for CO 2/N 2is in the range of 6–24,much higher than those on the ZIF-8sample and many other MOF samples such as ZIF-7030,ZIF-6830and MOF-508b.73This property is very important since some separa-tion processes could be operated at low pressures,such as vacuum swing adsorption (VSA),which could be extremely efficient by using the sample ED-ZIF-8because its selectiv-ity increases dramatically with decreasing pressure.Ideal adsorbed solution theory (IAST)selectivity of CO 2/N 2/H 2OThe major challenge of CO 2capture from power plant flue gas wastes is the separation of CO 2/N 2.In addition,competition adsorption of water molecule must be taken into account,because these flue gas wastes are usually saturated with certain amount of water (5–7%by volume)for the industrial postcombustion processes.Thus,for real industrial use of adsorbents,the effect of water on CO 2/N 2selectivity is another crucial factor that needs to be considered and evaluated.Here,the IAST was adopted to evaluate the ter-nary mixture CO 2/N 2/H 2O adsorption on the modified ZIF-8samples.First,the experimental isotherms of water on the modified ZIF-8samples at 298K were fitted using the DSLF model.Table 3presents the fitting parameters of DSLF equation as well as the correlation coefficients.It can be seen that theDSLF model fits the H 2O adsorption on both samples very well.Second,the DSLF model was combined with the ideal adsorbed solution theory (IAST)to predict the mixture adsorption isotherms,and then calculate the selectivities of the two samples for CO 2/N 2adsorption.Figure 14shows the predicted isotherms of ternary mix-ture CO 2/N 2/H 2O on the modified ZIF-8samples at 298K.It can be observed that in comparison with the ZIF-8,after modification,the CO 2adsorption capacity of the ED-ZIF-8in the ternary mixture obviously increased,and its N 2adsorption capacity somewhat increased,which made CO 2/N 2adsorption selectivity of the ED-ZIF-8increase.More importantly,its water adsorption capacity in the ternary mix-ture became lower compared to the ZIF-8,and it was also lower than the single component water uptake.It means the competition adsorption of H 2O in the ternary mixture was weakened on the surfaces of the ED-ZIF-8sample.Figure 12.The IAST -predicted selectivity for equimolarCO 2and N 2at 298K as a function of total bulk pressure.[Color figure can be viewed in the online issue,which is available at .]Figure 13.a.The IAST predicted selectivities atdifferent mixture compositions and different pressures for the ZIF-8sample at 298K;b.the IAST predicted selectivities at different mixture compositions and different pressures for the ED-ZIF-8sample at 298K.[Color figure can be viewed in the online issue,which is available at .]2202DOI 10.1002/aicPublished on behalf of the AIChE June 2013Vol.59,No.6AIChEJournal。
Bussmann
Finger-safe power distribution blocksCatalog symbol:• PDBFS_Description:The small footprint, high Short-Circuit Current (SCCR) Bussmann™ series power distribution blocks provide IP20* finger-safe protection under specified conditions. These UL® Listed, single-pole blocks are of a modular design that permits dovetailing together the required number of poles for an application and still meet the UL 1953 minimum 1” and 2” spacing required per UL 508A for feeder circuit applications and per NEC® for field installations.With SCCRs up to 200 kA, these blocks help achieve compliance with National Electrical Code (NEC) and OSHA requirements by resolving a common SCCR “weak link” in industrial control panels.To increase application flexibility, these blocks feature dual-wire rated ports that accept copper or aluminum conductors while retaining a UL Listed status.With panel or 35 mm DIN-Rail** mounting for application flexibility these blocks are suitable for installation in wireways and industrial control panel feeder and branch circuits.* See table on page 5.** PDFFS504 panel mount only.Catalog number example:PDBFS204 is a 1-pole blockWhere:• The catalog symbol “PDBFS” defines the block as a finger-safe design.• The catalog number ending “204” in this example defines this block’s lineside and loadside characteristics covering the ampacity, number of ports and wire sizes, etc.• See the catalog number table for details on the available lineside/loadside characteristics.How to order:From the catalog number table, select the catalog number that defines the desired lineside/loadside port and conductor characteristics.Order one block per pole for the application. Multiple single-pole blocks can be ganged together via the dovetailing feature to form multi-pole configurations.Specifications:Ratings• Volts:• 600 V (UL)• 690 V (IEC)• Amps: 175 to 760 A• SCCR: Up to 200 kA (see table for circuit protection details)Agency information• UL 1953 Listed, Guide QPQS, File E256146• CSA® Certified, Class 6228-01, File 47235• RoHS compliant• CEFlammability rating• UL 94 V0Storage and operating temperature range • -4°F to 248°F (-20°C to 120°C)Conductors†• Stranded 75°C copper and aluminum• Higher temperature rated conductors permitted with appropriate derating† As specified in the catalog number table.2Technical Data 10536Effective June 2021Finger-safe power distribution blocks/bussmannseriesFeatures and benefits•IP20 finger-safe under specified conditions increases safety by isolating energized connections.•Wire-ready captive termination screws cannot be misplaced and are shipped “backed out” to save time on conductor installation.• Sliding DIN-Rail latch provides easy block mounting.•For multiple pole applications, all single-pole units can be gang mounted by using the interlocking dovetail pins that are pre-installed on the side of the blocks.•Elongated panel-mounting holes provide greater flexibility and installation ease when matching up with drilled panel holes.Dual wire port application•Rated for dual wire port application to increase the possiblenumber of lineside and loadside connections. E.g., PDBFS220 can accept two wires into the lineside port (#4 - #14 Cu, #4 - #8 Al) and two wires per port (eight connections total) on the loadside lug (#8 - #14 Cu, #8 Al).•Dual wire applications are only viable when using two wires of the same size, stranding, and insulating and conductor material.Ferrule terminal application•Bussmann series PDBFS power distribution blocks are rated for use with UL Listed ferrules (see catalog number table for details).•Ferrule applications allow for the use of a broader range of conductor stranding and simulate a more efficient, solid wire connection with the PDBFS terminal port.•Always use UL Listed ferrules in accordance with the manufacturer’s specifications and instructions.Catalog numbers:(customer supplied) applied according to the manufacturer’s specifications. Ferrule ratings apply to copper wire only.** See pages 4 and 5 for the tested upstream overcurrent protective devices necessary for achieving these SCCRs.† Torque rating for dual wire and ferrule application is 30.5 N•m (270 Lb-in).†† Torque rating for ferrule application is 13.6 N•m (120 Lb-in).3Finger-safe power distribution blocksTechnical Data 10536Effective June 2021/bussmannseries Selecting SCCR power distribution blocks and terminal blocksShort-circuit current rated power distribution blocksBussmann series power distribution blocks have three distinct styles to match different application needs. There are the PDBFS_ and PDB_ high short-circuit current rated power distribution blocks and the 16_ power terminal blocks. The differences are whether the power distribution blocks are enclosed or not, and whether they are UL 1953 Listed power distribution blocks or UL 1059 Recognized power terminal blocks, which have different minimum spacing requirements. The table on this page will assist you in selecting which block is right for your application.Why these are importantPer the NEC and OSHA, equipment cannot be installed in anelectrical system at a location where the available fault (short-circuit) current is greater than the equipment’s SCCR.Further, equipment SCCRs are required in the 2014 NEC and for UL 508A Listed control panels. Marking the equipment SCCR on control panels (NEC 409.110), industrial machinery electrical panelsSelection tableThis table provides an overview of the three Bussmann series power distribution and terminal blocks mentioned above. For details on the PDB_ blocks, see data sheet number 10537. For the 16_ blocks, see data sheet numbers 10533 (UL Recognized power distribution blocks),10534 (splicer blocks) and 10535 (stud blocks).PDBFS_distribution blocksY es***Y es Y es Y es Y es Y es Y esPDB_UL 1953 Listed powerdistribution blocksNo †Y es Y es Y es Y es Y es Y es, with optional cover 16_UL 1059 Recognizedterminal blocksNo †Y esNo ††Y esNo ††Y esNo* When protected by proper fuse class with maximum ampere rating specified or smaller.** For details, see PDB and TB minimum spacing requirements for equipment table below.*** IP20 finger-safe under specific conditions, see data sheet page 5.† Optional covers are available. Not IP20, but provide a safety benefit.††No, except: Y es, if single pole units installed with proper spacings.Power distribution and terminal block minimum spacing requirements for equipment508A branch circuits 3/8”1/2”1/2”1995 HVAC3/8”1/2”1/2”Note: Refer to specific UL standards for complete spacing details.(NEC 670.3(A)), and HVAC equipment (NEC 440.4(B)) is required by the NEC.Power distribution and terminal blocks not marked with a component SCCR are typically one of the weakest links in a control panel’s equipment SCCR and may limit the equipment SCCR to no more than 10 kA. The PDBFS_ and PDB_ products have the increased spacing required for use in feeder circuits of equipment listed to UL 508A (UL 1059 terminal blocks must be evaluated for proper spacings). Also, for building wiring systems, the PDBFS_ andPDB_ power distribution blocks can be used to meet the 2014 NEC requirements in section 376.56(B) for power distribution blocks in wireways.See the last page of this data sheet for SCCR tools and resources to help you further understand and solve your SCCR needs.4Technical Data 10536Effective June 2021Finger-safe power distribution blocks/bussmannseriesUpstream fusing for SCCR and minimum enclosure dataThis table contains the tested SCCR levels for each PDBFS power distribution block using the specified lineside and loadside conductors and Bussmann series Class J, RK1, RK5 and T fuses. Using these tested SCCR levels also requires the power distribution block be installed in anenclosure with the minimum size indicated for each catalog number.PDBFS2202/0 - #8#4 - #1220010060200200 kA 16 x 16 x 6.75#4 - #1417510030175100 kA 2001006020050 kA PDBFS303350 - #6350 - #6400200100400200 kA 36 x 30 x 12.625PDBFS330500 - #6#2 - #6400200100400200 kA 24 x 20 x 6.75#6 - #142001006020050 kA 17510030175100 kA PDBFS377300 - #4#4600400200600200 kA 24 x 20 x 6.75400200100400100 kA #4 - #142001006020050 kA #4#460040020060050 kA PDBFS500350350600400200600200 kA 36 x 30 x 12.625350 - #4350 - #4600400200600100 kA PDBFS504500500600600200800**200 kA 36 x 30 x 12.625500 - #6500 - #6600400200600100 kAAmpacities 75°C per NEC ® Table 310.16 and UL 508A Table 28.1.* Class G 60 A (SC-60) or less or Class CC 30 A (LP-CC-30, FNQ-R-30, KTK-R-30) or less are suitable for all SCCRs in this table.** Class L 800 A (KRP-C 800_SP) or less fuses suitable for this particular SCCR case.Upstream circuit breakers for SCCR and minimum enclosure dataThis table contains the tested SCCR levels for each PDBFS power distribution block using the specified lineside and loadside conductors and Eaton and General Electric circuit breakers. Using these tested SCCR levels also requires the power distribution block be installed in an enclosure with the minimum size indicated for each catalog number.PDBFS SCCR as rated with Eaton circuit breakersPDBFS2042/0 - #82/0 - #865480E125H, EGB125, E125B, EGE125,E125G, EGS125, E125S, PDG13P , PDG13M12516 x 16 x 6.75PDBFS330500 - #3#2 - #814480LGH400, L400H, LGE400, L400E, LGS400, L400S, PDG33M, PDG33G, PDG33K 40024 x 20 x 6.7525LGC400, L400C, LGU400,L400U, LGX400, L400X, PDG33P PDBFS377(2) 300 - #2#430480LGH600, L600H, LGE600, L600E, LGS600, L600S, PDG33M, PDG33G, PDG33K60024 x 20 x 6.75#618#814#442LGC600, L600C, LGU600,L600U, LGX600, L600X, PDG33P#635#8145Finger-safe power distribution blocksTechnical Data 10536Effective June 2021/bussmannseriesPDBFS SCCR as rated with General Electric circuit breakersPDBFS2042/0 - #82/0 - #848016 x 16 x 6.7525SEHA, PEAC, PEBC,PEAE, PEBE150PDBFS2202/0 - #8#4 - #1265480SELA, PEAN, PEBN 15016 x 16 x 6.7525SEHA, PEAC, PEBC,PEAE, PEBE150PDBFS303250 - #6350 - #665480SFLA, PEDN, PEEN 25024 x 20 x 6.75250 - #635SFHA, PEDE, PEEE 2503/0 - #6350 - #665SELA, PEAN, PEBN 15025SEHA, PEAC, PEBC,PEAE, PEBE150PDBFS330250 - #6#2 - #1265480SFLA, PEDN, PEEN 25024 x 20 x 6.7535SFHA, PEDE, PEEE 2503/0 - #665SELA, PEAN, PEBN 15025SEHA, PEAC, PEBC,PEAE, PEBE150Specified installation conditions for IP20 finger-safe ratingsThis table contains the installed wire and trim lengths, and other conditions the PDBFS power distribution blocks need in order to be compliant withIP20 specifications. IP20 compliance status is indicated in the lineside and loadside wire port and terminal screw opening columns.PDBFS2202/0 - #80.75 (19)Y es Y es #4 - #14Top row 0.55 (14), Bottom row 0.85 (22)Y es Y es Screws fully opened N/A Y es No wire in hole No N/A PDBFS303350kcmil - 2/01.35 (34)Y es Y es 350kcmil - 2/01.25 (32)Y es Y es 1/0 - #6No Y es 1/0 - #6No Y es PDBFS330500 - 250kcmil1.25 (32)Y esY es #2 - #14Top row 0.59 (15), Bottom row 1.2 (30)Y es Y es 4/0 - #6No Y es Screws fully opened N/A Y es No wire in hole Y es N/A PDBFS377300kcmil - 4/0Top row 1.15 (29)bottom row 1.4 (36)Y esY es #4 - #14Top row 0.55 (14), Middle row 1.00 (35), Bottom row 1.22 (31)Y es Y es 3/0 - #4No Y es Screws fully open N/A Y es Screws fully open N/A No No wire in port Y es N/A No wire in port No N/A PDBFS500350kcmil - 2/01.25 (32)NoY es 350kcmil - 2/01.25 (32)Y esY es 1/0 - #4No Y es 1/0 - #4No Y es Screws fully opened N/A No Screws fully open N/A No No wire in port No N/A No wire in port No N/A PDBFS504500 - 350kcmil 1.25 (32)Y esY es 500 - 350kcmil 1.25 (32)Y esY es 300 - #6No Y es 300 - #6No Y es Screws fully open N/A No Screws fully opened N/A No No wire in portNoN/ANo wire in portNoN/A6Technical Data 10536Effective June 2021Finger-safe power distribution blocks/bussmannseriesDimensions — in (mm)PDBFS2201.03 (26) 3.73 (95) 2.15 (54) 3.55 (90) 2.92 (74)0.20 (5)0.40 (10)N/A PDBFS3031.54 (39) 4.66 (118) 2.87 (73) 4.49 (114) 3.82 (97)0.20 (5)0.44 (11)N/A PDBFS3301.54 (39) 4.66 (118) 2.87 (73) 4.49 (114) 3.82 (97)0.20 (5)0.44 (11)N/A PDBFS3771.88 (47) 4.66 (118) 2.93 (74) 4.49 (114) 3.82 (97)0.20 (5)0.44 (11)N/A PDBFS500 2.37 (60) 4.66 (118) 2.60 (66) 4.49 (114) 3.82 (97)0.20 (5)0.44 (11)N/APDBFS5042.54 (64)4.49 (114)3.15 (80)—3.82 (97)0.20 (5)0.35 (9)1.81 (46)LinesideLoadsideLinesideLoadsidePDBFS220PDBFS204PDBFS303PDBFS3307Finger-safe power distribution blocksTechnical Data 10536Effective June 2021/bussmannseries LinesideLoadsideLinesideLoadsideLinesideLoadsidePDBFS377PDBFS500PDBFS504Multi-pole block gangingPDBFS power distribution blocks are single-pole devices that can be ganged for the required number of poles using the interlocking dovetail pins that are pre-installed on each block.To interlock and gang two or more blocks (DIN-Rail or panel mount):•Place blocks of the same catalog number side-by-side and slide the dovetail pin of one block into the reciprocal slot on the other and press together until fully seated and the backs of both blocks are coplanar.•Repeat the step above until the number of desired poles are gangedNote: Dissimilar PDBFS blocks can be ganged together. E.g., a PDBFS204 can be ganged with a PDBFS220 using the interlocking dovetailing pins. Ganging a PDBFS504 with any other PDBFS will prevent DIN-Rail mounting.Dovetailing feature permits easy ganging for multi-pole applications8Finger-safe power distribution blocksTechnical Data 10536Effective June 2021Eaton, Bussmann and OSCAR are valuable trademarks of Eaton in the U.S. and other countries. Y ou are not permitted to use the Eaton trademarks without prior written con-sent of Eaton.CSA is a registered trademark of the Canadian Standards Group.NEC is a registered trademark of the National Fire Protection Association, Inc.UL is a registered trademark of the Underwriters Laboratories, Inc.Eaton1000 Eaton Boulevard Cleveland, OH Bussmann Division 114 Old State Road Ellisville, MO 63021United States/bussmannseries © 2021 EatonAll Rights Reserved Publication No. 10536June 2021Follow us on social media to get thelatest product and support information.For Eaton’s Bussmann series product information,call 1-855-287-7626 or visit:/bussmannseriesThe only controlled copy of this data sheet is the electronic read-only version located on the Eaton network drive. All other copies of this document are by definition uncontrolled. This bulletin is intended to clearly present comprehensive product data and provide technical information that will help the end user with design applications. Eaton reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Eaton also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.DIN-Rail mountingAll versions of the Bussmann series PDBFS power distribution blocks can be DIN-Rail mounted except for the PDBFS504, which can only be panel mounted.It is recommended for multi-pole applications that the individual blocks be ganged using the included dovetailing feature. See Multi-pole block ganging for details.To mount, perform the following:•Using an appropriate size flat blade screw driver, open the DIN-Rail latch that is on the lineside of each block.•Hook the loadside DIN-Rail tabs onto the lower edge of the 35 mm DIN-Rail•Rotate the block(s) up until they are seated over the upper and lower edges of the DIN-Rail•Push the DIN-Rail latch(es) down and into the locked position.To remove blocks, reverse the previous steps.Note: To prevent damage to the block housing when torquing the terminal screws, DIN-Rail end stops are required on each side of the block or ganged blocks.The recommended Bussmann series DIN-Rail end stops are:BRKT-NDSCRW2DIN-Rail end stop with screw-clamp anchorPanel mountingAll Bussmann series PDBFS power distribution blocks can be panel mounted. It is recommended for multi-pole applications that the individual blocks be ganged using the included dovetailing feature. See Multi-pole block ganging for details.Use two (2) suitable length #10 or M5 screws for each block being mounted. Use four (4) screws for each PDBFS504 block. The max torque for the mounting screws is 17 in-lbs (1.92 N •m).SCCR tools and resourcesEaton offers many resources that help customers understand and assess their SCCR needs.Please use the following whenever you have questions, concerns or just need help with SCCR ratings.Engineering services for SCCROSCAR™ compliance software eliminates the guesswork in equipment SCCR calculations.This innovative OSCAR compliance software assists customer compliance with new Code and standards requirements for short-circuit current ratings as they relate to control panels, equipment and assemblies. Go to and request a seven-day free trial.If your equipment SCCR needs improvement, contact the Bussmann Application Engineers for a free design review. Call toll-free1-855-BUSSMANN (855-287-7626) or email FuseT *************.Online SCCR tools and publications•Free SCCR Protection Suite online tool. An easy, fast way to search for components and their SCCRs. Visit .•Application notes:• Developing an effective SCCR plan for facilities and purchasers of industrial equipment — publication no. 10367•Developing an equipment SCCR standard for manufacturers of industrial equipment — publication no. 10368•Four steps to determine equipment SCCR — publication no. 10538• Equipment SCCR made easy brochure — publication no. 10374•SPD (Selecting Protective Devices) handbook; over 250 pages covering the application of overcurrent protective devices, SCCR and more — publication no. 3002。
Clonezilla Basics for Windows Embedded说明书
Clonezilla Basics for Windows EmbeddedBy Sean D. Liming and John R. MalinAnnabooks –August 22, 2014Cloning a master image for mass production is an important step for Windows Embedded Standard and Windows Embedded Industry. First, the image must be rolled back to create the master, which is accomplished using sysprep. Here is an example command:Sysprep /generalize /oobe /shutdown /unattend:c:\myunattend.xmlThe unattended XML file is a small answer file that handles several of the Out-of-Box Experience (OOBE) screens as well as accounts, run–time key, computer names, etc. There are those that say you don’t need sysprep, but failure to run sysprep and just copy the image can run into technical consequences. In short, one must run sysprep to duplicate the image.Once the image has been rolled back, the next step is to capture the master image for deployment to other systems. The books: Starter Guide for Windows® System Image Manager, Professional's Guide To Windows® Embedded 8 Standard, and Professional's Guide To Windows® Embedded Standard 7 - 2nd Edition cover creating the unattended file and running sysprep, but what is not covered is an actual full disk capture utility. There are several hardware disk duplication solutions for hard drive and compact flash cards. International Microsystems I nc. and Logicube are two companies that offer hardware duplication products. . There are also software solutions, but some of the most popular like Norton Ghost are going end-of-life in favor of licensed server-based solutions. Microsoft has solutions to capture partitions into WIM files, but when multiple partitions need to be captured, the WIM file solution is very cumbersome. Simple and inexpensive software image capture solutions are becoming hard to find. Luckily, the Linux community has developed a solution called Clonezilla that captures full disk images; and best of all, it is a free solution that can be used to capture a Windows Embedded master image.This paper walks through the steps to create a Clonezilla disk to capture and deploy a Windows Embedded master disk image. You will need two USB flash disks. One will hold the Clonezilla boot disk image (USB disk size 8 GB), and the other will hold the captured image (USB flash disk size 32 GB or greater recommended).Note: This paper is based on Clonezilla 2.2.3-25 live image. The steps and pictures will be different for later versions.Generate Clonezilla boot diskWe start on the development machine, and download a utility to help create the Clonezilla boot disk.1. Download Tuxboot from . The actual download comes from SourceForge.2. Format the smaller USB flash disk as FAT 32. Format the larger flash disk as exFAT.3. Plug the smaller USB flash disk into the development machine and run Tuxboot.4. The Tuxboot application will start. Make sure that clonezilla_live_stable is selected forthe On-Line Distribution. Also, point to the correct USB flash drive.5. Click OK to start the process. The Clonezilla ISO will be downloaded, mounted locally,and then copied over to the flash disk.6. Do not reboot when asked. Just Exit Tuxboot.7. Safely eject the USB flash drive.Capture Disk ImageNow, we move to the target system that holds the master image.1. Plug the Clonezilla boot disk that we just created into the target system.2. Boot the target and make sure the BIOS is set up to boot from the USB flash disk.3. The Clonezilla boot screen appears. Select Clonezilla Live (Default settings, VGAXXXxYYY) and hit Enter.4. The OS will load. Select English as the language to use and hit Enter.5. Keep the default Don’t touch keymap and hit Enter.6. The default Start_Clonezilla Start Clonezilla should be selected, hit Enter.7. In the next menu, select device-image work with disks or partitions using images asthe operation mode and hit Enter.8. The next menu is for the image directory. Keep the default, local_dev, and hit Enter.9. Insert the larger USB flash disk when prompted, wait about 5 seconds, and then hitEnter.10. The system will mount and prepare the UBS flash disk for the image. You will be askedfor the home directory to store the image. Select the USB flash disk image (sdx1) and hit Enter.11. The top directory is the default, hit Enter.12. A summary will appear, hit Enter.13. The clone wizard starts. Select Beginner and hit Enter.14. The Select Mode screen appears. Select save disk, and hit Enter.15. An image name with date has been started. Rename the image as you like. For example“Annabooks-2014-08-18-19-img”, hit Enter.16. The hard disk will be selected as the default source. Hit Enter.17. Select Skip checking/repairing source file system, hit Enter.18. Check save disk image option appears, the default is Yes, check the saved image. HitEnter.19. Hit Enter to continue.20. Click y at the prompt and hit Enter to begin the backup process.21. The capture and check process takes several minutes depending on image size. HitEnter when completed22. Select Poweroff to Power down the system, and hit Enter.23. Remove both flash disks after the target powers down.Deploy the Captured Disk ImageThe two USB disks to capture the image can now be used to deploy the image to other systems.1. Plug the Clonezilla boot disk into the target system.2. Boot the target and make sure the BIOS is setup to boot from the USB flash disk.3. The Clonezilla boot screen appears. Select Clonezilla Live (Default settings, VGAXXXxYYY) and hit Enter.4. The OS will load. Select English as the language to use and hit Enter.5. Keep the default Don’t touch keymap and hit Enter.6. The default Start_Clonezilla Start Clonezilla should be selected, hit Enter.7. In the next menu, select device-image work with disks or partitions using images asthe operation mode and hit Enter8. The next menu is for the image directory. The default is for local_dev, hit Enter.9. Insert the larger USB flash disk when prompted, wait about 5 seconds, and then hitEnter.10. The system will mount and prepare the UBS flash disk for the image. You will be askedfor the home directory to store the image. Select the USB flash disk image (sdx1) and hit Enter.11. The top directory is the default, hit Enter.12. A summary will appear, hit Enter.13. The clone wizard starts. Select Beginner and hit Enter.14. The Select Mode screen appears. Select restoredisk and hit Enter.15. The system will search the disk for an image. Since there is only one image on the disk, itis already select, so hit Enter.16. Select the hard drive and hit Enter.17. Hit Enter again.19. One more time, enter y at the prompt and hit Enter.20. The process can take several minutes. Hit Enter when completed.21. Select to Poweroff to power down the system, and hit Enter.22. Remove both flash disks after the target powers down.23. Boot the system again and let the Windows cloning process run on the system.Once the master Clonezilla image has been created, it can be deployed any number of times to identical target hardware systems. This could easily be incorporated as part of the manufacturing process for an embedded system product.。
ROHM BD71850MWV 应用说明书
12
UVLO Is it possible to modify the ULVO value? No, it is the fixed value.
© 2019 ROHM Co., Ltd.
No. 62AN087E Rev.004
2/4
Mar.2020
BD71850MWV FAQ
Application Note
will flow if 3.3V is directly supplied.
This leakage current can be suppressed to add the series resistor
to BUCK6_FB line.
The maximum value is up to 60kohm.
“shutdown” which will call several routines to store content and
finally power down the system.
One possibility for a power-down is to de-assert the
PMIC_ON_REQ line. This will cause the PMIC to power down the
Nano Reference Manual.
2. Terminologies
Term DCR DDR I2C LDO PMIC RTC SoC UVLO VR
Definition DC Resistance Double Data Rate Inter-Integrated Circuit Low Dropout Power Management Integrate Circuit Real-Time Clock System-on-Chip Under Voltage Lock Out Voltage Regulator
欧洲电子产品说明书
Dimensions: [mm]7443641000B7443641000B7443641000B7443641000B7443641000BT e m p e r a t u r eT pT L7443641000BFurther informationComponent Libraries:Altium_WE-HCF (23a)Downloads_CADENCE_WE-HCF (23a)Download_CadStar_WE-HCF (20a)Eagle_WE-HCF (23a)Download_IGS_WE-HCF-2818BPSpice_WE-HCF (22a)Download_STP_WE-HCFT-2818BSpectre_WE-HCF (23a)Free Sample Order:Order free samples of this article directly here!Tutorials:■Single Coil Inductors (PDF)■Redefining Rated Current Measurements for Power Inductors (PDF)REDEXPERT:Calculate losses for 7443641000B in REDEXPERTWürth Elektronik eiSos GmbH & Co. KGEMC & Inductive SolutionsMax-Eyth-Str. 174638 WaldenburgGermanyCHECKED REVISION DATE (YYYY-MM-DD)GENERAL TOLERANCE PROJECTIONMETHODALa003.0012023-11-30DIN ISO 2768-1mDESCRIPTIONWE-HCF SMT High CurrentInductor ORDER CODE7443641000BSIZE/TYPE BUSINESS UNIT STATUS PAGECautions and Warnings:The following conditions apply to all goods within the product series of WE-HCF of Würth Elektronik eiSos GmbH & Co. KG:General:•This electronic component was designed and manufactured for use in general electronic equipment.•Würth Elektronik must be asked for written approval (following the PPAP procedure) before incorporating the components into any equipment in fields such as military, aerospace, aviation, nuclear control, submarine, transportation (automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network, etc. where higher safety and reliability are especially required and/or if there is the possibility of direct damage or human injury.•Electronic components that will be used in safety-critical or high-reliability applications, should be pre-evaluated by the customer. •The component was designed and manufactured to be used within the datasheet specified values. If the usage and operation conditions specified in the datasheet are not met, the wire insulation may be damaged or dissolved.•Do not drop or impact the components, as the core may flake apart.•Würth Elektronik products are qualified according to international standards, which are listed in each product reliability report. Würth Elektronik does not guarantee any customer qualified product characteristics beyond Würth Elektroniks’ specifications, for its validity and sustainability over time.•The customer is responsible for the functionality of their own products. All technical specifications for standard products also apply to customer specific products.Product specific:Soldering:•The solder profile must comply with the Würth Elektronik technical soldering specification. All other profiles will void the warranty. •All other soldering methods are at the customers’ own risk.Cleaning and Washing:•Washing agents used during the production to clean the customer application may damage or change the characteristics of the wire insulation, marking or plating. Washing agents may have a negative effect on the long-term functionality of the product. Potting:•If the product is potted in the costumer application, the potting material may shrink or expand during and after hardening. Shrinking could lead to an incomplete seal, allowing contaminants into the core. Expansion could damage the core or wire contacts. Werecommend a manual inspection after potting to avoid these effects. Storage Conditions:• A storage of Würth Elektronik products for longer than 12 months is not recommended. Within other effects, the terminals may suffer degradation, resulting in bad solderability. Therefore, all products shall be used within the period of 12 months based on the day of shipment.•Do not expose the components to direct sunlight.•The storage conditions in the original packaging are defined according to DIN EN 61760-2.Packaging:•The packaging specifications apply only to purchase orders comprising whole packaging units. If the ordered quantity exceeds or is lower than the specified packaging unit, packaging in accordance with the packaging specifications cannot be ensured. Handling:•Violation of the technical product specifications such as exceeding the nominal rated current will void the warranty•Applying currents with audio-frequency signals may result in audible noise due to the magnetostrictive material properties. •Due to heavy weight of the components, strong forces and high accelerations may have the effect to damage the electrical connection or to harm the circuit board and will void the warranty.These cautions and warnings comply with the state of the scientific and technical knowledge and are believed to be accurate and reliable.However, no responsibility is assumed for inaccuracies or incompletenessWürth Elektronik eiSos GmbH & Co. KGEMC & Inductive SolutionsMax-Eyth-Str. 174638 WaldenburgGermanyCHECKED REVISION DATE (YYYY-MM-DD)GENERAL TOLERANCE PROJECTIONMETHODALa003.0012023-11-30DIN ISO 2768-1mDESCRIPTIONWE-HCF SMT High CurrentInductor ORDER CODE7443641000BSIZE/TYPE BUSINESS UNIT STATUS PAGEImportant NotesThe following conditions apply to all goods within the product range of Würth Elektronik eiSos GmbH & Co. KG:1. General Customer ResponsibilitySome goods within the product range of Würth Elektronik eiSos GmbH & Co. KG contain statements regarding general suitability for certain application areas. These statements about suitability are based on our knowledge and experience of typical requirements concerning the areas, serve as general guidance and cannot be estimated as binding statements about the suitability for a customer application. The responsibility for the applicability and use in a particular customer design is always solely within the authority of the customer. Due to this fact it is up to the customer to evaluate, where appropriate to investigate and decide whether the device with the specific product characteristics described in the product specification is valid and suitable for the respective customer application or not.2. Customer Responsibility related to Specific, in particular Safety-Relevant ApplicationsIt has to be clearly pointed out that the possibility of a malfunction of electronic components or failure before the end of the usual lifetime cannot be completely eliminated in the current state of the art, even if the products are operated within the range of the specifications.In certain customer applications requiring a very high level of safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health it must be ensured by most advanced technological aid of suitable design of the customer application that no injury or damage is caused to third parties in the event of malfunction or failure of an electronic component. Therefore, customer is cautioned to verify that data sheets are current before placing orders. The current data sheets can be downloaded at .3. Best Care and AttentionAny product-specific notes, cautions and warnings must be strictly observed. Any disregard will result in the loss of warranty.4. Customer Support for Product SpecificationsSome products within the product range may contain substances which are subject to restrictions in certain jurisdictions in order to serve specific technical requirements. Necessary information is available on request. In this case the field sales engineer or the internal sales person in charge should be contacted who will be happy to support in this matter.5. Product R&DDue to constant product improvement product specifications may change from time to time. As a standard reporting procedure of the Product Change Notification (PCN) according to the JEDEC-Standard inform about minor and major changes. In case of further queries regarding the PCN, the field sales engineer or the internal sales person in charge should be contacted. The basic responsibility of the customer as per Section 1 and 2 remains unaffected.6. Product Life CycleDue to technical progress and economical evaluation we also reserve the right to discontinue production and delivery of products. As a standard reporting procedure of the Product Termination Notification (PTN) according to the JEDEC-Standard we will inform at an early stage about inevitable product discontinuance. According to this we cannot guarantee that all products within our product range will always be available. Therefore it needs to be verified with the field sales engineer or the internal sales person in charge about the current product availability expectancy before or when the product for application design-in disposal is considered. The approach named above does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.7. Property RightsAll the rights for contractual products produced by Würth Elektronik eiSos GmbH & Co. KG on the basis of ideas, development contracts as well as models or templates that are subject to copyright, patent or commercial protection supplied to the customer will remain with Würth Elektronik eiSos GmbH & Co. KG. Würth Elektronik eiSos GmbH & Co. KG does not warrant or represent that any license, either expressed or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, application, or process in which Würth Elektronik eiSos GmbH & Co. KG components or services are used.8. General Terms and ConditionsUnless otherwise agreed in individual contracts, all orders are subject to the current version of the “General Terms and Conditions of Würth Elektronik eiSos Group”, last version available at .Würth Elektronik eiSos GmbH & Co. KGEMC & Inductive SolutionsMax-Eyth-Str. 174638 WaldenburgGermanyCHECKED REVISION DATE (YYYY-MM-DD)GENERAL TOLERANCE PROJECTIONMETHODALa003.0012023-11-30DIN ISO 2768-1mDESCRIPTIONWE-HCF SMT High CurrentInductor ORDER CODE7443641000BSIZE/TYPE BUSINESS UNIT STATUS PAGE。
EFLOW用户指南 Release 12.3说明书
Path
:
Online
: True
RestartNeeded : False
2. Set execution policy and verify.
Set-ExecutionPolicy -ExecutionPolicy AllSigned -Force
Get-ExecutionPolicy AllSigned
5
EFLOW User's Guide, Release 12.3
3. Download and install EFLOW.
$msiPath = $([io.Path]::Combine($env:TEMP, 'AzureIoTEdge.msi')) $ProgressPreference = 'SilentlyContinue' Invoke-WebRequest "https:∕∕aka.ms∕AzEFLOWMSI_1_4_LTS_X64" -OutFile $msiPath
▶ The Windows host OS with virtualization enabled ▶ A Linux virtual machine ▶ IoT Edge Runtime ▶ IoT Edge Modules, or otherwise any docker-compatible containerized application (runs on
内存条说明书
Qualified Vendors List (QVL) Standard table for user manual & MKTA*B*C*256MB Kingston KVR533D2N4/256N/A Elpida SS E5116AB-5C-E Pass Pass N/A 256MB Kingston KVR533D2N4/256N/A Elpida SS E5116AF-5C-E Pass Pass N/A 512MB Kingston KVR533D2N4/512N/A Hynix DS HY5PS56821Pass Pass N/A 512MB Kingston KVR533D2N4/512N/A Infineon SS HYB18T512800AF3733336550Pass Pass N/A 1G Kingston KVR533D2N4/1G N/A Kingston DS D6408TE7BL-37Pass Pass N/A 1G Kingston KVR533D2N4/1G N/A Micron DS 5YD11D9GCT Pass Pass N/A 256MB Kingston KVR667D2N5/256N/A Elpida SS E2508AB-6E-E Pass Pass N/A 512MB Kingston KVR667D2N5/512N/A Kingston SS D6408TE8WL-27Pass Pass N/A 512MB Kingston KVR667D2E5/512N/A Elpida SS E5108AE-6E-E Pass Pass N/A 1G Kingston KVR667D2N5/1G N/A Kingston DS D6408TE8WL-3Pass Pass N/A 256MB Samsung M378T3253FG0-CD5N/A Samsung SS K4T56083QF-GCD5Pass Pass N/A 512MB SamsungM378T6553BG0-CD54Samsung SS K4T51083QB-GCD5Pass Pass N/A 512MB Samsung KR M378T6553CZ0-CE6N/A Samsung SS K4T51083QC Pass Pass N/A 512MB Samsung KR M378T6453FZ0-CE6N/A Samsung DS K4T56083QF-ZCE6Pass Pass N/A 1G Samsung KR M378T2953CZ0-CE6N/A Samsung SS K4T51083QC-ZCE6Pass Pass N/A 256MB Infineon HYS64T32000HU-3.7-A 4Infineon SS HYB18T512160AF-3.7AFSS31270Pass Pass N/A 512MB Infineon HYS64T64000GU-3.7-A 4Infineon SS HYB18T512800AC37SSS11511Pass Pass N/A 512MB Infineon HYS64T64000HU-3.7-A N/A Infineon SS HYB18T512800AF37SSS12079Pass Pass N/A 512MB Infineon HYS64T64000HU-3.7-A N/A Infineon SS HYB18T512800AF37FSS29334Pass Pass N/A 256MB Infineon HYS64T32000HU-3S-A N/A Infineon SS HYB18T512160AF-3SSSS17310Pass Pass N/A 512MB Infineon HYS64T32000HU-3S-A N/A Infineon SS HYB18T5128000AF-3SSSS27416Pass Pass N/A 512MB Infineon HYS64T64000HU-3S-A N/A Infineon SS HYB18T512800AF3SFSS05346Pass Pass N/A 1G Infineon HYS64T128020HU-3S-AN/A Infineon DS HYB18T512800AF3SSSS28104Pass Pass N/A 512MB Micron MT 16HTF6464AG-53EB2 4Micron DS D9BOM Pass Pass N/A 512MB Micron MT 16HTF6464AG-53EB24Micron DS Z9BQT Pass Pass N/A 1G Micron MT 16HTF12864AY-53EA14Micron DS D9CRZ Pass Pass N/A 512MB Corsair VS512MB533D2N/A Corsair DS MIII0052532M8CEC Pass Pass N/A 512MB Corsair VS512MB667D2N/A Corsair DS MIII0052532M8CEC Pass Pass N/A 512MB HY HYMP564U64AP8-Y4 AA N/A Hynix SS HY5PS12821AFP-Y4Pass Pass N/A 512MB HY HYMP564U64AP8-Y5 AA N/A Hynix SS HY5PS12821AFP-Y5Pass Pass N/A 1G HY HYMP512U64AP8-Y5 AB N/A Hynix DS HY5PS12821AFP-Y5Pass Pass N/A 512MB Elpida EBE51UD8ABFA-5C-E N/A Elpida SS E5108AB-5C-E Pass Pass N/A 512MB Kingmax KLBC28F-A8KB4N/A Kingmax SS KKEA88B4IAK-37Pass Pass N/A 256MB Kingmax KLBB68F-36EP4N/A Elpida SS E5116AB-5C-E Pass Pass N/A 512MB Kingmax KLBC28F-A8EB4N/A Elpida SS E5108AE-5C-E Pass Pass N/A 512MB Kingmax KLCC28F-A8EB5N/A Elpida SS E5108AE-6E-E Pass Pass N/A 512MB Kingmax KLCC28F-A8KB5N/A Kingmax SS KKEA88B4LAUG-29DX Pass Pass N/A 1G Kingmax KLCD48F-A8KB5N/A Kingmax DS KKEA88B4LAUG-29DXPass Pass N/A 512MB Apacer 78.91092.420N/A Elpida SS E5108AE-6E-E Pass Pass N/A 512MB Apacer AU512E667C5KBGC5Apacer SS AM4B5708MIJS7E0627BPass Pass N/A 1G Apacer 78.01092.4205Elpida DS E5108AE-6E-E Pass Pass N/A 1G Apacer AU01GE667C5KBGC 5Apacer DS AM4B5708MIJS7E0627BPass Pass N/A 512MB ADATA M20EL5G3H3160B1C0Z N/A Elpida SS E5108AE-6E-E Pass Pass N/A 512MB VDATA M2GVD5G3H31A4I1C52N/A VDATA SS VD29608A8A-3EC20615Pass Pass N/A 512MB VDATA M2YVD5G3H31P4I1C52N/A VDATA SS VD29608A8A-3EG20627Pass Pass N/A 1G VDATA M2GVD5G3I41P6I1C52N/A VDATA DS VD29608A8A-3EG20627Pass Pass N/A 1G VDATA M2GVD5G3I41C4I1C52N/A VDATA DS VD29608A8A-3EC20620Pass Pass N/A 256MB Nanya NT256T64UH4A1FY-3C N/A Nanya SS NT5TU32M16AG-3C Pass Pass N/A 512MB Nanya NT512T64U88A1BY-3CN/A Nanya SS NT5TU64M8AE-3C Pass Pass N/A 512MB PQI MEAB-323LA N/A PQI SS D2-E04180W025Pass Pass N/A 1G PQI MEAB-423LA N/A PQI DS D2-E04230W107Pass Pass N/A 512MB AENEON AET660UD00-370A98Z 4AENEON SS AET93F370A G 0513Pass Pass N/A 256MB AENEON AET560UD00-370A98Z 4AENEON SS AET94F370AWVV34635G0520Pass Pass N/A 512MBAENEONAET660UD00-370A98Z4AENEONSSAET93F370A 3VV36328G 0522PassPassN/ASize Vendor Model CL Brand SS/DS Component DIMM socket support (Optional)512MB AENEON AET660UD00-370A98X N/A AENEON SS AET93F370A 0518Pass Pass N/A 512MB AENEON AET660UD00-370A88S N/A AENEON DS AET82F370A 0550Pass Pass N/A 1G AENEON AET760UD00-370A98Z N/A AENEON DS AET93F370A 0551Pass Pass N/A 1G AENEON AET760UD00-370A98S N/A AENEON DS AET92F370A 0606Pass Pass N/A 2G AENEON AET860UD00-370A08X N/A AENEON DS AET03F370AFVV26176G 0542Pass Pass N/A 512MB AENEON AET660UD00-30DA98Z N/A AENEON SS AET93F30DA 0552Pass Pass N/A 1G AENEON AET760UD00-30DA98Z N/A AENEON DS AET93F30DA8EE47414G 0540Pass Pass N/A 512MB AENEON AET660UD00-30DA98Z N/A AENEON SS AET93F300A 0606Pass Pass N/A 1G AENEON AET760UD00-30DA98Z N/A AENEON DS AET93F30DA 0604Pass Pass N/A512MB VERITECHGTP512HLTM46DG N/AVERITECHSS VTD264M8PC6G01A164129621Pass Pass N/A1G VERITECHGTP01GHLTM56DG N/AVERITECHDS VTD264M8PC6G01A164129621Pass Pass N/A512MB VERITECHGTP512HLTM45EG N/AVERITECHSS VTD264M8PC6G01A164129621Pass Pass N/A1G VERITECHGTP01GHLTM55EG N/AVERITECHDS VTD264M8PC6G01A164129621Pass Pass N/A512MB GEIL GX21GB5300DC4GEIT SS Heat-Sink Package Pass Pass N/A 512MB Century CENTURY 512MB N/A Nanya SS NT5TU64M8AE-3C Pass Pass N/A 512MB Century CENTURY 512MB N/A Hynix SS HY5PS12821AFP-Y5Pass Pass N/A 1G Century CENTURY 1G N/A Hynix DS HY5PS12821AFP-Y5Pass Pass N/A 1G Century CENTURY 1G N/A Nanya DS NT5TU64M8AE-3C Pass Pass N/A 512MB KINGBOX512MB 667MHz N/A KINGBOX SS EPD264082200-4Pass Pass N/ANote:A* : Supports one module inserted in any slot as Single-channel memory configurationB* : Supports one pair of modules inserted into eithor the blue slots or the black slots as one pair of Dual-channel memory configurationC* : Supports 4 modules inserted into both the blue and black slots as two pairs of Dual-channel memory configuration。
Ubuntu 20.10 Linux Inbox Driver用户指南说明书
Ubuntu 20.10 Linux Inbox Driver User Manual20.10Document HistoryTable of Contents1Firmware Burning (4)2Port Type Management (6)2.1Port Type Management/VPI Cards Configuration (6)3Modules Loading and Unloading (11)4Important Packages and Their Installation (12)5SR-IOV Configuration (13)5.1Setting up SR-IOV (13)Default RoCE Mode Setting for RDMA_CM Application (15)1Firmware Burning1.lspci | grep MellanoxExample:04:00.0 Ethernet controller: Mellanox Technologies MT27700 Family[ConnectX-4]04:00.1 InfiniBand controller: Mellanox Technologies MT27700 Family[ConnectX-4]07:00.0 Ethernet controller: Mellanox Technologies MT27710 Family[ConnectX-4 Lx]07:00.1 Ethernet controller: Mellanox Technologies MT27710 Family[ConnectX-4 Lx]0a:00.0 Network controller: Mellanox Technologies MT27520 Family[ConnectX-3 Pro]21:00.0 InfiniBand controller: Mellanox Technologies MT27600 [Connect-IB] 24:00.0 Ethernet controller: Mellanox Technologies MT28800 Family[ConnectX-5 Ex]24:00.1 InfiniBand controller: Mellanox Technologies MT28800 Family[ConnectX-5 Ex]2.# mstflint -d 81:00.0 qImage type: FS4FW Version: 16.26.4012FW Release Date: 10.12.2019Product Version: 16.26.4012Rom Info: type=UEFI version=14.19.17 cpu=AMD64type=PXE version=3.5.805 cpu=AMD64Description: UID GuidsNumberBase GUID: ec0d9a0300d42de4 8Base MAC: ec0d9ad42de4 8Image VSD: N/ADevice VSD: N/APSID: MT_0000000009Security Attributes: N/A3.Download the firmware BIN file from the Mellanox website that matches your card's PSID: → Support →Support → Firmware Download4.Burn the firmware.# mstflint -d <lspci-device-id> -i <image-file> b5.Reboot your machine after the firmware burning is completed.6.Validate new firmware burned successfully:# ethtool -i ens3driver: mlx5_coreversion: 5.0-0firmware-version: 16.26.4012 (MT_0000000009) expansion-rom-version:bus-info: 0000:24:00.0supports-statistics: yessupports-test: yessupports-eeprom-access: nosupports-register-dump: nosupports-priv-flags: yes2Port Type Management2.1Port Type Management/VPI CardsConfigurationConnectX®-3/ConnectX®-3 Pro/ConnectX®-4 ports can be individually configured to work as InfiniBand or Ethernet ports. By default, both ConnectX®-5 VPI ports are initialized as InfiniBand ports. If you wish to change the port type use the mstconfig after the driver is loaded.1.Install mstflint tools.apt install mstflint2.Check the PCI address.lspci | grep MellanoxExample:24:00.0 Ethernet controller: Mellanox Technologies MT28800 Family[ConnectX-5 Ex]e mstconfig to change the link type as desired IB -- for InfiniBand, ETH -- forEthernet.mstconfig –d <device pci> s LINK_TYPE_P1/2=<ETH|IB|VPI>Example:# mstconfig -d 00:06.0 s LINK_TYPE_P1=ETHDevice #1:----------Device type: ConnectX5Name: MCX556A-EDA_AxDescription: ConnectX-5 Ex VPI adapter card; EDR IB (100Gb/s)and 100GbE; dual-port QSFP28; PCIe4.0 x16; tall bracket; ROHS R6Device: 24:00.0Configurations: Next Boot NewLINK_TYPE_P1 IB(1)ETH(2)Apply new Configuration? (y/n) [n] : yApplying... Done!-I- Please reboot machine to load new configurations.4.Reboot your machine.5.# mstconfig -d 00:06.0 qDevice #1:----------Device type: ConnectX5Name: MCX556A-EDA_AxDescription: ConnectX-5 Ex VPI adapter card; EDR IB (100Gb/s) and 100GbE; dual-port QSFP28; PCIe4.0 x16; tall bracket; ROHS R6 Device: 24:00.0Configurations: Next BootMEMIC_BAR_SIZE 0 MEMIC_SIZE_LIMIT _256KB(1) HOST_CHAINING_MODE DISABLED(0) HOST_CHAINING_DESCRIPTORS Array[0..7] HOST_CHAINING_TOTAL_BUFFER_SIZE Array[0..7] FLEX_PARSER_PROFILE_ENABLE 0 FLEX_IPV4_OVER_VXLAN_PORT 0 ROCE_NEXT_PROTOCOL 254 ESWITCH_HAIRPIN_DESCRIPTORS Array[0..7] ESWITCH_HAIRPIN_TOT_BUFFER_SIZE Array[0..7] NON_PREFETCHABLE_PF_BAR False(0) NUM_OF_VFS 4 SRIOV_EN True(1) PF_LOG_BAR_SIZE 5 VF_LOG_BAR_SIZE 1 NUM_PF_MSIX 63 NUM_VF_MSIX 11 INT_LOG_MAX_PAYLOAD_SIZE AUTOMATIC(0) SW_RECOVERY_ON_ERRORS False(0) RESET_WITH_HOST_ON_ERRORS False(0) ADVANCED_POWER_SETTINGS False(0) CQE_COMPRESSION BALANCED(0) IP_OVER_VXLAN_EN False(0) PCI_ATOMIC_MODEPCI_ATOMIC_DISABLED_EXT_ATOMIC_ENABLED(0)LRO_LOG_TIMEOUT0 6 LRO_LOG_TIMEOUT1 7 LRO_LOG_TIMEOUT2 8 LRO_LOG_TIMEOUT3 13 LOG_DCR_HASH_TABLE_SIZE 11 DCR_LIFO_SIZE 16384 LINK_TYPE_P1 ETH(2) LINK_TYPE_P2 IB(1)ROCE_CC_PRIO_MASK_P1 255 ROCE_CC_ALGORITHM_P1 ECN(0) ROCE_CC_PRIO_MASK_P2 255 ROCE_CC_ALGORITHM_P2 ECN(0) CLAMP_TGT_RATE_AFTER_TIME_INC_P1 True(1) CLAMP_TGT_RATE_P1 False(0) RPG_TIME_RESET_P1 300 RPG_BYTE_RESET_P1 32767 RPG_THRESHOLD_P1 1 RPG_MAX_RATE_P1 0 RPG_AI_RATE_P1 5 RPG_HAI_RATE_P1 50 RPG_GD_P1 11 RPG_MIN_DEC_FAC_P1 50 RPG_MIN_RATE_P1 1 RATE_TO_SET_ON_FIRST_CNP_P1 0 DCE_TCP_G_P1 1019 DCE_TCP_RTT_P1 1 RATE_REDUCE_MONITOR_PERIOD_P1 4 INITIAL_ALPHA_VALUE_P1 1023 MIN_TIME_BETWEEN_CNPS_P1 2 CNP_802P_PRIO_P1 6 CNP_DSCP_P1 48 CLAMP_TGT_RATE_AFTER_TIME_INC_P2 True(1) CLAMP_TGT_RATE_P2 False(0) RPG_TIME_RESET_P2 300 RPG_BYTE_RESET_P2 32767 RPG_THRESHOLD_P2 1 RPG_MAX_RATE_P2 0 RPG_AI_RATE_P2 5 RPG_HAI_RATE_P2 50 RPG_GD_P2 11 RPG_MIN_DEC_FAC_P2 50 RPG_MIN_RATE_P2 1 RATE_TO_SET_ON_FIRST_CNP_P2 0 DCE_TCP_G_P2 1019 DCE_TCP_RTT_P2 1 RATE_REDUCE_MONITOR_PERIOD_P2 4 INITIAL_ALPHA_VALUE_P2 1023 MIN_TIME_BETWEEN_CNPS_P2 2 CNP_802P_PRIO_P2 6 CNP_DSCP_P2 48 LLDP_NB_DCBX_P1 False(0) LLDP_NB_RX_MODE_P1 OFF(0) LLDP_NB_TX_MODE_P1 OFF(0) LLDP_NB_DCBX_P2 False(0)LLDP_NB_RX_MODE_P2 OFF(0) LLDP_NB_TX_MODE_P2 OFF(0) DCBX_IEEE_P1 True(1) DCBX_CEE_P1 True(1) DCBX_WILLING_P1 True(1) DCBX_IEEE_P2 True(1) DCBX_CEE_P2 True(1) DCBX_WILLING_P2 True(1) KEEP_ETH_LINK_UP_P1 True(1) KEEP_IB_LINK_UP_P1 False(0) KEEP_LINK_UP_ON_BOOT_P1 False(0) KEEP_LINK_UP_ON_STANDBY_P1 False(0) KEEP_ETH_LINK_UP_P2 True(1) KEEP_IB_LINK_UP_P2 False(0) KEEP_LINK_UP_ON_BOOT_P2 False(0) KEEP_LINK_UP_ON_STANDBY_P2 False(0) NUM_OF_VL_P1 _4_VLs(3) NUM_OF_TC_P1 _8_TCs(0) NUM_OF_PFC_P1 8 NUM_OF_VL_P2 _4_VLs(3) NUM_OF_TC_P2 _8_TCs(0) NUM_OF_PFC_P2 8 DUP_MAC_ACTION_P1 LAST_CFG(0) SRIOV_IB_ROUTING_MODE_P1 LID(1) IB_ROUTING_MODE_P1 LID(1) DUP_MAC_ACTION_P2 LAST_CFG(0) SRIOV_IB_ROUTING_MODE_P2 LID(1) IB_ROUTING_MODE_P2 LID(1) PCI_WR_ORDERING per_mkey(0) MULTI_PORT_VHCA_EN False(0) PORT_OWNER True(1) ALLOW_RD_COUNTERS True(1) RENEG_ON_CHANGE True(1) TRACER_ENABLE True(1) IP_VER IPv4(0) BOOT_UNDI_NETWORK_WAIT 0 UEFI_HII_EN False(0) BOOT_DBG_LOG False(0) UEFI_LOGS DISABLED(0) BOOT_VLAN 1 LEGACY_BOOT_PROTOCOL PXE(1) BOOT_RETRY_CNT1 NONE(0) BOOT_LACP_DIS True(1) BOOT_VLAN_EN False(0) BOOT_PKEY 0 EXP_ROM_UEFI_x86_ENABLE False(0)EXP_ROM_PXE_ENABLE True(1)IBM_TUNNELED_ATOMIC_EN False(0)IBM_AS_NOTIFY_EN False(0)ADVANCED_PCI_SETTINGS False(0)SAFE_MODE_THRESHOLD 10SAFE_MODE_ENABLE True(1)****************************************************************** *******3Modules Loading and UnloadingMellanox modules for ConnectX®-2/ConnectX®-3/ConnectX®-3 Pro are:④mlx4_en, mlx4_core, mlx4_ibMellanox modules for ConnectX®-4/ConnectX®-4 Lx/ConnectX®-5 are:④mlx5_core, mlx5_ibIn order to unload the driver, you need to first unload mlx*_en/ mlx*_ib and then the mlx*_core module.④To load and unload the modules, use the commands below:•Loading the driver: modprobe <module name>modprobe mlx5_ib•Unloading the driver: modprobe –r <module name>modprobe –r mlx5_ib4Important Packages and TheirInstallationrdma-corerdma-core RDMA core userspace libraries and daemonslibibmad5: Low layer InfiniBand diagnostic and management programslibibmad5 OpenFabrics Alliance InfiniBand MAD libraryopensm: InfiniBand Subnet Manageropensm OpenIB InfiniBand Subnet Manager and management utilitiesIbutils: OpenIB Mellanox InfiniBand Diagnostic Toolsibutils OpenIB Mellanox InfiniBand Diagnostic Toolsinfiniband-diags: OpenFabrics Alliance InfiniBand Diagnostic Toolsinfiniband-diags OpenFabrics Alliance InfiniBand Diagnostic Toolsperftest: IB Performance testsperftest IB Performance Testsmstflint: Mellanox Firmware Burning and Diagnostics Toolsmstflint Mellanox firmware burning toolTo install the packages above, run:# apt-get install <packages names>5SR-IOV Configuration5.1Setting up SR-IOV1.Download mstflint tools.# apt install mstflint2.lspci | grep MellanoxExample:24:00.0 Ethernet controller: Mellanox Technologies MT28800 Family [ConnectX-5 Ex]3.Check if SR-IOV is enabled in the firmware.mstconfig -d <device pci> qExample:# mstconfig -d 00:06.0 qDevice #1:----------Device type: ConnectX3ProPCI device: 00:06.0Configurations: CurrentSRIOV_EN True(1)NUM_OF_VFS 8LINK_TYPE_P1 ETH(2)LINK_TYPE_P2 IB(1)LOG_BAR_SIZE 3BOOT_PKEY_P1 0BOOT_PKEY_P2 0BOOT_OPTION_ROM_EN_P1 True(1)BOOT_VLAN_EN_P1 False(0)BOOT_RETRY_CNT_P1 0LEGACY_BOOT_PROTOCOL_P1 PXE(1)BOOT_VLAN_P1 1BOOT_OPTION_ROM_EN_P2 True(1)BOOT_VLAN_EN_P2 False(0)BOOT_RETRY_CNT_P2 0LEGACY_BOOT_PROTOCOL_P2 PXE(1)BOOT_VLAN_P2 1IP_VER_P1 IPv4(0)IP_VER_P2 IPv4(04.Enable SR-IOV:mstconfig –d <device pci> s SRIOV_EN=<False|True>5.Configure the needed number of VFs.mstconfig –d <device pci> s NUM_OF_VFS=<NUM>Note: This file will be generated only if IOMMU is set in the grub.conf file (by addingintel_iommu=on to /boot/grub/grub.conf file).6.[mlx4 devices only] Edit the file /etc/modprobe.d/mlx4.conf:options mlx4_core num_vfs=[needed num of VFs] port_type_array=[1/2for IB/ETH],[ 1/2 for IB/ETH]Example:options mlx4_core num_vfs=8 port_type_array=1,17.[mlx5 devices only] Write to the sysfs file the number of needed VFs.echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/sriov_numvfs8.Reboot the driver.9.Load the driver and verify that the VFs were created.lspci | grep mellanoxExample:24:00.0 Ethernet controller: Mellanox Technologies MT28800 Family[ConnectX-5 Ex]24:00.1 Infiniband controller: Mellanox Technologies MT28800Family [ConnectX-5 Ex]24:00.2 Ethernet controller: Mellanox Technologies MT28800 Family[ConnectX-5 Ex Virtual Function]24:00.3 Ethernet controller: Mellanox Technologies MT28800 Family[ConnectX-5 Ex Virtual Function]24:00.4 Ethernet controller: Mellanox Technologies MT28800 Family[ConnectX-5 Ex Virtual Function]24:00.5 Ethernet controller: Mellanox Technologies MT28800 Family[ConnectX-5 Ex Virtual Function]For further information, refer to section Setting Up SR-IOV MLNX_OFED User Manual.Default RoCE Mode Setting for RDMA_CM Application1.Mount the configfs file.# mount -t configfs none /sys/kernel/config2.Create a directory for the mlx4/mlx5 device.mkdir -p /sys/kernel/config/rdma_cm/mlx4_0/3.Validate what is the used RoCE mode in the default_roce_mode configfs file.# cat /sys/kernel/config/rdma_cm/mlx4_0/ports/1/default_roce_modeIB/RoCE v14.Change the default RoCE mode,•For RoCE v1: IB/RoCE v1•For RoCE v2: RoCE v2# echo "RoCE v2" >/sys/kernel/config/rdma_cm/mlx4_0/ports/1/default_roce_mode# cat /sys/kernel/config/rdma_cm/mlx4_0/ports/1/default_roce_modeRoCE v2# echo "IB/RoCE v1" >/sys/kernel/config/rdma_cm/mlx4_0/ports/1/default_roce_mode# cat /sys/kernel/config/rdma_cm/mlx4_0/ports/1/default_roce_modeIB/RoCE v1NoticeThis document is provid ed for information purposes only and shall not be regarded as a warranty of a certain functionality, c ondition, or quality of a product. NVIDIA Corporation NVIDIA makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this docum ent and assumes no responsibility for any errors contained herein. NVIDIA shall have no li ability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result f rom its use. This document is not a commitm ent to develop, release, or deliver any Material (defined below), code, or functionality.NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this docum ent, at any time without notice.Customer should obtain the latest relevant information before placing orders and should verify that such inform ation is curre nt and complete. NVIDIA products are sold subject to the NVIDIA standard term s and conditions of sale supplied at the tim e of order acknowledg ement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer Terms of Sale NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product re ferenced in this document. No contractual obligations are formed either directly or indirectly by this document.NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or l ife support eq uipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, deat h, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applicatio ns and therefore such inclusion and/or use is at customer s own risk.NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testi ng of all parameters of each product is not necessarily performed by NVIDIA. It is customer s sole responsibilit y to evaluate and determine the applicability of any inform ation contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the n ecessary testing for the application in order to avoid a d efault of the application or the product. Weaknesses in customer s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, dam age, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product d esigns.No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual pr operty right und er this document. Information p ublished by NVIDIA regard ing third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such inform ation may require a license from a third party under the patents or other intellectual property rig hts of the third party, or a license from NVIDIA under the patents or other intellectual property ri ghts of NVIDIA. Reproduction of information in this document is p ermissible only if approved in advance by NVIDIA in writing, reproduced with out alteration and in full compliance with all applicable export laws and regulations, and accomp anied by all associated conditions, limitations, and no tices.TrademarksNVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. O ther company and product names may b e tradem arks of the respective companies with which they are associated.For the complete and most up dated list of Mellanox trademarks, visit /page/tradem arks.Copyright© 2020 NVIDIA Corporation. All rights reserved.NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051。
多姆i包Ver.6.1A 操作指南说明书
MultiPak Ver.6.1A Operator•s ManualMicr osof t Microsof t C o rporati on oi nd ows i ndo ws N Micro sof t C o rporatio n o Mult ipak Phys ica l E lec tr onic s I nc.‚oA y i A e oƒE g p1.1 Mult i a1.2 Mult i a N1.3 ƒf1.4 ƒE C E e1.5 ƒC1.6 ‰1.7 •fA nal ysi s R e g io n P r opert ie sA xi s P r opert ie sat a P r opert ie sext P r opert ie s1.8 P e riodic T a l e•i1.8.11.8.2 r ansit i on C A N1.8.3 f x1.8.4 s N A m e V1.9 ƒy N g W1.10 f g E1)S g E2)l g E B3)E g B i gf A E y N g1.11 f iy N g iC f i1.12 y N g1.13 s N u1.14 s N1.15 g C urv e fit- (ESCA‚)1.16 C f1.17 fA) pB) p1.181.19 A m e V1.20 f1.21 f1.22 f d1.23 f C y y N g o1.24 f S (L i near e as Sq u ares Fit)1.25 f a pe Measure-1.26 f C f1.27 f C f y N g o1.28 f C f S (L i near e ast Sq u ares Fit) 1.29 f C f F A (T a rget Fa ct o r Analysis•c)•1.30 f C f1.31 A om i c Concent rat i on r of il e1.32 S1.33 fa) y N g f)y N g fc)fd) u B g1.34 fa) ASCI)F F1.35 N1.36 g oE g p AA E l2E A3Eb ƒE1E b ƒE E1u b ƒE2AE u b ƒE E2Au b ƒE A E2A Shif t b ƒh h Shif t h bt rl+b ƒh h t rl•h b1.1Mult i aMult i a g E F A A MAT A B g E F A p f g E F A BMAT A B g p A A s mA Mult i a E A x sBMult i a e ESCA•f e AES•f A ESCA f AES f B1.2MultiPakMultiPak A g b A u b Aƒ • • ‚A ‚MultiPakMultiPak A o ading PH MultiPak V6.1A E h E i1.2-1A g b Spectrum E h E A E Periodic T a ble E h EA MultiPak E h E E h E3‚i 1.2-21.2-1 L o ading PH MultiPak V6.1A E h E1.2-2 ‹MultiPak ‚A Perio dic T a ble•i E h E i 1.2-3Eh E A O A E g3E h E A Spectrum i y g E hE i 1.25A P rof i le i t E h E i 1.2-6A Map i b E h E i1.2-4E h E i A MultiPak E h E i 1.2-45E h EE Periodic T a ble•i E h EE Spectrum i y g E h E ƒy gE Prof i le•i t E h E ‹xE Map•i b E h EE MultiPak E h E E h E bMultiPak E h E i(i de)•A(Show)‚1.2-3E h E1.24 M ult iPakƒE h E1.2-5y g E h E • 1.2-6t E h E1.2-b E h E1.3A t AA.spe•A.lin•A.pro•c gƒA Open A O b A i A tA t t1A bOpen A O b A2P y g E h E A F i le • Open•c ‚A OpenA O bc o b Open A O bt g PC A E SS•A O MPASS(Q2)A PH SU M MI g p V e Ac o b A F i le Open L a st Acq u isitionA o1.3-1 Open A O b(Show i le I n o rm ation ON)1.3-2 Open A O b(Show i le I n o rm a tion OF)t h u A r iv e s:E( 1.3-3) E b E A bA t i g A i rectory:( • 1.3-4) ‚A tt i g i M ov e U p u bg1.3-3 ƒh u E1.3-4 ƒgA A i st i les of y pe:E( 1.3-5)‚Eb b E A1.3-5 ƒt Ei le a e g A t l A t l gE h E b A b1.3-6tg E h E t A OE t lt l A A h hb1.3-t A A tl A ag10.spe•A ag11.spe•A a g12.spe•A ag20.spe•A ag21spe•A ag22.spe6tE t At l b A t l Shif tbE t At t rl+b1.3-t1.4E h E eE h E eE E eE c o p per•A o wer•A e gion AE w b tE e o t g s t tc ow bt lt Atc ooe o1.4-1 ƒE h E e1.5tOpenƒA O b A t t A A SOpen E h E E i splay1.5-1 D i splayg ew h ‘y g A V y gt A y gg epl ace•h ƒt A y g A Vy g t A y gg Ov e rlay•h ‘y g A y g d y g c EP t A yg dg ew O r•h y g A V y g dt A d ty g A y g t lc o u g i le•h b A ON A OFt A ON S t A OF t1.6t A E h E u log andscape•h •y gg P ortrai t•h •y g cg Sq u are•h y gg S tack•h •y g S So g View•h A E bt1.61 L and scap e1.62and scap e • 1.63P ort rait1.64S u a re • 1.65S tack1.7A l M l E g A O bA s o E h E4E Analysis R e gion Properties l M A o b O E h s xE Axis Properties E A l M E gE a ta Properties g A P tE e xt Properties t g A t ge E h E ls A b sbbE A nal ysi s R e g io n Propert ie so1)W o f N N B f g B2) s N E o u B i3) E E N N A C A N BC A N A Sh i ft+N N A N N BES CAAE S1.7-1 Analysis R egion P r opert i es C A NE A xi s Propert ie s1)f g E u B2) E E N N A C A N BE C E C A N A Sh i ft+N N A N NBES CAAE S1.7-2 Axis P r opert i es C A NE ata Propert ie s1)f E u B(ƒy N g y N g)2) E E N N A C A N BC A N A Sh i ft+N N A N N BES CAAE S1.7-2 D a a P r opert i es C A NE ext Propert ie s1)E u B2) E E N N A C A N BC A N A Sh i ft+N N A N N B1.7-2 T e xt r opert i es C A N1.8Periodic T a ble•i1.8.1C A gB1)E C E C File A E( 1.8.1-1)o ad•c ‚oad D a a a se C A N( 1.8.1-2)‚B1.8.1-1 ƒE1.8.1-2 L o ad D a a a se C A N2)E C E C File A ESav e ‚C B3)E C E C File A ESav e As •c Sav e a a a se As ƒC A N( 1.8.1-3)‚B1.8.1-3 Sav e a a a se As C A N4) W f A p B AES p g aes.edb A E SC A—p g xps.edbBC:M ul i pak6.1A\S ER AT A\CO MM N A A BA SE1.8.2r ansit i on C A Nf l B d B1) f E B2) E E N N A E C E BE C E A Sh i ft+N N A N N Be f e s N B BE s N l M lE(AES)E l ME l ME x WE o N E CS i rl ey,er at ed Sh i rl ey,i nea r,N oneE x Ceak Ar ea,eak H e igh eak T o P e ak(A E S‚)E N g x EE s N x E1.8.2-1 T r ansi tion A O b(ESC A)1.8.2-2 T r ansi tion A O b(AES)1.8.3f xr ansit i on ƒC A N l S A l BA o s N f x B1) o f r ansit i on C A N B2) s N E C E N N Add T r ansi i on C A N(• 1.8.3-1)‚B1.8.3-1 Add r ansit i on C A N3) f V r ansit i on Name B1.8.3-1A g5•g Ag5•Br ansit i on Name B4) N N s N E C E s N B5) o l M l A x W B6) N N o B7) r ansit i on C A N A N N BN N o Bo f A r ansit i on N ame A s N E C EN N B1.8.4 ƒs N A m e Ve ri odic T a l e•i s N A m e V s o B e r io di c ab l eE i 1.9-1•s N A m e V4oB1) Element a e ls r ansit i on C A N A s N xf A m e V B2) r ansit i on L a el T r ansit i on C A N A s N xf r ansit i on Name A m e V B3) All T r ansit i ons o S s N A m e V B4) No L a e ls A m e V B1.9-1 ƒA m e V E1.9-2 Eleme nt ab els • 1.9-3 r ansit i on ab el 1.9-4 All r ansi ion s • 1.9-5 No a e ls1.9y g O -S o oth/e riv a tiv ey g l A l1)y N g E C E C A at a • Sm oot/D eriv at iv e Set up•c ‚B c o 1.10-1l A W B2) c o W B EB5) e riv a B6) Sav o l Sav i y-G o lay A S B7) Binom B inomial A S B3) N N A W s B N NB4) N N BW A c o( 1.10-2)‚BN N A Sav i y-G o lay A S57 s BA N N A Binomial A S37s BB N N7s BC N N A Binomial A S3s By N g E C E C A D a a • Smoot/e riv a i e ‚i c o s B1.10-1 W A c o1.10-2c o1.10f g Ef g E A B1) S g E Ba) y N g E C E C i 1.11-1•A View o om n NN g B)y N g E C E C A V i ew oom ut N N B1.11-1 ƒS g Eoom n o om O ut1.11-2 ƒS g E2)l g E Ba) Axis P r opert i es C A N B i 1.7B)g l M A x Bc)N N B1.11-3 •l g E3)E g B i ga) g l A E N A E EB E A B)u N Bf y Ng E C E C A View •Ful l S cal e ( a nd Y) ‚A c o N N Bf y Ng E C E C AView •Full Scale (Y) ‚A c o N NBŠg1.11-4 ƒE gA E y gy g E h E A View P an ef t b A View Pan • R i ght ‚b E1.11-4E • 1.11-5S1.11-6 • 1.11-E1.11f iy N g C f A x i o B1) y N g ia) y N g E C E A at a N or m al i e B c0-1N or m al i en e nsit y B1.12-1 ƒy N g E C E f i2)C f ia) f C f C C f0•1c i o B1) C E C E C A at a N or m al i e (0 o 1)B c i n e nsit y B1.12-2 ƒf C f i1.12y N g-Select Spect r a-d y N y N g BSelect Spect r a ƒSelect i on Slider Bar g p Select i on Sl id er Barg p B1.Select i on Slider Bar°i fy N g E C E C A View Select i on Slid er By N g E Select i on Slider Bar (• 1.14-2)‚A BC g f d f g p B x fSelect i on Slider Bar°o B1.13-1 Sel ect i on S lid er2.Select i on Slider Bar g pz l p N N A y N g A f1y N g Bz Select i on Slider Bar y N g N N fBz y N g N A o Bz y N g Sh i ft+N N Ct r l+ƒN N BN f o BS y N gy N gy N gy N gy N gy N g oƒy N g1.13-2 Sele ct io n Sl i der Bar3.Select Spect r a ƒg pz y N g E C E C A o ols Select Sp ect ra•c Bz c o Select Spect r a ( 1.14-3)‚y N g ESelect i on Slider Bar A Bz N N Select i on Slider Bar y N gA1y N g Bz Select i on Slider Bar y N g N N A y N gB i y N g No.‚y N g EBz N N S y N g Bz y N g A N N y N g A N N Bz N N y N g BN N y N g Bz F N N F N A y N g y Ng BA y N gB Ws A s Bx f A y N g s A C E CE y N g gF o i y N g BB C o A y N g B i 1.14-7•y N g E C E f A f C f i A eC N y N g m F o BfC f1.13-3 Select Spect r a ƒ1.13-4 Select Spectra g p1.13-5 ƒy g S(Show All)1.13-6 ƒy g(Show One)1.13-y g g p1.13s N u-Spect ral Sh i f-s A s N u V g B C•E Ar s N l M l s A s N u By N g E C E C A D a a ‚ Sh i ft Set u p•c Bc o Spect r al Sh i ft A c o Energyl F o Bf A s N B i y N gs N A E o l M BS N N B s N g Energy l V g BN N A B iN N f BN N B1y N g A y N g l BE nergy l l B l M l V gA P Energy l N N B1.14-1 Spect ral Sh i ft1.14-2 Spectra l Shif t • 1.14-3y g i1.14-4 ƒg V t g1.14s N-FWH M/Area•c-s N s B e ESCA A ES‚BESCA A5BE eak e ighE eak En ergyE eak Ar eaE FW ME B ack g round/Noi seAES A3BE eak o e akE eak En ergyE B ack g round/Noi sef By N g E C E C A T o ols ‚ FWH M/Area•c ‚B y N g 1A l Bf A s N Select i on Slider Bar B i y N gS o N E C A E o l M(ESCA)B l A B1.15-1P eak Anal ysi s ES A1.15-2 Pe ak Anal ysis AE S1.15g-Curv e fit- (ESCA)ŽA y N g A y Ag p Bf W W o B W BƒW E o f By N g E C E C A ool s C ur e Fi c c o N N B c o Curv e F it A y N g E CE E Curv e Fit Set u p E C E B1.16-1 R e gion • 1.16-2 Curv e Fit N1.16-3 •c o1.16-4c o Curv e Fit1.16-5u rv e F i t Setup E h ES A g A o b O E hga uss ƒEa uss-o rentz E c”gAsym e trico b O E hSh ir le yt erated Shi rl eyi nearo ney g gs g b u E u E b gy g i g l M l A l g AgP y g l p h b y g ol p l M l A sE l p ll p e A e i A sym e tric u rv e F i t Setup E h E l1.16-6 ƒy g gV c o b g(urv e F i t)sb S pecSum a ry.txt E h E A1.16-1.16- C Sp ecSu ary.t xt E h E。
CCNA无线认证-IUWNE10S02L01-Understanding_Cisco_Unified_Wireless_Networks_Basic_Architecture-2
© 2008 Cisco Systems, Inc. All rights reserved.
IUWNE v1.0—2-9
Cisco WCS, WCS Navigator, and Location Appliance
WCS:
Planning, configuration, monitoring, location, IDS, and troubleshooting Hierarchical maps Intuitive GUI and templates Policy-based networking (QoS, security, RRM, etc.)
Understanding Cisco Unified Wireless Networks Basic Architecture
Basic Cisco WLAN Installation-2
© 2008 Cisco Systems, Inc. All rights reserved.
IUWNE v1.0—2-1
Work with ISR routers Support 8 to 12 APs Work in Cisco 2800 or 3800 routers Same software features as the 2106 Series WLC
© 2008 Cisco Systems, Inc. All rights reserved.
1400 Series
© 2008 Cisco Systems, Inc. All rights reserved. IUWNE v1.0—2-3
1300 Series
Wireless LAN Controllers
Bussmann系列全面目录说明书
Solarproducts2Solar fusesREDindicates NEW information ContentsDescription Page Fuse holder and blockselection guide 2-2Volt F uses Size 600Vdc . . . . . . . . . . .PVM. . . . . 13/32˝ x 1 1/2˝. . . . . . . . . 2-4600Vac /300Vdc . . . .PVCF. . . . .CUBEFuse™. . . . . . . . .. 2-5600Vac/dc. . . . . .. . .PVS-R. . . .RK5. . . . . . . . . . . . . . . . . 2-71000Vdc . . . . . . . .. .PV. . . . . . .10x38mm . . . . . .. . . . . . .2-81000Vdc . . . . . . . .. .HPV. . . . . .10x38mm(in-line assembly). . . . . . . .2-91000/1100Vdc. . . .. .PV. . . . . . .14x51mm . . . . . . . . . . .2-101000Vdc . . . . . . . . . .NH. . . . . . .NH Sizes 1, 2, 3. . . . . . . 2-111000Vdc . . . . . . . . . .XL PV. . . . XL Size 01, 1, 2, 3. . .. . .2-121300/1500Vdc . . . .. .PV. . . . . . .14x65mm. . . . . . . . . . . .2-151200/1500Vdc . . . .. .XL PV. . . . XL Size 01, 1, 2, 3. . . . .2-162Solar fuses Holders and blocks for photovoltaic fuses 600 Volts Fuses Volts Page Midget. . . . . . . . . . . . . .PVM. . . . . . . . . . .600V. . . . . . . . . .2-4CF. . . . . . . . . . . . . . . . .CFPV. . . . . . . . . .600V. . . . . . . . . .2-5RK5. . . . . . . . . . . . . . . .PVS-R . . . . . . . . .600V. . . . . . . . . .2-7Holders •TCFH CUBEFuse holder, panel/DIN-Rail mount . . . . . . . . . . . . .1-16•CHM DIN-Rail mount holders . . . . . . . . . . . . . . . . . . . . . . . . . .9-2•HEB in-line holders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9-46Blocks •Modular knifeblade fuse blocks 250/600V, panel mount . . . . . . . 9-17•RM600 RK5 open fuse blocks . . . . . . . . . . . . . . . . . . . . . . . . . .9-24•BMM midget open fuse blocks. . . . . . . . . . . . . . . . . . . . . . . . . .9-32BMM HEB TCFHR600Modular knifeblade1000 Volts Fuses Volts Page 10x38mm . . . . . . . . . . .PV-_A10. . . . . . . .1000V . . . . . . . . .2-814x51mm . . . . . . . . . . .PV-_A14. . . . . . . .1000/1100V. . . . .2-10NH Sizes 1, 2 and 3 . . . . PV-_ANH . . . . . . .1000V . . . . . . . . .2-1101XL . . . . . . . . . . . . . . .PV-_A-01XL . . . . .1000V . . . . . . . . .2-121XL . . . . . . . . . . . . . . . .PV-_A-1XL . . . . . .1000V . . . . . . . . .2-122XL . . . . . . . . . . . . . . . .PV-_A-2XL . . . . . .1000V . . . . . . . . .2-123L . . . . . . . . . . . . . . . . .PV-_A-3L . . . . . . .1000V . . . . . . . . .2-12Holders •CHPV 10x38 DIN-Rail mount holders . . . . . . . . . . . . . . . . . . . .9-2•CH14 14x51 DIN-Rail mount holders. . . . . . . . . . . . . . . . . . . . .9-2•HEB* 10x38 in-line holders. . . . . . . . . . . . . . . . . . . . . . . . . . . .9-46•HPV in-line holder assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . .9-46* Self certified to 1000Vdc.Blocks•SB1XL-S 01XL and 1XL blocks . . . . . . . . . . . . . . . . . . . . . . . . .2-12•SB2XL-S 2XL blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12•SB3L-S 3L blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-12•SD1-D-PV**. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-11•SD2-D-PV**. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-11•SD3-D-PV**. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11** IEC only to 1000Vdc.CHPV CHM CH14HEB SD1-D-PV SB2XL-S SB3L-S HPVSB1XL-SSolarproducts2Solar fuses Holders and blocks for photovoltaic fuses SB2XL-S SB3L-S 1500 Volts Fuses Volts Page 01XL . . . . . . . . . . .PV-_A-01XL-15 . . . .1500V . . . . . . . . .2-161XL . . . . . . . . . . . .PV-_A-1XL-15 . . . . .1500V . . . . . . . . .2-162XL . . . . . . . . . . . .PV-_A-2XL-15 . . . . .1500V . . . . . . . . .2-163L . . . . . . . . . . . . .PV-_A-3L-15 . . . . . .1500V . . . . . . . . . 2-1614x65mm PV-_A14*. . . . . . . . .1300/1500V. . . . .2-15Blocks•SB1XL-S** 01XL and 1XL blocks . . . . . . . . . . . . . . . . . . . . . .2-16•SB2XL-S** 2XL blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-16•SB3L-S** 3L blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-16*Available with tags for bolt mounting or 10mm fixings for mounting in modular blocks for 10mm diameter fuses.** IEC only to 1500Vdc.SB1XL-S2Solar fuses13/32˝ x 1 1/2˝ Midget PV fusesRecommended fuse holders and blocks for the PVM fuse Specifications:Description:fast-acting 600Vdc Midget fuses specificallydesigned to protect solor power systems inextreme ambient temperature, high cyclingand low level fault current conditions (reversecurrent, multi-array fault).Dimensions:13⁄32˝ x 1 1⁄2˝(10.3 x 38.1mm).Ratings:Volts— 600Vdc to UL 2579Amps— 4-30AIR— 50kA DC (4-30A)Agency information:UL Listed 2579, Guide JFGA, FileE335324, CSA Component Certified C22.2. RoHS compliant.Features and benefits:•Specifically designed to protect solar power systems inextreme ambient temperature per UL 2579 listed•Capable of withstanding high cycling and low level faultcurrent conditionsTypical applications:•Solar combiner boxes•Solar string protectorsCatalog numbers (amps)PVM-4PVM-7PVM-10PVM-20PVM-5PVM-8PVM-12PVM-25PVM-6PVM-9PVM-15PVM-30PVMData Sheet: 2153Catalog Amp Power loss (watts)number rating n 1.0 x I nPVM-1010 1.0 1.9PVM-1515 1.0 1.7PVM-3030 1.6 2.9I n= Rated currentPower loss (watts)Dimensions - (mm)11CURRENT IN AMPS.01.1110100AMP5AAAAAA1,TIMEINSECONDSSolar products2Solar fusesPhotovoltaic CUBEFuse™PVCF 600VData Sheet: 2155Carton quantity and weightAmp Carton Weight per cartonrating qty.lbs kgPVCF-35-60A12 1.420.65PVCF-70-100A6 1.740.79Catalog symbol:PVCF_RNFast-acting fuse:6 minutes maximum clearing time at 200%rated current for 30 to 60A fuse8 minutes maximum clearing time at 200%rated current for 70 to 100A fuseRatings:Volts— 600VdcAmps— 35-100AIR— 50kA DC (UL and CSA)Agency information:•UL 2579 Listed Fuse: Guide JFGA, File E335324•CSA Certified Fuse: Class C22.2•RoHS compliantOther ratings/specifications:Watts loss at rated current:PVCF35RN: 5.45WPVCF60RN: 7.27WPVCF100RN: 11.50WOperating and storage temperature range:-40 to 90°CMaterial specifications:• Case: glass filled PES (Polyethersulfone)• Terminals: copper alloy• Terminal plating: electroless tinFeatures and product benefits:•Maximize uptime and reliability using fuses designed and list-Low Voltage Fuses - Fuses for PhotovoltaicSystems.•Minimize chances of equipment failure and personnel injurywhen using full range fuses having the industry’s fastestresponse time to low-magnitude faults.•Maximize return on investment with fuses proven towithstand harsh temperatures.•Minimize design time, operating outage time andchanging enviromental conditions.•Simplify compatibility with readily available industrystandard Class CF holders.•Temperature derating: designed to maximize rated capacity inelevated environmental temperatures.•Overload protection: proven to clear faults faster than the ULrequirement.•Power loss: minimal energy consumption leading to increasedefficiency.Recommended fuse holders for Class CF fuses•2Solar fuses Photovoltaic CUBEFuse™ Data Sheet: 2155 Time-current characteristic curves–average melt 100A60A40A 50A 35A2Solar fusesLimitron™ fast-acting fusesData Sheet: 4203PVS-R(600Vac/dc) Class RK5Recommended fuse holders and blocks for Class RK5 fuses•See page 1-32Solar fuses 10x38mm photovoltaic fuses Description:A range 10x38mm, 1000Vdc PV fuses for the protection and isolation of photovoltaic strings. The fuses arespecifically designed for use in PV systems with extreme ambient temperature, high cycling and low fault current conditions (reverse current, multi-array fault) string arrays.flexibility.Basic fuse size:•10x38mm Catalog symbols:1-20A*—PV-(amp)A10F (cylindrical)—PV-(amp)A10-T (bolt mounting)—PV-(amp)A10-1P (single PCB tab)—PV-(amp)A10-2P (dual PCB tab)—PV-(amp)10F-CT (in-line, crimp terminals)25-30A**—PV10M-(amp) (cylindrical)—PV10M-(amp)-CT (in-line, crimp terminals)*Ceramic tube construction.**Melamine tube construction.Time constant:•1-3ms PV Fuse coordination:With thin film cells and 4”, 5” and 6” crystalline silicon cells Agency information:•UL Listed to 2579*, Guide JFGA, File E335324•IEC 60269-6 (gPV)•CSA File 53787, Class 1422-30 (1-15A), 20-30A Pending •CCC (1-20A) (25-30A pending)•RoHS Compliant *Except crimp terminal version that is UL Recognized to UL 2579, Guide JFGA2, File E335324.Features and benefits:•Meets UL and IEC photovoltaic standards for global acceptance •Low watts loss performance for energy efficiency •Low temperature rise performance for more precise sizing •In-line crimp terminal version is easy to apply in wire harness construction Typical applications:•Combiner boxes •Inverters •PV wire harnesses Recommended fuse blocks, holders and fuseclips:Part number Description Data Sheet #BPVM_10265with optional cover CHPV_Lit # 3185with optional open fuse indication 1A3400-09PCB fuseclip 2131HPV-DV-_AIn-line fuse holder assembly 2157Data Sheet: 1012110x38mm fuses — 1000Vdc, 1-30A Catalog numbers (amp)/electrical characteristics:Rated I 2t (A 2s)Cylindrical Bolt PCB fixing PCB fixing Rated volts Interrupting Pre-Total @Watts loss ferrule fixing single pin double pin crimp terminal amps Vdc rating arcing rated volts 0.8I n I n PV-1A10F PV-1A10-T PV-1A10-1P PV-1A10-2P PV-1A10F-CT 1100050kA 0.150.40.8 1.5PV-2A10F PV-2A10-T PV-2A10-1P PV-2A10-2P PV-2A10F-CT 2100050kA 1.2 3.40.6 1.0PV-3A10F PV-3A10-T PV-3A10-1P PV-3A10-2P PV-3A10F-CT 3100050kA 4110.8 1.3PV-3-5A10F PV-3-5A10-T PV-3-5A10-1P PV-3-5A10-2P PV-3-5A10F-CT 3.5100050kA 6.6180.9 1.4PV-4A10F PV-4A10-T PV-4A10-1P PV-4A10-2P PV-4A10F-CT 4100050kA 9.526 1.0 1.5PV-5A10F PV-5A10-T PV-5A10-1P PV-5A10-2P PV-5A10F-CT 5100050kA 1950 1.0 1.6PV-6A10F PV-6A10-T PV-6A10-1P PV-6A10-2P PV-6A10F-CT 6100050kA 3090 1.1 1.8PV-8A10F PV-8A10-T PV-8A10-1P PV-8A10-2P PV-8A10F-CT 8100050kA 332 1.2 2.1PV-10A10F PV-10A10-T PV-10A10-1P PV-10A10-2P PV-10A10F-CT 10100050kA 770 1.2 2.3PV-12A10F PV-12A10-T PV-12A10-1P PV-12A10-2P PV-12A10F-CT 12100050kA 12120 1.5 2.7PV-15A10F PV-15A10-T PV-15A10-1P PV-15A10-2P PV-15A10F-CT 15100050kA 22220 1.7 2.9PV-20A10F PV-20A10-T PV-20A10-1P PV-20A10-2P PV-20A10F-CT 20100050kA 34350 2.1 3.6PV10M-25————25100020kA 3251860* 1.7 2.9PV10M-30————30100020kA 5363360* 1.7 3.3*Total I 2************************************.Solarproducts2Solar fuses 10x38mm photovoltaic in-line assembly Data Sheet: 2157HPV — 1000Vdc Catalog symbol:HPV-DV-(amp)ADescription:Single-pole, non-serviceable photovoltaic in-line fuse holderand fuse assembly in an IP67 dust tight and temporary water immersion resistant insulating boot for use in photovoltaic wire harnesses.Ratings — 1000Vdc Amps — 1-20AIR — 33kA Agency information • UL Listed to 4248-1 and 4248-18. File # E 348242• CSA Component Acceptance, Class 6225 30, File # 47235• CE, RoHS Compliant, IP20 Finger-safe, IP67Conductors • 75°C/90°C Cu Stranded 12-10AWG PV wire T erminals • Crimp connection for single, stranded 12-10AWG PV conductor Boot material • UL 5VA flammability resistant rated elastomer. • UV resistant to UL F1 suitable for outdoor use.Operating and storage temperature range • -40°C to +90°C PackagingBulk packed in cartons, 180 fuse assemblies per carton. Cartonweight 19.3 Lbs (8.7543kg).Fuse assemblies poly bagged with PV fuse element, two insulating boots (for lineside and loadside), and one pressure to the wire harness.Catalog numbers (amps) and fuse elements*HPV catalog number 10x38mmPV fuse part number Amps HPV-DV-1A PV-1A10F-CT 1HPV-DV-2A PV-2A10F-CT 2HPV-DV-2.5A PV-2.5A10F-CT 2.5HPV-DV-3A PV-3A10F-CT 3HPV-DV-3.5APV-3.5A10F-CT 3.5HPV-DV-4A PV-4A10F-CT 4HPV-DV-5APV-5A10F-CT5HPV-DV-6A PV-6A10F-CT 6HPV-DV-8A PV-8A10F-CT 8HPV-DV-10A PV-10A10F-CT 10HPV-DV-12A PV-12A10F-CT 12HPV-DV-15A PV-15A10F-CT 15HPV-DV-20A PV-20A10F-CT 20* For fuse specifications and derating curves see data sheet no. 10121 at/DatasheetsEle.Recommended tools • Sta-Kon™ terminal crimping tool, catalog # ERG4002• Multi-Contact assembly tool, catalog # PV-RWZ with PV-KOI+II and PV-KOIII tapered spindles2Solar fuses 14x51mm photovoltaic fuses Time-current characteristic curves—average melt Dimensions - mmData Sheet: 720132Available current (amps), DC-time constant 1-3ms Recommended fuse holders and blocks for 14x51mm fuses •See page 2-2Features and benefits:•Specifically designed to provide fast-acting protection under low fault current conditions associated with PV systems •High DC voltage rating •Demonstrated performance in extreme temperature cycling conditions Typical applications:•Combiner boxes •Inverters Recommended fuse holder:CH141B-PV DIN-Rail modular fuse holder See data sheet # 720148 for more information.14x51mm fuses — 1000/1100Vdc, 15-32A2-11Solar products2Solar fusesNH photovoltaic fusesBUSSMANN SERIES FULL LINE CATALOG1007—July 2015 /bussmannseries Description:A range of 1000Vdc NH size Photovoltaic (PV) fusesspecifically designed for protecting and isolating arraycombiners/re-combiners, disconnects and inverters.Ratings:Volts— 1000VdcAmps— 32-400AIR— 50kAAgency information:•UL Listed, Guide JFGA, File E335324.Photovoltaic to UL 2579•IEC 60269-6 gPV•CSA Class 1422-30, File 53787 (32-160A)•UL Listed, IEC gPV, CSA, CCC Pending, RoHS compliantCatalog numbers/electrical characteristics:Data Sheet: 720133Features and benefits:•Compact size saves panel space and extends designflexibility•Bolt-on versions have common hole centers forstandardizing busbar designs across 63-400 amp range•Low power loss for greater efficiency and loweroperating temperature•Global agency standards simplifies designconsiderations for worldwide markets•Dual indication feature and optional microswitchesmake system monitoring easierTypical applications:•Recombiner boxes•InvertersRecommended fuse blocks*:Fuse size Fuse blockNH1SD1-D-PVNH2SD2-D-PVNH3SD3-D-PVSee data sheet # 720149 for more information.Optional microswitches*:Tab size/number mm (inch)Connection Volts Amps170H0236250/6.3 (1⁄4)Quick connect2502170H0238110/2.8 (0.11)Quick connect2502BVL50187/4.8 (3⁄16)Quick connect2506 NH fuses — 1000Vdc, NH1, 2, 3, 32-400A*For use with bladed version.FusesizeCurrentrating(amps)Energy integralsI2t (A2S)Watts lossPart numberPre-arcingT otal at1000V0.8InInPV-32ANH1NH1328072048PV-40ANH1NH140185167059PV-50ANH1NH1504003600611PV-63ANH1NH1634704300612PV-80ANH1NH1806405760815PV-100ANH1NH1100130011,700816PV-125ANH1NH1125260023,400917PV-160ANH1NH1160520046,8001427PV-200ANH1NH120010,20082,0001325PV-250ANH2NH225017,000136,0001938PV-300ANH3NH330032,000260,0002440PV-315ANH3NH331532,000260,0002644PV-350ANH3NH335044,500370,0002745PV-355ANH3NH335544,500370,0002846PV-400ANH3NH340067,500550,0003050Blade without bolt-holesSee data sheet No. 720133 for complete details.Part numberwith bolt holesFusesizeCurrentrating(amps)Energy integralsI2t (A2S)Watts lossPre-arcingT otal at1000V0.8InInPV-63ANH1-B NH1634704300612PV-80ANH1-B NH1806405760815PV-100ANH1-B NH1100130011,700816PV-125ANH1-B NH1125260023,400917PV-160ANH1-B NH1160520046,8001427PV-200ANH1-B NH120010,20082,0001325PV-250ANH2-B NH225017,000136,0001938PV-315ANH3-B NH331532,000260,0002644PV-355ANH3-B NH335538,000310,0002948PV-400ANH3-B NH340061,000490,0003250See data sheet No. 720133 for complete details.Blade with bolt-holesRequest Info2-12BUSSMANN SERIES FULL LINE CATALOG 1007—July 2015 /bussmannseries 2Solar fuses1000Vdc XL photovoltaic fuses Data Sheet: 10201Description:protecting and isolating photovoltaic array combiners and disconnects. These fuses are capable of interrupting low overcurrents associated with faulted PV systems (reverse microswitches for use in monitoring systems.Catalog symbols:Blade — PV-(amp)A(size)XL Bolt-In — PV-(amp)A(size)XL-B Agency information:•UL 2579, Guide JFGA, File E335324•IEC 60269-6•CSA Class 1422-30, File 53787•RoHS Compliant Features and benefits:•Specifically designed to provide fast-acting protection under low fault current conditions associated with PV systems •High DC voltage rating •Variety of mounting options for flexibility •Demonstrated performance in extreme temperature cycling conditions Typical applications:•Recombiner boxes •InvertersRecommended fuse holders:Fuse size Part number Description 01XL SB1XL-S 1-pole block 1XL SB1XL-S 1-pole block 2XL SB2XL-S 1-pole block 3L SB3L-S 1-pole block See data sheet # 10066 for more information.Optional microswitches:Blade — 170H0235 or 170H0237 for size 01XL— 170H0236 or 170H0238 for sizes 1XL, 2XL and 3LBolt-in — 170H0069 for all sizes XL fuses — 1000Vdc, XL01, 1, 2, 3, 63-630A Catalog numbers (amp)/electrical characteristics:Rated I 2t (A 2s)Rated volts Interrupting Total @Watts loss Fuse size Bladed version Bolted version amps Vdc rating Pre-arcing rated volts 0.8I n I n PV-63A-01XL PV-63A-01XL-B 63100050kA 26019001324PV-80A-01XL PV-80A-01XL-B 80100050kA 4903600172901PV-100A-01XL PV-100A-01XL-B 100100050kA 87063001832PV-125A-01XL PV-125A-01XL-B 125100050kA 193013,9002040PV-160A-01XL PV-160A-01XL-B 160100050kA 390028,10022441PV-200A-1XL PV-200A-1XL-B 200100033kA 940027,2603160PV-160A-2XL PV-160A-2XL-B 160100033kA 278021,0002544PV-200A-2XL PV-200A-2XL-B 200100033kA 495037,00028502PV-250A-2XL PV-250A-2XL-B 250100033kA 945070,0003460PV-315A-2XL PV-315A-2XL-B 315100033kA 16,600123,0004066PV-350A-2XL PV-350A-2XL-B 350100033kA 26,000192,0004268PV-355A-2XL PV-355A-2XL-B 355100033kA 26,000192,0004268PV-350A-3L PV-350A-3L-B 350100050kA 31,000161,2004065PV-400A-3L PV-400A-3L-B 400100050kA 44,500231,40048823PV-500A-3L PV-500A-3L-B 500100050kA 85,000442,0005085PV-600A-3L PV-600A-3L-B 600100050kA 137,000712,40080108PV-630A-3L*PV-630A-3L-B*630*100050kA 137,000712,40092118*630A thermally rated to UL only.Request Info2-132Solar fuses1000Vdc XL photovoltaic fuses for solar ap plications BUSSMANN SERIES FUL L LINE CATALOG 1007—July 2015 /bussmannseries 2XL blade sizeDimensions - mm (n ot to scale)3L blade size3L bolt size01XL blade size 01XL bolt sizeData Sheet: 7201342XL bolt size Request Info2-14BUSSMANN SERIES FULL LINE CATALOG 1007—July 2015 /bussmannseries 2Solar fuses 1000Vdc XL photovoltaic fuses for solar applications Data Sheet: 720134100100010000160A 125A 100A 200A 0.010.11100001000100101P r e -a r c i n g T i m e (s )63A 80A Time-current curves for 01XL and 1XL Available current (amps), DC-time constant 1-3ms Time-current curves for 2XLAvailable current (amps), DC-time constant 1-3ms Time-current curves for 3L Available current (amps), DC-time constant 1-3ms2-152Solar fuses 14x65mm photovoltaic fuses BUSSMANN SERIES FULL LINE CATALOG 1007—July 2015 /bussmannseries 14x65mm fuses — 1300/1500Vdc, 2.25-32A Features and benefits:•Specifically designed to provide fast-acting protection under low fault current conditions associated with PV systems •Variety of mounting options for flexibility •Fuses meet UL and IEC photovoltaic standards for global product acceptance Data Sheet: 1172Request Info2-16BUSSMANN SERIES FULL LINE CATALOG 1007—July 2015 /bussmannseries 2Solar fuses 1500Vdc XL photovoltaic fuses Data Sheet: 10201Description:protecting and isolating photovoltaic array combiners and disconnects. These fuses are capable of interrupting low microswitches for use in monitoring systems.Catalog symbols:Blade — PV-(amp)A(size)XL-15Bolt-In — PV-(amp)A(size)XL-B-15Agency information:•UL Listed, Guide JFGA, File E335324. Photovoltaic to UL 2579•IEC 60269-6 gPV •CSA Class 1422-30, File 53787•RoHS compliant Features and benefits:•Specifically designed to provide fast-acting protection PV systems •Variety of mounting options for flexibility Typical applications:•Recombiner boxes •InvertersRecommended fuse holders:Fuse size Part number Description 01XL SB1XL-S 1-pole block 1XL SB1XL-S 1-pole block 2XL SB2XL-S 1-pole block 3L SB3L-S 1-pole block See data sheet # 10066 for more information.Optional microswitches:Blade — 170H0235 or 170H0237 for size 01XL— 170H0236 or 170H0238 for sizes 1XL, 2XL & 3LBolt-in — 170H0069 for all sizes XL PV fuses — 1500Vdc, XL01, 1, 2, 3, 50-400A Catalog numbers (amp)/electrical characteristics:Rated I 2t (A 2s)Rated volts InterruptingTotal @Watts loss Fuse size Bladed version Bolted version amps Vdc rating Pre-arcing rated volts 0.8I n I n PV-50A-01XL-15PV-50A-01XL-B-1550150030kA 7510001425PV-63A-01XL-15PV-63A-01XL-B-1563150030kA 3622250152601PV-80A-01XL-15PV-80A-01XL-B-1580150030kA 56533001935PV-100A-01XL-15PV-100A-01XL-B-151********kA 110066002240PV-125A-01XL-15PV-125A-01XL-B-151********kA 220010,5002342PV-160A-01XL-12PV-160A-01XL-B-12160120030kA 500024,0002652PV-100A-1XL-15PV-100A-1XL-B-151********kA 1250600024431PV-125A-1XL-15PV-125A-1XL-B-151********kA 195093602552PV-160A-1XL-15PV-160A-1XL-B-151********kA 420020,1603058PV-200A-1XL-15PV-200A-1XL-B-152********kA 940045,1203161PV-125A-2XL-15PV-125A-2XL-B-151********kA 220015,00025442PV-160A-2XL-15PV-160A-2XL-B-151********kA 500032,0002948PV-200A-2XL-15PV-200A-2XL-B-152********kA 880051,0003257PV-250A-2XL-15PV-250A-2XL-B-152********kA 16,60085,0004070PV-250A-3L-15PV-250A-3L-B-152********kA 22,30092,00032503PV-315A-3L-15PV-315A-3L-B-153********kA 38,000160,0003666PV-355A-3L-15PV-355A-3L-B-153********kA 44,500184,0004480PV-400A-3L-15PV-400A-3L-B-15400150030kA58,000240,0004991Request Info2-17Solar products2Solar fuses1500Vdc XL photovoltaic fusesBUSSMANN SERIES FULL LINE CATALOG1007—July 2015 /bussmannseriesDimensions - mm (not to scale)Bladed - size 01XL, 1XL, 2XL and 3L1XL blade size1XL bolt size2XL blade size3L blade size3L bolt size01XL blade size01XL bolt sizeData Sheet: 7201342XL bolt sizeRequest Info2-18BUSSMANN SERIES FULL LINE CATALOG1007—July 2015 /bussmannseries2Solar fuses1500Vdc XL photovoltaic fusesData Sheet: 720134Time-current curves for 01XL - 1500VdcAvailable current (amps), DC-time constant 1-3msTime-current curves for 1XL - 1500VdcAvailable current (amps), DC-time constant 1-3ms Time-current curves for 2XL - 1500VdcAvailable current (amps), DC-time constant 1-3msTime-current curves for 3L - 1500VdcAvailable current (amps), DC-time constant 1-3msRequest Info。
GuardShield 安全灯丝网格说明书
Technische DatenSpezifikationen für GuardShield-SicherheitslichtgitterBestellnummern 450L-B4FNxYD, 450L-B4HNxYD, 450L-E4FLxYD, 450L-E4HLxYDSpezifikationenTabelle 1 – SicherheitseinstufungenAttribut 450L-B4FNxYD, 450L-B4HNxYD450L-E4FLxYD, 450L-E4HLxYDNormenIEC 61508, EN/ISO 13849-1, IEC 62061, UL 508 (Weitere Informationen zur Konformitätserklärung finden Sie über den Link …Produktzertifizierung“unter /global/certification/overview.page.)SicherheitsklassifizierungTyp 4 gemäß IEC 61496-1/-2Bis zu PLe (Kategorie 4) gemäß ISO 13849-1, SIL 3 gemäß IEC 61508 SILcl 3 gemäß IEC 62061Laserausrichtung von GuardShield-Sicherheitslichtgitter der Serie 450L-E: Laserklasse 2 gemäß IEC 60285-1.Daten zur funktionalen Sicherheit:Paar: PFHD: 12.7 10-9Einsatzzeit/PTI (Proof Test Interval; Prüfintervall): 20Jahre Betriebsart: Betriebsart mit hoher AnforderungsratePaar: PFHD: 12.7 10-9 (nicht kaskadiert)Kaskaden-Steckverbinder PFHD: 0.96 10-9Einsatzzeit/PTI (Proof Test Interval; Prüfintervall): 20Jahre Betriebsart: Betriebsart mit hoher AnforderungsrateTabelle 2 – BetriebseigenschaftenAttribut 450L-B4FNxYD, 450L-B4HNxYD450L-E4FLxYD, 450L-E4HLxYDSchalterfunktion Ausgangsschaltelemente aktivieren (ein, hoch, 24V DC), wenn Schutzfeld nicht unterbrochen Schutzfeldlänge 150–1950mm (5,91–76,77Zoll) in Inkrementen von 150mm (5,91Zoll)AuflösungFinger: 14mm (0,56Zoll); Hand: 30mm (1,19Zoll)Anzahl Linsen (siehe Abbildung 11 auf Seite 24)Finger: 16 je Inkrement von 150mm (5,91Zoll); Hand: 8 je Inkrement von 150mm (5,91Zoll)BetriebsbereichAuflösung 14mm (0,56Zoll): 0,5 bis 4m (1,64 bis 13,12Fuß)Auflösung 30mm (1,19Zoll): 0,9 bis 7m (2,95 bis 22,97Fuß)Reduzierter Betriebsbereich (Auswahl mit DIP-Schalter):Auflösung 14mm (0,56Zoll): 0,9–2m (2,95–6,56Fuß)Auflösung 30mm (1,19Zoll): 1,2–3,5m (3,94–11,48Fuß)Auflösung 14mm (0,56Zoll): 0,5–9m (1,64–29,53Fuß)Auflösung 30mm (1,19Zoll): 0,9–16,2m (2,95–53,15Fuß)Reduzierter Betriebsbereich (Auswahl mit DIP-Schalter):Auflösung 14mm (0,56Zoll): 0,9–4,5m (2,95–14,76Fuß)Auflösung 30mm (1,19Zoll): 1,2–8m (3,94–26,25Fuß)AnsprechzeitAusgangsschaltelement – EIN nach AUS Fingerauflösung <25msHandauflösung <15ms (Details siehe Ansprechzeit auf Seite 48 im GuardShield Safety Light Curtain User Manual .)Ausgangsschaltelement – EIN nach AUS (kein Blanking, kein Muting, keine Strahlcodierung bzw. keine kaskadierende Funktionalität konfiguriert):Fingerauflösung <20msHandauflösung <13ms (Details siehe …Ansprechzeit“ auf Seite 48 im GuardShield Safety Light Curtain User Manual .)EinschaltzeitMaximal 5 SekundenWiederanlaufzeit des Ausgangsschaltelements nach Löschen des Schutzfelds bei automatischem Reset 210ms (Details siehe Ansprechzeit auf Seite 48 im GuardShield Safety Light Curtain User Manual .)Netzteil24V DC ±15%; Netzteil muss die Anforderungen von IEC 60204-1 und IEC 61496-1 erfüllen. Integrierter Rückwärts-Verbindungsschutz.Schutzklasse (EN50178)II (Sicherheits-Kleinspannung SELV/Schutz-Kleinspannung PELV)Stromverbrauch (Einzelstab)Schutzfeldhöhe:150mm (5,91Zoll): max. 64mA 1950mm (76,77Zoll): 214mA (Ausgänge nicht unter Last)150mm (5,91Zoll): max. 70mA 1950mm (76,77Zoll): 221mA (Ausgang nicht unter Last450L-APC-IO-8: zusätzlich 40mA (mit Abschlusssteckverbinder)Spitzenstrom während des Einschaltzyklus Max. 800mA (Ausgänge nicht unter Last)Dauer des Spitzenstroms während des Einschaltzyklus 100ms Stromausfallzeit (Ausgangsschaltelement <2V)3000msGesendete Infrarotwellenlänge Infrarot (Wellenlänge 855nm)ÖffnungswinkelInnerhalb von ±2,5° bei 3m (9,8Fuß)2Rockwell Automation-Publikation 450L-TD001B-DE-P - April 2018Spezifikationen für GuardShield-SicherheitslichtgitterSynchronisierungOptischÜber DIP-Schalter wählbare FunktionenAbhängig vom eingestecktem Steckverbinder:450L-B: Startmodus; externe Geräteüberwachung (external device monitoring, EDM); maximaler Betriebsbereich, Strahlcodierung 450L-E: Blanking und Muting UmgebungslichtGlühlampe: höchstens 3000Lux Sonnenlicht: höchstens 100000 Lux Spannungspegel für Logik Hi/1: >16V DC Strom: normal 7mATabelle 3 – Empfänger-Steckverbinder und Universal-Steckverbinder für EingängeAttribut450L-B4FNxYD, 450L-B4HNxYD450L-E4FLxYD, 450L-E4HLxYDManueller Start Empfänger-Steckverbinder für Eingang Minimale Dauer 50ms; maximale Dauer 5sSpannungspegel für Logik Low/0: 0–5V DC Spannungspegel für Logik Hi/1: >16V DC Strom: normal 7mA Empfänger-Steckverbinder für Eingang für externe Geräteüberwachung300ms nach Aktivierung des Ausgangsschaltelements Spannungs pegel für Logik Low/0: 0–5V DC Spannungs pegel für Logik Hi/1: >16V DC Strom: normal 7mATabelle 4 – Sicherheitsausgänge (Ausgangsschaltelemente)Attribut450L-B4FNxYD, 450L-B4HNxYD 450L-E4FLxYD, 450L-E4HLxYDSicherheitsausgänge (Ausgangsschaltelemente) Zwei Halbleiterausgänge Schaltvermögen Jeweils max. 500mA Max. AUS-Strom<2mARestspannung (Abfall von Netzteil)Max. 2V (Spannungsabfall durch Kabel ausgenommen)Länge des Anschlusskabels Max. 100m (330Fuß) mit AWG 22;Bedingung: Netzteil 24V und Maximallast an Ausgängen insgesamt 50mA Spannung auf HIGH (Ueff) schalten 11–30V Spannung auf LOW schalten -3–2V Belastbarkeit Max. 0,5μF Kurzschlussschutz JaTestimpulsdaten Details siehe Ausgangsschaltelement-Ausgang auf Seite 98 im GuardShield Safety Light Curtain User Manual .KurzschlusserkennungJa Galvanische Trennung: E/A von LogikNeinTabelle 5 – StatusausgängeAttribut450L-B4FNxYD, 450L-B4HNxYD 450L-E4FLxYD, 450L-E4HLxYDAnzahl der Statusausgänge Bis zu drei nicht sicherheitsrelevante Halbleiterausgänge (abhängig von Steckverbinder)SchaltvermögenJeweils max. 200mARestspannung (Abfall von Netzteil)Max. 2V (Spannungsabfall durch Kabel ausgenommen)KurzschlussschutzJa Galvanische Trennung: E/A von LogikNeinTabelle 2 – BetriebseigenschaftenAttribut 450L-B4FNxYD, 450L-B4HNxYD 450L-E4FLxYD, 450L-E4HLxYDSpezifikationen für GuardShield-SicherheitslichtgitterTabelle 6 – Umgebungs- und allgemeiner SchutzAttribut450L-B4FNxYD, 450L-B4HNxYD450L-E4FLxYD, 450L-E4HLxYDBetriebstemperatur-10–+55 °C (+14–+131 °F)Lagertemperatur-25 bis +75°C (-13 bis +167°F)Luftfeuchtigkeit im Betrieb5–95%, nicht kondensierendSchutzart IP65Vibrationswiderstand Gemäß IEC 61496-1, IEC 60068-2-6, Frequenz 10–55HzAmplitude 0,35mm (0,01Zoll)Stoßfestigkeit Gemäß IEC 61496-1, IEC 60068-2-29, Beschleunigung 10g (0,35oz),Dauer 16msVerschmutzungsgrad2Tabelle 7 – Elektrische SchutzfunktionAttribut450L-B4FNxYD, 450L-B4HNxYD, 450L-E4FLxYD, 450L-E4HLxYDKurzschlussschutz IntegriertStrombegrenzung IntegriertÜberlastschutz IntegriertVerpolungsschutz IntegriertÜberspannungsschutz Integriert (bis max. 60V)Thermische Abschaltung/Wiederanlauf IntegriertTabelle 8 – AllgemeinAttribut450L-B4FNxYD, 450L-B4HNxYD, 450L-E4FLxYD, 450L-E4HLxYDMaterialien Transceiver-Stabprofil:Abschlussmodule:Frontscheibe:Schrauben: Stranggepresstes Aluminium, pulverbeschichtet PolyamidPolycarbonatStahlSteckverbinder (450L-AP bis):Anschlusslitze: M12-Anschluss: Text: PolyurethanBlankes Kupfer, SR-PVC, PUR PolyamidMontagehalterung: Oben/unten 450L-AM-TBM:Halterung: Schrauben:Stahl, pulverbeschichtet StahlSeitliche Montage, 450L-AM-SM: Text:Schrauben:Polyamid StahlErsatz, 450L-AM-RK: Halterung: Schrauben:Aluminium, schwarz eloxiert StahlHalterung für Laserausrichtungswerkzeug 450L-ALAT-C:Prüfstab:Optische Schnittstelle 450L-AD-OID:Polyamid Aluminium PolyamidStababmessungen QuerschnittLänge 30 x 30mm (1,19 x 1,19Zoll)N x 150mm (N x 5,9Zoll) [N = 1–13]Schraubentyp und maximales Drehmoment von oberer/unterer Montagehalterung M3 x 10; Kreuzschlitzschraube Max. 0,7Nm (xx lb•in)Schraubentyp und maximales Drehmoment für M2-Schrauben des Steckverbinders M2 x 8; Kreuzschlitzschraube Max. 0,38Nm (xx lb•in)Maximales Drehmoment für Schrauben der Halterung für die seitliche Montage Schrauben:M6: max. 11Nm M4: max. 2,8NmAnzeigestab450L-B und 450L-E:Transceiver-Typ (Rx oder Tx)StatusIntensität (für zwei Regionen)Start/WiederanlaufAusgangRockwell Automation-Publikation 450L-TD001B-DE-P - April 20183Spezifikationen für GuardShield-SicherheitslichtgitterAllen-Bradley, Guardmaster, GuardShield, LISTEN. THINK. SOLVE, Rockwell Automation und Rockwell Software sind Marken von Rockwell Automation, Inc.Marken, die nicht Eigentum von Rockwell Automation sind, sind Eigentum der jeweiligen Unternehmen.Publikation 450L-TD001B-DE-P - April 2018Copyright © 2018 Rockwell Automation,Inc. Alle Rechte vorbehalten. Printed in USARockwell Automation stellt auf seiner Website unter /rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page aktuelle Umweltinformationen zu den Produkten zur Verfügung.LiteraturhinweisIn den unten aufgeführten Dokumenten finden Sie weitere Informationen zu verwandten Produkten von Rockwell Automation.Publikationen (sowie Übersetzungen der Originaldokumente) können unter/literature/ angezeigt oder heruntergeladen werden. Wenn Sie eine gedruckte Version der technischen Dokumentation benötigen, wenden Sie sich an Ihren lokalen Allen-Bradley-Distributor oder Rockwell Automation-Vertriebsbeauftragten.Rockwell Automation SupportFür technischen Support besuchen Sie bitte /support/overview.page .Richtlinie über Elektro- und Elektronikaltgeräte (WEEE)AnschlusssteckverbinderJe nach eingesetztem Steckverbinder:M12 5Stifte (Stecker) oder M12 8 Stifte (Stecker) an Anschlusslitze fixiert mit einer Kabellänge von: Verbindungssteckverbinder: 150mm (11,81Zoll) E/A-Kaskaden-Steckverbinder: 60mm (2,36Zoll);Minimaler äußerer Biegeradius der Anschlusslitze: > 3xD:5 Stifte: D = 4,4mm (0,17Zoll)8 Stifte: D = 5,5mm (0,22Zoll)Länge des AnschlusskabelsMaximal 100m (330Fuß) mit AWG 22-Verkabelung (Bedingung: Netzteil 24V und Maximallast aller Ausgänge insgesamt 50mA)Im Lieferumfang enthaltene Zusatzkomponenten Prüfstab, obere/untere Montagehalterung und InstallationsanleitungSiliziumDie Einheit setzt kein Silizium oder andere lackbenetzungsstörende Substanzen frei und ist für Lackierereien geeignet.QuelleBeschreibungGuardShield™-Sicherheitslichtgitter Benutzerhandbuch/idc/groups/literature/documents/um/450l-um001_-en-p.pdfEnthält Informationen zu Installation, Wartung und Fehlerbehebung des GuardShield-Sicherheitslichtgitters.Richtlinien zur störungsfreien Verdrahtung und Erdung von industriellen Automatisierungssystemen, Publikation 1770-4.1Enthält allgemeine Leitlinien zur Installation eines Industriesystems von Rockwell Automation®.Website zu Produktzertifizierungen unter Rockwell Automation – Technical DataBietet Konformitätserklärungen, Zertifikate und weitere Zertifizierungsinformationen.Am Ende des Lebenszyklus muss die Ausrüstung separat vom Hausmüll entsorgt werden.Tabelle 8 – AllgemeinAttribut450L-B4FNxYD, 450L-B4HNxYD, 450L-E4FLxYD, 450L-E4HLxYD。
英特诺斯 回声 + mbus mbus 帧描述说明书
INTELIS / ECHODIS+ MBUSMBUS Frame DescriptionDate: 16/10/2014Distribution (Check all appropriate):[X] Sales Department[X] Local Partner[ ] Final Customer[X] Itron Internal Department:- Product Management- Support Services- System Deployment Team[ ] Others:Availability:[ ] Public (No restriction)[ ] Controlled[X] Confidential[ ] ClassifiedNOTICE OF PROPRIETARY INFORMATIONInformation contained herein is proprietary and is property of © Itron where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer it shall be used solely for the purposes of inspection, installation, or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted for this company. The information shall not be used or disclosed by the recipient for any other purpose whatsoever.Table des matières1INTRODUCTION (3)1.1Purpose of the document (3)2COMMON FEATURES TO ALL VERSIONS (3)2.1MBUS Hardware features (3)2.2MBUS protocol/standard (3)2.3MBUS Format/Unit (4)2.4Standard command/request (5)3M-BUS FRAMES OF STANDARD VERSION (6)3.1Overview (6)3.2M-Bus Configuration Tool (6)4ANNEX 1: DIB DESCRIPTION (9)5ANNEX 2: VIB DESCRIPTION (9)6ANNEX 3: FRAMES DESCRIPTION (10)6.1The default frames (10)6.2Alarms description. (11)6.3Fixed date reading frames (FDR) (12)7ANNEX 4: DETAIL OF DIF/VIF FOR DEFAULT FRAME (13)8ANNEX 5: DETAIL OF DIF/VIF FOR FDR FRAME (15)8.1Default Frame (15)8.2FDR Frame (16)9CHANGE LOG (20)1 INTRODUCTION1.1 Purpose of the documentThe purpose of this document is described from a high-level point of view the M-Buscommunications features of the M-Bus Product.2 COMMON FEATURES TO ALL VERSIONSThe M-Bus product embeds a new concept of Itron M-Bus product that allows a fullcustomization of the content of the M-Bus frames.This is achieved using definition of Block of data that are configurable in 16 differentframes.This is described in the second part of this document.The first part is dedicated to the description of the standard product as it is delivered fromfactory if no specific configuration has been required.2.1 MBUS Hardware featuresThe Physical layer of M-Bus product is fully compliant with the EN13757-2Standard, M-bus connection is non-polarized and the Unit Load (UL) requestedon the bus is 1,5UL.The Baudrate is by default selected from factory to 2400 Bds but can be set to300Bds.2.2 MBUS protocol/standardThe M-bus communication protocol implemented in M-Bus product is compliantwith last MBUS standard EN13757-3 version 2013.2.3 MBUS Format/Unit2.3.1 MBUS FormatThe product can manage few different non metrics Units:- Cubic meter (M3) for Volume Index, and Liter /hour (L/h) for Flow- Imperial Gallon for Volume Index, and Imperial Gallon / Min forFlow- US Gallon for Volume Index, and US Gallon / Min for Flow- Cubic Feet for Volume Index, and Cubic Feet / Min for FlowThis is possible during manufacturing and is done only for personalized version2.3.2 MBUS UnitsThe product uses a basic rule for volume index format and unit transmitted inthe M-bus frame, it uses the same unit as for the LCD Display. That means, forinstance, that if the display is set to 5/3, (5 digit before the coma, and 3 after),meaning a display in Cubic meters but with 3 decimals, then last digit=Liters.The unit used for the transmission of the index, backflow, FDR in all M-busframes will be liters (VIF 13)If the Display is 6/2, then last digit = 10liters, so the M-Bus format will be 10 ofliters (VIF 14)In the following tables this is mentioned as VIF 12-14.The choice can be done only during manufacturing and can’t be changed onfield.The possibilities according to the format (see previous chapter) areFor cubic meters:- 0, 0001 m3, 0,001m3, 0,001m3, 0,1 m3 => VIF Values from 12 to15Or for Imperial Gallons:- 0,01 Imp Gallon, 0, 1 Imp Gallon => VIF Values FC/74/04/”laGi”,FC/75/04/”laGi”Or for US gallons:- 0,01 US Gallon, 0,1 US Gallon (91/3D, 92/3D)Or for Cubic Feet:- 0,001 CuFt, 0,01cuFt, 0,1 CuFt, (FC/73/04/”tFuC”,FC/74/04/”tFuC”,FB/21)Note that for the flow rate, the unit are fixed, whatever the display and aretransmitted accordingly in:- Liter per hour- Imp Gallon /Min- US Gallon /Min- Cubic Feet /Min2.4 Standard command/requestThe M-bus product can manage the following command or request- Addressingo Primary addressingo Secondary addressing (SelectionC=SND_UD=43h/53h/63h/73h, CI = 52h)o Extended secondary addressing (selection with Customer Id) - Requesto Frame request (C= REQ_UD2=4Bh/5Bh/6Bh/7Bh )o Status request (C= REQ_SKE=49h)- Command (C Codes)o Application Reset (SND_NKE, C= 40h)o Baud Rate Change (C= BBh : 2400 Bds, C= B8h : 300 Bds)o Frame Selection (C = SND UD, CI =50 )o Primary address Modification (C = SND UD,CI =51, DIF/VIF=01h/7Ah)o Secondary Address Modification (C = SND UD,CI =51, DIF/VIF=0Ch/79h)or (C = SND UD, CI =51, DIF/VIF= 07h/79h)o Date and time setting▪Date and date setting Using CI=6Ch command▪Date and Time Adjustment using CI=6Dh Command▪Date and time setting using (C = SND UD,CI =51 DIF/VIF=04h/6Dh)3 M-BUS FRAMES OF STANDARD VERSION3.1 OverviewThe Product in standard configuration has 5 different frames (0 to 4) accessible using theselection frame command.The frame 00, so called Default frame, is normally the frame requested on a regular basisto get all the main information from the meterThe other are used to get more advanced featuresNote that, due to the big number of values using the same DIF and VIF, the Storagenumber is used to distinguish the nature of the value. This can be useful to parse andfilter data, if they are all received in the same buffer and not managed in real time.Here below is the table containing the Frame numbers and their designation:NAME DesignationFrame 0 Default FrameFrame 4 Fixed date reading (FDR)3.2 M-Bus Configuration Tool3.2.1 Global StrategyThe configuration tool allows the following actions:- Visualization and demo of all the standard M-Buscapabilities of the product- Highlight all the features of the product (Metering, waterintelligence, alarm…)- Display and modification of the parameters- Reading of advanced values- Basic M-Bus setting modification (Address, Date & Time…)- Parameterization of the advanced functions (Threshold...)- On field investigation in case of problem- Frame configurationTo have a complete view of the features of this M-Bus Field tool application,please refer to the user manual.This Software “M-Bus Configuration Tool” is protected by a license attached tothe machine.3.2.2 ConnectionThe field tool, based on configuration, can communicate with to the product usinga M-Bus to USB (or RS232) converter.It can be used:- Point to point in broadcast mode- In addressed mode, for instance if you are connected on field to an existing Bus.3.2.3 ScreenshotHere below are few screen shot of this application3.2.4 Frame configurationIn order to use the new concept of configuration frame, this application has a specific screen in order to allow this function.3.2.5 List of blocksBelow is the list of possible blocks you can use in a frame2 rules are applied by the application- the size maximum of the payload cannot exceed 215 bytes (This isshown with the bar graph)(the size of each block is calculated according to the unit, for instance“Imp Gallon” are the bigger one)- It’s not possible to set more than one manufacturer bloc in a frame4 ANNEX 1: DIB DESCRIPTIONINT4 = 4 Bytes Integer (Lsb first)INT2 = 2 Bytes IntegerBIN4 = 4 bytes Binary (Lsb First)BCD8 = 8 Digit BCD Lsb FirstBCD4 = 8 Digit BCD Lsb First5 ANNEX 2: VIB DESCRIPTION6 ANNEX 3: FRAMES DESCRIPTION6.1 The default framesThe default frame is the frame with Number Identification “00” read on REQ-UD2 afterApplication Reset or if the frame selection 00 is used.It contains the main information of the meter, and is composed of the blocks: 0, 1,2,4,5,12, 13, 16Designation U T S Data Value Fct. VIBS/N # 000BCD8 14000046 Inst. Fabrication Number Volume index 000INT4 0 Inst. Volume in 0, 1 l/ 1l/ 10 l/ 100l Date & Time 000INT4 17.09.2014 13:02 Inst. Time Point [Date+Time] Meter Identification 000Var. I14VB004788 Inst. Enhanced Identification Alarm Flags 000BIN4 0 Inst. Error Flags (binary)Backflow Index 000INT4 0 Inst. Volume in 0, 1 l/ 1l/ 10 l/ 100l => Accumulation of Abs. Valueonly if Neg. Contrib.Billing date 0045 INT2 01.12.2000 Inst. Time Point [Date]Billing Index 0045 INT4 0 Inst. Volume 0, 1 l/ 1l/ 10 l/ 100l [l] Flow 000INT3 0 Err. Volume Flow [l/h] Temperature 000INT2 0 Err. Flow Temperature 100 [m°C] (U= Unit, T=Tariff, S= Storage, Fct. = Function, VIB = Variable Information Block)6.2 Alarms description.The alarm Block is composed of 4 bytes containing 32 flags of alarm.These flags can be simple warnings or alarmsThey can be temporary (real time or cyclic i.e. daily for instance) or permanent(memorized).In case of permanents flags, only a configuration tool can remove themByte 0 (Lsb) is received first in the frame and Byte 3 (MsB) is the lastBit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Byte 3 A32 A31 A30 A29 A28 A27 A26 A25 Byte 2 A24 A23 A22 A21 A20 A19 A18 A17 Byte 1 A16 A15 A14 A13 A12 A11 A10 A9 Byte 0 A8 A7 A6 A5 A4 A3 A2 A1Designation DesignationA1 Daily volume Above threshold A17 Meter StoppedA2 Yearly volume Above threshold A18 Reversed meterA3 Daily volume below threshold A19 Broken Pipe AlarmA4 Yearly volume below threshold A20 Manufacturer specific 1A5 Daily Water temp Above alarm A21 Date and time reconfigurationA6 Monthly Water temp Above alarm A22 Manufacturer specific 2A7 Daily Water temp Below alarm A23 Deb Battery AlarmA8 Monthly Water temp Below alarm A24 Daily leakageA9 Monthly leakage A25 Manufacturer specific 3A10 PKF_Daily_Alarm A26 BatteryA11 PKF_Month_Alarm A27 Memorized removalA12 Daily backflow A28 Manufacturer specific 4A13 D-1 Daily backflow A29 Real time removalA14 Monthly backflow A30 Manufacturer specific 5A15 Daily Air in pipe A31 Manufacturer specific 6A16 Monthly Air in pipe A32 Reconfiguration6.3 Fixed date reading frames (FDR)The Fixed Date Reading frame so called FDR frame, is the frame with NumberIdentification “04” read on REQ-UD2 after frame selection 04 is used.It contains the information related to the monthly indexes of the latest 13 months.It is composed of the blocs: 0, 1, 4, 7Note that Blocks 0, 1, 4 (Index, D&T, and Alarms) are duplicated in this frameDesignation U T S Data Value Fct. VIB S/N # 0 0 0 BCD8 14000046 Inst. Fabrication Number Volume index 0 0 0 INT4 0 Inst. Volume 10 [l]Date & Time 0 0 0 INT4 17.09.2014 13:04 Inst. Time Point [Date+Time] Alarm Flags 0 0 0 INT4 0 Inst. Error Flags (binary) Size of the table Storage 0 0 16 INT1 13 Inst. Size of Storage Storage interval(Month) 0 0 16 INT1 1 Inst. Storage Interval [months] Date of last storage 0 0 28 INT2 31.08.2014 Inst. Time Point [Date] Index Month -13 0 0 16 INT4 0 Err. Volume 10 [l]Index Month -12 0 0 17 INT4 0 Err. Volume 10 [l]Index Month -11 0 0 18 INT4 0 Err. Volume 10 [l]Index Month -10 0 0 19 INT4 0 Err. Volume 10 [l]Index Month -9 0 0 20 INT4 0 Err. Volume 10 [l]Index Month -8 0 0 21 INT4 0 Err. Volume 10 [l]Index Month -7 0 0 22 INT4 0 Err. Volume 10 [l]Index Month -6 0 0 23 INT4 0 Err. Volume 10 [l]Index Month -5 0 0 24 INT4 0 Err. Volume 10 [l]Index Month -4 0 0 25 INT4 0 Err. Volume 10 [l]Index Month -3 0 0 26 INT4 0 Err. Volume 10 [l]Index Month -2 0 0 27 INT4 0 Err. Volume 10 [l]Index Month -1 0 0 28 INT4 0 Err. Volume 10 [l]8 ANNEX 5: DETAIL OF DIF/VIF FOR FDR FRAME8.1 Default Frame8.2 FDR Frame1 Slave primary addressAddr Address of slaveFDh Primary Address in case of secondary addressingFEh Broadcast address with responseFFh Broadcast address without response2 Meter statusbit 0 Unused (always 0)bit 1 Unused (always 0)bit 2 Unused (always 0)bit 3 Permanent Error ( Us asic)bit 4 Temporary Error ( Backflow, air in pipe, Overflow, Dirty deposit) bit 5 Unused (always 0)bit 6 Unused (always 0)bit 7 Unused (always 0)3 No frame to follow/Frame to follow Only if manufacturer specific is needed(0F) or if there is a 1F)4 Volume12h unit : 0,1 L13h unit : 1L14h unit : 10 L15h unit : 100 L 5 Backflow Volume92h unit : 0,1 L93h unit : 1L94h unit : 10 L95h unit : 100 L9 CHANGE LOGDate Issue Author Status Comments18/09/2014 0.1 E Frotey Draft For internal diffusion to core team30/09/2014 0.2 E Frotey Draft Including core team correction08/07/2015 0.3 E Frotey Draft Add Detail DIF/VIF for customer(Annex 5)20/01/2017 0.4 E Frotey Draft Version for Adewa07/08/2017 0.5 E Frotey Draft Typo correction08/08/2017 0.6 E Frotey Draft Error correction in sample frame table 24/06/2020 0.7 A Laurens Released。
SINUMERIK SIMODRIVE 用户操作指南说明书
System Titel SW Ausgabe Bestellnummer Dateiname 840D/840Di/810D AnwenderBedienung840D/810D Bedienungsanleitung HMI Embedded 6.503/046FC5298-6AC00-0AP3BEM840D sl/840Di sl/840D Bedienungshandbuch HMI Advanced 7.501/086FC5398-2AP10-3AA0BAD840D/840Di/810D Bedienen/Programmieren ShopMill 6.410/046FC5298-6AD10-0AP3BAS840D/840Di/810D Bedienen/Programmieren ShopTurn 6.406/036FC5298-6AD50-0AP2BAT810D/840D Bedienen/Programmieren ManualTurn608/026FC5298-6AD00-0AP0BAM840D/840Di/810D Bedienungsanleitung HT 6 6.403/046FC5298-0AD60-0AP3BAH840D/810D Projektierung Bedienoberfläche OP 030609/016FC5297-6AC40-0AP0FBO SINUMERIK/SIMODRIVE Diagnosehandbuch7.411/066FC5298-7AA20-0AP3DA Programmierung840D sl/840Di sl/840D/840Di/810D Programmierhandbuch Grundlagen 7.411/066FC5398-1BP10-2AA0PG840D sl/840Di sl/840D/840Di/810D Programmierhandbuch Arbeitsvorbereitung 7.411/066FC5398-2BP10-4AA0PGA840D sl/840Di sl/840D Programmierhandbuch Zyklen 7.501/086FC5398-3BP20-1AA0PGZ840D sl/840Di sl/840D Programmierhandbuch Messzyklen7.501/086FC5398-4BP20-2AA0BNMProgramming Guide ISO Turning7.404/076FC5398-5BP10-0BA0PGTProgramming Guide ISO Milling7.404/076FC5398-7BP10-0BA0PGM840D sl/840Di sl/840D/840Di/810D Listenhandbuch Systemvariablen 7.411/066FC5397-6AP10-1AA0PGA1 840D/840Di/810D Hersteller/ServiceProjektierung840D Gerätehandbuch Projektierung NCU 03/066FC5297-7AC10-0AP1PHD810D Gerätehandbuch Projektierung CCU03/066FC5297-7AD10-0AP0PHC840Di Handbuch01/056FC5297-7AE60-0AP2HBi840D/840Di/810D Gerätehandbuch Bedienkomponenten07/076FC5297-7AA50-0AP2BH840D sl/840Di sl/840D/840Di/810D Bedienhandbuch SinuCom Inbetriebnahme-/Servicetools07/08Online-Hilfe des IBN-Tools INC840D/810D Projektierung Bedienoberfläche OP 03009/016FC5297-6AC40-0AP0FBO840D/810D Projektierungsanleitung Projektiersyntax09/03Online-Hilfe des IBN-Tools PSProjektierungsanleitung EMV-Aufbaurichtlinie03/046FC5297-0AD30-0AP2EMVGerätehandbuch, ADI4 - Analoge Antriebsschnittstelle für 4 Achsen05/056FC5297-0BA01-0AP4ADI4Handbuch @Event03/026AU1900-0CL20-0AA0HBA PROFIBUS SINEC DP-Programmierschnittstelle Ausgabe 3C79000-B8900-C071/03SINEC_DP PROFIBUS SINEC FDL Programmierschnittstelle Ausgabe 2C79000-B8900-C072/02SINEC_FD Inbetriebnahme840D/810D/611D Inbetriebnahmehandbuch03/066FC5297-6AB20-0AP0IADC840D sl/840Di sl/840D Inbetriebnahme Basesoftware und HMI-Advanced03/096FC5397-0DP10-3AA0IHA840D sl/840Di sl/840D/840Di/810D Inbetriebnahme CNC Teil 2 (HMI)01/066FC5397-3AP10-1AA0IAM840D/840Di/810D Inbetriebnahme HMI03/046FC5297-6AE20-0AP3IAM04840D sl/840Di sl/840D/810D Inbetriebnahme CNC Teil 5 (Basesoftware)07/066FC5397-2CP10-2AA0IAM2 SINUMERIK/SIMODRIVE Listen (Buch 1)11/066FC5297-7AB70-0AP2LIS1 SINUMERIK/SIMODRIVE Listen (Buch 2)11/066FC5297-7AB71-0AP0LIS2 SINUMERIK/SIMODRIVE Ausführliche Maschinendaten Beschreibung11/06-AMDFunktionen840D sl/840Di sl/840D/840Di/810D Funktionshandbuch Grundfunktionen11/066FC5397-0BP10-2AA0FB1840D sl/840Di sl/840D/840Di/810D Funktionshandbuch Erweiterungsfunktionen11/066FC5397-1BP10-2AA0FB2840D sl/840Di sl/840D/840Di/810D Funktionshandbuch Sonderfunktionen11/066FC5397-2BP10-2AA0FB3611D/840D/810D Funktionshandbuch Antriebsfunktionen05/106SN1197-0AA80-2AP1FBA840D/840Di/810D Funktionsbeschreibung Werkzeugverwaltung09/056FC5297-6AC60-0AP1FBW802D sl/840D/840D sl/840Di/840Di sl/810D Funktionshandbuch ISO-Dialekte für SINUMERIK03/076FC5297-7BP10-0AA0FBFA840D/611D Funktionshanduch HLA-Modul 03/066SN1197-0AB60-0AP4FBHLA840D/611D Funktionsbeschreibung ANA-MODUL02/006SN1197-0AB80-0AP0FBAN840D/611D Funktionsbeschreibung Safety Integrated03/066FC5297-7AB80-0AP1FBSI840D sl/840Di sl/840D/840Di/810D Funktionsbeschreibung Synchronaktionen11/066FC5397-5BP10-2AA0FBSY840D Funktionsbeschreibung Digitalisieren 07/996FC5297-4AC50-0AP0FBD840D/840Di/810D Funktionsbeschreibung Ferndiagnose03/046FC5297-0AF00-0AP3FBFE840D Funktionsbeschreibung C-PLC-Programmierung03/966FC5297-3AB60-0AP0FBP840D/840Di/810D Funktionsbeschreibung ShopMill 02/056FC5297-6AD80-0AP3FBSP840D/840Di/810D Funktionsbeschreibung ShopTurn03/046FC5297-6AD70-0AP2FBT840D/810D Funktionsbeschreibung ManualTurn08/026FC5297-6AD50-0AP0FBMA840D/810D Funktionsbeschreibung ManualTurn, Ergänzende Informationen07/04-FBMAx802D/802D base lineAnwender802D base line Bedienen und Programmieren, Drehen208/056FC5698-2AA00-1AP4802D_BPD802D Kurzanleitung Drehen111/006FC5698-1AA30-0AP0802DBNKD802D Kurzanleitung ISO-Dialekt Drehen109/016FC5698-1AA60-0AP0802D_ISD802D Bedienen und Programmieren, Fräsen208/056FC5698-2AA10-1AP5802D_BPF802D Kurzanleitung Fräsen111/006FC5298-1AA40-0AP0802DBNKF802D Kurzanleitung ISO-Dialekt Fräsen 109/016FC5698-1AA50-0AP0802D_ISF802D Diagnoseanleitung110/026FC5698-2AA20-0AP1802D_DIA Hersteller/Service802D base line Funktionsbeschreibung11/036FC5697-2AA10-0AP2802D_fb802D base line Inbetriebnahmehandbuch08/056FC5697-2AA00-1AP5802D_IBNGerätehandbuch, ADI4 - Analoge Antriebsschnittstelle für 4 Achsen05/056FC5297-0BA01-0AP4ADI4802S/802C base lineAnwender802S/ 802C base line Bedienen und Programmieren, Drehen408/036FC5598-4AA01-0AP0802SC_BPD 802S/ 802C base line Bedienen und Programmieren, Fräsen408/036FC5598-4AA11-0AP0802SC_BPF802S/ 802C base line Diagnoseanleitung408/036FC5598-4AA21-0AP0802SC_DIA Hersteller/Service802S/802C base line Funktionsbeschreibung08/036FC5597-4AA11-0AP0802SC_FB802C base line Inbetriebnahmeanleitung08/036FC5597-4AA21-0AP0802C_IBN802S base line Inbetriebnahmeanleitung08/036FC5597-4AA01-0AP0802S_IBN SIMODRIVE base line A Start-Up09/046SN1197-0AB21-0BP1802C_IBN_SBLASIMODRIVE611 digital Projektierungshandbuch Umrichter05/086SN1197-0AA00-1AP1PJU611 universal Funktionshandbuch06/116SN1197-0AB20-2AP3FBU611 universal Tausch Ersatzteil07/05A5E00150834FBU_TE611 universal Tausch Ersatzteil HR/HRS12/05A5E00423710FBU_TEH611 analog Inbetriebnahmeanleitung10/006SN1197-0AA60-0AP6IAA611 analog Beschreibung10/006SN1197-0AA30-0AP1BSFunktionsbeschreibung FM-STEPDRIVE/SIMOSTEP02/056SN1197-0AA70-0YP4FBSTSINAMICS S120/SIMODRIVE Systemhandbuch Schaltschrankintegration09/076SL3097-0AT00-0AP0SH1 SIMODRIVE SensorBenutzeranleitung Absolutwertgeber mit PROFIBUS-DP07/056SN1197-0AB10-0YP4BHAProjektierungshandbuch Hohlwellenmesssystem SIMAG H201/116SN1197-0AB31-0AP8PMH2Montageanleitung SIMAG H2 an SIMAG H08/05-SIMAGH2_M1Montageanleitung SIMAG H2 an SIZAG 208/05-SIMAGH2_M2Montageanleitung Zahnradgeber SIZAG 205/086SN1197-0AB00-0YP3SIZAG2_MBetriebsanleitung Gebersysteme ERN 1381.00106/03610.41 334.02ERN1381_BEBetriebsanleitung Gebersysteme ERN 1387 … / S21 / EQN 1325 …01/05610.41 304.02ERN1387_BEBeiblatt Anschlusshaube Hohlwellengeber PROFIBUS DP06/05-SSB_DPHBeiblatt Anschlusshaube Vollwellengeber PROFIBUS DP05/04-SSB_DPVBeiblatt Geberstecker SSI - EnDat06/08-SSB_SSIBeiblatt Geberstecker TTL - HTL- 1Vpp07/04-SSB_TTL Synchronmotoren1FK6Projektierungsanleitung Drehstrom-Servomotoren05/036SN1197-0AD05-0AP0PFK61FK7Projektierungshandbuch Synchromotoren10/056SN1197-0AD06-0AP1PFK71FK7Betriebsanleitung Drehstrom-Servomotoren 1FK7 02. - 1FK7 10. 03/11610.40700.01c1FK7_BE1FK7Betriebsanleitung Getriebemotoren03/05610.40 064.011FK7G_BE1FK7/1FT6Betriebsanleitung Getriebemotoren-Planetengetriebe09/05610.40 072.011FK7GP_BE1FT5Projektierungsanleitung Drehstrom-Servomotoren 05/036SN1197-0AD01-0AP0PFT51FT5Betriebsanleitung Drehstrom-Servomotoren 1FT5 02. -1FT5 04.09/93610.42078.21.a1FT502_BE1FT5Betriebsanleitung Drehstrom-Servomotoren 1FT5 06. -1FT5 13.04/93610.41199.21.c1FT506_BE1FT6Projektierungshandbuch Synchronmotoren 1FT610/056SN1197-0AD02-0AP1PFT61FT6Betriebsanleitung Drehstrom-Servomotoren 1FT6 02. -1FT6 10.07/03610.43 410.211FT602_BE1FT6Betriebsanleitung Drehstrom-Servomotoren 1FT6 13. -1FT6 16.03/07610.43 600.211FT613_BE1FT6Instandhaltungsanleitung Drehstrom-Servomotoren 1FT6 03 - 04 / 06 - 1307/96610.43411.02.a1FT6_IA1FT7Projektierungshandbuch Synchronmotoren 1FT703/106SN1197-0AC13-0AP3PFT71FT7Betriebsanleitung Synchronmotoren 1FT705/11610.40075.01c1FT7_BE1FE1Projektierungshandbuch Synchron-Einbaumotoren09/086SN1197-0AC00-1AP0PFE11FE1Montagehandbuch Synchron-Einbaumotoren10/10610.43000.011FE1_M1FE1Betriebsanleitung Spannungs-Begrenzungs-Modul VPM20008/09A5E00302261B1FE1_VPM200_BE 1FE1Betriebsanleitung Spannungs-Begrenzungs-Modul VPM200 DYNAMIK08/09A5E00777655A1FE1_VPM200D_BE 1FE1Betriebsanleitung Spannungs-Begrenzungs-Modul VPM12008/09A5E00302281B1FE1_VPM120_BE 1PH8Betriebsanleitung Synchron-/Asynchronmotoren 1PH813 und 1PH81605/10610.48006.011PH813_BE1PH8Betriebsanleitung/Montageanleitung Drehstrom-Synchronmotoren 1PH818, 1PH82207/10A5E03029571B AA1PH818S_BE1PH8Betriebsanleitung Drehstrom-Synchronmotoren 1PH818, 1PH82209/09A5E02446774B AB1PH818S_BE0909 2SP1Projektierungshandbuch ECS-Motorspindel11/086SN1197-0AD04-0AP5PMS2SP1Betriebsanleitung ECS-Motorspindel02/116SN1197-0AD14-0AP12SP1_BEAsynchronmotoren1PH2Projektierungsanleitung Asynchronmotoren 10/036SN1197-0AC63-0AP0APH21PH2Betriebsanleitung Drehstrom-Einbaumotoren 04/96610.43 414.021PH2_BE1PH4Projektierungshandbuch Asynchronmotoren04/066SN1197-0AC64-0AP1APH41PH4Betriebsanleitung Asynchronmotoren 1PH405/10610.43093.01e1PH4_BE1PH7Projektierungsanleitung Asynchronmotoren05/046SN1197-0AC65-0AP1APH71PH7Betriebsanleitung Fremdbelüftete Drehstrommotoren 1PH7 10-1611/08610.43 429.211PH7_BE1PH7Betriebsanleitung Drehstrom-Asynchronmotor 1PH71802/08A5E00215737A1PH718_BE 1PH7Betriebsanleitung Drehstrom-Asynchronmotor 1PH72203/08A5E00264361A1PH722_BE 1PH7Betriebsanleitung Drehstrom-Asynchronmotor 1PH72803/08A5E00171047A1PH728_BE 1PH8Betriebsanleitung Asynchronmotoren 1PH808 und 1PH81005/10610.48004.011PH808_BE 1PH8Betriebsanleitung Synchron-/Asynchronmotoren 1PH813 und 1PH81605/10610.48006.011PH813_BE 1PH8Betriebsanleitung Drehstrom-Asynchronmotor 1PH818, 1PH822, 1PH82807/09A5E02605207B AA1PH8_BE1PM6/1PM4Projektierungshandbuch Hohlwellenmotoren08/056SN1197-0AD03-0AP1PPM1PM6Betriebsanleitung Hohlwellenmotoren, luftgekühlt12/05610.40 037.311PM6_BE1PM4Betriebsanleitung Hohlwellenmotoren, flüssigkeitsgekühlt12/05610.40 036.311PM4_BE Linear-/Torquemotoren1FN1Projektierungshandbuch Linearmotoren10/066SN1197-0AB72-0AP0PFN11FN3Projektierungshandbuch Dauerlastmotoren03/086SN1197-0AB74-0AP2PFN3DLM1FN3Projektierungshandbuch Spitzenlastmotoren04/086SN1197-0AB73-0AP1PFN3SLM1FW6Projektierungshandbuch Einbau-Torquemotoren05/096SN1197-0AD00-0AP7PJTM1FW6Betriebsanleitung Einbau-Torquemotoren 1FW606/116SN1197-0AF00-0AP01FW6_BE1FN1/1FN3/1FW6Gerätehandbuch Sensor Module External SME9x11/076SN1197-0AE10-0AP0GH_SME9x Sicherheitshinweise für Direktantriebe01/10-1FN_FW_SH Dezentrale AntriebstechnikPOSMO A Benutzerhandbuch10/076SN2197-0AA00-1AP1POS1 POSMO A Betriebsanleitung Power Management Modul DC-PMM / 24 V04/03-POS1_BE24 POSMO A Betriebsanleitung Power Management Modul DC-PMM / 48 V04/03-POS1_BE48 POSMO A Montageanleitung08/03A5E00158596POS2 POSMO A Montageanleitung "getrennte Variante"12/06A5E00397126Aaf posa_mv POSMO A Montageanleitung Tausch Antriebseinheit 12/01A5E00101611B posa_mta POSMO A/SI Montageanleitung Tausch Getriebe02/04A5E00297127posa_mtg POSMO SI/CD/CA Benutzerhandbuch06/086SN2197-0AA20-1AP4POS3 POSMO SI/CD/CA Montageanleitung Entstörfilter 08/03A5E00245073B-A1poscd_mf POSMO SI/CD/CA Montageanleitung Tausch PROFIBUS–Einheit 07/06A5E00145169 ae poscd_mpe POSMO SI/CD/CA Montage Entstörfilter ECOFAST03/03-poscd_mfe POSMO SI/CD/CA Montageanleitung Tausch PROFIBUS-Einheit ECOFAST07/06A5E00335711 ac poscd_mpee POSMO SI Montageanleitung07/06A5E00282739 ac poss_m POSMO SI Montageanleitung Tausch Lüfter 07/05462 028 0042 00ab poss_mtl POSMO SI Montageanleitung Tausch Antriebseinheit 07/05A5E00145904ac poss_mta POSMO SI Montageanleitung mit PROFIBUS–Einheit ECOFAST07/06A5E00335557 ac poss_mpe POSMO CD/CA Montageanleitung07/06A5E00257954 ad posca_m POSMO CD/CA Montageanleitung mit PROFIBUS–Einheit ECOFAST07/06A5E00335554 ac posca_meMotion Control Information System840D sl/840Di sl/840D/840Di/810D Funktionshandbuch Rechnerkopplung RPC SINUMERIK10/056FC5297-6AD61-0AP1FBR840D sl/840Di sl/840D/840Di/810D Funktionshandbuch NC-Programmmanagement DNC Plant/Cell12/106FC5297-2AE80-0AP3FBDN840D sl/840Di sl/840D/840Di/810D Funktionsbeschreibung NC-Programmmanagement DNC Machine09/036FC5297-1AE81-0AP0FBDM840D sl/840Di sl/840D/840Di/810D Benutzeranleitung Bedienoberfläche "DNC-Machine"07/07-BBDNC 840D sl/840Di sl/840D/840Di/810D Funktionsbeschreibung,Vorbeugende Instandhaltung TPM02/076FC5260-2FX28-0AG3FBTP840D sl/840Di sl/840D/840Di/810D Funktionsbeschreibung TDI Ident Connection06/036FC5297-1AE60-0AP0FBIC840D sl/840Di sl/840D/840Di/810D Bedienungsanleitung Tool Data Information (TDI) 06/076FC5297-6AE01-0AP4BTDI840D sl/840Di sl/840D/840Di/810D Betriebsanleitung ADDM Server Version 6.008/05-BEDMS 840D sl/840Di sl/840D/840Di/810D Betriebsanleitung ADDM Client Version 6.110/07-BEDMC 840D sl/840Di sl/840D/840Di/810D Betriebsanleitung ADDM Agent Version 1.107/05-BEDMA 840D sl/840Di sl/840D/840Di/810D Benutzeranleitung MDA / PDA Maschinenauswertungen08/07-GUIRT 840D sl/840Di sl/840D/840Di/810D Benutzeranleitung MDA Monitor08/07-MonGUI 840D sl/840Di sl/840D/840Di/810D Benutzeranleitung MDA Bedienoberfläche "Projektierung"08/07-PrjGUI840D sl/840Di sl/840D/840Di/810D Benutzeranleitung MDA Werkskalender08/07-WkalGUI 840D sl/840Di sl/840D/840Di/810D Projektierung MDA10/07-PMDA840D sl/840Di sl/840D/840Di/810D Inbetriebnahme MDA Machine10/07-IMDA_M 840D sl/840Di sl/840D/840Di/810D Inbetriebnahme MDA Cell10/07-IMDA_C 840D sl/840Di sl/840D/840Di/810D Inbetriebnahme MDA HMI06/07-IMDA_HMI 840D sl/840Di sl/840D/840Di/810D Inbetriebnahme Datenbankprogramm Oracle für MDA04/05-IMDA_O 840D sl/840Di sl/840D/840Di/810D Funktionsbeschreibung MDA Machine 10/03-FMDA SIMATIC PostionierbaugruppenHandbuch FM 353 für Schrittantrieb08/086ES7353-1AH01-8AG0FM353Handbuch FM 354 für Servoantrieb08/086ES7354-1AH01-8AG0FM354Getting Started Erste Schritte zur Inbetriebnahme FM 354/FM 35304/07-FM354_GSHandbuch FM 357-2 für Servo- bzw. Schrittantrieb01/036ES7357-4AH00-8AG0FM357_2Handbuch FM 453 für Servo- bzw. Schrittantrieb08/086ES7453-3AH00-8AG0FM453Getting Started Erste Schritte zur Inbetriebnahme FM 45304/07-FM453_GS ePS Network Services840D/840Di/810D Installationshandbuch02/08-EPS_IA 840D/840Di/810D Bedienhandbuch11/06-EPS_BH 840D sl/840Di sl/840D/840Di Projektierungshandbuch04/10-EPS_PH 840D sl/840Di sl/840D/840Di Funktionshandbuch12/10-EPS_FH 840D sl/840D Betriebsanleitung eP-Satellite Server12/10-EP_BA 840D/840Di/810D Leistungsbeschreibung ASP Schein01/09-EPS_LB 840D sl/840Di sl/840D/840Di Release Notes12/10-EPS_RNSIMATICSIMATIC S7Getting Started: Erste Schritte und Übungen mit STEP 7 V5.403/06-S7_GS SIMATIC S7Programmieren mit STEP 7 V5.403/06-S7P SIMATIC S7HW konfigurieren und Verbindungen projektieren mit STEP 7 V5.403/06-S7_HW SIMATIC S7-300/400Referenzhandbuch Kontaktplan (KOP)03/06-S7_KOP SIMATIC S7-300/400Referenzhandbuch Funktionsplan (FUP)03/06-S7_FUP SIMATIC S7-300/400Referenzhandbuch Anweisungsliste (AWL)03/06-S7_AWL SIMATIC S7-300/400Referenzhandbuch System- und Standardfunktionen03/06-S7_SFC SIMATIC S7-300Betriebsanleitung CPU 31xC und CPU 31x: Aufbauen06/08-S7_BA31A SIMATIC S7-300Gerätehandbuch CPU 31xC und CPU 31x, Technische Daten06/08-S7_GH31TD SIMATIC S7-300Referenzhandbuch CPU-Daten CPUs 312 IFM bis 318-2 DP10.01-S7300Re2 SIMATIC S7-300Operationsliste CPU Daten: CPUs 312 IFM bis 318-2 DP10.01-S7OP1 SIMATIC S7-300Operationsliste CPU 31xC, CPU 31x06/08-S7OP2 SIMATIC S7-300Technologische Funktionen: CPU 31xC02/07-S7300TF SIMATIC S7-200Systemhandbuch09/07-S7200SH SIMATIC S7-200Systemhandbuch CPU 210Ausgabe 1-S7_C210 SIMATIC Systemhandbuch Kommunikation mit SIMATIC09/06-SSH_Komm SIMATIC HMI Betriebsanleitung Bediengerät Mobile Panel 177 (WinCC flexible)07/05-SBE_MP177 Info/TrainingSystemhandbuch Safety Integrated20056ZB5000-0AA02-0BA1APPL_HBSystemhandbuch Safety Integrated Nachtrag20066ZB5000-0AB01-0BA0APPL_HBNTrainingsunterlage Einfacher fräsen mit ShopMill08/066FC5095-0AA50-0AP2TUSMTrainingsunterlage Einfacher drehen mit ShopTurn04/046FC5095-0AA80-0AP1ST_ein840D/840Di/810D Einsteigeranleitung Fräsen und Drehen 10/036FC5095-0AB00-0AP1SIN_ein840D/840D sl/840Di Handbuch 5 Achs-Bearbeitung05/096FC5095-0AB10-0AP1SIN_WF5 840D/840Di/810D/802D sl Handbuch Werkzeug- und Formenbau (3 Achsen)08/076FC5095-0AB20-0AP0SIN_WF3 SteuerungsübersichtSINUMERIK powerline Funktionsübersichten 2009-BU840D/810D Steuerungsübersicht Fräsen mit ShopMill06/07-SSM840D/810D Steuerungsübersicht Drehen mit ShopTurn04/07-SSTaktualisierte Ausgabeerstmalig auf DOConCD。
英飞凌 IRS210(8,84) 和 IR210(8,84) 对比说明书
Application Note AN-1101IRS210(8,84) and IR210(8,84) ComparisonBy Jason Nguyen, Min Fang, David NewTable of ContentsPage Introduction (1)Block Diagrams (2)Electrical Characteristic Differences (3)Figures (4)Summary (8)IntroductionThe IRS210(8,84) are new HVIC products that replace the IR210(8,84) HVICs and are pin-to-pin compatible with each corresponding predecessor. In many cases, little or no change is necessary to use the new products. This application note describes the various differences between the IRS210(8,84) and the IR210(8,84) HVICs.The IRS210(8,84) are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.Block DiagramsThe IRS2108 and the IR2108 share the same block diagram. The IRS21084 and the IR21084 share the same block diagram. There are no functional changes between corresponding part numbers.Electrical Characteristic DifferencesAll measurement conditions remain unchanged unless noted. Parameters not mentioned in this document have not changed.Absolute Maximum RatingsThere are no changes in the Absolute Maximum Ratings.Recommended Operating ConditionsThere are no changes in the Recommended Operating Conditions.Dynamic Electrical CharacteristicsThe IRS210(8,84) have faster rise and fall times when compared to the IR210(8,84). Static Electrical CharacteristicsWith the IRS210(8,84),1. V IH is reduced to2.5 V for better3.3 V logic compatibility.2. The V OH and V OL are tested using a new standardized test condition of Io=2 mA.The output driver’s on resistance is lower for IRS210(8,84), which improves immunity against the Miller effect.3. The typical values for I O+ and I O- are increased, which allows faster switching.FiguresThis figures shown in this section compare figures shown in the IR210(8,84) (left column) and IRS210(8,84) (right column) datasheets. Illustrations that have not changed between the two datasheets have not been included in this section.IR210(8,84) IRS210(8,84)SummaryAs shown by this document, the IRS210(8,84) and the IR210(8,84) are very similar with only a few negligible parametric differences.。
A.H. Systems SAS-510-2 Log Periodic Antenna 说明书
A.H. Systems SAS-510-2 Log Periodic AntennaSAS-510-2Log Periodic AntennaOperation Manual© A.H. Systems inc. – January 2007 REV B 11981TABLE OF CONTENTSINTRODUCTIONIntroduction (3)Intended Purposes (4)Optional Equipment (5)OPERATING INSTRUCTIONSAssembly Instructions (6)Mounting Instructions (6)Operating Instructions (8)SPECIFICATIONSSpecifications (9)Typical Data (10)Calculations (11)Convertion Factors (12)MAINTENANCEMaintenance Procedures (13)Annual Calibration (13)Warranty (14)2© A.H. Systems inc. – January 2007REV BINTRODUCTIONThe SAS-510-2 Log Periodic Antenna (also known as a log periodic dipole array) is acompact,lightweight antenna that has been designed to ensure maximum gain,lowVSWR and high power handling capabilities. This compact design is an ideal solution forEMC testing where the reduced size of the antenna is preferred to minimize chamber wallcoupling and increasing the half power beamwidth to a more acceptable angle that willcover the whole device under test. Constructed of lightweight aluminum, the SAS-510-2Log Periodic Antenna has been manufactured to operate over a very wide bandwidth.Weighing in at just 1.5 pounds this Log Periodic Antenna is one of the lightest antennascommercially available.The SAS-510-2 Log Periodic Antenna is the standard workhorse of any EMC compliancetest house. The SAS-510-2 has an excellent Front to back ratio and cross-polarizationproperties that is required per CISPR 16-1 that greatly reduces measurement uncertainty.This Linearly polarized antenna is an ideal solution for radiated emissions and normalizedsite attenuation.3© A.H. Systems inc. – January 2007REV BINTENDED PURPOSESThe log periodic antenna is intended for general laboratory use in a wide varietyof industrial and scientific applications and has been designed to be used in theprocess of generating, controlling and measuring high levels of electromagneticRadio Frequency (RF) energy. It is the responsibility of the user to assure thatthe device is operated in a location which will control the radiated energy suchthat it will not cause injury and will not violate regulatory levels ofelectromagnetic interference.4© A.H. Systems inc. – January 2007REV BOPTIONAL EQUIPMENTThe following is a recommend accessory list for the SAS-510-2 Log PeriodicAntenna:CONNECTING ACCESSORIES:PAM-0202This preamplifier has a broad frequency range and at least 30 dB of gain. Anideal solution for improving overall system sensitivity for various emissionstesting requirements.SAC-211Standard N(m) to N(m) RF cable made with RG-214/U and optional ferriteloading that can be made to your specified length. Other cable types availableupon request.AdaptersNeed an Adapter? We stock those as well.MOUNTING ACCESSORIES:AEH-510Azimuth and elevation head to assist the test engineer in orientating biconicalantenna at the device under test.ATU-510Each tripod leg is independently adjustable in angle and length to facilitateantenna height setting. The tripod legs have a rubber tip on one end for indooror hard surface use, and a metal spike on the other end for outdoor soft surface(such as dirt) use.LPM-510The optional Log Periodic Tripod mount (LPM-510) mounts the antenna nearthe CG of the antenna.5© A.H. Systems inc. – January 2007REV BOPERATING INSTRUCTIONSASSEMBLY INSTRUCTIONSThe SAS-510-2 Log Periodic Antenna is shipped fully assembled. If an optionalLog Periodic Tripod mount (LPM-510) was purchased, that will also be pre-assembled and mounted to the antenna.MOUNTING INSTRUCTIONSThe SAS-510-2 is a lightweight, rear mount Log Periodic Antenna. Attach theantenna to the azimuth and elevation head (AEH-510) through the screw hole inthe antenna base. The azimuth and elevation head (AEH-510) mounts to thetripod (ATU-510) top and allows the antennas to be rotated 360 degrees andtilted between horizontal and vertical polarization. Each tripod leg isindependently adjustable in angle and length to facilitate antenna height setting.The tripod legs have a rubber tip on one end for indoor or hard surface use, anda metal spike on the other end for outdoor soft surface (such as dirt) use.Four extra holes are pre-drilled into the booms (at the approximate CG point) ofthe antenna for an optional Log Periodic Mount (LPM-510). This allows anoptional center mount of the antenna where applications require it.Mount the antenna such that the elements are parallel to the ground forhorizontal polarization testing, or perpendicular to the ground for vertical testing.The horizontal beamwidth of the log periodic is approximately 45 degrees and itshould be pointed or aimed in the direction that the received signal is comingfrom.6© A.H. Systems inc. – January 2007REV BEMISSIONS TESTING MEASUREMENT POINT:For 3 and 10 meter testing, the measurement is made from the center of theantenna radiating elements and is annotated by a measurement point sticker(per ANSI C63.5).IMMUNITY TESTING MEASUREMENT POINT:Measurement is made from the tip of the antenna and typically preformed at a 1meter distance. (3 meters per IEC 61000-4-3)7© A.H. Systems inc. – January 2007REV BOPERATING INSTRUCTIONSOnce the antenna is mounted to a mast or tripod, connect an N-type coaxialcable from the antenna to a receiver or RF generator. The cable should bematched to 50 ohms, relatively low loss and adequately shielded againstleakage such as RG-214/U or better. For certain applications where anincreased dynamic range is required, an optional preamplifier (PAM-0202) maybe used to increase the total system sensitivity.The Log Periodic Antenna is in the horizontal polarization when the antennaelements are parallel to the ground, and vertical polarization when the elementsare perpendicular to the ground.To minimize impedance mismatch errors, it is recommended that high-qualityin-line attenuators be used to reduce reflections. Connect the attenuator at theantenna end of the transmitting cable, or when receiving connect the attenuatorat the measuring instrument or preamplifier input.Dress the cables straight back from the antenna connector at least 1 meterbefore being dressed vertically down to the ground plane. Signal cables thatare dressed orthogonal to the antenna elements will have minimal coupling tothe antenna field, but the cable shields may carry external currents caused byimpedance imperfections. Also, portions of the cables that are not straight downor straight back will couple to the antenna fields.8© A.H. Systems inc. – January 2007REV BSPECIFICATIONSELECTRICAL SPECIFICATIONSFrequency Range .........................................................................290 Mhz – 2 GHzAntenna Factor....................................................................................14 to 32 dB/mAntenna Gain..................................................................................................6.5 dBiMaximum Continuous Power...................................................................1000 WattsAverage Beamwidth.............................................................................................45°Average Beamwidth (H-Field)............................................................................100°Impedance (nominal)..........................................................................................50ΩAverage VSWR........................................................................1.45:1 typ. 2.2:1 maxMaximum Radiated Field..............................................................................200 V/mConnector........................................................................................N-Type (female)Mounting............................................................................................1/4-20 (female) PHYSICAL SPECIFICATIONSWeight ...........................................................................................................1.4 lbs.(0.64 kg)Size (L x W x H)...........................................................................22.5" x 20.1" x 2.5"(57.2 cm x 51cm x 6.3cm)Figure 19© A.H. Systems inc. – January 2007REV BTYPICAL DATA10© A.H. Systems inc. – January 2007REV BCALCULATIONSEMISSIONS TESTINGIndividual calibration data for the log periodic antenna is supplied atappropriate distances (3, and 10 meter) to comply with various emissions testrequirements.For emissions measurements,add antenna factor plus cableloss to receiver reading in dBµV to convert to field strength in dBµV/meter.FS = Field Strength in dBµV/mSA = Spectrum Analyzer or Receiver voltage readingAF = Antenna Correction FactorCL = Cable Loss in dBIMMUNITY TESTINGFor Immunity measurements, the generated electric field strength can becalculated by:FS = Approximate Field Strength in (V/m)P = Power in wattsg = Numeric Gaind = Distance in metersTYPICAL CONVERSION FORMULASLOG -> LINEAR VOLTAGE FIELD STRENGTH & POWER DENSITYdBµV to Volts V = 10 ((dBµV – 120) / 20)dBµV/m to V/m V/m = 10 (((dBµV/m) -120) / 20) Volts to dBµV dBµV = 20 log(V) + 120V/m to dBµV/m dBµV/m = 20 log(V/m) + 120 dBV to Volts V = 10 (dBV / 20)dBµV/m to dBmW/m2dBmW/m2 = dBµV/m – 115.8 Volts to dBV dBV = 20log(V)dBmW/m2 to dBµV/m dBµV/m = dBmW/m2 + 115.8 dBV to dBµV dBµV = dBV +120dBµV/m to dBµA/m dBµA/m = dBµV/m – 51.5dBµV to dBV dBV = dBµV - 120dBµA/m to dBµV/m dBµV/m = dBµA + 51.5LOG -> LINEAR CURRENT dBµA/m to dBpT DBpT = dBµA/m + 2dBµA to uAµA = 10 (dBµA / 20)dBpT to dBµA/m dBµA/m = dBpT – 2µA to dBµA dBµA = 20 log(µA)W/m2 to V/m V/m = SQRT(W/m2 * 377)dBA to A A = 10 (dBA / 20)V/m to W/m2W/m2 = (V/m)2 / 377A to dBA dBA = 20log(A)µT to A/m A/m = µT / 1.25dBA to dBµA dBµA = dBA + 120A/m to µTµT = 1.25 * A/mdBµA to dBA dBA = dBµA -120E-FIELD ANTENNASLOG -> LINEAR POWER Correction Factor dBµV/m = dBµV + AFdBm to Watts W = 10((dBm – 30)/10)Field Strength V/m = 30 * watts * Gain numericmetersWatts to dBm dBm = 10log(W) + 30Required Power Watts = (V/m * meters)230 * Gain numericdBW to Watts W = 10(dBW / 10)LOOP ANTENNASWatts to dBW dBW = 10log(W)Correction Factors dBµA/m = dBµV + AFdBW to dBm dBm = dBW + 30Assumed E-field forshielded loopsdBµV/m = dBµA/m + 51.5dBm to dBW dBW = dBm - 30dBpT = dBµV + dBpT/µV TERM CONVERSIONSdBm to dBµV dBµV = dBm + 107 (50Ω)dBµV = dBm + 10log(Z) + 90CURRENT PROBESdBµV to dBm dBm = dBµV – 107 (50Ω)dBm = dBµV – 10log(Z) – 90Correction Factor dBµA = dBµV – dB(ohm)dBm to dBµA dBµA = dBm – 73 (50Ω)dBµA = dBm – 10log(Z) + 90Power needed for injection probe given voltage(V) into 50Ω load and Probe Insertion Loss (I L)dBµA to dBm dBm = dBµA + 73 (50Ω)dBm = dBµA + 10log(Z) – 90Watts = 10((I L + 10log(V2/50))/10)dBµA to dBµV dBµV = dBµA + 34 (50Ω)dBµV = dBµA + 20log(Z) dBµV to dBµA dBµA = dBµV – 34 (50Ω)dBµA = dBµV – 20log(Z)MAINTENANCEMAINTENANCE PROCEDURESProper antenna maintenance should include:•Visual inspection of RF connectors•Check for bent and loose elements•Check for loose or missing hardware•Corrosion near the element jointsAt least once a month it is a good idea to wipe down the antenna with a damprag.ANNUAL CALIBRATIONTo ensure reliable and repeatable long-term performance, annual re-calibrationof your antennas, preamplifiers and current probes by A.H. Systemsexperienced technicians is recommended. Our staff can calibrate almost anytype or brand of antenna.It is always up to the user to determine the appropriate interval for calibrationcertification based on the requirements of the end users specifictest/application. The calibration of EMC antennas is important for thoseconforming to compatibility standard. Radiated emissions testing forelectromagnetic compatibility (EMC) requires the measurement of electric field(E-field) strength, which is compared with a limit level. The output voltage of anantenna is converted to E-field strength via its antenna factor, the measurementof which must include the uncertainty components related to that particularantenna, taking into consideration the environment in which the antenna is to beused for the testing. Most standards will specify the appropriate interval for re-calibration of your EMC antenna.In some cases these antennas are used for a manufacturers pre-compliancetesting, field monitoring, surveillance and/or other applications where the exactfield intensity of the received signal is not of importance. For those customers ayearly re-calibration is not necessary, however it is recommended that aninterval for maintenance be performed.For more information about our calibration services or to place an order forantenna calibration visit our website at or call 1(818) 998-0223.WARRANTY INFORMATIONA.H. Systems Inc., warrants that our Antennas, Sensors and Probes will be free fromdefects in materials and workmanship for a period of three (3) years. All other productsdelivered under contract will be warranted for a period of two (2) years. A.H. Systems'obligation under this warranty shall be limited to repairing or replacing, F.O.B.Chatsworth, California, each part of the product which is defective, provided that thebuyer gives A.H. Systems notice of such defect within the warranty period commencingwith the delivery of the product by A.H. Systems.The remedy set forth herein shall be the only remedy available to the buyer, and in noevent shall A.H. Systems be liable for direct, indirect, incidental or consequentialdamages.This warranty shall not apply to any part of the product which, without fault of A.H.Systems has been subject to alteration, failure caused by a part not supplied by A.H.Systems, accident, fire or other casualty, negligence, misuse or normal wear ofmaterials.Except for the warranty set forth above, there are no other warranties, expressed orimplied, with respect to the condition of the product or it's suitability for the use intendedfor them by the buyer.For prompt service, please contact our service department for a Return MaterialAuthorization Number before shipping equipment back to us.。
Interleaving in a NoC (Network on Chip) employing
摘要:A Network-on-Chip (NoC) system employing an Advanced eXtensible Interface (AXI) protocol is provided. The NoC includes an NoC router which classifies data transmitted from a plurality of AXI Intellectual Properties (IPs) according to a destination AXI IP, and a network interface (NI) which processes data from the NoC router and provides the processed data to the destination IP. One of the NoC router and the NI includes a plurality of bfrom each of the AXI IPs and classified according to each of the AXI IPs, and an interleaving manager which selects buffers, from which data is retrieved, among the plurality of buffers according to an interleaving acceptance capability which is a number of interleaving data that can be accepted by the destination AXI IP.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BegriffsklärungE NTSCHEIDUNGSTRÄGER Unterscheidung vonEntscheidungsbeteiligten unddem Träger der Entscheidungskompetenz (ersichtlich aus Stellenbeschreibungen undOrganigrammen)E NTSCHEIDUNGSPROZESS Phasenbetrachtung Einführung BWL [Sommer 10]Problemformulierung, Präzisierung des Zielsystems,Feststellung der möglichen Handlungsalternativen, Bewertung und Auswahl einer Handlungsalternative, Entscheidungen in der Realisationsphase,28. April 201054ArtenRoutineentscheidungen Erstmalige Entscheidungen Entscheidungen bei sicheren Erwartungen Entscheidungen bei unsicheren Erwartungen Individuelle Entscheidungen Kollektive EntscheidungenRationale Entscheidungen Nicht-rationale Entscheidungen Bewusste Entscheidungen Unbewusste EntscheidungenEinführung BWL [Sommer 10] 28. April 201056Entscheidungen differenziert nach betrieblichen FunktionsbereichenOperative Entscheidungen Strategische EntscheidungenEinflussfaktoren auf EntscheidungenSachlogischen Argumente und ZusammenhängeSoziale und emotionale AspekteGruppendynamische Prozesse und Strukturen (Machtgefüge und emotionale BindungenSpezifika echter Führungsentscheidungensignifikante Bedeutung für die Vermögens-und Ertragslage des Unternehmens und damit dessenFortbestand, Führungsentscheidungen müssen in Kenntnis von Gesamtzusammenhängen getroffen werden ( (i)picture“) sind nicht delegierbar,Einzel-vs. Gremienentscheidungen,−Entscheidungsregel bei kollektiven Entscheidungen,Einführung BWL [Sommer 10]−Machtpositionen der Mitglieder,−strategisches Entscheidungsverhalten der Mitglieder, typische Entscheidungsinhalte−Unternehmensziele,−Vorgeschlagene Maßnahmen, die auf die Erreichung der Unternehmensziele abstellen,−Freigabe und Allokation der erforderlichen Mittel,28. April 201057Primär-und Sekundärdeterminanten von EntscheidungenPrimärdeterminantenInformationsstrukturSekundärdeterminanten Motivation-Bedürfnisstruktur -ErwartungenRisikopräferenzenEinführung BWL [Sommer 10]28. April 201058PrognosefunktionErgebnismatrixZielfunktionQualifikation -Wissen-Kognitive Fähigkeiten -Soziale Fähigkeiten -Manuelle FähigkeitenUmwelt-organisationsintern -organisationsexternEin Entscheidungsmodell -die Elemente einer Entscheidungmögliche UmweltzuständeErwartungs-werts1s2s3s4s5Eintrittswahrscheinlichkeiten (objektiv oder subjektiv)p1p2p3p4p5s a l t e r n a t i v e na1e11e12e13e14e15E1a2e21e22e23e24e25E2a3e31e32e33e34e35E3Einführung BWL [Sommer 10]28. April 201059Handlungsmöglichkeiten (Alternativen) UmweltbedingungenEintrittswahrscheinlichkeiten−Sichere Erwartungen (p=0 oder p=1)−Erwartungen unter Risiko (objektiv vs. subjektiv)−Unsicher Erwartungen (identische Wahrscheinlichkeiten) ErgebnisseZielfunktion (formale Darstellung der Entscheidungsregel: Präferenzordnung, Optimierungskriterium)H a n d l u n g a4e41e42e43e44e45E4a5e51e52e53e54e55E5Entscheidungen unter Sicherheit, Risiko oder UnsicherheitEntscheidung unter SicherheitErgebnis einer Entscheidung ist dem Akteur bekannt,der Akteur hat Präferenzen zwischen Ergebnissen = Entscheidung,Entscheidung unter Risikodas Ergebnis von Entscheidungen ist dem Akteur nicht vollständig bekannt,da das Ergebnis auch von möglichen Umweltzustände beeinflusst wird,jedoch: die Eintrittswahrscheinlichkeiten der Umweltzustände sindEinführung BWL [Sommer 10]dem Akteur bekannt (exogen gegeben), Entscheidung kann als Lotterie mit unterschiedlichen möglichenErgebnissen aufgefasst werden, Entscheidung anhand der Erwartungsnutzenfunktion des Akteurs,Entscheidung unter UnsicherheitEintrittswahrscheinlichkeiten der Umweltzustände sinddem Akteur nicht bekannt,28. April 201060s1s2s3s4P1=10%P2=50%P3=30%P4=10% a1151531311,2 a22051088,3 a3497229,2 Maximaler GesamterwartungswertEinführung BWL [Sommer 10] 28. April 201061a417180811,5s1s2s3s4P1=10%P2=50%P3=30%P4=10% a115153133 a22051085 a3497224 a41718080 Minimax-RegelFort.s1s2s3s4P1=10%P2=50%P3=30%P4=10% a1151531315 a220510820 a34972222 Maximax-RegelEinführung BWL [Sommer 10] 28. April 201062a417180818s1s2s3s4α(Optim./ Pessim.-Faktor) P1=10%P2=50%P3=30%P4=10%a115153130,6*15 + 0,4*3=10,2a220510814a34972214,8a417180810,8 Pessimismus-Optimismus-Regel (Hurwicz)Kollektive Entscheidungstheorie (Social Choice Theory)GrundlegendesViele Entscheidungen werden in der Realität nicht durch Einzelpersonen, sondern durch sog.Entscheidungsgremien getroffen−Aufsichtsrat (bzw. Gesellschaftversammlung),−Vorstand (bzw. mehrköpfige Geschäftsführung),−Expertengremien,−[Parlament],−[Bevölkerung], Entscheidung wird durch die Gruppe getroffen (Akteur),Einführung BWL [Sommer 10]Kollektive Entscheidungen hängen von den individuellen Präferenzordnungen , Willen, Zielen,Ansicht etc. der Gruppenmitglieder ab, diese sind i.d.R. nicht übereinstimmend, sondern widersprechen sich,BegriffKollektive Entscheidungsregeln definieren, wie aus den individuellen Präferenzen die kollektive Präferenzordnung (soziale Wohlfahrtsfunktion) gewonnen werden soll (-Aggregation individueller Präferenzen)Entscheidungsbeispiele ….28. April 201063Kollektive Entscheidungstheorie (Social Choice Theory)Vor-und Nachteile von GremienentscheidungenVorteileAktivierung und Nutzung vonErfahrungen und Wissen verschiedener Mitarbeiter, Verbesserung des Informations-austausches und der Koordination, Repräsentation von Interessengruppen, Motivation durch Partizipation amNachteileKosten im Zuge der Entscheidungs-koordination der Gremienmitglieder (direkte Kosten, Zeit, Opportunitätskosten), Bindung der emotionalen Kapazitäten vonFührungskräften−Streit bei Interessenkonflikten,Einführung BWL [Sommer 10]Entscheidungsprozess, Verhinderung von Machtkonzentration,28. April 201064−Strategisches Entscheidungsverhalten, Einigung auf Kompromisslösungen, Geteilte Verantwortung –geringeresVerantwortungsbewusstsein−Einzelperson hat nicht mehrVerantwortung für dieKonsequenzen der Entscheidung,−Tendenz zu riskanteren undschlechteren EntscheidungenUnmöglichkeitstheorem (K. Arrow, 1951)Arrow zeigt, dass fünf axiomatische Postulate an eine kollektive Präferenzordnung/ soziale Ordnung inkonsistent sind,Pareto-EffizienzWenn eine Alternative existiert, die von allen Individuen einer anderen Alternative vorgezogen wird bzw. von keinem Individuum abgelehnt wird, dann soll auch die kollektive Präferenzordnung diese Alternative bevorzugen.Einführung BWL [Sommer 10]Ausschluss von DiktaturEs soll kein Individuum existieren, dessen individuelle Präferenzordnung immer, ganz gleich wie die Präferenzen der anderen Gesellschaftsmitglieder aussehen, identisch ist mit der sozialen Ordnung.Uneingeschränktheit individueller PräferenzenAlle möglichen individuellen Präferenzordnungen (P,R,I) über die Alternativen sind zugelassen.Unabhängigkeit von irrelevanten AlternativenDie kollektive Präferenzordnung bezüglich zweier Alternativen darf nur von den individuellenPräferenzordnungen zwischen diesen beiden Alternativen abhängen, nicht jedoch von der Position einer dritten Alternative.28. April 201065Unmöglichkeitstheorem (Arrow, 1951)Transitivität (T)Die soziale Präferenzordnung soll eine transitive Ordnung über alle Alternativen sein.Also (xPyPz)!xPz und (xIyIz)!xIz für alle x,y,z ∈SSatz (Existenz):Diese Anforderungen sind im Allgemeinen nicht vereinbar, wenn zwischen mindestens zwei Alternativen gewählt werden soll.66Einführung BWL [Sommer 10]28. April 2010Einige BeispieleMehrheitsstimmigkeitRelative Mehrheit,−Jedes Gruppenmitglied hat eine Stimme für eine Alternative (keine Berücksichtigung dervollständigen Präferenzordnung),−Umgesetzt wird die Alternative, welche die meisten Stimmen erhalten hat, Einfache (absolute) Mehrheit−Umgesetzt wird die Alternative, die mehr als 50% der abgegebenen Stimmen erhält,Einführung BWL [Sommer 10]−Ggf. sind mehrere Abstimmungsrunden erforderlich (mehrstufige Entscheidung ), Qualifizierte Mehrheit,−Umgesetzt wird die Alternative, die mehr als einen vorgegebenen Prozentsatz der abgegebenen Stimmen erhält,Einstimmigkeithohe Einigungskosten,Strategisches Verhalten möglich,allgemein: Minderheitsdiktatur durch Veto möglich,28. April 201067Einige Beispiele Fort.Regel der sukzessiven Paarvergleiche−Beginn mit einem paarweisen Vergleich von 2 Alternativen, die von Mehrheit der Gruppepräferiert wird, wird mit einer weiteren Alternative verglichen,−Verfahren wird sukzessive fortgesetzt, bis alle Alternativen in mindestens einem paarweisenVergleich berücksichtigt wurden,−die im letzten Paarvergleich bevorzugte Alternative ist die ermittelte beste Alternative, Einführung BWL [Sommer 10]Regel der Mehrheit der Paarvergleiche (binäre Regel)−für alle möglichen Alternativenpaare wird eine Gruppenpräferenz durch Mehrheitsregelermittelt,−als beste Alternative gilt jene Alternative, welche in den meisten paarweisen Vergleichenpräferiert wird,28. April 201068Wahlparadoxon und zyklische Mehrheiten Maximale UnähnlichkeitsmatrixAkteur 1Akteur 1I Akteur 1IIA C BB A CC B AA PB ∩B PC ∩C P AEinführung BWL [Sommer 10] 28. April 201069Agenda des Abstimmungsleiters entscheidet über den Gewinner.Lösungsmöglichkeiten−Diktatorentscheidung,Kollektive Entscheidungsregeln Einige Beispiele Fort.Borda-Kriterium [positionale Regel ]−Berücksichtigung der Position einer Handlungsalternative in der individuellenPräferenzordnung ,−Vergabe von Punkten je Alternative entsprechend der Position in der individuellenPräferenzordnung,−k Alternativen: Beste (k-1), Zweitbeste (k-2) usw.−Kollektive Präferenzordnung entsprechend der Punktsummen der Alternativen,Einführung BWL [Sommer 10]−Bsp.: ???Approval Voting [Zustimmungsregel]−Gruppenmitglieder haben so viele Stimmen wie es Alternativen gibt,−Vergabe einer Stimme oder keine Stimme je Alternative möglich (Zustimmung oderAblehnung einer Alternative),−Mehrfachvergabe von Stimmen ist untersagt,−beste Alternative ist die Alternative mit den meisten Zustimmungen,28. April 2010704.Gestaltungsprinzipien der UnternehmensorganisationDie Unterscheidung der Gestaltungsprinzipien bezieht sich auf den Gegenstand der Organisation bzw. auf die Beziehungen zwischen den Leitungsebenen , Verrichtungs –oder Objektprinzip (Gegenstand der Organisation )Einlinienprinzip oder Mehrlinienprinzip (Leitungsbeziehungen )Einführung BWL [Sommer 10]VerrichtungsprinzipObjektprinzipEinlinienprinzipFunktionale Organisation mit Einlinienorganisation Divisionale Organisation mit Einlinienorganisation MehrlinienprinzipFunktionale Organisation mit MehrlinienorganisationDivisionale Organisation mit MehrlinienorganisationMatrixorganisation28. April 201071Betriebliche Funktionen (Verrichtungen)Geschäftsführung/ Vorstand Supply Chain Mgt.Operations Finance Sales & MarketingStabEinführung BWL [Sommer 10]Production Planning &ControlProduction Engineering28. April 201072Produktgruppen, RegionenGeschäftsführung/ V orstandZentralbereicheEinführung BWL [Sommer 10]Division 1Division 2Division 3Division 4Geschäftsfeld 1Geschäftsfeld 2Geschäftsfeld 3Zentralfunkionen28. April 201073F. Hoffmann –La RocheEinführung BWL [Sommer 10]Quelle: /de/company_structure Stand März 200928. April 201074Bayer AG (Holding)Group Management Board (Vorstand)ChairmanStrategy & Human ResourcesInformation, T echnology & EnvironmentCorporate Center DepartmentsCorp. Office, Corp. Auditing, Corp. Development, GroupAccounting & Controlling, Communications, Corp. HR &Organization, Law & Patents, Regional Coordination,Investors Relation, Finance, Environment & Sustainability Einführung BWL [Sommer 10]Bayer HealthCare Bayer CropScienceBayer MaterialScienceBayer BusinessServicesBayer T echnologyServicesCurrentaArbeitsgebiete ServicegebieteQuelle: www.bayer.de Stand März 200928. April 2010754.3MatrixorganisationFunktion 1Funktion 2Funktion 3Objekt 1Unternehmens-leitungEinführung BWL [Sommer 10]Objekt 2Objekt 328. April 2010765.Konstitutive UnternehmensentscheidungenÜberblickWahl der RechtsformWahl des StandortesZusammenschluss77Einführung BWL [Sommer 10]28. April 20105.1Auswahl des Standorts eines UnternehmensÜbersicht der Standorte der Brose AGEinführung BWL [Sommer 10] 28. April 201078 Quelle: www.brose.de vom 01.04.2009Gegenstand und Zeitpunkt der StandortentscheidungGründungsphaseUmsatzphase Neugründung (erstmalige Standortwahl)Standortexpansion StandortspaltungStandortänderung Standortverlagerung Standortzentralisation Einführung BWL [Sommer 10]Standortdezentralisation28. April 201080Beurteilung von Standortalternativen anhand von StandortfaktorenSchritt IIdentifikation der Standortfaktoren, die für eine bestimmte Branche von grundlegender Bedeutung sind (oder: Würde SAP seine Headquarters nach Mecklenburg-Vorpommern verlagern?)Gütereinsatzbedingte Standortfaktoren Absatzbedingte Standortfaktoren Beschaffungskontakte (Wirtschaftsbehörden,Arbeitsvermittlung, Ausstellungen, Börsen)AbsatzpotentialBetriebsraum (Grundstücke,Erschließungskosten, AbsatzkontakteEinführung BWL [Sommer 10] 28. April 201081Baurecht, u.a.)AnlagegüterArbeitskräftepotentialFremddiensteMaterial-und HilfsstoffeKredit-und Finanzierungsmöglichkeiten Leistungen der GebietskörperschaftenT ransformationsbedingte Standortfaktoren (geologische und klimatische Verhältnisse)Beurteilung von Standortalternativen anhand von Standortfaktoren Fort.Schritt IIdie Gewichtung der Standortfaktoren erfolgt aufgrund der unterschiedlichen Anforderungenunternehmensspezifisch und lässt sich anhand der Standortorientierung ausdrücken (dominierende Standortfaktoren): Materialorientierung Arbeitsorientierung Abgabenorientierung Einführung BWL [Sommer 10]Kraftorientierung AbsatzorientierungVerkehrsorientierungQuelle: Wöhe, S. 266ff.28. April 201082Beurteilung von Standortalternativen anhand von Standortfaktoren Fort.Schritt IIIStandortanalyse und –prognose verschiedener Standortalternativen Schritt IVBewertung verfügbarer Standortalternativen i.Punktbewertung (REFA-System)ii.PolaritätsprofileEinführung BWL [Sommer 10]iii.Standortkalkulation (standortabhängige Kosten)iv.ROI-Methode Schritt VNutzung von Standortmodellen zur Bestimmung des optimalen Standortes und zur Standortsimulation (Kostenorientierte, Gewinnorientierte Modelle)28. April 2010835.2Wahl der Rechtsform des UnternehmensGrundlagenEntscheidung über die gesetzlich typisierte Grundstruktur eines Unternehmens Außenverhältnis Auftreten des Unternehmens im Rechtsverkehr(z.B. Haftung, Finanzierung, Besteuerung)Innenverhältnis interne Willensbildung/ Entscheidungsfindung RechtsgrundlagenBürgerliches Gesetzbuch (BGB)Einführung BWL [Sommer 10]Wahl der Rechtsform des Unternehmens Ein unternehmensstrategische Entscheidungdie Rechtsform kann durch ein Unternehmen weitestgehend frei gewählt werden, die Entscheidung zur Rechtsform ist eine strategische Entscheidung , wird zum Zeitpunkt der Gründung oder der Umwandlung in Abhängigkeit−persönlicher,−wirtschaftlicher,−rechtlicher und steuerlicherRahmenbedingungen getroffen,Einführung BWL [Sommer 10]Die Wahl der Rechtsform beeinflusst: Haftung,Kapitalbeschaffung, Unternehmensleitung,Publizitäts-und Prüfungspflichten,Flexibilität der Änderung der Gesellschafterverhältnisse (insbesondere im Erbfall), Steuerbelastung,28. April 201085Unternehmungsformen des privaten Rechts Quelle: In Anlehnung an Bestmann (2001), S.22.GrundformenZumeist Kombination zwischen Personen-/ Kapitalgesellschaft Einzel-unternehmen EinzelgründerPersonen-gesellschaftenKapital-gesellschaftenBranchenun-abhänigeSonderformen Sonderformen Wirtschafts-zweige Einbetrieb-liche Misch-formen Betriebs-aufspaltungGesellschaftsunternehmen (mehrere Gründer)KombinationsformenGmbH Genossen-Bergrechtliche GmbH & Co BGB-Einzelkauf-Einführung BWL [Sommer 10]28. April 201086AG KGaA Varianten:Einpersonen-GmbH Einpersonen-AGschaft (eG)Rechtsfähiger,Wirtschaft-licher Verein Rechtsfähige Stiftung des privaten RechtsGewerkschaft Versicher-ungsverein auf Gegen-seitigkeit Parten-reederei(OHG)GmbH & Co KG (KG)AG & Co KG Varianten :Unechte-/Einpersonen GmbH & CoGesellschaft Stille Gesell-schaft mit PG od. KG OHG KG atyp. Formenmann (einzelne nat. Person)Einpersonen-gesellschaftEinzelunternehmenEigenschaftZahl der Gesellschafter ein EigentümerGründungsvorschriften Keine (ggf. Eintrag ins Handelsregister) Geschäftsführung/ Kontrolle in einer Hand Mindesteigenkapital;Entnahmeregelungkein MEK, keine Beschränkungen Haftungsbeschränkung;Einführung BWL [Sommer 10] 28. April 201087Nachschüsseunbeschränkte HaftungRechnungslegung;Publizität RL nach §1PublG möglich(1)BS > 65‘‘ EUR, (2) NU > 130‘‘ EUR, (3) AN > 50002 Kriterien müssen an 2 aufeinanderfolgenden Stichtagen erfüllt sein Bes. Gesellschaftsorgane KeineFinanzierungseigenschaften EF –Vermögen des Eigners, SF –erzielter Überschuss, FF-Gläubiger Relevanz vonMitbestimmungsregelungen-Stille Gesellschaft [§§230 –236 HGB]EigenschaftZahl der Gesellschafter mindestens ein Eigentümer,ein …stiller“ GesellschafterGründungsvorschriften KeineGeschäftsführung/ Kontrolle Keine GF für stillen Gesellschafter;Kontrollrecht nach §233 HGBMindesteigenkapital; Entnahmeregelung Kein MEK, stiller Gesellschafter ist am Gewinn beteiligt und kann am Verlust beteiligt seinHaftungsbeschränkung; Haftung des stillen GesellschaftersEinführung BWL [Sommer 10] 28. April 201088Nachschüsseist auf seinen Verlustanteil, max. auf seine Einlage beschränkt (st. G. ist Konkursgläubiger: §236 HGB)Rechnungslegung;Publizität RL nach PublG –Größenkriterien wie Einzelunternehmen Bes. Gesellschaftsorgane KeineFinanzierungseigenschaften Wie EinzelunternehmenRelevanz vonMitbestimmungsregelungen_Offene Handelsgesellschaft (OHG) –[§§105 –160 HGB]Eigenschaft Gerichtet auf den Betrieb eines Handelsgewerbes Zahl der Gesellschafter mindestens zwei EigentümerGründungsvorschriften§106 HGB –Anmeldung ins HandelsregisterGeschäftsführung/ Kontrolle alle Gesellschafter sind zur Geschäftsführung berechtigt und verpflichtet [§114, Abs. 1 HGB]; im Gesellschaftervertrag kann die Geschäftsführung auf bestimmte Aufgabengebiete beschränkt oder vollständig aufgehoben werden [§114, Abs. 2 HGB]Mindesteigenkapital; kein MEK,Einführung BWL [Sommer 10] 28. April 201089EntnahmeregelungVerteilung von Gewinn und Verlust nach Gesetz oder Vertrag [§121 HGB]Haftungsbeschränkung;Nachschüsseunbeschränkte Haftung aller Gesellschafter (inkl. Privatvermögen) Rechnungslegung;Publizität RL nach PublGBes. Gesellschaftsorgane KeineFinanzierungseigenschaften Mehrere Vollhafter implizieren eine höhere Kreditwürdigkeit Relevanz vonMitbestimmungsregelungen-Kommanditgesellschaft (KG) –[§§161 –177a HGB]Eigenschaft Gerichtet auf den Betrieb eines HandelsgewerbesZahl der Gesellschafter mindestens ein Vollhafter (Komplementär), mindestens ein T eilhafter (Kommanditist) Gründungsvorschriften§106 und §161 HGB –Anmeldung ins HandelsregisterGeschäftsführung/ Kontrolle Geschäftsführung nur durch die Komplementäre [§164 HGB]; Kontrollrechte für die Kommanditisten [§166 HGB]Mindesteigenkapital; Entnahmeregelung kein MEK, Kommanditist ist an Gewinn und Verlust bis zur Höhe seiner Kommanditeinlagen beteiligt und hat einen Gewinnanspruch, wenn sein Kapitalanteil nicht Einführung BWL [Sommer 10]28. April 201090 durch frühere Verluste angegriffen ist [§169 HGB]Haftungsbeschränkung; Nachschüsse unbeschränkte Haftung der Komplementäre (inkl. Privatvermögen), Kommanditist haftete beschränkt gemäß Kapitaleinlage [§171 HGB] auch nach Ausscheiden für 5 Jahre für Verbindlichkeiten der KG [§159 HGB] –Ausnahme: Übernahme der Einlage durch Dritte und SonderrechtsnachfolgeRechnungslegung;Publizität RL nach PublGBes. Gesellschaftsorgane Ggf. Beirat, wenn die Anzahl der Kommanditisten sehr groß istFinanzierungseigenschaften Bessere Finanzierungsmöglichkeiten, da neben den Vollhaftern mehrere Kommanditisten mit ihren Einlagen beteiligt werden könnenRelevanz von Mitbestimmungsregelungen-Gesellschaft mit beschränkter Haftung (GmbH) –[GmbHG]Eigenschaft Gesellschaft mit eigener Rechtspersönlichkeit zu jedem gesetzlich zulässigen Zweck Zahl der Gesellschafter Mindestens ein GesellschafterGründungsvorschriften Gründungsprüfung bei Sacheinlagen [§5 (4) GmbHG], Anmeldung der Gesellschaft [§7 GmbHG], Inhalt der Anmeldung [§8 GmbHG], Prüfung vor Gericht [§9c GmbHG]Geschäftsführung/ Kontrolle Geschäftsführung durch den (die) Geschäftsführer [jedoch Weisungsrecht auf Seiten der Gesellschafter]; dies können Gesellschafter sein, Kontrolle durch die Gesellschafterversammlung und ggf. durch Wirtschaftsprüfer (abh. von der Gesellschaftsgröße)Mindesteigenkapital; MEK -Stammkapital min. 25.000 EUR [§5 (1) GmbHG], Stammeinlage eines jeden GesellschaftersEinführung BWL [Sommer 10] 28. April 201091Entnahmeregelung beträgt min. 100 EUR [§5 (1) GmbHG], Mindesteinzahlung 50%, Stammkapital muss erhalten bleibenHaftungsbeschränkung; Nachschüsse Haftungsbeschränkung –(i) GmbH haftet für Verbindlichkeiten nur mit dem Geschäftsvermögen [§13 (2) GmbHG], Gesellschafter haften nur mit ihrer Einlage, (ii) Nachschüsse fakultativ –beschränkt [Satzung], unbeschränkt -AbandonrechtRechnungslegung;Publizität Pflicht nach §264 und §267 HGB anhängig von der Größe der Gesellschaft Bes. Gesellschaftsorgane Geschäftsführer, Gesellschafterversammlung, Aufsichtsrat AN > 500[§526 GmbHG]Finanzierungseigenschaften Beschränkte Haftung; EF –mehrere EK-Geber,SF –abhängig von den erwirtschafteten Überschüssen, FF –abhängig von der Ertragslage und dem SicherheitspotentialRelevanz von Mitbestimmungsregelungensiehe AGAktiengesellschaft (AG) –[AktG]Eigenschaft Gesellschaft mit eigener Rechtspersönlichkeit zu jedem gesetzlich zulässigen ZweckZahl der Gesellschafter Mindestens ein Aktionär [§2 AktG]Gründungsvorschriften Komplexe Regelungen gemäß §§23 –42 AktGGeschäftsführung/ Kontrolle Geschäftsführung:Vorstand, Kontrolle: Aufsichtsrat und Wirtschaftsprüfer [§111 AktG]Mindesteigenkapital; Entnahmeregelung MEK –50.000 EUR [§7 AktG], Mindestnennbetrag der Aktien:1 EUR oder Stückaktien [§8 AktG]; Mindesteinzahlung 25%, Entnahmeregelung durch den Jahresabschluss und gemäß §58 (2) AktG Einführung BWL [Sommer 10]28. April 201092Haftungsbeschränkung; Nachschüsse Haftungsbeschränkung gemäß §1 AktG: Anteilseigner haften nur mit ihren Einlagen, keine NachschusspflichtRechnungslegung;Publizität Siehe GmbHBes. Gesellschaftsorgane Vorstand, Aufsichtsrat, HauptversammlungFinanzierungseigenschaften Sehr gute Finanzierungsmöglichkeit durch (i) Handhabbarkeit der Anteile, (ii) Diversifikationsmöglichkeiten und (iii)leichtem Ein-und AusstiegRelevanz von Mitbestimmungsregelungen Ab 500 MA Drittelparität im Aufsichtsrat [BetrVG]Ab2000 MA Parität im Aufsichtsrat und Arbeitsdirektor (gleichber. Mitglied der GF) [MitbestG}, Montanunternehmen –ab 1000 MA [Montan-MitbestG]Genossenschaft –[GenG]Eigenschaft Gesellschaft mit nicht geschlossener Mitgliederzahl, die der Förderung des Erwerbs oder der Wirtschaft ihrer Mitglieder durch gemeinschaftlichem Geschäftsbetrieb dient, ohne das diese für die Verbindlichkeiten der Genossenschaft haftenZahl der Gesellschafter Mindestens 3 [§4 GenG]Gründungsvorschriften nicht geschlossene Mitgliederzahl, Zweck: Förderung der Mitglieder, Eintrag ins Genossenschaftsregister [§106 GenG], Prüfung durch Gericht[§11a GenG]Geschäftsführung/ Kontrolle Geschäftsführung:Vorstand, Kontrolle: Generalversammlung, Aufsichtsrat, genossenschaftlicher Prüfungsverband [§§53ff GenG]Mindesteigenkapital;Einführung BWL [Sommer 10] 28. April 201093EntnahmeregelungKein MEK; Gewinnbeteiligung gemäߧ19 GenGHaftungsbeschränkung; Nachschüsse Haftungsbeschränkung gemäß §2 GenG in Höhe des Geschäftsvermögens der Genossen-schaft, in den Statuten können Nachschusszahlungen der Genossen in beschränkter und unbeschränkterHöhe geregelt werden [§6 GenG],Rechnungslegung;Publizität Gemäß §33 GenG und §§336 –339 HGBBes. Gesellschaftsorgane Vorstand, Aufsichtsrat, Generalversammlung [§43 GenG –mit weiterführenden Rechten als die Hauptversammlung der AG –z.B. Wahl des Vorstands], ggf. Vertreterversammlung, genossenschaftlicher PrüfungsverbandFinanzierungseigenschaften Gute Finanzierungsmöglichkeit durch (i) Stückelung der Anteile, (ii) Rückgaberecht und (iii) Herstellbarkeit beschränkter HaftungRelevanz von MitbestimmungsregelungenSiehe AG5.3UnternehmensverbindungenEntscheidungstatbestände von Unternehmensverbindungen1.ROI des UnternehmenszusammenschlussesGewährleistet der Zusammenschluss eine verbesserte Durchführung bestimmterUnternehmensprozesse im Vergleich zu deren Durchführung in selbstständigen Unternehmen,2.Zusammenschlussformenwirtschaftliche und rechtliche Gestaltung der Zielform (rechtliche und wirtschaftlicheSelbstständigkeit)Kooperation vs. KonzentrationEinführung BWL [Sommer 10]3.Wahl des Zusammenschlusspartners4.Vertragsgestaltung5.Neu-Organisation6.Post-Merger-Integration 28. April 201094。