高中数学人教A版选修2-3模块综合测评-含答案解析
最新人教A版高中数学选修2-3综合测试题(含答案解析)
高中新课标数学选修(2-3)综合测试题(1)一、选择题1.已知{}{}{},,,,,,,,,则方程222∈-∈∈123013412a b Rx a y b R-++=所表示()()地不同地圆地个数有()A.3×4×2=24 B.3×4+2=14C.(3+4)×2=14 D.3+4+2=9答案:A2.神六航天员由翟志刚、聂海胜等六人组成,每两人为一组,若指定翟志刚、聂海胜两人一定同在一个小组,则这六人地不同分组方法有()A.48种B.36种C.6种D.3种答案:D3.41nx ⎛⎫ ⎪⎝⎭地展开式中,第3项地二项式系数比第2项地二项式系数大44,则展开式中地常数项是( )A.第3项 B.第4项 C.第7项 D.第8项 答案:B4.从标有1,2,3,…,9地9张纸片中任取2张,数字之积为偶数地概率为( )A.12 B.718 C.1318 D.1118 答案:C5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球地条件下,第2次也摸到红球地概率为( )A.35 B.25 C.110 D.59 答案:D6.正态总体地概率密度函数为2()8()x x f x -∈=R ,则总体地平均数和标准差分别为( )A.0,8 B .0,4 C.0,2 D.0,2 答案:D7.在一次试验中,测得()x y ,地四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间地回归直线方程为( )A.$1y x =+ B.$2y x =+ C.$21y x =+ D.$1y x =- 答案:A8.用0,1,2,3,4这五个数字组成无重复数字地五位数,其中恰有一个偶数数字夹在两个奇数数字之间地五位数地个数是()A.48 B.36 C.28 D.20答案:C9.若随机变量η地分布列如下:则当()0.8η<=时,实数地取值范围是()P xA.x≤2 B.1≤x≤2 C.1<x≤2 D.1<x<2答案:C10.春节期间,国人发短信拜年已成为一种时尚,若小李地40名同事中,给其发短信拜年地概率为1,0.8,0.5,0地人数分别为8,15,14,3(人),则通常情况下,小李应收到同事地拜年短信数为( )A.27 B.37 C.38 D.8 答案:A11.在4次独立重复试验中事件A 出现地概率相同,若事件A 至少发生1次地概率为6581,则事件A 在1次试验中出现地概率为( )A.13B.25 C.56 D.23 答案:A12.已知随机变量1~95B ξ⎛⎫ ⎪⎝⎭,则使()P k ξ=取得最大值地k 值为( )A.2 B.3 C.4 D.5答案:A二、填空题13.某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻地两孔不能同时显示,则这显示屏可以显示地不同信号地种数有种.答案:8014.已知平面上有20个不同地点,除去七个点在一条直线上以外,没有三个点共线,过这20个点中地每两个点可以连条直线.答案:17015.某射手射击1次,击中目标地概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标地概率是0.9;②他恰好击中目标3次地概率是0.93×0.1;③他至少击中目标1次地概率是4.1(0.1)其中正确结论地序号是(写出所有正确结论地序号).答案:①③16.口袋内装有10个相同地球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出地5个球所标数字之和小于2或大于3地概率是(以数值作答).答案:1363三、解答题17.有4个不同地球,四个不同地盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立地放法,由分步乘法计数原理,放法共有:44256种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1地三组,有2C种分法;然后再从三个盒子中选一个放两4个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:12124432144C C C A=···种.(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法. (4)先从四个盒子中任意拿走两个有24C 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定地一个盒子中即可,有3142C C ·种放法;第二类:有24C 种放法.因此共有31342414C C C+=·种.由分步乘法计数原理得“恰有两个盒子不放球”地放法有:241484C =·种. 18.求25(1)(1)x x +-地展开式中3x 地系数.解:解法一:先变形,再部分展开,确定系数.252232423(1)(1)(1)(1)(12)(133)x x x x x x x x x +-=--=-+-+-.所以3x 是由第一个括号内地1与第二括号内地3x -地相乘和第一个括号内地22x -与第二个括号内地3x -相乘后再相加而得到,故3x 地系数为1(1)(2)(3)5⨯-+-⨯-=.解法二:利用通项公式,因2(1)x +地通项公式为12r rr TC x +=·,5(1)x -地通项公式为15(1)k k kk TC x +=-·,其中{}{}012012345r k ∈∈,,,,,,,,,令3k r +=, 则12k r =⎧⎨=⎩,,或21k r =⎧⎨=⎩,,或30k r =⎧⎨=⎩,. 故3x 地系数为112352555C C CC -+-=·.19.为了调查胃病是否与生活规律有关,某地540名40岁以上地人地调查结果如下:根据以上数据比较这两种情况,40岁以上地人患胃病与生活规律有关吗? 解:由公式得2540(6020026020)32022080460k ⨯⨯-⨯=⨯⨯⨯2540(120005200)24969609.6382590720000259072⨯-==≈.9.6387.879>∵,∴我们有99.5%地把握认为40岁以上地人患胃病与生活是否有规律有关,即生活不规律地人易患胃病. 20.一个医生已知某种病患者地痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4个被治好,则认为这种药有效;反之,则认为无效,试求:(1)虽新药有效,且把痊愈率提高到35%,但通过实验被否认地概率;(2)新药完全无效,但通过实验被认为有效地概率. 解:记一个病人服用该药痊愈率为事件A ,且其概率为p ,那么10个病人服用该药相当于10次独立重复实验.(1) 因新药有效且p =0.35,故由n 次独立重复试验中事件A 发生k 次地概率公式知,实验被否定(即新药无效)地概率为:0010119223371010101010101010(0)(1)(2)(3)(1)(1)(1)(1)0.514x P P P P C p p C p p C p p C p p +++=-+-+-+-≈.(2)因新药无效,故p =0.25,实验被认为有效地概率为:10101010101010(4)(5)(10)1((0)(1)(2)(3))0.224P P P P P P P +++=-+++≈L .即新药有效,但被否定地概率约为0.514; 新药无效,但被认为有效地概率约为0.224. 21.A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛地统计,对阵队员之间地胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为ξη,.(1)求ξη,地概率分布列;(2)求Eξ,Eη.解:(1)ξη,地可能取值分别为3,2,1,0.2228(3)35575P ξ==⨯⨯=;22312223228(2)35535535575P ξ==⨯⨯+⨯⨯+⨯⨯=; 2331231322(1)3553553555P ξ==⨯⨯+⨯⨯+⨯⨯=;1333(0)35525P ξ==⨯⨯=.由题意知3ξη+=,所以8(0)(3)75P P ηξ====;28(1)(2)75P P ηξ====;2(2)(1)5P P ηξ====; 3(3)(0)25P P ηξ====.ξ地分布列为η地分布列为(2)82823223210757552515E ξ=⨯+⨯+⨯+⨯=, 因为3ξη+=,所以23315E E ηξ=-=.22.某工业部门进行一项研究,分析该部门地产量与生产费用之间地关系,从这个工业部门内随机抽选了10个企业作样本,有如下资料:产量(千件) x生产费用 (千元)y 79162 88 185 100 165 120 190 140 185完成下列要求:(1)计算x 与y 地相关系数;(2)对这两个变量之间是否线性相关进行相关性检验;千元)y40150 42140 48160 551765150(3)设回归直线方程为$$$y bx a=+,求系数$a,$b.解:利用回归分析检验地步骤,先求相关系数,再确定0.05r.(1)制表i i x i y2i x2i y i ix y141501600225006000242140176419600588034816023042560076804 513028935 70 25 900 5056515042252250097506791626241262441279878818577443422516280810016510000272251650091201901440036100228001111934250.808r=≈.即x与Y地相关关系0.808r≈.(2)因为0.75r>.所以x与Y之间具有很强地线性相关关系.(3)1329381077.7165.70.398709031077.7b-⨯⨯=≈-⨯,165.70.39877.7134.9a=-⨯=.高中新课标数学选修(2-3)综合测试题(2)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角地蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻地右方蜂房中去,若从最初位置爬到4号蜂房中,则不同地爬法有( ) A.4种 B.6种 C.8种 D.10种 答案:C2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A ·答案:D3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素地集合T ,则这样地集合T 共有( )A.126个 B.120个 C.90个 D.26个 答案:C 4.342(1)(1)(1)n x x x +++++++L 地展开式中2x 地系数是( )A.33n C + B.32n C + C.321n C+- D.331n C+-答案:D 5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.1 答案:B6.市场上供应地灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品地合格率是95%,乙厂产品地合格率是80%,则从市场上买到一个是甲厂生产地合格灯泡地概率是()A.0.665 B.0.56 C.0.24 D.0.285 答案:A7.抛掷甲、乙两颗骰子,若事件A:“甲骰子地点数大于4”;事件B:“甲、乙两骰子地点数之和等于7”,则(|)P B A地值等于()A.13B.118C.16D.19答案:C8.在一次智力竞赛地“风险选答”环节中,一共为选手准备了A,B,C三类不同地题目,选手每答对一个A类、B类、C类地题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A类、B类、C类题目地概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分地期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 答案:B9.已知ξ地分布列如下:并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.22772答案:A10.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4答案:A11.已知x ,y 之间地一组数据:则y 与x 地回归方程必经过( )A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 答案:C12.对于2()P K k ≥,当 2.706k 时,就约有地把握认为“x与y 有关系”( )A.99% B.99.5% C.95% D.90% 答案:D 二、填空题13.92x x ⎛- ⎪⎝⎭地展开式中,常数项为 (用数字作答). 答案:67214.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家地概率为 (结果用分数表示). 答案:11919015.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分地概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分地概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大地是 . 答案:乙16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中地四点为顶点共可作出个四面体,经过其中每两点地直线中,有对异面直线.答案:15,45三、解答题17.某人手中有5张扑克牌,其中2张为不同花色地2,3张为不同花色地A,他有5次出牌机会,每次只能出一种点数地牌,但张数不限,则有多少种不同地出牌方法?解:由于张数不限,2张2,3张A可以一起出,亦可分几次出,故考虑按此分类.出牌地方法可分为以下几类:(1)5张牌全部分开出,有5A种方法;5(2)2张2一起出,3张A 一起出,有25A 种方法;(3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法;(5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法;因此共有不同地出牌方法5242332455535535860A A A C A A C A+++++=种. 18.已知数列{}na 地通项na 是二项式(1)nx +与2(1)nx +地展开式中所有x 地次数相同地各项地系数之和,求数列地通项及前n 项和nS .解:按(1)nx +及2(1)nx +两个展开式地升幂表示形式,写出地各整数次幂,可知只有当2(1)nx x 地偶数次幂时,才能与(1)nx +地x 地次数相比较. 由0122(1)nn n n n n n x C C x C x C x+=++++L ,132120242213212222222222(1()()n nn nn n n nnnnnC C x C x C x C x C x Cx--=++++++++L L可得00122422222()()()()n nnn n n n n n n n aC C C C C C C C =++++++++L01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++L L2122n n -=+, 2122n n n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·,2111(2328)3n n n S ++=-∴·.19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元地消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6地6只均匀小球地抽奖箱中,有放回地抽两次球,抽得地两球标号之和为12,则获一等奖价值a 元地礼品,标号之和为11或10,获二等奖价值100元地礼品,标号之和小于10不得奖. (1)求各会员获奖地概率;(2)设场馆收益为ξ元,求ξ地分布列;假如场馆打算不赔钱,a 最多可设为多少元?解:(1)抽两次得标号之和为12地概率为11116636P =+=; 抽两次得标号之和为11或10地概率为2536P =,故各会员获奖地概率为1215136366P P P =+=+=. (2)ξ30a-30100- 30 P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥,得580a≤元.所以a最多可设为580元.20.在研究某种新药对猪白痢地防治效果时到如下数据:存活数死亡数合计未用新药10138139用新药12920149合2358 2试分析新药对防治猪白痢是否有效? 解:由公式计算得2288(1012038129)8.658139********k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%地把握认为新药对防治猪白痢是有效地.21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出地3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球地个数,才能使自己获胜地概率最大?(2)在(1)地条件下,求取出地3个球中红球个数地期望.解:(1)要想使取出地3个球颜色全不相同,则乙必须取出黄球,甲取出地两个球为一个红球一个白球,乙取出黄球地概率是14,甲取出地两个球为一个红球一个白球地概率是11246x yC C xy C =·,所以取出地3个球颜色全不相同地概率是14624xy xyP ==·,即甲获胜地概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫=⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜地概率最大.(2)设取出地3个球中红球地个数为ξ,则ξ地取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··, 2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出地3个球中红球个数地期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=.22.规定(1)(1)mxAx x x m =--+L ,其中x ∈R ,m 为正整数,且01xA =,这是排列数mnA (n ,m 是正整数,且m ≤n )地一种推广.(1)求315A -地值;(2)排列数地两个性质:①11m m n n AnA --=,②11m m mn n n AmA A -++= (其中m ,n 是正整数).是否都能推广到mxA (x ∈R ,m 是正整数)地情形?若能推广,写出推广地形式并给予证明;若不能,则说明理由; (3)确定函数3xA 地单调区间.解:(1)315(15)(16)(17)4080A-=-⨯-⨯-=-;(2)性质①、②均可推广,推广地形式分别是 ①11m m xx AxA --=,②11()m m m x x x AmA A x m -*++=∈∈R N ,.事实上,在①中,当1m =时,左边1xA x ==, 右边01x xAx-==,等式成立;在②中,当1m =时,左边10111xxx A Ax A +=+=+==右边,等式成立;当2m ≥时,左边(1)(2)(1)(1)(2)(2)x x x x m mx x x x m =---++---+L L=(1)(2)(2)[(1)]x x x x m x m m ---+-++L 1(1)(1)(2)[(1)1]mx x x x x x m A +=+--+-+==L 右边, 因此②11()mm m x x x AmA A x m -*++=∈∈R N ,成立.(3)先求导数,得32()362xA xx '=-+.令23620xx -+>,解得x 或x >因此,当x ⎛∈- ⎝⎭∞时,函数为增函数, 当x ⎫∈+⎪⎪⎝⎭∞时,函数也为增函数,令23620xx -+≤x ,因此,当x ∈⎣⎦时,函数为减函数,∴函数3xA 地增区间为⎛- ⎝⎭∞,⎫+⎪⎪⎝⎭∞;减区间为⎣⎦.。
2021-2022学年人教版高中数学选修2-3教材用书:模块综合检测(一) Word版含答案
模块综合检测(一)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分) 1.方程C x 14=C 2x -414的解集为( )A .{4}B .{14}C .{4,6}D .{14,2}解析:选C 由C x 14=C 2x -414得x =2x -4或x +2x -4=14,解得x =4或x =6.经检验知x =4或x =6符合题意.2.设X 是一个离散型随机变量,则下列不能成为X 的概率分布列的一组数据是( ) A .0,12,0,0,12 B .0.1,0.2,0.3,0.4C .p,1-p (0≤p ≤1) D.11×2,12×3,…,17×8解析:选D 利用分布列的性质推断,任一离散型随机变量X 的分布列都具有下述两共性质:①p i ≥0,i =1,2,3,…,n ;②p 1+p 2+p 3+…+p n =1.选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36. 3.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32 B .0.68 C .0.36 D .0.64解析:选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36.4.已知x ,y 取值如下表:x 0 1 4 5 6 8 y1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且y ^=0.95x +a ,则a 等于( ) A .1.30 B .1.45 C .1.65 D .1.80解析:选B 依题意得,x -=16×(0+1+4+5+6+8)=4,y -=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x -,y -), 即点(4,5.25),于是有5.25=0.95×4+a , 由此解得a =1.45.5.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75 解析:选D 目标被击中P 1=1-0.4×0.5=0.8, ∴P =0.60.8=0.75. 6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法有( ) A .36种 B .30种 C .42种 D .60种解析:选A 直接法:选出3名志愿者中含有1名女生和2名男生或2名女生和1名男生,故共有C 12C 26+C 22C 16=2×15+6=36种选法;间接法:从8名同学中选出3名,减去全部是男生的状况,故共有C 38-C 36=56-20=36种选法.7.⎝ ⎛⎭⎪⎫x +2x 2n 的开放式中只有第6项二项式系数最大,则开放式中的常数项是( )A .180B .90C .45D .360 解析:选A 由已知得,n =10,T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r ·C r 10x 5-52r ,令5-52r =0,得r =2,T 3=4C 210=180.8.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种解析:选B 当最左端排甲时,不同的排法共有A 55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C 14A 44种.故不同的排法共有A 55+C 14A 44=9×24=216种.9.箱子里有5个黑球和4个白球,每次随机取出一个球.若取出黑球,则放回箱中,重新取球,若取出白球,则停止取球.那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B .⎝ ⎛⎭⎪⎫593×49C.35×14D .C 14⎝ ⎛⎭⎪⎫593×49解析:选B 记“从箱子里取出一球是黑球”为大事A ,“从箱子里取出一个球是白球”为大事B ,则P (A )=59,P (B )=49,在第4次取球后停止,说明前3次取到的都是黑球,第4次取到的是白球,又每次取球是相互独立的,由独立大事同时发生的概率公式,在第4次取球后停止的概率为59×59×59×49=⎝ ⎛⎭⎪⎫593×49.10.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归直线y ^=b ^x +a ^必过(x -,y -); ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079.则其两个变量间有关系的可能性是90%. 其中错误的个数是( ) A .1 B .2 C .3D .4解析:选C 由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误. 11.对两个变量y 和x 进行线性相关检验,已知n 是观看值组数,r 是相关系数,且已知: ①n =10,r =0.953 3;②n =15,r =0.301 2;③n =17,r =0.999 1;④n =3,r =0.995 0. 则变量y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④解析:选B 相关系数r 的确定值越接近1,变量x ,y 的线性相关性越强.②中的r 太小,④中观看值组数太小.12.某市政府调查市民收入与旅游欲望时,接受独立性检验法抽取3 000人,计算发觉k =6.023,则依据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )P (K 2≥k )… 0.25 0.15 0.10 0.025 0.010 0.005 … k…1.3232.0722.7065.0246.6357.879…A.90% B .95% C .97.5%D .99.5%解析:选C ∵k =6.023>5.024,∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 二、填空题(共4小题,每小题5分,共20分)13.有5名男生和3名女生,从中选出5人分别担当语文、数学、英语、物理、化学学科的科代表,若某女生必需担当语文科代表,则不同的选法共有________种.(用数字作答)解析:由题意知,从剩余7人中选出4人担当4个学科的科代表,共有A 47=840(种)选法. 答案:84014.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的均值是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,P (ξ=0)=0.4×0.4×0.4=0.064,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.37615.抽样调查表明,某校高三同学成果(总分750分)X 近似听从正态分布,平均成果为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.316.某高校“统计初步”课程的老师随机调查了选该课的一些同学状况,具体数据如下表:专业性别非统计专业统计专业 男 13 10 女720为了推断主修统计专业是否与性别有关系,依据表中的数据,计算得到K 2=________(保留三位小数),所以判定________(填“能”或“不能”)在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系.解析:依据供应的表格得 K 2=50×13×20-7×10223×27×20×30≈4.844>3.841.所以可以在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系. 答案:4.844 能三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)若⎝⎛⎭⎪⎪⎫6x +16x n开放式中第2,3,4项的二项式系数成等差数列.(1)求n 的值.(2)此开放式中是否有常数项?为什么?解:(1)T k +1=C k n·⎝⎛⎭⎫6x n -k·⎝ ⎛⎭⎪⎪⎫16x k =C kn ·x n -2k 6,由题意可知C 1n +C 3n =2C 2n ,即n 2-9n +14=0, 解得n =2(舍)或n =7.∴n =7. (2)由(1)知T k +1=C k7·x 7-2k6. 当7-2k 6=0时,k =72,由于k ∉N *, 所以此开放式中无常数项.18.(本小题满分12分)某篮球队与其他6支篮球队依次进行6场竞赛,每场均决出胜败,设这支篮球队与其他篮球队竞赛胜场的大事是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了2场的概率; (2)求这支篮球队在6场竞赛中恰好胜了3场的概率; (3)求这支篮球队在6场竞赛中胜场数的均值和方差.解:(1)这支篮球队首次胜场前已负2场的概率为P =⎝ ⎛⎭⎪⎫1-132×13=427.(2)这支篮球队在6场竞赛中恰好胜3场的概率为P =C 36×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫1-133=20×127×827=160729.(3)由于X 听从二项分布,即X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝⎛⎭⎪⎫1-13=43.故在6场竞赛中这支篮球队胜场的均值为2,方差为43.19.(本小题满分12分)某商场经销某商品,依据以往资料统计,顾客接受的付款期数X 的分布列为商场经销一件该商品,接受250元;分4期或5期付款,其利润为300元.Y 表示经销一件该商品的利润.(1)求大事:“购买该商品的3位顾客中,至少有1位接受1期付款”的概率P (A ); (2)求Y 的分布列及E (Y ).解:(1)由A 表示大事“购买该商品的3位顾客中至少有1位接受1期付款”知,A 表示大事“购买该商品的3位顾客中无人接受1期付款”.P (A )=(1-0.4)3=0.216, P (A )=1-P (A )=1-0.216=0.784.(2)Y 的可能取值为200元,250元,300元.P (Y =200)=P (X =1)=0.4,P (Y =250)=P (X =2)+P (X =3)=0.2+0.2=0.4,P (Y =300)=1-P (Y =200)-P (Y =250)=1-0.4-0.4=0.2, Y 的分布列为E (Y )20.(本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)由题意得,ξ全部可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124, ξ的分布列为E (ξ)=0×124+40×14+80×12+120×4+160×24=80.21.(本小题满分12分)甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,接受分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x ,y 满足x ≥175,且y ≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值. 解:(1)乙厂生产的产品总数为5÷1498=35. (2)样品中优等品的频率为25,乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i )=C i 2C 2-i3C 25(i =0,1,2),ξ的分布列为ξ 0 1 2 P31035110均值E (ξ)=1×35+2×110=45.22.(本小题满分12分)某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L 1,L 2两条巷道通往作业区(如下图),L 1巷道有A 1,A 2,A 3三个易堵塞点,各点被堵塞的概率都是12;L 2巷道有B 1,B 2两个易堵塞点,被堵塞的概率分别为34,35.(1)求L 1巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若L 2巷道中堵塞点个数为X ,求X 的分布列及均值E (X ),并依据“平均堵塞点少的巷道是较好的抢险路线”的标准,请你挂念救援队选择一条抢险路线,并说明理由.解:(1)设“L 1巷道中,三个易堵塞点最多有一个被堵塞”为大事A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12.(2)依题意,X 的可能取值为0,1,2,P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110, P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920,所以随机变量X 的分布列为X 0 1 2 P110920920E (X )=0×110+1×920+2×920=2720.法一:设L 1巷道中堵塞点个数为Y ,则Y 的可能取值为0,1,2,3,P (Y =0)=C 03×⎝ ⎛⎭⎪⎫123=18,P (Y =1)=C 13×12×⎝ ⎛⎭⎪⎫122=38,P (Y =2)=C 23×⎝ ⎛⎭⎪⎫122×12=38, P (Y =3)=C 33×⎝ ⎛⎭⎪⎫123=18, 所以,随机变量Y 的分布列为Y0 1 2 3 P18383818E (Y )=0×18+1×38+2×38+3×18=2,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.法二:设L 1巷道中堵塞点个数为Y ,则随机变量Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以,E (Y )=3×12=32,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.。
高中数学人教A版选修2-3 章末综合测评1 Word版含答案.doc
章末综合测评(一) 计数原理(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·银川一中检测)C910+C810等于()A.45B.55C.65 D.以上都不对【解析】C910+C810=C110+C210=55,故选B.【答案】 B2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种【解析】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,故选D.【答案】 D3.在(x2+3x+2)5的展开式中x的系数为()A.140 B.240C.360 D.800【解析】由(x2+3x+2)5=(x+1)5(x+2)5,知(x+1)5的展开式中x的系数为C45,常数项为1,(x+2)5的展开式中x的系数为C45·24,常数项为25.因此原式中x 的系数为C45·25+C45·24=240.【答案】 B4.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种【解析】分两类.第一类:同一城市只有一个项目的有A34=24种;第二类:一个城市2个项目,另一个城市1个项目,有C23·C24·A22=36种,则共有36+24=60种.【答案】 D5.(2016·广州高二检测)5人站成一排,甲乙之间恰有一个人的站法有() A.18种B.24种C.36种D.48种【解析】首先把除甲乙之外的三人中随机抽出一人放在甲乙之间,有3种可能,甲乙之间的人选出后,甲乙的位置可以互换,故甲乙的位置有2种可能,最后,把甲乙及其中间的那个人看作一个整体,与剩下的两个人全排列是A33=6,所以3×2×6=36(种),故答案为C.【答案】 C6.关于(a-b)10的说法,错误的是()A.展开式中的二项式系数之和为1 024B.展开式中第6项的二项式系数最大C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小【解析】由二项式系数的性质知,二项式系数之和为210=1 024,故A正确;当n为偶数时,二项式系数最大的项是中间一项,故B正确,C错误;D也是正确的,因为展开式中第6项的系数是负数且其绝对值最大,所以是系数中最小的.【答案】 C7.图1(2016·潍坊高二检测)如图1,用五种不同的颜色给图中的A,B,C,D,E,F 六个不同的点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共()A.1 240种B.360种C.1 920种D.264种【解析】由于A和E或F可以同色,B和D或F可以同色,C和D或E可以同色,所以当五种颜色都选择时,选法有C13C12A55种;当五种颜色选择四种时,选法有C45C13×3×A44种;当五种颜色选择三种时,选法有C35×2×A33种,所以不同的涂色方法共C13C12A55+C45C13×3×A44+C35×2×A33=1 920.故选C.【答案】 C8.某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有() 【导学号:97270029】A.1 050种B.700种C.350种D.200种【解析】分两类:(1)从6台不同的品牌机中选3台和从5台不同的兼容机中选2台;(2)从6台不同的品牌机中选2台和从5台不同的兼容机中选3台.所以不同的选购方法有C36C25+C26C35=350种.【答案】 C9.设(1-3x)9=a0+a1x+a2x2+…+a9x9,则|a0|+|a1|+|a2|+…+|a9|的值为()A.29B.49C.39D.59【解析】由于a0,a2,a4,a6,a8为正,a1,a3,a5,a7,a9为负,故令x=-1,得(1+3)9=a0-a1+a2-a3+…+a8-a9=|a0|+|a1|+…+|a9|,故选B.【答案】 B10.(2016·山西大学附中月考)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”,在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48C.36 D.24【解析】在长方体中,对每一条棱都有两个面(侧面或底面)和一个对角面(对不在同一个面上的一对互相平行的棱的截面)与它平行,可构成3×12=36个“平行线面组”,对每一条面对角线,都有一个面与它平行,可组成12个“平行线面组”,所以“平行线面组”的个数为36+12=48,故选B.【答案】 B11.(2016·吉林一中高二期末)某同学忘记了自己的QQ号的后六位,但记得QQ号后六位是由一个1,一个2,两个5和两个8组成的,于是用这六个数随意排成一个六位数,输入电脑尝试,那么他找到自己的QQ号最多尝试次数为() A.96 B.180C.360 D.720【解析】由这6个数字组成的六位数个数为A66A22A22=180,即最多尝试次数为180.故选B.【答案】 B12.设(1+x)n=a0+a1x+…+a n x n,若a1+a2+…+a n=63,则展开式中系数最大项是()A.15x3B.20x3C.21x3D.35x3【解析】令x=0,得a0=1,再令x=1,得2n=64,所以n=6,故展开式中系数最大项是T4=C36x3=20x3.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.某科技小组有女同学2名、男同学x名,现从中选出3名去参加展览.若恰有1名女生入选时的不同选法有20种,则该科技小组中男生的人数为________.【解析】由题意得C12·C2x=20,解得x=5.【答案】 514.(1.05)6的计算结果精确到0.01的近似值是________.【解析】(1.05)6=(1+0.05)6=C06+C16×0.05+C26×0.052+C36×0.053+…=1+0.3+0.037 5+0.002 5+…≈1.34.【答案】 1.3415.(2015·山东高考)观察下列各式:C01=40;C03+C13=41;C 05+C 15+C 25=42;C 07+C 17+C 27+C 37=43;……照此规律,当n ∈N *时,C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=________.【解析】 观察每行等式的特点,每行等式的右端都是幂的形式,底数均为4,指数与等式左端最后一个组合数的上标相等,故有C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=4n -1.【答案】 4n -1 16.(2014·安徽高考)设a ≠0,n 是大于1的自然数,⎝ ⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图2所示,则a =________.图2【解析】 由题意知A 0(0,1),A 1(1,3),A 2(2,4).故a 0=1,a 1=3,a 2=4.由⎝ ⎛⎭⎪⎫1+x a n 的展开式的通项公式知T r +1=C r n ⎝ ⎛⎭⎪⎫x a r (r =0,1,2,…,n ).故C 1n a =3,C 2n a 2=4,解得a =3.【答案】 3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎩⎪⎨⎪⎧ C x n =C 2x n ,C x +1n =113C x -1n ,试求x ,n 的值. 【导学号:97270030】【解】 ∵C x n =C n -x n =C 2x n ,∴n -x =2x 或x =2x (舍去),∴n =3x .由C x +1n =113C x -1n ,得n !(x +1)!(n -x -1)!=113·n !(x -1)!(n -x +1)!, 整理得3(x -1)!(n -x +1)!=11(x +1)!(n -x -1)!,3(n -x +1)(n -x )=11(x +1)x .将n =3x 代入,整理得6(2x +1)=11(x +1),∴x =5,n =3x =15.18.(本小题满分12分)利用二项式定理证明:49n +16n -1(n ∈N *)能被16整除.【证明】 49n +16n -1=(48+1)n +16n -1=C 0n ·48n +C 1n ·48n -1+…+C n -1n ·48+C n n +16n -1=16(C 0n ·3×48n -1+C 1n ·3×48n -2+…+C n -1n ·3+n ). 所以49n +16n -1能被16整除.19.(本小题满分12分)一个口袋内有4个不同的红球,6个不同的白球,(1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?【解】 (1)将取出4个球分成三类情况:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 34C 16种;③取2个红球2个白球,有C 24C 26种,故有C 44+C 34C 16+C 24C 26=115种.(2)设取x 个红球,y 个白球,则⎩⎨⎧ x +y =5,0≤x ≤4,2x +y ≥7,0≤y ≤6,故⎩⎨⎧ x =2,y =3或⎩⎨⎧ x =3,y =2或⎩⎨⎧x =4,y =1. 因此,符合题意的取法共有C 24C 36+C 34C 26+C 44C 16=186种. 20.(本小题满分12分)设(2x -1)10=a 0+a 1x +a 2x 2+…+a 10x 10,求下列各式的值:(1)a0+a1+a2+…+a10;(2)a6.【解】(1)令x=1,得a0+a1+a2+…+a10=(2-1)10=1.(2)a6即为含x6项的系数,T r+1=C r10(2x)10-r·(-1)r=C r10(-1)r210-r·x10-r,所以当r=4时,T5=C410(-1)426x6=13 440x6,即a6=13 440.21.(本小题满分12分)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)排成前后两排,前排3人,后排4人;(2)全体站成一排,甲不站排头也不站排尾;(3)全体站成一排,女生必须站在一起;(4)全体站成一排,男生互不相邻.【解】(1)共有A77=5 040种方法.(2)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3 600种方法.(3)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有A44种方法,再将4名女生进行全排列,有A44种方法,故共有A44×A44=576种方法.(4)(插空法)男生不相邻,而女生不做要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A35种方法,故共有A44×A35=1 440种方法.22.(本小题满分12分)已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.(1)从A∪B中取出3个不同的元素组成三位数,则可以组成多少个?(2)从集合A中取出1个元素,从集合B中取出3个元素,可以组成多少个无重复数字且比4 000大的自然数?【解】由1<log2x<3,得2<x<8,又x∈N*,所以x为3,4,5,6,7,即A={3,4,5,6,7},所以A∪B={3,4,5,6,7,8}.(1)从A∪B中取出3个不同的元素,可以组成A36=120个三位数.(2)若从集合A中取元素3,则3不能作千位上的数字,有C35·C13·A33=180个满足题意的自然数;若不从集合A中取元素3,则有C14C34A44=384个满足题意的自然数.所以,满足题意的自然数的个数共有180+384=564.。
2019年高中数学人教A版选修2-3模块综合检测(三)
模块综合检测(三)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分)1.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是( )A .0.26B .0.08C .0.18D .0.72解析:选A P =0.8×0.1+0.2×0.9=0.26.2.某产品分甲、乙、丙三级,其中甲为正品,乙、丙均属于次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对成品抽查一件,恰好得正品的概率为( )A .0.99B .0.98C .0.97D .0.96解析:选D 记事件A ={甲级品},B ={乙级品},C ={丙级品}.事件A 、B 、C 彼此互斥,且A 与B ∪C 是对立事件.所以P (A )=1-P (B ∪C )=1-P (B )-P (C )=1-0.03-0.01=0.96.3.将A ,B ,C ,D ,E 五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A 、B 必须放入相邻的抽屉内,文件C 、D 也必须放在相邻的抽屉内,则所有不同的放法有( )A .192种B .144种C .288种D .240种解析:选D 本题为相邻排列问题,可先排相邻的文件,再作为一个整体与其他文件做排列,则有A 22A 22A 35=240种排法,所以选D.4.若随机变量X 的分布列如表:则E (X )=( ) A.118 B.19 C.209D.109解析:选C 首先2x +3x +7x +2x +3x +x =18x =1,所以x =118,因此E (X )=0×2x+1×3x +2×7x +3×2x +4×3x +5×x =40x =40×118=209,故选C. 5.若n =⎠⎛022x d x ,则⎝⎛⎭⎫x -12x n 的展开式中常数项为( ) A .12 B .-12C .32D .-32解析:选C n =⎠⎛022x d x =x 2|20=4-0=4,∴⎝⎛⎭⎫x -12x 4通项公式为T r +1=⎝⎛⎭⎫-12r C r 4x 4-2r ,∴4-2r =0⇒r =2,C 24⎝⎛⎭⎫-122=6×14=32,所以选C. 6.有10件产品,其中3件是次品,从中任取2件,若X 表示取到次品的个数,则E (X )等于( )A.35 B.815 C.1415D .1解析:选A 离散型随机变量X 服从N =10,M =3,n =2的超几何分布,∴E (X )=nMN =2×310=35. 7.已知随机变量X 的分布列为P (X =k )=15,k =2,4,6,8,10.则D (X )等于( )A .6B .8C .3D .4解析:选B E (X )=15×(2+4+6+8+10)=6.D (X )=15×(42+22+02+22+42)=8.8.已知a ,b ∈{0,1,2,…,9},若满足|a -b |≤1,则称a ,b “心有灵犀”.则a ,b “心有灵犀”的情形共有( )A .9种B .16种C .20种D .28种解析:选D 当a 为0时,b 只能取0,1两个数;当a 为9时,b 只能取8,9两个数,当a 为其他数时,b 都可以取3个数.故共有28种情形.9.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为( )A.432 B.288C.216 D.144解析:选B从2,4,6三个偶数中任意选出2个看作一个“整体”,方法有A23=6种,先排3个奇数:①若1排在左端,方法有A22种,则将“整体”和另一个偶数中选出一个插在1的左边,方法有C12种,另一个偶数插在3个奇数形成的3个空中,方法有C13种,根据分步乘法计数原理求得此时满足条件的六位数共有6×A22×C12×C13=72种;②若1排在右端,同理求得满足条件的六位数也有72种;③若1排在中间,方法有A22种,则将“整体”和另一个偶数插入3个奇数形成的4个空中,根据分步计数原理求得此时满足条件的六位数共有6×A22×A24=144种.综上,满足条件的六位数共有72+72+144=288种,故选B.10.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐不能比较解析:选B∵D(X甲)>D(X乙),∴乙种水稻比甲种水稻整齐.11.如图,用4),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有()A.72 B.96C.108 D.120解析:选B颜色都用上时,必定有两块同色,在图中,同色的可能是1,3或1,5或2,5或3,5.对每种情况涂色有A44=24种,所以一共有96种.12.甲、乙、丙、丁4位同学各自对A,B两变量做回归分析,分别得到散点图与残差平方和∑i =1n(y i -y ^i )2,如下表:A .甲B .乙C .丙D .丁解析:选D 根据线性相关知识知,散点图中各样本点条状分布越均匀,同时保持残差平方和越小(对于已经获取的样本数据,R 2表达式中∑i =1n(y i -y )2为确定的数,则残差平方和越小,R 2越大),由回归分析建立的线性回归模型的拟合效果就越好,由试验结果知丁要好些.二、填空题(共4小题,每小题5分,共20分)13.某段铁路所有车站共发行132种普通车票,那么这段铁路共有车站数是________. 解析:设车站数为n ,则A 2n =132,即n (n -1)=132, 所以n =12(n =-11舍去). 答案:1214.若(3x -1)2 015=a 0+a 1x +…+a 2 015x 2 015(x ∈R ),记S 2 015=∑i =12 015 a i3i ,则S 2 015的值为________.解析:因为(3x -1)2 015=-(1-3x )2 015=a 0+a 1x +a 2x 2+…+a 2 015x 2 015, 所以a i =-C i 2 0153i (-1)i ,S 2 015=∑i =12 015 a i 3i =∑i =12 015[-C i 2 015(-1)i ]=-(-C 12 015+C 22 015-C 32 015+…-C 2 0152 015),又因为C 12 015+C 32 015+C 52 015+…=C 02 015+C 22 015+C 42 015+…,且C 02 015=1,所以S 2 015=1.答案:115.已知随机变量x ~N (2,σ2),若P (x <a )=0.32,则P (a ≤x <4-a )=________.解析:由正态分布图象的对称性可得:P (a ≤x <4-a )=1-2P (x <a )=0.36. 答案:0.3616.如果根据性别与是否爱好运动的列联表得到K 2≈3.852>3.841,所以判断性别与运动有关,那么这种判断犯错的可能性不超过________.解析:因为P (K 2≥3.841)≈0.05,故“判断性别与运动有关”出错的可能性为5%. 答案:5%三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)袋中有7个球,其中3个黑球、4个红球,从袋中任取3个球,求取出的红球数X 的分布列,并求至少有一个红球的概率.解:X =0,1,2,3,X =0表示取出的三个球全是黑球,P (X =0)=C 33C 37=135.同理P (X =1)=C 14C 23C 37=1235,P (X =2)=C 24C 13C 37=1835,P (X =3)=C 34C 37=435.∴X 的分布列为:至少有一个红球的概率为P (X ≥1)=1-135=3435.18.(本小题满分12分)(1)若(1-2x )2 015=a 0+a 1x +a 2x 2+…+a 2 015x 2 015(x ∈R),求(a 0+a 1)+(a 0+a 2)+…+(a 0+a 2 015)的值;(2)如果(1-2x )8=a 0+a 1x +a 2x 2+…+a 8x 8, 求|a 0|+|a 1|+|a 2|+…+|a 8|的值. 解:(1)令x =0,得a 0=1,再令x =1,得a 0+a 1+a 2+…+a 2 015=-1, 那么a 1+a 2+…+a 2 015=-2,(a 0+a 1)+(a 0+a 2)+…+(a 0+a 2 015)=2 015-2=2 013.(2)因为展开式的通项为T r +1=(-2)r C r 8x r,r ∈{0,1,2,3,…,8},所以当r 为偶数时,系数为正;当r为奇数时,系数为负,故有|a0|+|a1|+|a2|+…+|a8|=a0-a1+a2-a3+a4-…+a8.令展开式中的x=-1,即可得到(1+2)8=a0-a1+a2-a3+a4-…+a8=38,即|a0|+|a1|+|a2|+…+|a8|=38.19.(本小题满分12分)有6个球,其中3个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?解:分三类:(1)若取1个黑球,和另三个球,排4个位置,有A44=24种;(2)若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,自动进入,不需要排列,即有C23A24=36种;(3)若取3个黑球,从另三个球中选1个排4个位置,3个黑球是相同的,自动进入,不需要排列,即有C13A14=12种.综上,共有24+36+12=72(种).20.(本小题满分12分)市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,若用事件A、A分别表示甲、乙两厂的产品,用B表示产品为合格品.(1)试写出有关事件的概率;(2)求从市场上买到一个灯泡是甲厂生产的合格灯泡的概率.解:(1)依题意,P(A)=70%,P(A)=30%,P(B|A)=95%,P(B|A)=80%.进一步可得P(B|A)=5%,P(B|A)=20%.(2)要计算从市场上买到的灯泡既是甲厂生产的(事件A发生),又是合格的(事件B发生)的概率,也就是求A与B同时发生的概率,有P(AB)=P(A)·P(B|A)=0.7×0.95=0.665.21.(本小题满分12分)有一种密码,明文是由三个字符组成,密码是由明文对应的五个数字组成,编码规则如下表:明文由表中每一排取一个字符组成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,对应的密码由明文对应的数字按相同的次序排成一组组成.(1)求P (ξ=2);(2)求随机变量ξ的分布列和它的均值.解:(1)密码中不同数字的个数为2的事件为密码中只有两个数字,注意到密码的第1,2列分别总有1,2,即只能取表格第1,2列中的数字作为密码.∴P (ξ=2)=2343=18.(2)由题意可知,ξ的取值为2,3,4三种情形.若ξ=3,注意表格的第一排总含有数字1,第二排总含有数字2,则密码中只可能取数字1,2,3或1,2,4.∴P (ξ=3)=2(22A 13+2C 23+1)43=1932. 若ξ=4,则P (ξ=4)=A 13A 22+A 23A 2243=932(或用1-P (ξ=2)-P (ξ=3)求得). ∴ξ的分布列为:∴E (ξ)=2×18+3×1932+4×932=10132.22.(本小题满分12分)“开门大吉”是某电视台推出的游戏益智节目.选手面对1-4号4扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.正确回答每一扇门后,选手可自由选择带着奖金离开比赛,还可继续挑战后面的门以获得更多奖金(奖金金额累加).但是一旦回答错误,奖金将清零,选手也会离开比赛.在一次场外调查中,发现参加比赛的选手多数分为两个年龄段:20~30;30~40(单位:岁),其中猜对歌曲名称与否的人数如图所示.每扇门对应的梦想基金:(单位:元)(1)写出2×2明你的理由.(下面的临界值表供参考)(2)若某选手能正确回答第一、二、三、四扇门的概率分别为45,34,23,13,正确回答一个问题后,选择继续回答下一个问题的概率是12,且各个问题回答正确与否互不影响.设该选手所获梦想基金总数为ξ,求ξ的分布列及均值.参考公式其中K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d解:(1)根据所给的二维条形图得到列联表,根据列联表所给的数据代入观测值的公式得到k 2=120×(10×70-10×30)220×100×40×80=3,∵3>2.706,∴有1-0.10=90%的把握认为猜对歌曲名称与否与年龄有关. (2)ξ的所有可能取值分别为:0,1 000,3 000,6 000,11 000. 则P (ξ=1 000)=45×12=25,P (ξ=3 000)=45×12×34×12=320,P (ξ=6 000)=45×12×34×12×23×12=120,P (ξ=11 000)=45×12×34×12×23×12×13=160,P (ξ=0)=1-25-320-120-160=2360.ξ的分布列为2360+1 000×25+3 000×320+6 000×120+11 000×160≈1 333.33.ξ的均值E(ξ)=0×。
高中数学人教A版选修2-3检测:第一章1.3-1.3.1二项式定理 Word版含解析
第一章计数原理1.3 二项式定理1.3.1 二项式定理A级基础巩固一、选择题1.化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是()A.(2x+2)5B.2x5C.(2x-1)5D.32x5解析:原式=[(2x+1)-1]5=(2x)5=32x5.答案:D2.在⎝⎛⎭⎪⎪⎫x+13x24的展开式中,x的幂指数是整数的项共有() A.3项B.4项C.5项D.6项解析:T r+1=C r24x24-r2·x-r3=Cr24·x12-56r,则r分别取0,6,12,18,24时,x的幂指数为整数,所以x的幂指数有5项是整数项.答案:C3.若⎝⎛⎭⎪⎪⎫x-123xn的展开式中第四项为常数项,则n=() A.4 B.5C .6D .7解析:由二项展开式可得T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =(-1)r 2-r C rn x n -r 2·x -r 3,从而T 4=T 3+1=(-1)32-3C 3n x n -52,由题意可知n -52=0,n =5.答案:B4.在(1-x 3)(1+x )10的展开式中,x 5的系数是( ) A .-297 B .-252 C .297D .207解析:(1-x 3)(1+x )10=(1+x )10-x 3(x +1)10展开式中含x 5的项的系数为:C 510-C 210=207.答案:D5.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =5,n =5 B .x =5,n =4 C .x =4,n =4D .x =4,n =3解析:C 1n x +C 2n x 2+…+C n n x n =(1+x )n -1,检验得B 正确.答案:B 二、填空题6.(2016·北京卷)在(1-2x )6的展开式中,x 2的系数为________(用数字作答).解析:T r +1=C r 6·16-r ·(-2x )r =(-2)r C r 6·x r ,令r =2, 得T 3=(-2)2C 26x 2=60x 2.故x 2的系数为60.答案:607.⎝⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝ ⎛⎭⎪⎪⎫-13x 3=-160x . 答案:-160x8.如果⎝⎛⎭⎪⎫3x 2+1x n 的展开式中,x 2项为第三项,则自然数n =________.解析:T r +1=C rn (3x 2)n -r⎝ ⎛⎭⎪⎫1x r =C r n x2n -5r3,由题意知r =2时,2n -5r3=2,所以n =8. 答案:8 三、解答题9.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求:(1)第3项的二项式系数及系数; (2)含x 2的项及项数.解:(1)第3项的二项式系数为C 26=15,又T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24C 26x ,所以第3项的系数为24C 26=240.(2)T k +1=C k n (2x )6-k ⎝⎛⎭⎪⎫-1x k=(-1)k 26-k C r 6x 3-k , 令3-k =2,得k =1.所以含x 2的项为第2项,且T 2=-192x 2.10.在二项式⎝ ⎛⎭⎪⎫3x -123x n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项. 解:T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =⎝ ⎛⎭⎪⎫-12r C r n x 13n -23r . 由前三项系数的绝对值成等差数列, 得C 0n +⎝⎛⎭⎪⎫-122C 2n =2×12C 1n , 解得n =8或n =1(舍去). (1)展开式的第四项为:T 4=⎝ ⎛⎭⎪⎫-123C 38x 23=-73x 2.(2)当83-23r =0,即r =4时,常数项为⎝ ⎛⎭⎪⎫-124C 48=358.B 级 能力提升1.如果⎝ ⎛⎭⎪⎫3x 2-2x 3n的展开式中含有非零常数项,则正整数n 的最小值为( )A .3B .5C .6D .10解析:⎝ ⎛⎭⎪⎫3x 2-2x 3n展开式的通项表达式为C r n (3x 2)n -r ·⎝ ⎛⎭⎪⎫-2x 3r=C r n 3n -r(-2)r x 2n -5r ,若C r n 3n -r(-2)r x 2n -5r 为非零常数项,必有2n -5r =0,得n =52r ,所以正整数n 的最小值为5.答案:B2.设二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中,x 3的系数为A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4,由B =4A 知,C 26(-a )2=C 46(-a )4,解得a =2(舍去a =-2). 答案:23.如果f (x )=(1+x )m +(1+x )n (m ,n ∈N *)中,x 项的系数为19,求f (x )中x 2项系数的最小值.解:x 项的系数为C 1m +C 1n =19,即m +n =19,当m ,n 都不为1时,x 2项的系数为C 2m +C 2n =m (m -1)2+(19-m )(18-m )2=m 2-19m +171=⎝ ⎛⎭⎪⎫m -1922+171-1924,因为m ∈N *,所以当m =9或10时,x 2项的系数最小,为81.当m 为1或n 为1时,x 2项的系数为C 218=153>81,所以f (x )中x 2项系数的最小值为81.。
2017-2018学年高中数学人教A版选修2-3:模块综合检测含解析
模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的有()①回归方程适用于一切样本和总体.②回归方程一般都有时间性.③样本取值的范围会影响回归方程的适用范围.④回归方程得到的预报值是预报变量的精确值.A.①②B.②③C.③④D.①③解析:选B 回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B.2.某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有( )A.24种B.52种C.10种D.7种解析:选A 因为每层均有2个楼梯,所以每层有两种不同的走法,由分步计数原理可知:从一楼至五楼共有24种不同走法.3.设随机变量X服从二项分布X~B(n,p),则D X2E X2等于( )A.p2B.(1-p)2C.1-p D.以上都不对解析:选B 因为X~B(n,p),(D(X))2=[np(1-p)]2,(E(X))2=(np)2,所以D X2E X2=错误!=(1-p)2.故选B.4.若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是( )A.1 B.-1C.0 D.2解析:选A 令x=1,得a0+a1+…+a4=(2+错误!)4,令x=-1,a0-a1+a2-a3+a4=(-2+错误!)4.所以(a0+a2+a4)2-(a1+a3)2=(2+3)4(-2+3)4=1.5.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②在刻画回归模型的拟合效果时,R2的值越大,说明拟合的效果越好;③设随机变量ξ服从正态分布N(4,22),则P(ξ〉4)=错误!;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的犯错误的概率越小.其中正确的说法是( )A.①④B.②③C.①③D.②④解析:选B ①中各小长方形的面积等于相应各组的频率;②正确,相关指数R2越大,拟合效果越好,R2越小,拟合效果越差;③随机变量ξ服从正态分布N(4,22),正态曲线对称轴为x=4,所以P(ξ〉4)=错误!;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则说明“X与Y有关系”的犯错误的概率越大.6.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率( )A.(2,4]B.(0,2]C.[-2,0) D.(-4,4]解析:选C 此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.7.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为()A.0.504 B.0.994C.0.496 D.0.06解析:选B A、B、C三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知P=1-(1-0.9)×(1-0.8)(1-0.7)=1-0.1×0.2×0.3=0.994.8.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则D(ξ)等于( )A.0.2 B.0.8C.0.196 D.0.804解析:选C 因为由题意知该病的发病率为0.02,且每次试验结果都是相互独立的,所以ξ~B(10,0.02),所以由二项分布的方差公式得到D(ξ)=10×0.02×0.98=0.196.故选C.9.学校小卖部为了研究气温对饮料销售的影响,经过统计,得到一个卖出饮料数与当天气温的对比表:摄氏温度-1381217饮料瓶数3405272122根据上表可得回归方程错误!=错误!x+错误!中的错误!为6,据此模型预测气温为30 ℃时销售饮料瓶数为()A.141 B.191C.211 D.241解析:选B 由题意,错误!=错误!=7.8,错误!=错误!=57.8,因为回归方程错误!=错误!x+错误!中的错误!为6,所以57.8=6×7.8+错误!,所以错误!=11,所以错误!=6x+11,所以x=30时,错误!=6×30+11=191,故选B.10.如图,用4种不同颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有() A.72 B.96解析:选B 颜色都用上时,必定有两块同色,在图中,同色的可能是1,3或1,5或2,5或3,5.对每种情况涂色有A错误!=24种,所以一共有96种.11.假设每一架飞机的引擎在飞行中出现故障的概率为1-p,且各引擎是否有故障是独立的,已知4引擎飞机中至少有3个引擎正常运行,飞机就可成功飞行;2个引擎飞机要2个引擎全部正常运行,飞机才可成功飞行.要使4个引擎飞机更安全,则p的取值范围是( )A.错误!B.错误!C.错误!D.错误!解析:选B 4个引擎飞机成功飞行的概率为C3,4p3(1-p)+p4,2个引擎飞机成功飞行的概率为p2,要使C3,4p3(1-p)+p4>p2,必有错误!<p<1.12.(全国丙卷)定义“规范01数列"{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个解析:选C 由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C错误!=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C错误!=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.(四川高考)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是__________.解析:法一:由题意可知每次试验不成功的概率为错误!,成功的概率为34,在2次试验中成功次数X的可能取值为0,1,2,则P(X=0)=错误!,P(X=1)=C错误!×错误!×错误!=错误!,P(X=2)=错误!2=错误!.所以在2次试验中成功次数X的分布列为则在2E(X)=0×116+1×错误!+2×错误!=错误!.法二:此试验满足二项分布,其中p=错误!,所以在2次试验中成功次数X的均值为E(X)=np=2×错误!=错误!.答案:错误!14.为了调查患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如表根据列联表数据,求得K2≈__________.解析:由计算公式K2=错误!,得K2≈7.469.答案:7.46915.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.解析:十个数中任取七个不同的数共有C错误!种情况,七个数的中位数为6,那么6只有处在中间位置,有C36种情况,于是所求概率P=错误!=错误!.答案:错误!16.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14.其中正确结论的序号是________(写出所有正确结论的序号).解析:①因为各次射击是否击中目标相互之间没有影响,所以第3次击中目标的概率是0.9,正确;②恰好击中目标3次的概率应为C34×0.93×0.1;③4次射击都未击中的概率为0.14;所以至少击中目标1次的概率为1-0.14.答案:①③三、简答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知(a2+1)n展开式中的各项系数之和等于错误!5的展开式的常数项,而(a2+1)n的展开式的系数最大的项等于54,求a的值.解:错误!5的展开式的通项为T r+1=C错误!错误!5-r错误!r=错误!5-r C错误!x错误!,令20-5r=0,得r=4,故常数项T5=C4,5×错误!=16.又(a2+1)n展开式的各项系数之和等于2n,由题意知2n=16,得n=4.由二项式系数的性质知,(a2+1)n展开式中系数最大的项是中间项T3,故有C错误!a4=54,解得a=±错误!.18.(本小题满分12分)(全国甲卷)某险种的基本保费为a(单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=1-(0.30+0.15)=0.55.(2)设B表示事件“一续保人本年度的保费比基本保费高出60%",则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P ABP A=错误!=错误!=错误!.因此所求概率为错误!.(3)记续保人本年度的保费为X,则X的分布列为X 0.85aa1.25a1.5a1.75a2aP 0.300.150.200.200.100.05EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.19.(本小题满分12分)退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,按1%的比例从年龄在20~80岁(含20岁和80岁)之间的市民中随机抽取600人进行调查,并将年龄按[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]进行分组,绘制成频率分布直方图,如图所示.规定年龄在[20,40)岁的人为“青年人”,[40,60)岁的人为“中年人",[60,80]岁的人为“老年人”.(1)根据频率分布直方图估计该城市60岁以上(含60岁)的人数,若每一组中的数据用该组区间的中点值来代表,试估算所调查的600人的平均年龄;(2)将上述人口分布的频率视为该城市年龄在20~80岁的人口分布的概率,从该城市年龄在20~80岁的市民中随机抽取3人,记抽到“老年人"的人数为X,求随机变量X的分布列和数学期望.解:(1)由频率分布直方图可知60岁以上(含60岁)的频率为(0.01+0.01)×10=0.2,故样本中60岁以上(含60岁)的人数为600×0.2=120,故该城市60岁以上(含60岁)的人数为120÷1%=12 000.所调查的600人的平均年龄为25×0.1+35×0.2+45×0.3+55×0.2+65×0.1+75×0.1=48(岁).(2)由频率分布直方图知,“老年人”所占的频率为错误!,所以从该城市年龄在20~80岁的市民中随机抽取1人,抽到“老年人”的概率为错误!,分析可知X的所有可能取值为0,1,2,3,P(X=0)=C错误!错误!0错误!3=错误!,P(X=1)=C13错误!1错误!2=错误!,P(X=2)=C错误!错误!2错误!1=错误!,P(X=3)=C错误!错误!3错误!0=错误!.所以X的分布列为EX=0×错误!错误!错误!错误!错误!.错误!20.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量y i(i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.错误!错误!错误!错误!(x i-错误!)2错误!(w i-错误!)2错误!(x i-错误!)(y i-y)错误!(w i-错误!)(y i-错误!)46.65636.8289.81.6 1 469108.8w i错误!错误!错误!错误!i(1)根据散点图判断,y=a+bx与y=c+d x哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为错误!=错误!,错误!=错误!-错误!错误!.解:(1)由散点图可以判断,y=c+d错误!适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.由于错误!=错误!=错误!=68,错误!=错误!-错误!错误!=563-68×6.8=100.6,所以y关于w的线性回归方程错误!=100.6+68w,因此y关于x的回归方程为错误!=100.6+68错误!.(3)①由(2)知,当x=49时,年销售量y的预报值错误!=100.6+68错误!=576.6,年利润z的预报值错误!=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z的预报值z,^=0.2(100.6+68错误!)-x=-x+13.6错误!+20.12.所以当错误!=错误!=6.8,即x=46.24时,错误!取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.21.(本小题满分12分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可吸入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某试点城市环保局从该市市区2015年全年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)(1)从这15天的PM2.5日均监测数据中,随机抽出三天,求恰有一天空气质量达到一级的概率.(2)从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及数学期望.(3)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.解:(1)记“从15天的PM2.5日均监测数据中,随机抽出三天,恰有一天空气质量达到一级”为事件A,P(A)=错误!=错误!.(2)依据条件,ξ服从超几何分布:ξ的可能值为0,1,2,3,其分布列为:P(ξ=k)=错误!(k=0,1,2,3).则E(X)=0×错误!+1×错误!+2×错误!+3×错误!=1,(3)依题意可知,一年中每天空气质量达到一级或二级的概率为P=错误!=错误!,一年中空气质量达到一级或二级的天数为η,则η~B错误!,所以E(η)=360×错误!=240,所以一年中平均有240天的空气质量达到一级或二级.22.(本小题满分12分)某高校共有学生15 000人,其中男生10 500人,女生4 500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断在犯错误的概率不超过0.05的前提下认为“该校学生的每周平均体育运动时间与性别有关”.P(K 2≥k)0.100.050.010 0.005k 02.706 3.841 6.635 7.879附:K 2=错误!解:(1)由分层抽样得收集的女生样本数据为300×4 50015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得2×(0.150+0.125+0.075+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300名学生中有300×0.75=225人的每周平均体育运动时间超过4个小时.75人的每周平均体育运动时间不超过4个小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别的列联表如下:平均体育运动时间与性别列联表结合列联表可算得K2的观测值k=错误!≈4.762>3.841.在犯错误的概率不超过0.05的前提下认为“该校学生的每周学必求其心得,业必贵于专精平均体育运动时间与性别有关”.。
【精品习题】高中数学人教A版选修2-3 模块综合测评2 Word版含答案
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种B.18种C.12种D.6种【解析】种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选B.【答案】 B2.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是( ) 【导学号:97270068】A.6和2.4 B.2和2.4C.2和5.6 D.6和5.6【解析】由已知随机变量X+Y=8,所以有Y=8-X.因此,求得E(Y)=8-E(X)=8-10×0.6=2,D(Y)=(-1)2D(X)=10×0.6×0.4=2.4.【答案】 B3.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c-2),则c的值是( )A.1 B.2 C.3 D.4【解析】随机变量ξ服从正态分布N(2,9),∴曲线关于x=2对称,∵P(ξ>c)=P(ξ<c-2),∴c+c-22=2,∴c=3.故选C.【答案】 C4.设A =37+C 27·35+C 47·33+C 67·3,B =C 17·36+C 37·34+C 57·32+1,则A -B的值为( )A .128B .129C .47D .0【解析】 A -B =37-C 17·36+C 27·35-C 37·34+C 47·33-C 57·32+C 67·3-1=(3-1)7=27=128,故选A.【答案】 A5.若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120【解析】 ∵C 0n +C 1n +…+C n n =2n=64,∴n =6. T r +1=C r 6x 6-r x -r =C r 6x6-2r ,令6-2r =0,∴r =3, 常数项T 4=C 36=20,故选B. 【答案】 B6.已知某离散型随机变量X 服从的分布列如下,则随机变量X 的数学期望E (X )等于( )A.19B.29C.13D.23【解析】 由题意可知m +2m =1,所以m =13,所以E (X )=0×13+1×23=23.【答案】 D7.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66 C .C 28A 26D .C 28A 25【解析】 从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C 28A 26,故选C.【答案】 C8.一个电路如图1所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )图1A.164B.5564C.18D.116【解析】 开关C 断开的概率为12,开关D 断开的概率为12,开关A ,B 至少一个断开的概率为1-12×12=34,开关E ,F 至少一个断开的概率为1-12×12=34,故灯不亮的概率为12×12×34×34=964,故灯亮的概率为1-964=5564,故选B.【答案】 B9.利用下列盈利表中的数据进行决策,应选择的方案是( )A.A 1234【解析】 利用方案A 1,期望为50×0.25+65×0.30+26×0.45=43.7; 利用方案A 2,期望为70×0.25+26×0.30+16×0.45=32.5; 利用方案A 3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A 4,期望为98×0.25+82×0.30-10×0.45=44.6; 因为A 3的期望最大,所以应选择的方案是A 3,故选C. 【答案】 C10.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A在一次试验中发生的概率的取值范围是( ) A.[0.4,1) B.(0,0.6]C.(0,0.4] D.[0.6,1)【解析】设事件A发生一次的概率为p,则事件A的概率可以构成二项分布,根据独立重复试验的概率公式可得C14p(1-p)3≤C24p2(1-p)2,即可得4(1-p)≤6p,p≥0.4.又0<p<1,故0.4≤p<1.【答案】 A11.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X<2)等于( )A.715B.815C.1415D.1【解析】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=C27C210=715,P(X=1)=C17·C13C210=715,P(X=2)=C2 3C2 10=115,于是P(X<2)=P(X=0)+P(X=1)=715+715=1415.【答案】 C12.已知0<a<1,方程a|x|=|log a x|的实根个数为n,且(x+1)n+(x+1)11=a+a1(x+2)+a2(x+2)2+…+a10(x+2)10+a11(x+2)11,则a1等于( ) A.-10 B.9 C.11 D.-12【解析】作出y=a|x|(0<a<1)与y=|log a x|的大致图象如图所示,所以n=2.故(x+1)n +(x+1)11=(x+2-1)2+(x+2-1)11,所以a1=-2+C1011=-2+11=9.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a0+a2+a4)·(a1+a3+a 5)的值等于________.【解析】 令x =1,得a 0+a 1+a 2+a 3+a 4+a 5=0,① 再令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5=25=32,② ①+②得a 0+a 2+a 4=16, ①-②得a 1+a 3+a 5=-16,故(a 0+a 2+a 4)·(a 1+a 3+a 5)的值等于-256. 【答案】 -25614.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是________. 【导学号:97270069】【解析】 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共A 25=20种排法,因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.【答案】 1815.某市工商局于2016年3月份,对全市流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的X 饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶X 饮料,并限定每人喝2瓶.则甲喝2瓶合格的X 饮料的概率是________.【解析】 “第一瓶X 饮料合格”为事件A 1,“第二瓶X 饮料合格”为事件A 2,P (A 1)=P (A 2)=0.8,A 1与A 2是相互独立事件,则“甲喝2瓶X 饮料”都合格就是事件A 1,A 2同时发生,根据相互独立事件的概率乘法公式得:P (A 1A 2)=P (A 1)·P (A 2)=0.8×0.8=0.64. 【答案】 0.6416.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.【解析】 根据题意,每个部门都有3种情况可选,则4个部门选择3个景区有34=81种不同的选法,记“3个景区都有部门选择”为事件A ,如果3个景区都有部门选择,则某一个景区必须有2个部门选择,其余2个景区各有1个部门选择,分2步分析:(1)从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法;(2)每组选择不同的景区,共有A 33=6种选法.所以3个景区都有部门选择可能出现的结果数为6×6=36种.则P (A )=3681=49. 【答案】49三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2016·河南周口)在二项式⎝⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.【解】 ∵二项展开式的前三项的系数分别是1,n 2,18n (n -1),∴2·n2=1+18n (n -1), 解得n =8或n =1(不合题意,舍去), ∴T k +1=C k 8x 8-k 2⎝ ⎛⎭⎪⎪⎫124x k =C k 82-k x 4-34k , 当4-34k ∈Z 时,T k +1为有理项.∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求. 故有理项有3项,分别是T 1=x 4,T 5=358x ,T 9=1256x -2. ∵n =8,∴展开式中共9项.中间一项即第5项的二项式系数最大,则为T 5=358x . 18.(本小题满分12分)某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). 【解】 (1)ξ的所有可能取值为0,1,2,依题意,得 P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15.∴ξ的分布列为(2)则P (C )=C 34C 36=420=15,∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12,P (A )=C 25C 36=12,P (AB )=C 14C 36=15,P (B |A )=P AB P A =25.19.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i=20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b ^x +a ^中,b =∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y -b ^ x ,其中x ,y 为样本平均值.【解】 (1)由题意知n =10,x =1n ∑i =1nx i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^ x =2-0.3×8=-0.4.故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).20.(本小题满分12分)(2015·北京高考)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a .假设所有病人的康复时间相互独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a =25,求甲的康复时间比乙的康复时间长的概率;(3)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)【解】 设事件A i 为“甲是A 组的第i 个人”, 事件B i 为“乙是B 组的第i 个人”,i =1,2,…,7. 由题意知P (A i )=P (B i )=17,i =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6, 因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049.(3)a =11或a =18.21.(本小题满分12分)(2016·广州综合测试)甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲、丙两人同时不被聘用的概率是625,乙、丙两人同时被聘用的概率是310,且三人各自能否被聘用相互独立. (1)求乙、丙两人各自能被聘用的概率;(2)设ξ表示甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望). 【导学号:97270070】【解】 记甲、乙、丙各自能被聘用的事件分别为A 1,A 2,A 3,由已知A 1,A 2,A 3相互独立,且满足⎩⎪⎨⎪⎧P A 125,[1-PA 1][1-P A 3]=625,P A 2P A 3310,解得P (A 2)=12,P (A 3)=35.所以乙、丙两人各自能被聘用的概率分别为12,35.(2)ξ的可能取值为1,3.因为P(ξ=3)=P(A1A2A3)+P(A1A2A3)=P(A1)P(A2)P(A3)+ [1-P(A1)][1-P(A2)][1-P(A3)]=25×12×35+35×12×25=625,所以P(ξ=1)=1-P(ξ=3)=1-625=1925,所以ξ的分布列为E(ξ)=1×1925+3×625=25.22.(本小题满分12分)(2016·辽宁抚顺月考)有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为2 7 .(1)请完成上面的绩与班级有关”;(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).附:K2=n ad-bc2a +b c+d a+c b+d,【解】 (1)k ≈12.2(2)ξ~B ⎝ ⎛⎭⎪⎫3,27,且P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫27k ·⎝ ⎛⎭⎪⎫573-k(k =0,1,2,3),ξ的分布列为E (ξ)=0×125343+1×343+2×343+3×343=7.。
数学人教A版选修2-3作业与测评学期综合测评(一)Word版含解析
选修2-3学期综合测评(一)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的有()①回归方程适用于一切样本和总体.②回归方程一般都有时间性.③样本取值的范围会影响回归方程的适用范围.④回归方程得到的预报值是预报变量的精确值.A.①②B.②③C.③④D.①③答案 B解析回归方程只适用于所研究样本的总体,所以①不正确;而“回归方程一般都有时间性”正确,③也正确;而回归方程得到的预报值是预报变量的近似值,故选B.2.6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为() A.1或3 B.1或4 C.2或3 D.2或4答案 D解析任意两个同学之间交换纪念品共要交换C26=15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学有4人;如果涉及同一个人,则收到4份纪念品的同学有2人,答案为D.3.(2x-1)5的展开式中第3项的系数是()A.-20 2 B.20 C.-20 D.20 2答案 D解析T r=C r5·(2x)5-r·(-1)r,令r=2,则T3=C25·(2x)3·(-1)2+1=10×22x 3,即第3项系数为20 2.4.设随机变量X 服从二项分布X ~B (n ,p ),则(D (X ))2(E (X ))2等于( )A .p 2B .(1-p )2C .1-pD .以上都不对答案 B解析 因为X ~B (n ,p ),(D (X ))2=[np (1-p )]2,(E (X ))2=(np )2,所以(D (X ))2(E (X ))2=[np (1-p )]2(np )2=(1-p )2.故选B. 5.若随机变量ξ~N (-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4] 答案 C解析 此正态曲线关于直线x =-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.6.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 1 答案 C解析 对于变量Y 与X 而言,Y 随X 的增大而增大,故Y 与X 正相关,即r 1>0;对于变量V 与U 而言,V 随U 的增大而减小,故V 与U 负相关,即r 2<0,所以有r 2<0<r 1.7.如图所示,A ,B ,C 表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么此系统的可靠性为( )A .0.504B .0.994C .0.496D .0.06答案 B解析 A 、B 、C 三个开关相互独立,三个中只要至少有一个正常工作即可,由间接法知P =1-(1-0.9)×(1-0.8)(1-0.7)=1-0.1×0.2×0.3=0.994.8.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为0.02.设发病的牛的头数为ξ,则D (ξ)等于( )A .0.2B .0.8C .0.196D .0.804 答案 C解析 因为由题意知该病的发病率为0.02,且每次试验结果都是相互独立的,所以ξ~B (10,0.02),所以由二项分布的方差公式得到D (ξ)=10×0.02×0.98=0.196.故选C.9.将三颗质地均匀的骰子各掷一次,设事件A =“三个点数都不相同”,B =“至少出现一个6点”,则概率P (A |B )等于( )A.6091B.12C.518D.91216 答案 A解析 P (B )=1-P (B -)=1-5×5×56×6×6=91216,P (AB )=C 13×5×46×6×6=60216,∴P(A|B)=P(AB)P(B)=6091.10.甲、乙两工人在同样的条件下生产某产品,日产量相等,每天出废品的情况如下表所列:则有结论()A.甲的产品质量比乙的产品质量好一些B.乙的产品质量比甲的产品质量好一些C.两人的产品质量一样好D.无法判断谁的质量好一些答案 B解析E(X甲)=0×0.4+1×0.3+2×0.2+3×0.1=1,E(X乙)=0×0.3+1×0.5+2×0.2+3×0=0.9,∵E(X甲)>E(X乙),故甲每天出废品的数量比乙要多,∴乙的产品质量比甲的产品质量好一些.11.有一组观测数据(x1,y1),(x2,y2),…,(x12,y12)得x-=1.542,y-=2.8475,∑i=112x2i=29.808,∑i=112y2i=99.208,∑i=112x i y i=54.243,则回归直线方程为()A.y^=1.218x-0.969B.y^=-1.218x+0.969C.y^=0.969x+1.218D.y^=1.218x+0.969答案 D解析∵x-=1.542,y-=2.8475利用公式可得b^=∑i =112x i y i -12x -y -∑i =112x 2i -12x-2=1.218,又a ^=y --b ^x -=0.969∴回归直线方程为y ^=1.218x +0.969.12.两个分类变量X 和Y ,值域分别为{x 1,x 2}和{y 1,y 2},其样本频数分别是a =10,b =21,c +d =35.若X 与Y 有关系的可信程度不小于97.5%,则c 等于 ( )A .3B .4C .5D .6 附:答案 A解析 列2×2列联表如下:故K 2的观测值k =66×[10(35-c )-21c ]231×35×(10+c )(56-c )≥5.024. 把选项A ,B ,C ,D 代入验证可知选A.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设⎝ ⎛⎭⎪⎫x -2x 6的展开式中x 3的系数为A ,二项式系数为B ,则A B 等于________.答案 4 解析T k +1=C k 6x6-k ⎝⎛⎭⎪⎫-2x k =C k 6(-2)k ·x 6-3k 2,令6-3k 2=3,即k =2,所以T 3=C 26(-2)2x 3=60x 3,所以x 3的系数为A =60,二项式系数为B =C 26=15,所以A B =6015=4.14.对具有线性相关关系的变量x ,y 有10组观测数据(x i ,y i )(i =1,2,…,10),其回归直线方程为y ^=-3+2x ,若∑10i =1x i =17,则∑10i =1y i的值等于________.答案 4解析 依题意x -=1710=1.7,而直线y ^=-3+2x 一定经过(x -,y -),所以y -=-3+2x -=-3+2×1.7=0.4,∴∑10i =1y i=0.4×10=4. 15.在某次学校的游园活动中,高二(2)班设计了这样一个游戏:在一个纸箱里放进了5个红球和5个白球,这些球除了颜色不同外完全相同,一次性从中摸出5个球,摸到4个或4个以上红球即为中奖,则中奖的概率是________.(精确到0.001)答案 0.103解析 设摸出的红球个数为X ,则X 服从超几何分布,其中N =10,M =5,n =5,于是中奖的概率为P (X ≥4)=P (X =4)+P (X =5)=C 45C 15C 510+C 55C 510≈0.103.16.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 每增加一个单位时,y ^平均增加5个单位;③线性回归方程y ^=b ^x +a ^必过(x -,y -);④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得K 2=13.079,则判断两个变量之间有关系会犯错误的概率不超过0.1.其中错误的是________.(填上所有错误命题的序号)答案 ②④⑤解析 由方差的性质知①正确;②由x 系数为-5,则x 每增加一个单位时,y ^平均减少5个单位,即②错;由线性回归方程的特点知③正确;④的说法不正确.由P (K 2≥10.828)出错的概率临界值为0.001,所以⑤错.②④⑤均错误.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知:设a 0,a 1,a 2,…,a n 成等差数列,求证:a 0C 0n +a 1C 1n +a 2C 2n +…+a m C m n +…+a n C nn =(a 0+a n )·2n -1. 证明 设S n =a 0C 0n +a 1C 1n +a 2C 2n +…+a m C m n +…+a n C n n , ∵C m n =C n -m n(m =0,1,2,…,n ), 则S n =a n C n n +a n -1C n -1n +a n -2C n -2n +…+a m C n -m n +…+a 0C 0n ,两式相加得2S n =(a 0+a n )C 0n +(a 1+a n -1)C 1n +(a 2+a n -2)C 2n +…+(a n +a 0)C n n ,又∵(a 0+a n )=(a 1+a n -1)=(a 2+a n -2)=…=(a n +a 0),∴2S n =(a 0+a n )(C 0n +C 1n +…+C n n )=(a 0+a n )·2n , ∴S n =(a 0+a n )·2n -1,即a 0C 0n +a 1C 1n +…+a m C m n +…+a n C n n =(a 0+a n )·2n -1. 18.(本小题满分12分)为了调查某生产线上质量监督员甲是否在现场对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,1000件产品中合格品有990件,次品有10件,甲不在现场时,500件产品中有合格品490件,次品有10件.(1)补充下面列联表,并初步判断甲在不在现场与产品质量是否有关:(2)用独立性检验的方法判断能否在犯错误的概率不超过0.15的前提下认为“甲在不在现场与产品质量有关”?解(1)合格品数/件次品数/件总数/件甲在现场990101000甲不在现场49010500总数/件1480201500可在某种程度上认为“甲在不在现场与产品质量有关”.(2)由(1)中2×2列联表中数据,得K2=1500×(990×10-490×10)21480×20×1000×500≈2.534>2.072,又P(k≥2.072)的临界值为0.15,所以,能在犯错误的概率不超过0.15的前提下认为“甲在不在现场与产品质量有关”.19.(本小题满分12分)学校为测评班级学生对任课老师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,如图所示的茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,则评价该教师为“优秀”.(1)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;(2)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记ξ表示抽到评价该教师为“优秀”的人数,求ξ的分布列及均值.解(1)设A i表示所选取3人中有i个人评价该教师为“优秀”,至多有1人评价该教师为“优秀”记为事件A ,则P (A )=P (A 0)+P (A 1)=C 37C 310+C 13C 27C 310=98120=4960.(2)ξ的可能取值为0,1,2,3,P (ξ=0)=⎝ ⎛⎭⎪⎫7103=3431000;P (ξ=1)=C 13×310×⎝ ⎛⎭⎪⎫7102=4411000;P (ξ=2)=C 23×⎝⎛⎭⎪⎫3102×710=1891000; P (ξ=3)=⎝⎛⎭⎪⎫3103=271000.分布列为ξ 0 1 2 3 P343100044110001891000271000E (ξ)=0×3431000+1×4411000+2×1891000+3×271000=0.9.20.(本小题满分12分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与均值;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解设A i表示事件“此人于3月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=113.(1)设B为事件“此人到达当日空气重度污染”,则B=A5∪A8,所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=413,P(X=2)=P(A1∪A2∪A12∪A13)=P(A1)+P(A2)+P(A12)+P(A13)=413,P(X=0)=1-P(X=1)-P(X=2)=5 13.所以X的分布列为故X的均值E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.21.(本小题满分12分)“冰桶挑战赛”是一项社交网络上发起的慈善公益活动.活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(2)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:性别有关”?附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )解 (1)这3个人接受挑战分别记为A ,B ,C ,则A ,B ,C 分别表示这3个人不接受挑战.这3个人参与该项活动的可能结果为{A ,B ,C },{A ,B ,C },{A ,B ,C },{A ,B ,C },{A ,B ,C },{A ,B ,C },{A ,B ,C },{A ,B ,C },共有8种.其中,至少有2个人接受挑战的可能结果有{A ,B ,C },{A ,B ,C },{A ,B ,C },{A ,B ,C },共有4种.根据古典概型的概率公式,所求的概率为 P =48=12.(2)根据2×2列联表,得到K 2的观测值为K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=100×(45×15-25×15)260×40×70×30=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“冰桶挑战赛与受邀者的性别有关”.22.(本小题满分12分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?解(1)由于1件产品的利润为ξ,则ξ的所有可能取值为6,2,1,-2,所以P(ξ=6)=126200=0.63,P(ξ=2)=50200=0.25,P(ξ=1)=20200=0.1,P(ξ=-2)=4200=0.02.故ξ的分布列为(2)1件产品的平均利润为E(ξ)=6×0.63+2×0.25+1×0.1+(-2)×0.02=4.34(万元).(3)设技术革新后三等品率为x,则此时1件产品的平均利润为E(ξ)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29).依题意,E(ξ)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.。
人教A版高中数学选修2-3 模块综合评价(一)(含答案解析)
模块综合评价(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.某一随机变量ξ的概率分布如下表,且m +2n =1.2,则m -n2的值为( )A .-0.2B .0.2C .0.1D .-0.1解析:由离散型随机变量分布列的性质,可得m +n +0.2=1, 又m +2n =1.2,所以m =0.4,n =0.4, 所以m -n2=0.2.答案:B2.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A.y ^=-10x +200 B.y ^=10x +200 C.y ^=-10x -200D.y ^=10x -200解析:由于销售量y 与销售价格x 负相关,故排除B ,D.又当x =10时,A 中的y =100,而C 中y =-300,故C 不符合题意.3.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为()A.24 B.48 C.72 D.120解析:A参加时参赛方案有C34A12A33=48(种),A不参加时参赛方案有A44=24(种),所以不同的参赛方案共72种,故选C.答案:C4.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35,若X与Y有关系的可信程度为90%,则c=()A.4 B.5 C.6 D.7解析:列2×2列联表可知:当c=5时,K2=66×(10×30-5×21)215×51×31×35≈3.024>2.706,所以c=5时,X与Y有关系的可信程度为90%,而其余的值c=4,c=6,c=7皆不满足.5.⎝⎛⎭⎪⎫x +12x 8的展开式中常数项为( ) A.3516 B.358 C.354D .105 解析:二项展开式的通项为T k +1=C k 8(x )8-k ⎝ ⎛⎭⎪⎫12x k =⎝ ⎛⎭⎪⎫12k C k 8x 4-k,令4-k =0,解得k =4,所以T 5=⎝ ⎛⎭⎪⎫124C 48=358.答案:B6.ξ,η为随机变量,且η=aξ+b ,若E (ξ)=1.6,E (η)=3.4,则a ,b 可能的值为( )A .2,0.2B .1,4C .0.5,1.4D .1.6,3.4解析:由E (η)=E (aξ+b )=aE (ξ)+b =1.6a +b =3.4,把选项代入验证,只有A 满足.答案:A7.已知随机变量ξ的分布列为ξ=-1,0,1,对应P =12,16,13,且设η=2ξ+1,则η的期望为( )A .-16 B.23 C.2936D .1解析:E (ξ)=-1×12+0×16+1×13=-16,所以E (μ)=E (2ξ+1)=2E (ξ)+1=23.8.若随机变量ξ~N (-2,4),ξ在下列区间上取值的概率与ξ在区间(-4,-2]上取值的概率相等的是( )A .(2,4]B .(0,2]C .[-2,0)D .(-4,4]解析:此正态曲线关于直线x =-2对称,所以ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.答案:C9.设随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )A.56B.45C.2021D.3132解析:函数f (x )=x 2+4x +X 存在零点, 所以Δ=16-4X ≥0,所以X ≤4,因为随机变量X 服从二项分布B ⎝⎛⎭⎪⎫5,12, 所以P (X ≤4)=1-P (X =5)=1-125=3132.答案:D10.通过随机询问72名不同性别的大学生在购买食物时是否看营养说明,得到如下列联表:) A.99%的可能性B.99.75%的可能性C.99.5%的可能性D.97.5%的可能性解析:由题意可知a=16,b=28,c=20,d=8,a+b=44,c +d=28,a+c=36,b+d=36,n=a+b+c+d=72.代入公式K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),得K2=72×(16×8-28×20)244×28×36×36≈8.42.由于K2≈8.42>7.879,我们就有99.5%的把握认为性别和读营养说明之间有关系,即性别和读营养说明之间有99.5%的可能是有关系的.答案:C11.某日A,B两个沿海城市受台风袭击的概率相同,已知A市或B市至少有一个受台风袭击的概率为0.36,若用X表示这一天受台风袭击的城市个数,则E(X)=()A.0.1 B.0.2 C.0.3 D.0.4解析:设A,B两市受台风袭击的概率均为p,则A市或B市都不受台风袭击的概率为(1-p)2=1-0.36,解得p=0.2或p=1.8(舍去).法一 P (X =0)=1-0.36=0.64.P (X =1)=2×0.8×0.2=0.32, P (X =2)=0.2×0.2=0.04,所以E (X )=0×0.64+1×0.32+2×0.04=0.4.法二 X ~B (2,0.2),E (X )=np =2×0.2=0.4. 答案:D12.设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -1x 6,x <0,-x ,x ≥0,则当x >0时,f (f (x ))表达式的展开式中常数项为( )A .-20B .20C .-15D .15解析:当x >0时,f (f (x ))=⎝ ⎛⎭⎪⎫-x +1x 6=⎝ ⎛⎭⎪⎫1x -x 6,则展开式中常数项为C 36⎝⎛⎭⎪⎫1x 3(-x )3=-20. 答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.314.已知随机变量ξ~B (36,p ),且E (ξ)=12,则D (ξ)=________. 解析:由E (ξ)=36p =12,得p =13,所以D (ξ)=36×13×23=8.答案:815.欧阳修《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.”可见“行行出状元”,卖油翁的技艺让人叹为观止,如图铜钱是直径为4 cm 的圆形,正中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴是直径为0.2 cm 的球),记“油滴不出边界”为事件A ,“油滴整体正好落入孔中”为事件B .则P (B |A )________(不作近似值计算).解析:因为铜钱的有效面积S =π·(2-0.1)2,能够滴入油的图形为边长为1-2×110=45的正方形,面积为1625, 所以P (B |A )=64361π.答案:64361π16.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的数学期望是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.376三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f (x )=(1+x )m +(1+x )n (m ,n ∈N *)展开式中x 的系数为19,求f (x )的展开式中x 2的系数的最小值.解:f (x )=1+C 1m x +C 2m x 2+…+C m m x m +1+C 1n x +C 2n x 2+…+C nnx n ,由题意知m +n =19,m ,n ∈N *, 所以x2项的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=⎝ ⎛⎭⎪⎫m -1922+19×174.因为m ,n ∈N *,所以当m =9或m =10时,上式有最小值. 所以当m =9,n =10或m =10,n =9时,x 2项的系数取得最小值,最小值为81.18.(本小题满分12分)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元,否则月工资定为2 100元,令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的期望.解:(1)X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i 4C 48(i =0,1,2,3,4),故X 的分布列为:(2)令Y 表示新录用员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500,则P (Y =3 500)=P (X =4)=170,P (Y =2 800)=P (X =3)=835,P (Y =2 100)=P (X ≤2)=5370, E (Y )=3 500×170+2 800×835+2 100×5370=2 280.所以新录用员工月工资的期望为2 280元.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3, 又P (X =1)=16,P (X =2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.19.(本小题满分12分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A , 则P (A )=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3,又P (X =1)=16,P (X=2)=56×15=16,P (X =3)=56×45×1=23.所以X 的分布列为:所以E (X )=1×16+2×16+3×23=52.20.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1 x i =80,∑10i =1 y i =20,∑10i =1 x i y i =184,∑10i =1 x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b =∑ni =1 x i y i -n x y∑n i =1 x 2i -nx 2,a ^=y -b ^x ,其中x ,y 为样本平均值. 解:(1)由题意知n =10,x =1n ∑n i =1 x i =8010=8,y=1n∑ni=1y i=2010=2,又l xx=∑ni=1x2i-nx2=720-10×82=80,l xy=∑ni=1x i y i-nxy=184-10×8×2=24,由此得b^=l xyl xx=2480=0.3,a^=y-b^x=2-0.3×8=-0.4.故所求线性回归方程为y=0.3x-0.4.(2)由于变量y的值随x值的增加而增加(b=0.3>0),故x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.3×7-0.4=1.7(千元).21.(本小题满分12分)为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.⎝⎭⎪参考公式:K 2=(a +b )(c +d )(a +c )(b +d )解:(1)甲班成绩为87分的同学有2个,其他不低于80分的同学有3个“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有C 25=10(个),“抽到至少有一个87分的同学”所组成的基本事件有C 13C 12+C 22=(7个),所以P =710. (2)2×2列联表如下:K 2=40×(6×6-14×14)220×20×20×20=6.4>5.024.因此,我们有97.5%的把握认为成绩优秀与教学方式有关. 22.(本小题满分12分)在一个圆锥体的培养房内培养了40只蜜蜂,准备进行某种实验,过圆锥高的中点有一个不计厚度且平行于圆锥底面的平面把培养房分成两个实验区,其中小锥体叫第一实验区,圆台体叫第二实验区,且两个实验区是互通的.假设蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的.(1)求蜜蜂落入第二实验区的概率.(2)若其中有10只蜜蜂被染上了红色,求恰有一只红色蜜蜂落入第二实验区的概率.(3)记X 为落入第一实验区的蜜蜂数,求随机变量X 的数学期望E (X ).解:(1)记“蜜蜂落入第一实验区”为事件A ,“蜜蜂落入第二实验区”为事件B ,依题意得:P (A )=V 小锥体V 圆锥体=13·14·S 圆锥底面·12h 圆锥13·S 圆锥底面·h 圆锥=18,所以P (B )=1-P (A )=78,所以蜜蜂落入第二实验区的概率为78.(2)记“蜜蜂被染上红色”为事件C ,则事件B ,C 为相互独立事件,又P (C )=1040=14,P (B )=78.则P (BC )=P (B )P (C )=14×78=732,所以恰有一只红色蜜蜂落入第二实验区的概率为732.(3)因为蜜蜂落入培养房内任何位置是等可能的,且蜜蜂落入哪个位置相互之间是不受影响的,所以变量X 服从二项分布,即X ~B ⎝⎛⎭⎪⎫40,18,所以随机变量X 的数学期望E (X )=40×18=5.。
[精品]新人教A版选修2-3高中数学模块综合测评1和答案
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·山西大学附中月考)某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )A.510种B.105种C.50种 D.3 024种【解析】每位乘客都有5种不同的下车方式,根据分步乘法计数原理,共有510种可能的下车方式,故选A.【答案】 A2.(1-x)6展开式中x的奇次项系数和为( )A.32 B.-32 C.0 D.-64【解析】(1-x)6=1-C16x+C26x2-C36x3+C46x4-C56x5+C66x6,所以x的奇次项系数和为-C16-C36-C56=-32,故选B.【答案】 B3.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程y^=7.19x+73.93,用此方程预测儿子10岁的身高,有关叙述正确的是( )A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右【解析】将x=10代入y^=7.19x+73.93,得y^=145.83,但这种预测不一定准确.实际身高应该在145.83 cm 左右.故选D.【答案】 D4.随机变量X的分布列如下表,则E(5X+4)等于( )A.16 B.11 C.【解析】由表格可求E(X)=0×0.3+2×0.2+4×0.5=2.4,故E(5X+4)=5E(X)+4=5×2.4+4=16.故选A.【答案】 A5.正态分布密度函数为f(x)=12 2πe-x-1 28,x∈R,则其标准差为( )A.1 B.2 C.4 D.8【解析】根据f(x)=1σ2πe-x-μ 22σ2,对比f(x)=12 2πe-x-1 28知σ=2.【答案】 B6.独立性检验中,假设H0:变量X与变量Y没有关系,则在H0成立的情况下,P(K2≥6.635)=0.010表示的意义是( ) A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99.9%C.变量X与变量Y没有关系的概率为99%D.变量X与变量Y有关系的概率为99%【解析】由题意知变量X与Y没有关系的概率为0.01,即认为变量X与Y有关系的概率为99%.【答案】 D7.三名教师教六个班的数学,则每人教两个班,分配方案共有( )A .18种B .24种C .45种D .90种【解析】 不妨设三名教师为甲、乙、丙.先从6个班中任取两个班分配甲,再从剩余4个班中,任取2个班分配给乙,最后两个班分给丙.由乘法计数原理得分配方案共C 26·C 24·C 22=90(种).【答案】 D8.已知⎝ ⎛⎭⎪⎫1x-x n的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于( )A .15B .-15C .20D .-20【解析】 由题意知n =6,T r +1=C r6⎝ ⎛⎭⎪⎫1x 6-r·(-x )r=(-1)r C r6x 32r -6,由32r -6=0,得r =4,故T 5=(-1)4C 46=15,故选A. 【答案】 A9.设随机变量ξ~B (n ,p ),若E (ξ)=2.4,D (ξ)=1.44,则参数n ,p 的值为( ) 【导学号:97270066】A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 【解析】 由二项分布的均值与方差性质得⎩⎪⎨⎪⎧np =2.4,np 1-p =1.44,解得⎩⎪⎨⎪⎧n =6,p =0.4,故选B.【答案】 B10.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是( )A.16B.18C.112D.124【解析】 由2个6,1个3,1个9这4个数字一共可以组成A 44A 22=12种不同的密码顺序,因此小明试着输入由这样4个数组成的一个密码,他恰好能输入正确进入邮箱的概率是P =112.【答案】 C 11.有下列数据:) A .y =3×2x -1 B .y =log 2x C .y =3x D .y =x 2【解析】 当x =1,2,3时,代入检验y =3×2x -1适合.故选A. 【答案】 A 12.图1(2016·孝感高级中学期中)在如图1所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,若各保险匣之间互不影响,则当开关合上时,电路畅通的概率是( )A.551720B.29144C.2972D.2936【解析】 “左边并联电路畅通”记为事件A ,“右边并联电路畅通”记为事件B .P (A )=1-⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=56.P (B )=1-15×16=2930.“开关合上时电路畅通”记为事件C . P (C )=P (A )·P (B )=56×2930=2936,故选D.【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.(2016·石家庄二模)利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程x 2-x +a =0无实根的概率为________.【解析】 ∵方程无实根,∴Δ=1-4a <0,∴a >14,∴所求概率为34.【答案】 3414.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.【解析】 由下图可以看出P (550<X <600)=P (400<X <450)=0.3.【答案】 0.315.(2015·重庆高考)⎝⎛⎭⎪⎪⎫x 3+12x 5的展开式中x 8的系数是________(用数字作答).【解析】 ∵T r +1=C r5·(x 3)5-r·⎝ ⎛⎭⎪⎪⎫12x r =C r 5·x 15-3r ·⎝ ⎛⎭⎪⎫12r ·x -r 2=⎝ ⎛⎭⎪⎫12r ·C r5·x 30-7r 2(r =0,1,2,3,4,5), 由30-7r 2=8,得r =2,∴⎝ ⎛⎭⎪⎫122·C 25=52.【答案】 5216.图2将一个半径适当的小球放入如图2所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________. 【导学号:97270067】【解析】 记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B ,若小球落入B 袋中,则小球必须一直向左落下或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.【答案】 34三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)6男4女站成一排,求满足下列条件的排法:(1)任何2名女生都不相邻有多少种排法? (2)男甲不在首位,男乙不在末位,有多少种排法? (3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法? 【解】 (1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47=604 800(种)不同排法.(2)法一:甲不在首位,按甲的排法分类,若甲在末位,则有A 99种排法,若甲不在末位,则甲有A 18种排法,乙有A 18种排法,其余有A 88种排法,综上共有(A 99+A 18A 18A 88)=2 943 360(种)排法.法二:无条件排列总数A 1010-⎩⎪⎨⎪⎧甲在首,乙在末A 88,甲在首,乙不在末A 99-A 88,甲不在首,乙在末A 99-A 88,甲不在首,乙不在末,共有A 1010-2A 99+A 88=2 943 360(种)排法.(3)10人的所有排列方法有A 1010种,其中甲、乙、丙的排序有A 33种,又对应甲、乙、丙只有一种排序,所以甲、乙、丙排序一定的排法有A1010A33=604 800(种).(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有1 2A1010=1 814 400(种)排法.18.(本小题满分12分)某年级的一次信息技术测验成绩近似服从正态分布N(70,102),如果规定低于60分为不及格,求:(1)成绩不及格的学生人数占总人数的比例;(2)成绩在80~90分内的学生人数占总人数的比例.【解】(1)设学生的得分为随机变量X,X~N(70,102),则μ=70,σ=10.分数在60~80之间的学生的比例为P(70-10<X≤70+10)=0.683,所以不及格的学生的比例为12×(1-0.683)=0.158 5,即成绩不及格的学生人数占总人数的15.85%.(2)成绩在80~90分内的学生的比例为12[P(70-2×10<X≤70+2×10)]-12[P(70-10<X≤70+10)]=12(0.954-0.683)=0.135 5.即成绩在80~90分内的学生人数占总人数的13.55%.19.(本小题满分12分)口袋中有2个白球和4个红球,现从中随机地不放回连续抽取两次,每次抽取1个,则(1)第一次取出的是红球的概率是多少?(2)第一次和第二次取出的都是红球的概率是多少?(3)在第一次取出红球的条件下,第二次取出的也是红球的概率是多少?【解】 记事件A :第一次取出的是红球; 事件B :第二次取出的是红球. (1)第一次取出红球的概率 P (A )=4×56×5=23.(2)第一次和第二次取出的都是红球的概率P (A ∩B )=4×36×5=25.(3)在第一次取出红球的条件下,第二次取出的也是红球的概率为P (B |A )=P A ∩B P A =2523=35.20.(本小题满分12分)已知⎝⎛⎭⎪⎫x -2x n的展开式中,第4项和第9项的二项式系数相等.(1)求n ;(2)求展开式中x 的一次项的系数.【解】 (1)由第4项和第9项的二项式系数相等可得C 3n =C 8n ,解得n =11.(2)由(1)知,展开式的第k +1项为T k +1=C k 11(x )11-k⎝ ⎛⎭⎪⎫-2x k =(-2)k C k 11x 11-3k2.令11-3k 2=1,得k =3.此时T 3+1=(-2)3C 311x =-1 320x , 所以展开式中x 的一次项的系数为-1 320. 21.(本小题满分12分)对于表中的数据:(1)(2)求线性回归方程.【解】 (1)如图,x ,y 具有很好的线性相关性. (2)因为x =2.5,y =5,∑4i =1x i y i =60,∑4i =1x 2i =30,∑4i =1y 2i =120.04. 故b ^=60-4×2.5×530-4×2.52=2,a ^=y -b ^ x =5-2×2.5=0, 故所求的回归直线方程为 y ^=2x .22.(本小题满分12分)(2016·丰台高二检测)“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:已知在这30人中随机抽取1人抽到爱好运动的员工的概率是815.(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为X,求X的分布列、数学期望.【解】(1)k=30× 10×8-6×6 216×14×16×14≈1.158<3.841,所以没有把握认为爱好运动与性别有关.(2)X的取值可能为0,1,2.P(X=0)=C28C214=413,P(X=1)=C16C18C214=4891,P(X=2)=C26C214=1591.所以X的分布列为:X的数学期望为E(X)=0×413+1×4891+2×1591=67.。
【人教A版】高中数学:选修2-3全集模块综合评价(二)
模块综合评价(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意的)1.若A 3m =6C 4m ,则m 的值为( )A .6B .7C .8D .9 解析:由m (m -1)(m -2)=6·m (m -1)(m -2)(m -3)4×3×2×1,解得m =7. 答案:B2.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)等于( ) A.15 B.14 C.13D.12解析:由正态分布的图象知,x =μ=3为该图象的对称轴, 则P (ξ<3)=12.答案:D3.下表是某厂1~4月份用水量(单位:百吨)的一组数据:其线性回归方程是y ^=-0.7x +a ,则a =( )A .10.5B .5.15C .5.2D .5.25解析:— x=2.5,— y=3.5,b ^=0.7,所以a ^=3.5+0.7×2.5=5.25. 答案:D4.(2015·陕西卷)二项式(x +1)n (n ∈N *)的展开式中x 2的系数为15,则n =( )A .4B .5C .6D .7解析:二项式的展开式的通项是T r +1=C r n x r,令r =2,得x 2的系数为C 2n ,所以C 2n=15,即n 2-n -30=0,解得n =-5(舍去)或n =6.答案:C5.已知离散型随机变量X 的分布列如下:由此可以得到期望( ) A .E (X )=1.4,D (X )=0.2 B .E (X )=0.44,D (X )=1.4 C .E (X )=1.4,D (X )=0.44 D .E (X )=0.44,D (X )=0.2 解析:由x +4x +5x =1得x =0.1,E (X )=0×0.1+1×0.4+2×0.5=1.4,D (X )=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44. 答案:C6.若随机变量X ~B (n ,0.6),且E (X )=3,则P (X =1)的值是( )A .2×0.44B .2×0.45C .3×0.44D .3×0.64解析:因为X ~B (n ,0.6),所以E (X )=np =0.6n =3,所以n =5,所以P (X =1)=C 15×0.61×0.44=3×0.44.答案:C7.设A =37+C 27·35+C 47·33+C 67·3,B =C 17·36+C 37·34+C 57·32+1,则A -B 的值为( )A .128B .129C .47D .0解析:A -B =37-C 17·36+C 27·35-C 37·34+C 47·33-C 57·32+C 67·3-1=(3-1)7=27=128,故选A.答案:A8.有三箱粉笔,每箱中有100盒,其中有一盒是次品,从这三箱粉笔中各抽出一盒,则这三盒中至少有一盒是次品的概率是( )A .0.01×0.992B .0.012×0.99C .C 130.01×0.992D .1-0.993解析:设A =“三盒中至少有一盒是次品”,则— A =“三盒中没有次品”,又P (— A)=0.993,所以P (A )=1-0.993.答案:D9.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:以下说法正确的是( )A .没有充足的理由认为课外阅读量大与作文成绩优秀有关B .有0.5%的把握认为课外阅读量大与作文成绩优秀有关C .有99.9%的把握认为课外阅读量大与作文成绩优秀有关D .有99.5%的把握认为课外阅读量大与作文成绩优秀有关 解析:根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.答案:D10.某商场开展促销抽奖活动,摇奖摇出的一组中奖号码是8,2,5,3,7,1,参加抽奖的每位顾客从0,1,2,…,9这10个号码中任意抽出6个组成一组,如果顾客抽出6个号码中至少有5个与中奖号码相同(不计顺序)就可以得奖,那么得奖的概率为( )A.17B.132C.434D.542解析:设A 表示“至少有5个与摇出的号码相同”,A 1表示“恰有5个与摇出的号码相同”,A 2表示“恰有6个与摇出的号码相同”,得A =A 1+A 2,且A 1,A 2互斥,P (A )=P (A 1)+P (A 2)=C 56·C 14C 610+1C 610=542.答案:D11.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( )(附:若X ~N (μ,σ2),则P (μ,σ<X ≤μ+σ)=0.682 6,(P (μ-2σ <X ≤μ+2σ)=0.954 4)A .2 386B .2 718C .3 413D .4 772解析:设X 服从标准正态分布N (0,1),则P (0<X =1)=12P (-1<X ≤1)=0.341 3,故所投点落入阴影部分的概率P =S 阴S 正方形=0.341 31=n10 000,得n =3 413. 答案:C12.有10件产品,其中3件是次品,从中任取两件,若X 表示取得次品的个数,则P (X <2)等于( )A.715B.815C.1415D .1 解析:由题意,知X 取0,1,2,X 服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P (X =0)=C 27C 210=715,P (X=1)=C 17·C 13C 210=715,P (X =2)=C 23C 210=115,于是P (X <2)=P (X =0)+P (X=1)=715+715=1415.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知随机变量ξ的分布列如下表,则x =________.解析:由随机变量概率分布列的性质可知:x 2+x +14=1且0≤x ≤1,解得x =12.答案:1214.一台机器生产某种产品,如果生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产出一件次品,要赔20元,已知这台机器生产出甲等品、乙等品和次品的概率分别为0.6,0.3,和0.1,则这台机器每生产一件产品平均预期可获利________元.解析:50×0.6+30×0.3-20×0.1=37(元).答案:3715.小明和小勇在五种课外读物中各自选购两种,则他们两人所选购的课外读物中至少有一种不相同的选法种数为________.解析:小明和小勇都有C 25种选购方法,根据乘法原理,选购方法总数是C 25C 25=100.选购的两本读物都相同的方法数是C 25=10.故所求的选法种数为100-10=90.答案:9016.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y ^=b ^x +a ^必过(— x ,— y );④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得K 2=13.079,则其两个变量之间有关系的可能性是90%.其中错误的个数是________.解析:由方差的性质知①正确;由线性回归方程的特点知③正确;②④⑤均错误.答案:3三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)两台车床加工同一种机械零件如下表:(1)取得合格品的概率;(2)取得零件是第一台车床加工的合格品的概率.解:(1)记在100个零件中任取一个零件,取得合格品记为A ,因为在100个零件中,有85个为合格品,则P (A )=85100=0.85. (2)从100个零件中任取一个零件是第一台加工的概率为P 1=40100=25,第一台车床加工的合格品的概率为P 2=3540=78, 所以取得零件是第一台车床加工的合格品的概率P =P 1·P 2=25×78=720. 18.(本小题满分12分)已知⎝ ⎛⎭⎪⎫x -2x n展开式中第三项的系数比第二项系数大162,求:(1)n 的值;(2)展开式中含x 3的项.解:(1)因为T 3=C 2n (x )n -2⎝ ⎛⎭⎪⎫-2x 2=4C 2n x n -62, T 2=C 1n (x )n -1⎝ ⎛⎭⎪⎫-2x =-2C 1n x n -32,依题意得4C 2n +2C 1n =162,所以2C 2n +C 1n =81.所以n 2=81,n =9. (2)设第r +1项含x 3项,则T r +1=C r 9(x )9-r ⎝ ⎛⎭⎪⎫-2x r=(-2)r C r 9x 9-3r 2,所以9-3r 2=3,r =1.所以第二项为含x 3的项:T 2=-2C 19x 3=-18x 3.19.(本小题满分12分)一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数ξ的分布列为:200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率; (2)求η的分布列及期望E (η).解:(1)因为服从ξ~B (3,0.4),运用概率公式P =C k 3(0.4)k (1-0.4)3-k ,所以P =C 23(0.4)2×(1-0.4)=0.288.(2)因为采用1期付款,其利润为200元;采用2期或3期付款,其利润为250;采用4期或5期付款,其利润为300元,η表示经销一件该商品的利润.所以可以取值为200元,250元,300元.根据表格知识得出:P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1-P(η=200)-P(η=250)=1-0.4-0.4=0.2.故η的分布列为:E(η)=200×0.4+250×0.4+300×0.2=240(元).20.(本题满分12分)设甲、乙两家灯泡厂生产的灯泡寿命表1X(单位:小时)和Y的分布列分别如表1和表2所示:解:由期望的定义,得E(X)=900×0.1+1 000×0.8+1 100×0.1=1 000,E(Y)=950×0.3+1 000×0.4+1 050×0.3=1 000.两家灯泡厂生产的灯泡寿命的期望值相等,需进一步考查哪家工厂灯泡的质量比较稳定,即比较其方差.由方差的定义,得D(X)=(900-1 000)2×0.1+(1 000-1 000)2×0.8+(1 100-1 000)2×0.1=2 000,D(Y)=(950-1 000)2×0.3+(1 000-1 000)2×0.4+(1 050-1 000)2×0.3=1 500.因为D(X)>D(Y),所以乙厂生产的灯泡质量比甲厂稳定,即乙厂生产的灯泡质量较好.21.(本小题满分12分)某5名学生的总成绩与数学成绩如下表:(1)(2)求数学成绩对总成绩的回归方程;(3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩.(参考数据:4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760)解:(1)散点图如图所示:(2)设回归方程为≈0.132,a ^=— y -b ^— x ≈3395-0.132×2 0125=14.683 2, 所以回归方程为y ^=0.132x +14.683 2.(3)当x =450时,y ^=0.132×450+14.683 2=74.083 2≈74,即数学成绩大约为74分.22.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n =20之中选其一,应选用哪个?解:(1)由柱形图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为:(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.。
高中数学人教A版选修2-3 章末综合测评3 Word版含答案
章末综合测评(三)统计案例(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).下列说法中错误的是( ).如果变量与之间存在着线性相关关系,则我们根据试验数据得到的点(,)(=,…,)将散布在某一条直线的附近.如果两个变量与之间不存在着线性关系,那么根据它们的一组数据(,)(=,…,)不能写出一个线性方程.设,是具有相关关系的两个变量,且关于的线性回归方程为=+,叫做回归系数.为使求出的线性回归方程有意义,可用统计检验的方法来判断变量与之间是否存在线性相关关系【解析】任何一组(,)(=,…,)都能写出一个线性方程,只是有的不存在线性关系.【答案】.如图所示,有组数据,去掉哪组数据后(填字母代号),剩下的组数据的线性相关性最大( )图....【解析】由题图易知,,,四点大致在一条直线上,而点偏离最远,故去掉点后剩下的数据的线性相关性最大.【答案】.在一次试验中,当变量的取值分别为,,,时,变量的值分别为,则与的回归曲线方程为( ) 【导学号:】=+=+=+=-【解析】由数据可得,四个点都在曲线=+上.【答案】.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;②用相关指数来刻画回归的效果,值越大,说明模型的拟合效果越好;③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )....【解析】①选用的模型是否合适与残差点的分布有关;对于②③,的值越大,说明残差平方和越小,随机误差越小,则模型的拟合效果越好.【答案】.观察下列各图,其中两个分类变量,之间关系最强的是( )【解析】在四幅图中,图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.【答案】.在×列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( )与与。
高中数学人教A版选修2-3 章末综合测评2 Word版含答案
章末综合测评(二)随机变量及其分布(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是()A.某辆汽车一年中发生事故的次数是一个离散型随机变量B.正态分布随机变量等于一个特定实数的概率为0C.公式E(X)=np可以用来计算离散型随机变量的均值D.从一副扑克牌中随机抽取5张,其中梅花的张数服从超几何分布2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X,则下列概率中等于C18C15+C14C16C112C111的是()A.P(X=0)B.P(X≤2)C.P(X=1) D.P(X=2)3.(2016·长沙高二检测)若X的分布列为X 0 1P 15a则E(X)=()A.45 B.12C.25 D.154.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.16 B.0.24C.0.96 D.0.045.如果随机变量X~N(4,1),则P(X≤2)等于() (注:P(μ-2σ<X≤μ+2σ)=0.954 4)A.0.210 B.0.022 8C.0.045 6 D.0.021 56.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为()【导学号:97270056】A.49 B.29C.427 D.2277.校园内移栽4棵桂花树,已知每棵树成活的概率为45,那么成活棵数X的方差是()A.165 B.6425C.1625 D.6458.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是()A.35 B.25C.110 D.599.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f(x)=1102πe-(x-80)2200,则下列命题中不正确的是()A.该市在这次考试的数学平均成绩为80分B.分数在120分以上的人数与分数在60分以下的人数相同C.分数在110分以上的人数与分数在50分以下的人数相同D.该市这次考试的数学成绩标准差为1010.设随机变量ξ等可能地取1,2,3,4,…,10,又设随机变量η=2ξ-1,则P(η<6)=()A.0.3 B.0.5C.0.1 D.0.211.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所示,则有结论()A.B.乙的产品质量比甲的产品质量好一些C.两人的产品质量一样好D.无法判断谁的产品质量好一些12.某计算机程序每运行一次都随机出现一个五位的二进制数A=a1a2a3a4a5,其中A的各位数中a1=1,a k(k=2,3,4,5)出现0的概率为13,出现1的概率为23,记ξ=a1+a2+a3+a4+a5,当程序运行一次时,ξ的数学期望为()A.827 B.113C.1681 D.6581二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X,则P(X≤6)=________.14.一只蚂蚁位于数轴x=0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x=1处的概率为________.15.一个正方形被平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中).设投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,则P(A|B)=________.16.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是3 5;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为4 3;③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为2 5;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为26 27.其中所有正确结论的序号是________. 【导学号:97270057】三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?18.(本小题满分12分)在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)的考生大约有多少人?19.(本小题满分12分)甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X,Y,X和Y的分布列如下表.试对这两名工人的技术水平进行比较.20.(本小题满分12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数)21.(本小题满分12分)某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为12,14,14;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的分布列及E(ξ);(2)要使10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.22.(本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比.分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.章末综合测评(二)随机变量及其分布(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是()A.某辆汽车一年中发生事故的次数是一个离散型随机变量B.正态分布随机变量等于一个特定实数的概率为0C.公式E(X)=np可以用来计算离散型随机变量的均值D.从一副扑克牌中随机抽取5张,其中梅花的张数服从超几何分布【解析】公式E(X)=np并不适用于所有的离散型随机变量的均值的计算,适用于二项分布的均值的计算.故选C.【答案】 C2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X,则下列概率中等于C18C15+C14C16C112C111的是()A.P(X=0)B.P(X≤2)C.P(X=1) D.P(X=2)【解析】由已知易知P(X=1)=C18C15+C14C16C112C111.【答案】 C3.(2016·长沙高二检测)若X的分布列为则E(X)=()A.45 B.12C.25 D.15【解析】由15+a=1,得a=45,所以E(X)=0×15+1×45=45.【答案】 A4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.16 B.0.24C.0.96 D.0.04【解析】三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.【答案】 C5.如果随机变量X~N(4,1),则P(X≤2)等于()(注:P(μ-2σ<X≤μ+2σ)=0.954 4)A.0.210 B.0.022 8C.0.045 6 D.0.021 5【解析】P(X≤2)=(1-P(2<X≤6))×12=[1-P(4-2<X≤4+2)]×12=(1-0.954 4)×12=0.022 8.【答案】 B6.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为()【导学号:97270056】A.49 B.29C.427 D.227【解析】连续测试3次,其中恰有1次通过的概率为P=C13×13×⎝⎛⎭⎪⎫1-132=49.【答案】 A7.校园内移栽4棵桂花树,已知每棵树成活的概率为45,那么成活棵数X的方差是()A.165 B.6425C.1625D.645【解析】 由题意知成活棵数X ~B ⎝ ⎛⎭⎪⎫4,45,所以成活棵数X 的方差为4×45×⎝ ⎛⎭⎪⎫1-45=1625.故选C. 【答案】 C8.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是( )A.35B.25C.110D.59【解析】 记“第一次摸到正品”为事件A ,“第二次摸到正品”为事件B ,则P (A )=C 16C 19C 110C 19=35,P (AB )=C 16C 15C 110C 19=13.故P (B |A )=P (AB )P (A )=59. 【答案】 D9.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f (x )=1102πe -(x -80)2200,则下列命题中不正确的是( )A .该市在这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10【解析】 利用正态密度函数的表达式知μ=80,σ=10.故A ,D 正确,利用正态曲线关于直线x =80对称,知P (ξ>110)=P (ξ<50),即分数在110分以上的人数与分数在50分以下的人数相同,故C 正确,故选B.【答案】 B10.设随机变量ξ等可能地取1,2,3,4,…,10,又设随机变量η=2ξ-1,则P (η<6)=( )A .0.3B .0.5C .0.1D .0.2【解析】 因为P (ξ=k )=110,k =1,2,…,10,又由η=2ξ-1<6,得ξ<72,即ξ=1,2,3,所以P (η<6)=P (ξ=1)+P (ξ=2)+P (ξ=3)=310=0.3.【答案】 A11.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所示,则有结论( )A.B .乙的产品质量比甲的产品质量好一些 C .两人的产品质量一样好 D .无法判断谁的产品质量好一些【解析】 ∵E (X 甲)=0×0.4+1×0.3+2×0.2+3×0.1=1, E (X 乙)=0×0.3+1×0.5+2×0.2+3×0=0.9. ∵E (X 甲)>E (X 乙),∴乙的产品质量比甲的产品质量好一些. 【答案】 B12.某计算机程序每运行一次都随机出现一个五位的二进制数A =a 1a 2a 3a 4a 5,其中A 的各位数中a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23,记ξ=a 1+a 2+a 3+a 4+a 5,当程序运行一次时,ξ的数学期望为( )A.827B.113C.1681D.6581【解析】 记a 2,a 3,a 4,a 5位上出现1的次数为随机变量η,则η~B ⎝ ⎛⎭⎪⎫4,23,E (η)=4×23=83.因为ξ=1+η,E (ξ)=1+E (η)=113.故选B. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.袋中有4只红球,3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)=________.【解析】 P (X ≤6)=P (X =4)+P (X =6)=C 44+C 34C 13C 47=1335.【答案】 133514.一只蚂蚁位于数轴x =0处,这只蚂蚁每隔一秒钟向左或向右移动一个单位,设它向右移动的概率为23,向左移动的概率为13,则3秒后,这只蚂蚁在x =1处的概率为________.【解析】 由题意知,3秒内蚂蚁向左移动一个单位,向右移动两个单位,所以蚂蚁在x =1处的概率为C 23⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫131=49. 【答案】 4915.一个正方形被平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中).设投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,则P (A |B )=________.【解析】如图,n (Ω)=9,n (A )=3,n (B )=4,所以n (AB )=1, P (A |B )=n (AB )n (B )=14. 【答案】 1416.一袋中有大小相同的4个红球和2个白球,给出下列结论:①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627. 其中所有正确结论的序号是________. 【导学号:97270057】【解析】 ①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②每次任取一球,取到红球次数X ~B ⎝ ⎛⎭⎪⎫6,23,其方差为6×23×⎝ ⎛⎭⎪⎫1-23=43,故②正确; ③设A ={第一次取到红球},B ={第二次取到红球}. 则P (A )=23,P (AB )=4×36×5=25,∴P (B |A )=P (AB )P (A )=35,故③错; ④每次取到红球的概率P =23, 所以至少有一次取到红球的概率为 1-⎝ ⎛⎭⎪⎫1-233=2627, 故④正确. 【答案】 ①②④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?【解】 记事件A :最后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球.P(B)=42+4=23.P(B)=1-P(B)=1 3.(1)P(A|B)=3+18+1=49.(2)∵P(A|B)=38+1=13,∴P(A)=P(A∩B)+P(A∩B) =P(A|B)P(B)+P(A|B)P(B)=49×23+13×13=1127.18.(本小题满分12分)在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110)上的概率是多少?(2)若这次考试共有2 000名考生,试估计考试成绩在(80,100)的考生大约有多少人?【解】因为ξ~N(90,100),所以μ=90,σ=100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.954 4,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110)内的概率就是0.954 4.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.由于正态变量在区间(μ-σ,μ+σ)内取值的概率是0.682 6,所以考试成绩ξ位于区间(80,100)内的概率是0.682 6.一共有2 000名学生,所以考试成绩在(80,100)的考生大约有2 000×0.682 6≈1 365(人).19.(本小题满分12分)甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X,Y,X和Y的分布列如下表.试对这两名工人的技术水平进行比较.【解】 E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81. 工人乙生产出次品数Y 的数学期望和方差分别为 E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.20.(本小题满分12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数) 【解】 (1)由古典概型的概率计算公式知所求概率为p =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742, P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112.故X 的分布列为从而E(X)=1×1742+2×4384+3×112=4728.21.(本小题满分12分)某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为12,14,14;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金-投资资金),求ξ的分布列及E(ξ);(2)要使10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.【解】(1)依题意,ξ可能的取值为1,0,-1.ξ的分布列为E(ξ)=12-14=14.(2)设η表示10万元投资乙项目的收益,则η的分布列为E(η)=2α-2β=4α-2.依题意得4α-2≥1 4,故916≤α≤1.22.(本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比.分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.【解】 (1)X 可能的取值为10,20,100,-200. 根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫1-122=38, P (X =20)=C 23×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-121=38, P (X =100)=C 33×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-120=18, P (X =-200)=C 03×⎝⎛⎭⎪⎫120×⎝ ⎛⎭⎪⎫1-123=18. 所以X 的分布列为(2)设“第i i P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一次出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512. (3)X 的数学期望为EX =10×38+20×38+100×18-200×18=-54. 这表明,获得的分数X 的均值为负, 因此,多次游戏之后分数减少的可能性更大.。
高中数学人教A版选修2-3模块综合测评2 Word版含解析
模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种【解析】种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选B.【答案】 B2.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是() 【导学号:97270068】A.6和2.4 B.2和2.4C.2和5.6 D.6和5.6【解析】由已知随机变量X+Y=8,所以有Y=8-X.因此,求得E(Y)=8-E(X)=8-10×0.6=2,D(Y)=(-1)2D(X)=10×0.6×0.4=2.4.【答案】 B3.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c-2),则c的值是()A.1 B.2 C.3 D.4【解析】随机变量ξ服从正态分布N(2,9),∴曲线关于x=2对称,∵P(ξ>c)=P(ξ<c-2),∴c+c-22=2,∴c=3.故选C.【答案】 C4.设A=37+C27·35+C47·33+C67·3,B=C17·36+C37·34+C57·32+1,则A-B的值为( )A .128B .129C .47D .0【解析】 A -B =37-C 17·36+C 27·35-C 37·34+C 47·33-C 57·32+C 67·3-1=(3-1)7=27=128,故选A.【答案】 A5.若⎝ ⎛⎭⎪⎫x +1x n展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120【解析】 ∵C 0n +C 1n +…+C n n =2n=64,∴n =6. T r +1=C r 6x 6-r x -r =C r 6x6-2r ,令6-2r =0,∴r =3, 常数项T 4=C 36=20,故选B. 【答案】 B6.已知某离散型随机变量X 服从的分布列如下,则随机变量X 的数学期望E (X )等于( )A.19B.29C.13D.23【解析】 由题意可知m +2m =1,所以m =13,所以E (X )=0×13+1×23=23. 【答案】 D7.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66 C .C 28A 26D .C 28A 25【解析】 从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C 28A 26,故选C.【答案】 C8.一个电路如图1所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )图1A.164B.5564C.18D.116【解析】 开关C 断开的概率为12,开关D 断开的概率为12,开关A ,B 至少一个断开的概率为1-12×12=34,开关E ,F 至少一个断开的概率为1-12×12=34,故灯不亮的概率为12×12×34×34=964,故灯亮的概率为1-964=5564,故选B.【答案】 B9.利用下列盈利表中的数据进行决策,应选择的方案是( )A.A 1234【解析】 利用方案A 1,期望为 50×0.25+65×0.30+26×0.45=43.7; 利用方案A 2,期望为70×0.25+26×0.30+16×0.45=32.5; 利用方案A 3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A 4,期望为98×0.25+82×0.30-10×0.45=44.6; 因为A 3的期望最大,所以应选择的方案是A 3,故选C. 【答案】 C10.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率的取值范围是( )A.[0.4,1) B.(0,0.6]C.(0,0.4] D.[0.6,1)【解析】设事件A发生一次的概率为p,则事件A的概率可以构成二项分布,根据独立重复试验的概率公式可得C14p(1-p)3≤C24p2(1-p)2,即可得4(1-p)≤6p,p≥0.4.又0<p<1,故0.4≤p<1.【答案】 A11.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X<2)等于()A.715 B.815 C.1415D.1【解析】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=C27C210=715,P(X=1)=C17·C13C210=715,P(X=2)=C23C210=115,于是P(X<2)=P(X=0)+P(X=1)=715+715=1415.【答案】 C12.已知0<a<1,方程a|x|=|log a x|的实根个数为n,且(x+1)n+(x+1)11=a0+a1(x+2)+a2(x+2)2+…+a10(x+2)10+a11(x+2)11,则a1等于() A.-10 B.9 C.11 D.-12【解析】作出y=a|x|(0<a<1)与y=|log a x|的大致图象如图所示,所以n=2.故(x+1)n+(x+1)11=(x+2-1)2+(x+2-1)11,所以a1=-2+C1011=-2+11=9.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a0+a2+a4)·(a1+a3+a5)的值等于________.【解析】令x=1,得a0+a1+a2+a3+a4+a5=0,①再令x=-1,得a0-a1+a2-a3+a4-a5=25=32,②①+②得a 0+a 2+a 4=16, ①-②得a 1+a 3+a 5=-16,故(a 0+a 2+a 4)·(a 1+a 3+a 5)的值等于-256. 【答案】 -25614.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是________. 【导学号:97270069】【解析】 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共A 25=20种排法,因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.【答案】 1815.某市工商局于2016年3月份,对全市流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的X 饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶X 饮料,并限定每人喝2瓶.则甲喝2瓶合格的X 饮料的概率是________.【解析】 “第一瓶X 饮料合格”为事件A 1,“第二瓶X 饮料合格”为事件A 2,P (A 1)=P (A 2)=0.8,A 1与A 2是相互独立事件,则“甲喝2瓶X 饮料”都合格就是事件A 1,A 2同时发生,根据相互独立事件的概率乘法公式得:P (A 1A 2)=P (A 1)·P (A 2)=0.8×0.8=0.64. 【答案】 0.6416.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.【解析】 根据题意,每个部门都有3种情况可选,则4个部门选择3个景区有34=81种不同的选法,记“3个景区都有部门选择”为事件A ,如果3个景区都有部门选择,则某一个景区必须有2个部门选择,其余2个景区各有1个部门选择,分2步分析:(1)从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法;(2)每组选择不同的景区,共有A 33=6种选法.所以3个景区都有部门选择可能出现的结果数为6×6=36种.则P (A )=3681=49.【答案】 49三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2016·河南周口)在二项式⎝ ⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.【解】 ∵二项展开式的前三项的系数分别是1,n 2,18n (n -1),∴2·n2=1+18n (n -1),解得n =8或n =1(不合题意,舍去),∴T k +1=C k 8x 8-k 2⎝⎛⎭⎪⎪⎫124x k =C k 82-k x 4-34k ,当4-34k ∈Z 时,T k +1为有理项.∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求.故有理项有3项,分别是T 1=x 4,T 5=358x ,T 9=1256x -2. ∵n =8,∴展开式中共9项.中间一项即第5项的二项式系数最大,则为T 5=358x .18.(本小题满分12分)某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ).【解】 (1)ξ的所有可能取值为0,1,2,依题意,得P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15.∴ξ的分布列为(2)设“则P (C )=C 34C 36=420=15,∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12,P (A )=C 25C 36=12,P (AB )=C 14C 36=15,P (B |A )=P (AB )P (A )=25. 19.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i=20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^;(2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b^x +a ^中,b =∑i =1nx i y i -n x y ∑i =1nx 2i -n x 2,a^=y -b ^ x ,其中x ,y 为样本平均值.【解】 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b^=l xy l xx=2480=0.3,a ^=y -b ^ x =2-0.3×8=-0.4. 故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).20.(本小题满分12分)(2015·北京高考)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a .假设所有病人的康复时间相互独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a =25,求甲的康复时间比乙的康复时间长的概率;(3)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明) 【解】 设事件A i 为“甲是A 组的第i 个人”, 事件B i 为“乙是B 组的第i 个人”,i =1,2,…,7. 由题意知P (A i )=P (B i )=17,i =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6,因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049.(3)a =11或a =18.21.(本小题满分12分)(2016·广州综合测试)甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲、丙两人同时不被聘用的概率是625,乙、丙两人同时被聘用的概率是310,且三人各自能否被聘用相互独立.(1)求乙、丙两人各自能被聘用的概率;(2)设ξ表示甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望). 【导学号:97270070】【解】 记甲、乙、丙各自能被聘用的事件分别为A 1,A 2,A 3,由已知A 1,A 2,A 3相互独立,且满足⎩⎪⎨⎪⎧P (A 1)=25,[1-P (A 1)][1-P (A 3)]=625,P (A 2)P (A 3)=310,解得P (A 2)=12,P (A 3)=35.所以乙、丙两人各自能被聘用的概率分别为12,35. (2)ξ的可能取值为1,3.因为P (ξ=3)=P (A 1A 2A 3)+P (A 1 A 2 A 3) =P (A 1)P (A 2)P (A 3)+ [1-P (A 1)][1-P (A 2)][1-P (A 3)] =25×12×35+35×12×25=625,所以P (ξ=1)=1-P (ξ=3)=1-625=1925, 所以ξ的分布列为E (ξ)=1×1925+3×625=3725.22.(本小题满分12分)(2016·辽宁抚顺月考)有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为27.(1)请完成上面的能否认为“成绩与班级有关”;(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E (ξ).附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),【解】 (1)k ≈12.2 (2)ξ~B ⎝ ⎛⎭⎪⎫3,27,且P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫27k ·⎝ ⎛⎭⎪⎫573-k(k =0,1,2,3),ξ的分布列为E(ξ)=0×125343+1×150343+2×60343+3×8343=67.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
高中数学人教A版选修2-3模块综合测评(B) Word版含解析
模块综合测评(B)(时间:120分钟,满分:150分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对变量x,y观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断()图1图2A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关2.判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是() A.三维柱形图B.二维条形图C.等高条形图D.独立性检验3.某地2014年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:行业名称计算机机械营销物流建筑应聘人数215 830200 250154 67674 57065 280行业名称计算机营销机械建筑物流招聘人数124 620102 93589 11576 51670 436 若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( )A .计算机行业好于营销行业B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计 课外阅读量较大 22 10 32 课外阅读量一般8 20 28 总计303060由以上数据,计算得到K 2的观测值k ≈9.643,根据临界值表,以下说法正确的是( ) A .没有充足的理由认为课外阅读量大与作文成绩优秀有关 D .有0.5%的把握认为课外阅读量大与作文成绩优秀有关 C .有99.9%的把握认为课外阅读量大与作文成绩优秀有关 D .有99.5%的把握认为课外阅读量大与作文成绩优秀有关5.一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( )A .40B .74C .84D .2006.将二项式⎝⎛⎭⎪⎫x +124x 8的展开式中所有项重新排成一列,有理式不相邻的排法有( )种A .A 37B .A 66A 36 C .A 66A 37 D .A 77A 377.将三颗骰子各掷一次,设事件A =“三个点数都不相同”,B =“至少出现一个6点”,则概率P (A |B )等于( )A .6091B .12C .518D .912168.正态分布N 1(μ1,σ21),N 2(μ2,σ22),N 3(μ3,σ23)(其中σ1,σ2,σ3均大于0)所对应的密度函数图象如下图所示,则下列说法正确的是( )A .μ1最大,σ1最大B .μ3最大,σ3最大C .μ1最大,σ3最大D .μ3最大,σ1最大9.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.610.一名篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a ,b ,c ∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab 的最大值为( )A .148B .124C .112D .16二、填空题(本大题5个小题,每题5分,共25分)11.有4名男生,3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有________.12.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________.13.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2的观测值k ≈3.918,经查临界值表知P (K 2≥3.841)≈0.05.则下列结论中,正确结论的序号是______.①在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防感冒的作用”; ②若某人未使用该血清,那么他在一年中有95%的可能性得感冒;③这种血清预防感冒的有效率为95%;④这种血清预防感冒的有效率为5%.14.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射14天后的结果如下表所示:死亡存活总计第一种剂量141125第二种剂量61925总计203050进行统计分析的统计假设是______________________________________,k=________,两种剂量对小白鼠的致死作用__________.(填“相同”或“不相同”)15.某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm,170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________ cm.三、解答题(本题共有6个小题,共75分)16.(12分)研究某特殊药物有无副作用(比如服用后恶心),给50个患者服用此药,给另外50个患者服用安慰剂,记录每类样本中出现恶心的数目如下表:有恶心无恶心合计服用药物153550服用安慰剂44650合计1981100试问此药物有无恶心的副作用?17.(12分)某5名学生的总成绩与数学成绩如下表:学生 A B C D E总成绩(x)482383421364362数学成绩(y)7865716461(1)画出散点图;(2)求数学成绩对总成绩的回归方程;(3)如果一个学生的总成绩为450分,试预测这个学生的数学成绩(参考数据:4822+3832+4212+3642+3622=819 794,482×78+383×65+421×71+364×64+362×61=137 760).18.(12分)带有编号1,2,3,4,5的五个球.(1)全部投入4个不同的盒子里;(2)放进4个不同的盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入); (4)全部投入4个不同的盒子里,没有空盒. 各有多少种不同的放法? 19.(12分)已知⎝ ⎛⎭⎪⎫x +1241x n的展开式中,前三项的系数成等差数列,求展开式中所有的有理项.20.(13分)为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试分别用列联表、等高条形图、独立性检验的方法分析监督员甲对产品质量好坏有无影响.能否在犯错误的概率不超过0.001的前提下认为质量监督员甲在不在生产现场与产品质量好坏有关系?21.(14分)一次小测验共有3道选择题和2道填空题,每答对一道题得20分,答错或不答得0分.某同学答对每道选择题的概率均为0.8,答对每道填空题的概率均为0.5,各道题答对与否互不影响.(1)求该同学恰好答对2道选择题和1道填空题的概率; (2)求该同学至多答对4道题的概率;(3)若该同学已经答对了两道填空题,把他这次测验的得分记为X ,求X 的分布列及数学期望.参考答案一、1.解析:由散点图可以判断变量x 与y 负相关,u 与v 正相关. 答案:C2.解析:前三种方法只能直观地看出两个分类变量x 与y 是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.答案:D 3.答案:B4.解析:根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.答案:D5.解析:分三类:第一类:前5个题目的3个,后4个题目的3个, 第二类:前5个题目的4个,后4个题目的2个,第三类:前5个题目的5个,后4个题目的1个,由分类加法计数原理,得考生答题的不同选法的种数是C 35C 34+C 45C 24+C 55C 14=74.答案:B6.解析:⎝ ⎛⎭⎪⎫x +124x 8展开式的通项公式T r +1=C r 8·(x )8-r·⎝ ⎛⎭⎪⎫124x r =C r82r ·1634rx -,r =0,1,2,…,8.当16-3r4为整数时,r =0,4,8.∴展开式共有9项,其中有有理项3项,先排其余6项有A 66种排法,再将有理项插入形成的7个空档中,有A 37种方法.∴共有A 66A 37种排法.答案:C7.解析:P (B )=1-P (B )=1-5×5×56×6×6=91216,P (AB )=C 13×5×46×6×6=60216,∴P (A |B )=P (AB )P (B )=6091. 答案:A8.解析:在正态分布N (μ,σ2)中,x =μ为正态曲线的对称轴,结合图象可知,μ3最大;又参数σ确定了曲线的形状:σ越大,曲线越“矮胖”,σ越小,曲线越“高瘦”.故由图象知σ1最大.答案:D9.解析:由已知得E (ξ)=6,D (ξ)=2.4,所以E (η)=8-E (ξ)=2,D (η)=(-1)2D (ξ)=2.4. 答案:B10.解析:由已知,得3a +2b +0×c =2,即3a +2b =2, 所以ab =16×3a ×2b ≤16⎝ ⎛⎭⎪⎫3a +2b 22=16.答案:D二、11.解析:先从3名女生中选出2名捆绑,再用插空法,不同的排法种数有A 44·A 23·A 25=2 880.答案:2 88012.解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .∴该部件的使用寿命超过1 000小时的概率为P =⎝⎛ 12×12+12×12+12×⎭⎫12×12=38. 答案:3813.解析:K 2的观测值k ≈3.918≥3.841,而P (K 2≥3.841)≈0.05,所以在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防感冒的作用”.要注意我们检验的是假设是否成立和该血清预防感冒的有效率是没有关系的,不是同一个问题,不要混淆.答案:①14.答案:H 0:小白鼠的死亡与电离辐射的剂量无关 5.33 不相同15.解析:由题意父亲身高x cm 与儿子身高y cm 对应关系如下表:x 173 170 176 y170176182则x =173+170+1763=173,y =170+176+1823=176,∑3i =1(x i -x )(y i -y )=(173-173)×(170-176)+(170-173)×(176-176)+(176-173)×(182-176)=18,∑3i =1(x i -x )2=(173-173)2+(170-173)2+(176-173)2=18. ∴b ^=1818=1.∴a ^=y -b ^x =176-173=3.∴线性回归直线方程y ^=b ^x +a ^=x +3.∴可估计该老师他的孙子身高为182+3=185(cm). 答案:185三、16.解:由题意,问题可以归纳为独立检验假设H 1:服该药物与服用后恶心独立.为了检验假设,计算统计量K 2的观测值k =100×(15×46-4×35)250×50×19×81≈7.86>6.635.故拒绝H 1,即不能认为药物无恶心副作用,也可以说,在犯错误的概率不超过0.01的前提下认为该药物有恶心的副作用.17.解:(1)散点图如图(2)设回归方程为y ^=b ^x +a ^,b ^=∑5i =1x i y i -5x y ∑5i =1x 2i -5x2=137 760-5×3395×2 0125819 794-5×⎝⎛⎭⎫2 01252≈0.132,a ^=y -b ^x ≈3395-0.132×2 0125=14.683 2, 所以回归方程为y ^=14.683 2+0.132x .(3)当x =450时,y ^=14.683 2+0.132×450=74.083 2≈74,即数学成绩大约为74分. 18.解:(1)由分步乘法计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进4个不同的盒子里(每盒一个)共有A 45种放法. (3)将其中的4个球投入一个盒子里共有C 45C 14种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C 25A 44种不同的放法.19.解:∵前三项的系数为1,12C 1n ,14C 2n ,且它们成等差数列,∴2×12C 1n =1+14C 2n ,即n 2-9n +8=0.∴n =8或n =1(舍去).∴通项为T r +1=C r 8·(x )8-r ·⎝ ⎛⎭⎪⎫1241x r=⎝⎛⎭⎫12r ·C r 8·344rx -. ∴展开式中的有理项仅在4-3r4为整数时成立,又3与4互质,故r 是4的倍数.又∵0≤r ≤8,∴r =0,4,8.∴展开式中的有理项是T 1=x 4,T 5=358x ,T 9=1256x 2.20.解:(1)2×2列联表如下:合格品数 次品数 总计 甲在生产现场 982 8 990 甲不在生产现场493 17 510 总计1 475251 500由列联表可得|ad -bc |=|982×17-493×8|=12 750,相差较大,可在某种程度上认为“质量监督员甲是否在生产现场与产品质量有关系”.(2)相应的等高条形图如图所示.图中两个深色条的高分别表示甲在生产现场和甲不在生产现场样本中次品数的频率.从图中可以看出,甲不在生产现场样本中次品数的频率明显高于甲在生产现场样本中次品数的频率.因此可以认为质量监督员甲在不在生产现场与产品质量好坏有关系.(3)由2×2列联表中数据,计算得到K 2的观测值为k =1 500×(982×17-493×8)2990×510×1 475×25≈13.097>10.828,因此,在犯错误的概率不超过0.001的前提下,认为质量监督员甲在不在生产现场与产品质量好坏有关系.21.解:(1)P =C 23×⎝⎛⎭⎫452×15×C 12×⎝⎛⎭⎫122=24125.(2)该同学至多答对4道题的概率为1-⎝⎛⎭⎫453×⎝⎛⎭⎫122=109125. (3)X 的可能取值为40,60,80,100. P (X =40)=⎝⎛⎭⎫153=1125, P (X =60)=C 13×45×⎝⎛⎭⎫152=12125, P (X =80)=C 23×⎝⎛⎭⎫452×15=48125, P (X =100)=⎝⎛⎭⎫453=64125. 所以X 的分布列为X 40 60 80 100 P1125121254812564125E(X)=40×1125+60×12125+80×48125+100×64125=88.2019-2020学年。
高中数学 模块综合测评1(含解析)新人教A版选修2-3(2021年整理)
2017年高中数学模块综合测评1(含解析)新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高中数学模块综合测评1(含解析)新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高中数学模块综合测评1(含解析)新人教A版选修2-3的全部内容。
模块综合测评(一)(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.在错误!10的展开式中,x4的系数为( )A.-120 B.120 C.-15 D.15解析:在错误!10的展开式中,x4项是C错误!x7错误!3=-15x4.答案:C2.从黄瓜、白菜、油菜、扁豆4种蔬菜中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,则不同的种植方法共有()A.24种 B.18种 C.12种 D.6种解析:先选择一块土地种植黄瓜,有C错误!种选择,再从剩余的3种蔬菜选出2种分别种在剩余的两块土地上有A错误!种法,所以有C错误!·A错误!=18种不同的种植方法.答案:B3.若随机变量ξ服从正态分布N(0,1),已知P(ξ<-1.96)=0。
025,则P(|ξ|<1.96)=( )A.0.025 B.0。
050 C.0。
950 D.0.975解析:由随机变量ξ服从正态分布N(0,1),得P(ξ<1.96)=1-P(ξ≤-1.96).所以P(|ξ|<1.96)=P(-1。
96<ξ<1.96)=P(ξ<1。
96)-P(ξ≤-1.96)=1-2P(ξ≤-1.96)=1-2×0。
025=0。
高中数学 模块综合测评2(含解析)新人教A版选修2-3(2021年整理)
模块综合测评(二)(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程为错误!=错误!x+错误!必过样本点的中心(错误!,错误!) B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数r=-0。
936 2,则变量y和x之间具有线性相关关系解析:相关指数R2越大,模型的拟合效果越好,故C不正确.答案:C2.袋中有大小相同的3个红球,5个白球,从中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得红球的概率是()A.错误!B。
错误!C。
38D。
错误!解析:设事件A为“第一次取白球",事件B为“第二次取红球”,则P(A)=错误!=错误!,P(AB)=错误!=错误!,故P(B|A)=错误!=错误!。
答案:D3.要排出某班一天中语文、数学、政治、英语、体育、艺术6堂课的课程表,要求数学课排在上午(前4节),体育课排在下午(后2节),不同排法种数为()A.144 B.192C.360 D.720解析:由题意可知,数学课排在上午(前4节)有4种排法,体育课排在下午(后2节)有2种排法,其他4门课程无特别要求,故共有2×4×A4,4=192种排法.答案:B4.二项式错误!10的展开式中的常数项是()A.第10项B.第9项C.第8项D.第7项解析:展开式的通项公式T r+1=2r C错误!x20-错误!r,令20-错误!r=0,得r=8。
展开式中常数项是第9项,故选B。
答案:B5.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为( )A.0。
高中数学人教A版选修2-3模块综合测评1 Word版含解析
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·山西大学附中月考)某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有()A.510种B.105种C.50种D.3 024种【解析】每位乘客都有5种不同的下车方式,根据分步乘法计数原理,共有510种可能的下车方式,故选A.【答案】 A2.(1-x)6展开式中x的奇次项系数和为()A.32B.-32C.0D.-64【解析】(1-x)6=1-C16x+C26x2-C36x3+C46x4-C56x5+C66x6,所以x的奇次项系数和为-C16-C36-C56=-32,故选B.【答案】 B3.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)^=7.19x+73.93,用此方程预测儿子10岁的身对年龄(单位:岁)的线性回归方程y高,有关叙述正确的是()A.身高一定为145.83 cmB.身高大于145.83 cmC.身高小于145.83 cmD.身高在145.83 cm左右^=7.19x+73.93,得y^=145.83,但这种预测不一定【解析】将x=10代入y准确.实际身高应该在145.83 cm 左右.故选D.【答案】 D4.随机变量X的分布列如下表,则E(5X+4)等于()A.16 B .11 C .2.2 【解析】 由表格可求E (X )=0×0.3+2×0.2+4×0.5=2.4,故E (5X +4)=5E (X )+4=5×2.4+4=16.故选A.【答案】 A5.正态分布密度函数为f (x )=12 2πe -(x -1)28,x ∈R ,则其标准差为( )A .1B .2C .4D .8【解析】 根据f (x )=1σ 2πe -(x -μ)22σ2,对比f (x )=12 2πe -(x -1)28知σ=2.【答案】 B6.独立性检验中,假设H 0:变量X 与变量Y 没有关系,则在H 0成立的情况下,P (K 2≥6.635)=0.010表示的意义是( )A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99.9%C .变量X 与变量Y 没有关系的概率为99%D .变量X 与变量Y 有关系的概率为99%【解析】 由题意知变量X 与Y 没有关系的概率为0.01,即认为变量X 与Y 有关系的概率为99%.【答案】 D7.三名教师教六个班的数学,则每人教两个班,分配方案共有( ) A .18种 B .24种 C .45种 D .90种【解析】 不妨设三名教师为甲、乙、丙.先从6个班中任取两个班分配甲,再从剩余4个班中,任取2个班分配给乙,最后两个班分给丙.由乘法计数原理得分配方案共C 26·C 24·C 22=90(种). 【答案】 D8.已知⎝ ⎛⎭⎪⎫1x -x n 的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于( )A .15B .-15C .20D .-20【解析】 由题意知n =6,T r +1=C r 6⎝ ⎛⎭⎪⎫1x 6-r ·(-x )r=(-1)r C r 6x 32r -6,由32r -6=0,得r =4, 故T 5=(-1)4C 46=15,故选A. 【答案】 A9.设随机变量ξ~B (n ,p ),若E (ξ)=2.4,D (ξ)=1.44,则参数n ,p 的值为( ) 【导学号:97270066】A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 【解析】 由二项分布的均值与方差性质得 ⎩⎨⎧ np =2.4,np (1-p )=1.44,解得⎩⎨⎧n =6,p =0.4,故选B. 【答案】 B10.小明同学在网易上申请了一个电子信箱,密码由4位数字组成,现在小明只记得密码是由2个6,1个3,1个9组成,但忘记了它们的顺序.那么小明试着输入由这样4个数组成的一个密码,则他恰好能输入正确进入邮箱的概率是( )A.16B.18C.112D.124【解析】 由2个6,1个3,1个9这4个数字一共可以组成A 44A 22=12种不同的密码顺序,因此小明试着输入由这样4个数组成的一个密码,他恰好能输入正确进入邮箱的概率是P =112.【答案】 C 11.有下列数据:A .y =3×2x -1B .y =log 2xC .y =3xD .y =x 2【解析】 当x =1,2,3时,代入检验y =3×2x -1适合.故选A. 【答案】 A 12.图1(2016·孝感高级中学期中)在如图1所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,若各保险匣之间互不影响,则当开关合上时,电路畅通的概率是( )A.551720B.29144C.2972D.2936【解析】 “左边并联电路畅通”记为事件A ,“右边并联电路畅通”记为事件B .P (A )=1-⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×14=56. P (B )=1-15×16=2930.“开关合上时电路畅通”记为事件C . P (C )=P (A )·P (B )=56×2930=2936,故选D. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.(2016·石家庄二模)利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程x 2-x +a =0无实根的概率为________.【解析】 ∵方程无实根,∴Δ=1-4a <0,∴a >14, ∴所求概率为34. 【答案】 3414.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.【解析】 由下图可以看出P (550<X <600)=P (400<X <450)=0.3.【答案】 0.315.(2015·重庆高考)⎝⎛⎭⎪⎫x 3+12x 5的展开式中x 8的系数是________(用数字作答).【解析】 ∵T r +1=C r 5·(x 3)5-r ·⎝ ⎛⎭⎪⎫12x r =C r 5·x 15-3r ·⎝ ⎛⎭⎪⎫12r·x -r 2=⎝ ⎛⎭⎪⎫12r ·C r 5·x 30-7r 2(r =0,1,2,3,4,5),由30-7r 2=8,得r =2,∴⎝ ⎛⎭⎪⎫122·C 25=52.【答案】 52 16.图2将一个半径适当的小球放入如图2所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________. 【导学号:97270067】【解析】 记“小球落入A 袋中”为事件A ,“小球落入B 袋中”为事件B ,则事件A 的对立事件为B ,若小球落入B 袋中,则小球必须一直向左落下或一直向右落下,故P (B )=⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫123=14,从而P (A )=1-P (B )=1-14=34.【答案】 34三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)6男4女站成一排,求满足下列条件的排法: (1)任何2名女生都不相邻有多少种排法? (2)男甲不在首位,男乙不在末位,有多少种排法? (3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?【解】 (1)任何2名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A 66·A 47=604 800(种)不同排法.(2)法一:甲不在首位,按甲的排法分类,若甲在末位,则有A 99种排法,若甲不在末位,则甲有A 18种排法,乙有A 18种排法,其余有A 88种排法,综上共有(A 99+A 18A 18A 88)=2 943 360(种)排法.法二:无条件排列总数A 1010-⎩⎨⎧甲在首,乙在末A 88,甲在首,乙不在末A 99-A 88,甲不在首,乙在末A 99-A 88,甲不在首,乙不在末,共有A 1010-2A 99+A 88=2 943 360(种)排法.(3)10人的所有排列方法有A 1010种,其中甲、乙、丙的排序有A 33种,又对应甲、乙、丙只有一种排序,所以甲、乙、丙排序一定的排法有A 1010A 33=604 800(种).(4)男甲在男乙的左边的10人排列与男甲在男乙的右边的10人排列数相等,而10人排列数恰好是这二者之和,因此满足条件的有12A 1010=1 814 400(种)排法.18.(本小题满分12分)某年级的一次信息技术测验成绩近似服从正态分布N (70,102),如果规定低于60分为不及格,求:(1)成绩不及格的学生人数占总人数的比例; (2)成绩在80~90分内的学生人数占总人数的比例.【解】 (1)设学生的得分为随机变量X ,X ~N (70,102),则μ=70,σ=10. 分数在60~80之间的学生的比例为 P (70-10<X ≤70+10)=0.683, 所以不及格的学生的比例为12×(1-0.683)=0.158 5,即成绩不及格的学生人数占总人数的15.85%. (2)成绩在80~90分内的学生的比例为12[P (70-2×10<X ≤70+2×10)]-12[P (70-10<X ≤70+10)]=12(0.954-0.683)=0.135 5.即成绩在80~90分内的学生人数占总人数的13.55%.19.(本小题满分12分)口袋中有2个白球和4个红球,现从中随机地不放回连续抽取两次,每次抽取1个,则(1)第一次取出的是红球的概率是多少?(2)第一次和第二次取出的都是红球的概率是多少?(3)在第一次取出红球的条件下,第二次取出的也是红球的概率是多少? 【解】 记事件A :第一次取出的是红球; 事件B :第二次取出的是红球. (1)第一次取出红球的概率 P (A )=4×56×5=23. (2)第一次和第二次取出的都是红球的概率P (A ∩B )=4×36×5=25. (3)在第一次取出红球的条件下,第二次取出的也是红球的概率为 P (B |A )=P (A ∩B )P (A )=2523=35.20.(本小题满分12分)已知⎝ ⎛⎭⎪⎫x -2x n 的展开式中,第4项和第9项的二项式系数相等.(1)求n ;(2)求展开式中x 的一次项的系数.【解】 (1)由第4项和第9项的二项式系数相等可得C 3n =C 8n ,解得n =11.(2)由(1)知,展开式的第k +1项为 T k +1=C k 11(x )11-k ⎝ ⎛⎭⎪⎫-2x k=(-2)k C k11x 11-3k 2. 令11-3k2=1,得k =3.此时T 3+1=(-2)3C 311x =-1 320x , 所以展开式中x 的一次项的系数为-1 320. 21.(本小题满分12分)对于表中的数据:(1)(2)求线性回归方程.【解】 (1)如图,x ,y 具有很好的线性相关性. (2)因为x =2.5,y =5,∑4i =1x i y i =60,∑4i =1x 2i =30,∑4i =1y 2i =120.04. 故b ^=60-4×2.5×530-4×2.52=2,a^=y -b ^ x =5-2×2.5=0, 故所求的回归直线方程为 y ^=2x .22.(本小题满分12分)(2016·丰台高二检测)“每天锻炼一小时,健康工作五十年,幸福生活一辈子.”一科研单位为了解员工爱好运动是否与性别有关,从单位随机抽取30名员工进行了问卷调查,得到了如下列联表:已知在这30人中随机抽取1人抽到爱好运动的员工的概率是815.(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料分析能否有把握认为爱好运动与性别有关?(2)若从这30人中的女性员工中随机抽取2人参加一活动,记爱好运动的人数为X,求X的分布列、数学期望.【解】(1)k=30×(10×8-6×6)216×14×16×14≈1.158<3.841,所以没有把握认为爱好运动与性别有关.(2)X的取值可能为0,1,2.P(X=0)=C28C214=413,P(X=1)=C16C18C214=4891,P(X=2)=C26C214=1591.所以X的分布列为:X的数学期望为E(X)=0×413+1×4891+2×1591=67.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教A 版选修2-3模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A .24种B .18种C .12种D .6种2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.63.设随机变量ξ服从正态分布N (2,9),若P (ξ>c )=P (ξ<c -2),则c 的值是( ) A .1 B .2 C .3 D .44.设A =37+C 27·35+C 47·33+C 67·3,B =C 17·36+C 37·34+C 57·32+1,则A -B 的值为( )A .128B .129C .47D .05.若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .1206.已知某离散型随机变量X 服从的分布列如下,则随机变量X 的数学期望E (X )等于( )A.19B.29C.13D.237.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66 C .C 28A 26D .C 28A 258.一个电路如图1所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是()图1A.164 B.5564 C.18 D.1169.利用下列盈利表中的数据进行决策,应选择的方案是()A.A123410.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A在一次试验中发生的概率的取值范围是() A.[0.4,1) B.(0,0.6]C.(0,0.4] D.[0.6,1)11.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X<2)等于()A.715 B.815 C.1415D.112.已知0<a<1,方程a|x|=|log a x|的实根个数为n,且(x+1)n+(x+1)11=a0+a1(x+2)+a2(x+2)2+…+a10(x+2)10+a11(x+2)11,则a1等于() A.-10 B.9 C.11 D.-12二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则(a0+a2+a4)·(a1+a3+a5)的值等于________.14.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a,b,共可得到lg a -lg b 的不同值的个数是________.15.某市工商局于2016年3月份,对全市流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的X 饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶X 饮料,并限定每人喝2瓶.则甲喝2瓶合格的X 饮料的概率是________.16.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2016·河南周口)在二项式⎝ ⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.18.(本小题满分12分)某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ).【解】 (1)ξ的所有可能取值为0,1,2,依题意,得P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15.∴ξ的分布列为(2)设“则P (C )=C 34C 36=420=15,∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12,P (A )=C 25C 36=12,P (AB )=C 14C 36=15,P (B |A )=P (AB )P (A )=25. 19.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b^x +a ^中,b =∑i =1nx i y i -n x y ∑i =1nx 2i -n x 2,a^=y -b ^x ,其中x ,y为样本平均值.【解】 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b ^=l xy l xx=2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4.故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).20.(本小题满分12分)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a .假设所有病人的康复时间相互独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a =25,求甲的康复时间比乙的康复时间长的概率;(3)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)【解】 设事件A i 为“甲是A 组的第i 个人”, 事件B i 为“乙是B 组的第i 个人”,i =1,2,…,7. 由题意知P (A i )=P (B i )=17,i =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6,因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049.(3)a =11或a =18.21.(本小题满分12分)(2016·广州综合测试)甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲、丙两人同时不被聘用的概率是625,乙、丙两人同时被聘用的概率是310,且三人各自能否被聘用相互独立.(1)求乙、丙两人各自能被聘用的概率;(2)设ξ表示甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).【解】 记甲、乙、丙各自能被聘用的事件分别为A 1,A 2,A 3,由已知A 1,A 2,A 3相互独立,且满足⎩⎪⎨⎪⎧P (A 1)=25,[1-P (A 1)][1-P (A 3)]=625,P (A 2)P (A 3)=310,解得P (A 2)=12,P (A 3)=35.所以乙、丙两人各自能被聘用的概率分别为12,35. (2)ξ的可能取值为1,3.因为P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)+ [1-P (A 1)][1-P (A 2)][1-P (A 3)] =25×12×35+35×12×25=625,所以P (ξ=1)=1-P (ξ=3)=1-625=1925, 所以ξ的分布列为E (ξ)=1×1925+3×625=3725.22.(本小题满分12分)有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为27.(1)请完成上面的2能否认为“成绩与班级有关”;(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E (ξ).附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),【解】 (1)k ≈12.2,所以按照 (2)ξ~B ⎝ ⎛⎭⎪⎫3,27,且P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫27k ·⎝ ⎛⎭⎪⎫573-k(k =0,1,2,3),ξ的分布列为E (ξ)=0×125343+1×150343+2×60343+3×8343=67.分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A .24种B .18种C .12种D .6种【解析】 种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选B.【答案】 B3.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6【解析】 由已知随机变量X +Y =8,所以有Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4. 【答案】 B3.设随机变量ξ服从正态分布N (2,9),若P (ξ>c )=P (ξ<c -2),则c 的值是( ) A .1 B .2 C .3 D .4【解析】 随机变量ξ服从正态分布N (2,9), ∴曲线关于x =2对称, ∵P (ξ>c )=P (ξ<c -2), ∴c +c -22=2,∴c =3.故选C.【答案】 C4.设A =37+C 27·35+C 47·33+C 67·3,B =C 17·36+C 37·34+C 57·32+1,则A -B 的值为( )A .128B .129C .47D .0【解析】 A -B =37-C 17·36+C 27·35-C 37·34+C 47·33-C 57·32+C 67·3-1=(3-1)7=27=128,故选A.【答案】 A5.若⎝ ⎛⎭⎪⎫x +1x n展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120【解析】 ∵C 0n +C 1n +…+C n n =2n=64,∴n =6. T r +1=C r 6x 6-r x -r =C r 6x6-2r ,令6-2r =0,∴r =3, 常数项T 4=C 36=20,故选B. 【答案】 B6.已知某离散型随机变量X 服从的分布列如下,则随机变量X 的数学期望E (X )等于( )A.19B.29C.13D.23【解析】 由题意可知m +2m =1,所以m =13,所以E (X )=0×13+1×23=23. 【答案】 D7.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66 C .C 28A 26D .C 28A 25【解析】 从后排8人中选2人安排到前排6个位臵中的任意两个位臵即可,所以选法种数是C 28A 26,故选C.【答案】 C8.一个电路如图1所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )图1A.164B.5564C.18D.116【解析】 开关C 断开的概率为12,开关D 断开的概率为12,开关A ,B 至少一个断开的概率为1-12×12=34,开关E ,F 至少一个断开的概率为1-12×12=34,故灯不亮的概率为12×12×34×34=964,故灯亮的概率为1-964=5564,故选B.【答案】 B9.利用下列盈利表中的数据进行决策,应选择的方案是( )A.A 1 234【解析】 利用方案A 1,期望为 50×0.25+65×0.30+26×0.45=43.7; 利用方案A 2,期望为70×0.25+26×0.30+16×0.45=32.5; 利用方案A 3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A4,期望为98×0.25+82×0.30-10×0.45=44.6;因为A3的期望最大,所以应选择的方案是A3,故选C.【答案】 C10.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A在一次试验中发生的概率的取值范围是() A.[0.4,1) B.(0,0.6]C.(0,0.4] D.[0.6,1)【解析】设事件A发生一次的概率为p,则事件A的概率可以构成二项分布,根据独立重复试验的概率公式可得C14p(1-p)3≤C24p2(1-p)2,即可得4(1-p)≤6p,p≥0.4.又0<p<1,故0.4≤p<1.【答案】 A11.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X<2)等于()A.715 B.815 C.1415D.1【解析】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=C27C210=715,P(X=1)=C17·C13C210=715,P(X=2)=C23C210=115,于是P(X<2)=P(X=0)+P(X=1)=715+715=1415.【答案】 C12.已知0<a<1,方程a|x|=|log a x|的实根个数为n,且(x+1)n+(x+1)11=a0+a1(x+2)+a2(x+2)2+…+a10(x+2)10+a11(x+2)11,则a1等于() A.-10 B.9 C.11 D.-12【解析】作出y=a|x|(0<a<1)与y=|log a x|的大致图象如图所示,所以n=2.故(x+1)n+(x +1)11=(x+2-1)2+(x+2-1)11,所以a1=-2+C1011=-2+11=9.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.已知(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则(a 0+a 2+a 4)·(a 1+a 3+a 5)的值等于________.【解析】 令x =1,得a 0+a 1+a 2+a 3+a 4+a 5=0,①再令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5=25=32,②①+②得a 0+a 2+a 4=16,①-②得a 1+a 3+a 5=-16,故(a 0+a 2+a 4)·(a 1+a 3+a 5)的值等于-256.【答案】 -25615.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是________.【解析】 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共A 25=20种排法,因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.【答案】 1815.某市工商局于2016年3月份,对全市流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的X 饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶X 饮料,并限定每人喝2瓶.则甲喝2瓶合格的X 饮料的概率是________.【解析】 “第一瓶X 饮料合格”为事件A 1,“第二瓶X 饮料合格”为事件A 2,P (A 1)=P (A 2)=0.8,A 1与A 2是相互独立事件,则“甲喝2瓶X 饮料”都合格就是事件A 1,A 2同时发生,根据相互独立事件的概率乘法公式得:P (A 1A 2)=P (A 1)·P (A 2)=0.8×0.8=0.64.【答案】 0.6416.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.【解析】 根据题意,每个部门都有3种情况可选,则4个部门选择3个景区有34=81种不同的选法,记“3个景区都有部门选择”为事件A ,如果3个景区都有部门选择,则某一个景区必须有2个部门选择,其余2个景区各有1个部门选择,分2步分析:(1)从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法;(2)每组选择不同的景区,共有A 33=6种选法.所以3个景区都有部门选择可能出现的结果数为6×6=36种.则P (A )=3681=49. 【答案】 49三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2016·河南周口)在二项式⎝ ⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项. 【解】 ∵二项展开式的前三项的系数分别是1,n 2,18n (n -1),∴2·n 2=1+18n (n-1),解得n =8或n =1(不合题意,舍去),∴T k +1=C k 8x 8-k 2⎝ ⎛⎭⎪⎪⎫124x k =C k 82-k x 4-34k , 当4-34k ∈Z 时,T k +1为有理项.∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求.故有理项有3项,分别是T 1=x 4,T 5=358x ,T 9=1256x -2.∵n =8,∴展开式中共9项.中间一项即第5项的二项式系数最大,则为T 5=358x .。