精编2021年中考数学专题训练:与圆有关的位置关系(含答案)
2021年人教版中考数学一轮复习:点与圆的位置关系 专项练习题(含答案)
2021年人教版中考数学一轮复习:点与圆的位置关系专项练习题1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.2.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.83.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定4.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是()A.3B.C.D.45.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P的⊙O上C.点P在⊙O外D.点P在⊙O上或⊙O外6.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定7.若点B(a,0)在以A(1,0)为圆心,2为半径的圆内,则a的取值范围为()A.a<﹣1B.a>3C.﹣1<a<3D.a≥﹣1且a≠0 8.平面内有两点P,O,⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法判断9.如图,抛物线y=﹣1与x轴交于A,B两点,D是以点C(0,4)为圆心,1为半径的圆上的动点,E是线段AD的中点,连接OE,BD,则线段OE的最小值是()A.2B.C.D.310.若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A.B.C.或D.a+b或a﹣b 11.圆的直径为10cm,如果点P到圆心O的距离是d,则()A.当d=8cm时,点P在⊙O内B.当d=10cm时,点P在⊙O上C.当d=5cm时,点P在⊙O上D.当d=6cm时,点P在⊙O内12.设P为⊙O外一点,若点P到⊙O的最短距离为3,最长距离为7,则⊙O的半径为()A.3B.2C.4或10D.2或513.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P(﹣3,4)与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定14.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A.d<4B.d=4C.d>4D.0≤d<415.如图,△ABC为等边三角形,AB=2.若P为△ABC内一动点,且满足∠P AB=∠ACP,则线段PB长度的最小值为.16.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为.17.如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE,在点D变化的过程中,线段BE的最小值是cm.18.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.19.已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是.20.如图,M(0,﹣3)、N(0,﹣9),半径为5的⊙A经过M、N,则A点坐标为.21.如图,Rt△OAB中,∠OAB=90°,OA=8cm,AB=6cm,以O为圆心,4cm为半径作⊙O,点C为⊙O上一个动点,连接BC,D是BC的中点,连接AD,则线段AD的最大值是cm.22.如图,Rt△ABC,AB=3,AC=4,点D在以C为圆心、3为半径的圆上,F是BD的中点,则线段AF的最大值是.23.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD=4,连接BD,取BD的中点E,连接CE,则CE的最大值为.24.如图,在⊙O中,半径OC=6,D是半径OC上一点,且OD=4.A,B是⊙O上的两个动点,∠ADB=90°,F是AB的中点,则OF的长的最大值等于.25.⊙O的半径为10cm,点P到圆心O的距离为12cm,则点P和⊙O的位置关系是.26.如图,在网格(每个小正方形的边长均为1)中选取7个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为.27.在同一平面内,⊙O的直径为2cm,点P到圆心O的距离是3cm,则点P与⊙O的位置关系是.28.如图,正方形ABCD的边长为4,点E是AB边上一个动点,点F是CD边上一个动点,且AE=CF,过点B作BG⊥EF于点G,连接AG,则AG长的最小值是.29.已知⊙O的半径是3,OP=2,则点P与⊙O的位置关系是:点P在⊙O.30.已知∠APB=90°,以AB为直径作⊙O,则点P与⊙O的位置关系是.31.如图,在△ABC中,AB=AC,作AD⊥BC于点D,以点A为圆心,AD为半径画⊙A.则点B与⊙A的位置关系为(填“在圆内”.“在圆上”或“在圆外”)32.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E(0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连结CM.则线段CM的最大值是.33.如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)在图中确定该圆弧所在圆的圆心D点的位置,并写出点D点坐标为.(2)连接AD、CD,求⊙D的半径及弧的长.(3)有一点E(6,0),判断点E与⊙D的位置关系.参考答案1.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选:B.2.解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.3.解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.4.解:连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.5.解:∵圆心O的坐标为(0,0),点P的坐标为(4,2),∴OP==<5,因而点P在⊙O内.故选:A.6.解:∵M(2,0),P(﹣2,3),∴MP==5,∵圆M的半径为4,∴点P在圆外,故选:C.7.解:∵点B(a,0)在以点A(1,0)为圆心,以2为半径的圆内,∴|a﹣1|<2,∴﹣1<a<3.故选:C.8.解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:C.9.解:∵抛物线y=﹣1与x轴交于A,B两点,∴A、B两点坐标为(﹣3,0)、(3,0),∵D是以点C(0,4)为圆心,根据勾股定理,得BC=5,∵E是线段AD的中点,O是AB中点,∴OE是三角形ABD的中位线,∴OE=BD,即点B、D、C共线时,BD最小,OE就最小.如图,连接BC交圆于点D′,∴BD′=BC﹣CD′=5﹣1=4,∴OE′=2.所以线段OE的最小值为2.故选:A.10.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时时,圆的直径是a+b,因而半径是;当此点在圆外时,圆的直径是a﹣b,因而半径是.则此圆的半径为或.故选:C.11.解:∵圆的直径为10cm,∴圆的半径为5cm,∴当d>5cm时,点P在⊙O外;当d=5cm时,点P在⊙O上;当d<5cm时,点P在⊙O内.故选:C.12.解:∵P为⊙O外一点,若点P到⊙O的最短距离为3,最长距离为7,∴⊙O的直径为:7﹣3=4,∴⊙O的半径为2,故选:B.13.解:∵圆心P的坐标为(﹣3,4),∴OP==5.∵⊙O的半径为5,∴点P在⊙O上.故选:B.14.解:∵点P在圆内,且⊙O的半径为4,∴0≤d<4,故选:D.15.解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠P AB=∠ACP,∴∠P AC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时P A=PC,OB⊥AC,则AD=CD=AC=1,∠P AC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.16.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.17.解:如图,由题意知,∠AEC=90°,∴E在以AC为直径的⊙M的上(不含点C、可含点N),∴BE最短时,即为连接BM与⊙M的交点(图中点E′点),∵AB=13cm,AC=12cm,BC=5cm,∴AC2+BC2=AB2,∴∠ACB=90°,作MF⊥AB于F,∴∠AFM=∠ACB=90°,∠F AM=∠CAB,∴△AMF∽△ABC,∴=,即=,得MF=,∴AF==,则BF=AB﹣AF=,∴BM==,∵ME=6,∴BE长度的最小值BE′=BM﹣ME′=﹣6(cm),(方法二:BM直接用勾股定理求出)故答案为:(﹣6).18.解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.(也可以用DE≥BD﹣BE,即DE≥2﹣2确定最小值)故答案为2﹣2.19.解:∵⊙O的直径为6,∴⊙O的半径为3,∵点M到圆心O的距离为4,∴4>3,∴点M在⊙O外.故答案为:在圆外.20.解:过A作AB⊥NM于B,连接AM,∵AB过A,∴MB=NB,∵半径为5的⊙A与y轴相交于M(0,﹣3)、N(0,﹣9),∴MN=9﹣3=6,AM=5,∴BM=BN=3,OB=3+3=6,由勾股定理得:AB==4,∴点A的坐标为(﹣4,﹣6),故答案为:(﹣4,﹣6).21.解:由题意知OB=10连接OC,作直角△ABO斜边中线OE,连接ED,则DE=OC=2,AE=OB=5.因为AD<DE+AE,所以当DE、AE共线时AD=AE+DE最大为7cm.故答案为:7.22.解:取BC的中点N,连接AN,NF,DC,∵Rt△ABC,AB=3,AC=4,∴BC==5,∵N为BC的中点,∴AN=BC=,又∵F为BD的中点,∴NF是△CDB的中位线,∴NF=DC=,∵﹣≤AF≤+,即1≤AF≤4.∴最大值为4,故答案为:4.23.解:∵点D为平面内动点,且满足AD=4,∴点D是以点A为圆心4为半径的圆上一点,作AB的中点M,连接EM、CM.在直角△ABC中,AB===10,∵M是直角△ABC斜边AB上的中点,∴CM=AB=5.∵E是BD的中点,M是AB的中点,∴ME=AD=2.∵5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.24.解:∵当点F与点D运动至共线时,OF长度最大,如图,∵F是AB的中点,∴OC⊥AB,设OF为x,则DF=x﹣4,∵△ABD是等腰直角三角形,∴DF=AB=BF=x﹣4,在Rt△BOF中,OB2=OF2+BF2,∵OB=OC=6,∴36=x2+(x﹣4)2,解得x=2+或2﹣(舍去)∴OF的长的最大值等于2+,故答案为2+.25.解:∵⊙O的半径r=10cm,点P到圆心O的距离OP=12cm,∴OP>r,∴点P在⊙O外,故答案为:点P在⊙O外.26.解:如图,AB=AC==,AD==2,AE=3,所以以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,这三个点只能为B、C、D点,所以2<r≤3.故答案为2<r≤3.27.解:∵⊙O的直径为2cm,∴半径r=1cm,∵d=3,且d>r,∴点P与⊙O的位置关系是:点P在⊙O外,故答案为:点P在⊙O外.28.解:设正方形的中心为O,可证EF经过O点.连结OB,取OB中点M,连结MA,MG,则MA,MG为定长,过点M作MH⊥AB于H.则MH=BH=1,AH=3,由勾股定理可得MA=,MG=OB=,∵AG≥AM﹣MG=﹣,当A,M,G三点共线时,AG最小=﹣,故答案为:﹣.29.解:∵OP=2<3,∴点P在⊙O内部.故答案是:内部.30.解:如图所示:当点P在⊙O上时,∵AB是⊙O的直径,∴∠APB=90°,又∵∠APB=90°,则点P在⊙O上.故答案为:点P在⊙O上.31.解:∵AB=AC,作AD⊥BC,∴AB>AD,即AB>r,∴点B与⊙A的位置关系在圆外.故答案为:在圆外32.解:解方程x2﹣8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(0,﹣4),AQ==5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=AP,∴CM的最大值为.故答案为:.33.解:(1)如图,D点坐标为(2,0),故答案为:(2,0);(2)AD==2;作CE⊥x轴,垂足为E.∵△AOD≌△DEC,∴∠OAD=∠CDE,又∵∠OAD+∠ADO=90°,∴∠CDE+∠ADO=90°,∴扇形DAC的圆心角为90度,∴的长为=π;(3)点E到圆心D的距离为4,∴点E在⊙D内部.。
中考数学专题练习:与圆有关的位置关系 (含答案)
中考数学专题练习:与圆有关的位置关系(含答案)1.在Rt△ABC中,∠C=90°,AC=2,BC=4,如果以点A为圆心,AC为半径作⊙A,那么斜边中点D与⊙A的位置关系是( )A.点D在⊙A外B.点D在⊙A上C.点D在⊙A内D.无法确定2.如图,点F是△ABC的内心,∠A=50°,则∠BFC=( )A.100° B.115° C.130° D.135°3.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°4.(·宜宾)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG 的长是________.5.如图,在△ABC中,CB=3,AB=4,AC=5,以点B为圆心的圆与AC相切于点D,则⊙B的半径为__________.6.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=________度.7.(·宁夏)如图,点A、B、C均在6×6的正方形网格格点上,过A、B、C三点的外接圆除经过A,B,C三点外还能经过的格点数为______.8.(·甘肃省卷)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写作法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.9.(·东营)如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD =23AD ,AC =3,求CD 的长.参考答案1.A 2.B 3.D 4.5-1 5.2.4 6.45 7.58.解:(1)如解图,作出角平分线CO ;作出⊙O.(2)AC 与⊙O 相切.9.证明:(1)如解图,连接OD ,∵AB 是⊙O 的直径,∴∠ADB=90°,又∵CD 是⊙O 的切线,∴∠ODC=90°,∴∠BDC+∠ODB=90°,∠1+∠ODB=90°,∴∠1=∠BDC,又∵OA=OD,∴∠1=∠CAD,∴∠CAD=∠BDC;(2)解:∵BD=23 AD,∴BDAD=23,∵∠CAD=∠BDC,∴tan∠CAD=tan∠CDB=BDAD=23,∵∠CAD=∠BDC,∠C=∠C,∴△CAD∽△CDB,∴CDCA=BDAD=23,∴CD=23CA=23×3=2.。
2021年 中考数学 专题训练:与圆有关的性质(含答案)
2021 中考数学专题训练:与圆有关的性质一、选择题1. 如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°2. 已知⊙O的半径为5 cm,P是⊙O内一点,则OP的长可能是()A.4 cm B.5 cm C.6 cm D.7 cm3. 下列语句中不正确的有()①过圆上一点可以作圆中最长的弦无数条;②长度相等的弧是等弧;③圆上的点到圆心的距离都相等;④在同圆或等圆中,优弧一定比劣弧长.A.1个B.2个C.3个D.4个4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A .30°B .40°C .50°D .60°6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87. 下列说法:①矩形的四个顶点在同一个圆上;②菱形的四个顶点在同一个圆上;③平行四边形的四个顶点在同一个圆上.其中正确的有( )链接听P37例3归纳总结 A .0个 B .1个 C .2个 D .3个8. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°9. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒10. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°二、填空题11.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.︵13. 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC 上一点,则∠D=________.14. 如图,AB为⊙O的直径,CD⊥AB.若AB=10,CD=8,则圆心O到弦CD 的距离为________.15. 如图所示,OB ,OC 是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.17. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题19.如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥B C.20.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.21. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE2021 中考数学专题训练:与圆有关的性质-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】B[解析] ①②不正确.4. 【答案】A[解析]连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵=,∴∠CAB=∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】D6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B[解析] 矩形的两条对角线的交点到矩形的四个顶点的距离相等,故它的四个顶点在以对角线的交点为圆心、对角线长的一半为半径的圆上.8. 【答案】B9. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB =,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .10. 【答案】C二、填空题11.【答案】50°【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°. 14. 【答案】315. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.17. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.18. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A作直径AD,连接BD,则∠ABD=90°,∴∠C=∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题19. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.20. 【答案】(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,(2分)解图又∵∠DEA=∠CBA,∴∠DEA+∠DOE=∠CAB+∠CBA,又∵∠ACB=90°,∴∠ODE=∠ACB=90°,(5分)∴OD⊥DE,又∵OD是⊙O的半径,∴DE与⊙O相切.(7分)(2)解:如解图,连接BD,可得△FBD ∽△DBO , ∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π。
2021年中考数学 专题训练:与圆有关的位置关系(含答案)
2021中考数学专题训练:与圆有关的位置关系一、选择题1. 平面内,☉O的半径为1,点P到O的距离为2,过点P可作☉O的切线条数为()A.0条B.1条C.2条D.无数条2. 如图,已知AB是☉O的直径,点P在BA的延长线上,PD与☉O相切于点D,过点B作PD的垂线交PD的延长线于点C.若☉O的半径为4,BC=6,则P A的长为()A.4B.2C.3D.2.53. 2018·眉山如图所示,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于()A.27°B.32°C.36°D.54°4. 如图,P是⊙O外一点,OP交⊙O于点A,OA=AP.甲、乙两人想作一条经过点P且与⊙O相切的直线,其作法如下:甲:以点A为圆心,AP长为半径画弧,交⊙O于点B,则直线BP即为所求.乙:过点A作直线MN⊥OP,以点O为圆心,OP长为半径画弧,交射线AM于点B,连接OB,交⊙O于点C,直线CP即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲正确,乙错误B.乙正确,甲错误C.两人都正确D.两人都错误5. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个6. (2019•娄底)如图,边长为23的等边ABC△的内切圆的半径为A.1 B.3C.2 D.237. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°8. 如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()A. 12B.22C.32D.339. 如图,在网格中(每个小正方形的边长均为1个单位长度)选取9个格点(格线的交点称为格点).如果以点A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()图A.22<r≤17 B.17<r≤3 2C.17<r≤5 D.5<r≤2910. (2019•仙桃)如图,AB为O的直径,BC为O的切线,弦AD∥OC,直线⊥;CD交的BA延长线于点E,连接BD.下列结论:①CD是O的切线;②CO DB⋅=⋅.其中正确结论的个数有③EDA EBD△∽△;④ED BC BO BEA.4个B.3个C.2个D.1个二、填空题11. 如图,☉O分别切∠BAC的两边AB,AC于点E,F,点P在优弧上.若∠BAC=66°,则∠EPF等于度.12. 如图,以AB为直径的☉O与CE相切于点C,CE交AB的延长线于点E,直径AB=18,∠A=30°,弦CD⊥AB,垂足为点F,连接AC,OC,则下列结论正确的是.(写出所有正确结论的序号)①=;②扇形OBC的面积为π;③△OCF∽△OEC;④若点P为线段OA上一动点,则AP·OP有最大值20.25.13. 如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,则在旋转的过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次14. 已知l1∥l2,l1,l2之间的距离是3 cm,圆心O到直线l1的距离是1 cm,如果圆O与直线l1,l2有三个公共点,那么圆O的半径为________cm.15. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.16. 如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=________°.三、解答题17. 如图,AB是☉O的直径,C是☉O上一点,过点O作OD⊥AB,交BC的延长线于点D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是☉O的切线;(2)若∠A=22.5°,求证:AC=DC.18. 如图,AB为☉O的直径,且AB=4,点C是上的一动点(不与A,B重合),过点B作☉O的切线交AC的延长线于点D,点E是BD的中点,连接EC.(1)求证:EC是☉O的切线;(2)当∠D=30°时,求图中阴影部分的面积.19. 如图,在△ABC中,AB=AC,以AB为直径的☉O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与☉O的位置关系,并说明理由;(2)求证:点H为CE的中点.20. 如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF·ED;(3)求证:AD是⊙O的切线.21. 已知⊙O的半径为3,⊙P与⊙O相切于点A,经过点A的直线与⊙O、⊙P分别交于点B、C,cos∠BAO=13.设⊙P的半径为x,线段OC的长为y.(1)求AB的长;(2)如图,当⊙P与⊙O外切时,求y与x之间的函数关系式,并写出函数的定义域;(3)当∠OCA=∠OPC时,求⊙P的半径.2021中考数学专题训练:与圆有关的位置关系-答案一、选择题1. 【答案】C[解析]∵☉O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与☉O的位置关系是:P在☉O外.∵过圆外一点作圆的切线有2条,故选C.2. 【答案】A[解析]如图,连接OD.∵PC切☉O于点D,∴OD⊥PC.∵☉O的半径为4,∴PO=P A+4,PB=P A+8.∵OD⊥PC,BC⊥PD,∴OD∥BC,∴△POD∽△PBC,∴=,即=,解得P A=4.故选A.3. 【答案】A4. 【答案】C[解析] 对于甲的作法:连接OB,如图①.∵OA=AP,∴OP为⊙A的直径,∴∠OBP=90°,即OB⊥PB,∴PB为⊙O的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN⊥OP,∴∠OAB=90°.在△OAB 和△OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.5. 【答案】C[解析] 如图,连接AB ,BC ,作AB ,BC 的垂直平分线,可得点A ,B ,C 所在的圆的圆心为O ′(2,0).只有当∠O ′BF =∠O ′BD +∠DBF =90°时,BF 与圆相切, 此时△BO ′D ≌△FBE ,EF =DB =2, 此时点F 的坐标为(5,1).作过点B ,F 的直线,直线BF 经过格点(1,3),(7,0),此两点亦符合要求. 即与点B 的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.6. 【答案】A【解析】设ABC △的内心为O ,连接AO 、BO ,CO 的延长线交AB 于H ,如图,∵ABC △为等边三角形,∴CH 平分BCA ∠,AO 平分BCA ∠,∵ABC △为等边三角形, ∴60CAB ∠=︒,CH AB ⊥,∴30OAH ∠=︒,132AH BH AB === 在Rt AOH △中,∵tan tan 30OH OAH AH ∠==︒,∴3313OH ==, 即ABC △内切圆的半径为1.故选A .7. 【答案】A8. 【答案】A【解析】如解图,连接OC ,∵EC 切⊙O 于C ,∴∠OCE =90°,∵OA =OC ,解图∴∠ACO =∠A =30°,∴∠COE =∠ACO +∠A =30°+30°=60°,∴∠E =180°-∠OCE -∠COE =180°-90°-60°=30°,∴在Rt △COE 中,sin ∠E =sin30°=12.9. 【答案】B[解析] 如图,∵AD =2 2,AE =AF =17,AB = 3 2,∴AB >AE =AF >AD ,∴当17<r <3 2时,以点A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.10. 【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒, ∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确, ∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒, ∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A .二、填空题11. 【答案】57 [解析]连接OE ,OF .∵☉O 分别切∠BAC 的两边AB ,AC 于点E ,F ,∴OF ⊥AC ,OE ⊥AB ,∴∠BAC +∠EOF=180°,∵∠BAC=66°, ∴∠EOF=114°.∵点P 在优弧上,∴∠EPF=∠EOF=57°.故填:57.12. 【答案】①③④[解析]∵AB 是☉O 的直径,CD ⊥AB , ∴=,故①正确.∵∠A=30°, ∴∠COB=60°, ∴扇形OBC 的面积=·π·2=π,故②错误.∵CE 是☉O 的切线, ∴∠OCE=90°,∴∠OCE=∠OFC ,又∵∠EOC=∠COF , ∴△OCF ∽△OEC ,故③正确. 设AP=x ,则OP=9-x ,∴AP·OP=x(9-x)=-x2+9x=-x-2+,∴当x=时,AP·OP取最大值,=20.25,故④正确.故答案为①③④.13. 【答案】B[解析] ∵正方形ABCD的对角线长为6,∴它的边长为3 2.如图,⊙O与正方形ABCD的边AB,AD只有一个公共点的情况各有1次,与边BC,CD只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现4次.14. 【答案】2或4[解析] 设圆O的半径为r cm如图①所示,r-1=3,得r=4;如图②所示,r+1=3,得r=2.15. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.16. 【答案】125【解析】∵⊙O是△ABC的内切圆,∴OB、OC分别是∠ABC、∠ACB的平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(70°+40°)=55°.∴∠BOC=180°-(∠OBC+∠OCB)=180°-55°=125°.三、解答题17. 【答案】证明:(1)∵AB是☉O的直径,∴∠ACB=90°,∴∠ACD=90°.∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE.∵OA=OC,∴∠OCA=∠OAC.∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∵OC是☉O的半径,∴CF与☉O相切.(2)∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°.∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°.连接AD,∵AO=BO,OD⊥AB,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=90°-∠ADB=45°=∠ADB,∴AC=CD.18. 【答案】解:(1)证明:连接OC,BC,OE,∵AB是☉O的直径,∴∠ACB=∠BCD=90°.∵点E是BD的中点,∴CE=BE,∵OB=OC,OE=OE,∴△OBE≌△OCE.∵BD是☉O的切线,∴∠OBE=90°=∠OCE,∵OC是☉O的半径,∴EC是☉O的切线.(2)∵∠D=30°,∠OBD=90°,∴∠A=60°,∴∠BOC=120°,∠EOB=60°.∵AB=4,∴OB=2,BE=6,∴S=2S△OBE-S扇形OBC=2××6×2=12-4π.阴影19. 【答案】[解析](1)连接OD,AD,先利用圆周角定理得到∠ADB=90°,再根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,根据DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为☉O的切线.(2)连接DE,由圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH.解:(1)DH与☉O相切.理由如下:连接OD,AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为☉O的切线.(2)证明:连接DE,如图,∵四边形ABDE为☉O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点.20. 【答案】(1)解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12(180°-36°)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠DBC=36°,∵AD∥BC,∴∠D=∠DBC=36°,∴∠DAF=∠AFB-∠D=72°-36°=36°;(2)证明:∵∠EAF=∠FBC=∠D,∠AEF=∠AED,∴△EAF∽△EDA,∴AEDE=EF EA,∴AE2=EF·ED;(3)证明:如解图,过点A作BC的垂线,G为垂足,∵AB=AC,∴AG垂直平分BC,∴AG过圆心O,∵AD∥BC,∴AD⊥AG,∴AD 是⊙O 的切线.解图 21. 【答案】 (1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2. (2)如图2,作CH ⊥AP ,垂足为H .由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC CH ==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)9y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OC OC OP=.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154. ②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO AC AC AP=.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6第(3)题②也可以这样思考:如图4,图5,图6,当∠OCA=∠OPC时,3个等腰三角形△OAB、△P AC、△CAO都相似,每个三角形的三边比是3∶3∶2.这样,△CAO的三边长为92、92、3.△P AC的三边长为274、274、92.。
中考数学复习《与圆有关的位置关系》专题训练含答案
中考复习专题训练与圆有关的位置关系一、选择题1.⊙O1的半径为1cm,⊙O2的半径为4cm,圆心距O1O2=3cm,这两圆的位置关系是( )A. 相交B. 内切C. 外切D. 内含2.⊙O的半径为4,线段OP=4,则点P与⊙O的位置关系是()A. 点P在⊙O外B. 点P在⊙O内C. 点P在⊙O上D. 不能确定3.两圆外离,作它们的两条内公切线,四个切点构成的四边形是()A. 矩形B. 等腰梯形C. 矩形或等腰梯形D. 菱形4. 已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A 和⊙B的位置关系()A. 内含B. 相交C. 外切D. 外离5.下列四个命题中,真命题是( )A. 相等的圆心角所对的两条弦相等;B. 圆既是中心对称图形也是轴对称图形;C. 平分弦的直径一定垂直于这条弦;D. 相切两圆的圆心距等于这两圆的半径之和.6.在△ABC中,cosB=,∠C=45°,AB=8,以点B为圆心4为半径的⊙B与以点C为圆心的⊙C相离,则⊙C的半径不可能为()A. 15B. 5C. 6D. 77. 如图,已知⊙O的半径为4,点D是直径AB延长线上一点,DC切⊙O于点C,连接AC,若∠CAB=30°,则BD的长为()A. 4B. 8C. 4D. 28.下列说法正确的是()A. 任意三点可以确定一个圆B. 平分弦的直径垂直于弦,并且平分该弦所对的弧C. 同一平面内,点P到⊙O上一点的最小距离为2,最大距离为8,则该圆的半径为5D. 同一平面内,点P到圆心O的距离为5,且圆的半径为10,则过点P且长度为整数的弦共有5条9.如图,AB为⊙O的直径,P为AB延长线上一点,PT切⊙O于T,若PT=6,PB=2,则⊙O的直径为()A. 8B. 10C. 16D. 1810.如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么的值等于()A. B. C. D. 111.如图,⊙O的半径为2,点O到直线L的距离为3,点O是直线L上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A. B. C. 3 D. 512.已知如图,PA、PB切⊙O于A、B,MN切⊙O于C,交PB于N;若PA=7.5cm,则△PMN的周长是()A. 7.5cmB. 10cmC. 15cmD. 12.5cm二、填空题13.已知⊙P在直角坐标平面内,它的半径是5,圆心P(﹣3,4),则坐标原点O与⊙P的位置关系是________14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是________.15.如图,已知扇形AOB的半径为6,圆心角为90°,E是半径OA上一点,F是上一点.将扇形AOB沿EF对折,使得折叠后的圆弧恰好与半径OB相切于点G.若OE=4,则O到折痕EF的距离为________.16.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M作MN∥AB交BC于N,现将△MNC沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是________.17.如图,在⊙O中,OB为半径,AB是⊙O的切线,OA与⊙O相交于点C,∠A=30°,OA=8,则阴影部分的面积是________.18. 如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是∠ACQ的外心,其中正确结论是________ (只需填写序号).19.如图,AE、AD、BC分别切⊙O于E、D、F,若AD=20,则△ABC的周长为 ________20.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4 .若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=________时,⊙C与直线AB相切.21.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为________.三、解答题22.如图,已知PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.23.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC 比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.24.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图①,过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=32°,求∠P的大小;(Ⅱ)如图②,D为优弧ADC上一点,且DO的延长线经过AC的中点E,连接DC与AB相交于点P,若∠CAB=16°,求∠DPA的大小.25.解答题(1)如图1,已知⊙O的半径是4,△ABC内接于⊙O,AC=4 .①求∠ABC的度数;②已知AP是⊙O的切线,且AP=4,连接PC.判断直线PC与⊙O的位置关系,并说明理由;(2)如图2,已知▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O内,延长BC交⊙O于点E,连接DE.求证:DE=DC.参考答案一、选择题B C C D B D C D C B B C二、填空题13.点O在⊙P上14.x>515.216.相交17.8 ﹣π18.②③19.4020.或21.4﹣π三、解答题22.解:(1)∵在△ABO中,OA=OB,∠OAB=30°,∴∠AOB=180°-2×30°=120°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,∴在四边形OAPB中,∠APB=360°-120°-90°-90°=60°.(2)如图,连接OP;∵PA、PB是⊙O的切线,∴PO平分∠APB,即∠APO=∠APB=30°,又∵在Rt△OAP中,OA=3,∠APO=30°,∴AP=.23.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6,∴DC2=62+82=100,即DC=10.设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8.(2)存在符合条件的P点.设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,有即∴y=;②△ADP∽△BPC时,有即∴y=4.故存在符合条件的点P,此时AP=或4.24.解:(Ⅰ)连接OC,如图①,∵PC为切线,∴OC⊥PC,∴∠OCP=90°,∵OA=OC,∴∠OCA=∠CAB=32°,∴∠POC=∠OCA+∠CAB=64°,∴∠P=90°﹣∠POC=90°﹣64°=26°;(Ⅱ)如图②,∵点E为AC的中点,∴OD⊥AC,∴∠OEA=90°,∴∠AOD=∠CAB+∠OEA=16°+90°=106°,∴∠C= ∠AOD=53°,∴∠DPA=∠BAC+∠C=16°+53°=69°25.(1)解:①连结OA、OC,如图1,∵OA=OC=4,AC=4 ,∴OA2+OC2=AC2,∴△OCA为等腰直角三角形,∠AOC=90°,∴∠ABC= ∠AOC=45°;②直线PC与⊙O相切.理由如下:∵AP是⊙O的切线,∴∠OAP=90°,而∠AOC=90°,∴AP∥OC,而AP=OC=4,∴四边形APCO为平行四边形,∵∠AOC=90°,∴四边形AOCP为矩形,∴∠PCO=90°,∴PC⊥OC,∴PC为⊙O的切线(2)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠A=180°,∠DCE=∠B,∵∠E+∠A=180°,∴∠E=∠B,∴∠DCE=∠E,∴DC=DE.。
中考数学真题《圆的有关位置关系》专项测试卷(附答案)
中考数学真题《圆的有关位置关系》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(45题)一、单选题1.(2023·四川眉山·统考中考真题)如图,AB 切O 于点B 连接OA 交O 于点C BD OA ∥交O 于点D 连接CD 若25OCD ∠=︒则,A ∠的度数为( )A .25︒B .35︒C .40︒D .45︒2.(2023·重庆·统考中考真题)如图,AC 是O 的切线 B 为切点 连接OA OC ,.若30A ∠=︒ 23AB = 3BC =则,OC 的长度是( )A .3B .3C 13D .63.(2023·重庆·统考中考真题)如图,AB 为O 的直径 直线CD 与O 相切于点C 连接AC若50ACD ∠=︒则,BAC ∠的度数为( )A .30︒B .40︒C .50︒D .60︒4.(2023·湖北武汉·统考中考真题)如图,在四边形ABCD 中 ,AB CD AD AB ⊥∥ 以D 为圆心 AD 为半径的弧恰好与BC 相切 切点为E .若13AB CD =则,sin C 的值是( )A .23 B 5C .34 D 75.(2023·四川泸州·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 点D 在斜边AB 上 以AD 为直径的半圆O 与BC 相切于点E 与AC 相交于点F 连接DE .若8AC = 6BC =则,DE 的长是( )A 410B 810C .8027D .83二 填空题6.(2023·浙江嘉兴·统考中考真题)如图,点A 是O 外一点 AB AC 分别与O 相切于点B C 点D 在BDC 上 已知50A ∠=︒则,D ∠的度数是___________.7.(2023·黑龙江·统考中考真题)如图,AB 是O 的直径 PA 切O 于点A PO 交O 于点C 连接BC 若28B ∠=︒则,P ∠=__________︒.8.(2023·湖南·统考中考真题)如图,AD 是O 的直径 AB 是O 的弦 BC 与O 相切于点B 连接OB 若65ABC ∠=︒则,BOD ∠的大小为__________.9.(2023·山东滨州·统考中考真题)如图,,PA PB 分别与O 相切于,A B 两点 且56APB ∠=︒.若点C 是O 上异于点,A B 的一点则,ACB ∠的大小为___________.10.(2023·浙江宁波·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ E 为AB 边上一点 以AE 为直径的半圆O 与BC 相切于点D 连接AD 3,35BE BD ==P 是AB 边上的动点 当ADP △为等腰三角形时 AP 的长为_____________.11.(2023·河南·统考中考真题)如图,PA 与O 相切于点A PO 交O 于点B 点C 在PA 上 且CB CA =.若5OA = 12PA =则,CA 的长为______.12.(2023·湖北·统考中考真题)如图,在ABC 中 70ACB ABC ∠=︒,△的内切圆O 与AB BC ,分别相切于点D E 连接DE AO ,的延长线交DE 于点F 则,AFD ∠=_________.13.(2023·湖南·统考中考真题)如图,在Rt ABC △中 90,8,6ACB AC BC ∠=︒==.以点C 为圆心 r 为半径作圆 当所作的圆与斜边AB 所在的直线相切时 r 的值为________.14.(2023·山东烟台·统考中考真题)如图,在直角坐标系中 A 与x 轴相切于点,B CB 为A 的直径 点C 在函数(0,0)ky k x x =>>的图象上 D 为y 轴上一点 ACD 的面积为6则,k 的值为________.15.(2023·四川·统考中考真题)如图,45ACB ∠=︒ 半径为2的O 与角的两边相切 点P 是⊙O 上任意一点 过点P 向角的两边作垂线 垂足分别为E F 设2t PE PF =则,t 的取值范围是 _____.16.(2023·湖南岳阳·统考中考真题)如图,在O 中 AB 为直径 BD 为弦 点C 为BD 的中点 以点C 为切点的切线与AB 的延长线交于点E .(1)若30,6A AB ∠=︒=则,BD 的长是_________(结果保留π)(2)若13CF AF =则,CE AE =_________.17.(2023·上海·统考中考真题)在ABC 中7,3,90AB BC C ==∠=︒ 点D 在边AC 上 点E 在CA 延长线上 且CD DE = 如果B 过点A E 过点D 若B 与E 有公共点 那么E 半径r 的取值范围是________.三 解答题18.(2023·浙江绍兴·统考中考真题)如图,AB 是O 的直径 C 是O 上一点 过点C 作O 的切线CD 交AB 的延长线于点D 过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒ 求ACD ∠的度数.(2)若2,1OB BD == 求CE 的长.19.(2023·湖南张家界·统考中考真题)如图,O 是ABC 的外接圆 AD 是O 的直径F 是AD 延长线上一点 连接CD CF , 且DCF CAD ∠=∠.(1)求证:CF 是O 的切线(2)若直径310,cos 5AD B == 求FD 的长.20.(2023·江西·统考中考真题)如图,在ABC 中 464AB C =∠=︒, 以AB 为直径的O 与AC 相交于点D E 为ABD 上一点 且40ADE ∠=︒.(1)求BE 的长(2)若76EAD ∠=︒ 求证:CB 为O 的切线.21.(2023·江苏连云港·统考中考真题)如图,在ABC 中 AB AC = 以AB 为直径的O 交边AC 于点D 连接BD 过点C 作CE AB ∥.(1)请用无刻度的直尺和圆规作图:过点B 作O 的切线 交CE 于点F (不写作法 保留作图痕迹 标明字母)(2)在(1)的条件下 求证:BD BF =.22.(2023·辽宁·统考中考真题)如图,AB是O的直径点C E,在O上2CAB EAB∠=∠点F在线段AB的延长线上且AFE ABC∠=∠.(1)求证:EF与O相切(2)若41sin5BF AFE=∠=,求BC的长.23.(2023·山东东营·统考中考真题)如图,在ABC中AB AC=以AB为直径的O交BC于点D DE AC⊥垂足为E.(1)求证:DE是O的切线(2)若30C∠=︒23CD=求BD的长.24.(2023·内蒙古赤峰·统考中考真题)如图,AB 是O 的直径 C 是O 上一点过点C 作CD AB ⊥于点E 交O 于点D 点F 是AB 延长线上一点 连接CF AD 2FCD DAF ∠=∠.(1)求证:CF 是O 切线(2)若10AF2sin 3F = 求CD 的长.25.(2023·湖南常德·统考中考真题)如图,四边形ABCD 是O 的内接四边形 AB 是直径 C 是BD 的中点 过点C 作CE AD ⊥交AD 的延长线于点E .(1)求证:CE 是O 的切线(2)若6BC = 8AC = 求,CE DE 的长.26.(2023·内蒙古通辽·统考中考真题)如图,AB 为O 的直径 D E 是O 上的两点 延长AB 至点C 连接CD BDC A∠=∠.(1)求证:ACD DCB∽(2)求证:CD是O的切线(3)若3tan,105E AC==求O的半径.27.(2023·广东深圳·统考中考真题)如图,在单位长度为1的网格中点O A B均在格点上3OA= 2AB=以O为圆心OA为半径画圆请按下列步骤完成作图并回答问题:⊙过点A作切线AC且4AC=(点C在A的上方)⊙连接OC交O于点D⊙连接BD与AC交于点E.(1)求证:BD为O的切线(2)求AE的长度.28.(2023·黑龙江绥化·统考中考真题)已知:点P是O外一点.(1)尺规作图:如图,过点P 作出O 的两条切线PE PF 切点分别为点E 点F .(保留作图痕迹 不要求写作法和证明)(2)在(1)的条件下 若点D 在O 上(点D 不与E F 两点重合) 且30EPF ∠=︒.求EDF ∠的度数.29.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在Rt ABC △中 90B AD 平分BAC ∠交BC 于点D 点E 是斜边AC 上一点 以AE 为直径的O 经过点D 交AB 于点F 连接DF .(1)求证:BC 是O 的切线(2)若5BD = tan 3ADB ∠= 求图中阴影部分的面积(结果保留π).30.(2023·福建·统考中考真题)如图,已知ABC 内接于,O CO 的延长线交AB 于点D 交O 于点E 交O 的切线AF 于点F 且AF BC ∥.(1)求证:AO BE ∥(2)求证:AO 平分BAC ∠.31.(2023·湖北荆州·统考中考真题)如图,在菱形ABCD 中 DH AB ⊥于H 以DH 为直径的O 分别交AD BD 于点E F 连接EF .(1)求证:⊙CD 是O 的切线⊙DEF DBA ∽(2)若5AB = 6DB = 求sin DFE ∠.32.(2023·广西·统考中考真题)如图,PO 平分APD ∠ PA 与O 相切于点A 延长AO 交PD 于点C 过⊥垂足为B.点O作OB PD(1)求证:PB是O的切线(2)若O的半径为4 5OC=求PA的长.33.(2023·湖北黄冈·统考中考真题)如图,ABC中以AB为直径的O交BC于点D DE是O的切线⊥垂足为E延长CA交O于点F.且DE AC=(1)求证:AB AC(2)若3,6AE DE==求AF的长.34.(2023·湖南郴州·统考中考真题)如图,在O中AB是直径点C是圆上一点.在AB的延长线上取一点D 连接CD 使BCD A ∠=∠.(1)求证:直线CD 是O 的切线(2)若120ACD ∠=︒ 3CD = 求图中阴影部分的面积(结果用含π的式子表示).35.(2023·湖北十堰·统考中考真题)如图,在Rt ABC △中 90,C AC BC ∠=︒= 点O 在AB 上 以O 为圆心 OA 为半径的半圆分别交,AC BC AB 于点,,D E F 且点E 是弧DF 的中点.(1)求证:BC 是O 的切线(2)若2CE 求图中阴影部分的面积(结果保留π).36.(2023·四川内江·统考中考真题)如图,以线段AB 为直径作O 交射线AC 于点C AD 平分CAB ∠交O 于点D 过点D 作直线DE AC ⊥ 交AC 的延长线于点E 交AB 的延长线于点F .连接BD 并延长交AC的延长线于点M.(1)求证:直线DE是O的切线(2)当30F∠=︒时判断ABM的形状并说明理由(3)在(2)的条件下1ME=连接BC交AD于点P求AP的长.37.(2023·湖北随州·统考中考真题)如图,AB是O的直径点E C在O上点C是BE的中点AE 垂直于过C点的直线DC垂足为D AB的延长线交直线DC于点F.(1)求证:DC是O的切线(2)若2AE=1sin3AFD∠=⊙求O的半径⊙求线段DE的长.38.(2023·山东枣庄·统考中考真题)如图,AB为O的直径点C是AD的中点过点C做射线BD的垂线垂足为E.(1)求证:CE 是O 切线(2)若34BE AB ==, 求BC 的长(3)在(2)的条件下 求阴影部分的面积(用含有π的式子表示).39.(2023·山东临沂·统考中考真题)如图,O 是ABC 的外接圆 BD 是O 的直径 ,AB AC AE BC =∥ E 为BD 的延长线与AE 的交点.(1)求证:AE 是O 的切线(2)若75,2ABC BC ∠=︒= 求CD 的长.40.(2023·湖南永州·统考中考真题)如图,以AB 为直径的O 是ABC 的外接圆 延长BC 到点D .使得BAC BDA ∠=∠ 点E 在DA 的延长线上 点AM 在线段AC 上 CE 交BM 于N CE 交AB 于G .(1)求证:ED 是O 的切线(2)若,65,AC BD AC CD ==> 求BC 的长(3)若DE AM AC AD ⋅=⋅ 求证:BM CE ⊥.41.(2023·山东烟台·统考中考真题)如图,在菱形ABCD 中 对角线,AC BD 相交于点,E O 经过,A D 两点 交对角线AC 于点F 连接OF 交AD 于点G 且AG GD =.(1)求证:AB 是O 的切线(2)已知O 的半径与菱形的边长之比为5:8 求tan ADB ∠的值.42.(2023·江苏扬州·统考中考真题)如图,在ABC 中 90ACB ∠=︒ 点D 是AB 上一点 且12BCD A ∠=∠ 点O 在BC 上 以点O 为圆心的圆经过C D 两点.(1)试判断直线AB 与O 的位置关系 并说明理由(2)若3sin ,5B O =的半径为3 求AC 的长.43.(2023·四川乐山·统考中考真题)如图,已知O 是Rt ABC △的外接圆 90ACB ∠=︒ D 是圆上一点 E 是DC 延长线上一点 连结AD AE , 且AD AE CA CE ==,.(1)求证:直线AE 是O 是的切线(2)若2sin 3E =O 的半径为3 求AD 的长.44.(2023·甘肃兰州·统考中考真题)如图,ABC 内接于O AB 是O 的直径 BC BD = DE AC ⊥于点E DE 交BF 于点F 交AB 于点G 2BOD F ∠=∠ 连接BD .(1)求证:BF是O的切线(2)判断DGB的形状并说明理由(3)当2BD=时求FG的长.=BD是边AC上的中线过点C作45.(2023·湖北·统考中考真题)如图,等腰ABC内接于O AB ACAE FC.AB的平行线交BD的延长线于点E BE交O于点F连接,(1)求证:AE为O的切线BC=求FC的长.(2)若O的半径为56参考答案一单选题1.(2023·四川眉山·统考中考真题)如图,AB切O于点B连接OA交O于点C BD OA∥交O于点∠的度数为()D连接CD若25OCD∠=︒则,AA .25︒B .35︒C .40︒D .45︒【答案】C 【分析】如图,连接OB 证明90∠=︒ABO 25CDB ∠=︒ 可得250BOC BDC ∠=∠=︒ 从而可得40A ∠=︒.【详解】解:如图,连接OB⊙AB 切O 于点B⊙90∠=︒ABO⊙BD OA ∥ 25OCD ∠=︒⊙25CDB ∠=︒⊙250BOC BDC ∠=∠=︒⊙40A ∠=︒故选:C.【点睛】本题考查的是切线的性质 圆周角定理的应用 三角形的内角和定理的应用 掌握基本图形的性质是解本题的关键.2.(2023·重庆·统考中考真题)如图,AC 是O 的切线 B 为切点 连接OA OC ,.若30A ∠=︒ 23AB = 3BC =则,OC 的长度是( )A .3B .3C 13D .6【答案】C 【分析】根据切线的性质及正切的定义得到2OB = 再根据勾股定理得到13OC =【详解】解:连接OB⊙AC 是O 的切线 B 为切点⊙OB AC ⊥⊙30A ∠=︒ 23AB =⊙在Rt OAB 中 3tan 232OB AB A =⋅∠== ⊙3BC =⊙在Rt OBC 中 2213OC OB BC +故选:C .【点睛】本题考查了切线的性质 锐角三角函数 勾股定理 掌握切线的性质是解题的关键.3.(2023·重庆·统考中考真题)如图,AB 为O 的直径 直线CD 与O 相切于点C 连接AC 若50ACD ∠=︒则,BAC ∠的度数为( )A .30︒B .40︒C .50︒D .60︒【答案】B 【分析】连接OC 先根据圆的切线的性质可得90OCD ∠=︒ 从而可得40OCA ∠=︒ 再根据等腰三角形的性质即可得.【详解】解:如图,连接OC直线CD 与O 相切OC CD ∴⊥90OCD ∴∠=︒50ACD ∠=︒40OCA ∴∠=︒OA OC =40BAC OCA ∴∠=∠=︒故选:B .【点睛】本题考查了圆的切线的性质 等腰三角形的性质 熟练掌握圆的切线的性质是解题关键. 4.(2023·湖北武汉·统考中考真题)如图,在四边形ABCD 中 ,AB CD AD AB ⊥∥ 以D 为圆心 AD 为半径的弧恰好与BC 相切 切点为E .若13AB CD =则,sin C 的值是( )A .23B 5C .34D 7【答案】B 【分析】作CF AB ⊥延长线于F 点 连接DE 根据圆的基本性质以及切线的性质 分别利用勾股定理求解在Rt DEC △和Rt BFC △ 最终得到DE 即可根据正弦函数的定义求解.【详解】解:如图所示 作CF AB ⊥延长线于F 点 连接DE⊙AD AB ⊥ AB CD ∥⊙90FAD ADC F ∠=∠=∠=︒⊙四边形ADCF 为矩形 AF DC = AD FC =⊙AB 为D 的切线由题意 BE 为D 的切线⊙DE BC ⊥ AB BE = ⊙13AB CD = ⊙设AB BE a 3CD a = CE x =则2BF AF AB CD AB a =-=-= BC BE CE a x =+=+在Rt DEC △中 222229DE CD CE a x =-=-在Rt BFC △中 ()()222222FC BC BF a x a =-=+-⊙DE DA FC ==⊙()()222292a x a x a -=+-解得:2x a =或3x a =-(不合题意 舍去)⊙2CE a = ⊙2222945DE CD CE a a a --= ⊙55sin DE a C DC === 故选:B .【点睛】本题考查圆的切线的判定与性质 解直角三角形 以及正弦函数的定义等 综合性较强 熟练运用圆的相关性质以及切线的性质等是解题关键.5.(2023·四川泸州·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ 点D 在斜边AB 上 以AD 为直径的半圆O 与BC 相切于点E 与AC 相交于点F 连接DE .若8AC = 6BC =则,DE 的长是( )A 410B 810C .8027 D .83【答案】B【分析】连接OE AE 首先根据勾股定理求出2210AB AC BC + 然后证明出BCA BEO ∽利用相似三角形的性质得到409OE = 103BE = 证明出DBE EBA ∽ 利用相似三角形的性质求出810DE =【详解】如图所示 连接OE AE⊙90C ∠=︒ 8AC = 6BC = ⊙2210AB AC BC +⊙以AD 为直径的半圆O 与BC 相切于点E⊙OE BC ⊥⊙90C ∠=︒⊙90C OEB ︒∠=∠=⊙AC OE ∥⊙A EOB ∠=∠⊙BCA BEO ∽ ⊙6OE OB BE AC AB == 即108106OE OEBE-== ⊙409OE = 103BE = ⊙108633CE CB BE =-=-=⊙228103AE AC CE =+=⊙90OEB ∠=︒ ⊙90OED DEB ∠+∠=︒⊙90ODE EAD ∠+∠=︒ ODE OED ∠=∠⊙EAD DEB ∠=∠又⊙B B ∠=∠⊙DBE EBA ∽ ⊙DE BE AE AB = 即103810103DE = ⊙解得810DE =故选:B .【点睛】此题考查了圆与三角形综合题 切线的性质定理 相似三角形的性质和判定 勾股定理等知识 解题的关键是熟练掌握以上知识点.二 填空题6.(2023·浙江嘉兴·统考中考真题)如图,点A 是O 外一点 AB AC 分别与O 相切于点B C 点D 在BDC 上 已知50A ∠=︒则,D ∠的度数是___________.【答案】65︒【分析】连接,CO BO 根据切线的性质得出90ACO ABO ∠=∠=︒ 根据四边形内角和得出130COB ∠=︒ 根据圆周角定理即可求解.【详解】解:如图,CO BO⊙AB AC 分别与O 相切于点B C⊙90ACO ABO ∠=∠=︒⊙50A ∠=︒⊙360909050130COB ∠=︒-︒-︒-︒=︒⊙BC BC = ⊙1652D BOC ∠=∠=︒ 故答案为:65︒.【点睛】本题考查了切线的性质 圆周角定理 求得130COB ∠=︒是解题的关键.7.(2023·黑龙江·统考中考真题)如图,AB 是O 的直径 PA 切O 于点A PO 交O 于点C 连接BC 若28B ∠=︒则,P ∠=__________︒.【答案】34【分析】首先根据等边对等角得到28B OCB ∠=∠=︒ 然后利用外角的性质得到56AOC B OCB ∠=∠+∠=︒ 利用切线的性质得到90OAP ∠=︒ 最后利用三角形内角和定理求解即可.【详解】解:⊙28B ∠=︒ OB OC =⊙28B OCB ∠=∠=︒⊙56AOC B OCB ∠=∠+∠=︒⊙PA 切O 于点A⊙90OAP ∠=︒⊙18034P OAP AOP ∠=︒-∠-∠=︒.故答案为:34.【点睛】此题考查了切线的性质和三角形的外角的性质 三角形内角和定理等知识 解题的关键是熟练掌握以上知识点.8.(2023·湖南·统考中考真题)如图,AD 是O 的直径 AB 是O 的弦 BC 与O 相切于点B 连接OB 若65ABC ∠=︒则,BOD ∠的大小为__________.【答案】50︒【分析】证明90OBC ∠=︒ 可得906525OBD ∠=︒-︒=︒ 结合OB OA = 证明25A OBA ∠=∠=︒ 再利用三角形的外角的性质可得答案.【详解】解:⊙BC 与O 相切于点B⊙90OBC ∠=︒⊙65ABC ∠=︒⊙906525OBD ∠=︒-︒=︒⊙OB OA =⊙25A OBA ∠=∠=︒⊙22550BOD ∠=⨯︒=︒故答案为:50︒【点睛】本题考查的是圆的切线的性质 等腰三角形的性质 三角形的外角的性质 熟记基本图形的性质是解本题的关键.9.(2023·山东滨州·统考中考真题)如图,,PA PB 分别与O 相切于,A B 两点 且56APB ∠=︒.若点C 是O 上异于点,A B 的一点则,ACB ∠的大小为___________.【答案】62︒或118︒【分析】根据切线的性质得到90∠=∠=︒PAO PBO 根据四边形内角和为360︒ 得出AOB ∠ 然后根据圆周角定理即可求解.【详解】解:如图所示 连接,AC BC 当点C 在优弧AB 上时⊙,PA PB 分别与O 相切于,A B 两点⊙90∠=∠=︒PAO PBO⊙56APB ∠=︒.⊙360909056124AOB ∠=︒-︒-︒-︒=︒⊙AB AB = ⊙1622ACB AOB ∠=∠=︒ 当点C '在AB 上时⊙四边形AC BC '是圆内接四边形⊙180118C C '∠=︒-∠=︒故答案为:62︒或118︒.【点睛】本题考查了切线的性质 圆周角定理 多边形内角和 熟练掌握切线的性质与圆周角定理是解题的关键.10.(2023·浙江宁波·统考中考真题)如图,在Rt ABC △中 90C ∠=︒ E 为AB 边上一点 以AE 为直径的半圆O 与BC 相切于点D 连接AD 3,35BE BD ==P 是AB 边上的动点 当ADP △为等腰三角形时 AP 的长为_____________.【答案】2306【分析】连接OD 勾股定理求出半径 平行线分线段成比例 求出CD 的长 勾股定理求出AC 和AD 的长 分AP AD =和AP PD =两种情况进行求解即可.【详解】解:连接OD⊙以AE 为直径的半圆O 与BC 相切于点D⊙OD BC ⊥ OA OE OD ==⊙90ODB ∠=︒设OA OE OD r ===则,3OB OE BE r =+=+在Rt ODB △中:222OD BD OB += 即:(()222353r r +=+ 解得:6r =⊙6OA OE OD ===⊙9OB = 15AB = 12AE =⊙90C ODB ∠=∠=︒⊙OD AC ∥ ⊙9362OB DB OA DC === ⊙35DB = ⊙5CD = ⊙5BC DB CD =+= ⊙2210AC AB BC -= ⊙22230AD AC CD +=⊙ADP △为等腰三角形当AD AP =时 30AP =当PA PD =时⊙OA OD =⊙点P 与点O 重合⊙6AP OA ==不存在PD AD =的情况综上:AP 的长为306. 故答案为:2306.【点睛】本题考查切线的性质 平行线分线段成比例 勾股定理 等腰三角形的定义.熟练掌握切线的性质 等腰三角形的定义 确定点P 的位置 是解题的关键.11.(2023·河南·统考中考真题)如图,PA 与O 相切于点A PO 交O 于点B 点C 在PA 上 且CB CA =.若5OA = 12PA =则,CA 的长为______.【答案】103【分析】连接OC 证明OAC OBC ≌ 设CB CA x ==则,12PC PA CA x =-=- 再证明PAO PBC ∽ 列出比例式计算即可.【详解】如图,连接OC⊙PA 与O 相切于点A⊙90OAC ∠=︒⊙OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩, ⊙OAC OBC ≌⊙90OAC OBC ∠=∠=︒⊙90PAO PBC ∠=∠=︒⊙P P ∠=∠⊙PAO PBC ∽ ⊙PO AO PC BC= ⊙5OA = 12PA = ⊙2251213PO +设CB CA x ==则,12PC PA CA x =-=- ⊙13512x x=- 解得103x =故CA 的长为103故答案为:103. 【点睛】本题考查了切线的性质 三角形全等的判定和性质 勾股定理 三角形相似的判断和性质 熟练掌握性质是解题的关键.12.(2023·湖北·统考中考真题)如图,在ABC 中 70ACB ABC ∠=︒,△的内切圆O 与AB BC ,分别相切于点D E 连接DE AO ,的延长线交DE 于点F 则,AFD ∠=_________.【答案】35︒【分析】如图所示 连接OE OD OB ,, 设OB DE 、交于H 由内切圆的定义结合三角形内角和定理求出125AOB ∠=︒ 再由切线长定理得到BD BE = 进而推出OB 是DE 的垂直平分线 即90OHF ∠=︒则,35AFD AOH OHF =-=︒∠∠∠.【详解】解:如图所示 连接OE OD OB ,, 设OB DE 、交于H⊙O 是ABC 的内切圆⊙OA OB 、分别是CAB CBA ∠、∠的角平分线 ⊙1122OAB CAB OBA CBA ==∠∠,∠∠ ⊙70ACB ∠=︒⊙180110CAB CBA ACB +=︒-=︒∠∠∠ ⊙115522OAB OBA CBA CAB +=+=︒∠∠∠∠ ⊙180125AOB OAB OBA =︒--=︒∠∠∠⊙O 与AB BC ,分别相切于点D E⊙BD BE =又⊙OD OE =⊙OB 是DE 的垂直平分线⊙OB DE ⊥ 即90OHF ∠=︒⊙35AFD AOH OHF =-=︒∠∠∠故答案为:35︒.【点睛】本题主要考查了三角形内切圆 切线长定理 三角形内角和定理 线段垂直平分线的判定 三角形外角的性质 正确作出辅助线是解题的关键.13.(2023·湖南·统考中考真题)如图,在Rt ABC △中 90,8,6ACB AC BC ∠=︒==.以点C 为圆心 r 为半径作圆 当所作的圆与斜边AB 所在的直线相切时 r 的值为________.【答案】245【分析】根据勾股定理 得228610AB =+= 根据切线的性质 得到圆的半径等于AB 边上的高 根据直角三角形的面积不变性计算即可.【详解】⊙90,8,6ACB AC BC ∠=︒== ⊙228610AB +=根据切线的性质 得到圆的半径等于AB 边上的高 ⊙1122AB r AC BC ⨯=⨯, ⊙8624105AC BCr AB ⨯⨯=== 故答案为:245.【点睛】本题考查了勾股定理 切线的性质 熟练掌握勾股定理 切线的性质是解题的关键. 14.(2023·山东烟台·统考中考真题)如图,在直角坐标系中 A 与x 轴相切于点,B CB 为A 的直径点C 在函数(0,0)ky k x x =>>的图象上 D 为y 轴上一点 ACD 的面积为6则,k 的值为________.【答案】24 【分析】设,k C a a ⎛⎫⎪⎝⎭则,,k OB a AC a ==则,122kAC BC a == 根据三角形的面积公式得出162ACD S AC OB =⋅= 列出方程求解即可. 【详解】解:设,k C a a ⎛⎫⎪⎝⎭⊙A 与x 轴相切于点B⊙BC x ⊥轴 ⊙,kOB a AC a ==则,点D 到BC 的距离为a⊙CB 为A 的直径⊙122k AC BC a == ⊙16224ACD k k S a a =⋅⋅== 解得:24k =故答案为:24.【点睛】本题主要考查了切线的性质 反比例函数的图象和性质 解题的关键掌握切线的定义:经过半径外端且垂直于半径的直线是圆的切线 以及反比例函数图象上点的坐标特征.15.(2023·四川·统考中考真题)如图,45ACB ∠=︒ 半径为2的O 与角的两边相切 点P 是⊙O 上任意一点 过点P 向角的两边作垂线 垂足分别为E F 设2t PE PF =则,t 的取值范围是 _____.【答案】22224t ≤ 【分析】利用切线的性质以及等腰直角三角形的性质求得222CD DH == 再求得t PE PQ EQ =+= 分两种情况讨论 画出图形 利用等腰直角三角形的性质即可求解.【详解】解:设O 与ACB ∠两边的切点分别为D G 连接OG OD 、 延长DO 交CB 于点H由90OGC ODC OGH ∠=∠=∠=︒⊙45ACB ∠=︒⊙45OHC ∠=︒ ⊙222OH OG == ⊙222CD DH ==如图,延长EP 交CB 于点Q同理2PQ PF = ⊙2t PE PF =⊙t PE PQ EQ =+=当EQ 与O 相切时 EQ 有最大或最小值连接OP⊙D E 都是切点⊙90ODE DEP OPE ∠=∠=∠=︒⊙四边形ODEP 是矩形⊙OD OP =⊙四边形ODEP 是正方形⊙t 的最大值为24EQ CE CD DE ==+=如图,同理 t 的最小值为2EQ CE CD DE ==-=综上 t 的取值范围是22224t ≤≤. 故答案为:22224t ≤.【点睛】本题考查了切线的性质 等腰直角三角形的性质 勾股定理 求得t EQ =是解题的关键. 16.(2023·湖南岳阳·统考中考真题)如图,在O 中 AB 为直径 BD 为弦 点C 为BD 的中点 以点C 为切点的切线与AB 的延长线交于点E .(1)若30,6A AB ∠=︒=则,BD 的长是_________(结果保留π)(2)若13CF AF =则,CE AE =_________. 【答案】2π12 【分析】(1)连接,OC OD 根据点C 为BD 的中点 根据已知条件得出120BOD ∠=︒ 然后根据弧长公式即可求解(2)连接OC 根据垂径定理的推论得出OC BD ⊥ EC 是O 的切线则,OC EC ⊥,得出EC BD ∥ 根据平行线分线段成比例得出13EB AB = 设2EB a =则,6AB a = 勾股定理求得EC ,J 进而即可求解. 【详解】解:(1)如图,连接,OC OD⊙点C 为BD 的中点⊙BC CD =又⊙30A ∠=︒⊙260BOC COD A ∠=∠=∠=︒⊙120BOD ∠=︒⊙6AB = ⊙132OB AB == ⊙120π32π180BD l =⨯⨯= 故答案为:2π.(2)解:如图,连接OC⊙点C 为BD 的中点⊙BC CD =⊙OC BD ⊥⊙EC 是O 的切线⊙OC EC ⊥,⊙EC BD ∥ ⊙CF EB AF AB = ⊙13CF AF = ⊙13EB AB = 设2EB a =则,6AB a = 3,5BO a EO EB BO a ==+= ⊙2222534EC EO CO a a --= 268AE a a a =+= ⊙4182CE a AE a ==. 故答案为:12.【点睛】本题考查了垂径定理 圆周角定理 切线的性质 弧长公式 平行线分线段成比例定理等知识 综合性较强 熟练掌握和灵活运用相关知识是解题的关键.17.(2023·上海·统考中考真题)在ABC 中7,3,90AB BC C ==∠=︒ 点D 在边AC 上 点E 在CA 延长线上 且CD DE = 如果B 过点A E 过点D 若B 与E 有公共点 那么E 半径r 的取值范围是________. 1010r ≤【分析】先画出图形 连接BE 利用勾股定理可得294BE r + 210AC = 10210r <≤ 再根据B 与E 有公共点可得一个关于r 的不等式组 然后利用二次函数的性质求解即可得.【详解】解:由题意画出图形如下:连接BEB 过点A 且7AB =B ∴的半径为7 E 过点D 它的半径为r 且CD DE =2CE CD DE r ∴=+=3,90BC C =∠=︒22294BE BC CE r ∴++ 22210AC AB BC - D 在边AC 上 点E 在CA 延长线上CD AC CE AC ≤⎧∴⎨>⎩ 即2102210r r ⎧≤⎪⎨>⎪⎩10210r <≤ B 与E 有公共点AB DE BE AB DE ∴-≤≤+ 即22947794r r r r ++-≤+⎪⎩①②不等式⊙可化为2314400r r --≤解方程2314400r r --=得:2r =-或203r = 画出函数231440y r r =--的大致图象如下:由函数图象可知 当0y ≤时 2023r -≤≤即不等式⊙的解集为2023r -≤≤ 同理可得:不等式⊙的解集为2r ≥或203r ≤-则不等式组的解集为2023r ≤≤又10210r <≤ 半径r 1010r ≤ 1010r ≤.【点睛】本题考查了勾股定理 圆与圆的位置关系 二次函数与不等式 根据圆与圆的位置关系正确建立不等式组是解题关键.三 解答题18.(2023·浙江绍兴·统考中考真题)如图,AB 是O 的直径 C 是O 上一点 过点C 作O 的切线CD 交AB 的延长线于点D 过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒ 求ACD ∠的度数.(2)若2,1OB BD == 求CE 的长.【答案】(1)115︒ (2)253CE = 【分析】(1)根据三角形的外角的性质 ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线 可得90OCD ∠=︒ 在Rt OCD △中 勾股定理求得5CD 根据OC AE ∥ 可得CDODCE OA = 进而即可求解.【详解】(1)解:⊙AE CD ⊥于点E⊙90AEC ∠=︒⊙9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.(2)⊙CD 是O 的切线 OC 是O 的半径⊙90OCD ∠=︒.在Rt OCD △中⊙2,3OC OB OD OB BD ===+= ⊙225CD OD OC -⊙90OCD AEC ∠=∠=︒⊙OC AE ∥ ⊙CD OD CE OA = 532= ⊙253CE =.【点睛】本题考查了三角形外角的性质 切线的性质 勾股定理 平行线分线段成比例熟练掌握以上知识是解题的关键.19.(2023·湖南张家界·统考中考真题)如图,O 是ABC 的外接圆 AD 是O 的直径 F 是AD 延长线上一点 连接CD CF , 且DCF CAD ∠=∠.(1)求证:CF 是O 的切线(2)若直径310,cos 5AD B == 求FD 的长. 【答案】(1)详见解析 (2)907【分析】(1)根据直径所对的圆周角是直角 余角的性质即可求得结论(2)根据已知条件可知FCD FAC ∽ 再根据正切的定义和相似三角形的性质得到线段的关系即可求得线段FD 的长度.【详解】(1)证明:连接OC⊙AD 是O 的直径⊙90ACD ∠=︒⊙90ADC CAD ∠+∠=︒又⊙OC OD =⊙ADC OCD ∠=∠又⊙DCF CAD ∠=∠⊙90DCF OCD ∠+∠=︒即OC FC ⊥⊙FC 是O 的切线(2)解:⊙3,cos 5B ADC B ∠=∠=⊙3cos 5ADC ∠= ⊙在Rt ACD 中 3cos ,10,5CD ADC AD AD∠=== ⊙3cos 106,5CD AD ADC =⋅∠=⨯= ⊙228AC AD CD - ⊙34CD AC = ⊙FCD FAC F F ∠=∠∠=∠,⊙FCD FAC ∽ ⊙34CD FC FD AC FA FC === 设3FD x =则,4310FC x AF x ==+,又⊙2FC FD FA =⋅即2(4)3(310)x x x =+ 解得307x =(取正值) ⊙9037FD x ==【点睛】本题考查了圆周角的性质 切线的判定定理 正切的定义 相似三角形的性质和判定 找出正切的定义与相似三角形相似比的关联是解题的关键.20.(2023·江西·统考中考真题)如图,在ABC 中 464AB C =∠=︒, 以AB 为直径的O 与AC 相交于点D E 为ABD 上一点 且40ADE ∠=︒.(1)求BE 的长(2)若76EAD ∠=︒ 求证:CB 为O 的切线.【答案】(1)109π (2)见解析【分析】(1)如图所示 连接OE 先求出2OE OB OA === 再由圆周角定理得到280AOE ADE ==︒∠∠进而求出100∠=︒BOE 再根据弧长公式进行求解即可(2)如图所示 连接BD 先由三角形内角和定理得到64AED ∠=︒则,由圆周角定理可得64ABD AED ==︒∠∠ 再由AB 是O 的直径 得到90ADB ∠=︒ 进而求出26BAC ∠=︒ 进一步推出90ABC ∠=︒ 由此即可证明BC 是O 的切线.【详解】(1)解:如图所示 连接OE⊙AB 是O 的直径 且4AB =⊙2OE OB OA ===⊙E 为ABD 上一点 且40ADE ∠=︒⊙280AOE ADE ==︒∠∠⊙180100BOE AOE ∠=︒-=︒∠⊙BE 的长1002101809ππ⨯⨯==(2)证明:如图所示 连接BD⊙76EAD ∠=︒ 40ADE ∠=︒⊙18064AED EAD ADE =︒--=︒∠∠∠⊙64ABD AED ==︒∠∠⊙AB 是O 的直径⊙90ADB ∠=︒⊙9026BAC ABD =︒-=︒∠∠⊙64C ∠=︒⊙18090ABC C BAC =︒--=︒∠∠∠ 即AB BC ⊥⊙OB 是O 的半径⊙BC 是O 的切线.【点睛】本题主要考查了切线的判定 求弧长 圆周角定理 三角形内角和定理等等 正确作出辅助线是解题的关键.21.(2023·江苏连云港·统考中考真题)如图,在ABC 中 AB AC = 以AB 为直径的O 交边AC 于点D 连接BD 过点C 作CE AB ∥.(1)请用无刻度的直尺和圆规作图:过点B 作O 的切线 交CE 于点F (不写作法 保留作图痕迹 标明字母)(2)在(1)的条件下 求证:BD BF =.【答案】(1)见解析(2)见解析【分析】(1)根据尺规作图 过点B 作AB 的垂线 交CE 于点F 即可求解(2)根据题意切线的性质以及直径所对的圆周角是直角 证明BDC BFC ∠=∠ 根据平行线的性质以及等腰三角形的性质得出BCD BCF =∠ 进而证明()AAS BCD BCF ≌ 即可得证.【详解】(1)解:方法不唯一 如图所示.(2)⊙AB AC =⊙A ABC CB =∠∠.又⊙CE AB ∥⊙ABC BCF ∠=∠⊙BCF ACB =∠∠.⊙点D 在以AB 为直径的圆上⊙90ADB ∠=︒⊙=90BDC ∠︒.又⊙BF 为O 的切线⊙90ABF ∠=︒.⊙CE AB ∥⊙180BFC ABF ∠+∠=︒⊙90BFC ∠=︒⊙BDC BFC ∠=∠.⊙在BCD △和BCF △中,,,BCD BCF BDC BFC BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩⊙()AAS BCD BCF ≌.⊙BD BF =.【点睛】本题考查了作圆的切线 切线的性质 直径所对的圆周角是直角 全等三角形的性质与判定 熟练掌握以上知识是解题的关键.22.(2023·辽宁·统考中考真题)如图,AB 是O 的直径 点C E ,在O 上 2CAB EAB ∠=∠ 点F 在线段AB 的延长线上 且AFE ABC ∠=∠.(1)求证:EF 与O 相切(2)若41sin 5BF AFE =∠=, 求BC 的长.【答案】(1)见解析 (2)245BC = 【分析】(1)利用圆周角定理得到2EOB EAB ∠=∠ 结合已知推出CAB EOB ∠=∠ 再证明OFE ABC ∽△△ 推出90OEF C ∠=∠=︒ 即可证明结论成立(2)设O 半径为x 则,1=+OF x 在Rt OEF △中 利用正弦函数求得半径的长 再在Rt ABC △中 解直角三角形即可求解.【详解】(1)证明:连接OE⊙=BE BE ⊙2EOB EAB ∠=∠⊙2CAB EAB ∠=∠⊙CAB EOB ∠=∠⊙AB 是O 的直径⊙90C ∠=︒⊙AFE ABC ∠=∠⊙OFE ABC ∽△△⊙90OEF C ∠=∠=︒⊙OE 为O 半径⊙EF 与O 相切(2)解:设O 半径为x 则,1=+OF x⊙AFE ABC ∠=∠ 4sin 5AFE ∠=⊙4sin 5ABC ∠= 在Rt OEF △中 90OEF ∠=︒ 4sin 5AFE ∠=⊙45OE OF = 即415x x =+ 解得4x =经检验 4x =是所列方程的解⊙O 半径为4则,8AB =在Rt ABC △中 90C ∠=︒ 4sin 5ABC ∠=8AB = ⊙32sin 5A AB C AB C ∠==⋅ ⊙22245BC AB AC =-=. 【点睛】本题考查了圆的切线的判定 圆周角定理 解直角三角形以及相似三角形的判定和性质等知识 熟练掌握圆的相关知识和相似三角形的判定和性质是解题的关键.23.(2023·山东东营·统考中考真题)如图,在ABC 中 AB AC = 以AB 为直径的O 交BC 于点D DE AC ⊥ 垂足为E .(1)求证:DE 是O 的切线(2)若30C ∠=︒ 23CD = 求BD 的长.【答案】(1)见解析 (2)43π 【分析】(1)如图:OD 然后根据等边对等角可得B ODB ∠=∠ B C ∠=∠即ODB C ∠=∠ 再根据OD AC ∥可得ODE DEC ∠=∠ 进而得到90ODE ∠=︒即可证明结论(2)如图:连接AD 有圆周角定理可得AD BC ⊥ 再解直角三角形可得4AC = 进而得到11222OB AB AC === 然后说明120BOD ∠=︒ 最后根据弧长公式即可解答. 【详解】(1)证明:如图:连接OD⊙OB OD =⊙B ODB ∠=∠,⊙AB AC =⊙B C ∠=∠,⊙ODB C ∠=∠,⊙OD AC ∥,⊙ODE DEC ∠=∠。
2021年中考数学 几何专练:与圆有关的位置关系(含答案)
2021中考数学几何专练:与圆有关的位置关系一、选择题1. 如图,已知AB是☉O的直径,点P在BA的延长线上,PD与☉O相切于点D,过点B作PD的垂线交PD的延长线于点C.若☉O的半径为4,BC=6,则P A的长为()A.4B.2C.3D.2.52. 如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是()A.DI=DBB.DI>DBC.DI<DBD.不确定3. 如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B.若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°4. 已知A,B,C为平面上的三点,AB=2,BC=3,AC=5,则()A.可以画一个圆,使A,B,C都在圆周上B.可以画一个圆,使A,B在圆周上,C在圆内C.可以画一个圆,使A,C在圆周上,B在圆外D.可以画一个圆,使A,C在圆周上,B在圆内5. 已知⊙O的面积为9π cm2,若点O到直线l的距离为π cm,则直线l与⊙O 的位置关系是()A.相交B.相切C.相离D.无法确定6. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°7.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为( )A. 12 B.22 C.32 D.338. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题9. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.10. 如图1,已知△ABC的外心为O,BC=10,∠BAC=60°,分别以AB,AC 为腰向三角形外作等腰直角三角形ABD与ACE,连接BE,CD交于点P,则OP长的最小值是________.11. 如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交⊙O于点C,连接BC.若∠A=26°,则∠C的度数为________.12.在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为________.13. 2019·兴化期中已知等边三角形ABC的边长为2,D为BC的中点,连接AD.点O在线段AD上运动(不与端点A,D重合),以点O为圆心,33为半径作圆,当⊙O与△ABC的边有且只有两个公共点时,DO的取值范围为________.14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O的半径为________.15. 如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,则在旋转的过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A .3次B .4次C .5次D .6次16. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.三、解答题17. 如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED︵=BD ︵,BE 交AC 于点F .(1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).18. 如图,点E 是△ABC 的内心,AE 的延长线交BC 于点F ,交△ABC 的外接圆⊙O 于点D ,连接BD ,过点D 作直线DM ,使∠BDM =∠DAC.求证:直线DM 是⊙O 的切线.19. 2018·天津 如图,已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,求∠ABC 和∠ABD 的大小;(2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OC D 的大小.20. 已知:如图,以点O 为圆心的两个同心圆中,大圆的弦AB =CD ,且AB 是小圆的切线,切点为M.求证:CD 是小圆的切线.21. 如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,AB =8 cm ,AD =24 cm ,BC =26 cm ,AB 为⊙O 的直径.动点P 从点A 开始沿AD 边向点D 以1 cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以3 cm/s 的速度运动,P ,Q 两点同时出发,当其中一点到达端点时,另一点也随之停止运动.设运动时间为t s,当t分别为何值时,直线PQ与⊙O相切、相离、相交?2021中考数学几何专练:与圆有关的位置关系-答案一、选择题1. 【答案】A[解析]如图,连接OD.∵PC切☉O于点D,∴OD⊥PC.∵☉O的半径为4,∴PO=P A+4,PB=P A+8.∵OD⊥PC,BC⊥PD,∴OD∥BC,∴△POD∽△PBC,∴=,即=,解得P A=4.故选A.2. 【答案】A[解析]连接BI,如图,∵△ABC内心为I,∴∠1=∠2,∠5=∠6.∵∠3=∠1,∴∠3=∠2.∵∠4=∠2+∠6=∠3+∠5,∴∠4=∠DBI , ∴DI=DB.故选A .3. 【答案】B[解析] 如图,连接AO.∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP =90°. ∵∠P =40°,∴∠AOP =50°.∵OA =OB ,∴∠B =∠OAB =12∠AOP =25°.故选B.4. 【答案】D[解析] 由题意可知A ,B ,C 三点在同一直线上,且点B 在点A ,C 之间,因此过点A ,C 可以画一个圆,且点B 在圆内.5. 【答案】C[解析] 由题意可知,圆的半径为3 cm.∵圆心到直线l 的距离为π cm>圆的半径3 cm ,∴直线l 与⊙O 相离.故选C.6. 【答案】A7.【答案】A【解析】如解图,连接OC ,∵EC 切⊙O 于C ,∴∠OCE =90°,∵OA =OC ,解图∴∠ACO =∠A =30°,∴∠COE =∠ACO +∠A =30°+30°=60°,∴∠E =180°-∠OCE -∠COE=180°-90°-60°=30°,∴在Rt △COE 中,sin ∠E =sin30°=12.8. 【答案】D[解析] 设光盘的圆心为O ,连接OA ,OB ,则OB ⊥AB ,∠OAB=12×(180°-60°)=60°.∵AB =3,∴OA =6,OB =3 3,∴光盘的直径是6 3.故选D.二、填空题 9. 【答案】219° [解析]连接AB , ∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.10. 【答案】5-533 [解析] ∵∠BAD =∠CAE =90°,∴∠DAC =∠BAE .在△DAC 和△BAE 中,⎩⎨⎧AD =AB ,∠DAC =∠BAE ,AC =AE ,∴△DAC ≌△BAE (SAS),∴∠ADC =∠ABE ,从而∠PDB +∠PBD =90°, 即∠DPB =90°,从而∠BPC =90°, ∴点P 在以BC 为直径的圆上.如图,过点O 作OH ⊥BC 于点H ,连接OB ,OC .∵△ABC的外心为O,∠BAC=60°,∴∠BOC=120°.又∵BC=10,∴OH=533,∴OP长的最小值是5-53 3.11. 【答案】32°[解析] 连接OB,由切线的性质得OB⊥AB,∴∠AOB=90°-∠A=90°-26°=64°.又∵OB=OC,∴∠C=12∠AOB=12×64°=32°.12. 【答案】24【解析】设AB切⊙O于点E,如解图,连接EO并延长交CD于点M,∵C⊙O=26π=2πr,∴r=13,∵AB∥CD,且AB与CD之间的距离为18,∴OM=18-r=5,∵AB为⊙O的切线,∴∠CMO=∠AEO=90°,∴在Rt△CMO中,CM=OC2-OM2=12,∴CD=2CM=24.解图13. 【答案】0<DO<33或2 33<DO<3[解析] ∵等边三角形ABC的边长为2,D为BC的中点,∴AD⊥BC,BD=1,AD= 3. 分四种情况讨论:(1)如图①所示,当0<DO<33时,⊙O与△ABC的BC边有且只有两个公共点,(2)如图②所示,当DO=33时,⊙O 与△ABC 的边有三个公共点;(3)如图③所示,当⊙O 经过△ABC 的顶点A 时,⊙O 与△ABC 的边有三个公共点,则当33<DO ≤2 33时,⊙O 与△ABC 的边有四个或三个公共点.(4)如图④所示,当2 33<DO <3时,⊙O 与△ABC 的边有两个公共点.综上,当0<DO <33或2 33<DO <3时,⊙O 与△ABC 的边只有两个公共点. 故答案为0<DO <33或2 33<DO < 3.14.【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵B C 与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】B [解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2. 如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.16. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.三、解答题17. 【答案】(1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°,∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.18. 【答案】证明:如图,作直径DG ,连接BG.∵点E 是△ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G.∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.19. 【答案】解:(1)如图①,连接OD .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ABC =90°-∠BAC =90°-38°=52°.∵D 为AB ︵的中点,∠AOB =180°,∴∠AOD =90°,∴∠ABD =12∠AOD =45°.(2)如图②,连接OD .∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP =90°.∵DP ∥AC ,∠BAC =38°,∴∠P =∠BAC =38°.∵∠AOD 是△ODP 的一个外角,∴∠AOD =∠P +∠ODP =128°,∴∠ACD =64°.∵OC =OA ,∠BAC =38°,∴∠OCA =∠BAC =38°,∴∠OCD =∠ACD -∠OCA =64°-38°=26°.20. 【答案】证明:如图,连接OM ,OA ,OC ,过点O 作ON ⊥CD 于点N.∵AB 与小圆相切,切点为M ,∴OM ⊥AB ,∴M ,N 分别为AB ,CD 的中点,∴AM =BM =12AB ,CN =DN =12CD. 又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN , ∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,即ON 是⊙O 的半径,∴CD 是小圆的切线.21. 【答案】解:设运动t s 时,直线PQ 与⊙O 相切于点G ,过点P 作PH ⊥BC 于点H ,如图,则PH =AB =8,BH =AP =t ,可得HQ =|26-3t -t|=|26-4t|,由切线长定理,得AP =PG ,QG =BQ ,则PQ =PG +QG =AP +BQ =t +26-3t =26-2t.由勾股定理,得PQ2=PH2+HQ2,即(26-2t)2=82+(26-4t)2,化简,得3t2-26t +16=0,解得t1=23,t2=8,所以当t =23或t =8时,直线PQ 与⊙O 相切. 因为当t =0时,直线PQ 与⊙O 相交,当t =263时,点Q 运动到点B ,点P 尚未运动到点D ,但也停止运动,直线PQ 也与⊙O 相交,所以可得以下结论:当t =23或t =8时,直线PQ 与⊙O 相切; 当23<t <8时,直线PQ 与⊙O 相离;当0≤t <23或8<t≤263时,直线PQ 与⊙O 相交.。
中考数学专题训练:与圆有关的位置关系(附参考答案)
中考数学专题训练:与圆有关的位置关系(附参考答案)1.如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的度数为( )A.35°B.45°C.55°D.65°2.如图,在Rt△ABC中,∠C=90°,AB=5,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,则CE的长为( )A.12B.23C.√22D.13.如图,一把直尺、一把含60°角的直角三角尺和光盘如图摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是( )A.3 B.3√3C.6 D.6√34.如图,PA,PB切⊙O于点A,B,PA=10,CD切⊙O于点E,交PA,PB于C,D两点,则△PCD的周长是( )A.10 B.18 C.20 D.225.如图,BC 为⊙O 的直径,弦AD ⊥BC 于点E ,直线l 切⊙O 于点C ,延长OD 交l 于点F .若AE =2,∠ABC =22.5°,则CF 的长度为( )A .2B .2√2C .2√3D .46.如图,AC 是⊙O 的切线,B 为切点,连接OA ,OC .若∠A =30°,AB =2√3,BC =3,则OC 的长度是( )A .3B .2√3C .√13D .67.如图,在⊙O 中,AB 切⊙O 于点A ,连接OB 交⊙O 于点C ,过点A 作AD ∥OB 交⊙O 于点D ,连接CD .若∠B =50°,则∠OCD 为( )A .15°B .20°C .25°D .30°8.如图,AB 为⊙O 的直径,点P 在AB 的延长线上,PC ,PD 与⊙O 相切,切点分别为C ,D .若AB =6,PC =4,则sin ∠CAD 等于( )A .35B .23C .34D .459.如图,I为△ABC的内心,有一直线经过点I且分别与AB,AC相交于D,E 两点.若AD=DE=5,AE=6,则点I到BC的距离为( )A.2411B.3011C.2 D.310.(多选)如图,在直角坐标系中,点A是函数y=-x图象上的动点,以点A 为圆心,1为半径作⊙A.已知B(-4,0),连接AB,当⊙A与两坐标轴同时相切时,tan ∠ABO的值可能为( )A.3 B.13C.5 D.1511.如图,在△ABC中,∠B=90°,⊙O过点A,C,与AB交于点D,与BC相切于点C.若∠A=32°,则∠ADO=________.(填度数)12.如图,在平面直角坐标系中,点A的坐标为(8,5),⊙A与x轴相切,点P 在y轴正半轴上,PB与⊙A相切于点B.若∠APB=30°,则点P的坐标为_____________.13.如图,在△ABC中,AC=2,BC=4,点O在BC上,以OB为半径的圆与AC 相切于点A,D是边BC上的动点.当△ACD为直角三角形时,AD的长为__________.14.如图,AD是⊙O的直径,AB是⊙O的弦,BC与⊙O相切于点B,连接OB.若∠ABC=65°,则∠BOD的大小为________.15.如图,PA,PB分别与⊙O相切于A,B两点,且∠APB=56°.若C是⊙O上异于点A,B的一点,则∠ACB的大小为_______________.16.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC,与⊙O交于点D,连接OD.若∠AOD=82°,则∠C=______°.17.如图,在平面直角坐标系中,以M(2,3)为圆心,AB长为直径的圆与x轴相切,与y轴交于A,C两点,则点B的坐标是________________.⏜的中点,过点C作CD⊥AE,18.如图,AB为⊙O的直径,E为⊙O上一点,C为EB交AE 的延长线于点D ,延长DC 交AB 的延长线于点F .(1)求证:CD 是⊙O 的切线;(2)若DE =1,DC =2,求⊙O 的半径长.19.如图,等边三角形ABC 的边长为4,⊙C 的半径为√3,P 为边AB 上一动点,过点P 作⊙C 的切线PQ ,切点为Q ,则PQ 的最小值为_____.20.如图,已知D 为⊙O 上一点,点C 在直径BA 的延长线上,BE 与⊙O 相切,交CD 的延长线于点E ,且BE =DE .(1)判断CD 与⊙O 的位置关系,并说明理由.(2)若AC =4,sin C =13.①求⊙O 的半径;②求BD 的长.参考答案1.C 2.B 3.D 4.C 5.B 6.C 7.B 8.D 9.A 10.BD 11.64° 12.(0,11) 13.32或65 14.50° 15.62°或118° 16.4917.(4,3-√5) 18.(1)证明略 (2)⊙O 的半径长为2.5 19.320.(1)CD 与⊙O 相切,理由略 (2)①⊙O 的半径为2 ②BD =4√63。
2021年中考数学专题训练:与圆有关的位置关系(含答案)
2021中考数学专题训练:与圆有关的位置关系一、选择题1. 如图,P为⊙O外一点,P A,PB分别切⊙O于A,B两点.若P A=3,则PB 等于()A.2 B.3 C.4 D.52. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定3. 已知⊙O的半径为2,点P到圆心O的距离为4,则点P在()A.⊙O内B.⊙O上C.⊙O外D.无法确定4. 如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.55. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.46. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是()A.3步B.5步C.6步D.8步8. 如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC 的延长线于点P,则PA的长为()A.2 B. 3 C. 2 D.1 29. 已知:在△ABC中,AB=AC,求证:∠B<90°.下面写出了用反证法证明这个命题过程中的四个推理步骤:①因为∠B+∠C≥180°与三角形内角和定理相矛盾;②所以∠B<90°;③假设∠B≥90°;④由AB=AC,得∠C=∠B≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.①②③④B.③④②①C.③④①②D.④③②①10. (2019•仙桃)如图,AB为O的直径,BC为O的切线,弦AD∥OC,直线CD交的BA延长线于点E,连接BD.下列结论:①CD是O的切线;②CO DB⊥;③EDA EBD△∽△;④ED BC BO BE⋅=⋅.其中正确结论的个数有A.4个B.3个C.2个D.1个二、填空题11. 设⊙O的半径为3,点O到直线l的距离为d,若直线l与⊙O至少有一个公共点,则d的取值范围是________.12. 如图,⊙O的半径为3,P是CB延长线上一点,OP=5,PA切⊙O于点A,则PA=________.13. 如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A.若∠MAB=30°,则∠B=________°.14. 如图,点P在⊙O外,PA,PB分别与⊙O相切于A,B两点,∠P=50°,则∠AOB=________°.15. 如图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D.若BD=2-1,则∠ACD=________°.16. 如图,在△ABC中,∠A=60°,BC=5 cm.能够将△ABC完全覆盖的最小圆形纸片的直径是________cm.17. 如图,半圆的圆心O与坐标原点重合,半圆的半径为1,直线l的解析式为y=x+t.若直线l与半圆只有一个公共点,则t的取值范围是________.三、解答题18. 如图,△ABC内接于☉O,∠B=60°,CD是☉O的直径,点P是CD延长线上一点,且AP=AC.(1)求证:P A是☉O的切线;(2)若PD=,求☉O的直径.19. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.20. 已知⊙O的半径为3,⊙P与⊙O相切于点A,经过点A的直线与⊙O、⊙P分别交于点B、C,cos∠BAO=13.设⊙P的半径为x,线段OC的长为y.(1)求AB的长;(2)如图,当⊙P与⊙O外切时,求y与x之间的函数关系式,并写出函数的定义域;(3)当∠OCA=∠OPC时,求⊙P的半径.2021中考数学专题训练:与圆有关的位置关系-答案一、选择题1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】B[解析] 若⊙P位于y轴左侧且与y轴相切,则平移的距离为1;若⊙P位于y轴右侧且与y轴相切,则平移的距离为5.5. 【答案】D6. 【答案】A7. 【答案】C8. 【答案】B [解析] 连接OA.因为∠ABC =30°,所以∠AOC =60°.因为PA 为⊙O 的切线,所以∠OAP =90°,所以∠P =90°-∠AOC =30°.因为OA =OC =1,所以OP =2OA =1,所以PA = 3.9. 【答案】C10. 【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠.又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确;∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠,∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠,∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED OD BE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A .二、填空题11. 【答案】0≤d≤312. 【答案】4 [解析] ∵PA 切⊙O 于点A ,∴OA ⊥PA.∵在Rt △OPA 中,OP =5,OA =3,∴PA =OP2-OA2=4.13. 【答案】6014. 【答案】13015. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.17. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O到直线l的距离OC=1时,直线l与半圆O相切,设直线l与y轴交于点D,则OD=2,即t= 2.当直线过点A时,把A(-1,0)代入直线l的解析式,得t=y-x=1.当直线过点B时,把B(1,0)代入直线l的解析式,得t=y-x=-1.即当t=2或-1≤t<1时,直线和半圆只有一个公共点.故答案为t=2或-1≤t<1.三、解答题18. 【答案】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A,∴P A是☉O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=OD+PD=2OA,又∵OA=OD,∴PD=OA,∵PD=,∴CD=2OA=2PD=2.∴☉O的直径为2.19. 【答案】解:(1)∵PA切⊙O于点A,PB切⊙O于点B,∴PA=PB,∠PAC=90°. ∵∠APB=60°,∴△APB是等边三角形,∴∠BAP=60°,∴∠BAC=90°-∠BAP=30°.(2)过点O作OD⊥AB于点D,如图所示,则AD=BD=12AB.由(1)得△APB 是等边三角形,∴AB =PA =1,∴AD =12.在Rt △AOD 中,∵∠BAC =30°,∴OD =12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(12)2,∴OD =36,即点O 到弦AB 的距离为36.20. 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2. (2)如图2,作CH ⊥AP ,垂足为H .由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =.在Rt △ACH 中,由cos ∠CAH =13,得13AH AC CH ==.所以1239AH AC x ==,39CH AC x ==.在Rt △OCH 中,由OC 2=OH 2+CH 2,得2222()(3)99y x x =++.整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OC OC OP=.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154. ②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO AC AC AP=.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6第(3)题②也可以这样思考:如图4,图5,图6,当∠OCA =∠OPC 时,3个等腰三角形△OAB 、△P AC 、△CAO 都相似,每个三角形的三边比是3∶3∶2.9 2、92、3.△P AC的三边长为274、274、92.这样,△CAO的三边长为。
2021年九年级中考数学 冲刺集训:与圆有关的位置关系(含答案)
2021中考数学冲刺集训:与圆有关的位置关系一、选择题1. 下列说法中,正确的是( )A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线2. 如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为( )A.1 B.1或5 C.3 D.53. 已知A,B,C为平面上的三点,AB=2,BC=3,AC=5,则( )A.可以画一个圆,使A,B,C都在圆周上B.可以画一个圆,使A,B在圆周上,C在圆内C.可以画一个圆,使A,C在圆周上,B在圆外D.可以画一个圆,使A,C在圆周上,B在圆内4. 在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点C为圆心,以2.5 cm 为半径画圆,则⊙C与直线AB的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定5. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定6. 如图,在网格中(每个小正方形的边长均为1个单位长度)选取9个格点(格线的交点称为格点).如果以点A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为( )图A.22<r≤17 B.17<r≤3 2C.17<r≤5 D.5<r≤297. 如图,⊙C的半径为1,圆心的坐标为(3,4),P(m,n)是⊙C内或⊙C上的一个动点,则m2+n2的最小值是( )A.9 B.16 C.25 D.368. 如图,在正三角形网格中,△ABC的顶点都在格点上,点P,Q,M是AB与网格线的交点,则△ABC的外心是( )A.点P B.点Q C.点M D.点N二、填空题9. 如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.10. 如图,在矩形ABCD中,AB=6,BC=2.8,⊙O是以AB为直径的圆,则直线CD与⊙O的位置关系是________.11. 如图0,PA,PB分别切⊙O于点A,B,PA=6,CD切⊙O于点E,分别交PA,PB于C,D两点,则△PCD的周长是________.12. 如图,点P在⊙O外,PA,PB分别与⊙O相切于A,B两点,∠P=50°,则∠AOB=________°.13. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.14. 如图,半圆的圆心O与坐标原点重合,半圆的半径为1,直线l的解析式为y=x+t.若直线l与半圆只有一个公共点,则t的取值范围是________.15. 如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次16. 2019·兴化期中已知等边三角形ABC的边长为2,D为BC的中点,连接AD.点O在线段AD上运动(不与端点A,D重合),以点O为圆心,33为半径作圆,当⊙O与△ABC的边有且只有两个公共点时,DO的取值范围为________.三、解答题17. 如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥BC.18. 如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.19. 已知:如图,以点O为圆心的两个同心圆中,大圆的弦AB=CD,且AB是小圆的切线,切点为M.求证:CD是小圆的切线.20. 如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD 的边(或边所在的直线)相切时,求t的值.2021中考数学冲刺集训:与圆有关的位置关系-答案一、选择题1. 【答案】B2. 【答案】B [解析] 若⊙P位于y轴左侧且与y轴相切,则平移的距离为1;若⊙P位于y轴右侧且与y轴相切,则平移的距离为5.3. 【答案】D [解析] 由题意可知A,B,C三点在同一直线上,且点B在点A,C之间,因此过点A,C可以画一个圆,且点B在圆内.4. 【答案】A【解析】如解图,在Rt△ABC中,AC=4,BC=3,由勾股定理得AB=5.过C作CD⊥AB于D,则S△ABC=12AC·BC=12AB·CD,解得CD=2.4<2.5,∴直线AB与⊙C相交.解图5. 【答案】B6. 【答案】B [解析] 如图,∵AD=2 2,AE=AF=17,AB=3 2,∴AB>AE=AF>AD,∴当17<r<3 2时,以点A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内.7. 【答案】B [解析] 如图,连接OC交⊙C于点P′.∵圆心C的坐标为(3,4),点P的坐标为(m,n),∴OC=5,OP=m2+n2,∴m2+n2是点P到原点的距离的平方,∴当点P运动到线段OC上,即点P′处时,点P离原点最近,即m2+n2取得最小值,此时OP=OC-PC=5-1=4,即m2+n2=16.8. 【答案】B [解析] 由题意可知∠BCN=60°,∠ACN=30°,∴∠ACB=∠ACN+∠BCN=90°,∴△ABC是直角三角形,∴△ABC的外心是斜边AB的中点.∵Q是AB的中点,∴△ABC的外心是点Q.二、填空题9. 【答案】50°【解析】∵AT是⊙O的切线,AB是⊙O的直径,∴∠BAT=90°,在Rt△BAT中,∵∠ABT=40°,∴∠ATB=50°.10. 【答案】相交[解析] 设AB的中点为O,则点O到CD的距离为2.8.因为⊙O 的半径为3,3>2.8,所以直线CD与⊙O的位置关系是相交.11. 【答案】12 [解析] ∵PA,PB分别切⊙O于A,B两点,CD切⊙O于点E,∴PB=PA=6,CA=CE,DB=DE,∴△PCD的周长=PC+CD+PD=PC+CE+DE+PD =PC+CA+DB+PD=PA+PB=12.12. 【答案】13013. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB 与⊙M′相交.14. 【答案】t=2或-1≤t<1 [解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O到直线l的距离OC=1时,直线l与半圆O相切,设直线l与y轴交于点D,则OD=2,即t= 2.当直线过点A时,把A(-1,0)代入直线l的解析式,得t=y-x=1.当直线过点B时,把B(1,0)代入直线l的解析式,得t=y-x=-1.即当t=2或-1≤t<1时,直线和半圆只有一个公共点.故答案为t=2或-1≤t<1.15. 【答案】B [解析] ∵正方形ABCD的对角线长为6,∴它的边长为3 2.如图,⊙O与正方形ABCD的边AB,AD只有一个公共点的情况各有1次,与边BC,CD只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现4次.16. 【答案】0<DO<33或2 33<DO< 3 [解析] ∵等边三角形ABC的边长为2,D为BC的中点,∴AD⊥BC,BD=1,AD= 3. 分四种情况讨论:(1)如图①所示,当0<DO<33时,⊙O与△ABC的BC边有且只有两个公共点,(2)如图②所示,当DO=33时,⊙O与△ABC的边有三个公共点;(3)如图③所示,当⊙O经过△ABC的顶点A时,⊙O与△ABC的边有三个公共点,则当33<DO≤2 33时,⊙O与△ABC的边有四个或三个公共点.(4)如图④所示,当2 33<DO<3时,⊙O与△ABC的边有两个公共点.综上,当0<DO<33或2 33<DO<3时,⊙O与△ABC的边只有两个公共点.故答案为0<DO<33或2 33<DO< 3.三、解答题17. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.18. 【答案】(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,(2分)解图又∵∠DEA=∠CBA,∴∠DEA+∠DOE=∠CAB+∠CBA,又∵∠ACB=90°,∴∠ODE=∠ACB=90°,(5分)∴OD⊥DE,又∵OD是⊙O的半径,∴DE与⊙O相切.(7分)(2)解:如解图,连接BD,可得△FBD ∽△DBO , ∴BD BO =DF OD =BFBD ,(8分) ∴BD =DF =10, ∴OB =5,(10分) 即⊙O 的半径为5.19. 【答案】证明:如图,连接OM ,OA ,OC ,过点O 作ON ⊥CD 于点N. ∵AB 与小圆相切,切点为M ,∴OM ⊥AB ,∴M ,N 分别为AB ,CD 的中点, ∴AM =BM =12AB ,CN =DN =12CD.又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN ,∴Rt △AOM ≌Rt △CON(HL), ∴OM =ON ,即ON 是⊙O 的半径, ∴CD 是小圆的切线.20. 【答案】(1)点C 的坐标为(0,3).(2)如图2,当P 在B 的右侧,∠BCP =15°时,∠PCO =30°,43t =+; 如图3,当P 在B 的左侧,∠BCP =15°时,∠CPO =30°,433t =+.图2 图3(3)如图4,当⊙P 与直线BC 相切时,t =1; 如图5,当⊙P 与直线DC 相切时,t =4;如图6,当⊙P与直线AD相切时,t=5.6.图4 图5 图611。
2021年中考数学专题训练 与圆有关的位置关系(含答案)
2021中考数学专题训练与圆有关的位置关系一、选择题1. 2018·舟山用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A.点在圆内B.点在圆上C.点在圆心上D.点在圆上或圆内2. 2019·益阳如图,PA,PB为⊙O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交⊙O于点D,下列结论不一定成立的是()A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD3. 平面上⊙O与四条直线l1,l2,l3,l4的位置关系如图.若⊙O的半径为2 cm,且点O到其中一条直线的距离为2.2 cm,则这条直线是()A.l l B.l2C.l3D.l44.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°.过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )A. 25°B. 40°C. 50°D. 65°5. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是()A.3步B.5步C.6步D.8步6. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定7. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.38. 已知A,B,C为平面上的三点,AB=2,BC=3,AC=5,则()A.可以画一个圆,使A,B,C都在圆周上B.可以画一个圆,使A,B在圆周上,C在圆内C.可以画一个圆,使A,C在圆周上,B在圆外D.可以画一个圆,使A,C在圆周上,B在圆内二、填空题9. 如图,☉O分别切∠BAC的两边AB,AC于点E,F,点P在优弧上.若∠BAC=66°,则∠EPF等于度.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C= .11. 如图1,已知△ABC 的外心为O ,BC =10,∠BAC =60°,分别以AB ,AC 为腰向三角形外作等腰直角三角形ABD 与ACE ,连接BE ,CD 交于点P ,则OP 长的最小值是________.12. 如图,∠APB =30°,⊙O 的半径为1 cm ,圆心O 在直线PB 上,OP =3 cm ,若⊙O 沿BP 方向移动,当⊙O 与直线PA 相切时,圆心O 移动的距离为__________.13. 如图所示,在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).14. 如图,AB 是⊙O 的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.三、解答题15. 如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的班车速度为60千米/时.(1)当班车从A城出发开往C城时,某人立即打开无线电收音机,班车行驶了0.5小时的时候,接收信号最强.此时,班车到发射塔的距离是多少千米?(离发射塔越近,信号越强)(2)班车从A城到C城共行驶2小时,请你判断到C城后还能不能接收到信号,并说明理由.图16. 如图,AB,AC分别是☉O的直径和弦,OD⊥AC于点D.过点A作☉O的切线与OD的延长线交于点P,PC,AB的延长线交于点F.(1)求证:PC是☉O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.17.如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF∶PC=1∶2,AF=5,求CP的长.18. 如图①,直线PA交⊙O于A,E两点,PA的垂线CD切⊙O于点C,交PA 于点D,过点A作⊙O的直径AB.(1)求证:AC平分∠DAB;(2)如图②,将直线CD向下平行移动,得到CD与⊙O相切于点C,AC还平分∠DAB吗?请说明理由.解题突破(20题)在动态情况下,探究结论是否发生变化,主要看使结论成立的主要条件是否改变.比如本题中虽然图形发生变化,但AD和OC平行,△AOC是等腰三角形这两个主要条件没有改变,因此结论不发生变化.2021中考数学专题训练与圆有关的位置关系-答案一、选择题1. 【答案】D2. 【答案】D。
2021年中考数学 专题训练:与圆有关的位置关系(含答案)
2021中考数学专题训练:与圆有关的位置关系一、选择题1. 如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB的关系是()A.DI=DBB.DI>DBC.DI<DBD.不确定2. 如图,P是⊙O外一点,OP交⊙O于点A,OA=AP.甲、乙两人想作一条经过点P且与⊙O相切的直线,其作法如下:甲:以点A为圆心,AP长为半径画弧,交⊙O于点B,则直线BP即为所求.乙:过点A作直线MN⊥OP,以点O为圆心,OP长为半径画弧,交射线AM于点B,连接OB,交⊙O于点C,直线CP即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲正确,乙错误B.乙正确,甲错误C.两人都正确D.两人都错误3. 如图,AB和⊙O相切于点B,∠AOB=60°,则∠A的大小为()A. 15°B. 30°C. 45°D. 60°4. 如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B.若∠P=40°,则∠B的度数为()A.20°B.25°C.40°D.50°5. 在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O为圆心,OA长为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为()A.E,F,G B.F,G,HC.G,H,E D.H,E,F6. 已知A,B,C为平面上的三点,AB=2,BC=3,AC=5,则()A.可以画一个圆,使A,B,C都在圆周上B.可以画一个圆,使A,B在圆周上,C在圆内C.可以画一个圆,使A,C在圆周上,B在圆外D.可以画一个圆,使A,C在圆周上,B在圆内7. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A. 70°B. 35°C.20°D. 40°8. 如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r 的取值范围是()A. 1<r<4B. 2<r<4C. 1<r<8D. 2<r<89. 如图,⊙O的半径为2,点O到直线l的距离为3,P是直线l上的一个动点,PQ切⊙O 于点Q,则PQ的最小值为()A.13B. 5 C.3 D.210. 如图,⊙C的半径为1,圆心的坐标为(3,4),P(m,n)是⊙C内或⊙C上的一个动点,则m2+n2的最小值是()A.9 B.16 C.25 D.36二、填空题11. 如图,点P在⊙O外,PA,PB分别与⊙O相切于A,B两点,∠P=50°,则∠AOB=________°.12. 如图,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC,垂足为E,要使DE是⊙O的切线,则图中的线段应满足的条件是____________.13. (2019•河池)如图,PA、PB是O的切线,A、B为切点,∠OAB=38°,则∠P=__________ .14. 在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为________.15. 如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是________.三、解答题16. 如图,AB是☉O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作☉O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求☉O的半径.17. 如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连接PM ,以点P 为圆心,PM 长为半径作⊙P.当⊙P 与正方形ABCD 的边相切时,求BP 的长.18. (2019•襄阳)如图,点E 是ABC △的内心,AE 的延长线和ABC △的外接圆圆O相交于点D ,过D 作直线DG BC ∥. (1)求证:DG 是圆O 的切线;(2)若6DE =,63BC =,求优弧BAC 的长.2021中考数学 专题训练:与圆有关的位置关系-答案一、选择题1. 【答案】A [解析]连接BI ,如图,∵△ABC 内心为I ,∴∠1=∠2,∠5=∠6.∵∠3=∠1,∴∠3=∠2.∵∠4=∠2+∠6=∠3+∠5,∴∠4=∠DBI , ∴DI=DB.故选A .2. 【答案】C[解析] 对于甲的作法:连接OB ,如图①.∵OA =AP ,∴OP 为⊙A 的直径, ∴∠OBP =90°,即OB ⊥PB , ∴PB 为⊙O 的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在△OAB 和△OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.3. 【答案】B 【解析】∵AB 和⊙O 相切于点B ,∴OB ⊥AB ,∴∠ABO =90°,∵∠AOB =60°,∴∠A =90°-∠AOB =90°-60°=30°.4. 【答案】B [解析] 如图,连接AO.∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP =90°.∵∠P =40°,∴∠AOP =50°.∵OA =OB ,∴∠B =∠OAB =12∠AOP =25°.故选B.5. 【答案】A[解析] 设小正方形的边长为1个单位长度,所以OA =12+22= 5.因为OE =2<OA ,所以点E 在⊙O 内; OF =2<OA ,所以点F 在⊙O 内; OG =1<OA ,所以点G 在⊙O 内; OH =22+22=2 2>OA , 所以点H 在⊙O 外. 故选A.6. 【答案】D[解析] 由题意可知A ,B ,C 三点在同一直线上,且点B 在点A ,C 之间,因此过点A ,C 可以画一个圆,且点B 在圆内.7. 【答案】D 【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】B【解析】连接AD ,则AD =AC 2+CD 2=42+32=5,∵⊙A 与⊙D 相交,∴3-r <5<3+r ,解得2<r <8,又∵点B 在⊙D 外,∴r <BD ,即r <4.∴2<r <4,故选B.解图9. 【答案】B [解析] ∵PQ 与⊙O 相切,∴∠OQP =90°,∴PQ =OP2-OQ2=OP2-22,∴当OP 最小时,PQ 最小.而OP 的最小值是点O 到直线l 的距离3,∴PQ 的最小值为32-22= 5.故选B.10. 【答案】B[解析] 如图,连接OC 交⊙C 于点P ′.∵圆心C 的坐标为(3,4),点P 的坐标为(m ,n ), ∴OC =5,OP =m 2+n 2,∴m 2+n 2是点P 到原点的距离的平方,∴当点P 运动到线段OC 上,即点P ′处时,点P 离原点最近,即m 2+n 2取得最小值,此时OP =OC -PC =5-1=4,即m 2+n 2=16.二、填空题11. 【答案】13012. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】76【解析】∵PA PB 、是O 的切线,∴PA PB PA OA =⊥,,∴90PAB PBA OAP ∠=∠∠=︒,,∴90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒, ∴180525276P ∠=︒-︒-︒=︒,故答案为:76.14. 【答案】24【解析】设AB 切⊙O 于点E ,如解图,连接EO 并延长交CD于点M ,∵C ⊙O =26π=2πr ,∴r =13,∵AB ∥CD ,且AB 与CD 之间的距离为18,∴OM =18-r =5,∵AB 为⊙O 的切线,∴∠CMO =∠AEO =90°,∴在Rt △CMO 中,CM =OC 2-OM 2=12,∴CD =2CM =24.解图15. 【答案】70°[解析] 由切线长定理可知∠OBD=12∠ABC=20°.∵BC是⊙O的切线,∴OD⊥BC,∴∠BOD=90°-∠OBD=70°.三、解答题16. 【答案】解:(1)证明:如图①,∵DC⊥OA,∴∠1+∠3=90°.∵BD为切线,∴OB⊥BD,∴∠2+∠5=90°.∵OA=OB,∴∠1=∠2.∵∠3=∠4,∴∠4=∠5,∴DE=DB.(2)如图②,作DF⊥AB于F,连接OE,∵DB=DE,∴EF=BE=3.在Rt△DEF中,EF=3,DE=BD=5,∴DF==4,∴sin∠DEF==.∵∠AOE=∠DEF,∴在Rt△AOE中,sin∠AOE==,∵AE=6,∴AO=.即☉O的半径为.17. 【答案】解:由题意知BM=4.分两种情况:(1)当⊙P与CD相切时,设BP=x,则PM=PC=8-x.由勾股定理,得x2+42=(8-x)2,解得x=3;(2)当⊙P与AD相切时,半径PM=点P到AD的距离=8.由勾股定理,得BP2=82-42,解得BP=4 3(负值已舍去).综上所述,BP 的长为3或4 3.18. 【答案】(1)连接OD 交BC 于H ,如图,∵点E 是ABC △的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠, ∴BD CD =,∴OD BC ,BH CH =,∵DG BC ∥, ∴OD DG ⊥, ∴DG 是圆O 的切线. (2)连接BD 、OB ,如图, ∵点E 是ABC △的内心, ∴ABE CBE ∠=∠, ∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠, ∴6DB DE ==, ∵1332BH BC == 在Rt BDH △中,333sin 62BH BDH BD ∠===, ∴60BDH ∠=︒, 而OB OD =,∴OBD △为等边三角形,∴60BOD ∠=︒,6OB BD ==, ∴120BOC ∠=︒,∴优弧BAC 的长=(360120)π68π180-⋅⋅=.。
【命题探讨】2021年中考数学 抢分训练之“小题狂做”与圆有关的位置关系(含解析) (1)
与圆有关的位置关系一、选择题(本大题共4小题,每题4分,共16分)1.已知两圆外切,圆心距为5 cm ,假设其中一个圆的半径是3 cm 那么另一个圆的半径是( )A . 8cmB .5 cmC .3 c mD .2 cm2. 已知P 是⊙O 内一点,⊙O 的半径为15,P 点到圆心O 的距离为9,那么通过P 点且长度是整数的弦的条数是( )A .5B .7C .10D .123. 如图,在等腰直角三角形ABC 中,AB =AC =8,O 为BC 的中点,以O 为圆心作半圆,使它与AB ,AC 都相切,切点别离为D ,E ,那么⊙O 的半径为( )A .8B .6C .5D .44.假设两圆的半径是方程x 2-5x +6=0的两个根且圆心距为5,那么这两个圆的位置关系是( )A. 内切 B .相交 C. 外切 D. 外离二、填空题(本大题共3小题,每题4分,共12分)5. 如图,PA 、PB 是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径,假设∠P =46°,那么∠BAC =______.第5题图 第7题图 6. 已知⊙O 1与⊙O 2的半径别离是方程x 2-4x +3=0的两根,且O 1O 2=t +2,假设这两个圆相切,那么t =________.7.如图,⊙O 是四边形ABCD 的内切圆,E 、F 、G 、H 是切点,点P 是优弧EFH 上异于E 、H 的点,假设∠A =50°,那么∠EPH =______.三、解答题(本大题共3小题,共32分)8. (8分)如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,CF ⊥AF ,且CF =CE .(1)求证:CF 是⊙O 的切线;(2)假设sin ∠BAC =25,求S △CBD S △ABC的值. 9. (10分)已知⊙O 中,AC 为直径,MA ,MB 别离切⊙O 于点A ,B .(1)如图1,假设∠BAC =25°,求∠AMB 的大小;(2)如图2,过点B 作BD ⊥AC 于点E ,交⊙O 于点D ,假设BD =MA ,求∠AMB 的大小.10.(14分)如图,AE 切⊙O 于点E ,AT 交⊙O 于点M ,N ,线段OE 交AT 于点C ,OB ⊥AT 于点B ,已知∠EAT =30°,AE =33,MN =222. (1)求∠COB 的度数;(2)求⊙O 的半径R ;(3)点F 在⊙O 上(FME ︵是劣弧),且EF =5,△OBC 通过平移、旋转和相似变换后,使它的两个极点别离与点E 、F 重合.在EF 的同一侧,如此的三角形共有多少个?你能在其中找出另一个极点也在⊙O 上的三角形吗?请在图中画出那个三角形,并求出那个三角形与△OBC 的周长之比.参考答案1. D 解析:圆和圆的位置与两圆的圆心距d 、两圆半径(R ≥r )之间的数量关系:①两圆外离d >R +r ;②两圆外切d =R +r ;③两圆相交R -r <d <R +r (R ≥r );④两圆内切d =R -r (R >r );⑤两圆内含d <R -r (R >r ).此题两圆外切,圆心距为5 cm ,一个圆的半径为3 cm ,因此另一个圆的半径为5-3=2 cm ,应选D.2. D 解析:过点P 的最短的弦是与过点P 的直径垂直的弦,由垂径定理及其推论可求得最短的弦长为24,通过点P 的最长的弦是过点P 的直径,因此最长的弦长为30,因此通过P 点且长度是整数的弦的条数是12,应选D.3. D 解析:连接OD ,OE ,∵AB ,AC 与⊙O 相切,∴OD ⊥AB ,OE ⊥AC ,AD =AE ,∵∠A =90°,∴四边形ADOE 是正方形,∴OD =AD ,又∵∠B =45°,OD ⊥AB ,∴△ODB 是等腰直角三角形,∴OD =BD ,∴OD =AD =BD =12×8=4,即⊙O 的半径是4,应选D. 4. C 解析:此题考查利用方程的根判定两圆的位置关系,两圆的半径是方程x 2-5x +6=0的两根,因此半径之和为5,又圆心距为5,因此两圆外切.5. 23° 解析:∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90°,∵∠P =46°,∴∠AOB=360°-90°×2-46°=134°,∵AO =BO ,∴∠BAC =∠ABO =12×(180°-134°)=23°. 6. 0或2 解析:解方程x 2-4x +3=0,得x 1=3,x 2=1,当⊙O 1与⊙O 2外切时,O 1O 2=4,因此t +2=4,因此t =2;当⊙O 1与⊙O 2内切时,O 1O 2=2,因此t +2=2,因此t =0,因此t =0或2.7. 65° 解析:连接OH 、OE ,那么∠AHO =∠AEO =90°,又∠A =50°,那么∠HOE=360°-(90°+90°+50°)=130°,那么∠EPH =12∠HOE =65°. 8. 解:(1)证明:如图,连接OC∵CE ⊥AB ,CF ⊥AF ,CE =CF ,∴AC 平分∠BAF ,即∠BAF =2∠BAC∴∠BOC =2∠BAC ,∴∠BOC =∠BAF ,∴OC ∥AF ,∴CF ⊥OC .∴CF 是⊙O 的切线.(4分)(2)∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =ED ,BC ︵=BD ︵,∴S △CBD =2S △CEB ,∠BAC =∠BCE .又∠ACB =∠CEB =90°,∴△ABC ∽△CBE ,(6分)∴S △CBES △ABC =(CB AB )2=(sin∠BAC )2=(25)2=425∴S △CBD S △ABC =825.(8分) 9. 解:(1)∵MA 切⊙O 于点A ,∴∠MAC =90°,又∠BAC =25°,∴∠MAB =∠MAC -∠BAC =65°,∵MA 、MB 别离切⊙O 于点A 、B ,∴MA =MB ,∴∠MAB =∠MBA .(4分) ∴∠AMB =180°-(∠MAB +∠MBA )=50°.(5分)(2)如图,连接AD 、AB∵MA ⊥AC ,BD ⊥AC ,∴BD ∥MA ,又BD =MA ,∴四边形MADB 是平行四边形,(7分)又∵MA =MB ,∴四边形MADB 是菱形,∴AD =BD .∵AC 为直径,AC ⊥BD ,∴BE =DE ,∴AB =AD ,∴△ABD 是等边三角形,∴∠D =60°,(9分)∴在菱形MADB 中,∠AMB =∠D =60°.(10分)10. 解:(1)∵AE 切⊙O 于点E ,∴OE ⊥AE ,∵OB ⊥AT ,∴在△CAE 和△COB 中,∠AEC =∠CBO =90°,而∠BCO =∠ACE ,∴∠COB =∠A =30°.(3分)图(1)(2)在Rt△ACE 中,AE =33,∠A =30°, ∴EC =AE ·tan30°=3.如图(1),连接OM ,在Rt△MOB 中,OM =R ,MB =MN 2=22, ∴OB =OM 2-MB 2=R 2-22.在Rt△COB 中,∠COB =30°,∴OC =OB cos 30°=233OB =233·R 2-22. ∵OC +EC =R ,∴233·R 2-22+3=R整理得R 2+18R -115=0,即(R +23)(R -5)=0,∴R =-23(不符合题意,舍去),或R =5,∴R =5.(8分)(3)在EF 的同一侧,知足题意的三角形共有6个,如图(2)(3)(4),每一个图有2个知足题意的三角形.能找出另一个极点也在⊙O 上的三角形,如图(1),延长EO 交⊙O 于D ,连接DF ,那么△DFE 为符合条件 的三角形.图(2) 图(3) 图(4)由题意得,△DFE ∽△OBC .由(2)得,DE =2R =10,OC =233R 2-22=2,∴C △DFE C △OBC =DE OC =102=5.(14分)。
中考数学专题特训第二十四讲:与圆有关的位置关系(含详细参考答案)
中考数学专题复习第二十四讲与圆有关的位置关系【基础知识回顾】一、点与圆的位置关系:1、点与圆的位置关系有种,若圆的半径为r点P到圆心的距离为d则:点P在圆内<=> 点P在圆上<=>点P在圆外<=>2、过三点的圆:⑴过同一直线上三点作用,过三点,有且只有一个圆⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆的圆心叫做三角形的这个三角形叫做这个圆的⑶三角形外心的形成:三角形的交点,外心的性质:到相等【赵老师提醒:1、锐角三角形外心在三角形直角三角形的外心是锐角三角形的外心在三角形】一、直线与圆的位置关系:1、直线与圆的位置关系有种:当直线和圆有两个公共点时,叫做直线和圆直线叫圆的线,这的直线叫做圆的直线和圆没有公共点时,叫做直线和圆2、设Qo的半径为r,圆心o到直线l的距离为d,则:直线l与Qo相交<=>d r,直线l与Qo相切<=>d r直线l与Qo相离<=>d r3、切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的【赵老师提醒:根据这一定理,在圆中遇到切线时,常用连接圆心和切点,即可的垂直关系】⑵判定定理:经过半径的且这条半径的直线式圆的切线【赵老师提醒:在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。
当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切】4、切线长定理:⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的长叫做这点到圆的切线长。
⑵切线长定理:从圆外一点到圆的两条切线,它们的相等,并且圆心和这一点的连线平分的夹角5、三角形的内切圆:⑴与三角形各边都的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的⑵三角形内心的形成:是三角形的交点内心的性质:到三角形各的距离相等,内心与每一个顶点的连接线平分【赵老师提醒:三类三角形内心都在三角形若△ABC三边为a、b、c面积为s,内切圆半径为r,则s= ,若△ABC为直角三角形,则r= 】二、圆和圆的位置关系:圆和圆的位置关系有种,若Qo1半径为R,Qo2半径为r,圆心距外,则Qo1 与Qo2 外距<=> Qo1 与Qo2 外切<=>两圆相交<=> 两圆内切<=>两圆内含<=>【赵老师提醒:两圆相离无公共点包含和两种情况,两圆相切有唯一公共点包含 和 两种情况,注意题目中两种情况的考虑圆心同是两圆 此时d= 】 三、 反证法:假设命题的结论 ,由此经过推理得出 由矛盾判定所作的假设 从而得到原命题成立,这种证明命题的方法叫反证法【赵老师提醒:反证法正题的关键是提出 即假设所证结论的反面成立,择推理论证得出的矛盾可以与 相矛盾,也可以与 相矛盾,从而肯定原命题成立】 【典型例题解析】 考点一:切线的性质例1 (•永州)如图,AC 是⊙O 的直径,PA 是⊙O 的切线,A 为切点,连接PC 交⊙O 于点B ,连接AB ,且PC=10,PA=6. 求:(1)⊙O 的半径; (2)cos ∠BAC 的值.考点:切线的性质;勾股定理;锐角三角函数的定义. 分析:(1)由AC 是⊙O 的直径,PA 是⊙O 的切线,根据切线的性质,即可得∠PAC=90°,又由PC=10,PA=6,利用勾股定理即可求得AC 的值,继而求得⊙O 的半径;(2)由AC 是⊙O 的直径,PA 是⊙O 的切线,根据圆周角定理与切线的性质,即可得∠ABC=∠PAC=90°,又由同角的余角相等,可得∠BAC=∠P ,然后在Rt △PAC 中,求得cos ∠P 的值,即可得cos ∠BAC 的值. 解答:解:(1)∵AC 是⊙O 的直径,PA 是⊙O 的切线, ∴CA ⊥PA , 即∠PAC=90°, ∵PC=10,PA=6, ∴AC=22PC PA -=8, ∴OA=12AC=4, ∴⊙O 的半径为4;(2)∵AC 是⊙O 的直径,PA 是⊙O 的切线, ∴∠ABC=∠PAC=90°, ∴∠P+∠C=90°,∠BAC+∠C=90°, ∴∠BAC=∠P , 在Rt △PAC 中,cos ∠P=63105PA PC ==,∴cos∠BAC=35.点评:此题考查了切线的性质、圆周角定理、勾股定理以及三角函数的定义.此题难度适中,注意掌握数形结合思想与转化思想的应用.例2 (•珠海)已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.考点:切线的性质;等边三角形的判定与性质;含30度角的直角三角形;圆心角、弧、弦的关系;圆周角定理.专题:几何综合题.分析:(1)PO与BC的位置关系是平行;(2)(1)中的结论成立,理由为:由折叠可知三角形APO与三角形CPO全等,根据全等三角形的对应角相等可得出∠APO=∠CPO,再由OA=OP,利用等边对等角得到∠A=∠APO,等量代换可得出∠A=∠CPO,又根据同弧所对的圆周角相等得到∠A=∠PCB,再等量代换可得出∠COP=∠ACB,利用内错角相等两直线平行,可得出PO与BC平行;(3)由CD为圆O的切线,利用切线的性质得到OC垂直于CD,又AD垂直于CD,利用平面内垂直于同一条直线的两直线平行得到OC与AD平行,根据两直线平行内错角相等得到∠APO=∠COP,再利用折叠的性质得到∠AOP=∠COP,等量代换可得出∠APO=∠AOP,再由OA=OP,利用等边对等角可得出一对角相等,等量代换可得出三角形AOP三内角相等,确定出三角形AOP为等边三角形,根据等边三角形的内角为60°得到∠AOP为60°,由OP 平行于BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出三角形POC为等边三角形,得到内角∠OCP为60°,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC等于圆的半径OP等于直径AB的一半,可得出PD为AB的四分之一,即AB=4PD,得证.解答:解:(1)PO与BC的位置关系是PO∥BC;对应训练1.(•玉林)如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.(1)求证:AE平分∠CAB;(2)探求图中∠1与∠C的数量关系,并求当AE=EC时,tanC的值.考点:切线的性质;特殊角的三角函数值.专题:探究型.分析:(1)连接OE,则OE⊥BC,由于AB⊥BC,故可得出AB∥OE,进而可得出∠2=∠AEO,由于OA=OE,故∠1=∠AEO,进而可得出∠1=∠2;(2)由三角形外角的性质可知∠1+∠AEO=∠EOC,,因为∠1=∠AEO,∠OEC=90°,所以2∠1+∠C=90°;当AE=CE时,∠1=∠C,再根据2∠1+∠C=90°即可得出∠C的度数,由特殊角的三角函数值得出tanC即可.解答:(1)证明:连接OE,∵⊙O与BC相切于点E,∴OE⊥BC,∵AB⊥BC,∴AB∥OE,∴∠2=∠AEO,∵OA=OE,∴∠1=∠AEO,∴∠1=∠2,即AE平分∠CAB;(2)解:2∠1+∠C=90°,tanC=33.∵∠EOC是△AOE的外角,∴∠1+∠AEO=∠EOC,∵∠1=∠AEO,∠OEC=90°,∴2∠1+∠C=90°,当AE=CE时,∠1=∠C,∵2∠1+∠C=90°∴3∠C=90°,∠C=30°∴tanC=tan30°=33.点评:本题考查的是切线的性质、三角形外角的性质及等腰三角形的性质,在解答此类题目时要熟知“若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系”.2.(•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=25,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.考点:切线的性质;等腰三角形的性质;勾股定理;直线与圆的位置关系;相似三角形的判定与性质.专题:计算题;几何综合题.分析:(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CPA=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5-r,根据AB=AC推出52-r2=(25)2-(5-r)2,求出r,证△DPB∽△CPA,得出CP APPD BP,代入求出即可;(3)根据已知得出Q在AC的垂直平分线上,作出线段AC的垂直平分线MN,作OE⊥MN,求出OE<r,求出r范围,再根据相离得出r<5,即可得出答案.解答:解:(1)AB=AC,理由如下:连接OB.∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;(2)延长AP交⊙O于D,连接BD,∵设圆半径为r,则OP=OB=r,PA=5-r,∴AB2=OA2-OB2=52-r2,AC2=PC2-PA2=(25)2-(5-r)2,∴52-r2=(25)2-(5-r)2,解得:r=3,∴AB=AC=4,∵PD是直径,∴∠PBD=90°=∠PAC,∵∠DPB=∠CPA,∴△DPB∽△CPA,∴CP AP PD BP=,∴2553 33BP-=+,解得:PB=655.∴⊙O的半径为3,线段PB的长为655;(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=12AC=12AB=12225r-;又∵圆O要与直线MN交点,∴OE=12225r-≤r,∴r≥5,又∵圆O与直线l相离,∴r<5,即5≤r<5.点评:本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.考点二:切线的判定例2 (•铁岭)如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.(1)求证:直线EF是⊙O的切线;(2)若点C是弧AB的中点,sin∠DAB= 35,求△CBD的面积.考点:切线的判定;圆周角定理;解直角三角形.专题:探究型.分析:(1)先由AB是⊙O的直径可得出∠ADB=90°,再根据∠ADC=∠ABC,∠CBF=∠CDB 即可得出∠ABF=90°,故EF是⊙O的切线;(2)作BG⊥CD,垂足是G,在Rt△ABD中,AB=10,sin∠DAB= 35可求出BD的长,再由C是弧AB的中点,可知∠ADC=∠CDB=45°,根据BG=DG=BDsin45°可求出BG的长,由∠DAB=∠DCB可得出CG的长,进而得出CD的长,利用三角形的面积公式即可得出结论.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°即∠ADC+∠CDB=90°,∵∠ADC=∠ABC,∠CBF=∠CDB,∴∠ABC+∠CBF=90°即∠ABF=90°,∴AB⊥EF∴EF是⊙O的切线;(2)解:作BG⊥CD,垂足是G,在Rt△ABD中∵AB=10,sin∠DAB=35,又∵sin∠DAB=BD AB,∴BD=6∵C是弧AB的中点,∴∠ADC=∠CDB=45°,∴BG=DG=BDsin45°=6×22=32,∵∠DAB=∠DCB∴tan∠DCB=BGCG=34,∴CG=42,∴CD=CG+DG=42+32=72,∴S△CBD=12CD•BG=7232212⨯=.点评:本题考查的是切线的判定定理,涉及到圆周角定理、解直角三角形及三角形的面积公式,根据题意作出辅助线,构造出直角三角形是解答此题的关键.对应训练考点三:三角形的外接圆和内切圆例4 (•阜新)如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为cm的圆形纸片所覆盖.考点:三角形的外接圆与外心;圆周角定理;锐角三角函数的定义.专题:计算题.分析:作圆O的直径CD,连接BD,根据圆周角定理求出∠D=60°,根据锐角三角函数的定义得出sin∠D= BCCD,代入求出CD即可.解答:解:作圆O的直径CD,连接BD,∵弧BC对的圆周角有∠A、∠D,∴∠D=∠A=60°,∵直径CD,∴∠DBC=90°,∴sin∠D=BC CD,即sin60°=3 CD,解得:CD=23,∴圆O的半径是3,故答案为:3.点评:本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是得出sin∠D= BCCD,题目比较典型,是一道比较好的题目.例5 (•玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧»DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为()A.r B.2r C.2r D.2r考点:三角形的内切圆与内心;矩形的判定;正方形的判定;切线长定理.专题:计算题.分析:连接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=r,根据切线长定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.解答:解:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=r,∵⊙O切AB于D,切BC于E,切MN于P,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,故选C.点评:本题考查的知识点是矩形的判定、正方形的判定、三角形的内切圆和内心、切线长定理等,主要考查运用这些性质进行推理和计算的能力,题目比较好,难度也适中.对应训练4.(•台州)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.考点:三角形的外接圆与外心;全等三角形的判定与性质;菱形的判定.专题:几何综合题;探究型.分析:(1)由∠ABC=∠DBE可知∠ABC+∠CBD=∠DBE+∠CBD,即∠ABD=∠CBE,根据SAS定理可知△ABD≌△CBE;(2)由(1)可知,△ABD≌△CBE,故CE=AD,根据点D是△ABC外接圆圆心可知DA=DB=DC,再由BD=BE可判断出BD=BE=CE=CD,故可得出四边形BDCE是菱形.解答:(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABD=∠CBE,在△ABD与△CBE中,∵BA BCABD CBEBD BE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CBE …4分(2)解:四边形BDEF是菱形.证明如下:同(1)可证△ABD≌△CBE,∴CE=AD,∵点D是△ABC外接圆圆心,∴DA=DB=DC,又∵BD=BE,∴BD=BE=CE=CD,∴四边形BDCE是菱形.点评:本题考查的是三角形的外接圆与外心、全等三角形的判定与性质及菱形的判定定理,先根据题意判断出△ABD≌△CBE是解答此题的关键.5.(•武汉)在锐角三角形ABC中,BC=5,sinA=45,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.考点:三角形的内切圆与内心;三角形的面积;勾股定理;圆周角定理;解直角三角形.专题:计算题.分析:(1)作直径CD,连接BD,求出∠DBC=90°,∠A=∠D,根据sin∠A的值求出即可;(2)连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,求出BF⊥AC,AF=CF,根据sin∠A求出BF\AF,求出AC,根据三角形的面积公式得出5×R+5×R+6×R=6×4,求出R,在△AIF中,由勾股定理求出AI即可.解答:(1)解:作直径CD,连接BD,∵CD是直径,∴∠DBC=90°,∠A=∠D,∵BC=5,sin∠A=45,∴sin∠D=BCCD=45,∴CD=25 4,答:三角形ABC外接圆的直径是254.(2)解:连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,∵AB=BC=5,I为△ABC内心,∴BF⊥AC,AF=CF,∵sin∠A=45=BFAB,∴BF=4,在Rt△ABF中,由勾股定理得:AF=CF=3,AC=2AF=6,∵I是△ABC内心,IE⊥AB,IF⊥AC,IG⊥BC,∴IE=IF=IG,设IE=IF=IG=R,∵△ABI、△ACI、△BCI的面积之和等于△ABC的面积,∴12AB×R+12BC×R+12AC×R=12AC×BF,即5×R+5×R+6×R=6×4,∴R=32,在△AIF中,AF=3,IF=32,由勾股定理得:AI=352.答:AI的长是352.点评:本题考查了三角形的面积公式,三角形的内切圆和内心,勾股定理,等腰三角形的性质,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强,有一定的难度.考点三:圆与圆的位置关系例6(•毕节地区)第三十奥运会将于年7月27日在英国伦敦开幕,奥运会旗图案有五个圆环组成,如图也是一幅五环图案,在这个五个圆中,不存在的位置关系是()A.外离B.内切C.外切D.相交考点:圆与圆的位置关系.分析:根据两圆的位置关系易得到它们的位置关系有外切、外离、相交.解答:解:观察图形,五个等圆不可能内切,也不可能内含,并且有的两个圆只有一个公共点,即外切;有的两个圆没有公共点,即外离;有的两个圆有两个公共点,即相交.故选B.点评:本题考查了圆与圆的位置关系:若两圆的半径分别为R,r,圆心距为d,若d>R+r,两圆外离;若d=R+r,两圆外切;若R-r<d<R+r(R≥r),两圆相交;若d=R-r(R>r),两圆内切;若0≤d<R-r(R>r),两圆内含.对应训练6.(•德阳)在平面直角坐标系xOy中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有个.6.4考点:圆与圆的位置关系;坐标与图形性质;直线与圆的位置关系.分析:分两圆内切和两圆外切两种情况讨论即可得到⊙P的个数.解答:解:如图,满足条件的⊙P有4个,故答案为4.点评:本题考查了圆与圆的位置关系、坐标与图形的性质及直线与圆的知识,能充分考虑到分内切和外切是解决本题的关键.【聚焦山东中考】1.(•济南)已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.相交D.内切考点:圆与圆的位置关系.分析:先根据一元二次方程根与系数的关系,可知圆心距=两圆半径之和,再根据圆与圆的位置关系即可判断.解答:解:∵⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,∴两根之和=5=两圆半径之和,又∵圆心距O1O2=5,∴两圆外切.故选B.点评:此题综合考查一元二次方程根与系数的关系及两圆的位置关系的判断.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).2.(•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别是4和6,O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别是4和6,O1O2=2,∴O1O2=6-4=2,∴⊙O1与⊙O2的位置关系是内切.故选A.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.3.(•泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,»BC的长为()OC=3,则A.π B.2πC.3π D.5π考点:切线的性质;弧长的计算.分析:连接OB,由于AB是切线,那么∠ABO=90°,而∠ABC=120°,易求∠OBC,而OB=OC,那么∠OBC=∠OCB,进而求出∠BOC的度数,»BC在利用弧长公式即可求出的长.解答:解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠ABC=120°,∴∠OBC=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴ BC 的长为nπr 180 =120×π×3 180 =2π,故选B.点评:本题考查了切线的性质、弧长公式,解题的关键是连接OB,构造直角三角形.4.(•潍坊)已知两圆半径r1、r2分别是方程x2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A.相交B.内切C.外切D.外离考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:首先解方程x2-7x+10=0,求得两圆半径r1、r2的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵x2-7x+10=0,∴(x-2)(x-5)=0,∴x1=2,x2=5,即两圆半径r1、r2分别是2,5,∵2+5=7,两圆的圆心距为7,∴两圆的位置关系是外切.故选C.点评:此题考查了圆与圆的位置关系与一元二次方程的解法.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.5.(•济南)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.5.4848考点:切线的性质;勾股定理;矩形的性质.分析:首先取AC的中点O,过点O作MN∥EF,PQ∥EH,由题意可得PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,PL,KN,OM,OQ分别是各半圆的半径,OL,OK是△ABC的中位线,又由在Rt△ABC中,∠B=90°,AB=6,BC=8,即可求得个线段长,继而求得答案.解答:解:取AC的中点O,过点O作MN∥EF,PQ∥EH,∵四边形EFGH是矩形,∴EH∥PQ∥FG,EF∥MN∥GH,∠E=∠H=90°,∴PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,∵AB∥EF,BC∥FG,∴AB∥MN∥GH,BC∥PQ∥FG,∴AL=BL,BK=CK,∴OL=12BC=12×8=4,OK=12AB=12×6=3,∵矩形EFGH的各边分别与半圆相切,∴PL=12AB=12×6=3,KN=12BC=12×8=4,在Rt△ABC中,AC= 22AB+BC=10,∴OM=OQ=12AC=5,∴EH=FG=PQ=PL+OL+OQ=3+4+5=12,EF=GH=MN=OM+OK+NK=5+3+4=12,∴矩形EFGH的周长是:EF+FG+GH+EH=12+12+12+12=48.故答案为:48.点评:此题考查了切线的性质、矩形的性质,三角形中位线的性质以及勾股定理等知识.此题难度较大,解题的关键是掌握辅助线的作法,注意数形结合思想的应用.6.(•菏泽)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度.6.23考点:切线的性质.专题:计算题.分析:由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC 的度数.解答:解:∵PA,PB是⊙O是切线,∴PA=PB,又∠P=46°,∴∠PAB=∠PBA=180-462o o=67°,又PA是⊙O是切线,AO为半径,∴OA⊥AP,∴∠OAP=90°,∴∠BAC=∠OAP-∠PAB=90°-67°=23°.故答案为:23。
初中数学 圆的有关位置关系(共70题)-(解析版)
2021年中考数学真题分项汇编【全国通用】(第01期)专题25圆的有关位置关系(共70题)一、单选题OA=,1.(2021·浙江嘉兴市·中考真题)已知平面内有O和点A,B,若O半径为2cm,线段3cm OB=,则直线AB与O的位置关系为()2cmA.相离B.相交C.相切D.相交或相切【答案】D【分析】根据点与圆的位置关系的判定方法进行判断.【详解】解:∵∵O的半径为2cm,线段OA=3cm,线段OB=2cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∵点A在∵O外.点B在∵O上,∵直线AB与∵O的位置关系为相交或相切,故选:D.【点睛】本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.2.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是()A.直角三角形斜边上的中线等于斜边的一半B.等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合=,则点B是线段AC的中点C.若AB BCD.三角形三条边的垂直平分线的交点叫做这个三角形的外心【答案】C【分析】根据中点的定义,直角三角形的性质,三线合一以及外心的定义分别判断即可.【详解】解:A、直角三角形斜边上的中线等于斜边的一半,故为真命题;B、等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合,故为真命题;C、若在同一条直线上AB=BC,则点B是线段AC的中点,故为假命题;D 、三角形三条边的垂直平分线的交点叫做这个三角形的外心,故为真命题;故选C .【点睛】本题考查了中点的定义,直角三角形的性质,三线合一以及外心的性质,属于基础知识,要熟练掌握. 3.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°【答案】B【分析】 连接AD ,由切线性质可得∵ADB =∵ADC =90°,根据AB=2AD 及锐角的三角函数可求得∵BAD =60°,易求得∵ADE =72°,由AD=AE 可求得∵DAE =36°,则∵GAC =96°,根据圆周角定理即可求得∵GFE 的度数.【详解】解:连接AD ,则AD =AG =3,∵BC 与圆A 相切于点D ,∵∵ADB =∵ADC =90°,在Rt∵ADB 中,AB =6,则cos∵BAD =AD AB =12, ∵∵BAD =60°,∵∵CDE =18°,∵∵ADE =90°﹣18°=72°,∵AD=AE ,∵∵ADE =∵AED =72°,∵∵DAE =180°﹣2×72°=36°,∵∵GAC =36°+60°=96°,∵∵GFE =12∵GAC =48°, 故选:B .【点睛】本题考查切线性质、锐角的三角函数、等腰三角形的性质、三角形的内角和定理、圆周角定理,熟练掌握切线性质和圆周角定理,利用特殊角的三角函数值求得∵BAD =60°是解答的关键.4.(2021·浙江金华市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,以该三角形的三条边为边向形外作正方形,正方形的顶点,,,,,E F G H M N 都在同一个圆上.记该圆面积为1S ,ABC 面积为2S ,则12S S 的值是( )A .52πB .3πC .5πD .112π 【答案】C【分析】先确定圆的圆心在直角三角形斜边的中点,然后利用全等三角形的判定和性质确定∵ABC 是等腰直角三角形,再根据直角三角形斜边中线的性质得到2214S AB =,再由勾股定理解得2254OF AB =,解得2154S AB π=⋅,据此解题即可.【详解】 解:如图所示,正方形的顶点,,,,,E F G H M N 都在同一个圆上,∴圆心O 在线段,EF MN 的中垂线的交点上,即在Rt ABC 斜边AB 的中点,且AC =MC ,BC =CG , ∵AG =AC +CG =AC +BC ,BM =BC +CM =BC +AC ,∵AG =BM ,又∵OG =OM ,OA =OB ,∵∵AOG ∵∵BOM ,∵∵CAB =∵CBA ,∵∵ACB =90°,∵∵CAB =∵CBA =45°,12OC AB ∴=, 2211112224S AB OC AB AB AB ∴=⋅=⋅= 22222215()24OF AO AF AB AB AB =+=+= 22154S OF AB ππ∴==⋅, 212254514AB S S AB ππ⋅∴==.故选:C .【点睛】本题考查勾股定理、直角三角形斜边的中线的性质、圆的面积、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.5.(2021·浙江中考真题)如图,已知点O 是ABC 的外心,∠40A =︒,连结BO ,CO ,则BOC ∠的度数是( ).A .60︒B .70︒C .80︒D .90︒【答案】C【分析】 结合题意,根据三角形外接圆的性质,作O ;再根据圆周角和圆心角的性质分析,即可得到答案.【详解】 ABC 的外接圆如下图∵∵40A =︒∵280BOC A ∠=∠=︒故选:C .【点睛】本题考查了圆的知识;解题的关键是熟练掌握三角形外接圆、圆周角、圆心角的性质,从而完成求解. 6.(2021·四川泸州市·)如图,∠O 的直径AB =8,AM ,BN 是它的两条切线,DE 与∠O 相切于点E ,并与AM ,BN 分别相交于D ,C 两点,BD ,OC 相交于点F ,若CD =10,则BF 的长是A B C D【答案】A【分析】过点D作DG∵BC于点G,延长CO交DA的延长线于点H,根据勾股定理求得6GC=,即可得AD=BG=2,BC= 8,再证明∵HAO∵∵BCO,根据全等三角形的性质可得AH=BC=8,即可求得HD= 10;在Rt∵ABD中,根据勾股定理可得BD=∵DHF∵∵BCF,根据相似三角形的性质可得DH DFBC BF=,由此即可求得9BF=.【详解】过点D作DG∵BC于点G,延长CO交DA的延长线于点H,∵AM,BN是它的两条切线,DE与∵O相切于点E,∵AD=DE,BC=CE,∵DAB=∵ABC=90°,∵DG∵BC,∵四边形ABGD为矩形,∵AD=BG,AB=DG=8,在Rt∵DGC中,CD=10,∵6 GC=,∵AD=DE,BC=CE,CD=10,∵CD= DE+CE = AD+BC =10,∵AD+BG +GC=10,∵AD=BG=2,BC=CG+BG=8,∵∵DAB=∵ABC=90°,∵AD∵BC,∵∵AHO=∵BCO,∵HAO=∵CBO,∵OA=OB,∵∵HAO∵∵BCO,∵AH=BC=8,∵AD=2,∵HD=AH+AD=10;在Rt∵ABD中,AD=2,AB=8,∵BD=∵AD∵BC,∵∵DHF∵∵BCF,∵DH DF BC BF=,∵108=,解得,BF=故选A.【点睛】本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.7.(2021·四川眉山市·中考真题)如图,在矩形ABCD中,对角线AC,BD相交于点O,6AB=,60=︒∠DAC,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边三角形DFE,点E和点A 分别位于DF 两侧,下列结论:∠BDE EFC ∠=∠;∠ED EC =;∠ADF ECF ∠=∠;∠点E 运动的路程是 )A .∠∠B .∠∠∠C .∠∠∠D .∠∠∠∠【答案】B【分析】 连接OE 并延长交DC 于点H ,先证∵ADO 为等边三角形,得出∵2=∵DAF =60°,再根据∵DEF 为等边三角形,得出∵正确;证出∵DOE ∵∵COE ,得到ED =EC ,得出∵正确;证出∵ADF =∵3,看得出∵正确;根据∵DOE ∵∵COE ,得出点E 在OH 上运动,可得∵正确.【详解】解:连接OE 并延长交DC 于点H ,∵矩形ABCD ,∵OA =OD =OC ,∵∵DAC =60°,∵∵A DO 为等边三角形,∵∵2=∵DAF =60°,∵∵DEF 为等边三角形,∵∵1=60°=∵5,∵∵1=∵2,∵D 、F 、O 、E 四点共圆,∵∵3=∵4,∵正确;∵∵5=∵6=60°,∵∵7=∵6=60°,∵OD =OC ,OE =OE ,∵∵DOE ∵∵COE ,∵∵3=∵8,∵∵CDE =∵DCE ,∵ED =EC ,∵正确;∵∵ADO =∵FDE =60°,∵∵ADF =∵3,∵∵ADF =∵8,即∵ADF =∵ECF ,∵正确;∵∵DOE ∵∵COE ,∵点E 在∵DOC 的角平分线上与CD 的交点为H ,即点E 在OH 上运动,∵OH =12BC ,∵OH ∵错误.故选B .【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,圆的性质,解题的关键是灵活运用这些性质.8.(2021·湖北十堰市·中考真题)如图,ABC 内接于,120,,O BAC AB AC BD ∠=︒=是O 的直径,若3AD =,则BC =( )A .B .C .3D .4【答案】C【分析】首先过点O 作OF ∵BC 于F ,由垂径定理可得BF =CF =12BC ,然后由∵BAC =120°,AB =AC ,利用等边对等角与三角形内角和定理,即可求得∵C 与∵BAC 的度数,由BD 为∵O 的直径,即可求得∵BAD 与∵D 的度数,又由AD =3,即可求得BD 的长,继而求得BC 的长.【详解】解:过点O 作OF ∵BC 于F ,∵BF =CF =12BC , ∵AB =AC ,∵BAC =120°,∵∵C =∵ABC =(180°−∵BAC )÷2=30°,∵∵C 与∵D 是同弧所对的圆周角,∵∵D =∵C =30°,∵BD 为∵O 的直径,∵∵BAD =90°,∵∵ABD =60°,∵∵OBC =∵ABD −∵ABC =30°,∵AD =3,∵BD =AD ÷cos30°=∵OB =12BD∵BF =OB •cos30°32, ∵BC =3.故选:C .【点睛】此题考查了圆周角定理、垂径定理、等腰三角形的性质、直角三角形的性质以及特殊角的三角函数值等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用,注意准确作出辅助线.9.(2021·湖南怀化市·中考真题)如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心【答案】C【分析】根据题意易得AD平分∵BAC,然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:∵AD平分∵BAC,∵BAD CAD∠=∠,故C正确;在∵ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.【点睛】本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.10.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒【答案】C【分析】由切线的性质得出∵OAP =∵OBP =90°,利用四边形内角和可求∵AOB =110°,再利用圆周角定理可求∵ADB =55°,再根据圆内接四边形对角互补可求∵ACB .【详解】解:如图所示,连接OA ,OB ,在优弧AB 上取点D ,连接AD ,BD ,∵AP 、BP 是切线,∵∵OAP =∵OBP =90°,∵∵AOB =360°-90°-90°-70°=110°,∵∵ADB =55°,又∵圆内接四边形的对角互补,∵∵ACB =180°-∵ADB =180°-55°=125°.故选:C .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA 、OB ,求出∵AOB .11.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 【答案】D【分析】 由题意知90APC ∠=︒,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt BCO ∆中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到PCO ∆是等边三角形,利用特殊Rt APC ∆三边关系即可求解.【详解】解:222PA PC AC +=∴90APC ∠=︒取AC 中点O ,并以O 为圆心,12AC 长为半径画圆 由题意知:当B 、P 、O 三点共线时,BP 最短AO PO CO ∴== 11322CO AC BC ==⨯==BO ∴=BP BO PO ∴=-=∴点P 是BO 的中点∴在Rt BCO ∆中,12CP BO PO === ∴PCO ∆是等边三角形 ∴60ACP ∠=︒∴在Rt APC ∆中,tan 603AP CP =⨯︒=13222APC S AP CP ∆∴=⨯==【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.12.(2021·四川广元市·中考真题)如图,在边长为2的正方形ABCD 中,AE 是以BC 为直径的半圆的切线,则图中阴影部分的面积为( )A .32π+B .2π-C .1D .52π- 【答案】D【分析】取BC 的中点O ,设AE 与∵O 的相切的切点为F ,连接OF 、OE 、OA ,由题意可得OB =OC =OA =1,∵OF A =∵OFE =90°,由切线长定理可得AB =AF =2,CE =CF ,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC 的中点O ,设AE 与∵O 的相切的切点为F ,连接OF 、OE 、OA ,如图所示:∵四边形ABCD 是正方形,且边长为2,∵BC=AB =2,∠ABC=∠BCD =90°,∵AE 是以BC 为直径的半圆的切线,∵OB =OC =OF =1,∵OF A =∵OFE =90°,∵AB =AF =2,CE =CF ,∵OA =OA ,∵Rt ∵ABO ∵Rt ∵AFO (HL ),同理可证∵OCE ∵∵OFE ,∵,AOB AOF COE FOE ∠=∠∠=∠,∵90AOB COE AOB BAO ∠+∠=︒=∠+∠,∵COE BAO ∠=∠,∵ABO OCE ∽, ∵OC CE AB OB=, ∵12CE =, ∵15222222ABO OCE ABCE S S S SS S ππ-=-=+-=+-=阴影半圆半圆四边形; 故选D .【点睛】 本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.13.(2021·江苏连云港市·中考真题)如图,正方形ABCD内接于O,线段MN在对角线BD上运动,MN=,则AMN周长的最小值是()若O的面积为2π,1A.3B.4C.5D.6【答案】B【分析】利用将军饮马之造桥选址的数学方法进行计算.【详解】如图所示,CN AN,过A点作CN的(1)N为BD上一动点,A点关于线段BD的对称点为点C,连接CN,则=平行线AG,过C点作BD的平行线CG,两平行线相交于点G,AG与BD相交于点M.CN MG NM CG//,//,∴四边形CNMG是平行四边形∴MG CN =∴MG AN =则=1AMN C AN AM NM MG AM ++=++(2)找一点'N , 连接'CN ,则'='CN AN ,过G 点作'CN 的平行线MG ,连接'AM 则''=''''''''''1AM N C AN AM N M AN AM CG AN AM NM AN AM ++=++=++=++.此时1''1AN AM AN AM ++<++∴''AMN AM N C C <∴(1)中AMN 周长取到最小值四边形CNMG 是平行四边形∴CNM NMA ∠=∠四边形ABCD 是正方形∴CO OA =,AC BD ⊥ 又CNM NMA ∠=∠,NOC MOA ∠=∠,CO OA =∴()CNO AOM AAS ≅∴ON OM =又AC BD∴AN AM =∴ANM 是等腰三角形22S r ππ==,则圆的半径r =1111222OM MN ==⨯= 2222219+24AM r OM ⎛⎫==+= ⎪⎝⎭ 32AM ∴= 3=2+1=42AMN C ∴⨯ 故选:B .【点睛】本题难度较大,需要具备一定的几何分析方法.关键是要找到AMN 周长取最小值时M N 、的位置. 14.(2021·贵州贵阳市·中考真题)如图,O 与正五边形ABCDE 的两边,AE CD 相切于,A C 两点,则AOC ∠的度数是( )A .144︒B .130︒C .129︒D .108︒ 【答案】A【分析】根据切线的性质,可得∵OAE =90°,∵OCD =90°,结合正五边形的每个内角的度数为108°,即可求解.【详解】解: ∵A E 、CD 切∵O 于点A 、C ,∵∵OAE =90°,∵OCD =90°,∵正五边形ABCDE 的每个内角的度数为:()521801085-⨯︒=︒ , ∵∵AOC =540°−90°−90°−108°−108°=144°,故选:A .【点睛】本题主要考查正多边形的内角和公式的应用,以及切线的性质定理,掌握正多边形的内角和定理是解题的关键.15.(2021·广东中考真题)设O 为坐标原点,点A 、B 为抛物线2y x 上的两个动点,且OA OB ⊥.连接点A 、B ,过O 作OC AB ⊥于点C ,则点C 到y 轴距离的最大值( )A .12B .2C .2D .1【答案】A【分析】设A (a ,a ²),B(b ,b ²),求出AB 的解析式为1()1ya x a ,进而得到OD =1,由∵OCB=90°可知,C 点在以OD 的中点E 为圆心,以1122rOD 为半径的圆上运动,当CH 为圆E 半径时最大,由此即可求解. 【详解】解:如下图所示:过C 点作y 轴垂线,垂足为H ,AB 与x 轴的交点为D ,设A (a ,a ²),B(b ,b ²),其中a ≠0,b ≠0,∵OA ∵OB ,∵1OA OB k k ⋅=-, ∵221a b a b , 即1ab =-,221AB a b k a b a a b a , 设AB 的解析式为:1()ya x m a ,代入A (a ,a ²), 解得:1m =,∵1OD =, ∵OC AB ⊥,即90OCB ∠= ,∵C 点在以OD 的中点E 为圆心,以1122r OD 为半径的圆上运动, 当CH 为圆E 的半径时,此时CH 的长度最大,故CH 的最大值为12r =, 故选:A .【点睛】本题考查了二次函数的性质,圆的相关知识等,本题的关键是求出AB 与y 轴交点的纵坐标始终为1,结合90OCB ∠=,由此确定点E 的轨迹为圆进而求解.16.(2021·湖南娄底市·中考真题)如图,直角坐标系中,以5为半径的动圆的圆心A 沿x 轴移动,当∠A 与直线5:12l y x =只有一个公共点时,点A 的坐标为( )A .(12,0)-B .(13,0)-C .(12,0)±D .(13,0)±【答案】D 【分析】 当∵A 与直线5:12l y x =只有一个公共点时,则此时∵A 与直线5:12l y x =相切,(需考虑左右两侧相切的情况);设切点为B ,此时B 点同时在∵A 与直线5:12l y x =上,故可以表示出B 点坐标,过B 点作//BC OA ,则此时AOB OBC △∽△,利用相似三角形的性质算出OA 长度,最终得出结论.【详解】如下图所示,连接AB ,过B 点作//BC OA ,此时B 点坐标可表示为512x,x ⎛⎫ ⎪⎝⎭, ∵512OC x =,BC x =, 在Rt OBC中,1312OB x ===,又∵A 半径为5,∵5AB =,∵//BC OA ,∵AOB OBC △∽△, 则OA AB OB BO OC BC==, ∵51351212OA =x x , ∵13OA=,∵左右两侧都有相切的可能,∵A 点坐标为(13,0)±,故选:D .【点睛】本题考查的是直线与圆的位置关系,熟知相似三角形的判定与性质是解答此题的关键.17.(2021·福建中考真题)如图,AB 为O 的直径,点P 在AB 的延长线上,,PC PD 与O 相切,切点分别为C ,D .若6,4AB PC ==,则sin CAD ∠等于( )A.35B.25C.34D.45【答案】D【分析】连接OC,CP,DP是∵O的切线,根据定理可知∵OCP=90°,∵CAP=∵P AD,利用三角形的一个外角等于与其不相邻的两个内角的和可求∵CAD=∵COP,在Rt∵OCP中求出sin COP∠即可.【详解】解:连接OC,CP,DP是∵O的切线,则∵OCP=90°,∵CAP=∵P AD,∵∵CAD=2∵CAP,∵OA=OC∵∵OAC=∵ACO,∵∵COP=2∵CAO∵∵COP=∵CAD∵6AB=∵OC=3在Rt∵COP中,OC=3,PC=4∵OP =5.∵sin CAD ∠=sin COP ∠=45 故选:D .【点睛】本题利用了切线的性质,锐角三角函数,三角形的外角与内角的关系求解.18.(2021·山西中考真题)如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,过点A 作//AD OB 交O 于点D ,连接CD .若50B ∠=︒,则OCD ∠为( )A .15︒B .20︒C .25︒D .30︒【答案】B【分析】 连接OA ,根据AB 与O 相切易得90OAB ∠=︒,在Rt OAB 中,已知50B ∠=︒,可以求出AOB ∠的度数,根据同弧所对的圆周角是圆心角的一半得出ADC ∠的度数,最后根据//AD OB 可得OCD ADC ∠=∠.【详解】如下图,连接OA ,∵AB 切O 于点A ,∵90OAB ∠=︒,在Rt OAB 中,∵50B ∠=︒,∵40AOB ∠=︒,∵20ADC ∠=︒,又∵//AD OB ,∵=20OCD ADC ∠=∠︒.故选:B .【点睛】本题考察了切线的性质,圆周角定理以及平行线的性质,综合运用以上性质定理是解题的关键.19.(2021·吉林长春市·中考真题)如图,AB 是O 的直径,BC 是O 的切线,若35BAC ∠=︒,则ACB∠的大小为( )A .35︒B .45︒C .55︒D .65︒【答案】C【分析】 根据切线的性质,得∵ABC =90°,再根据直角三角形的性质,即可求解.【详解】解:∵AB 是O 的直径,BC 是O 的切线,∵AB ∵BC ,即∵ABC =90°,∵35BAC ∠=︒,∵ACB ∠=90°-35°=55°,故选C .【点睛】本题主要考查切线的性质以及直角三角形的性质,掌握圆的切线的性质定理,是解题的关键.20.(2021·上海中考真题)如图,已知长方形ABCD 中,4,3AB AD ==,圆B 的半径为1,圆A 与圆B 内切,则点,C D 与圆A 的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外【答案】C【分析】根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可【详解】AB=,圆B的半径为1∵圆A与圆B内切,4∵圆A的半径为5AD=<5∵3∵点D在圆A内在Rt∵ABC中,5AC==∵点C在圆A上故选:C【点睛】本题考查点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键二、填空题21.(2021·湖南常德市·中考真题)如图,四边形ABCD是∠O的内接四边形,若∠BOD=80°,则∠BCD的度数是_____.【答案】140°.【详解】试题分析:∵∵BOD=80°,∵∵A=40°,∵四边形ABCD是∵O的内接四边形,∵∵BCD=180°-40°=140°,故答案为140°.考点:圆内接四边形的性质;圆周角定理22.(2021·四川凉山彝族自治州·中考真题)如图,等边三角形ABC的边长为4,C P为AB边上一动点,过点P作C的切线PQ,切点为Q,则PQ的最小值为________.【答案】3【分析】连接OC和PC,利用切线的性质得到CQ∵PQ,可得当CP最小时,PQ最小,此时CP∵AB,再求出CP,利用勾股定理求出PQ即可.【详解】解:连接QC和PC,∵PQ和圆C相切,∵CQ∵PQ,即∵CPQ始终为直角三角形,CQ为定值,∵当CP最小时,PQ最小,∵∵ABC是等边三角形,∵当CP∵AB时,CP最小,此时CP∵AB,∵AB=BC=AC=4,∵AP=BP=2,∵CP=∵圆C的半径CQ∵PQ,故答案为:3.【点睛】本题考查了切线的性质,等边三角形的性质,以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意得到当PC∵AB时,线段PQ最短是关键.OP=.若PT是23.(2021·浙江杭州市·中考真题)如图,已知O的半径为1,点P是O外一点,且2O的切线,T为切点,连接OT,则PT=_____.【分析】根据圆的切线的性质,得90OTP ∠=︒,根据圆的性质,得1OT =,再通过勾股定理计算,即可得到答案.【详解】∵PT 是O 的切线,T 为切点∵90OTP ∠=︒∵PT =∵O 的半径为1∵1OT =∵PT =【点睛】本题考查了圆、勾股定理的知识;解题的关键是熟练掌握圆、圆的切线、勾股定理的性质,从而完成求解. 24.(2021·陕西中考真题)如图,正方形ABCD 的边长为4,O 的半径为1.若O 在正方形ABCD 内平移(O 可以与该正方形的边相切),则点A 到O 上的点的距离的最大值为______.【答案】1【分析】由题意易得当O 与BC 、CD 相切时,切点分别为F 、G ,点A 到O 上的点的距离取得最大,进而根据题意作图,则连接AC ,交O 于点E ,然后可得AE 的长即为点A 到O 上的点的距离为最大,由题意易得4,45AB BC ACB ==∠=︒,则有∵OFC 是等腰直角三角形,AC =可得OC【详解】解:由题意得当O 与BC 、CD 相切时,切点分别为F 、G ,点A 到O 上的点的距离取得最大,如图所示:90OFC ∠=︒连接AC ,OF ,AC 交O 于点E ,此时AE 的长即为点A 到O 上的点的距离为最大,如图所示, ∵四边形ABCD 是正方形,且边长为4,∵4,45AB BC ACB ==∠=︒,∵∵OFC 是等腰直角三角形,AC =∵O 的半径为1,∵1OF FC ==,∵OC =∵AO AC OC =-=∵1AE AO OE =+=,即点A 到O 上的点的距离的最大值为1;故答案为1.【点睛】本题主要考查正方形的性质、切点的性质定理及等腰直角三角形的性质与判定,熟练掌握正方形的性质、切点的性质定理及等腰直角三角形的性质与判定是解题的关键.25.(2021·青海中考真题)点P 是非圆上一点,若点P 到O 上的点的最小距离是4cm ,最大距离是9cm ,则O 的半径是______.【答案】6.5cm 或2.5cm【分析】分点P 在O 外和O 内两种情况分析;设O 的半径为xcm ,根据圆的性质列一元一次方程并求解,即可得到答案.【详解】设O 的半径为xcm当点P 在O 外时,根据题意得:429x += ∵ 2.5x cm =当点P 在O 内时,根据题意得:294x =+∵ 6.5x cm =故答案为:6.5cm 或2.5cm .【点睛】本题考查了圆、一元一次方程的知识;解题的关键是熟练掌握圆的性质,从而完成求解. 26.(2021·北京中考真题)如图,,PA PB 是O 的切线,,A B 是切点.若50P ∠=︒,则AOB ∠=______________.【答案】130°【分析】由题意易得90∠=∠=︒PAO PBO ,然后根据四边形内角和可求解.【详解】解:∵,PA PB 是O 的切线,∵90∠=∠=︒PAO PBO ,∵由四边形内角和可得:180AOB P ∠+∠=︒,∵50P ∠=︒,∵130AOB ∠=︒;故答案为130°.【点睛】本题主要考查切线的性质及四边形内角和,熟练掌握切线的性质是解题的关键.27.(2021·四川广元市·中考真题)如图,在正方形ABCD 中,点O 是对角线BD 的中点,点P 在线段OD 上,连接AP 并延长交CD 于点E ,过点P 作PF AP ⊥交BC 于点F ,连接AF 、EF ,AF 交BD 于G ,现有以下结论:∠AP PF =;∠DE BF EF +=;∠PB PD -=;∠AEF S 为定值;∠APG PEFG S S =四边形.以上结论正确的有________(填入正确的序号即可).【答案】∵∵∵∵【分析】由题意易得∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,对于∵:易知点A 、B 、F 、P 四点共圆,然后可得∵AFP =∵ABD =45°,则问题可判定;对于∵:把∵AED 绕点A 顺时针旋转90°得到∵ABH ,则有DE =BH ,∵DAE =∵BAH ,然后易得∵AEF ∵∵AHF ,则有HF =EF ,则可判定;对于∵:连接AC ,在BP 上截取BM =DP ,连接AM ,易得OB =OD ,OP =OM ,然后易证∵AOP ∵∵ABF ,进而问题可求解;对于∵:过点A 作AN ∵EF 于点N ,则由题意可得AN =AB ,若∵AEF 的面积为定值,则EF 为定值,进而问题可求解;对于∵由∵可得2AP AF =进而可得∵APG ∵∵AFE ,然后可得相似比为2AP AF =最后根据相似三角形的面积比与相似比的关系可求解.【详解】解:∵四边形ABCD 是正方形,PF AP ⊥,∵∵APF =∵ABC =∵ADE =∵C =90°,AD =AB ,∵ABD =45°,∵∵180ABC APF ∠+∠=︒,∵由四边形内角和可得180BAP BFP ∠+∠=︒,∵点A 、B 、F 、P 四点共圆,∵∵AFP =∵ABD =45°,∵∵APF 是等腰直角三角形,∵AP PF =,故∵正确;∵把∵AED 绕点A 顺时针旋转90°得到∵ABH ,如图所示:∵DE =BH ,∵DAE =∵BAH ,∵HAE =90°,AH =AE ,∵45HAF EAF ∠=∠=︒,∵AF =AF ,∵∵AEF ∵∵AHF (SAS ),∵HF =EF ,∵HF BH BF =+,∵DE BF EF +=,故∵正确;∵连接AC ,在BP 上截取BM =DP ,连接AM ,如图所示:∵点O 是对角线BD 的中点,∵OB =OD ,BD AC ⊥,∵OP =OM ,∵AOB 是等腰直角三角形,∵AB =,由∵可得点A 、B 、F 、P 四点共圆,∵APO AFB ∠=∠,∵90ABF AOP ∠=∠=︒,∵∵AOP ∵∵ABF ,∵OP OA AP BF AB AF ===,∵OP BF =, ∵2BP DP BP BM PM OP -=-==,∵PB PD -=,故∵正确;∵过点A 作AN ∵EF 于点N ,如图所示:由∵可得∵AFB =∵AFN ,∵∵ABF =∵ANF =90°,AF =AF ,∵∵ABF ∵∵ANF (AAS ),∵AN =AB ,若∵AEF 的面积为定值,则EF 为定值,∵点P 在线段OD 上,∵EF 的长不可能为定值,故∵错误;∵由∵可得2AP AF = ∵∵AFB =∵AFN =∵APG ,∵F AE =∵P AG ,∵∵APG ∵∵AFE ,∵2GP AP EF AF ==,∵212AGP AEF SS ==⎝⎭, ∵12AGP AEF S S =,∵APG PEFG S S =四边形,故∵正确;综上所述:以上结论正确的有∵∵∵∵;故答案为∵∵∵∵.【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.28.(2021·浙江宁波市·中考真题)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,,AC BD 分别与O 相切于点C ,D ,延长,AC BD 交于点P .若120P ∠=︒,O 的半径为6cm ,则图中CD 的长为________cm .(结果保留π)【答案】2π【分析】连接OC 、OD ,利用切线的性质得到90OCP ODP ∠=∠=︒,根据四边形的内角和求得60COD ∠=︒,再利用弧长公式求得答案. 【详解】连接OC 、OD ,∵,AC BD 分别与O 相切于点C ,D ,∵90OCP ODP ∠=∠=︒,∵120P ∠=︒,360OCP ODP P COD ∠+∠+∠+∠=︒,∵60COD ∠=︒,∵CD 的长=6062180(cm ),故答案为:2π..【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.29.(2021·浙江温州市·中考真题)如图,O 与OAB 的边AB 相切,切点为B .将OAB 绕点B 按顺时针方向旋转得到O A B '''△,使点O '落在O 上,边A B '交线段AO 于点C .若25A '∠=︒,则OCB ∠=______度.【答案】85【分析】连结OO′,先证∵BOO′为等边三角形,求出∵AOB =∵OBO′=60°,由O 与OAB 的边AB 相切,可求∵CBO ==30°,利用三角形内角和公式即可求解.【详解】解:连结OO′,∵将OAB 绕点B 按顺时针方向旋转得到O A B '''△,∵BO′=BO =OO′,∵∵BOO′为等边三角形,∵∵OBO′=60°,∵O 与OAB 的边AB 相切,∵∵OBA =∵O′BA′=90°,∵∵CBO =90°-∵OBO′=90°-60°=30°,∵∵A′=25°∵∵A′O′B=90°-∵A′=90°-25°=65°∵∵AOB=∵A′O′B=65°,∵∵OCB=180°-∵COB-∵OBC=180°-65°-30°=85°.故答案为85.【点睛】本题考查图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质,掌握图形旋转性质,切线性质,等边三角形判定与性质,直角三角形性质是解题关键.30.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.∠该弧所在圆的半径长为___________;∠ABC面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ∠线段PB 长的最小值为_______;∠若23PCD PAD S S =,则线段PD 长为________.【答案】(1)∵2;2;(2)见解析;(3);【分析】(1)∵设O 为圆心,连接BO ,CO ,根据圆周角定理得到∵BOC =60°,证明∵OBC 是等边三角形,可得半径;∵过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,∵ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)∵根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′;∵根据AD ,CD 和23PCD PAD S S =推出点P 在∵ADC 的平分线上,从而找到点P 的位置,过点C 作CF ∵PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)∵设O 为圆心,连接BO ,CO ,∵∵BAC =30°,∵∵BOC =60°,又OB =OC ,∵∵OBC 是等边三角形,∵OB =OC =BC =2,即半径为2;∵∵∵ABC 以BC 为底边,BC =2,∵当点A 到BC 的距离最大时,∵ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,∵BE =CE =1,DO =BO =2,∵OE∵DE 2,∵∵ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,∵点D 在圆上,∵∵BDC =∵BAC ,∵∵BA ′C =∵BDC +∵A ′CD ,∵∵BA ′C >∵BDC ,∵∵BA ′C >∵BAC ,即∵BA ′C >30°;(3)∵如图,当点P 在BC 上,且PC =32时,∵∵PCD =90°,AB =CD =2,AD =BC =3,∵tan ∵DPC =CD PC =43,为定值,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,∵当点P在优弧CPD上时,tan∵DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE∵BE,垂足为E,∵点Q是PD中点,∵点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,∵BE=BC-CE=3-34=94,∵BQ∵PD 52,∵圆Q的半径为155 224⨯=,∵BP′=BQ-P′Q,即BP;∵∵AD=3,CD=2,23PCD PADS S=,则23 CDAD=,∵∵P AD中AD边上的高=∵PCD中CD边上的高,即点P到AD的距离和点P到CD的距离相等,则点P到AD和CD的距离相等,即点P在∵ADC的平分线上,如图,过点C作CF∵PD,垂足为F,∵PD平分∵ADC,∵∵ADP=∵CDP=45°,∵∵CDF为等腰直角三角形,又CD=2,∵CF=DF。
2021年中考数学专题复习第二十四讲:与圆的位置关系(含详细答案) (1)
2021年中考数学专题复习第二十四讲:与圆的位置关系(含详细答案) (1)____年中考数学专题复习第二十四讲与圆有关的位置关系【基础知识回顾】一、点与圆的位置关系:1、点与圆的位置关系有种,若圆的半径为r点P到圆心的距离为d则:点P在圆内 _lt;=点P在圆上_lt;=点P在圆外 _lt;=2、过三点的圆:⑴过同一直线上三点作用,过三点,有且只有一个圆⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆的圆心叫做三角形的这个三角形叫做这个圆的⑶三角形外心的形成:三角形的交点,外心的性质:到相等【名师提醒:1、锐角三角形外心在三角形直角三角形的外心是锐角三角形的外心在三角形】一、直线与圆的位置关系:1、直线与圆的位置关系有种:当直线和圆有两个公共点时,叫做直线和圆直线叫圆的线,这的直线叫做圆的直线和圆没有公共点时,叫做直线和圆2、设Qo的半径为r,圆心o到直线l的距离为d,则:直线l与Qo相交_lt;= r,直线l与Qo相切_lt;=r 直线l与Qo相离_lt;= r3、切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的【名师提醒:根据这一定理,在圆中遇到切线时,常用连接圆心和切点,即可的垂直关系】⑵判定定理:经过半径的且这条半径的直线式圆的切线【名师提醒:在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。
当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切】4、切线长定理:⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的长叫做这点到圆的切线长。
⑵切线长定理:从圆外一点到圆的两条切线,它们的相等,并且圆心和这一点的连线平分的夹角5、三角形的内切圆:⑴与三角形各边都的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的⑵三角形内心的形成:是三角形的交点内心的性质:到三角形各的距离相等,内心与每一个顶点的连接线平分【名师提醒:三类三角形内心都在三角形若△ABC三边为a、b、c面积为s,内切圆半径为r,则s= ,若△ABC为直角三角形,则r= 】二、圆和圆的位置关系:圆和圆的位置关系有种,若Qo1半径为R,Qo2半径为r,圆心距外,则Qo1 与Qo2 外距_lt;=_gt; Qo1 与Qo2 外切_lt;=_gt; 两圆相交_lt;=_gt; 两圆内切_lt;=_gt; 两圆内含_lt;=_gt;【名师提醒:两圆相离无公共点包含和两种情况,两圆相切有唯一公共点包含和两种情况,注意题目中两种情况的考虑圆心同是两圆此时d= 】三、反证法:假设命题的结论,由此经过推理得出由矛盾判定所作的假设从而得到原命题成立,这种证明命题的方法叫反证法【名师提醒:反证法正题的关键是提出即假设所证结论的反面成立,择推理论证得出的矛盾可以与相矛盾,也可以与相矛盾,从而肯定原命题成立】【典型例题解析】考点一:切线的性质例1 (____ 永州)如图,AC是⊙O的直径,PA是⊙O的切线,A为切点,连接PC交⊙O于点B,连接AB,且PC=10,PA=6.求:(1)⊙O的半径;(2)cos∠BAC的值.。
中考数学专题复习34与圆有关的位置关系专题(全国通用解析版)
与圆有关的位置关系考点1:点、直线和圆的位置关系1.(2021·陕西中考真题)如图.正方形ABCD 的边长为4.O 的半径为1.若O 在正方形ABCD 内平移(O 可以与该正方形的边相切).则点A 到O 上的点的距离的最大值为______.【答案】321【分析】由题意易得当O 与BC 、CD 相切时.切点分别为F 、G .点A 到O 上的点的距离取得最大.进而根据题意作图.则连接AC .交O 于点E .然后可得AE 的长即为点A 到O 上的点的距离为最大.由题意易得4,45AB BC ACB ==∠=︒.则有△OFC 是等腰直角三角形.42AC =根据等腰直角三角形的性质可得2OC =最后问题可求解.【详解】解:由题意得当O 与BC 、CD 相切时.切点分别为F 、G .点A 到O 上的点的距离取得最大.如图所示:90OFC ∠=︒连接AC .OF .AC 交O 于点E .此时AE 的长即为点A 到O 上的点的距离为最大.如图所示.△四边形ABCD 是正方形.且边长为4.△4,45AB BC ACB ==∠=︒.△△OFC 是等腰直角三角形.42AC =△O 的半径为1.△1OF FC ==. △2OC = △32AO AC OC =-= △321AE AO OE =+=.即点A 到O 上的点的距离的最大值为321; 故答案为321.考点2:切线的性质与判定2.(2021·福建中考真题)如图.AB 为O 的直径.点P 在AB 的延长线上.,PC PD 与O 相切.切点分别为C .D .若6,4AB PC ==.则sin CAD ∠等于( )A .35B .25C .34D .45【答案】D【分析】连接OC .CP .DP 是△O 的切线.根据定理可知△OCP =90°.△CAP =△P AD .利用三角形的一个外角等于与其不相邻的两个内角的和可求△CAD=△COP .在Rt△OCP 中求出sin COP ∠即可.【详解】解:连接OC .CP .DP 是△O 的切线.则△OCP =90°.△CAP =△P AD .△△CAD=2△CAP .△OA =OC△△OAC =△ACO .△△COP =2△CAO△△COP =△CAD△6AB =△OC =3在Rt△COP 中.OC =3.PC =4△OP =5.△sin CAD ∠=sin COP ∠=45故选:D .3.(2021·山西中考真题)如图.在O 中.AB 切O 于点A .连接OB 交O 于点C .过点A 作//AD OB 交O 于点D .连接CD .若50B ∠=︒.则OCD ∠为( )A .15︒B .20︒C .25︒D .30︒【答案】B【分析】 连接OA .根据AB 与O 相切易得90OAB ∠=︒.在Rt OAB 中.已知50B ∠=︒.可以求出AOB ∠的度数.根据同弧所对的圆周角是圆心角的一半得出ADC ∠的度数.最后根据//AD OB 可得OCD ADC ∠=∠.【详解】如下图.连接OA .△AB 切O 于点A .△90OAB ∠=︒.在Rt OAB 中.△50B ∠=︒.△40AOB ∠=︒.△20ADC ∠=︒.又△//AD OB .△=20OCD ADC ∠=∠︒.故选:B .4.(2021·北京中考真题)如图.,PA PB 是O 的切线.,A B 是切点.若50P ∠=︒.则AOB ∠=______________.【答案】130°【分析】由题意易得90∠=∠=︒PAO PBO .然后根据四边形内角和可求解.【详解】解:△,PA PB 是O 的切线.△90∠=∠=︒PAO PBO .△由四边形内角和可得:180AOB P ∠+∠=︒.△50P ∠=︒.△130AOB ∠=︒;故答案为130°.5.(2021·浙江杭州市·中考真题)如图.已知O 的半径为1.点P 是O 外一点.且2OP =.若PT 是O 的切线.T 为切点.连接OT .则PT =_____.3【分析】根据圆的切线的性质.得90OTP ∠=︒.根据圆的性质.得1OT =.再通过勾股定理计算.即可得到答案.【详解】△PT 是O 的切线.T 为切点△90OTP ∠=︒ △22PT OP OT -△O 的半径为1△1OT = △222=213PT OP OT --=36.(2021·浙江宁波市·中考真题)抖空竹在我国有着悠久的历史.是国家级的非物质文化遗产之一.如示意图.,AC BD 分别与O 相切于点C .D .延长,AC BD 交于点P .若120P ∠=︒.O 的半径为6cm .则图中CD 的长为________cm .(结果保留π)【答案】2π【分析】连接OC 、OD .利用切线的性质得到90OCP ODP ∠=∠=︒.根据四边形的内角和求得60COD ∠=︒.再利用弧长公式求得答案.【详解】连接OC 、OD .△,AC BD 分别与O 相切于点C .D .△90OCP ODP ∠=∠=︒.△120P ∠=︒.360OCP ODP P COD ∠+∠+∠+∠=︒.△60COD ∠=︒.△CD 的长=6062180(cm ).故答案为:2π..7.(2021·四川凉山彝族自治州·中考真题)如图.在C Rt AB 中.90C ∠=︒.AE 平分BAC ∠交BC 于点E .点D 在AB 上. DE AE ⊥.O 是Rt ADE △的外接圆.交AC 于点F .(1)求证:BC 是O 的切线;(2)若O 的半径为5.8AC =.求ADE S. 【答案】(1)见解析;(2)20【分析】(1)连接OE .由OA =OE .利用等边对等角得到一对角相等.再由AE 为角平分线得到一对角相等.等量代换得到一对内错角相等.利用内错角相等两直线平行.得到AC 与OE 平行.再根据两直线平行同位角相等及△C 为直角.得到OE 与BC 垂直.可得出BC 为圆O 的切线;(2)过E 作EG 垂直于OD .利用AAS 得出△ACE △△AGE .得到AC =AG =8.从而可得OG .利用勾股定理求出EG .再利用三角形面积公式可得结果.【详解】解:(1)证明:连接OE .△OA =OE .△△1=△3.△AE 平分△BAC .△△1=△2.△△2=△3.△OE △AC .△△OEB =△C =90°.则BC 为圆O 的切线;(2)过E 作EG △AB 于点G .在△ACE 和△AGE 中.21C AGE AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩.△△ACE △△AGE (AAS ).△AC =AG =8.△圆O 的半径为5.△AD =OA +OD =10.△OG =3.△EG 22OE OG -△△ADE 的面积=1110422AD EG ⨯⨯=⨯⨯=20. 8.(2021·四川资阳市·中考真题)如图.在ABC 中.AB AC =.以AB 为直径的O 交BC 于点D .DE AC ⊥交BA 的延长线于点E .交AC 于点F .(1)求证:DE 是O 的切线;(2)若tan 36,4AC E ==.求AF 的长. 【答案】(1)证明见解析;(2)65AF =【分析】(1)要证明DE 是O 的切线.只要证明90ODE ∠=即可.连接OD .根据条件证明//OD AC .则可推导出90ODE ∠=.(2)根据条件.在Rt ODE △中.求出OE 的长.然后证明AFE ODE △△.从而根据相似比求解即可.【详解】(1)证明:如下图.连接OD .△AB AC =,OB OD =.△B C ∠=∠,B ODB ∠=∠.△ODB C ∠=∠.△//OD AC .△ODE CFD ∠=∠.又△DE AC ⊥.△90CFD =∠.△90ODE ∠=.△DE 是O 的切线.(2)解:△AC=6. △11322OD OB AB AC ====. 在Rt ODE △中.3tan 4OD E ED ==. △4ED =.2222345OE OD ED =+=+=.△532AE OE OB =-=-=.又△,90AEF OED AFE ODE ∠=∠∠=∠=.△AFE ODE △△. △AE AF OE OD = ,即2=53AF . △65AF =. 9.(2021·山东菏泽市·中考真题)如图.在O 中.AB 是直径.弦CD AB ⊥.垂足为H .E 为BC 上一点.F 为弦DC 延长线上一点.连接FE 并延长交直径AB 的延长线于点G .连接AE 交CD 于点P .若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8.3sin 5F =.求BG 的长. 【答案】(1)见解析;(2)=2BG【分析】(1)连接OE .证明OE △EF 即可;(2)由3sin 5F =证得4sin 5G =.运用正弦的概念可得结论. 【详解】解:(1)证明:连接OE .如图.△OA =OE△△OAE =△OEA .△EF =PF .△△EPF =△PEF△△APH =△EPF .△△APH =△EPF .△△AEF =△APH .△CD △AB .△△AHC =90°.△△OAE +△APH =90°. △△OEA +△AEF =90°△△OEF =90°△OE △EF .△OE 是O 的半径△EF 是圆的切线.(2)△CD △AB△FHG ∆是直角三角形 △3sin 5F = △35GH FG = 设3GH x =.则5FG x = 由勾股定理得.4FH x =由(1)得.OEG ∆是直角三角形 △4sin 5OE FH x G OG FG x === △45OE OG =.即45OE OE BG =+ △8OE = △8485BG =+ 解得.2BG =考点3:三角形的内心和外心 10.(2021·湖南怀化市·中考真题)如图.在ABC 中.以A 为圆心.任意长为半径画弧.分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心.大于12MN 的长为半径画弧.两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心 【答案】C【分析】根据题意易得AD 平分△BAC .然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:△AD 平分△BAC .△BAD CAD ∠=∠.故C 正确;在△ABD 中.由三角形三边关系可得AD BD AB +>.故A 错误;由三角形的重心可知是由三角形三条中线的交点.所以AD 不一定经过ABC 的重心.故B 选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点.所以AD 不一定经过ABC 的外心.故D 选项错误;故选C .11.(2021·辽宁沈阳·中考真题)如图.ABC 是O 的内接三角形.23AB =60ACB ∠=︒.连接OA .OB .则AB 的长是( )A .3πB .23πC .πD .43π 【答案】D【分析】过点O 作⊥OD AB 于D .根据垂径定理求出AD .根据圆周角定理求出AOB ∠.根据正弦的定义求出OA .根据弧长公式计算求解.【详解】解:过点O 作⊥OD AB 于D .则132AD DB AB == 由圆周角定理得:2120AOB ACB ∠=∠=︒.60AOD ∴=︒∠.32sin 3AD OA AOD ∴===∠. ∴AB l 120241803ππ⨯==. 故选:D .12.(2021·西藏·中考真题)如图.△BCD 内接于△O .△D =70°.OA △BC 交△O 于点A .连接AC .则△OAC 的度数为( )A .40°B .55°C .70°D .110°【答案】B【分析】 连接OB .OC .根据圆周角定理得到△BOC =2△D =140°.根据垂径定理得到△COA 1702BOC =∠=︒.根据等腰三角形的性质即可得到结论. 【详解】解:连接OB .OC .△△D =70°.△△BOC =2△D =140°.△OA △BC .△△COA 1702BOC =∠=︒.△OA =OC .△△OAC =△OCA 12=(180°﹣70°)=55°. 故选:B .。