等差等比数列基本概念复习作业
等差数列与等比数列专题辅导(小编推荐)
等差数列与等比数列专题辅导(小编推荐)第一篇:等差数列与等比数列专题辅导(小编推荐)等差数列与等比数列专题辅导(1)在等差数列{an}中, a7=9, a13=-2, 则a25=()A-22B-24C60D64(2)在等比数列{an}中, 存在正整数m, 有am=3,am+5=24, 则am+15=()A864B1176C1440D1536(3)已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=()A–4B–6C–8D–10(4)设数列{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n 项和,则()AS4>S3BS4=S2CS6(5)已知由正数组成的等比数列{an}中,公比q=2, a1·a2·a3·…·a30=245, 则a1·a4·a7·…·a28=5101520A 2B2C2D2(6)若{an}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和Sn>0成立的最大自然数n是:()A.4005B.4006C.4007D.4008(7)在等比数列{an}中, a1<0, 若对正整数n都有anAq>1B0a1(3n-1)(8)设数列{an}的前n项和为Sn,Sn=(对于所有n≥1),且a4=54,则a1=__________.2(9)等差数列{an}的前m项和为30, 前2m项和为100, 则它的前3m项和为_________.(10)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列, 且a1=2, 公和为5,那么a18的值为_______,这个数列的前21项和S21的值为.(11)已知等差数列{an}共2n+1项, 其中奇数项之和为290, 偶数项之和为261,求第n+1项及项数2n+1的值.(12)设{an}是一个公差为d(d≠0)的等差数列,它的前10项和S10=110且a1,a2,a4成等比数列.(Ⅰ)证明a1=d;(Ⅱ)求公差d的值和数列{an}的通项公式.(13)已知等比数列{an}的各项都是正数, Sn=80, S2n=6560, 且在前n项中, 最大的项为54, 求n的值.(14)ΔOBC的三个顶点坐标分别为(0,0)、(1,0)、(0,2), 设P1为线段BC的中点,P2为线段CO的中点,P3为线段OP1的中点,对于每一个正整数n, Pn+3为线段PnPn+1的中点,令Pn的坐标为(xn,yn), an=(Ⅰ)求a1,a2,a3及an;(Ⅱ)证明yn+4=1-(Ⅲ)若记bn=y4n+41yn+yn+1+yn+2.2yn,n∈N*;4-y4n,n∈N*,证明{bn}是等比数列.答案:1-7 BDBDA BB8.29.21010.3, 5211.29, 1912.(2)d=2 an=2n13.n=414.(1)an=2(2)(3)证明略第二篇:等差数列与等比数列等差数列与等比数列⎧>0,递增数列⎪一、等差数列的定义:an+1-an=d(d:公差)(常数)⎨=0,常数列,⎪<0,递减数列⎩1.证明数列{an}为等差数列:(1)定义:an+1-an=d(常数)(2)等差中项:2an+1=an+an+2注:(1)不可用a2-a1=a3-a2=a4-a3=Λ=“常数”证(2)a1=⎨例1.(1)已知数列{an}为等差数列,求证:数列{an+an+1}为等差数列;变式:①已知数列{an}为等差数列,求证:数列{an+t}(t为常数)为等差数列;②已知数列{an}为等差数列,求证:数列{tan}(t为常数)为等差数列;③已知数列{an}、{bn}均为等差数列,求证:数列{an+bn}为等差数列(2)已知数列{an}的前n项和为Sn,且Sn=n2,求证:数列{an}为等差数列;变式:①已知数列{an}的前n项和为Sn,且Sn=n2+1,求:an②已知数列{an}的前n项和为Sn,且Sn=an2+bn,求:an ③已知数列{an}的前n项和为Sn,且Sn=an2+bn+c,求:an(3)已知数列{an}满足:a1=1,an+1=数列;(4)已知数列{an},a1=1,an+1=为等差数列(5)设数列{an}的前n项和为Sn,求证:数列{an}为等差数列的充要条件是{an}为等差数列⎧S1,n=1⎩Sn-Sn-1,n≥2an1,且bn=,求证:数列{bn}为等差an+1ann1an+,且bn=nan,求证:数列{bn}n+1n+1Sn=n(a1+an)22.证明数列{an}为单调数列:an+1-an=f(n)⎨⎧>0,递增数列递减数列⎩<0,注:(1)求数列{an}中an的极值也可采用此方法(2)已知数列{an}为等差数列ⅰ.若a1<0,d>0,则Sn有最小值;解法:①令an≤0{bn}②Snⅱ.若a1>0,d<0,则Sn有最大值;解法:①令an≥0②Sn例2.已知an=(11-2n)2n,求数列{an}的最大项例3.(1)已知等差数列{an}的前n项和为Sn,且an=10-2n,求Sn的最大值;(2)已知等差数列{an}的前n项和为Sn,且an=2n-13,求Sn的最小值;3.叠加法:已知a1=a,an+1-an=f(n),求an例4.(1)已知数列{an}为等差数列,首项为a1,公差为d,求an;(2)已知数列{an},a1=1,an+1=4.通项公式:an=a1+(n-1)d(1)an=am+(n-m)d(2)an是关于n的一次函数,且n的系数为公差d.例5.已知数列{an}为等差数列,a5=-3,a9=13,求an5.等差中项:若a、b、c成等差数列,则b=(1)若数列{an}为等差数列,则2an+1n+11an+,求an nna+c称为a、c的等差中项2=an+an+2;(2)若已知三个数成等差数列,且其和为定值,则可设这三个数为a-d、a、a+d;(3)若数列{an}为等差数列,且公差d≠0,则am+an=ap+aq⇔m+n=p+q(4)在有穷等差数列{an}中,与首尾两项距离相等的两项的和等于首尾两项的和.即:a1+an=a2+an-1=a3+an-2=Λ=ak+an-k+1例6.(1)已知:等差数列中连续三项的和为21,平方和为179,求这三项(2)在3与19之间插入3个数后成等差数列,求这三个数(3)已知:a、b、c成等差数列求证:①b+c、a+c、a+b成等差数列;②a(b+c)、b(a+c)、c(a+b)成等差数列;③a-bc、b-ac、c-ab 成等差数列(4)已知:a、b、c成等差数列,求证:2222111成等差数列 b+ca+ca+blg(a-c)、lg(a+c-2b)成等差(5)已知:成等差数列,求证:lg(a+c)、数列(6)若方程a(b-c)xb(c-a)x+c(a-b)=0有相等实根,求证:成等差111abc111abc数列例7.在等差数列{an}中,(1)若a5+a10=12,求S14;(2)若a8=m,求S15;(3)若a4+a6+a15+a17=50,求S20;(4)若a2+a4=18,a3+a5=32,求S6;(5)若a2+a5+a12+a15=36,求S16;(6)若a3+a4+a5+a6+a7=450,求a2+a8(7)若等差数列{an}的各项都是负数,且a32+a82+2a3⋅a8=9,则其前10项和S10= ____________(8)在等差数列{an}中,若a3+a15=a5+an,则n=_______6.数列{an}的前n项和Sn=注:(1)倒序法求和;(2)等差数列{an}的前n项和Sn是关于自然数n的二次函数,且n的系数为n(a1+an)n(n-1)n(n-1)=na1+d=nan-d 222d,2常数项为零,即:Sn=An2+Bn(当A=0时数列{an}为常数列);(3)①S2n-1=(2n-1)an(可以将项与和之间进行相互转化)。
高中数学专题练习题集
高考等差、等比数列及其应用【考纲要求】1.考查数列的函数性及与方程、不等式相结合的数列综合题. 2.考查运用数列知识解决数列综合题的能力.【课程类型】一对一个性化教学【教学建议】数列是高中的重要内容,考试说明中,等差、等比数列都是C 级要求,因而考试题多为中等及以上难度,试题综合考查了函数与方程,分类讨论等数学思想.填空题常常考查等差、等比数列的通项公式、前n 项和公式及等差、等比数列的性质,考查运算求解能力;解答题综合性很强,不仅考查数列本身的知识而且还涉及到函数、不等式、解析几何等方面的知识,基本上都是压轴题.因此希望同事们多研究全国各省市高考题,精选精练,让学生学有所获,学有所思,学有信心,克服数列难的思想。
【复习指导】1.熟练等差数列与等比数列的基本运算.2.数列中n a 与n S 之间的互化关系也是高考的一个热点.3.掌握隐藏在数列概念和解题方法中的数学思想,如“函数与方程”、“数形结合”、“分类讨论”、“等价转化”等.基础练习1.已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =_____. [解析]数列{}1n n a a +仍是等比数列,其首项是128,a a =公比为1.4所以, 1223118[1()]324(14)1314n n n n a a a a a a -+-+++==--2.设,,,,则数列的通项公式=.[解析]数列是等比数列,则3.数列{a n }满足a 1=2,a 2=1,并且a n -1-a n a n ·a n -1=a n -a n +1a n ·a n +1(n ≥2),则数列{a n }的第100项为.[解析] 由已知可得:1a n +1+1a n -1=2a n ,n ≥2,∴⎭⎬⎫⎩⎨⎧n a 1是等差数列,∴a 100=150. 一.若互不相等的实数a ,b ,c 成等差数列,c ,a ,b 成等比数列,且a +3b +c =10, 则a =________.[解析] 由c ,a ,b 成等比数列可将公比记为q ,三个实数a ,b ,c ,待定为cq ,cq 2,c .由实数a 、b 、c 成等差数列得2b =a +c ,即2cq 2=cq +c ,又等比数列中c ≠0,所以2q 2-q -1=0,解一元二次方程得q =1(舍去,否则三个实数相等)或q =-12,又a +3b +c =a +3aq +a q =-52a =10,所以a =-4.5.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =_______.[解析] 本小题主要考查数列前n 项和S n 与通项a n 的关系,解题的突破口是用a n 表示S n .由S n =2a n +1=2(S n +1-S n )得S n +1=32S n ,所以{S n }是以S 1=a 1=1为首项,32为公比的等比数列,所以S n =123-⎪⎭⎫⎝⎛n .考向一 等差数列与等比数列的综合应用12a =121n n a a +=+21n n n a b a +=-*n N ∈{}n b n b {}n b 11422n n n b -+=⋅=【例1】设数列的前项和为 已知(I )设,证明数列是等比数列(II )求数列的通项公式. 解:(I )由及,有由,...① 则当时,有.....② ②-①得又,是首项,公比为2的等比数列. (II )由(I )可得,数列是首项为,公差为的等比数列., 第(I )问思路明确,只需利用已知条件寻找.第(II )问中由(I )易得,这个递推式明显是一个构造新数列的模型:,主要的处理手段是两边除以. 【巩固练习】 1.已知等比数列{a n }的公比q =-12.(1)若a 3=14,求数列{a n }的前n 项和;(2)证明:对任意k ∈N +,a k ,a k +2,a k +1成等差数列.解:(1)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{a n }的前n 项和S n =3)21(21--+n (2)证明:对任意k ∈N +,2a k +2-(a k +a k +1)=2a 1q k +1-(a 1q k -1+a 1q k )=a 1q k -1(2q 2-q -1), 由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0.所以,对任意k ∈N +,a k ,a k +2,a k +1成等差数列.{}n a n ,n S 11,a =142n n S a +=+12n n n b a a +=-{}n b {}n a 11,a =142n n S a +=+12142,a a a +=+21121325,23a ab a a =+=∴=-=142n n S a +=+2n ≥142n n S a -=+111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-12n n n b a a +=-12n n b b -∴={}n b ∴13b =11232n n n n b a a -+=-=⋅113224n n n na a ++∴-=∴{}2n n a 1234∴1331(1)22444n na n n =+-=-2(31)2n n a n -=-⋅1n n b b -与的关系即可11232n n n a a -+-=⋅1(,n n n a pa q p q +=+为常数)1n q +2.设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足2222234577a a a a ,S +=+=(1)求数列{}n a 的通项公式及前n 项和n S ; (2)试求所有的正整数m ,使得12m m m a a a ++为数列{}n a 中的项. 解:(1)设公差为d ,则22222543a a a a -=-,由性质得43433()()d a a d a a -+=+,因为0d ≠,所以430a a +=,即1250a d +=,又由77S =得176772a d ⨯+=,解得15a =-,2d =所以{}n a 的通项公式为27n a n =-,前n 项和26n S n n =-。
等差数列与等比数列复习题
等差数列与等比数列复习题11.已知{}n a 是等差数列,6720a a +=,7828a a +=,那么该数列的前13项和13S 等于( )A .156B .132C .110D .1002.已知数列{}n a 是等差数列,若91130a a +<,10110a a ⋅<,且数列{}n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A .20 B .17 C .19 D .213.设各项均为正数的等差数列n a n 的前}{项和为,1,>m S n 若0211=-++-m m m a a a 且m S m 则,3812=-等于 ( )A .38B .20C .10D .9 4.等差数列{}n a 与{}n b 的前n 项和分别是n S 和n T ,已知37+=n nT S n n ,则55b a 等于( )A.7B.32 C.1370 D.4215.设等比数列{}n a 的前n 项和记为n S ,若2:1:510=S S ,则=515:S S ( ) A 、3:4 B 、2:3 C 、1:2 D 、1:3 6.设等比数列{}n a 中,前n 项和为n S ,已知3S =8,6S =7,则987a a a ++等于( ) A.18 B.-18 C.578 D.5587.设等比数列{}n a 的前n 项和为n S ,满足0,1n a q >>,且3520a a +=,2664a a ⋅=,则5S =( )A .31B .36C .42D .48 8.等比数列{}n a 中, ____________S ,12,415105===则S S9.数列{}11(12)(124)...(12...2)n -++++++++++的前n 项和为_____________. 10.在等比数列{}n a 中,若141,42a a ==-,则12||||...||n a a a +++=____________.11.等差数列}{n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为 . 12.已知数列{}n a 的通项公式*21()n a n n N =+∈,其前n 项和为n S ,则数列}{nS n的前10项的和为13.设n S 为数列{}n a 的前n 项和,且对任意n N *∈时,点(,)n n a S 都在函数11()22f x x =-+的图象上。
数列、等差数列基础题以及答案
数列、等差数列基础题以及答案一、选择题1.数列{a n}满足a1=a2=1,,若数列{a n}的前n项和为S n,则S2013的值为()A. 2013B. 671C. -671D.2.已知数列{a n}满足递推关系:a n+1=,a1=,则a2017=()A. B. C. D.3.数列{a n}的前n项和为S n,若S n=2n-1(n∈N+),则a2017的值为()A. 2B. 3C. 2017D. 30334.已知正项数列{a n}满足,若a1=1,则a10=()A. 27B. 28C. 26D. 295.若数列{a n}满足:a1=2,a n+1=,则a7等于()A. 2B.C. -1D. 20186.已知等差数列{a n}的前n项和为S n,若2a6=a3+6,则S7=()A. 49B. 42C. 35D. 287.等差数列{a n}中,若a1,a2013为方程x2-10x+16=0两根,则a2+a1007+a2012=()A. 10B. 15C. 20D. 408.已知数列{a n}的前n项和,若它的第k项满足2<a k<5,则k=()A. 2B. 3C. 4D. 59.在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a10,则k=()A. 45B. 46C. 47D. 4810.已知a1,a2,a3,…,a8为各项都大于零的数列,则“a1+a8<a4+a5”是“a1,a2,a3,…,a8不是等比数列”的()A. 充分且必要条件B. 充分但非必要条件C. 必要但非充分条件D. 既不充分也不必要条件11.已知S n是等差数列{a n}的前n项和,则2(a1+a3+a5)+3(a8+a10)=36,则S11=()A. 66B. 55C. 44D. 33二、填空题1.已知数列{a n}的前n项和S n=n2+n,则该数列的通项公式a n=______.2.正项数列{a n}中,满足a1=1,a2=,=(n∈N*),那么a n=______.3.若数列{a n}满足a1=-2,且对于任意的m,n∈N*,都有a m+n=a m+a n,则a3=______;数列{a n}前10项的和S10=______.4.数列{a n}中,已知a1=1,若,则a n=______,若,则a n=______.5.已知数列{a n}满足a1=-1,a n+1=a n+,n∈N*,则通项公式a n= ______ .6.数列{a n}满足a1=5,-=5(n∈N+),则a n= ______ .7.等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,则数列{a n}前9项的和S9等于______.三、解答题1.已知数列{a n}的前n项和为S n,且=1(n∈N+).(1)求数列{a n}的通项公式;(2)设(n∈N+),求的值.2.数列{a n}是首项为23,第6项为3的等差数列,请回答下列各题:(Ⅰ)求此等差数列的公差d;(Ⅱ)设此等差数列的前n项和为S n,求S n的最大值;(Ⅲ)当S n是正数时,求n的最大值.3.已知数列{a n}的前n项和为S n,且S n=2a n-2(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{S n}的前n项和T n.4.已知数列{a n}具有性质:①a1为整数;②对于任意的正整数n,当a n为偶数时,;当a n为奇数时,.(1)若a1=64,求数列{a n}的通项公式;(2)若a1,a2,a3成等差数列,求a1的值;(3)设(m≥3且m∈N),数列{a n}的前n项和为S n,求证:.()答案和解析【答案】1. D2. C3. A4. B5. A6. B7. B8. C9. B10. B11. D12. 2n13.14. -6;-11015. 2n-1;2n-116. -17.18. 8119. 解:(1)当n=1,a1=,当n>1,S n+a n=1,S n-1+a n-1=1,∴a n-a n-1=0,即a n=a n-1,数列{a n}为等比数列,公比为,首项为,∴a n=.(2)S n=1-a n=1-()n,∴b n=n,∴==-,∴=1-+-+…+-=1-=.20. 解:(Ⅰ)由a1=23,a6=3,所以等差数列的公差d=;(Ⅱ)=,因为n∈N*,所以当n=6时S n有最大值为78;(Ⅲ)由,解得0<n<.因为n∈N*,所以n的最大值为12.21. 解:(Ⅰ)列{a n}的前n项和为S n,且S n=2a n-2①.则:S n+1=2a n+1-2②,②-①得:a n+1=2a n,即:(常数),当n=1时,a1=S1=2a1-2,解得:a1=2,所以数列的通项公式为:,(Ⅱ)由于:,则:,=,=2n+1-2.-2-2- (2)=2n+2-4-2n.22. 解:(1)由,可得,,…,,,,a9=0,…,即{a n}的前7项成等比数列,从第8起数列的项均为0.…(2分)故数列{a n}的通项公式为.…(4分)(2)若a1=4k(k∈Z)时,,,由a1,a2,a3成等差数列,可知即2(2k)=k+4k,解得k=0,故a1=0;若a1=4k+1(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k)=(4k+1)+k,解得k=-1,故a1=-3;…(7分)若a1=4k+2(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k+1)=(4k+2)+k,解得k=0,故a1=2;若a1=4k+3(k∈Z)时,,,由a1,a2,a3成等差数列,可知2(2k+1)=(4k+3)+k,解得k=-1,故a1=-1;∴a1的值为-3,-1,0,2.…(10分)(3)由(m≥3),可得,,,若,则a k是奇数,从而,可得当3≤n≤m+1时,成立.…(13分)又,a m+2=0,…故当n≤m时,a n>0;当n≥m+1时,a n=0.…(15分)故对于给定的m,S n的最大值为a1+a2+…+a m=(2m-3)+(2m-1-2)+(2m-2-1)+(2m-3-1)+…+(21-1)=(2m+2m-1+2m-2+…+21)-m-3=2m+1-m-5,故.…(18分)【解析】1. 解:∵数列{a n}满足a1=a2=1,,∴从第一项开始,3个一组,则第n组的第一个数为a3n-2a3n-2+a3n-1+a3n=cos=cos(2nπ-)=cos(-)=cos=-cos=-,∵2013÷3=671,即S2013正好是前671组的和,∴S2013=-×671=-.故选D.由数列{a n}满足a1=a2=1,,知从第一项开始,3个一组,则第n组的第一个数为a3n-2,由a3n-2+a3n-1+a3n=cos=-,能求出S2013.本题考查数列的递推公式和数列的前n项和的应用,解题时要认真审题,注意三角函数的性质的合理运用.2. 解:∵a n+1=,a1=,∴-=1.∴数列是等差数列,首项为2,公差为1.∴=2+2016=2018.则a2017=.故选:C.a n+1=,a1=,可得-=1.再利用等差数列的通项公式即可得出.本题考查了数列递推关系、等差数列的通项公式,考查了推理能力与计算能力,属于中档题.3. 解:∵S n=2n-1(n∈N+),∴a2017=S2017-S2016=2×2017-1-2×2016+1=2故选:A由a2017=S2017-S2016,代值计算即可.本题考查了数列的递推公式,属于基础题.4. 解:∵,∴a n+12-2a n a n+1+a n2=9,∴(a n+1-a n)2=9,∴a n+1-a n=3,或a n+1-a n=-3,∵{a n}是正项数列,a1=1,∴a n+1-a n=3,即{a n}是以1为首项,以3为公差的等差数列,∴a10=1+9×3=28.故选B.由递推式化简即可得出{a n}是公差为3的等差数列,从而得出a10.本题考查了等差数列的判断,属于中档题.5. 解:数列{a n}满足:a1=2,a n+1=,则a2==,a3==-1a4==2a5==,a6==-1.a7==2.故选:A.利用数列的递推关系式,逐步求解即可.本题考查数列的递推关系式的应用,考查计算能力.6. 解:∵等差数列{a n}的前n项和为S n,2a6=a3+6,∴2(a1+5d)=a1+7d+6,∴a1+3d=6,∴a4=6,∴=42.故选:B.由已知条件利用等差数列的通项公式能求出a4,由此利用等差数列的前n项和公式能求出S7.本题考查等差数列的前7项和的求法,是基础题,解题时要认真审题,注意等差数列的通项公式和前n项和公式的合理运用.7. 解:∵a1,a2013为方程x2-10x+16=0的两根∴a1+a2013=10由等差数列的性质知:a1+a2013=a2+a2012=2a1007∴a2+a1007+a2012=15故选:B由方程的韦达定理求得a1+a2013,再由等差数列的性质求解.本题主要考查韦达定理和等差数列的性质,确定a1+a2013=10是关键.8. 解:已知数列{a n}的前n项和,n=1可得S1=a1=1-3=-2,∴a n=S n-S n-1=n2-3n-[(n-1)2-3(n-1)]=2n-4,n=1满足a n,∴a n=2n-4,∵它的第k项满足2<a k<5,即2<2k-4<5,解得3<k<4.5,因为n∈N,∴k=4,故选C;先利用公式a n=求出a n=,再由第k项满足4<a k<7,建立不等式,求出k的值.本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.9. 解:∵a k=a1+a2+a3+…+a10,∴a1+(k-1)d=10a1+45d∵a1=0,公差d≠0,∴(k-1)d=45d∴k=46故选B由已知a k=a1+a2+a3+…+a10,结合等差数列的通项公式及求和公式即可求解本题主要考查了等差数列的通项公式及求和公式的简单应用,属于基础试题10. 解:若八个正数,成等比数列公比q>0,(a1+a8)-(a4+a5)=a1[(1+q7)-(q3+q4)]=a1[(q3-1)(q4-1)]当0<q<1,时(q3-1)<0,(q4-1)<0∴a1[(q3-1)(q4-1)]>0当q>1,时(q3-1)>0,(q4-1)>0∴a1[(q3-1)(q4-1)]>0所以a1+a8>a4+a5,故若a1+a8<a4+a5,则a1,a2,a3,…,a8不是等比数列,若a1,a2,a3,…,a8不是等比数列,a1+a8<a4+a5,不一定成立,故“a1+a8<a4+a5”是“a1,a2,a3,…,a8不是等比数列”的充分非必要条件.故选B先假设八个整数成等比数列且q≠1,利用等比数列的通项公式表示出(a1+a8)-(a4+a5),分别对q>1和q<1分类讨论,可推断出a1+a8>a4+a5一定成立,反之若a1+a8<a4+a5,则a1,a2,a3,…,a8不是等比数列,推断出条件的充分性;若a1,a2,a3,…,a8不是等比数列,a1+a8<a4+a5,不一定成立,综合答案可得.本题主要考查了等比关系的确定以及充分条件,必要条件充分必要条件的判定.考查了学生分析问题和基本的推理能力.11. 解:由等差数列的性质可得:2(a1+a3+a5)+3(a8+a10)=36,∴6a3+6a9=36,即a1+a11=6.则S11==11×3=33.故选:D.利用等差数列的通项公式与性质与求和公式即可得出.本题考查了等差数列的通项公式与性质与求和公式,考查了推理能力与计算能力,属于中档题.12. 解:由S n=n2+n,得a1=S1=2,当n≥2时,a n=S n-S n-1=(n2+n)-[(n-1)2+(n-1)]=2n.当n=1时上式成立,∴a n=2n.故答案为:2n.由数列的前n项和求得首项,再由a n=S n-S n-1(n≥2)求得a n,验证首项后得答案.本题考查了由数列的前n项和求数列的通项公式,是基础题.13. 解:由=(n∈N*),可得a2n+1=a n•a n+2,∴数列{a n}为等比数列,∵a1=1,a2=,∴q=,∴a n=,故答案为:由=(n∈N*),可得a2n+1=a n•a n+2,即可得到数列{a n}为等比数列,求出公比,即可得到通项公式本题考查了等比数列的定义以及通项公式,属于基础题.14. 解:∵对于任意的m,n∈N*,都有a m+n=a m+a n,∴取m=1,则a n+1-a n=a1=-2,∴数列{a n}是等差数列,首项为-2,公差为-2,∴a n=-2-2(n-1)=-2n.∴a3=-6,∴数列{a n}前10项的和S10==-110.故答案分别为:-6;-110.对于任意的m,n∈N*,都有a m+n=a m+a n,取m=1,则a n+1-a n=a1=-2,可得数列{a n}是等差数列,首项为-2,公差为-2,利用等差数列的通项公式及其前n项和公式即可得出.本题考查了递推式的应用、等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.15. 解:在数列{a n}中,由,可知数列是公差为2的等差数列,又a1=1,∴a n=1+2(n-1)=2n-1;由,可知数列是公比为2的等比数列,又a1=1,∴.故答案为:2n-1;2n-1.由已知递推式a n-a n-1=2,可得数列是公差为2的等差数列,由,可知数列是公比为2的等比数列,然后分别由等差数列和等比数列的通项公式得答案.本题考查数列递推式,考查了等差数列和等比数列的通项公式,是基础题.16. 解:由题意,a n+1-a n=-,利用叠加法可得a n-a1=1-=,∵a1=-1,∴a n=-,故答案为-.由题意,a n+1-a n=-,利用叠加法可得结论.本题考查数列的通项,考查叠加法的运用,属于基础题.17. 解:数列{a n}满足a1=5,-=5(n∈N+),可知数列{}是等差数列,首项为,公差为:5.可得=+5(n-1),解得a n═.故答案为:.判断数列{}是等差数列,然后求解即可.本题考查数列的递推关系式的应用,通项公式的求法,考查计算能力.18. 解:等差数列{a n}中,a1+a4+a7=33,a3+a6+a9=21,∴3a4=33,3a6=21;∴a4=11,a6=7;数列{a n}前9项的和:.故答案为:81.根据等差数列项的性质与前n项和公式,进行解答即可.本题考查了等差数列项的性质与前n项和公式的应用问题,是基础题目.19. (1)根据数列的递推公式可得数列{a n}为等比数列,公比为,首项为,即可求出通项公式,(2)根据对数的运算性质可得b n=n,再根据裂项求和即可求出答案本题考查了数列的递推公式和裂项求和,考查了运算能力和转化能力,属于中档题.20. (1)直接利用等差数列的通项公式求公差;(2)写出等差数列的前n项和,利用二次函数的知识求最值;(3)由S n>0,且n∈N*列不等式求解n的值.本题考查了等差数列的通项公式和前n项和公式,考查了数列的函数特性,是基础的运算题.21. (Ⅰ)直接利用递推关系式求出数列的通项公式.(Ⅱ)利用数列的通项公式,直接利用等比数列的前n项和公式求出结果.本题考查的知识要点:数列的通项公式的求法,等比数列前n项和的公式的应用.22. (1)由,可得{a n}的前7项成等比数列,从第8起数列的项均为0,从而利用分段函数的形式写出数列{a n}的通项公式即可;(2)对a1进行分类讨论:若a1=4k(k∈Z)时;若a1=4k+1(k∈Z)时;若a1=4k+2(k∈Z)时;若a1=4k+3(k∈Z)时,结合等差数列的性质即可求出a1的值;(3)由(m≥3),可得a2,a3,a4.若,则a k是奇数,可得当3≤n≤m+1时,成立,又当n≤m时,a n>0;当n≥m+1时,a n=0.故对于给定的m,S n的最大值为2m+1-m-5,即可证出结论.本小题主要考查等差数列的性质、等比数列的性质、数列与函数的综合等基本知识,考查分析问题、解决问题的能力.。
等差数列与等比数列复习
[前15项]
5.等差数列 4, 8, 12, 16 … 的前多少
项和是480? 解:
a1 4, d 8 4 4, Sn 480
n( n 1) 则由公式得到: 4n 4 480 2
n n 240 0
2
解得: n1 15, n2 16 (舍去)
2 3 4
1 1 1 1 , , , , 2 4 8 16
1 公比 q= 递减数列 2
5,5,5,5,5,5,… 1,-1,1,-1,1,…
公比 q=1 非零常数列 公 比q= -1 摆动数列
定义:如果一个数列从第2项起,每一项与它的前一项的比等 于同一个常数(指与n无关的数),这个数列就叫做等比数列, 这个常数叫做等比数列的公比,公比通常用字母q表示。
(a1 an ) (a1 an ) (a1 an )
n(a1 an )
n(a1 an ) Sn 2
(2).如果已知等差数列的首项为a1,公差为d, 项数为n,把an=a1+(n-1)d代入
Sn
n( a 1 a n ) 2
可得到等差数列前n项和的另一个公式。
等差数列 定 义 数 学 表 达 式 通项公 式证明 通 项 公 式
等比数列
等比数列用“比”代替了等差数列中的 “差”
常数
an q(q 0) an 1
an-an-1=d
(n≥2)
减—除 加—乘
迭加法
迭乘法
加-乘
an a1 (n 1)d
an a1 qn1 (a1 q 0)
3
由此可知,等比数列
a
n
a5 a4 q a1 q 4
高中数学专题复习等差、等比数列的运算和性质知识点例题精讲
等差、等比数列的运算和性质【高考能力要求】1.等差、等比数列是两种最基本、最常见的数列,灵活地运用等差、等比数列的性质,能使问题简化;灵活地运用通项公式和前n 项和公式解题是高考考查的重点.2.从等差数列中按某种规律,抽取某些项,依次排列,组成一个等比数列,是等差、等比数列综合题中的较重要的类型,要认真体会此类题.3.学习时,要注意方程思想、整体思想、分类讨论思想、数形结合思想的运用.【例题精讲】【例1】已知{a n }是等比数列,a 1=2,a 3=18;{b n }是等差数列,b 1=2,b 1+b 2+b 3+b 4=a 1+a 2+a 3>20.(1)求数列{b n }的通项公式;(2)求数列{b n }的前n 项和S n 的公式; (3)设P n =b 1+b 4+b 7+…+b 3n -2,Q n =b 10+b 12+b 14+…+b 2n +8,其中n =1,2,…,试比较P n 与Q n 的大小,并证明你的结论.分析 将已知转化成基本量,求出首项和公比后,再进行其他运算. 解 (1)设{a n }的公比为q ,由a 3=a 1q 2得q 2=13a a =9,q =±3. 当q =-3时,a 1+a 2+a 3=2-6+18=14<20, 这与a 1+a 2+a 3>20矛盾,故舍去.当q =3时,a 1+a 2+a 3=2+6+18=26>20,故符合题意. 设数列{b n }的公差为d ,由b 1+b 2+b 3+b 4=26得4b 1+234⨯d =26. 又b 1=2,解得d =3,所以b n =3n -1. (2)S n =2)(1n b b n +=23n 2+21n . (3)b 1,b 4,b 7,…,b 3n -2组成以3d 为公差的等差数列,所以P n =nb 1+2)1(-n n ·3d =29n 2-25n ;b 10,b 12,b 14,…,b 2n +8组成以2d 为公差的等差数列,b 10=29,所以Q n =nb 10+2)1(-n n ·2d =3n 2+26n . P n -Q n =(29n 2-25n )-(3n 2+26n )=23n (n -19).所以,对于正整数n ,当n ≥20时,P n >Q n ; 当n =19时,P n =Q n ; 当n ≤18时,P n <Q n .说明 本题主要考查等差数列、等比数列等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.【例2】已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是等比数列{b n }的第二项、第三项、第四项.(1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意正整数n 均有11b c +22mb c+323b m c +…+nn n b m c 1-=(n +1)a n +1成立,其中m 为不等于零的常数,求数列{c n }的前n 项和S n .分析 (1)依已知可先求首项和公差,进而求出通项a n 和b n ;(2)由题先求出{a n }的通项公式后再求S n .解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2. ∵a 1=1,解得d =2(d =0不合题意舍去), ∴a n =2n -1(n =1,2,3,…).由b 2=a 2=3,b 3=a 5=9,易求得b n =3n -1(n =1,2,3,…). (2)当n =1时,c 1=6; 当n ≥2时,nn n b m c 1-=(n +1)a n +1-na n =4n +1,∴c n =(4n +1)m n -1b n =(4n +1)(3m )n -1.∴c n =⎩⎨⎧+-1)3)(14(6n m n .,4,3,2,1⋅⋅⋅==n n 当3m =1,即m =31时,S n =6+9+13+…+(4n +1) =6+2)149)(1(++-n n=6+(n -1)(2n +5)=2n 2+3n +1. 当3m ≠1,即m ≠31时,S n =c 1+c 2+…+c n ,即S n =6+9·(3m )+13·(3m )2+…+(4n -3)(3m )n -2+(4n +1)(3m )n -1.①3mS n =6·3m +9·(3m )2+13·(3m )3+…+(4n -3)(3m )n -1+(4n +1)(3m )n.② ①-②得(1-3m )S n =6+3·3m +4·(3m )2+4·(3m )3+…+4·(3m )n -1-(4n +1)(3m )n=6+9m +4[(3m )2+(3m )3+…+(3m )n -1]-(4n +1)(3m )n=6+9m +m m m n 31])3()3[(42---(4n +1)(3m )n .∴S n =m m n m n 31)3)(14(96-+-++22)31(])3()3[(4m m m n --.∴S n =⎪⎩⎪⎨⎧--+-+-+++222)31(])3()3[(431)3)(14(96132m m m m m n m n n n n.31,31≠=m m 说明 本题主要考查了数列的基本知识和解决数列问题的基本方法.如“基本量法”“错位相减求和法”等.【例3】 已知数列{a n }的各项均为正整数,且满足a n +1=a n 2-2na n +2(n ∈N *),又a 5=11.(1)求a 1,a 2,a 3,a 4的值,并由此推测出{a n }的通项公式(不要求证明); (2)设b n =11-a n ,S n =b 1+b 2+…+b n ,S n ′=|b 1|+|b 2|+…+|b n |,求∞→n lim 'nnS S 的值.分析 先根据递推关系求前几项。
等差、等比数列-2021届新高考数学复习知识点总结与题型归纳(原卷版)
第14讲 等差、等比数列考点1:等差数列一、等差数列的基本概念和公式1. 定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,通常用字母d 表示.2. 等差中项:如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y 的等差中项,即A =x+y 2.3.通项公式:a n =a 1+(n −1)d =a m +(n −m)d ,(n ∈N ∗,m ∈N ∗,m ≤n)⇒d =a n −a m n−m(n,m ∈N ∗,n ≠m)4. 前n 项和公式:S n =n(a 1+a n )2=na 1+n(n−1)2d ,(n ∈N ∗);二、等差数列的性质:1. a m =a n +(m −n)d ,d =a m −a n m−n,(n ∈N ∗,m ∈N ∗);2. 若p +q =m +n ,则有a p +a q =a m +a n ;若2m =p +q ,则有2a m =a p +a q (p ,q ,m ,n ∈N ∗);3. {a n }为等差数列,S n 为前n 项和,则S 2n−1=(2n −1)a n ;{b n }为等差数列,S n ′为前n 项和,S 2n−1′=(2n −1)b n ;有a nb n=S 2n−1S 2n−1′.4. 若{a n },{b n }均为等差数列,且公差分别为d 1,d 2,则数列{pa n },{a n +q },{a n ±b n }也为等差数列,且公差分别为pd 1,d 1,d 1±d 2.5. 在等差数列中,等距离取出若干项也构成一个等差数列,即a n ,a n+m ,a n+2m ,....,为等差数列,公差为md .6. 等差数列的前n 项和也构成一个等差数列,即S n ,S 2n −S n ,S 3n −S 2n ,⋯⋯为等差数列,公差为n 2d ,(n ∈N ∗);三、等差数列的单调性以及前n 项和的最值探讨1. 在等差数列{a n }中,若公差d >0,则等差数列{a n }为递增数列;若公差d <0,则等差数列{a n }为递减数列;若公差d =0,则等差数列{a n }为常数列; 补充:更一般性的情况,研究任一数列的增减性可以利用逐项作差法,即构造f (n )=a n+1−a n ,然后研究自变量n 变化时函数值f (n )的符号.2. 有关等差数列{a n }的前n 项和为S n 的最值问题: 若a 1>0,d <0,则前n 项和为S n 存在最大值 若a 1<0,d >0,则前n 项和为S n 存在最小值3. 如何求最值:方法一:(任何数列都通用)通过{a n ≥0a n+1≤0解出n 可求前n 项和为S n 的最大值;通过{a n ≤0a n+1≥0解出n 可求前n 项和为S n 的最小值; 方法二:利用等差数列前n 项和S n 的表达式为关于n 的二次函数且常数项为0(若为一次函数,数列为常数列,则前n 项和S n 不存在最值),利用二次函数求最值的方法进行求解;有以下三种可能:若对称轴n 正好取得正整数,则此时n 就取对称轴;若对称轴不是正整数,而是靠近对称轴的相邻的两个整数的中点值,则n 取这两个靠近对称轴的相邻的两个整数;若对称轴即不是正整数,又不是靠近对称轴的相邻的两个整数的中点值,则n 就取靠近对称轴的那个正整数;四、等差数列的判断方法1. 定义法:a n −a n−1=d (常数)(n ∈N +,n ≥2)⇔{a n }为等差数列;2. 等差中项法:2a n =a n−1+a n+1(n ∈N +,n ≥2)⇔{a n }为等差数列;3. 通项公式法:a n =kn +b (k ,b 是常数)⇔数列{a n }是等差数列;4. 前n 项和法:数列{a n }的前n 项和S n =An 2+Bn ,(A ,B 是常数,A 2+B 2≠0) ⇔数列{a n }是等差数列;若数列{a n }的前n 项和S n =An 2+Bn +C(A ,B 是常数,C ≠0),则数列{a n }从第二项起是等差数列.典例精讲【典例1】已知数列{a n }为等差数列,S n 为其前n 项和,2+a 5=a 6+a 3,则S 7=( ) A .2 B .7 C .14 D .28【典例2】已知等差数列{a n }的公差为4,且a 2,a 3,a 6成等比数列,则a 10=( ) A .26 B .30 C .34 D .38【典例3】设等差数列{a n }的前n 项和为S n ,首项a 1>0,公差d <0,a 10•S 21<0,则S n 最大时,n 的值为( )A .11B .10C .9D .8【典例4】.已知等差数列{}n a 满足225910a a +,则12345a a a a a ++++的最大值为( ) A.B .20 C .25 D .100【典例5】.已知等差数列{}n a 满足10a >,201920200a a +>,201920200a a <.其前n 项和为n S ,则使0n S >成立时n 最大值为( ) A .2020B .2019C .4040D .4038【典例6】.等差数列{}n a 中,36a =,816a =,n S 是数列{}n a 的前n 项和,则122020111(S S S ++⋯+= ) A .20172018B .20182019C .20192020D .20202021【典例7】已知数列{}n a 是等差数列,{}n b 是等比数列,22a b m ==,33a b n ==,若m ,n 为正数,且m n ≠,则( ) A .11a b < B .11a b > C .11a b = D .1a ,1b 的大小关系不确定【典例8】已知等差数列{a n }的各项均为正数,a 1=1,且a 2+a 6=a 8.若p ﹣q =10.则a p ﹣a q =【典例9】设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=60,a 2+a 5+a 8=51,若对任意n ∈N *,都有S n ≤S k 成立,则正整数k 的值为 .考点2:等比数列一、等比数列的基本概念和基本公式1. 定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q(q ≠0)表示.等比数列中的项不为0.2. 通项公式:a n =a 1q n−1=a m q n−m (n ∈N ∗,n ≥2) ;3. 前n 项和公式:S n ={na 1 (q =1)a 1(1−q n )1−q=a 1−a n q 1−q(q ≠1).二、等比数列的性质(其中公比为q ):1. a n =a m q n−m ,q =√na mn−m(n ∈N ∗,m ∈N ∗) ; 2. 若p +q =m +n ,则有a p ⋅a q =a m ⋅a n ;若2m =p +q ,则有a m2=a p ⋅a q ; 3. 等距离取出若干项也构成一个等比数列,即a n ,a n+m ,a n+2m ,⋯⋯为等比数列,公比为q m .4. 若a ,G ,b 成等比数列,则称G 为a 、b 的等比中项,G 2=ab ,当且仅当两个数a 和b 同号 才存在等比中项.5. 若数列{a n },{b n }都是等比数列且项数相同,则c n =a n s b n t (st ≠0)仍为等比数列.三、等比数列的判断方法1.定义法:a 1≠0,a nan−1=q (常数)(n ∈N ∗,n ≥2) ⇔{a n }为等比数列.2. 等比中项法:a n 2=a n−1a n+1,(n ∈N ∗,n ≥2) ⇔{a n }为等比数列.3. 前n 项和法:数列{a n }的前n 项和S n =A −Aq n (A 是常数,A ≠0,q ≠0,q ≠1)⇔数列{a n }为等比数列;典例精讲【典例1】已知数列{a n }为等比数列,其中a 5,a 9为方程x 2+2016x +9=0的二根,则a 7的值( )A .﹣3B .3C .±3D .9【典例2】“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是100−200(910)n 万元,则n 的值为( )A .7B .8C .9D .10【典例3】各项为正数的等比数列{a n }中,a 2与a 10的等比中项为√33,则log 3a 4+log 3a 8= .【典例4】已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比为 .【典例5】已知正项等比数列{}n a ,向量3(a a =,8)-,7(b a =,2),若a b ⊥,则212229log log log (a a a ++⋯+= )A .12B .16C .18D .26log 5+【典例6】.在正项等比数列{}n a 中,374a a =,数列2{log }n a 的前9项之和为( ) A .11B .9C .15D .13【典例7】.已知n S 是等比数列{}n a 的前n 项和,且3S ,9S ,6S 成等差数列,256a a +=,则8a = .【典例8】.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a =,且4a 与72a 的等差中项为34,则5S = .综合练习一.选择题(共5小题)1.设正项等差数列{a n}的前n项和为S n,若S2019=6057,则1a2+4a2018的最小值为()A.1 B.23C.136D.322.设S n为等差数列{a n}的前n项和,已知a1=S3=3,则S4的值为()A.﹣3 B.0 C.3 D.63.在等差数列{a n}中,S n表示{a n}的前n项和,若a3+a6=3,则S8的值为()A.3 B.8 C.12 D.244.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m、a n,使得a m a n=16a12,则1m +9n的最小值为()A.32B.83C.114D.不存在5.已知等比数列{a n}的前n项积为T n,若a1=﹣24,a4=−89,则当T n取最大值时,n的值为()A.2 B.3 C.4 D.6二.填空题(共1小题)6.已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则b2a1+a2的值为.三.解答题(共2小题)7.已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(1)求数列{a n}的通项公式;(2)记的{a n}前n项和为S n,若a1,a k,S k+2成等比数列,求正整数k的值.8.已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若b n=a n log12a n,S n=b1+b2+b3+…+b n,对任意正整数n,S n+(n+m)a n+1<0恒成立,试求m的取值范围.。
高考数学《等差数列、等比数列》复习
(1)等差数列通项公式:an=a1+(n-1)d.
(2)等差数列前 n 项和公式:Sn=n
a1+an 2
=na1+n
n- 2
d.
(3)等差中项公式:2an=an-1+an+1(n∈N*,n≥2).
2.等比数列
(1)等比数列通项公式:an=a1qn-1.
na1 q=
(2)等比数列前n项和公式:Sn= a1 -qn 1-q
高考数学《等差数列、等比数列》复习
高考考点
1. 等差(比)数列的基本运算 2. 等差(比)数列的判断与证明 3. 等差(比)数列的性质
考点解读
1. 在等差(比)数列中, a1,an, Sn,n,d(q) 这五个量中已知其中的三个量, 求另外两个量 2. 考查等差(比)数列的通项公式,前n项和公式, 考查方程的思想以及运算能力
(2)等差数列中连续 k 项的和成等差数列,即 Sk,S2k-Sk,S3k-S2k,…成等差数列, 公差为 k2d.
5.若 A2n-1,B2n-1 分别为等差数列{an},{bn}的前 2n-1 项的和, 则an=A2n-1.
bn B2n-1
解题技巧
判断或证明数列是否为等差或等比数列, 一般是依据等差数列、等比数列的定义, 或利用等差中项、等比中项进行判断.
A.15
B.30
C.45
√D.60
S100 a1 a2 a100 90 ,设 S a1 a3 a99 ,则 2S a2 a4 a100 ,S 2S S100 90,S 30 , 故 a2 a4 a100 2S 60 .故选 D.
1.不能忽视等比数列的条件:判断一个数列是等比数列时, 注意各项都不为零的条件. 2.不能漏掉等比中项:正数a,b的等比中项是±,不能漏掉-. 3.对等比数列的公比的讨论: 应用等比数列前n项和公式时应首先讨论公式q是否等于1
新高考一轮复习人教版 数列的概念及表示 作业
专题七 数列7.1 数列的概念及表示基础篇 固本夯基考点 数列的概念及表示1.(2022届长沙雅礼中学月考,8)在无穷等差数列{a n }中,记T n =a 1-a 2+a 3-a 4+a 5-…+(-1)n+1a n (n=1,2,…),则“存在m ∈N *,使得T m <T m+2”是“{a n }为递增数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 答案 B2.(2020河北邯郸线上检测,6)公元前4世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.下图为五角形数的前4个,则第10个五角形数为( )A.120B.145C.270D.285 答案 B3.(2020浙江丽水四校联考,7)数列{a n }满足a 1=43,a n+1=a n 2-a n +1(n ∈N *),则m=1a 1+1a 2+…+1a 2 014的整数部分是( )A.1B.2C.3D.4 答案 B4.(2022届湖北新高考协作体联考,15)已知数列{a n }的首项a 1=2,其前n 项和为S n ,若S n+1=2S n +1,则a 7= . 答案 965.(2021福建南平模拟,15)已知数列{a n }的前n 项和为S n ,a 1=1,S n =n 2a n (n ∈N *),则数列{a n }的通项公式为 . 答案 a n =2n(n+1)6.(2022届河北唐山玉田一中开学考试)若数列{a n }对任意正整数n,有a n+m =a n q(其中m ∈N *,q 为常数,q ≠0且q ≠1),则称数列{a n }是以m 为周期,以q 为周期公比的“类周期性等比数列”.若“类周期性等比数列”{a n }的前4项为1,1,2,3,周期为4,周期公比为3,则数列{a n }的前21项的和为 . 答案 10907.(2022届广东开学质量检测)将图(1)的正三角形的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(2);将图(2)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(3);依此类推,将图(n)的每条边三等分,并以中间的那一条线段为底边向外作正三角形,然后去掉底边,得到图(n+1).上述作图过程不断地进行下去,得到的曲线就是美丽的雪花曲线.若图(1)中正三角形的边长为1,则图(n)的周长为 ,图(n)的面积为 .答案 3×(43)n−1;2√35-3√320×(49)n−18.(2022届湖南天壹名校联盟摸底考试)已知数列{a n }满足a n a n+1=22n,a 1=1. (1)求a 2n ;(2)求满足a 1+a 2+…+a 2n <2022的最大的正整数n 的值. 解析 (1)因为a n a n+1=22n,a 1=1,所以a 1a 2=22,a 2=4,又a n+1a n+2=22n+2,所以a n+1a n+2a n a n+1=a n+2a n =22n+222n =4,所以{a n }的奇数项是以1为首项,4为公比的等比数列,偶数项是以4为首项,4为公比的等比数列,所以a n ={2n−1,n 为奇数,2n ,n 为偶数,所以a 2n =22n.(2)令S 2n =a 1+a 2+…+a 2n ,所以S 2n =1−4n 1−4+4(1−4n )1−4=5(4n −1)3,易知f(x)=5(4x −1)3在定义域上单调递增,且f(4)=425,f(5)=1705,f(6)=6825,因为a 1+a 2+…+a 2n <2022,所以n<6,又因为n 为正整数,所以n 的最大值为5.综合篇 知能转换考法一 利用S n 与a n 的关系求通项公式1.(2022届全国联考,7)已知数列{a n }的前n 项和为S n ,则“S n =3n+1”是“数列{a n }是常数列”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 答案 D2.(2021新高考联盟模拟,6)设数列{a n }的前n 项和为S n ,若a 1=1,S n+1=2S n +1,则S 7=( ) A.63 B.127 C.128 D.256 答案 B3.(2021上海金山一模,6)已知定义在R 上的函数f(x)是奇函数,且满足f(x+3)=f(x),f(1)=-3,数列{a n }满足S n =2a n +n(其中S n 为{a n }的前n 项和),则f(a 5)+f(a 6)=( ) A.-3 B.-2 C.3 D.2 答案 C4.(2022届新高考联盟月考,18)已知数列{a n }的前n 项和为S n ,且a 1=1,S n+1-1=2S n +n. (1)求数列{a n }的通项公式;(2)求数列{2na n a n+1}的前n 项和T n .解析 (1)因为S n+1-1=2S n +n,所以S n+1+(n+3)=2[S n +(n+2)],所以数列{S n +(n+2)}是以4为首项,2为公比的等比数列,所以S n +(n+2)=2n+1,所以S n =2n+1-n-2,当n ≥2时,a n =S n -S n-1=2n+1-n-2-(2n-n-1)=2n-1,当n=1时也成立,所以a n =2n-1(n ∈N *).(2)2n a n a n+1=2n (2n −1)(2n+1−1)=12n −1-12n+1−1, 所以数列{2n a n a n+1}的前n 项和T n =(12−1−122−1)+(122−1−123−1)+…+(12n −1−12n+1−1)=1-12n+1−1. 5.(2022届新高考联盟月考,17)已知数列{a n }的前n 项和为S n ,满足S n +a n =1. (1)求数列{a n }的通项公式; (2)记b n =a n(a n +1)(a n+1+1),求数列{b n }的前n 项和T n .解析 (1)由S 1+a 1=1及S 1=a 1得a 1=12, 由S n +a n =1,S n+1+a n+1=1作差得2a n+1-a n =0,所以a n+1a n =12,所以{a n }是以12为首项,12为公比的等比数列,则有a n =12n . (2)由题意得b n =a n (a n +1)(a n+1+1)=2n+1(2n +1)(2n+1+1)=2(12n +1−12n+1+1), 所以T n =∑k=1n b k =∑k=1n2(12k +1−12k+1+1)=23-22n+1+1.6.(2022届重庆八中入学测试)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1. (1)求数列{a n }的通项公式; (2)记b n =2n−1a n,求数列{b n }的前n 项和T n . 解析 (1)当n=1时,S 1=2a 1-1,解得a 1=1.当n ≥2时,S n-1=2a n-1-1,则S n -S n-1=a n =2a n -2a n-1,即a n =2a n-1.所以{a n }是以1为首项,2为公比的等比数列,所以a n =2n-1(n ∈N *). (2)b n =2n−1a n =2n−12n−1,∴T n =1+321+522+…+2n−12n−1, ∴12T n =121+322+523+…+2n−32n−1+2n−12n , 两式相减得12T n =1+221+222+223+…+22n−1-2n−12n =3-2n+32n ,∴T n =6-2n+32n−1(n ∈N *). 7.(2022届全国学业质量联合检测)已知数列{a n },{b n },S n 是数列{a n }的前n 项和,T n =a 1b 1+a 2b 2+…+a n b n ,从①b n =3n;②S n =n 2+n;③T n =32+(n −12)·3n+1中选取两个作为条件,证明另外一个成立. 注:若选择不同的组合分别解答,则按第一个解答计分.证明 若选①②作为条件,由S n =n 2+n 可得,当n=1时,a 1=S 1=2;当n ≥2时,a n =S n -S n-1=n 2+n-(n-1)2-(n-1)=2n,当n=1时符合上式,所以a n =2n(n ∈N *).所以T n =2×31+4×32+…+2n ·3n,3T n =2×32+4×33+…+(2n-2)·3n+2n ·3n+1,两式相减得-2T n =2·(31+32+ (3))-2n ·3n+1=2×3·(1−3n )1−3-2n ·3n+1,所以T n =32+(n −12)·3n+1(n ∈N *),③成立. 若选①③作为条件,当n ≥2时,由T n =a 1·31+a 2·32+…+a n ·3n=32+(n −12)·3n+1,得T n-1=a 1·31+a 2·32+…+a n-1·3n-1=32+(n −32)·3n ,两式相减得a n ·3n =2n ·3n ,所以a n =2n(n ≥2,n ∈N *).当n=1时,a 1·3=32+(1−12)·32,解得a 1=2,符合上式,所以a n =2n(n ∈N *).所以数列{a n }是首项为2,公差为2的等差数列,所以S n =n(2+2n)2=n 2+n(n ∈N *),②成立. 若选②③作为条件,由S n =n 2+n 可得,当n=1时,a 1=S 1=2;当n ≥2时,a n =S n -S n-1=n 2+n-(n-1)2-(n-1)=2n.当n=1时符合上式,所以a n =2n(n ∈N *).当n ≥2时,由T n =a 1b 1+a 2b 2+…+a n b n =32+(n −12)·3n+1,得T n-1=a 1b 1+a 2b 2+…+a n-1b n-1=32+(n −32)·3n ,两式相减得a n b n =2n ·3n ,把a n =2n 代入,解得b n =3n (n ≥2,n ∈N *),当n=1时,2·b 1=32+(1−12)×32=6,解得b 1=3,符合上式,所以b n =3n (n ∈N *),①成立. 8.(2022届广东调研)已知数列{a n }的前n 项和为S n ,满足2S n =3n-1. (1)求数列{a n }的通项公式;(2)若c n =a n +log 3a n ,求c 1+c 2+…+c n 的值. 解析 (1)当n=1时,a 1=S 1=3−12=1, 当n ≥2时,2S n-1=3n-1-1,所以2a n =2S n -2S n-1=3n-3n-1=2·3n-1,所以a n =3n-1(n ∈N *,n ≥2),又a 1=1符合上式,所以a n =3n-1(n ∈N *).(2)由(1)可得c n =3n-1+n-1,所以c 1+c 2+…+c n =1×(1−3n )1−3+(n−1)n 2=3n +n 2−n−12.考法二 利用递推关系求数列的通项1.(2022届新高考联盟月考,6)已知数列{a n }中,a 2=4,a m+n =a m +a n ,则a 11+a 12+a 13+…+a 19=( ) A.95 B.145 C.270 D.520 答案 C2.(2022届长沙长郡中学月考)在数列{a n }中,对任意n ∈N *,a n =k,当且仅当2k≤n<2k+1,k ∈N 时,若满足a m +a 2m +a 4m +a 8m +a 16m ≥52,则m 的最小值为 . 答案 5123.(2022届江苏泰州中学检测)在数列{a n }中,a 1=3,3a 1a 2+3a 2a 3+…+3a n a n+1=1+12+13+…+1n +n 2(n ∈N *),则a n = ,若λa n ≥4n对所有n ∈N *恒成立,则λ的取值范围是 .答案 6n n(n+1);[32081,+∞)4.(2022届重庆西南大学附属中学开学考,16)设数列{a n }满足a 1=2,a 2=6,a 3=12,数列{a n }的前n 项和为S n ,且S n+2−S n−1+1S n+1−S n +1=3(n ∈N *且n ≥2).若[x]表示不超过x 的最大整数,b n =[(n+1)2a n],数列{b n }的前n 项和为T n ,则T 2022的值为 . 答案 20235.(2020课标Ⅰ文,16,5分)数列{a n }满足a n+2+(-1)na n =3n-1,前16项和为540,则a 1= . 答案。
4-1等差、等比数列的基本问题
专题4 第1讲等差、等比数列的基本问题一、选择题1.(2011·江西文,5)设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=( )A .18B .20C .22D .24[答案] B[解析] S 11-S 10=a 11=0,a 11=a 1+10d =a 1+10×(-2)=0,所以a 1=20.2.(2011·天津理,4)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110[答案] D[解析] 由条件:a 27=a 3·a 9, 即(a 1+6d )2=(a 1+2d )·(a 1+8d )∴a 1=20,S 10=10×20+10×92×(-2)=110.故选D.3.(2011·安徽文,7)若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15[答案] A[解析] 设a 1+a 2+…+a 10=S ,则S =-1×(3×1-2)+(-1)2×(3×2-2)+…+(-1)10(3×10-2) ① -S =(-1)2×(3×1-2)+…+(-1)10(3×9-2)+(-1)11(3×10-2) ②①-②得2S =-1+(-1)2×3+…+(-1)10×3-(-1)11×28=-1+3×(1-(-1))91+1+28.∴2S =30,∴S =15.4.(2011·辽宁文,5)若等比数列{a n }满足a n a n +1=16n ,则公比为( ) A .2 B .4 C .8 D .16[答案] B[解析] ∵a n ·a n +1=16n ,∴a n -1·a n =16n -1∴a n ·a n +1a n -1·a n =a n +1a n -1=q 2=16n 16n -1=16 ∴q =4.5.(2011·东北四市联考)在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ,则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n[答案] A[解析] 依题意得a n +1-a n =ln n +1n ,则有a 2-a 1=ln 21,a 3-a 2=ln 32,a 4-a 3=ln 43,…,a n -a n -1=lnn n -1,叠加得a n -a 1=ln(21·32·43·…·nn -1)=ln n ,故a n =2+ln n ,选A. 6.(2011·辽宁抚顺)在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( )A .24B .48C .60D .84[答案] C[解析] 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60,故选C.7.(2011·安徽安庆)已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的一个方向向量的坐标是( )A .(2,12)B .(-12,-2)C .(-12,-1)D .(-1,-1) [答案] B[解析] 由S 2=10,S 5=55得a 1=3,d =4,∴a n =4n -1,∴PQ →=(2,8),故选B. 8.(2011·长沙二模)设S n 是各项都是正数的等比数列{a n }的前n 项和,若S n +S n +22S n +1,则公比q 的取值范围是( )A .q >0B .0<q ≤1C .0<q <1D .0<q <1或q >1 [答案] B[解析] 当等比数列{a n }的公比q =1时, ∵S n +S n +22=na 1+(n +2)a 12=(n +1)a 1=S n +1, ∴q =1符合题意.当q ≠1时(q >0),∵S n +S n +2≤2S n +1, ∴a 1(q n-1)q -1+a 1(q n +2-1)q -1-2a 1(q n +1-1)q -1≤0,即a 1q -1(q n+q n +2-2q n +1)≤0, 化简得a 1q n q -1q -1)2≤0,即a 1q n(q -1)≤0,∴q -1<0,∴0<q <1.综上可知0<q ≤1.故选B. 二、填空题9.(文)(2011·北京文,12)在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.[答案] 2,2n -1-12[解析]a 4a 1=q 3=412=8,所以q =2, 所以 a 1+a 2+……+a n =12(1-2n )1-2=2n -1-12(理)(2011·北京理,11)在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.[答案] -2;2n -1-12[解析] 依题意:a 1=12,a 4=-4,则12q 3=-4,∴q 3=-8,∴q =-2. ∴a n =12(-2)n -1,∴|a n |=2n -2.∴|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=2n -1-1210.(2011·重庆理,11)在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. [答案] 74[解析] a 2+a 4+a 6+a 8=2(a 3+a 7)=2×37=74.11.等比数列{a n }的公比q >0,已知a 2=1,a m +2+a m +1=6a m ,则{a n }的前4项和是______. [答案]152[解析] 由已知条件a m +2+a m +1=6a m 可得a 2q m +a 2q m -1=6a 2q m -2,即得q 2+q -6=0,解得q =2或q =-3(舍去),则数列{a n }的前四项的和为12+1+2+4=152.12.(文)(2011·襄阳一调)等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,给出下列四个命题:①数列{(12)a n }为等比数列;②若a 2+a 12=2,则S 13=3;③S n =na n -n (n -1)2d ;④若d >0,则S n 一定有最大值.其中真命题的序号是________(写出所有真命题的序号). [答案] ①②③[解析] 对于①,注意到(12)a n +1(12)a n =(12)a n +1-a n =(12d 是一个非零常数,因此数列{(12)a n }是等比数列,①正确.对于②,S 13=13(a 1+a 13)2=13(a 2+a 12)2=13,因此②正确.对于③,注意到S n =na 1+n (n -1)2d =n [a n -(n -1)d ]+n (n -1)2d =na n -n (n -1)2d ,因此③正确.对于④,当a n >0,d >0时,S n 不存在最大值,因此④不正确.综上所述,其中正确命题的序号是①②③.(理)(2011·湘潭五模)设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”,若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.[答案] 4[解析] 由题意可知,数列{c n }的前n 项和为S n =n (c 1+c n )2,前2n 项和为S 2n =2n (c 1+c 2n )2,所以S 2n S n =2n (c 1+c 2n )2n (c 1+c n )2=2+2nd 4+nd -d =2+21+4-dnd ,所以当d =4时,S2n S n 为非零常数.三、解答题13.(文)(2011·大纲全国卷理,20)设数列{a n }满足a 1=0且11-a n +1-11-a n =1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n,记S n =∑k =1n b k ,证明:S n <1.[解析] (1)由题设11-a n +1-11-a n=1,即{11-a n是公差为1的等差数列. 又11-a 1=1,故11-a n=n . 所以a n =1-1n.(2)由(1)得b n =1-a n +1n =n +1-nn +1·n=1n -1n +1,S n =∑k =1nb k =∑k =1n(1k -1k +1)=1-1n +1<1. (理)(2011·江西理,18)已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.(1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值.[解析] (1)设{a n }的公比为q ,则b 1=1+a =2, b 2=2+aq =2+q ,b 3=3+aq 2=3+q 2, 由b 1,b 2,b 3成等比数列得(2+q )2=2(3+q 2) 即q 2-4q +2=0,解得q 1=2+2,q 2=2- 2 所以{a n }的通项公式为a n =(2+2)n -1或a n =(2-2)n -1.(2)设{a n }的公比为q ,则由(2+aq )2=(1+a )(3+aq 2),得aq 2-4aq +3a -1=0(*) 由a >0得Δ=4a 2+4a >0,故方程(*)有两个不同的实根 由{a n }唯一,知方程(*)必有一根为0,代入(*)得a =13.14.(2011·潍坊二模)已知等差数列{a n }和正项等比数列{b n },a 1=b 1=1,a 3+a 5+a 7=9,a 7是b 3和b 7的等比中项.(1)求数列{a n }、{b n }的通项公式;(2)若c n =2a n ·b 2n ,求数列{c n }的前n 项和T n .[解析] 设等差数列{a n }的公差为d ,等比数列的公比为q , 由题设知a 3+a 5+a 7=9,∴3a 5=9,∴a 5=3. 则d =a 5-a 14=12,∴a n =a 1+(n -1)d =n +12. ∴a 7=4.又∵a 27=b 3·b 7=16, ∴b 25=b 3·b 7=16,又b 5>0,∴b 5=4, ∴q 4=b5b 1=4,又q >0.∴q =2,∴b n =b 1·q n -1=2n -12.(2)c n =2a n ·b 2n =(n +1)·2 n -1,∴T n =c 1+c 2+…+c n=2+3·2+4·22+…+(n +1)·2n -1 ① 2T n =2·2+3·22+…+n ·2n -1+(n +1)·2n ② ①-②得-T n =2+2+22+…+2n -1-(n +1)·2n=2+2(1-2n -1)1-2-(n +1)·2n =-n ·2n∴T n =n ·2n.15.(2011·北京石景山区模拟)已知等差数列{a n }中,公差d >0,其前n 项和为S n ,且满足:a 2a 3=45,a 1+a 4=14.(1)求数列{a n }的通项公式;(2)通过公式b n =Sn n +c 构造一个新的数列{b n }.若{b n }也是等差数列,并求非零常数c ;(3)求f (n )=b n(n +25)·b n +1(n ∈N *)的最大值.[解析] (1)∵数列{a n }是等差数列. ∴a 2+a 3=a 1+a 4=14.又a 2a 3=45,∴⎩⎪⎨⎪⎧ a 2=5a 3=9或⎩⎪⎨⎪⎧a 2=9a 3=5. ∵公差d >0,∴a 2=5,a 3=9. ∴d =a 3-a 2=4,a 1=a 2-d =1. ∴a n =a 1+(n -1)d =4n -3.(2)∵S n =na 1+12n (n -1)d =n +2n (n -1)=2n 2-n ,∴b n =S nn +c =2n 2-n n +c .∵数列{b n }是等差数列, ∴2b 2=b 1+b 3, ∴2·6c +2=1c +1+15c +3,解得c =-12(c =0舍去).∴b n =2n 2-n n -12=2n .(3)f (n )=2n (n +25)·2(n +1)=nn 2+26n +25=1n +25n+26≤136.即f (n )的最大值为136.。
等差等比数列练习题(含答案)
一、等差等比数列基础知识点。
(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n = 2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=n k n n k nn k kkkaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 (二)学习要点:1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2+bn ;③公比q ≠1的等比数列的前n 项公式可以写成“S n =a (1-q n )的形式;诸如上述这些理解对学习是很有帮助的.2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2(或qa,a,aq )”③四数成等差数列,可设四数为“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为“),,,,(,,,3332aq aq q a qa aq aq aq a ±±或”等等;类似的经验还很多,应在学习中总结经验. [例1]解答下述问题:(Ⅰ)已知cb a 1,1,1成等差数列,求证: (1)c ba b a c a c b +++,,成等差数列; (2)2,2,2bc b b a ---成等比数列.[解析]该问题应该选择“中项”的知识解决,.2,2,2,)2(4)(2)2)(2)(2(;,,.)(2)()(2)()1(),(222112222222成等比数列成等差数列bc b b a bb c a b ac b c b a c b a b a c a c b bc a c a b c a ac c a c a b ac ab a c bc c b a a c b c a b ac bac c a b c a ---∴-=++-=--+++∴+=++=+++=+++=++++=⇒=+⇒=+(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列;(2)若数列:}{满足n b62)12(531321+=-+++++n n n a b n b b b求证:{n b }是等比数列. [解析](1)⎩⎨⎧-+=-=++)1)(1(2)1(211n n n n a n S a n S ②-①得,1)1(1)1(211+=-⇒--+=++n n n n n na a n na a n a:,32,32,1,11321用数学归纳法证明猜想得令得令-===∴=-==n a a n a a n n1)当;,3221,3121,121结论正确时-⨯==-⨯=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设)1)(12(1321)32(1)1(,121--=+-=+-=+=-+=∴+k k k k k k ka a k k n k k 时当 .,3)1(212,21结论正确-+=-=∴≥+k k a k k由1)、2)知,,32,-=∈*n a N n n 时当.2}{,2,2,,26)1(4),2(2,2)12()52(2)32(2)12(2,6)32(262)2(;2}{,2)32()12(1111111的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n nn n n n n n n n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-⨯=≥=∴⨯-=---=-=-≥∴+-=+==---=-∴+*+-+++[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.[例2]解答下述问题:(Ⅰ)等差数列的前n 项和为),(,,Q P QPS P Q S S Q P n ≠==若 求).,(表示用Q P S Q P +[解析]选择公式""2bn an S n +=做比较好,但也可以考虑用性质完成.① ②[解法一]设⎪⎪⎩⎪⎪⎨⎧+=+=∴+=bQ aQ QP bP aP P Q bn an S n 222, ①-②得:,],)()[(22Q P b Q P a Q P PQ P Q ≠++-=-.)(])()[(,)(,2PQQ P b Q P a Q P S PQQP b Q P a Q P Q P +-=+++=∴+-=++∴≠+[解法二]不妨设P Q Q Q P a a a S S QPP Q Q P +++=-=-∴>++ 21, .)(,2))((2))((211PQQ P S S QP QP a a Q P Q P Q P a a Q P Q P Q P Q P P Q +-=∴+-=++⋅+-=+-=++++(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为2128,求项数n.[解析]设公比为2421281024,142531==-n n a a a a a a a q)1(24211=⋅⇒-n qa.7,23525,2)2()1(,2)(2)1(221281024235252352112353211235321==∴==⋅⇒=-+⋅⇒=⨯=-++n n q a n qa a a a a nn n n 得代入得将而(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列求数列.}{项和的前n k n[解析],,,,171251751a a a a a a ⋅=∴成等比数列①②.1313132}{,132)1(2)1(323,34}{,2,00)2()16()4(111111115111121--=---⨯=-⋅=-+=-+=⋅=⋅=∴=+==∴=∴≠=-⇒+⋅=+⇒---n n S n k k d k d d k a a d a a a d a a a q a d a d d a d d a a d a n n n n n n n n k n n k k n n n 项和的前得由而的公比数列[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有.9338,926,9250,10,2,92610,388,06432316803232))(()4()32)((22222或原三数为或得或∴===∴=+-⇒⎪⎩⎪⎨⎧+==-+⇒⎪⎩⎪⎨⎧+-=-=++-a d d d d da a d d d a d a a a d a d a(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,⎩⎨⎧=+=-⇒⎩⎨⎧=+=-∴+<-+-⨯=⨯==+-⇒=+⇒∈=++++-+-∴*2521251,,,2551251125,125))((45004)()2()15()5()5()15(2222222a m a m a m a m a m a m a m a m a m a m m a N m m a a a a 且均为正整数与解得∴==),(1262不合或a a 所求四数为47,57,67,77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主要方法.二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 ①②①,②2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21 (B )2- (C )2 (D ) 不确定4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n, …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n n ab aD .如果一个数列{}n a 的前n 项和c ab S n n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n n a S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
等差等比数列基础知识复习
数列专题复习(一)等差数列1.定义:2.通项公式:3.前n 项和公式:4.性质:基础训练:1.已知为等差数列,且-2=-1, =0,则公差d =2.在等差数列中,,则.3.数列{}n a 满足112n n a a -=+(*2,n n N ≥∈), 21a =,n S 是{}n a 的前n 项和, 则21S = .4.设等差数列的前项和为,若则 .5.等差数列的前项和为,且则6. 已知首项为23,公差为整数的等差数列{}n a ,且670,0a a ><(1)求数列的公差;(2)求前n 项和n S 的最大值;(3)当n S >0时,求n 的最大值。
{}n a 7a 4a 3a }{n a 6,7253+==a a a ____________6=a {}n a n n S 535a a =95S S ={}n a n n S 53655,S S -=4a =7.数列{n a }的前n 项和为210n S n n =-,求数列{}n a 的通项公式。
8. 等差数列的判定和证明(1)已知数列{}n a ,*12112,2232)n n a a a a n n N +===+≥∈,(,判断{}n a 是等差数列吗?(2)已知各项均为正数的数列{}n a 满足1n n a a -=2*2)n n N ≥∈(,,判断数列{lg n a }是否是等差数列。
(3)已知数列{}n a 中,135a =,112n n a a -=-*2)n n N ≥∈(,,数列{}n b 满足11n n b a =- (*n N ∈)①求证数列{}n b 是等差数列;②求数列{}n a 中的最大项与最小项,并说明理由。
(一)等比数列1.定义:2.通项公式:3.前n 项和公式:4.性质:基础训练:1.在各项都为正数等比数列{}n a 中,首项13a =,前三项和为21,则345a a a ++等于A 33B 72C 84D 1892.等比数列{}n a 中,29a =,5243a =,则{}n a 前4项和为3.等比数列{}n a 中,若331,3a S ==,则q =4.等比数列{}n a 中,7116a a ⋅=,4145a a +=,则2010a a 等于5. 在数列{}n a 中,()10,1n n S ka k k =+≠≠,(1)求证:{}n a 是等比数列; (2)求通项公式n a 。
等差等比数列及其前n项和作业及答案
等差等比数列及其前n 项和作业及答案一、选择题:1.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b=2”,那么 ( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件解析:由a b +c b=2,可得a +c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b≠2. 答案:B 2.(2009·福建高考)等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53C .2D .3 解析:∵S 3=(a 1+a 3)×32=6,而a 3=4,∴a 1=0, ∴d =a 3-a 12=2. 答案:C 3.(2010·广州模拟)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k等于 ( )A .9B .8C .7D .6解析:a n =⎩⎪⎨⎪⎧ S 1 (n =1)S n -S n -1 (n ≥2)=⎩⎪⎨⎪⎧-8 (n =1)-10+2n (n ≥2)=2n -10, ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N *,∴k =8. 答案:B 4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 ( )A .63B .45C .36D .27解析:由{a n }是等差数列,则S 3,S 6-S 3,S 9-S 6成等差数列.由2(S 6-S 3)=S 3+(S 9-S 6)得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 答案:B5.设数列{a n }是等差数列,且a 4=-4,a 9=4,S n 是数列{a n }的前n 项和,则 ( )A .S 5<S 6B .S 5=S 6C .S 7=S 5D .S 7=S 6解析:因为a 4=-4,a 9=4,所以a 4+a 9=0,即a 6+a 7=0,所以S 7=S 5+a 6+a 7=S 5. 答案:C6.各项都是正数的等比数列{}a n 中,a 2,123,a 1成等差数列,则a 3+a 4a 4+a 5的值为 ( ) A.5-12 B.5+12 C.1-52 D.5+12或5-12解析:设{a n }的公比为q ,∵a 1+a 2=a 3, ∴a 1+a 1q =a 1q 2,即q 2-q -1=0, ∴q =1±52,又∵a n >0,∴q >0,∴q =1+52,a 3+a 4a 4+a 5=1q =5-12. 答案:A 7.(2009·广东高考)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C.2 D .2 解析:∵a 3·a 9=2a 25=a 26,∴a 6a 5= 2. 又a 2=1=a 1·2,∴a 1=22. 答案:B 8.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于 ( )A .1∶2B .2∶3C .3∶4D .1∶3解析:∵{a n }为等比数列, ∴S 3,S 6-S 3,S 9-S 6成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 又∵S 6∶S 3=1∶2,∴14S 23=S 3(S 9-12S 3),即34S 3=S 9, ∴S 9∶S 3=3∶4. 答案:C 9.若数列{a n }满足a 2n +1a 2np (p 为正常数,n ∈N *),则称{a n }为“等方比数列”. 甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件解析:数列{a n }是等比数列则a n +1a n =q ,可得a 2n +1a 2n=q 2,则{a n }为“等方比数列”.当{a n }为“等方比数列”时,则a 2n +1a 2n=p (p 为正常数,n ∈N *),当n ≥1时a n +1a n =±p ,所以此数列{a n }并不一定是等比数列. 答案:B10.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= ( ) A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 解析:∵q 3=a 5a 2=18∴q =12,a 1=4,数列{a n ·a n +1}是以8为首项,14为公比的等比数列,不难得出答案为C. 答案:C11. 在等差数列{a n }中,若a 1<0,S 9=S 12,则当S n 取得最小值时,n 等于A .10B .11C .9或10D .10或11解析:设数列{a n }的公差为d ,则由题意得9a 1+12×9×(9-1)d =12a 1+12×12×(12-1)d , 即3a 1=-30d ,∴a 1=-10d . ∵a 1<0,∴d >0. ∴S n =na 1+12n (n -1)d =12dn 2-212dn =d 2⎝⎛⎭⎫n -2122-441d 8∴S n 有最小值,又n ∈N *, ∴n =10,或n =11时,S n 取最小值. 答案:D12.在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S n n 最大时,n 的值等于 ( )A .8B .9C .8或9D .17解析:∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5,而a 3a 5=4,∴a 3=4,a 5=1, ∴q =12,a 1=16,a n =16×(12)n -1=25-n , b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n (9-n )2∴S n n =9-n 2, ∴当n ≤8时,S n n >0;当n =9时,S n n =0;当n >9时,S n n<0, ∴当n =8或9时,S 11+S 22+…+S n n 最大. 答案:C 二、填空题:13.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.解析:∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52. 答案:52 14.(2009·辽宁高考)等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d )=2,所以a 4=13. 答案:1315.(2009·浙江高考)设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________. 解析:a 4=a 1(12)3=181,S 4=a 1(1-124)1-12=158a 1, ∴S 4a 4=15. 答案:15 16.(2009·宁夏、海南高考)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.解析:∵a n +2+a n +1=6a n ,∴a n ·q 2+a n ·q =6a n (a n ≠0), ∴q 2+q -6=0,∴q =-3或q =2. ∵q >0,∴q =2,∴a 1=12,a 3=2,a 4=4, ∴S 4=12+1+2+4=152. 答案:152三、解答题:17.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2-,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n . 解:(1)证明:由已知a n +1=2a n +2n 得 b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. 又b 1=a 1=1, 因此{b n }是首项为1,公差为1的等差数列.(2)由(1)知a n 2-=n ,即a n =n ·2n -1. S n =1+2×21+3×22+…+n ×2n -1, 两边乘以2得,2S n =2+2×22+…+n ×2n . 两式相减得S n =-1-21-22-…-2n -1+n ·2n =-(2n -1)+n ·2n =(n -1)2n+1. 18.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值; (2)求证:数列{S n +2}是等比数列.解:(1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.(2)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2,∴S n +2=2(S n -1+2). ∵S 1+2=4≠0, ∴S n -1+2≠0, ∴S n +2S n -1+22, 故{S n +2}是以4为首项,2为公比的等比数列. 19.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=5,S 6=36.(1)求数列{a n }的通项公式;(2)设b n =6n +(-1)n -1λ·2a n (λ为正整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有b n +1>b n 成立.解:(1)∵2a n +1=a n +a n +2,∴{a n }是等差数列,设{a n }的首项为a 1,公差为d , 由a 3=5,S 6=36得⎩⎪⎨⎪⎧ a 1+2d =56a 1+15d =36,解得a 1=1,d =2. ∴a n =2n -1.(2)由(1)知b n =6n +(-1)n -1·λ·22n -1,要使得对任意n ∈N *都有b n +1>b n 恒成立, ∴b n +1-b n =6n +1+(-1)n ·λ·22n +1-6n -(-1)n -1·λ·22n -1=5·6n -5λ·(-1)n -1·22n -1>0恒成立, 即12λ·(-1)n -1<(32)n . 当n 为奇数时, 即λ<2·(32)n ,而(32)n 的最小值为32, ∴λ<3. 当n 为偶数时,λ>-2(32)n , 而-2(32)n 的最大值为-92,∴λ>-92.由上式可得-92<λ<3,而λ为正整数, ∴λ=1或λ=2. 20.(2010·株州模拟)已知二次函数f (x )=ax 2+bx +c (x ∈R),满足f (0)=f (12)=0,且f (x )的最小值是-18.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,S n )在函数f (x )的图象上.(1)求数列{a n }的通项公式;(2)通过b n =S n n +c 构造一个新的数列{b n },是否存在非零常数c ,使得{b n }为等差数列; (3)令c n =S n +n n,设数列{c n ·2c n }的前n 项和为T n ,求T n . 解:(1)因为f (0)=f (12)=0,所以f (x )的对称轴为x =0+122=14,又因为f (x )的最小值是-18,由二次函数图象的对称性可设f (x )=a (x -14)2-18. 又f (0)=0,所以a =2,所以f (x )=2(x -14)2-18=2x 2-x . 因为点(n ,S n )在函数f (x )的图象上,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=4n -3(n =1时也成立),所以a n =4n -3(n ∈N *).(2)因为b n =S n n +c =2n 2-n n +c =2n (n -12)n +c c =-12(c ≠0),即得b n =2n ,此时数列{b n }为等差数列,所以存在非零常数c =-12{b n }为等差数列. (3)c n =S n +n n =2n 2-n +n n=2n ,则c n ·2c n =2n ×22n =n ×22n +1. 所以T n =1×23+2×25+…+(n -1)22n -1+n ×22n +1,4T n =1×25+2×27+…+(n -1)22n +1+n ×22n +3,两式相减得:-3T n =23+25+…+22n +1-n ×22n +3=23(1-4n )1-4n ·22n +3, T n =23(1-4n )9+n ·22n +33=(3n -1)22n +3+89. 21.已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2n -1a n=8n 对任意的n ∈N *都成立,数列{b n +1-b n }是等差数列.(1)求数列{a n }与{b n }的通项公式;(2)问是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.解:(1)已知a 1+2a 2+22a 3+…+2n -1a n =8n (n ∈N *)①当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=8(n -1)(n ∈N *)②①-②得2n -1a n =8,求得a n =24-n , 在①中令n =1,可得a 1=8=24-1, ∴a n =24-n (n ∈N *). 由题意知b 1=8,b 2=4,b 3=2, ∴b 2-b 1=-4,b 3-b 2=-2, ∴数列{b n +1-b n }的公差为-2-(-4)=2, ∴b n +1-b n =-4+(n -1)×2=2n -6, 法一:迭代法得:b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =8+(-4)+(-2)+…+(2n -8)=n 2-7n +14(n ∈N *).法二:可用累加法,即b n -b n -1=2n -8, b n -1-b n -2=2n -10, … b 3-b 2=-2, b 2-b 1=-4, b 1=8,相加得b n =8+(-4)+(-2)+…+(2n -8)=8+(n -1)(-4+2n -8)2=n 2-7n +14(n ∈N *). (2)∵b k -a k =k 2-7k +14-24-k , 设f (k )=k 2-7k +14-24-k .当k ≥4时,f (k )=(k -72)2+74-24-k 单调递增. 且f (4)=1, ∴当k ≥4时,f (k )=k 2-7k +14-24-k ≥1. 又f (1)=f (2)=f (3)=0, ∴不存在k ∈N *,使得(b k -a k )∈(0,1).22.等差数列{a n }的前n 项和为S n ,S 4=24,a 2=5,对每一个k ∈N *,在a k 与a k +1之间插入2k -1个1,得到新数列{b n },其前n 项和为T n .(1)求数列{a n }的通项公式; (2)试问a 11是数列{b n }的第几项;(3)是否存在正整数m ,使T m =2010?若存在,求出m 的值;若不存在,请说明理由. 解:(1)设{a n }的公差为d ,∵S 4=4a 1+4×32d =24,a 2=a 1+d =5, ∴a 1=3,d =2,a n =3+(n -1)×2=2n +1.(2)依题意,在a 11之前插入的1的总个数为1+2+22+…+29=1-2101-2=1023, 1023+11=1034,故a 11是数列{b n }的第1034项.(3)依题意,S n =na 1+n (n -1)2d =n 2+2n , a n 之前插入的1的总个数为1+2+22+…+2n -2=1-2n -11-2=2n -1-1, 故数列{b n }中,a n 及前面的所有项的和为n 2+2n +2n -1-1,∴数列{b n }中,a 11及前面的所有项的和为112+22+210-1=1166<2010, 而2010-1166=844,a 11与a 12之间的1的个数为210=1024个, 即在a 11后加844个1,其和为2010,故存在m =1034+844=1878,使T 1878=2010.。
等差数列与等比数列知识点及题型归纳总结
等差数列与等比数列知识点及题型归纳总结知识点精讲一、基本概念 1.数列(1)定义:按照一定顺序排列的一列数就叫做数列. (2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在()y f x =中,当自变量x N *∈时,所对应的函数值(1),(2),(3),f f f 就构成一数列,通常记为{}n a ,所以数列有些问题可用函数方法来解决.2.等差数列 (1)定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母d 表示,即1()n n a a d n N *+-=∈.(2)等差数列的通项公式.若等差数列{}n a 的首项是1a ,公差是d ,则其通项公式为11(1)()n a a n d nd a d =+-=+-,是关于n 的一次型函数.或()n m a a n m d =+-,公差n m a a d n m-=-(直线的斜率)(,,m n m n N *≠∈).(3)等差中项.若,,x A y 成等差数列,那么A 叫做x 与y 的等差中项,即2x yA +=或2A x y =+,.在一个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前n 项和2111()2(1)2222n n a a n a dn n d d S na n n +--==+=+(类似于2n S An Bn =+),是关于n 的二次型函数(二次项系数为2d且常数项为0).n S 的图像在过原点的直线(0)d =上或在过原点的抛物线(0)d ≠上.3.等比数列(1)定义.:一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母q 表示,即1(q 0,)n na q n N a *+=≠∈. (2)等比数列的通项公式. 等比数列的通项1111()(,0)n n n a a a qc q c a q q-==⋅=≠,是不含常数项的指数型函数. (3)m n mna q a -=. (4)等比中项如果,,x G y 成等比数列,那么G 叫做x 与y 的等比中项,即2G xy =或G =两个同号实数的等比中项有两个).(5)等比数列的前n 项和111(1)(1)(1)11n n n na q S a a qa q q q q =⎧⎪=--⎨=≠⎪--⎩注①等比数列的前n 项和公式有两种形式,在求等比数列的前n 项和时,首先要判断公比q 是否为1,再由q 的情况选择相应的求和公式,当不能判断公比q 是否为1时,要分1q =与1q ≠两种情况讨论求解.②已知1,(1),a q q n ≠(项数),则利用1(1)1n n a q S q -=-求解;已知1,,(1)n a a q q ≠,则利用11n n a a qS q-=-求解.③111(1)(0,1)111n n n n a q a aS q kq k k q q q q--==⋅+=-≠≠---,n S 为关于n q 的指数型函数,且系数与常数互为相反数.例如等比数列{}n a ,前n 项和为212n n S t +=+,则t =.解:等比数列前n 项和21224n n n S t t +=+=⋅+,则2t =-.二、基本性质1.等差数列的性质 (1)等差中项的推广.当(,,,)m n p q m n p q N *+=+∈时,则有m n p q a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2)等差数列线性组合.①设{}n a 是等差数列,则{}(,)n a b b R λλ+∈也是等差数列.②设{},{b }n n a 是等差数列,则1212{}(,)n n a b R λλλλ+∈也是等差数列. (3)有限数列.①对于项数为2n 的等差数列,有: (Ⅰ)21()n n n S n a a +=+.(Ⅱ)11,,,n n n nS a S na S na S S nd S a ++==-==偶奇奇偶偶奇. ②对于项数为21n -的等差数列,有; (Ⅰ)21(21)n n S n a -=-.(Ⅱ),(1),,1n n n S nS na S n a S S a S n ==--==-奇奇奇偶偶偶.(4)等差数列的单调性及前n 项和n S 的最值. 公差0{}n d a >⇔为递增等差数列,n S 有最小值; 公差0{}n d a <⇔为递减等差数列,n S 有最大值; 公差0{}n d a =⇔为常数列. 特别地 若10a d >⎧⎨<⎩,则n S 有最大值(所有正项或非负项之和);若100a d <⎧⎨>⎩,则n S 有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已知等差数列{}n a ,公差为d ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等差数列,公差为td . ②等长度截取232,,,m m m m m S S S S S --为等差数列,公差为2m d .③算术平均值312,,,123S S S 为等差数列,公差为2d . 2.等差数列的几个重要结论(1)等差数列{}n a 中,若,(,,)n m a m a n m n m n N *==≠∈,则0m n a +=. (2)等差数列{}n a 中,若,(,,)n m S m S n m n m n N *==≠∈,则()m n S m n +=-+. (3)等差数列{}n a 中,若(,,)n m S S m n m n N *=≠∈,则0m n S +=.(4)若{}n a 与{b }n 为等差数列,且前n 项和为n S 与n T ,则2121m m m m a S b T --=. 3.等比数列的性质 (1)等比中项的推广.若m n p q +=+时,则m n p q a a a a =,特别地,当2m n p +=时,2m n p a a a =.(2)①设{}n a 为等比数列,则{}n a λ(λ为非零常数),{}n a ,{}mn a 仍为等比数列.②设{}n a 与{b }n 为等比数列,则{b }n n a 也为等比数列.(3)等比数列{}n a 的单调性(等比数列的单调性由首项1a 与公比q 决定).当101a q >⎧⎨>⎩或1001a q <⎧⎨<<⎩时,{}n a 为递增数列;当1001a q >⎧⎨<<⎩或101a q <⎧⎨>⎩时,{}n a 为递减数列.(4)其他衍生等比数列.若已知等比数列{}n a ,公比为q ,前n 项和为n S ,则: ①等间距抽取2(1),,,,p p t p t p n t a a a a +++-为等比数列,公比为tq .②等长度截取232,,,m m m m m S S S S S --为等比数列,公比为mq (当1q =-时,m 不为偶数).4.等差数列与等比数列的转化(1)若{}n a 为正项等比数列,则{log }(c 0,c 1)c n a >≠为等差数列. (2)若{}n a 为等差数列,则{c }(c 0,c 1)n a>≠为等比数列. (3)若{}n a 既是等差数列又是等比数列{)n a ⇔是非零常数列. 题型归纳及思路提示题型1 等差、等比数列的通项及基本量的求解 思路提示利用等差(比)数列的通项公式或前n 项和公式,列出关于1,()a d q 基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值范围例6.1 记等差数列{}n a 的前n 项和为n S ,若244,20S S ==,则该数列的公差d =( ). A.7 B.6 C.3 D.2解析 212124S a a a d =+=+= ①414620S a d =+= ②由式①②可解得3d =,故选C.评注 求解基本量用的是方程思想.变式1 (2012福建理2)等差数列{}n a 中,15410,7a a a +==则数列{}n a 的公差为( ). A.1 B.2 C.3 D.4变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差d 的取值范围是( ). A.(,2)-∞- B.15,27⎡⎫--⎪⎢⎣⎭ C.(2,)-+∞ D.15,27⎛⎫-- ⎪⎝⎭二、求等比数列的公比例6.2 在等比数列{}n a 中,201320108a a =,则公比q 的值为( ). A.2 B.3 C.4 D.8 解析 因为201320108a a =,所以3201320108,a q a ==则2q =,故选A. 变式1 等比数列{}n a 的前n 项和为n S ,且1234,2,a a a 成等差数列,若11a =,则4S =( ). A.7 B.8 C.15 D.16变式2 (2012浙江理13)设公比为(0)q q >的等比数列{}n a 的前n 项和为n S ,若224432,32S a S a =+=+,则q =.变式3 等比数列{}n a 的前n 项和为n S ,若123,2,3S S S 成等差数列,则{}n a 的公比为.三、求数列的通项n a例6.3 (1)(2012广东理11)已知递增等差数列{}n a 满足21321,4a a a ==-,则n a =.(2)(2012辽宁理14)已知等比数列{}n a 为递增数列,且251021,2()5n n n a a a a a ++=+=,则数列{}n a 的通项公式n a =.解析 (1)利用等差数列的通项公式求解.设等差数列公差为d ,则由2324a a =-得,212(1)4d d +=+-,所以24d =,得2d =±,又该数列为递增的等差数列,所以2d =.故1(1)21()n a a n d n n N *=+-=-∈.(2)由数列{}n a 为等比数列,设公比为q ,由212()5n n n a a a +++=,得22()5n n n a a q a q +=,即22(1)5q q +=,解得12q =或2.又25100a a =>,且数列{}n a 为递增数列,则2q =. 因此5532q a ==,所以2()n n a n N *=∈.变式1 n S 为等差数列{}n a 的前n 项和,264,1S S a ==,则n a =.变式2 已知两个等比数列{},{b }n n a ,满足11122331,1,2,4a b a b a b a =-=-=-=,求数列{}n a 的通项公式.例6.4 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的前n 项和为n S .解析 设该数列的公差为d ,前n 项和为n S .由已知,得211228,(3)a d a d +=+=11()(8)a d a d ++,所以114,(3)0a d d d a +=-=,解得14,0a d ==或11,3a d ==,即数列{}n a 的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和为4n S n =或232n n nS -=.变式1 已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =;若它的第k 项满足58k a <<,则k =.变式2 已知数列{}n a 的前n 项和1(nn S a a =-为非零实数),那么{}n a ( ).A.一定是等差数列B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列题型2 等差、等比数列的求和 思路提示求解等差或等比数列的前n 项和n S ,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数n 的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从n 为奇数、偶数,项n a 的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列{}()n a n N *∈中,若1411,8a a ==,则该数列的前10项和为( ). 8910111111.2.2 C.2 D.22222A B ----解析 由334111,82a a q q q ====得,所以1010911()1221212S -==--,故选B. 变式1 {}n a 是由正数组成的等比数列,n S 为前n 项和,已知2431,7a a S ==,则n S =.变式2 设4710310()22222()n f n n N +=+++++∈,则()()f n =.1342222.(81).(81).(81).(81)7777n n n n A B C D +++----二、关于等比数列求和公式中q 的讨论例6.6 设等比数列{}n a 的前n 项和为n S ,若396,,S S S 成等差数列,求数列的公比q .解析 若1q =,则3161913,6,9S a S a S a ===,因为10a ≠,所以3692S S S +≠,与396,,S S S 成等差数列矛盾,故1q ≠.由题意可得3692S S S +=,即有369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得363(21)0q q q --=,又0q ≠,故63210q q --=,即33(21)(1)0q q +-=.因为31q ≠,所以312q =-,所以q ==变式1 设数列{}n a 是等比数列,其前n 项和为n S ,且333S a =,则其公比q =.变式2 求和2311357(21)(2,,)n n S x x x n x n n N x R -*=+++++-≥∈∈.三、关于奇偶项求和问题的讨论例6.7 已知数列{}n a 的通项公式为12(1)n n a n -=-,求其前n 项和为n S . 解析 (1)当n 为偶数时,222221234(1)n S n n =-+-++--22222(12)(34)[(1)]n n =-+-++--[37(21)]n =-+++-(321)(1)222nn n n +-+=-=-. (2)当n 为奇数时,则1n +为偶数,所以211(1)(2)(1)(1)22n n n n n n n S S a n +++++=-=-++=. 综上,(1)()2(1)()2n n n n S n n n +⎧-⎪⎪=⎨+⎪⎪⎩为正偶数为正奇数.评注:本题中,将n 为奇数的情形转化为n 为偶数的情形,可以避免不必要的计算,此技巧值得同学们借鉴和应用。
等差、等比数列复习试题+答案解析
等差数列、等比数列1.(2014·二模)数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10=________2. (2014·二模)在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________3.(2014·一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=________4. (2014·一模)记等比数列{a n }的前n 项积为Ⅱn ,若a 4·a 5=2,则Ⅱ8=________5.(2014·卷)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则________A .d <0B .d >0C .a 1d <0D .a 1d >06.(2014·七中二模)正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m a n =16a 21,则1m +4n的最小值为________7.(2014·卷)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.8.(2014·中学二模)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8·a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.9. 已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n 的取值围是________.10.(2014·课标全国卷Ⅰ)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.11.(2014·一模)已知数列{a n},a1=-5,a2=-2,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2(n∈N*),若对于任意n∈N*,A(n),B(n),C(n)成等差数列.(1)求数列{a n}的通项公式;(2)求数列{|a n|}的前n项和.1.(2014·市七校联考)已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11 a 12 a 13a21 a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,则这9个数的和为________2.(2014·一模)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.3.(2014·一模)若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=9,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n 为正整数.(1)证明数列{a n +1}是“平方递推数列”,且数列{lg(a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项积为T n ,即T n =(a 1+1)(a 2+1)…(a n +1),求lg T n ;(3)在(2)的条件下,记b n =lg T n lg a n +1,求数列{b n }的前n 项和S n ,并求使S n >4 026的n 的最小值.高考专题训练(九) 等差数列、等比数列A 级——基础巩固组一、选择题1.(2014·二模)数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 5=1,则a 10=( )A .5B .-1C .0D .1解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d 2=a 1a 1+2d ,a 1+4d =1,解得⎩⎪⎨⎪⎧a 1=1,d =0,所以a 10=a 1+9d =1,故选D 答案 D2.(2014·二模)在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .13B .26C .52D .156解析 ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10, ∴6a 4+6a 10=24,即a 4+a 10=4,∴S 13=13a 1+a 132=13a 4+a 102=26.答案 B3.(2014·一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=( )A .4n -1B .4n -1C .2n -1D .2n -1 解析∵⎩⎪⎨⎪⎧ a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54,②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎪⎫12n -1=42n,∴S n =2×⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎪⎫12n 1-12=4⎝⎛⎭⎪⎪⎫1-12n , ∴S na n=4⎝⎛⎭⎪⎪⎫1-12n 42n=2n -1,选D.答案 D4.(2014·一模)记等比数列{a n }的前n 项积为Ⅱn ,若a 4·a 5=2,则Ⅱ8=( )A .256B .81C .16D .1解析 由题意可知a 4a 5=a 1a 8=a 2a 7=a 3a 6=2, 则Ⅱ8=a 1a 2a 3a 4a 5a 6a 7a 8=(a 4a 5)4=24=16. 答案 C5.(2014·卷)设等差数列{a n }的公差为d ,若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >0解析 依题意得2a 1a n >2a 1a n +1,即(2a 1)a n +1-a n <1,从而2a 1d <1,所以a 1d <0,故选C.答案 C6.(2014·七中二模)正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m a n =16a 21,则1m +4n的最小值为( )A.256B.134C.73D.32解析 由a 3=a 2+2a 1,得q 2=q +2,∴q =2(q =-1舍去),由a m a n =16a 21得2m -12n -1=16, ∵m +n -2=4,m +n =6, 所以1m +4n =m +n 6⎝ ⎛⎭⎪⎪⎫1m +4n =16⎝⎛⎭⎪⎪⎫1+4+n m +4m n≥16⎝ ⎛⎭⎪⎪⎫5+2 n m ·4m n =32. 答案 D 二、填空题7.(2014·卷)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.解析 设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d , ∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1.∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.答案 18.(2014·中学二模)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8·a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.解析 ∵1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,而a 8a 9=a 7a 10,∴1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 7a 10=158-98=-53. 答案 -539.已知{a n }是等比数列,a 2=2,a 5=14,则S n =a 1+a 2+…+a n的取值围是________.解析 因为{a n }是等比数列, 所以可设a n =a 1q n -1. 因为a 2=2,a 5=14,所以⎩⎪⎨⎪⎧a 1q =2,a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4,q =12.所以S n =a 1+a 2+…+a n =4⎣⎢⎢⎡⎦⎥⎥⎤1-⎝ ⎛⎭⎪⎪⎫12n 1-12=8-8×⎝ ⎛⎭⎪⎪⎫12n. 因为0<⎝ ⎛⎭⎪⎪⎫12n ≤12,所以4≤S n <8. 答案 [4,8) 三、解答题10.(2014·课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解(1)由题设,a n a n+1=λS n-1,a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.11.(2014·一模)已知数列{a n},a1=-5,a2=-2,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2(n∈N*),若对于任意n∈N*,A(n),B(n),C(n)成等差数列.(1)求数列{a n}的通项公式;(2)求数列{|a n|}的前n项和.解(1)根据题意A(n),B(n),C(n)成等差数列,∴A(n)+C(n)=2B(n),整理得a n+2-a n+1=a2-a1=-2+5=3.∴数列{a n}是首项为-5,公差为3的等差数列,∴a n=-5+3(n-1)=3n-8.(2)|a n |=⎩⎪⎨⎪⎧-3n +8,n ≤2,3n -8,n ≥3,记数列{|a n |}的前n 项和为S n . 当n ≤2时,S n =n 5+8-3n2=-3n 22+132n ;当n ≥3时,S n =7+n -21+3n -82=3n 22-132n +14;综上,S n=⎩⎪⎨⎪⎧-32n 2+132n ,n ≤2,32n 2-132n +14,n ≥3.B 级——能力提高组1.(2014·市七校联考)已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11 a 12 a 13a21 a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,则这9个数的和为( )A .16B .18C .9D .8解析已知数阵⎣⎢⎢⎡⎦⎥⎥⎤a11 a 12 a 13a21 a 22 a 23a31a 32a 33中,每行的3个数依次成等差数列,每列的3个数也依次成等差数列,若a 22=2,由等差数列的性质得:a 11+a 12+a 13+a 21+a 22+a 23+a 31+a 32+a 33=9a 22=18.答案 B2.(2014·一模)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.解析 易得S n =1-⎝ ⎛⎭⎪⎪⎫-13n ∈⎣⎢⎢⎡⎭⎪⎪⎫89,1∪⎝ ⎛⎦⎥⎥⎤1,43,而y =S n -1S n 在⎣⎢⎢⎡⎦⎥⎥⎤89,43上单调递增,所以y ∈⎣⎢⎢⎡⎦⎥⎥⎤-1772,712⊆[A ,B ],因此B -A 的最小值为712-⎝ ⎛⎭⎪⎪⎫-1772=5972. 答案 59723.(2014·一模)若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方递推数列”.已知数列{a n }中,a 1=9,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n 为正整数.(1)证明数列{a n +1}是“平方递推数列”,且数列{lg(a n +1)}为等比数列;(2)设(1)中“平方递推数列”的前n 项积为T n ,即T n =(a 1+1)(a 2+1)…(a n +1),求lg T n ;(3)在(2)的条件下,记b n =lg T n lg a n +1,求数列{b n }的前n 项和S n ,并求使S n >4 026的n 的最小值.解 (1)由题意得:a n +1=a 2n +2a n ,即a n +1+1=(a n +1)2,则{a n +1}是“平方递推数列”.对a n +1+1=(a n +1)2两边取对数得lg(a n +1+1)=2lg(a n +1),w 所以数列{lg(a n +1)}是以lg(a 1+1)为首项,2为公比的等比数列. (2)由(1)知lg(a n +1)=lg(a 1+1)·2n -1=2n -1 lg T n =lg(a 1+1)(a 2+1)…(a n +1)=lg(a 1+1)+lg(a 2+1)+…+lg(a n +1)=1·1-2n1-2=2n -1 (3)b n =lg T n lg a n +1=2n -12n -1=2-⎝ ⎛⎭⎪⎪⎫12n -1 S n =2n -1-12n 1-12=2n -2+12n -1 又S n >4 026,即2n -2+12n -1>4 026,n +12n >2 014 又0<12n <1,所以n min =2 014.。
数列的概念、等差与等比数列(考点串讲)高二数学上学期期中考点(湘教版2019选择性必修第一册)
则数列首项1 = 2,公差 = 3,
所以 = 1 + − 1 = 2 + − 1 × 3 = 3 − 1,
1 +
(3−1+2)
由求和公式有 =
=
= 222,解得 = 12,
2
2
故选:C.
题型剖析
题型七
等比数列的定义
1
3
【例8】已知数列{ }中,1 = ,+1 =
=
.
举一反三
【变式】已知等差数列 的前项和为 ,且28 = 56,则12 + 13 + 14 + 15 +
16 + 17 =
.
【答案】12
【解析】由28 =
1 +28 ×28
2
= 56,得1 + 28 = 4,
则12 + 13 + 14 + 15 + 16 + 17 = 3 1 + 28 = 12.
天飞行任务.运送“神十八”的长征二号F运载火箭,在点火第一秒钟通过的路程为2km,以
后每秒钟通过的路程都增加3km,在达到离地面222km的高度时,火箭开始进入转弯程序.则
从点火到进入转弯程序大约需要的时间是( )秒.
A.10
B.11
C.12
D.13
【答案】C
【解析】设出每一秒钟的路程为数列{ },
技巧点拨
求数列的最大项与最小项的常用方法
(1)函数法,将数列视为函数 ,即当 ∈ ∗ 时所对应的一列函数值,
根据 的类型作出相应的函数图象或利用求函数最值的方法,求出
的最值,进而求出数列的最大(小)项.
等差与等比数列 高二数学 复习 知识点练习
等差数列、等比数列一、知识回顾等差数列和等比数列的概念、有关公式和性质 等差数列等比数列定义 常数)为(}{1d a a P A a n n n =-⇔⋅+常数)为(}{1q a a P G a nn n =⇔⋅+ 通项公式 n a =1a +(n-1)d=k a +(n-k )d=dn +1a -dk n k n n q a q a a --==11求和公式n da n d d n n na a a n s n n )2(22)1(2)(1211-+=-+=+=⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q qqa a q q a q na s n n n中项 公式A=2ba +推广:2n a =m n m n a a +-+ab G =2。
推广:m n m n n a a a +-⨯=2性质1 若m+n=p+q则q p n m a a a a +=+若m+n=p+q ,则q p n m a a a a =。
2)(11n m nm a a n a a d nm n ≠--=--=11a a q nn =- ,mnm n a a q =- )(n m ≠等差数列的判定方法(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列; (2)等差中项:数列{}n a 是等差数列-11122(2)2n n n n n n a a a n a a a +++⇔=+≥⇔=+; (3)数列{}n a 是等差数列n a kn b ⇔=+(其中b k ,是常数); (4)数列{}n a 是等差数列2n S An Bn ⇔=+,(其中A 、B 是常数)。
等比数列的判定方法(1)用定义:对任意的n,都有11(0)n n n n na a qa q q a a ++==≠或为常数,⇔{}n a 为等比数列(2)等比中项:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列 练习巩固:1、设是等比数列,有下列四个命题:①2n a 是等比数列;②是等比数列;③是等比数列;④是等比数列。
#等差数列、等比数列的概念和求和
历年高考真题考点归纳 2011年 第六章 数列 第一节 等差数列、等比数列的概念及求和一、选择题 1.(天津理4)已知{}n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,*n N ∈,则10S 的值为A .-110B .-90C .90D .110 【答案】D 2.(四川理8)数列{}n a 的首项为3,{}n b 为等差数列且1(*)n n n b a a n N +=-∈.若则32b =-,1012b =,则8a =A .0B .3C .8D .11【答案】B 【解析】由已知知128,28,n n n b n a a n +=--=-由叠加法21328781()()()642024603a a a a a a a a -+-++-=-+-+-++++=⇒==3.(全国大纲理4)设nS 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =A .8B .7C .6D .5【答案】D4.(江西理5) 已知数列{na }的前n 项和nS 满足:n m n mS S S ++=,且1a =1.那么10a =A .1B .9C .10D .55【答案】A 二、填空题5.(湖南理12)设nS 是等差数列{}n a ()n N *∈,的前n 项和,且141,7a a ==,则9S = .【答案】256.(重庆理11)在等差数列{}n a 中,3737a a +=,则2468a a a a +++=__________【答案】747.(北京理11)在等比数列{an}中,a1=12,a4=-4,则公比q=______________;12...n a a a +++=____________。
—2【答案】2121--n8.(广东理11)等差数列na 前9项的和等于前4项的和.若141,0k a a a =+=,则k=____________. 【答案】10 9.(江苏13)设7211a a a ≤≤≤≤ ,其中7531,,,a a a a 成公比为q 的等比数列,642,,a a a 成公差为1的等差数列,则q 的最小值是________【答案】33三、解答题10.(江苏20)设M部分为正整数组成的集合,数列1}{1=a a n 的首项,前n 项和为nS ,已知对任意整数k ∈M ,当整数)(2,k n k n k n S S S S k n +=+>-+时都成立(1)设52,2},1{a a M 求==的值; (2)设}{},4,3{n a M 求数列=的通项公式本小题考查数列的通项与前n 项和的关系、等差数列的基本性质等基础知识,考查考生分析探究及逻辑推理的能力,满分16分。
2020高考数学二轮复习小题考法专训三:等差数列与等比数列[含解析]
小题考法专训(三) 等差数列与等比数列A 级——保分小题落实练一、选择题1.(2019·福州质检)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A .32B .31C .64D .63解析:选 B 法一:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B.法二:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,得a 4=8,又a 3=4,所以q =2,a 1=1,所以S 5=31,故选B.2.已知等差数列{a n }的前n 项和为S n ,若a 1=12,S 5=90,则等差数列{a n }的公差d =( ) A .2 B .32 C .3D .4解析:选C 依题意,5×12+5×42d =90,解得d =3,故选C.3.在公差不为0的等差数列{a n }中,4a 3+a 11-3a 5=10,则15a 4=( )A .-1B .0C .1D .2解析:选C 设{a n }的公差为d (d ≠0),由4a 3+a 11-3a 5=10,得4(a 1+2d )+(a 1+10d )-3(a 1+4d )=10,即2a 1+6d =10,即a 1+3d =5,故a 4=5,所以15a 4=1,故选C.4.等比数列{a n }的前n 项和为S n ,若a 3+4S 2=0,则公比q =( ) A .-1 B .1 C .-2D .2解析:选C 因为a 3+4S 2=0,所以a 1q 2+4a 1+4a 1q =0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2,故选C.5.(2020届高三·广东六校联考)等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=( )A .16B .15C .8D .7解析:选B 设公比为q ,由题意得4a 2=4a 1+a 3,即4a 1q =4a 1+a 1q 2,又a 1=1,所以4q =4+q 2,解得q =2,所以S 4=1×(1-24)1-2=15,故选B.6.已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A.12 B .54 C.45 D .-45解析:选C 因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C. 7.等比数列{a n }的前n 项和为S n ,若S 2=2,S 3=-6,则S 5=( ) A .18 B .10 C .-14D .-22解析:选D 设等比数列{a n }的公比为q ,由题意,得⎩⎪⎨⎪⎧a 1+a 1q =2,a 1+a 1q +a 1q 2=-6,解得⎩⎪⎨⎪⎧a 1=-2,q =-2,所以S 5=-2×[1-(-2)5]1-(-2)=-22,故选D.8.(2019·长春质监)已知S n 是等比数列{a n }的前n 项和,若公比q =2,则a 1+a 3+a 5S 6=( )A.13 B .17 C.23D .37解析:选 A 由题意知a 1+a 3+a 5=a 1(1+22+24)=21a 1,而S 6=a 1(1-26)1-2=63a 1,所以a 1+a 3+a 5S 6=21a 163a 1=13,故选A. 9.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B .⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1 D .⎝ ⎛⎭⎪⎫12n -1解析:选B 当n =1时,S 1=a 1=2a 2,则a 2=12.当n ≥2时,S n -1=2a n ,则S n -S n -1=a n=2a n +1-2a n ,所以a n +1a n =32,所以当n ≥2时,数列{a n }是公比为32的等比数列,所以a n =⎩⎪⎨⎪⎧1,n =1,12×⎝ ⎛⎭⎪⎫32n -2,n ≥2,所以S n =1+12+12×32+…+12×⎝ ⎛⎭⎪⎫32n -2=1+12×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -11-32=⎝ ⎛⎭⎪⎫32n -1,故选B.10.(2019·广东七校联考)已知等差数列{a n }的前n 项和为S n ,a 6+a 8=6,S 9-S 6=3,则S n 取得最大值时n 的值为( )A .5B .6C .7D .8解析:选 D 设{a n }的公差为d ,则由题意得,⎩⎪⎨⎪⎧a 1+5d +a 1+7d =6,a 1+6d +a 1+7d +a 1+8d =3,解得⎩⎪⎨⎪⎧a 1=15,d =-2.所以a n =-2n +17,由于a 8>0,a 9<0,所以S n 取得最大值时n 的值是8,故选D.11.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n解析:选D 设{a n }的公比为q ,易知q ≠1,所以由题设得⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=7,S 6=a 1(1-q 6)1-q=63,两式相除得1+q 3=9,解得q =2,进而可得a 1=1, 所以a n =a 1qn -1=2n -1,所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1,2T n =1×21+2×22+3×23+…+n ×2n,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1-2n -1×21-2-n ×2n =-1+(1-n )×2n,故T n =1+(n -1)×2n.12.已知数列{a n }满足2a n +1+a n =3(n ≥1),且a 3=134,其前n 项和为S n ,则满足不等式|S n -n -6|<1123的最小整数n 是( )A .8B .9C .10D .11解析:选C 由2a n +1+a n =3,得2(a n +1-1)+(a n -1)=0,即a n +1-1a n -1=-12,又a 3=134,所以a 3-1=94,代入上式,有a 2-1=-92,a 1-1=9,所以数列{a n -1}是首项为9,公比为-12的等比数列.所以|S n -n -6|=|(a 1-1)+(a 2-1)+…+(a n -1)-6|=⎪⎪⎪⎪⎪⎪9×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n1-⎝ ⎛⎭⎪⎫-12-6=⎪⎪⎪⎪⎪⎪-6×⎝ ⎛⎭⎪⎫-12n<1123,又n ∈N *,所以n 的最小值为10,故选C. 二、填空题13.(2019·北京高考)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:设数列{a n }的公差为d ,∵a 2=a 1+d =-3,S 5=5a 1+10d =-10, ∴a 1=-4,d =1, ∴a 5=a 1+4d =0,a n =a 1+(n -1)d =n -5.令a n <0,则n <5,即数列{a n }中前4项为负,a 5=0,第6项及以后为正. ∴S n 的最小值为S 4=S 5=-10. 答案:0 -1014.(2019·江苏高考)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧a 2a 5+a 8=0,S 9=27,得⎩⎪⎨⎪⎧(a 1+d )(a 1+4d )+a 1+7d =0,9a 1+9×82d =27,解得⎩⎪⎨⎪⎧a 1=-5,d =2,∴S 8=8a 1+8×72d =8×(-5)+28×2=16.答案:1615.已知数列{a n }中,a 1=3,a 2=7.当n ∈N *时,a n +2是乘积a n ·a n +1的个位数,则a 2 019=________.解析:a 1=3,a 2=7,a 1a 2=21,a 3=1,a 2a 3=7,a 4=7,a 3a 4=7,a 5=7,a 4a 5=49,a 6=9,a 5a 6=63,a 7=3,a 6a 7=27,a 8=7,a 7a 8=21,a 9=1,a 8a 9=7,a 10=7,所以数列{a n }是周期为6的数列,又2 019=6×336+3,所以a 2 019=a 3=1.答案:116.已知数列{a n }满足a n =n n +1,则a 1+a 222+a 332+…+a 2 0192 0192=________.解析:由题意,因为数列{a n }满足a n =nn +1,所以数列⎩⎨⎧⎭⎬⎫a n n 2的通项公式为a n n 2=1n (n +1)=1n -1n +1,所以a 1+a 222+a 332+…+a 2 0192 0192=1-12+12-13+…+12 019-12 020=1-12 020=2 0192 020. 答案:2 0192 020B 级——拔高小题提能练1.(2019·福州质检)已知数列{a n }满足a 1=1,a n +1=(n +1)a 2n2a 2n +4na n +n 2,则a 8=( )A.8964-2 B .8932-2 C.8916-2D .897-2解析:选A 因为a n +1=(n +1)a 2n2a 2n +4na n +n 2,a 1=1,所以a n >0,所以1a n +1=2a 2n +4na n +n2(n +1)a 2n, 所以n +1a n +1=2a 2n +4na n +n 2a 2n =⎝ ⎛⎭⎪⎫n a n 2+4·n a n +2, 所以n +1a n +1+2=⎝ ⎛⎭⎪⎫n a n +22.令b n =n a n+2,则b n +1=b 2n ,又因为b n >0,且b n ≠1,所以ln b n +1=2ln b n ,又ln b 1=ln ⎝ ⎛⎭⎪⎫1a 1+2=ln 3,所以数列{ln b n }是首项为ln 3,公比为2的等比数列. 所以ln b n =ln 3·2n -1=ln 32n -1,所以b n =32n -1,即na n+2=32n -1,从而a n =n32n -1-2, 将n =8代入可得a 8=8964-2,选A.2.[多选题]已知数列{a n }的前n 项和为S n ,且S n +1=4a n +2,a 1=1,令b n =a n +1-2a n ,设c n =a n2n ,则下列说法正确的是( )A .数列{b n }是等比数列B .数列{c n }是等比数列C .数列{a n }的通项公式a n =(3n -1)2n -2D .数列{a n }的前n 项和S n =(3n -4)2n -1+2解析:选ACD 由题意,S n +1=4a n +2,S n +2=4a n +1+2,两式相减得,S n +2-S n +1=4(a n +1-a n ),a n +2=4a n +1-4a n ,所以a n +2-2a n +1=2(a n +1-2a n ),因为b n =a n +1-2a n ,所以b n +1=2b n ,又由题设得1+a 2=4+2=6,即a 2=5,所以b 1=a 2-2a 1=3,所以数列{b n }是首项为3,公比为2的等比数列,故A 正确;由A 得b n =3·2n -1,所以b n =a n +1-2a n =3·2n -1,所以a n +12n +1-a n2n =34,即c n +1-c n =34.所以数列{c n }是首项为12,公差为34的等差数列.故B 错误;由B 得,c n =12+34(n -1)=34n -14,即a n 2n =34n -14,所以a n =(3n -1)2n -2,则S n =4a n -1+2=(3n -4)2n -1+2.故C 、D 正确.3.设数列{a n }满足a 1=5,且对任意正整数n ,总有(a n +1+3)(a n +3)=4a n +4成立,则数列{a n }的前2 019项的和为________.解析:由(a n +1+3)(a n +3)=4a n +4,得a n +1=4a n +4a n +3-3=a n -5a n +3,因为a 1=5,所以a 2=0,a 3=-53,a 4=-5,a 5=5,则数列{a n }是以4为周期的周期数列,因为2 019=504×4+3,且a 1+a 2+a 3+a 4=-53,即一个周期的和为-53,所以数列{a n }的前2 019项的和为-53×504+5+0-53=-2 5103.答案:-2 51034.(2019·福建五校第二次联考)在数列{a n }中,a 1=13,1a n +1=3a n (a n +3),n ∈N *,且b n =13+a n.记P n =b 1·b 2·…·b n ,S n =b 1+b 2+…+b n ,则3n +1P n +S n =________.解析:因为1a n +1=3a n (a n +3)=1a n -1a n +3,所以b n =13+a n =1a n -1a n +1,所以S n =b 1+b 2+…+b n =⎝⎛⎭⎪⎫1a 1-1a 2+⎝⎛⎭⎪⎫1a 2-1a 3+…+⎝⎛⎭⎪⎫1a n -1a n +1=1a 1-1a n +1.因为1a n +1=3a n (a n +3),所以b n =13+a n =a n3a n +1,所以P n =b 1·b 2·…·b n =a 13a 2·a 23a 3·…·a n 3a n +1=a 13n a n +1. 又a 1=13,故3n +1P n +S n =3a 1a n +1+1a 1-1a n +1=1a 1=3.答案:35.已知数列{a n }的前n 项和为S n ,数列{b n }的前n 项和为T n ,满足a 1=2,3S n =(n +m )a n ,m ∈R ,且a n b n =n .则a 2=________;若存在n ∈N *,使得λ+T n ≥T 2n 成立,则实数λ的最小值为________.解析:∵3S n =(n +m )a n ,∴3S 1=3a 1=(1+m )a 1, 解得m =2,∴3S n =(n +2)a n .① 当n ≥2时,3S n -1=(n +1)a n -1.②由①-②可得3a n =(n +2)a n -(n +1)a n -1, 即(n -1)a n =(n +1)a n -1. ∵a 1=2,∴a n ≠0,∴a n a n -1=n +1n -1,∴a 2a 1=31,a 3a 2=42,a 4a 3=53,…,a n -1a n -2=n n -2,a n a n -1=n +1n -1,以上各式累乘可得a n =n (n +1),经检验a 1=2符合上式.∴a n =n (n +1),n ∈N *. ∴a 2=2×3=6. ∵a n b n =n ,∴b n =1n +1. 令B n =T 2n -T n =b n +1+b n +2+…+b 2n =1n +2+1n +3+…+12n +1, 则B n +1-B n =3n +4(2n +2)(2n +3)(n +2)>0,∴数列{B n }为递增数列,∴B n ≥B 1=13.∵存在n ∈N *,使得λ+T n ≥T 2n 成立, ∴λ≥B 1=13,故实数λ的最小值为13.答案:6 13以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、等差数列
题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。
练习.1.在数列{}n a 中,若12a =-,且对任意n N +∈有1212n n a a +=+,则数列{}n a 的前20项和为( ) A. 45 B. 55 C. 65 D. 75
题型二、等差数列的通项公式:1(1)n a a n d =+-;
说明:等差数列(通常可称为A P 数列)的单调性:
d 0>为递增数列,0d =为常数列,0d < 为递减数列。
2.10为数列 中的第______项.
3.在等差数列 中,已知 则 ( ) A. 3 B. 5 C. 7 D. 9
4.在等差数列{}n a 中, 59a =,且3226a a =+,则1a 等于( ) A. -3 B. -2 C. 0 D. 1 题型三、等差中项的概念:
定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2
a b
A +=
a ,A ,
b 成等差数列⇔2
a b
A += 即:212+++=n n n a a a
(m n m n n a a a +-+=2)
题型四、等差数列的性质:
(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差
中项;
(2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列;
(3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,
n m
a a d n m
-=-
()m n ≠;
(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则
m n p q a a a a +=+;
5.在等差数列 中, , ,则 ( ). A. B. C. D.
6.在等差数列 中,有 ,则该数列的前 项之和为( )
A. B. C. D.
7.在等差数列{}n a 中, 347a a +=,则126a a a +++=_______.
题型五、等差数列的前n 和的求和公式:11()(1)
22
n n n a a n n S na d +-=
=+n d
a )(2
n 2112-+=。
(),(2为常数B A Bn An S n +=⇒{}n a 是等差数列 )
递推公式:2
)(2)()1(1n
a a n a a S m n m n n --+=+= 8.数列{}21n -前10项的和是( ). A. 120 B. 110 C. 100 D. 10
9.已知n S 为等差数列{}n a 的前n 项和,若510S =, 840S =,则{}n a 的公差为( )
A. 1
B. 2
C. 3
D. 4
10..已知等差数列{}n a 中, 449,24a S ==,则7a = ( ) A. 3 B. 7 C. 13 D. 15
题型六.对于一个等差数列:
(1)若项数为偶数,设共有2n 项,则①S 偶-S 奇nd =; ②
1
n n S a
S a +=奇偶; (2)若项数为奇数,设共有21n -项,则①S 奇-S 偶n a a ==中;②
1
S n
S n =
-奇偶。
题型七.对与一个等差数列,n n n n n S S S S S 232,,--仍成等差数列。
11.已知等差数列 的前 项和为 .若 , ,则 A. 35 B. 42 C. 49 D. 63
题型八.判断或证明一个数列是等差数列的方法: ①定义法:
)常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列
②中项法:
)22
1*++∈+=N n a a a n n n (⇒{}n a 是等差数列
③通项公式法:
),(为常数b k b
kn a n +=⇒{}n a 是等差数列
④前n 项和公式法:
),(2为常数B A Bn
An S n +=⇒{}n a 是等差数列
题型九.数列最值
(1)10a >,0d <时,n S 有最大值;10a <,0d >时,n S 有最小值; (2)n S 最值的求法:①若已知n S ,的最值可求二次函数的最值;
可用二次函数最值的求法(n N +∈);②或者求出中的正、
负分界项,即:
若已知n a ,则n S 最值时n 的值(n N +∈)可如下确定10
n n a a +≥⎧⎨
≤⎩或
n S 2n S an bn =+{}n a
1
0n n a a +≤⎧⎨
≥⎩。
12.记 为等差数列 的前 项和,已知 , . (1)求 的通项公式; (2)求 ,并求 的最小值.
等比数列
等比数列定义
一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:1n a +:(0)n a q q =≠。
一、递推关系与通项公式
m
n m n n n n n q a a q a a a a --+⋅=⋅==推广:通项公式:递推关系:111q 13.数列 满足: , ,则 等于( ). A.
B. C. D.
14.已知等比数列 的首项 ,公比 ,则 ( ) A. B. C. D. 二、等比中项:若三个数c b a ,,成等比数列,则称b 为c a 与的等比中项,且为ac b ac b =±=2,注:是成等比数列的必要而不充分条件. 三、等比数列的基本性质,
1.(1)q p n m a a a a q p n m ⋅=⋅+=+,则若),,,(*∈N q p n m 其中
(2))(2
*+--∈⋅==
N n a a a a a q m n m n n m
n m n , (3){}n a 为等比数列,则下标成等差数列的对应项成等比数列. (4){}n a 既是等差数列又是等比数列⇔{}n a 是各项不为零的常数列.
15.各项为正数的等比数列{}n a 中,
5a 与15a 的等比中项,则
24216log log a a +=( )
A. 4
B. 3
C. 2
D. 1
16.若实数1,,,4x y 成等差数列, 2,,,,8a b c --成等比数列,则y x
b
-=() A. 1
4
- B.
14 C. 12 D. 12
- 四、等比数列的前n 项和,
)1(11)1()1(111
≠⎪⎩
⎪
⎨⎧--=
--==q q q
a a q q a q na S n n n
17.等比数列 中, ,则 的前4项和为( ) A. 48 B. 60 C. 81 D. 124
18.设各项均为正数的等比数列{a n }的前n 项和为Sn ,若S 4=80,S 2=8,则公比q =______,a 5=_______. 五. 等比数列的前n 项和的性质
若数列{}n a 是等比数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,
k
k S S 23-成等比数列.
六.等比数列的判定法 (1)定义法:
⇒=+(常数)q a a n
n 1
{}n a 为等比数列; (2)中项法:⇒≠⋅=++)0(2
21n n n n a a a a {}n a 为等比数列;
(3)通项公式法:⇒⋅=为常数)q k q k a n n ,({}n a 为等比数列; (4)前n 项和法:⇒-=为常数)(q k q k S n n ,)1({}n a 为等比数列。
⇒-=为常数)(q k kq k S n n ,{}n a 为等比数列。
19.已知数列{}n a 满足11a =,()121n n na n a +=+,设n
n a b n
=
.
(1)求123b b b ,,;
(2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.。