实验四 码型变换实验

合集下载

[信息与通信]通信原理实验AMIHDB3CMI码型变换波形图

[信息与通信]通信原理实验AMIHDB3CMI码型变换波形图
实验步骤:
1. 将KX01拔去,使CMI编码输入数据悬空(全0码)。测 量TPX05,输出数据为01码,说明具有丰富的时钟信息。 2. 测量CMI译码输出数据是否与发端一致。 3. 观测译码同步信号。
返回
CMI码编码规则测试
7位m序列
15位m序列
返回
1码状态记忆测量
7位m序列,1码是00/11编码,而0码 不编码跟在1码后保持1码的状态
7. 抗连0码性能测试
CMI码编码规则测试
实验步骤:
1. 观测TPX01和TPX05,用TPX01同步,分析编码 输出数据是否与编码理论一致。 2.将KX02设置在1_2位置,重复上一步骤测量。
返回
1码状态记忆测量
实验步骤:
1. 观测TPX01和1码状态记忆输出TPX03,用TPX01 同步,根据观测结果,分析是否符合相互关系。
第四部分 码型变换技术
实验一 AMI/HDB3码型变换实验 实验二 CMI码型变换实验
返回
实验一 AMI/HDB3码型变换实验
实验目的:
1.了解二进制单极性码变换为 AMI/HDB3码的编码规则
2.熟悉HDB3码的基本特征; 3.熟悉HDB3码的编译码器工作
原理和实现方法; 4.根据测量和分析结果,画出电
15位m序列,1码是00/11编码,而0码 不编码跟在1码后保持1码的状态
返回
CMI码解码波形测试
7位m序列,输入数据与解码数据除时延外一一对应
返回
CMI码编码加错波形观测
加错时的译码输出数据与不加错时不同
返回
CMI码检错功能测试
KX01放在Dt时,TPX06与TPY05
KX01设置在M位置,TPY05无错指示

通原实验-码型变换

通原实验-码型变换
HDB3/AMI码型变换 与位同步提取
武汉理工大学信息工程学院专业综合实验中心.
实验 研究 内容
常用数字基带信号码型→基带信号的传输方式→ 传输码型选择 → 码型变换→线路传输码———
AMI及HDB3。
实验
数字基带传输系统中
技术
信道的编/译码技术
目的:是为了保证通信系统的传输可靠性,
克服信道中的噪声和干扰。
2)双极性 RZ 信号的功率谱的带宽同于单极性 RZ 信号,为
RZ( = Ts / 2)基带信号的带宽为BS = 1/ = 2fs
3)
时, 双极性BRZ 信号的功率谱 将含有离散分量,其特点与单
极性 RZ 信号的功率谱相似(请读者自己考虑)
单极性 (P 1/ 2)
实线——NRZ 虚线——RZ
数字信号的特点是:
信号的幅值取值是离散的,且幅值被限制在有限个 数值之内。常见的二进制码就是一种数字信号。
二进制码受噪声的影响小,易于由数字电路进行处 理,所以得到了广泛的应用。
三、实验应知知识
(2) 数字基带信号:
数字基带信号,是消息代码的电波形的表示形式。
即将信源发出的、未经调制或频谱变换、直接在有效频带
3.1 NRZ
NRZ码的全称是单极性不归零码,在这种二元码中用高电平和 低电平由分于别单表极示性二码进存制在信上息述“缺1点”,和尽“管0”它,具其有特构征成是简1单、的0分特别对应 正电平点和,零在电实平际,的在基表带示数码字元信时号,传电输压中不很需少要采回用到这零种.码型,
例如但它适合极1 短距0 离传1 输,0 在0 设备内1 部的1 传输0 多采1用单极
3.简单了解位同步提取的实现方法。
4.通过给定的实验电路,熟悉并掌握本实验电路的组 成和工作过程,学会分析电路方法。

实验-CMI码型变换实验

实验-CMI码型变换实验

实验-CMI码型变换实验实验CMI码型变换实验一、实验原理和电路说明在实际的基带传输系统中,并不是所有码字都能在信道中传输。

例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。

同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。

实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。

归纳起来,对传输用的基带信号的主要要求有两点:1、对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2、对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。

前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。

这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。

传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。

在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1、能从其相应的基带信号中获取定时信息;2、相应的基带信号无直流成分和只有很小的低频成分;3、不受信息源统计特性的影响,即能适应于信息源的变化;4、尽可能地提高传输码型的传输效率;5、具有内在的检错能力,等等。

满足或部分满足以上特性的传输码型种类繁多,主要有:CMI码、AMI、HDB3等等,下面将主要介绍CMI码。

根据CCITT建议,在程控数字交换机中CMI 码一般作为PCM四次群数字中继接口的码型。

在CMI码模块中,完成CMI的编码与解码功能。

CMI编码规则见表4.2.1所示:表4.2.1 CMI的编码规则输入码字编码结果0 011 00/11交替表示因而在CMI编码中,输入码字0直接输出01码型,较为简单。

对于输入为1的码字,其输出CMI码字存在两种结果00或11码,因而对输入1的状态必须记忆。

通信原理实验报告实验四-时分复用数字基带通信系统

通信原理实验报告实验四-时分复用数字基带通信系统

实验四时分复用数字基带通信系统电子二班 044 陈增贤一、实验目的1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。

2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。

3.掌握位同步信号、帧同步信号在数字分接中的作用。

二、实验内容1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。

2.观察位同步信号抖动对数字信号传输的影响。

3.观察帧同步信号错位对数字信号传输的影响。

4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。

三、基本原理本实验要使用数字终端模块。

1. 数字终端模块工作原理:原理框图如图4-1所示,电原理图如图4-2所示(见附录)。

它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。

两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。

两个串行数据信号码速率为数字源输出信号码速率的1/3。

延迟1延迟2整形延迟3FS-INBS-INS-INFD FD-7FD-15FD-8FD-16BD显示串/并变换串/并变换F2÷3并/串变换并/串变换D2B1F1D1SD-DBD显示B2图4-1 数字终端原理方框图延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD 、位同步信号及帧同步信号满足正确的相位关系,如图4-3所示。

移位寄存器40174把FD 延迟7、8、15、16个码元周期,得到FD-7、FD-15、FD-8(即F1)和FD-16(即F2)等4个帧同步信号。

在FD-7及BD 的作用下,U65(4094)将第一路串行信号变成第一路8位并行信号,在FD-15和BD 作用下,U70(4094)将第二路串行信号变成第二路8位并行信号。

实验四:HDB3码型变换实验

实验四:HDB3码型变换实验

实验四:HDB3码型变换实验
五、实验内容
(一)电源检查
1、使用万用表检测实验箱的电源接入点和GND之间
是否有短路现象,如果有则禁止继续实验。

2、调出二组电源,分别为+7V,-7V
注意:①调完后一定要用万用表确定三组电源的电压极性和电压值正确;
②在连接实验箱和电源时务必关掉电源开关。

(二)为了调测电路方便,实验箱提供了一个时钟源和标准信号源电路(见图5.5)。

图5.5包括了一个主振发生器、1000码发生器和32位PN码序列发生器。

实验者可自己分析工作原理,画出波形,在实验过程中与实际信号波形相比较。

1、测试(2)点的时钟脉冲信号,并记录该波形。

2、将HDB3编码输入端加入“1”码,在12点观测此
时的编码输出,并画出其波形。

3、将HDB3编码输入端加入“0”码,在12点观测此
时的编码输出,并画出其波形。

4、将HDB3编码输入端加入“1000”码,画出1000码
的波形;在12点观测此时的编码输出,并画出其
波形。

5、将HDB3编码输入端加入M序列,画出M序列的波
形(一个周期);在12点观测此时的编码输出,并画出其波形。

6、将HDB3编码输入端加入“1000”码,用连接线连接HDB3的编码输出和译码输入(12点和A点)。

观测HDB3码译码过程,详细记录译码过程中各点波形。

并比较最后的译码输出(L点)和输入信码(1点)。

北理工微机实验四

北理工微机实验四

北理工微机实验四实验4 A/D和D/A转换一、实验目的1.了解A/D转换的基本原理,掌握ADC0809芯片的使用方法。

2.了解D/A转换的基本原理,掌握DAC0832芯片的使用方法。

3.了解直流电机控制的基本方法。

二、实验内容与步骤(一)A/D转换部分1. 接线:CS /0809 接 Y3 /IO地址IN0 /0809 接0~5V /直流信号EOC 接总线的IRQ2. 实验电路原理图如图1.通过实验台左下角电位器RW1输出0 ~ 5V 直流电压送入 ADC0809通道0(IN0),利用 debug 的输出命令启动A/D 转换器,输入命令读取转换结果,验证输入电压与转换后数字的关系。

启动IN0开始转换:OUT 298H读取转换结果:IN 298H图1 模数转换电路3. 用万用表测量 CLOCK、ADD-C、ADD-B、ADD-A 在实验系统上如何联系的?4. 编程按中断方式采集IN0输入的电压,在屏幕上显示出转换后的数据(用16进制数)。

5. 考虑如果采用IN7输入的电压,启动开始转换和读取转换结果的地址应该是多少?6. 按查询方式采集IN0输入的电压,软硬件如何实现?● 编程提示1. ADC0809的IN0口地址为298H.2. IN0 单极性输入电压与转换后的数字的关系为:其中,为输入电压,为参考电压,这里的参考电压为+5V电源。

3. 一次A/D 转换的程序可以为:MOV DX , port OUT DX , AL ;延时IN AL , DX(二)D/A转换部分1. 接线:CS /0832 接Y2 /IO 地址用万用表测量WR2和XFER在实验系统上如何联系的?2. 实验电路原理如图2所示:图2 DAC0832电路原理图DAC0832采用单缓冲方式,具有单双极性输入端(图中的Ua、Ub),利用debug输出命令(Out 290 数据)输出数据给DAC0832,用万用表测量单极性输出端Ua及双极性输出端Ub的电压,验证数字与电压之间的线性关系。

实验四码型变换实验

实验四码型变换实验

④BRZ码 BRZ码的全称是双极性归零码,与BNRZ码不同的是,发送“1”和“0”时, 在整个码元期间高电平或低电平只持续一段时间,在码元的其余时间内则返回 到零电平。例如: 1 0 1 0 0 1 1 0
+E 0 -E
ห้องสมุดไป่ตู้ 4.3、AMI编码规则
⑤ AMI码 AMI码的全称是传号交替反转码,其编码规则如下:信息码中的“0”仍变换 为传输码的“0”;信息码中的“1”交替变换为传输码的“+1、-1、+1、- 1、…”。例如:
⑧ CMI码 CMI码的全称是传号反转码,其编码规则如下:信息码中的“1”码交替用 “11”和“00”表示,“0”码用“01”表示。例如:
代码:
1
1
0
1
0
0
1
0
CMI码: 11 00 01 11 01 01 00 01
这种码型有较多的电平跃变,因此,含有丰富的定时信息。该码已被ITUT推荐为PCM四次群的接口码型。在光纤传输系统中有时也用CMI码作线路传 输码型。
代码:
1
1
0
0
1
0
1
双相码: 10 10 01 01 10 01 10
BPH码可以用单极性非归零码(NRZ)与位同步信号的模二和来产生。 双相码的特点是只使用两个电平,而不像前面二种码具有三个电平。这种码 既能提取足够的定时分量,又无直流漂移,编码过程简单。但这种码的带宽 要宽些。
4.6、CMI编码规则
4.4、HDB3编码规则
⑥ HDB3码 HDB3码的全称是三阶高密度双极性码,其编码规则如下:将 4 个连“0 ”信息 码用取代节“000V”或“B00V”代替,当两个相邻“V”码中间有奇数个信息“1” 码 时 取 代 节 为 “ 0 0 0 V”; 有 偶 数 个 信 息 “ 1 ” 码 ( 包 括 0 个 ) 时 取 代 节 为 “ B00V”,其它的信息“ 0”码仍为“ 0 ”码,这样,信息码的“ 1 ”码变为带 有符号的“1”码即“+1”或“-1”。例如:

码型变换实验报告

码型变换实验报告

码型变换实验报告
码型变换实验报告是描述使用码型变换所获得的结果的一种实验报告,码型变换实验报告中包含了码型变换的具体步骤、新码的性能分析以及使用码型变换的目的等内容。

码型变换是指在一定的时间内,对已有的码信号进行改变,使其适应新的传输或接收系统等要求,并能够较好地传输数据信号。

为了使码型变换有效,必须先理解该码的特性,然后根据码的特性和新系统的要求,进行合理的变换。

一般情况下,码型变换实验报告将提供一下内容:
第一,码型变换的目的:码型变换的目的是根据新的系统要求,对原有的码型进行变换,以提高系统的性能。

第二,码型变换的步骤:码型变换的具体步骤一般有以下几步:(1)研究原有码制,弄清其特性;(2)根据新的系统要求,挑选最佳的码型;(3)对原有码信号进行码型变换;(4)测试新的码的性能,比较原有码的性能,以确定新码的性能提升情况;(5)将新码应用到新系统中。

第三,新码的性能分析:新码的性能比原码的性能有所提升,但具体提升情况应根据新码的特性和新系统的要求进行分析,以确定新码的性能提升情况。

第四,结论:实验结果表明,码型变换能够有效改善系统的性能,而且能够满足新系统的要求。

通过上述内容,可以看出,码型变换实验报告主要用于描述使用码型变换所获得的结果,包括码型变换的具体步骤、新码的性能分析以及使用码型变换的目的等内容。

码型变换实验报告的作用在于帮助研究者清楚地了解码型变换的效果,为采用码型变换提供科学的依据。

实验四 PCM编译码及TDM时分复用实验

实验四 PCM编译码及TDM时分复用实验

二、实验预习要求
首先预习《通信原理》教材中关
于脉冲编码调制PCM原理的有关 章节,然后,再阅读本实验内容。
通信工程专业实验室
实验四
PCM编译码及TDM时分复用实验
三、实验仪器仪表
1、70MHz双踪数字存储示波器一台
2、实验模块:

低频信号源输出模块一 低频信号源输出模块二 数字时钟信号源模块 PCM编译码模块

通信工程专业实验室
实验四
PCM编译码及TDM时分复用实验
八、思考题
1、TP3057
PCM编码器输出的 PCM数据的速率是多少? 2、TP3057 PCM编码器获取时钟信 号后,内部要经过几分频才能得到 PCM采样时钟?
通信工程专业实验室


实验四
PCM编译码及TDM时分复用实验

图3 A律与μ律的压缩特性
通信工程专业实验室
实验四
PCM编译码及TDM时分复用实验
A律PCM基群帧结构如下图所示:
通信工程专业实验室
实验四
PCM编译码及TDM时分复用实验
3. PCM编解码集成电路


国内外有代表性的PCM编解码集成电路有很 多,在本实验中,选用了芯片作为PCM编解 码电路来作实验。编译码器是本实验中最易 受损器件,稍有不慎就有烧坏的可能,所以 我们在实验中要求特别细致。 PCM编译码器TP3057所需的工作时钟为 2.048MHz。
通信工程专业实验室
实验四
PCM编译码及TDM时分复用实验
六、实验步骤



5. 用示波器观察PCM译码输出信号 示波器的CH1接SA-IN,CH2接RA-OUT, 观察这两个信号波形是否相同(有相位差)。 示波器的CH1接SB-IN,CH2接RB-OUT, 观察这两个信号波形是否相同(有相位差)。

通信原理实验,码型变换,移相键控调制与解调,眼图,抽样定理,.

通信原理实验,码型变换,移相键控调制与解调,眼图,抽样定理,.

实验一码型变换实验一、基本原理在数字通信中, 不使用载波调制装置而直接传送基带信号的系统, 我们称它为基带传输系统,基本结构如图所示。

干扰基带传输系统的基本结构基带信号是代码的一种电表示形式。

在实际的基带传输系统中, 并不是所有的基带电波形都能在信道中传输。

对传输用的基带信号的主要要求有两点:(1对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型; (2 对所选码型的电波形要求, 期望电波形适宜于在信道中传输。

AMI :AMI 码的全称是传号交替反转码。

这是一种将信息代码 0(空号和 1(传号按如下方式进行编码的码:代码的 0仍变换为传输码的 0, 而把代码中的 1交替地变换为传输码的 +1, -1, +1, -1,……。

HDB3:HDB 3码是对 AMI 码的一种改进码,它的全称是三阶高密度双极性码。

其编码规则如下:先检察消息代码(二进制的连 0情况,当没有 4个或 4个以上连 0串时,按照 AMI 码的编码规则对信息代码进行编码; 当出现 4个或 4个以上连 0串时, 则将每 4个连 0小段的第 4个 0变换成与前一非 0符号 (+1或 -1 同极性的符号, 用V 表示 (即 +1记为 +V, -1记为 -V ,为使附加 V 符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻 V 符号也应极性交替。

当两个相邻 V 符号之间有奇数个非 0符号时,用取代节“ 000V ” 取代 4连 0信息码; 当两个相邻 V 符号间有偶数个非 0符号时, 用取代节“ B00V ” 取代 4连 0信息码。

CMI :CMI 码是传号反转码的简称,其编码规则为:“ 1”码交替用“ 11”和“ 00”表示; “ 0”码用“ 01”表示。

BPH :BPH 码的全称是数字双相码,又称 Manchester 码,即曼彻斯特码。

它是对每个二进制码分别利用两个具有 2个不同相位的二进制新码去取代的码,编码规则之一是: 0→ 01(零相位的一个周期的方波1→ 10(π相位的一个周期的方波二、实验结果CMIBPHHDB3 AMI三、结果分析各码型波形如上所示, 我们发现许多波形产生了不同程度的畸变, 表现是幅值不是单一的水平线, 而成了曲线。

码型变换实验报告

码型变换实验报告

码型变换实验报告码型变换实验报告摘要:码型变换是一种将数字信号转换为不同码型的技术,可以在数字通信系统中提高传输效率和抗干扰能力。

本实验通过使用不同的码型进行传输,比较它们的性能差异,并探讨其应用前景。

实验结果表明,码型变换在提高传输效率和抗干扰能力方面具有重要作用。

引言:随着数字通信技术的发展,码型变换成为了提高传输效率和抗干扰能力的重要手段。

码型是指数字信号在传输过程中的编码方式,常见的码型包括非归零码(NRZ)、归零码(RZ)、曼彻斯特码等。

不同的码型具有不同的特点和应用场景,因此研究码型变换对于优化数字通信系统具有重要意义。

实验设计:本实验使用MATLAB软件进行模拟实验。

首先,我们设计了一个基本的数字通信系统模型,包括信源、信道和接收器。

然后,我们分别使用NRZ、RZ和曼彻斯特码进行传输,并比较它们的误码率、传输效率和抗干扰能力。

实验结果与分析:1. NRZ码的特点是简单、直观,但是它的传输效率较低,容易受到噪声的干扰。

实验结果显示,NRZ码的误码率较高,且在高噪声环境下容易发生误码。

2. RZ码通过在每个位周期的中间位置加入一个归零点,使得接收器可以更准确地判断每个位的开始和结束。

实验结果显示,RZ码相比于NRZ码具有更低的误码率和较高的传输效率,但是在高噪声环境下仍然存在一定的误码问题。

3. 曼彻斯特码将每个位周期分为两个时段,通过信号的上升和下降沿来表示位的取值。

实验结果显示,曼彻斯特码具有较低的误码率和较高的抗干扰能力,但是由于每个位周期需要传输两个信号,因此其传输效率相对较低。

结论:通过对比实验结果,我们可以得出以下结论:1. 码型变换可以在一定程度上提高传输效率和抗干扰能力。

2. 不同的码型适用于不同的应用场景,需要根据具体需求进行选择。

3. 码型变换是数字通信系统中的重要技术之一,对于优化系统性能具有重要作用。

展望:随着通信技术的不断发展,码型变换将继续发挥重要作用。

未来的研究可以进一步探索更多的码型变换技术,并结合其他技术手段,进一步提高传输效率和抗干扰能力。

通信原理实验指导书

通信原理实验指导书

通信原理实验指导书实验一HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。

2、掌握HDB3码的编译规则。

3、了解滤波法位同步在的码变换过程中的作用。

二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3输出信号源PN15数据HDB3编码HDB3-A1电平变换CLK时钟HDB3-B1数据移位输出取绝对值缓存4bitHDB3-A2极性反变换HDB3输入时钟HDB3-B2信号检测译码时钟输入单极性码8#基带传输编译码模块数字锁相环法位同步BS2数字锁相环输入13#载波同步及位同步模块HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

当没有连续4个连0时与AMI编码规则相同。

当4个连0时最后一个0变为传号A,其极性与前一个A的极性相反。

若该传号与前一个1的极性不同,则还要将这4个连0的第一个0变为B,B的极性与A相同。

实验框图中编码过程是将信号源经程序处理后,得到HDB3-A1和HDB3-B1两路信号,再通过电平转换电路进行变换,从而得到HDB3编码波形。

同样AMI译码只需将所有的±1变为1,0变为0即可。

而HDB3译码只需找到传号A,将传号和传号前3个数都清0即可。

传号A的识别方法是:该符号的极性与前一极性相同,该符号即为传号。

实验框图中译码过程是将HDB3码信号送入到电平逆变换电路,再通过译码处理,得到原始码元。

四、实验步骤实验项目一HDB3编译码(256KHz归零码实验)概述:本项目通过选择不同的数字信源,分别观测编码输入及时钟,译码输出及时钟,观察编译码延时以及验证HDB3编译码规则。

1、关电,按表格所示进行连线。

源端口信号源:PN据)信号源:CLK 钟)模块8:TH1(HDB3输出)模块8:TH5(单极性码)模块13:TH5(BS2)模块8:TH7(HDB3输入)块模块13:TH7(数字锁相环输入)模块8:TH9(译码时钟输入)数字锁相环位同步提取提供译码位时钟将数据送入译码模模块8:TH4(编码输入-时提供编码位时钟目的端口模块8:TH3(编码输入-数连线说明基带信号输入2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【HDB3编译码】→【256K归零码实验】。

码型变换实验教学总结

码型变换实验教学总结

课程: 通信原理码型变换实验报告系电子信息与计算机科学系专业电子信息科学与技术班级姓名学号指导教师实验地点学年学期2012-2013第二学期一、实验目的1、了解几种常用的数字基带信号。

2、掌握常用数字基带传输码型的编码规则。

3、掌握常用CPLD实现码型变换的方法。

二、实验内容1、观察NRZ码、RZ码、AMI码、HDB3码、CMI码、BPH码的波形。

2、观察全0码或全1码时各码型的波形。

3、观察HDB3码、AMI码的正负极性波形。

4、观察RZ码、AMI码、HDB3码、CMI码、BPH码经过码型反变换后的输出波形。

三、实验模块1、通信原理0 号模块一块2、通信原理6 号模块一块3、通信原理7 号模块一块4、示波器一台四、实验原理I、基本原理在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。

例如,在市区内利用电传机直接进行电报通信,或者利用中继方式在长距离上直接传输PCM信号等。

这种不使用载波调制装置而直接传送基带信号的系统,我们称它为基带传输系统,它的基本结构如图15-1所示。

该结构由信道信号形成器、信道、接收滤波器以及抽样判决器组成。

这里信道信号形成器用来产生适合于信道传输的基带信号,信道可以是允许基带信号通过的媒质(例如能够通过从直流至高频的有线线路等);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。

若一个变换器把数字基带信号变换成适合于基带信号传输的基带信号,则称此变换器为数字基带调制器;相反,把信道基带信号变换成原始数字基带信号的变换器,称之为基带解调器。

基带信号是代码的一种电表示形式。

在实际的基带传输系统中,并不是所有的基带电波形都能在信道中传输。

例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。

单极性基带波形就是一个典型例子。

再例如,一般基带传输系统都从接收到的基带信号流中提取定时信号,而收定时信号又依赖于代码的码型,如果代码出现长时间的连“0”符号,则基带信号可能会长时间出现0电位,而使收定时恢复系统难以保证收定时信号的准确性。

码型变换实验

码型变换实验

码型变换目录一、实验目的 (2)二、实验工作原理 (2)1.码型变换原则 (2)2.常见码型变换类型 (2)3.码型变换原理 (5)4.实验框图及功能说明 (6)5.框图中各个测量点说明 (6)三、实验任务 (6)四、实验步骤 (7)1.实验准备 (7)2.单极性不归零码(NRZ 码) (7)3.双极性不归零码(BNRZ 码) (9)4.单极性归零码(RZ 码) (11)5.双极性归零码(BRZ 码) (13)6.曼彻斯特码 (15)7.密勒码 (17)8.成对选择三进码(PST 码) (18)9.关机拆线 (20)五、实验报告分析 (20)一、实验目的1. 熟悉 RZ、BNRZ、BRZ、CMI、曼彻斯特、密勒、PST 码型变换原理及工作过程;2. 观察数字基带信号的码型变换测量点波形。

二、实验工作原理1.码型变换原则在实际的基带传输系统中,在选择传输码型时,一般应考虑以下原则:(1).不含直流,且低频分量尽量少;(2).应含有丰富的定时信息,以便于从接收码流中提取定时信号;(3).功率谱主瓣宽度窄,以节省传输频带;(4).不受信息源统计特性的影响,即能适应于信息源的变化;(5).具有内在的检错能力,即码型具有一定规律性,以便利用这一规律性进行宏观检测;(6).编译码简单,以降低通信延时和成本。

2.常见码型变换类型(1) 单极性不归零码(NRZ 码)单极性不归零码中,二进制代码“1”用幅度为E 的正电平表示,“0”用零电平表示,如下图所示。

单极性码中含有直流成分,而且不能直接提取同步信号。

图2-1 单极性不归零码示意图(2) 双极性不归零码(BNRZ 码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,如下图所示,当二进制代码“1”和“0”等概出现时无直流分量。

图2-2 双极性不归零码示意图(3) 单极性归零码(RZ 码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平,如下图所示。

4位格雷码二进制变换

4位格雷码二进制变换

集成电路课程设计报告设计课题:格雷码变换器专业班级: 11电子学生姓名:学号:指导教师:陈建萍设计时间:2014.5-2014.6一、 实验目的1、用组合电路设计4位格雷码/二进制码变换电路。

2、学习利用原理图和VHDL 语言输入法设计简单逻辑电路的方法。

二、 实验内容1、采用原理图输入方法设计4位格雷码/二进制码变换电路。

2、采用VHDL 语言输入方法设计格雷码/二进制码变换电路。

三、 设计方案与论证1.实验方案用QUARTUS 软件。

采用画出电路图和输入程序源代码来实现VHDL 语言输入方法设计格雷码/二进制码变换电路。

格雷码转换为自然二进制码的转换规则,实际上就是不断的将格雷码与二进制数做异或操作,也就是说,不断的和本身的不同位数做异或操作。

绝对值编码器的输入信号为格雷码,格雷码不能被计算机直接处理,需把格雷码转换成二进制码。

格雷码的高位和二进制码的高位相同,其高位和次高位的异或运算得到二进制码的次高位,依次类推,即可得到格雷码相对应的二进制码。

2. 理论计算真值表测图1 四位二进制格雷码真值表Gi i B Bi Gi Bi ⊕+==)1(01012123233G B B G B B G B B G B ⊕=⊕=⊕==Bi i B Gi Bi Gi ⊕+==)1(01012123233B B G B B G B B G B G ⊕=⊕=⊕==3. 电路图及设计文件1.GENERIC语句GENERIC被称为参数传递映射语句,它描述响应的元件类属参数间的衔接和传送方式。

参数传递语句用于设计从外部端口改变原件内部参数或结构规模的元件,也可称其为类书元件。

该语句在改变电路结构或元件硬件升级方面显得尤为便捷。

其语句格式为:Generic map(param.list) port map(port list);例:generic(n:integer:=7);该语句定义了参数N为整数,且赋值为7。

2.GENERATE语句电路某部分由同类元件构成,这类同类元件叫做规则结构,如:ROM,RAM,移位寄存器等规则结构可以用生成语句来描述。

实验四Δm及CVSD编译码实验

实验四Δm及CVSD编译码实验

实验四Δm及CVSD编译码实验一、实验目的1、掌握简单增量调制的工作原理。

2、理解量化噪声及过载量化噪声的定义,掌握其测试方法。

3、了解简单增量调制与CVSD工作原理不同之处及性能上的差别。

二、实验器材1、主控&信号源模块、21号、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、Δm编译码(1)实验原理框图图一Δm编译码框图(2)实验框图说明编码输入信号与本地译码的信号相比较,如果大于本地译码信号则输出正的量阶信号,如果小于本地译码则输出负的量阶。

然后,量阶会对本地译码的信号进行调整,也就是编码部分“+”运算。

编码输出是将正量阶变为1,负量阶变为0。

Δm译码的过程实际上就是编码的本地译码的过程。

2、CVSD编译码(1)实验原理框图图二 CVSD编译码框图(2)实验框图说明与Δm相比,CVSD多了量阶调整的过程。

而量阶是根据一致脉冲进行调整的。

一致性脉冲是指比较结果连续三个相同就会给出一个脉冲信号,这个脉冲信号就是一致脉冲。

其他的编译码过程均与Δm一样。

四、实验步骤项目一:△M编码规则实验项目二:量化噪声观测项目三:不同量阶△M编译码的性能项目四:△M编译码语音传输系统项目五:CVSD量阶观测项目六:CVSD一致脉冲观测项目七;CVSD量化噪声观测项目八:CVSD码语音传输系统五、实验记录TP4(信源延时)和TH14(编码输出) TP4(信源延时)和TP3(本地译码)项目二CH1信源延时,CH2 本地译码项目三量阶3000,Vpp=3V项目三量阶6000,Vpp=3V 项目三量阶3000,Vpp=1V项目五量阶6000,Vpp=1V 项目五 Vout=1V项目五 Vout=2V 项目五 Vout=4V项目七 Vpp=1V 项目七 Vpp=3VCVSD量化噪声观测(2KHz)Vpp=3V的噪声CVSD量化噪声观测(2KHz)Vpp=1V的噪声六、思考题回答1.增量调制的速率可以是32kbps、16kbps相比PCM 64kbps产生的原因怎样?(请查找资料)今天VoIP采用什么样的信源编码?视频的MPEG2编码又是什么?答:PCM的速率是增量调制的整数倍,利用此特点,可进行信道的复用,扩大信息量的传输。

4码型变换实验

4码型变换实验
别画出相应的单极性波形、双极性波形、单极性归零波形、双 极性归零波形、二进制差分波形及八电平波形。
18
八、实验思考题
2、已知信息代码为100000000011,求相应的AMI码、 HDB3码、CMI码及双相码。
19
请预习下面两周实验
实验五 ASK调制与解调实验 实验六 FSK调制与解调实验
20
入2” BRZ:连接“BRZ”与“BRZ解码输入” BNRZ:连接“BNRZ”与“解码输入2” 以上观测都用双踪
14
五、实验步骤
2、对于绿色模块(无需连接时钟等信号) 直接观测,用双踪观察 NRZ—RZ—ORZ(解码) NRZ—BPH—OBPH(解码) NRZ—CMI—OCMI(解码) NRZ—BRZ—OBRZ(解码) NRZ—AMI—
无需连接FS信号 做实验时,将编码与解码同时连线进行观察
测量:例如,将“编码方式选择”拨码成 “10000000”,观察由NRZ到RZ的码型变换 (双踪)。然后将“编码输出1”与“解码输 入1”连接,观测解码信号 BPH、CMI都是连接“编码输出1”与“解码输 入1”
13
五、实验步骤
HDB3、AMI:连接“编码输出2”与“解码输
1、对于蓝色模块: 具有编码方式选择: 10000000-----RZ 01000000-----BPH 00100000-----CMI 00010000-----HDB3 00001000-----BRZ 00000100-----BNRZ 00000010-----AMI
12
五、实验步骤
16
七、实验报告要求
1、分析实验电路的工作原理,叙述其工作过程。 2、根据实验测试记录,在坐标纸上画出各测量点的波 形图,并分析实验现象。 3、对实验思考题加以分析,按照要求做出回答,并尝 试画出本实验的电路原理图。

实验四码型变换实验

实验四码型变换实验

实验四码型变换实验、实验目的1.了解几种常见的数字基带信号。

2.掌握常用数字基带传输码型的编码规则。

3. 掌握用FPGA实现码型变换的方法。

、实验内容1 .观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB码、BPH码的波形。

2.观察全0 码或全1 码时各码型波形。

3. 观察HDB码、AMI码、BNRZ码正、负极性波形。

4. 观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB码、BPH码经过码型反变换后的输出波形。

5.自行设计码型变换电路,下载并观察输出波形。

三、实验器材1信号源模块.码型变换模块2.3.20M 双踪示波器一台4.一台频率计(可选)PC机(可选)一台5.6.连接线若干四、实验原理1 .编码规则①NRZ码NRZ码的全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“ 1 ”和“ 0”,在整个码元期间电平保持不变。

例如:1 0 1 0 0 1 1 0+ E -------- -------------- ------------------------------0 ------------------- ----------------------- -----------------------②RZ码RZ码的全称是单极性归零码,与NRZ码不同的是,发送“ 1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。

例如:1 0 1 0 0 1 1 0+ E N n n n0 ------------------ ----------------------- _ --------------------③BNRZ码BNRZ码的全称是双极性不归零码,在这种二元码中用正电平和负电平分别表示“ 1 ”和“ 0”。

与单极性不归零码相同的是整个码元期间电平保持不变,因而在这种码型中不存在零电平。

例如:1 0 1 0 0 1 1 0+ E -------- -------------- -------------------------------E ------ ----------------------- -----------------------④BRZ码BRZ码的全称是双极性归零码,与BNRZ码不同的是,发送“ 1 ”和“ 0”时,在整个码元期间高电平或低电平只持续一段时间,在码元的其余时间内则返回到零电平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四码型变换实验一、实验目的1.了解几种常见的数字基带信号。

2.掌握常用数字基带传输码型的编码规则。

3.掌握用FPGA实现码型变换的方法。

二、实验内容1.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码的波形。

2.观察全0码或全1码时各码型波形。

3.观察HDB3码、AMI码、BNRZ码正、负极性波形。

4.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。

5.自行设计码型变换电路,下载并观察输出波形。

三、实验器材1.信号源模块2.码型变换模块3.20M双踪示波器一台4.频率计(可选)一台5.PC机(可选)一台6.连接线若干四、实验原理1.编码规则①NRZ码NRZ码的全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。

例如:1 0 1 0 0 1 1 0+E②RZ码RZ码的全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。

例如:1 0 1 0 0 1 1 0+EBNRZ码的全称是双极性不归零码,在这种二元码中用正电平和负电平分别表示“1”和“0”。

与单极性不归零码相同的是整个码元期间电平保持不变,因而在这种码型中不存在零电平。

例如:1 0 1 0 0 1 1 0+E-E④BRZ码BRZ码的全称是双极性归零码,与BNRZ码不同的是,发送“1”和“0”时,在整个码元期间高电平或低电平只持续一段时间,在码元的其余时间内则返回到零电平。

例如:1 0 1 0 0 1 1 0+E-E⑤AMI码AMI码的全称是传号交替反转码,其编码规则如下:信息码中的“0”仍变换为传输码的“0”;信息码中的“1”交替变换为传输码的“+1、-1、+1、-1、…”。

例如:代码: 100 1 1000 1 1 1…AMI码: +100 -1 +1000 -1 +1 -1…AMI码的主要特点是无直流成分,接收端收到的码元极性与发送端完全相反也能正确判断。

译码时只需把AMI码经过全波整流就可以变为单极性码。

由于其具有上述优点,因此得到了广泛应用。

但该码有一个重要缺点,即当用它来获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。

⑥HDB3码HDB3码的全称是三阶高密度双极性码,其编码规则如下:将4个连“0”信息码用取代节“000V”或“B00V”代替,当两个相邻“V”码中间有奇数个信息“1”码时取代节为“000V”码;有偶数个信息“1”码(包括0个)时取代节为“B00V”,其它的信息“0”码仍为“0”码,这样,信息码的“1”码变为带有符号的“1”码即“+1”或“-1”。

例如:代码: 1000 0 1000 0 1 1 000 0 1 1HDB3码: -1000 -V +1000 +V -1 +1 -B00 -V +1 -1HDB3码中“1”、“B”的符号符合交替反转原则,而“V”的符号破坏这种符号交替反转原则,但相邻“V”码的符号又是交替反转的。

HDB3码的特点是明显的,它除了保持AMI码的优点外,还增加了使连0串减少到至多3个的优点,而不管信息源的统计特性如何。

这对于定时信号的恢复是十分有利的。

HDB3码是ITU-T推荐使用的码之一。

本实验电路只能对码长为24位的周期性NRZ码序列进行编码。

BPH码的全称是数字双相码(Digital Diphase),又叫分相码(Biphase,Split-phase)或曼彻斯特码(Manchester),它是对每个二进制代码分别利用两个具有2个不同相位的二进制新码去取代的码;或者可以理解为用一个周期的方波表示“1”码,用该方波的反相来表示“0”码,其编码规则之一是:0 01(零相位的一个周期的方波);110(π相位的一个周期的方波)。

例如:代码: 1 1 0 0 1 0 1双相码: 10 10 01 01 10 01 10BPH码可以用单极性非归零码(NRZ)与位同步信号的模二和来产生。

双相码的特点是只使用两个电平,而不像前面二种码具有三个电平。

这种码既能提取足够的定时分量,又无直流漂移,编码过程简单。

但这种码的带宽要宽些。

⑧CMI码CMI码的全称是传号反转码,其编码规则如下:信息码中的“1”码交替用“11”和“00”表示,“0”码用“01”表示。

例如:代码: 1 1 0 1 0 0 1 0CMI码: 11 00 01 11 01 01 00 01这种码型有较多的电平跃变,因此,含有丰富的定时信息。

该码已被ITU-T推荐为PCM四次群的接口码型。

在光纤传输系统中有时也用CMI码作线路传输码型。

2.电路原理将信号源产生的NRZ码和位同步信号BS送入U900(EPM7128SLC84-15)进行变换,可以直接得到各种单极性码和各种双极性码的正、负极性编码信号(因为FPGA的I/O口不能直接接负电平,所以只能将分别代表正极性和负极性的两路编码信号分别输出,再通过外加电路合成双极性码),如HDB3的正、负极性编码信号送入U901(4051)的选通控制端,控制模拟开关轮流选通正、负电平,从而得到完整的HDB3码。

解码时同样也需要先将双极性的HDB3码变换成分别代表正极性和负极性的两路信号,再送入FPGA进行解码,得到NRZ码。

其它双极性码的编、解码过程相同。

①NRZ码从信号源“NRZ”点输出的数字码型即为NRZ码,其产生过程请参考信号源工作原理。

②BRZ、BNRZ码将NRZ码和位同步信号BS分别送入双四路模拟开关U902(4052)的控制端作为控制信号,在同一时刻,NRZ码和BS信号电平高低的不同组合(00、01、10、11)将控制U902分别接通不同的通道,输出BRZ码和BNRZ码。

X通道的4个输入端X0、X1、X2、X3分别接-5V、GND、+5V、GND,在控制信号控制下输出BRZ码;Y通道的4个输入端Y0、Y1、Y2、Y3分别接-5V、-5V、+5V、+5V,在控制信号控制下输出BNRZ 码。

解码时通过电压比较器U907(LM339)将双极性的BRZ和BNRZ码转换为两路单极性码,即双(极性)—单(极性)变换,再送入U900进行解码,恢复出原始的NRZ 码。

③RZ、BPH码这两种码型的编、解码方法与BRZ、BNRZ是一样的,但因为是单极性的码型,所以编、解码过程可以直接在U900中完成,在这里不再赘述。

④AMI码由于AMI码是双极性的码型,所以它的变换过程分成了两个部分。

首先,在U900中,将NRZ码经过一个时钟为BS的JK触发器后,再与NRZ信号相与后得到控制信号AMIB,该信号与NRZ码作为控制信号送入单八路模拟开关U905(4051)的控制端,U905的输出即为AMI码。

解码过程与BNRZ码一样,也需先经过双—单变换,再送入U900进行解码。

⑤HDB3码HDB3码的编、解码框图分别如图4-1、4-2所示,其编、解码过程与AMI码相同,这里不再赘述。

图4-1 HDB3编码原理框图图4-2HDB3解码原理框图⑥CMI码由于是单极性波形,CMI码的编解码过程全部在U900中完成,其编码电路原理框图如图4-3所示:图4-3 CMI编码原理框图五、实验步骤1.将信号源模块、码型变换模块小心地固定在主机箱中,确保电源接触良好。

2.插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D900、D901发光,按一下信号源模块的复位键,两个模块均开始工作。

3.将信号源模块的拨码开关SW101、SW102设置为00000101 00000000,SW103、SW104、SW105设置为01110010 00110000 00101010。

按实验一的介绍,此时分频比千位、十位、个位均为0,百位为5,因此分频比为500,此时位同步信号频率应为4KHz。

观察BS、FS、2BS、NRZ各点波形。

4.分别将信号源模块与码型变换模块上以下四组输入/输出接点用连接线连接:BS与BS、FS与FS、2BS与2BS、NRZ与NRZ。

观察码型变换模块上其余各点波形。

5.任意改变信号源模块上的拨码开关SW103、SW104、SW105的设置,以信号源模块的NRZ码为内触发源,用双踪示波器观察码型变换模块各点波形。

6.将信号源模块上的拨码开关SW103、SW104、SW105全部拨为1或全部拨为0,观察码型变换模块各点波形。

7.按通信原理教材中阐述的编码原理自行设计其它码型变换电路,下载并观察各点波形。

(选做)六、输入、输出点参考说明1.输入点说明FS:帧同步信号输入点。

BS:位同步信号输入点。

2BS:2倍位同步频率方波信号输入点。

NRZ:NRZ码输入点。

2.输出点说明(括号中的码元数为与信号源产生的NRZ相比延迟的码元数)RZ:RZ编码输出点。

BPH:BPH编码输出点。

CMI:CMI编码输出点。

HDB3-1:HDB3编码正极性信号输出点。

HDB3-2:HDB3编码负极性信号输出点。

HDB3:HDB3编码输出点。

(八个半个码元)BRZ-1;BRZ编码单极性输出点。

BRZ:BRZ编码输出点。

BNRZ-1:BNRZ编码正极性信号输出点。

(与NRZ反相)BNRZ-2:BNRZ编码负极性信号输出点。

(与NRZ相同)BNRZ:BNRZ编码输出点。

AMI-1:AMI编码正极性信号输出点。

AMI-2:AMI编码负极性信号输出点。

AMI:AMI编码输出点。

ORZ:RZ解码输出点。

(一个半码元)OBPH:BPH解码输出点。

(一个码元)OCMI;CMI解码输出点。

(两个码元)OBRZ:BRZ解码输出点。

(半个码元)OBNRZ;BNRZ解码输出点。

(半个码元)OAMI:AMI解码输出点。

(延迟极小不足半个码元)OHDB3:HDB3解码输出点。

(七个半个码元)七、实验思考题1.在分析电路的基础上回答,为什么本实验HDB3编、解码电路只能在输入信号是码长为24位的周期性NRZ码时才能正常工作?2.自行设计一个HDB3码编码电路,画出电路原理图并分析其工作过程。

八、实验报告要求1.分析实验电路的工作原理,叙述其工作过程。

2.根据实验测试记录,在坐标纸上画出各测量点的波形图。

3.对实验思考题加以分析,并画出原理图与工作波形图。

相关文档
最新文档