高中数学人教A版选修2-3名校导学课件:第二章 2.2.1
合集下载
【公开课课件】选修二 2-3 第二章 2.2.2 事件的相互独立性课件(共15张PPT)
还是分几步组成(考虑乘法公式, 转化为互独事件) (4)根据公式解答
小结:
( 互斥事件)
求
分类 P(A+B)= P(A) + P (B)
较
正向
复
杂
事
分步P(A·B)= P来自A) ·P (B)( 互独事件)
件
概 率
反向
对立事件的概率
0.6 (1 0.6) (1 0.6) 0.6
0.24 0.24 0.48
答:其中恰由1人击中目标的概率为0.48.
例题: 甲、乙二人各进行1次射击比赛,如
果2人击中目标的概率都是0.6,求: (3)至少有一人击中目标的概率.
解法1:两人各射击一次至少有一人击中目标的概率是
P P( A • B) [P( A • B) P( A • B)] 0.36 0.48 0.84
时发生,根据相互独立事件的概率的乘法公式,得到
P(A•B)=P(A) •P(B)=0.6×0.6=0.36
答:两人都击中目标的概率是0.36
例题: 甲、乙二人各进行1次射击比赛,如
果2人击中目标的概率都是0.6,求: (2) 其中恰有1人击中目标的概率?
解:“二人各射击1次,恰有1人击中目标”包括两种
1 P(A B) A、B中至多有一个发生的概率
中国有句古话“三个臭皮匠,赛过 一个诸葛亮”。今天我们就从数学的角度 来对这个问题进行一下探讨,三个臭皮匠 真的能顶上一个诸葛亮吗?
如果对于某一个问题,诸葛亮能 解决问题的概率是90%,而甲皮匠解 决问题的概率是50%,乙皮匠解决问 题的概率是50%,丙皮匠解决问题的 概率是60%,那么需要多少个皮匠才 能赛过一个诸葛亮呢?
解法2:两人都未击中的概率是 P(A • B) P(A) • P(B)
小结:
( 互斥事件)
求
分类 P(A+B)= P(A) + P (B)
较
正向
复
杂
事
分步P(A·B)= P来自A) ·P (B)( 互独事件)
件
概 率
反向
对立事件的概率
0.6 (1 0.6) (1 0.6) 0.6
0.24 0.24 0.48
答:其中恰由1人击中目标的概率为0.48.
例题: 甲、乙二人各进行1次射击比赛,如
果2人击中目标的概率都是0.6,求: (3)至少有一人击中目标的概率.
解法1:两人各射击一次至少有一人击中目标的概率是
P P( A • B) [P( A • B) P( A • B)] 0.36 0.48 0.84
时发生,根据相互独立事件的概率的乘法公式,得到
P(A•B)=P(A) •P(B)=0.6×0.6=0.36
答:两人都击中目标的概率是0.36
例题: 甲、乙二人各进行1次射击比赛,如
果2人击中目标的概率都是0.6,求: (2) 其中恰有1人击中目标的概率?
解:“二人各射击1次,恰有1人击中目标”包括两种
1 P(A B) A、B中至多有一个发生的概率
中国有句古话“三个臭皮匠,赛过 一个诸葛亮”。今天我们就从数学的角度 来对这个问题进行一下探讨,三个臭皮匠 真的能顶上一个诸葛亮吗?
如果对于某一个问题,诸葛亮能 解决问题的概率是90%,而甲皮匠解 决问题的概率是50%,乙皮匠解决问 题的概率是50%,丙皮匠解决问题的 概率是60%,那么需要多少个皮匠才 能赛过一个诸葛亮呢?
解法2:两人都未击中的概率是 P(A • B) P(A) • P(B)
人教a版数学【选修2-3】2.2.1《条件概率》ppt课件
2 有 2 个红球,5 个蓝球,故第二次取到红球的概率为 P1=7. (2)第一次取到蓝球后不放回,这时口袋里有 3 红 4 蓝 7 个 3 小球,从中取出一球,取到红球的概率为7. (3)第一次取到蓝球后不放回,这时口袋里有 3 红 4 蓝 7 个 4 小球,从中取出一球,取到蓝球的概率为 P3=7.
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
条件概率
思维导航
在 10 件产品中有 9 件产品的长度合格, 8 件产品的质量合 格,7件产品的长度、质量都合格. 令A={任取一件产品其长度合格 },B={任取一件产品其 质量合格 } , AB = { 任取一件产品其长度、质量都合格 } , C =
{任取一件产品,在其长度合格的条件下,其质量也合格},试
讨论概率P(A),P(B),P(AB),P(C)的值,你发现了什么?
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
新知导学 1.条件概率
PAB PA 一般地, 设 A、 B 为两个事件, 且 P(A)>0, 称 P(B|A)=_______
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
通过实例,了解条件概率的概念,能利用条件概率的公式 解决简单的问题.
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
重点:条件概率的定义及计算.
难点:条件概率定义的理解.
成才之路 · 数学
人教A版 · 选修2-3
人教A版高中数学选修2-3 第二章 2.2.3 二项分布 课件(共21张PPT)
新知探究
1、投掷一枚相同的硬币5次,每次正面向上的概率 为0.5。 2、某同学玩射击气球游戏,每次射击击破气球的概 率为0.7,现有气球10个。 3、某篮球队员罚球命中率为0.8,罚球6次。
问题 上面这些试验有什么共同的特点? 提示:从下面几个方面探究: (1)试验的条件如何?;(2)每次试验间的 关系;(3)每次试验可能的结果;(4)每 次试验的概率;
此时我们称随机变量X服从二项分布,
记作:
例题讲解
例1
俺投篮,也是 讲概率地!!
第一投,我要努力!
Ohhhh,进球拉!!!
第二投,动作要注意!!
又进了,不愧 是姚明啊 !!
第三投,厉害了啊!!
第三次登场了!
这都进了!! 太离谱了!
第四投,大灌蓝哦!!
……
姚明作为中锋,他职业生涯的罚球
命中率为0.8,假设他每次命中率相同, 请问他4投3中的概率是多少?至少有1次 投中的概率呢?
1 0.43 0.936
因为 0.936 0.9 , 所以臭皮匠胜出的可能性较大
小结提高 概率
独立重复试验
引例 概念
数学思想 分类讨论•特殊到一般二项分布
的抽取5个球,恰好抽出4个白球. (YES)
注:独立重复试验的实 际原型是有放回的抽样 试验
新知探究
投掷一枚图钉,设针尖向上的概率为p,则针 尖向下的概率为q=1-p.连续掷一枚图钉3次,恰 好出现1次针尖向上的概率是多少?那么恰好出 现0次、2次、3次的概率是多少?你能给出一个统 一的公式吗?
恰好命中k(0≤k ≤ 3)次的概率是多少?
解出的 人数x
概率P
0
1
2
3
C30 0.60 0.43 C31 0.61 0.42 C32 0.62 0.41 C33 0.63 0.40
人教版高三数学选修2-3全册教学课件
2.1 离散型随机变量及其分布 列
人教版高三数学选修2-3全册教学 课件
2.2 二项分布及其应用
人教版高三数学选修2-3全册教学 课件
探究与发现 服从二项分布的 随机变量取何值时概率最大
人教版高三数学选修2-3全册教 学课件目录
0002页 0090页 0167页 0211页 0276页 0360页 0445页 0487页 0560页 0589页 0660页 0731页
第一章 计数原理 探究与发现 子集的个数有多少 探究与发现 组合数的两个性质 探究与发现 “杨辉三角”中的一些秘密 复习参考题 2.1 离散型随机变量及其分布列 探究与发现 服从二项分布的随机变量取何值时概率最 2.4 正态分布 小结 第三章 统计案例 3.2 独立性检验的基本思想及其初步应用 小结
人教版高三数学选修2-3全册Fra bibliotek学 课件1.2 排列与组合
人教版高三数学选修2-3全册教学 课件
探究与发现 组合数的两个性 质
人教版高三数学选修2-3全册教学 课件
第一章 计数原理
人教版高三数学选修2-3全册教学 课件
1.1 分类加法计数原理与分步 乘法计数原理
人教版高三数学选修2-3全册教学 课件
探究与发现 子集的个数有多 少
人教版高三数学选修2-3全册教学 课件
1.3 二项式定理
人教版高三数学选修2-3全册教学 课件
探究与发现 “杨辉三角”中的 一些秘密
人教版高三数学选修2-3全册教学 课件
小结
人教版高三数学选修2-3全册教学 课件
复习参考题
人教版高三数学选修2-3全册教学 课件
第二章 随机变量及其分布
人教版高三数学选修2-3全册教学 课件
高中数学复习选修2-3 2.2.1 条件概率课件
计算事件AB发生的概率,即
n AB
P
B|A
n AB nA
n nA
P AB PA .
n
【典例训练】 1.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和 为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=( )
A1 B 1 C 2 D 1
8
4
5
2
n AB nA
1 4
.
2.由题意可得: AB {x | 1<x<1},
所以
P AB
又1 因 为1 2 4
1,
4
2
PA 1,
ห้องสมุดไป่ตู้
所以
14
2
P B|A
答案:
P AB PA
1 2
.
1
2
3.设A表示取得合格品,B表示取得一等品,
(1)∵100 件产品中有70件一等品,∴
PB 70 0.7.
(2)方法一:∵95 件合格品中有70 件一等品,且B⊆A, 100
2.任意向(0,1)区间上投掷一个点,用x表示该点的坐标,则
令事件A={x|0<x< },B1={x| <x<1},1则P(B|A)=_____. 3.设100 件产品中有70 件2一等品,25 件4二等品,规定一、
二等品为合格品.从中任取1件. (1)求取得一等品的概率; (2)已知取得的是合格品,求它是一等品的概率.
2.求解条件概率的两个注意事项 (1)在具体的题目中,必须弄清谁是事件A,谁是事件B,即在哪个事件发生的条件 下,求哪个事件的概率. (2)选择求解条件概率的计算法,以达到迅速计算的目的.
【典例训练】 1.一批同型号产品由甲、乙两厂生产,产品结构如下表:
人教A版高中数学选修2-3全册课件
答案:D
题型二 分步乘法计数原理的应用
我校高一有音乐特长生 5 人,高二有 4 人,高 三有 6 人,现从这三个年级中的音乐特长生中各选 1 人作为 学生代表去参加我市好声音演唱会,共有多少种不同的选派 方法?
【思路探索】 由于本题是从三个年级各选 1 人,需分 步进行,用乘法原理求解.
【解】 欲选出学生代表,需分三步进行:第一步,从 高一年级学生中选 1 人,共 5 种不同的选法;第二步,从高 二年级学生中选 1 人,共有 4 种不同的选法;第三步,从高 三年级中选 1 人,共有 6 种不同的选法.根据分步乘法计数 原理可知,共有 5×4×6=120 种不同的选派方法.
相同的 5 盆菊花,其中 2 盆为白色,2 盆为黄色,1 盆为红
色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花
不相邻,黄色菊花也不相邻,则共有摆放方法( )
A.120 种
B.32 种
C.24 种
D.16 种
解析:由于红色菊花摆放在中间,白色菊花不相邻,黄 色菊花也不相邻,故可分两步:第一步,红色菊花放在 5 个 位置的正中间,2 盆白色菊花分别摆放在红色菊花的两侧, 有 8 种不同的摆法;第二步,黄色菊花摆放在余下的两个位 置,有 2 种不同的摆法,由分步乘法计数原理知,不同的摆 放方法有 8×2=16(种),故选 D.
2.完成一件事需要两个步骤,做第一步有 m 种不同的 方法,做第二步有 n 种不同的方法,那么完成这件事共有 N =____m_×_n____种不同的方法.
推广:完成一件事需要 n 个步骤,做第一步有 m1 种不同 的方法,做第二步有 m2 种不同的方法,…,做第 n 步有 mn 种不同的方法,那么完成这件事共有 N=_m_1×__m_2×__…_×_m_n_____ 种不同的方法.
题型二 分步乘法计数原理的应用
我校高一有音乐特长生 5 人,高二有 4 人,高 三有 6 人,现从这三个年级中的音乐特长生中各选 1 人作为 学生代表去参加我市好声音演唱会,共有多少种不同的选派 方法?
【思路探索】 由于本题是从三个年级各选 1 人,需分 步进行,用乘法原理求解.
【解】 欲选出学生代表,需分三步进行:第一步,从 高一年级学生中选 1 人,共 5 种不同的选法;第二步,从高 二年级学生中选 1 人,共有 4 种不同的选法;第三步,从高 三年级中选 1 人,共有 6 种不同的选法.根据分步乘法计数 原理可知,共有 5×4×6=120 种不同的选派方法.
相同的 5 盆菊花,其中 2 盆为白色,2 盆为黄色,1 盆为红
色,现要摆成一排,要求红色菊花摆放在正中间,白色菊花
不相邻,黄色菊花也不相邻,则共有摆放方法( )
A.120 种
B.32 种
C.24 种
D.16 种
解析:由于红色菊花摆放在中间,白色菊花不相邻,黄 色菊花也不相邻,故可分两步:第一步,红色菊花放在 5 个 位置的正中间,2 盆白色菊花分别摆放在红色菊花的两侧, 有 8 种不同的摆法;第二步,黄色菊花摆放在余下的两个位 置,有 2 种不同的摆法,由分步乘法计数原理知,不同的摆 放方法有 8×2=16(种),故选 D.
2.完成一件事需要两个步骤,做第一步有 m 种不同的 方法,做第二步有 n 种不同的方法,那么完成这件事共有 N =____m_×_n____种不同的方法.
推广:完成一件事需要 n 个步骤,做第一步有 m1 种不同 的方法,做第二步有 m2 种不同的方法,…,做第 n 步有 mn 种不同的方法,那么完成这件事共有 N=_m_1×__m_2×__…_×_m_n_____ 种不同的方法.
高中数学人教A版选修2-3课件本章整合2ppt版本
综合应用
专题1 专题2 专题3 专题4
解:(1)有放回抽样时,取到的黑球数 X 可能的取值为 0,1,2,3.又每
次取到的黑球的概率均为
1 5
,
3
次取球可以看成3
次独立重复试验,
则 X~������
3,
1 5
.
所以 P(X=0)= C30
1 5
0
×
4 5
3
=
64 125
;
P(X=1)= C31
1 5
分
若������~������(������,������),则������(������) = ������������(1-������)
布
正态分布密度曲线
正态分布
������(������-������ < ������ ≤ ������ + ������) = 0.682 7
3������原则 ������(������-2������ < ������ ≤ ������ + 2������) = 0.954 5
则 P(ξ=k)=
2 ������-1 3
1 3
(������ = 1,2,3,4,5).
因为 ξ=6 表示前 5 次未击中,所以 P(ξ=6)=
2 3
5
.
故 ξ 的分布列为
ξ123 4 5
6
1 2 4 8 16 32
P
3 9 27 81 243 243
专题1 专题2 专题3 专题4
综合应用
应用 3 在一次智力测试时,有 A,B 两个相互独立的问题,答题规
量
均值 若������服从两点分布,则������(������) = ������
(人教版)高中数学选修2-3课件:2.2.2
答案: A
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
相互独立事件同时发生的概率
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
相互独立事件的概念
设A,B为两个事件,如果P(AB)=P_(_A_)P__(B__) __,则称事 件A与事件B相互独立.
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
相互独立事件的性质
1.若事件A与B相互独立,则P(B|A)=P_(_B_)______, P(A|B)=_P_(A__) _____,P(AB)=_P_(_A_)_____.
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
(2)事件A与B是否具备独立性,一般都由题设条件给出 .但实际问题的场合里往往要根据实际问题的性质来判定两个 事件或一组事件是否相互独立.通常,诸如射击问题,若干电 子元件或机器是否正常工作,有放回地抽样等场合下对应的事 件(组)认为是相互独立的.
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
相互独立事件同时发生的概率
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
相互独立事件的概念
设A,B为两个事件,如果P(AB)=P_(_A_)P__(B__) __,则称事 件A与事件B相互独立.
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
相互独立事件的性质
1.若事件A与B相互独立,则P(B|A)=P_(_B_)______, P(A|B)=_P_(A__) _____,P(AB)=_P_(_A_)_____.
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
(2)事件A与B是否具备独立性,一般都由题设条件给出 .但实际问题的场合里往往要根据实际问题的性质来判定两个 事件或一组事件是否相互独立.通常,诸如射击问题,若干电 子元件或机器是否正常工作,有放回地抽样等场合下对应的事 件(组)认为是相互独立的.
(人教版)高中数学选修2-3课件:2.1.2
解析: 因为 X 服从两点分布, P(X=0)=CC21261=131,P(X=1)=1-131=181, 所以 X 的分布列为:
X
1
0
P
8 11
3 11
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
合作探究 课堂互动
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
2.超几何分布列 在含有M件次品的N件产品中,任取n件,其中恰有X件次 品,则事件{X=k}发生的概率为
CkMCnN--kM P(X=k)=_______C_Nn__________,k=0,1,2,…,m,其中m =min{M,n},且n≤N,M≤N,n,M,N∈N*.
数学 选修2-3
第二章 随机变量及其分布
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
[规律方法] 利用分布列的性质解题时要注意以下两个 问题:
(1)X=xi 的各个取值表示的事件是互斥的.
n
(2)不仅要注意pi=1 而且要注意 pi≥0,i=1,2,…,n.
i=1
数学 选修2-3
第二章 随机变量及其分布
合作探究 课堂互动
[问题2] 试求ξ取不同值的概率.
[提示 2] P(ξ=1)=CC2435=35;P(ξ=2)=CC2335=130; P(ξ=3)=CC3335=110.
数学 选修2-3
第二章 随机变量及其分布
自主学习 新知突破
合作探究 课堂互动
[问题3] 试用表格表示ξ和P的对应关系. [提示3]
因此 X 的分布列为
X