磁性材料 第2章 磁性的起源(课堂PPT)
合集下载
高中物理第二章磁场第五节磁性材料课件新人教版选修1-
50 年代初人们发现铁氧体具有独特的微波特性,制成一 系列微波铁氧体器件.压磁材料在第一次世界大战时即已 用于声呐技术,但由于压电陶瓷的出现,使用有所减少.后 来又出现了强压磁性的稀土合金.非晶态(无定形)磁性材 料是近代磁学研究的成果,在发明快速淬火技术后,1 967 年解决了制带工艺,正向实用化过渡.
答案:C
谢谢观赏
勤能补拙,学有成就!
2024/10/13
18
一、磁化与退磁 1.一些物体,与磁铁接触后就会显示出磁性,这种 现象叫作_磁__化__.原来有磁性的物体,失去磁性的现象叫 作_退__磁__. 2.铁、钴、镍以及它们的合金,还有一些氧化物, 磁化后的磁性比其他物质强得多,这些物体叫作 _铁__磁__性__物__质____,也叫_强__磁__性__物__质___. 3.磁性材料按磁化后去磁的难易可分为_硬__磁__性__材__料__ 和_软__磁__性__材__料__.
答案:B
拓展二 磁性材料
1.根据铁磁性材料被磁化后撤去外磁场时剩磁的强 弱,把铁磁性材料分为硬磁性材料和软磁性材料,根据实 际需要可选择不同材料,永磁体要用硬磁性材料制造,磁 卡、磁盘、磁带等保存大量信息的物件需要用硬磁性材料 制造;电磁铁需要用软磁性材料制造.
2.磁记录是利用磁性材料来记录信息的一种技术, 如磁卡背面的黑色磁条,录音机、录像机上用的磁带, 电子计算机上用的磁盘,都含有磁记录用的磁性材料.磁 记录是信息存储技术发展的一个里程碑,也是目前信息 记录的重要方式之一.
(1)磁记录的基本原理:将需要储存的信息转换成电 信号,通入电磁铁中,电磁铁中产生变化的磁场,使磁 性材料按一定规律排列,记录信息,读取信息时,磁性 材料通过电磁铁附近,变化的磁信号再还原为电信号, 进行识别.
《磁性材料》PPT课件
1、古代的信息记录 2、磁记录是信息存储技术的里程碑
整理ppt
13
【思考】 生活中还有哪些东西是
用磁记录的方式存储数据的?
整理ppt
14
最新磁记录技术
• 新技术利用激光改变硬盘磁性 ,速度可提 高100倍。荷兰研究人员说,他们已找到利 用激光提高硬盘100倍速度的方法。实验了 用一束40飞秒(毫微微秒)的单循环偏振 激光脉冲去改变硬盘的磁性。
地球的磁场的强度和
方向随着时间的推移
在不断改变,大约每
过100万年左右,地磁
场的南北极就会完全
颠倒一次。
整理ppt
17
【课外查资料】 地球磁场为什么会改变方向呢?
整理ppt
18
【探索】 失方向?
鸽子为什么迷
整理ppt
19
金,还有一些氧化物,磁化后的磁 性比其他物质强得多,这种物质叫 做铁磁性物质。
整理ppt
4
【思考】 为什么铁磁性物质磁化后
有很强的磁性?
整理ppt
5
4、磁畴:铁磁性物质的本身的 结构就是由很多已经磁化的小区 域组成的,这些磁化的小区域就 叫“磁畴”。
磁畴的大小约10-4~10-7m
整理ppt
6
5、硬磁性材料:有些铁磁性材 料,在外磁场撤去以后,各磁畴 的方向仍能很好地保持一致,物 体具有很强的剩磁。
五、磁性材料
整理ppt
1
一、磁化与退磁
1、磁化:钢铁物体与磁铁接触后 就会显示出磁性。
整理ppt
2
【实验演示】
原来有磁性的物体经过高温后失去磁性。
2、退磁:原来有磁性的物体, 经过高温、剧烈震动或者逐渐减 弱的交变磁场的作用,就会失去 磁性。这种现象叫做退磁。
整理ppt
13
【思考】 生活中还有哪些东西是
用磁记录的方式存储数据的?
整理ppt
14
最新磁记录技术
• 新技术利用激光改变硬盘磁性 ,速度可提 高100倍。荷兰研究人员说,他们已找到利 用激光提高硬盘100倍速度的方法。实验了 用一束40飞秒(毫微微秒)的单循环偏振 激光脉冲去改变硬盘的磁性。
地球的磁场的强度和
方向随着时间的推移
在不断改变,大约每
过100万年左右,地磁
场的南北极就会完全
颠倒一次。
整理ppt
17
【课外查资料】 地球磁场为什么会改变方向呢?
整理ppt
18
【探索】 失方向?
鸽子为什么迷
整理ppt
19
金,还有一些氧化物,磁化后的磁 性比其他物质强得多,这种物质叫 做铁磁性物质。
整理ppt
4
【思考】 为什么铁磁性物质磁化后
有很强的磁性?
整理ppt
5
4、磁畴:铁磁性物质的本身的 结构就是由很多已经磁化的小区 域组成的,这些磁化的小区域就 叫“磁畴”。
磁畴的大小约10-4~10-7m
整理ppt
6
5、硬磁性材料:有些铁磁性材 料,在外磁场撤去以后,各磁畴 的方向仍能很好地保持一致,物 体具有很强的剩磁。
五、磁性材料
整理ppt
1
一、磁化与退磁
1、磁化:钢铁物体与磁铁接触后 就会显示出磁性。
整理ppt
2
【实验演示】
原来有磁性的物体经过高温后失去磁性。
2、退磁:原来有磁性的物体, 经过高温、剧烈震动或者逐渐减 弱的交变磁场的作用,就会失去 磁性。这种现象叫做退磁。
磁性材料基础知识-ppt课件
求其轴线上一点 p 的磁感强度的方向和大小.
Idl
r
dB
B
o
R
p B
x
*
x
I
dB 0
4π
Idl r2
解: 根据对称性分析
毕奥—萨伐尔定律的应用2
Idl
sin R
R
o
r
x
dB
*p x
r2 R
B0I
4π
r 2 x2
sindl
l r2
dB x
dB 0
4π
Idl r2
dB xdsBin4 π 0Isri2 n dl
0I dl
2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 (已知 n N I)
1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
2 )选 回路(顺时针圆周) .
lB d Bl 2 0π NR I B 0 NI
2π R
d
令L2πRB0NIL
内部交流报告
磁性材料基础知识
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论
磁性材料的认识与应用(PPT)教学资料
磁铁氧体6 万吨、永磁铁氧体8 万吨、钕铁硼磁体2000 吨。
总之, 从市场发展看, 中国长期在全球磁 性材料市场发展前景是乐观的。
六
1.磁材行业经过“七·五”、“八·五”技术改造, 不少厂家引进了 美、日、德、意等国先进生产线或生产线关键设备, 大都取得了
、
较好的经济效益和社会效益, 但个别单位受骗上当, 交了学费, 尤 其是二手设备的引进, 容易失误。
(1) 铁硅合金: 最常用的软磁材料, 常用作低频变压器、 发电机的铁芯;
铁硅合金
低频变压器
(2)铁镍合金:典型代表材料为坡莫合金,具有高 的磁导率(磁导率μ为铁硅合金的10~20倍)、低的损 耗;并且在弱磁场中具有高的磁导率和低的矫顽力, 但力学性能不太好,通常应用于电子材料;
坡莫合金
电压互感器
最大磁能积:最大磁能积是退磁曲线上磁感应强度(B)和磁场强度 乘积(H)的最大值。这个值越大,说明单位体积内存储的磁能越大, 材料的性能越好。
四、磁性材料的应用
1.永磁材料
永磁材料经磁化后,去除外磁场仍保留磁性,其 性能特点是具有高的剩磁、高的矫顽力。永磁材料包 括铁氧体和金属永磁材料两类。
铁氧体的用量大、应用广泛、价格低,但磁性能 一般,用于一般要求的永磁体。金属永磁材料中钕铁 硼(Nb-Fe-B)稀土永磁,钕铁硼磁体不仅性能优, 而且不含稀缺元素钴,作为稀土永磁材料发展的最新 结果,由于其优异的磁性能而被称为“磁王”。
磁化电流,以至于零,那么该材料得磁化过程就是一连串逐渐缩小而最 终趋于原点的环状曲线,如图2所示。当H减小到零时,B亦同时降为零, 达到完全退磁。
3.磁材料常用的性能参数
饱和磁感应强度Bm:其大小取决于材料的成分,它所对应的物理状态是材 料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bm。 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、 应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密 切相关。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时, 自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器 件工作的上限温度。 磁滞损耗 :铁磁材料在磁化过程中由磁滞现象引起的能量损耗 ,降低磁 滞损耗Ph的方法是降低矫顽力Hc 。
课件2,第二章:磁性起源
1.8 2.8 3.8 4.9 5.9 5.4 4.8 3.2 1.9
4
铁族元素的磁性的特点: 1. 磁性大; 2. 磁矩和总量子数无关,取决于自旋量子数; 3. 存在自旋角动量冻结现象。
2016/4/25
5
二、晶体场(晶场)
晶场中电子受诸多相互作用的影响,总哈密顿量
h2 2me
2 2 Ze e 2 Li Si eV (r) ri i i i j rij i
4 D R 2 r 4 (r 2 dr ) 35 0
令
则
2 2 4 2 q R r (r dr ) 0 105
3d电子五个轨道分裂为:dg二重态 和de三重态
2016/4/25
10
2016/4/25
11
3d
4f
2016/4/25
12
1. 弱晶场
e2 L i Si V (r ) rij
与自由原子(离子)一样,满足洪特规则。 稀土金属及其离子属于此 2. 中等晶场
、
e2 V (r) L i Si rij
2016/4/25
13
仍满足洪特规则,但晶体场V(r)首先对轨道能量产 生影响,即能级分裂,简并部分或完全消除。 含3d电子组态的离子的盐类属于此 3. 强晶场
e2 V (r ) L i Si rij
2016/4/25 25
如:Fe:2 μB——2.2μB Co:1.1 μB——1.7 μB Ni:0 μB——0.6 μB 其磁畴结构由交换作用的涨落决定。 2. 稀土-过渡金属合金 呈亚铁磁性或铁磁性,以薄膜形式应用。 磁结构为散亚铁磁性或散铁磁性,由各项异性 涨落决定。 3. 过渡金属-过渡金属合金 有微弱的磁性 其磁结构也由交换作用的涨落决定。2016/4/25来自20三、轨道角动量的冻结
(优质文档)磁性材料PPT演示课件
硬磁材料
永磁材料种类
铝镍钴系硬磁合金 硬磁铁氧体材料 稀土永磁材料
可加工的永磁合金 永磁材料用途:硬磁材料主要用来储藏和供给 磁能,作为磁场源。硬磁材料在电子工业中广 泛用于各种电声器件、在微波技术的磁控管中 . 29 亦有应用
永磁材料的退磁曲线和磁能曲线
.
30
可加工的永磁合金
在淬火态具有可塑性,可以进行各种机械加 工。合金的矫顽力是通过塑性变形和时效 (回火)硬化后得到的 四个主要系列
湿法,如电镀和化学镀 干法,如溅射法、真空蒸镀法及离子喷镀法
. 5
其他磁性材料
超磁致伸缩材料
磁致伸缩现象:铁磁性材料在磁场中被磁化时,沿外磁 场方向其尺寸会发生微小变化 一般材料的磁致伸缩系数:30~60×10-6 超磁致伸缩效应:(1~2)×10-3 超磁致伸缩材料与压电陶瓷的性能比较
铝镍钴系硬磁合金
按成分分类:铝镍型,铝镍钴型,铝镍钴钛型三种 铝镍钴型合金具有高的剩余磁感应强度 铝镍钴钛型则以高矫顽力为主要特征 铸造铝镍钴系合金从织构角度可划分为各向同性合 金,磁场取向合金和定向结晶合金三种 逐渐被永磁铁氧体和稀土永磁合金被取代。但在对 永磁体稳定性具有高要求的许多应用中,铝镍钴系 永磁合金往往是最佳的选择。 铝镍钴合金广泛用于电机器件上,如发电机,电动 机继电器和磁电机;电子行业中的扬声器,行波管, . 33 电话耳机和受话器等
. 3
磁记录材料
磁记录材料
磁头材料
磁头的基本结构 基本功能:写入、读出 磁头材料得到基本性能要求:高的磁导率、高的饱和 磁感应强度、高的电阻率和耐磨性 常用的磁头铁芯材料:合金、铁氧体、非晶态合金、 薄膜磁头材料
. 4
磁记录材料
磁性材料ppt课件
磁性是自然科学史上最古老的现象之一
磁性材料是最早被人类认识和利用的功能材料,伴随了人类 文明的发展。 人类对于磁性材料的最初认识源于天然磁石。 公元前三世纪《管子》:“上有慈石者,下有铜金。” 《吕氏春秋》九卷精通篇:“慈招铁,或引之也。”
磁铁矿(Fe3O4) 或磁赤铁矿(γ-Fe2O3)
指南针——磁性材料的最早应用
物质磁性:
物质放入磁场中会表现出不同的磁学特性,称为物质的磁性。
4. 材料磁性的分类及应用
(1) 物质磁性的分类
按物质在磁场中的表现:磁化率的正负、大小及其与温度 的关系来进行分类, 在晶状固体里,共发现了五种主要类型的磁结构物质,它 们的形成机理和宏观特征各不相同,对它们的成功解释形成 了今天的磁性物理学核心内容。 70 年代以后——非晶材料和纳米材料——新的磁性类型,
➢
W. Gilbert 《De Magnete》磁石,最早的著作
➢18世纪 奥斯特 电流产生磁场
➢
法拉弟效应 在磁场中运动导体产生电流
➢
安培定律 构成电磁学的基础, 开创现代电气工业
➢1907年 P. Weiss的磁畴和分子场假说
➢1928年 海森堡模型,用量子力学解释分子场起源
➢1931年 Bitter在显微镜下直接观察到磁畴
基本特征是存在一个磁性转变温度,在此点磁化率温度关系 出现峰值。
文献中也绘成磁化率倒数和温度关系的:
1磁
化 率
表
现
复
杂
Tp
TC
T (K )
铁磁性 T p TC
低温下表现为反铁磁性的物质,超过磁性转变温度
(一般称作Neel温度)后变为顺磁性的,其磁化率温度
关系服从居里-外斯定律: = C
第二章 金属磁性材料ppt课件
.
铜 改善合金的冷加工性能 铜使合金的μa及μm值提高,且降低了磁导率对成分的 敏感性,即当合金成分偏离最佳成分时,对μa及μm 值影响不大。 铜可抑制合金中有序相FeNi3的形成,因而可以降低热 处理的冷却速度。 降低合金的Ms和居里温度。
.
其它元素 锰可提高电阻率、降低矫顽力值,可以脱硫、 脱氧、改善热加工性能。 铬使铁镍合金的居里温度降低,抑制有序相的 形成,提高合金的电阻率值 钒、铌、钛等可提高合金的硬度,改善耐磨性。 碳可以脱氧,但C含量大于0.05%时使磁性急剧 下降。 硅加入0.05%左右对合金磁性有利,因其和锰 可复合脱氧,使脱氧颗粒呈大颗粒。 磷大于0.06%时,使合金的μ值急剧下降。
.
热处理对铁镍合金磁性的影响
获得高磁导率的材料,要使软磁材料呈单 相的固溶体、低的K1和 λs值、高的Bs。为 了避免有序化,同时减少内应力。一般采 用双重热处理的方法:将坡莫合金退火后, 从600 ℃ 将样品放在铜板上,在空气中急 冷,或在随炉冷却后,再加热到600 ℃ , 然后快速冷却,即进行双重热处理。
.
含镍量从30%到100%的镍铁合金在室温下是由 单一的面心立方结构的γ相组成。 在合金含量小于30%时,γ相在较低温度下可通 过马氏体相变转变为体心立方的α相,这种结 构转变有明显的热滞现象,即升温时的α→γ转 变a温度和降温时γ→α的转变温度不重合。两 相区难以确定。
在相当于FeNi3、FeNi、Fe3Ni成分处会发生有 序和无序相转变。有序化转变温度在506℃。
将坡莫合金在其居里温度附近加磁场冷却, 或进行磁场热处理,在平行所加磁场的方 向上测量的磁化曲线均呈出矩形磁滞回线, 而在垂直方向上为平直的磁化曲线。
.
多元系坡莫合金 在Ni-Fe合金中加入钼、铬、铜等元素的多元 系坡莫合金,可不进行急冷处理,只要冷却速 度适当,其初始磁导率可比二元系坡莫合金高 几倍。而且电阻率也比Ni含量为78.5%坡莫合 金要高3倍,为0.60×10-3Ω.m,但饱和磁感应 强度从1.3T 降到0.6~0.8T。
铜 改善合金的冷加工性能 铜使合金的μa及μm值提高,且降低了磁导率对成分的 敏感性,即当合金成分偏离最佳成分时,对μa及μm 值影响不大。 铜可抑制合金中有序相FeNi3的形成,因而可以降低热 处理的冷却速度。 降低合金的Ms和居里温度。
.
其它元素 锰可提高电阻率、降低矫顽力值,可以脱硫、 脱氧、改善热加工性能。 铬使铁镍合金的居里温度降低,抑制有序相的 形成,提高合金的电阻率值 钒、铌、钛等可提高合金的硬度,改善耐磨性。 碳可以脱氧,但C含量大于0.05%时使磁性急剧 下降。 硅加入0.05%左右对合金磁性有利,因其和锰 可复合脱氧,使脱氧颗粒呈大颗粒。 磷大于0.06%时,使合金的μ值急剧下降。
.
热处理对铁镍合金磁性的影响
获得高磁导率的材料,要使软磁材料呈单 相的固溶体、低的K1和 λs值、高的Bs。为 了避免有序化,同时减少内应力。一般采 用双重热处理的方法:将坡莫合金退火后, 从600 ℃ 将样品放在铜板上,在空气中急 冷,或在随炉冷却后,再加热到600 ℃ , 然后快速冷却,即进行双重热处理。
.
含镍量从30%到100%的镍铁合金在室温下是由 单一的面心立方结构的γ相组成。 在合金含量小于30%时,γ相在较低温度下可通 过马氏体相变转变为体心立方的α相,这种结 构转变有明显的热滞现象,即升温时的α→γ转 变a温度和降温时γ→α的转变温度不重合。两 相区难以确定。
在相当于FeNi3、FeNi、Fe3Ni成分处会发生有 序和无序相转变。有序化转变温度在506℃。
将坡莫合金在其居里温度附近加磁场冷却, 或进行磁场热处理,在平行所加磁场的方 向上测量的磁化曲线均呈出矩形磁滞回线, 而在垂直方向上为平直的磁化曲线。
.
多元系坡莫合金 在Ni-Fe合金中加入钼、铬、铜等元素的多元 系坡莫合金,可不进行急冷处理,只要冷却速 度适当,其初始磁导率可比二元系坡莫合金高 几倍。而且电阻率也比Ni含量为78.5%坡莫合 金要高3倍,为0.60×10-3Ω.m,但饱和磁感应 强度从1.3T 降到0.6~0.8T。
磁性材料磁性的起源课件
域得到广泛应用。
03
硬磁材料的磁性可以通过磁场退火等工艺进行调节和控制 。
功能磁性材料:磁记录材料与磁流体
功能磁性材料是指在具有磁性的基础上,还具有其他特殊功能的材料。例如,磁记录材料可以用于数 据存储和记录,而磁流体可以用于密封、减震和润滑等领域。
磁记录材料的磁性主要来源于其内部的微结构,通过改变微结构可以实现对磁性能的调节和控制。
重新排列,使得宏观上表现出磁性。
磁化过程可以分为线性磁化与非线性磁化,线性磁化 是指磁化强度与外磁场成正比,而非线性磁化则表现
出更复杂的特性。
磁化过程的快慢与温度、外磁场强度以及材料的种类 有关,不同的磁性材料具有不同的磁化特性。
磁滞回线
01
磁滞回线是指磁性材料在磁场变化时表现出的磁感应强度与磁场强度 的关系曲线。
软磁材料的磁性可以通过热处理、磁场退火等工艺进行调节和控 制。
硬磁材料:稀土永磁材料
01
硬磁材料的磁性主要来源于其内部的晶体结构,其晶体结构中 的磁矩排列较为有序,使得材料具有较高的剩磁和矫顽力。
02
稀土永磁材料是一种典型的硬磁材料,其具有较高的磁能积和稳 定的磁性能,因此在音频设备、电机、发电机和磁共振成像等领
该方法可以制备出具有高饱和磁感应强度、低矫顽力和良 好加工性能的磁性材料,广泛应用于电机、发电机和变压 器等领域。
熔炼法制备磁性材料的关键在于熔炼温度、浇注温度和冷 却速度的精确控制,以及热处理过程中的磁性能调控。
化学沉积法
1
化学沉积法是一种制备磁性材料的先进方法,通 过化学反应在基材表面沉积出具有磁性的金属或 合金薄膜。
该方法可以制备出具有高密度、高强度和良好 磁性能的磁性材料,广泛应用于永磁体、磁记 录材料、磁传感器等领域。
03
硬磁材料的磁性可以通过磁场退火等工艺进行调节和控制 。
功能磁性材料:磁记录材料与磁流体
功能磁性材料是指在具有磁性的基础上,还具有其他特殊功能的材料。例如,磁记录材料可以用于数 据存储和记录,而磁流体可以用于密封、减震和润滑等领域。
磁记录材料的磁性主要来源于其内部的微结构,通过改变微结构可以实现对磁性能的调节和控制。
重新排列,使得宏观上表现出磁性。
磁化过程可以分为线性磁化与非线性磁化,线性磁化 是指磁化强度与外磁场成正比,而非线性磁化则表现
出更复杂的特性。
磁化过程的快慢与温度、外磁场强度以及材料的种类 有关,不同的磁性材料具有不同的磁化特性。
磁滞回线
01
磁滞回线是指磁性材料在磁场变化时表现出的磁感应强度与磁场强度 的关系曲线。
软磁材料的磁性可以通过热处理、磁场退火等工艺进行调节和控 制。
硬磁材料:稀土永磁材料
01
硬磁材料的磁性主要来源于其内部的晶体结构,其晶体结构中 的磁矩排列较为有序,使得材料具有较高的剩磁和矫顽力。
02
稀土永磁材料是一种典型的硬磁材料,其具有较高的磁能积和稳 定的磁性能,因此在音频设备、电机、发电机和磁共振成像等领
该方法可以制备出具有高饱和磁感应强度、低矫顽力和良 好加工性能的磁性材料,广泛应用于电机、发电机和变压 器等领域。
熔炼法制备磁性材料的关键在于熔炼温度、浇注温度和冷 却速度的精确控制,以及热处理过程中的磁性能调控。
化学沉积法
1
化学沉积法是一种制备磁性材料的先进方法,通 过化学反应在基材表面沉积出具有磁性的金属或 合金薄膜。
该方法可以制备出具有高密度、高强度和良好 磁性能的磁性材料,广泛应用于永磁体、磁记 录材料、磁传感器等领域。
材料的磁性PPT课件
第26页/共82页
(三)物质磁性的特殊性和多样性
1. 电子交换作用 原子内具有未成对的电子使得原子的固有磁矩不为零是物质磁性的 必要条件。但是,由于近邻原子共用电子(交换电子)所引起的静电作 用,及交换作用可以影响物质的磁性。交换作用所产生能量,通常用A 表示,称作交换能,因其以波函数的积分形式出现,也称作交换积分。 它取决于近邻原子未填满的电子壳层相互靠近的程度,并决定了原子磁 矩的排列方式和物质的基本磁性。一般地: 当A大于零时,交换作用使得相邻原子磁矩平行排列,产生铁磁性 (Iferromagnetism)。 当A小于零时,交换作用使得相邻原子磁矩反平行排列,产生反铁磁 性(Antiferromagnetism)。 当原子间距离足够大时,A值很小时,交换作用已不足于克服热运动 的干扰,使得原子磁矩随机取向排列,于是产生顺磁性 (Paramagnetism)
原子内的电子做循轨运动和自旋运动,所以必然产
生磁矩。前者称为轨道磁矩,后者称为自旋磁矩。
电子的循轨磁矩
Pl =
eh
4m
l(l 1)
电子的自旋磁矩
Ps
=
eh
2m
s(s 1)
e:单位电荷;h:普朗克常数;m:电子质量;l:轨 道量子数;s:自旋量子数。
原子核的磁矩比电子磁矩小三个数量级,一般情况 下可忽略不计。
1 弱抗磁性 例如惰性气体、金属铜、锌、银、金、 汞等和大量的有机化合物,磁化率极低,约为-10-6,并基 本与温度无关;
2 反常抗磁性 例如金属铋、镓、碲、石墨以及γ-铜 锌合金,其磁化率较前者约大10-100倍,Bi的磁化率χ比 较反常,是场强H的周期函数,并强烈与温度有关;
3 超导体抗磁性 许多金属在其临界温度和临界磁场 以下时呈现超导性,具有超导体完全抗磁性,这相当于 其磁化率χ=-1.
(三)物质磁性的特殊性和多样性
1. 电子交换作用 原子内具有未成对的电子使得原子的固有磁矩不为零是物质磁性的 必要条件。但是,由于近邻原子共用电子(交换电子)所引起的静电作 用,及交换作用可以影响物质的磁性。交换作用所产生能量,通常用A 表示,称作交换能,因其以波函数的积分形式出现,也称作交换积分。 它取决于近邻原子未填满的电子壳层相互靠近的程度,并决定了原子磁 矩的排列方式和物质的基本磁性。一般地: 当A大于零时,交换作用使得相邻原子磁矩平行排列,产生铁磁性 (Iferromagnetism)。 当A小于零时,交换作用使得相邻原子磁矩反平行排列,产生反铁磁 性(Antiferromagnetism)。 当原子间距离足够大时,A值很小时,交换作用已不足于克服热运动 的干扰,使得原子磁矩随机取向排列,于是产生顺磁性 (Paramagnetism)
原子内的电子做循轨运动和自旋运动,所以必然产
生磁矩。前者称为轨道磁矩,后者称为自旋磁矩。
电子的循轨磁矩
Pl =
eh
4m
l(l 1)
电子的自旋磁矩
Ps
=
eh
2m
s(s 1)
e:单位电荷;h:普朗克常数;m:电子质量;l:轨 道量子数;s:自旋量子数。
原子核的磁矩比电子磁矩小三个数量级,一般情况 下可忽略不计。
1 弱抗磁性 例如惰性气体、金属铜、锌、银、金、 汞等和大量的有机化合物,磁化率极低,约为-10-6,并基 本与温度无关;
2 反常抗磁性 例如金属铋、镓、碲、石墨以及γ-铜 锌合金,其磁化率较前者约大10-100倍,Bi的磁化率χ比 较反常,是场强H的周期函数,并强烈与温度有关;
3 超导体抗磁性 许多金属在其临界温度和临界磁场 以下时呈现超导性,具有超导体完全抗磁性,这相当于 其磁化率χ=-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 磁性的起源
第一节 电子的轨道磁矩和自旋磁矩 第二节 原子磁矩 第三节 稀土及过渡元素的有效玻尔磁子 第四节 轨道角动量的冻结(晶体场效应) 第五节 合金的磁性
第一节 电子的轨道磁矩和自旋磁矩
物质的磁性来源于原子的磁性,研究原子磁性是研究 物质磁性的基础。
原子的磁性来源于原子中电子及原子核的磁矩。 原子核磁矩很小,在我们所考虑的问题中可以忽略。 电子磁矩(轨道磁矩、自旋磁矩) ——→原子的磁矩。 即:
总角量子数:J=L+S, L+S-1,…… |L-S|。 原子总角动量在外场方向的分量:
PJ H mJ
总磁量子数:mJ =J,J-1,……-J
按原子矢量模型,角动量PL与PS绕PJ 进动。故μL与 μS也绕PJ进动。
μL与μS在垂直于PJ方向的分量(μL)┴与(μS)┴在一个进 动周期中平均值为零。 ∴ 原子的有效磁矩等于μL与μS 平行于PJ的分量和,即:
H
Pl
l
l
ml
l 1
mlLeabharlann B是 B的整数倍,说明 J 在磁场中是空间量子化的
即PllHH
ml
ml B
角量子数 l=0,1,2…n-1 (n个取值)
磁量子数 ml=0、 ± 1、 ± 2、 ± 3 ∙ ∙ ∙ ∙ ∙ ∙ ±l (2l+1个取值)
➢ 在填充满电子的次壳层中,各电子的轨道运动分 别占了所有可能的方向,形成一个球体,因此合 成的总角动量等于零,所以计算原子的轨道磁矩 时,只考虑未填满的那些次壳层中的电子——这 些壳层称为磁性电子壳层。
3. 电子总磁矩可写为:
g
e
P
P,g
:
Lande因子
2m
g 1,来源于轨道运动;
g 2,来源于自旋;
1 g 2, 来源于二者
第二节 原子磁矩
由上面的讨论可知,原子磁矩总是与电子的角动 量联系的。
根据原子的矢量模型,原子总角动量PJ是总轨道
角动量PL与PJ总自P旋L 角PS动量PJS的J 矢1量 和:
于自旋运动。
当S=0时,
J=L,gJ=1,
=
J
L(L 1)B
均来源于轨
道运动。
当1<gJ<2,原子磁矩由轨道磁矩与自旋磁矩共同 贡献。
∴gJ反映了在原子中轨道磁矩与自旋磁矩对总磁 矩贡献的大小。
由上面的讨论可知,原子磁矩总是与电子的角动
量联系起来的。
根据原子的矢量模型,原子总角动量pJ是总轨道 角动量pL与总自旋角动量pS的矢量和:
以原子的某一壳层包含两个电子为例说明L-S 耦合
设两电子的轨道角动量量子数分别为l1和l2,自旋量子数 分别为s1和s2,则总轨道角动量的量子数L和总自旋量子数S 的可取值分别为:
L = l1+l2, l1+l2-1,···, l1-l2 S = s1+s2, s1+s2-1,···, s1-s2
J
L
c
os
PL
PJ
s
c
os
Ps
PJ
PJ
PL L(L 1), PS S(S 1),
L L(L 1)B , s 2 S(S 1)B
PS
PL
c
os
PL
PJ
J (J 1) L(L 1) S(S 1) 2 L(L 1) J (J 1)
μL
μS
c
os
Ps
PJ
J (J 1) S(S 2 L(L 1)
二、电子自旋磁矩 自旋→自旋磁矩
实验证明:电子自旋磁矩在外磁场方向分量等于一 个μB,取正或取负。
μ
s
H
μ B
e 2m
e m2
自旋角动量:
PS SS 1
在外场方向分量:Ps H
ms
2
(自旋磁量子数:ms
1) 2
自旋磁矩与自旋角动量的关系为:
μs
H
=-
e m
Ps
H
方向相反
μs
e m
Ps=-
s Ps
其中: s
e m
,为自旋磁力比,且: s
2 l
s的绝对值:
s
SS 1 e 2
m
SS 1B
1. 总自旋磁矩在外场方向的分量为:
μ s H =2msB , ms 1/ 2,最大分量 :[μ s H ]max 2SB
2. 计算原子总自旋角动量时,只考虑未填满次壳层中 的电子。
μl
iA
2
e
r 2
1 er2
2
∵轨道动量矩
Pl
m
ωr2
mr 2
2
T
l
Pl
e 2m
l
e 2m
Pl
令 l
e 2m
,轨道磁力比
则:l
l
Pl
说明:电子轨道运动产生的磁矩与动量矩在数值上成正
比,方向相反。
由量子力学知:动量矩应由角动量代替:
Pl l(l 1)
其中l=0,1,2…n-1 , h 2
电子轨道运动产 生电子轨道磁矩
电子自旋产生电 子自旋磁矩
构成原子 的总磁矩
物质磁性 的起源
一、电子轨道磁矩(由电子绕核的运动所产生)
方法:先从波尔原子模型出发求得电子轨道磁矩,
再引入量子力学的结果。
按波尔原子模型,以周期T沿圆作轨道运动的电
子相当于一闭合圆形电流i
i e e T 2
其产生的电子轨道磁矩:
l
l(l 1) e 2m
令B
e 2m
9.2731024[ A m2 ] 1023[ A m2 ]
(波尔磁子,电子磁矩的基本单位)
l l(l 1)B
➢ l=0,即s态,Pl=0, μl=0(特殊统计分布状态) ➢ 如有外场,则Pl在磁场方向分量为:
Pl
H
ml
l H
l cos
l
Pl
产生原因:不同电子之间的轨道-轨道耦合和自旋-自旋 耦合较强,而同一电子内的轨道-自旋耦合较弱
主要存在于原子序数较小的原子中(Z<32),3d、4f 族元素的基态或激发态
(2)、j-j 耦合:,∑(li+si) → ji,∑ji →J 产生原因:各电子轨道运动与其本身的自旋相互作用较强
主要存在于原子序数较大的原子中(Z>82)
1) L(L 1) J (J 1)
μJ
μL-S
J
3J (J
1) S(S 2J (J
1) L(L 1)
1)
J (J 1)B
令:g J
3J (J
1) S(S 2J (J
1) L(L 1) 1)
则:J=gJ J (J 1)B
注:1、当兰L德=0因时子,gJJ=的S,物g理J=意2,义J:=2 S(S 1)B 均来源
uur uur uur
pJ pL pS J J 1h
总角量子数J:J=L+S, L+S-1,…… |L-S|
∴原子总角动量在外场方向的分量:
pJ H mJ h 总磁量子数mJ:mJ =J,J-1,……-J
1、原子中电子总角动量量子数J的确定:角动量耦合定则
(1)、L-S耦合:∑li → L,∑si →S , J=S+L
第一节 电子的轨道磁矩和自旋磁矩 第二节 原子磁矩 第三节 稀土及过渡元素的有效玻尔磁子 第四节 轨道角动量的冻结(晶体场效应) 第五节 合金的磁性
第一节 电子的轨道磁矩和自旋磁矩
物质的磁性来源于原子的磁性,研究原子磁性是研究 物质磁性的基础。
原子的磁性来源于原子中电子及原子核的磁矩。 原子核磁矩很小,在我们所考虑的问题中可以忽略。 电子磁矩(轨道磁矩、自旋磁矩) ——→原子的磁矩。 即:
总角量子数:J=L+S, L+S-1,…… |L-S|。 原子总角动量在外场方向的分量:
PJ H mJ
总磁量子数:mJ =J,J-1,……-J
按原子矢量模型,角动量PL与PS绕PJ 进动。故μL与 μS也绕PJ进动。
μL与μS在垂直于PJ方向的分量(μL)┴与(μS)┴在一个进 动周期中平均值为零。 ∴ 原子的有效磁矩等于μL与μS 平行于PJ的分量和,即:
H
Pl
l
l
ml
l 1
mlLeabharlann B是 B的整数倍,说明 J 在磁场中是空间量子化的
即PllHH
ml
ml B
角量子数 l=0,1,2…n-1 (n个取值)
磁量子数 ml=0、 ± 1、 ± 2、 ± 3 ∙ ∙ ∙ ∙ ∙ ∙ ±l (2l+1个取值)
➢ 在填充满电子的次壳层中,各电子的轨道运动分 别占了所有可能的方向,形成一个球体,因此合 成的总角动量等于零,所以计算原子的轨道磁矩 时,只考虑未填满的那些次壳层中的电子——这 些壳层称为磁性电子壳层。
3. 电子总磁矩可写为:
g
e
P
P,g
:
Lande因子
2m
g 1,来源于轨道运动;
g 2,来源于自旋;
1 g 2, 来源于二者
第二节 原子磁矩
由上面的讨论可知,原子磁矩总是与电子的角动 量联系的。
根据原子的矢量模型,原子总角动量PJ是总轨道
角动量PL与PJ总自P旋L 角PS动量PJS的J 矢1量 和:
于自旋运动。
当S=0时,
J=L,gJ=1,
=
J
L(L 1)B
均来源于轨
道运动。
当1<gJ<2,原子磁矩由轨道磁矩与自旋磁矩共同 贡献。
∴gJ反映了在原子中轨道磁矩与自旋磁矩对总磁 矩贡献的大小。
由上面的讨论可知,原子磁矩总是与电子的角动
量联系起来的。
根据原子的矢量模型,原子总角动量pJ是总轨道 角动量pL与总自旋角动量pS的矢量和:
以原子的某一壳层包含两个电子为例说明L-S 耦合
设两电子的轨道角动量量子数分别为l1和l2,自旋量子数 分别为s1和s2,则总轨道角动量的量子数L和总自旋量子数S 的可取值分别为:
L = l1+l2, l1+l2-1,···, l1-l2 S = s1+s2, s1+s2-1,···, s1-s2
J
L
c
os
PL
PJ
s
c
os
Ps
PJ
PJ
PL L(L 1), PS S(S 1),
L L(L 1)B , s 2 S(S 1)B
PS
PL
c
os
PL
PJ
J (J 1) L(L 1) S(S 1) 2 L(L 1) J (J 1)
μL
μS
c
os
Ps
PJ
J (J 1) S(S 2 L(L 1)
二、电子自旋磁矩 自旋→自旋磁矩
实验证明:电子自旋磁矩在外磁场方向分量等于一 个μB,取正或取负。
μ
s
H
μ B
e 2m
e m2
自旋角动量:
PS SS 1
在外场方向分量:Ps H
ms
2
(自旋磁量子数:ms
1) 2
自旋磁矩与自旋角动量的关系为:
μs
H
=-
e m
Ps
H
方向相反
μs
e m
Ps=-
s Ps
其中: s
e m
,为自旋磁力比,且: s
2 l
s的绝对值:
s
SS 1 e 2
m
SS 1B
1. 总自旋磁矩在外场方向的分量为:
μ s H =2msB , ms 1/ 2,最大分量 :[μ s H ]max 2SB
2. 计算原子总自旋角动量时,只考虑未填满次壳层中 的电子。
μl
iA
2
e
r 2
1 er2
2
∵轨道动量矩
Pl
m
ωr2
mr 2
2
T
l
Pl
e 2m
l
e 2m
Pl
令 l
e 2m
,轨道磁力比
则:l
l
Pl
说明:电子轨道运动产生的磁矩与动量矩在数值上成正
比,方向相反。
由量子力学知:动量矩应由角动量代替:
Pl l(l 1)
其中l=0,1,2…n-1 , h 2
电子轨道运动产 生电子轨道磁矩
电子自旋产生电 子自旋磁矩
构成原子 的总磁矩
物质磁性 的起源
一、电子轨道磁矩(由电子绕核的运动所产生)
方法:先从波尔原子模型出发求得电子轨道磁矩,
再引入量子力学的结果。
按波尔原子模型,以周期T沿圆作轨道运动的电
子相当于一闭合圆形电流i
i e e T 2
其产生的电子轨道磁矩:
l
l(l 1) e 2m
令B
e 2m
9.2731024[ A m2 ] 1023[ A m2 ]
(波尔磁子,电子磁矩的基本单位)
l l(l 1)B
➢ l=0,即s态,Pl=0, μl=0(特殊统计分布状态) ➢ 如有外场,则Pl在磁场方向分量为:
Pl
H
ml
l H
l cos
l
Pl
产生原因:不同电子之间的轨道-轨道耦合和自旋-自旋 耦合较强,而同一电子内的轨道-自旋耦合较弱
主要存在于原子序数较小的原子中(Z<32),3d、4f 族元素的基态或激发态
(2)、j-j 耦合:,∑(li+si) → ji,∑ji →J 产生原因:各电子轨道运动与其本身的自旋相互作用较强
主要存在于原子序数较大的原子中(Z>82)
1) L(L 1) J (J 1)
μJ
μL-S
J
3J (J
1) S(S 2J (J
1) L(L 1)
1)
J (J 1)B
令:g J
3J (J
1) S(S 2J (J
1) L(L 1) 1)
则:J=gJ J (J 1)B
注:1、当兰L德=0因时子,gJJ=的S,物g理J=意2,义J:=2 S(S 1)B 均来源
uur uur uur
pJ pL pS J J 1h
总角量子数J:J=L+S, L+S-1,…… |L-S|
∴原子总角动量在外场方向的分量:
pJ H mJ h 总磁量子数mJ:mJ =J,J-1,……-J
1、原子中电子总角动量量子数J的确定:角动量耦合定则
(1)、L-S耦合:∑li → L,∑si →S , J=S+L