北师大版初二数学上册一次函数应用练习

合集下载

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。

北师大版八年级数学上册一次函数的应用练习题

北师大版八年级数学上册一次函数的应用练习题

4.4 一次函数的应用第1课时确定一次函数的表达式1.某医药研究所开.发了一种新药,在实验药效■时发现,如果成人按规定剂量服用,那■么每毫升血液…中含药量(微克)随时间X (时)的.变化情况如图所示,当成人按规定剂量服药后,(I)服药后 ________ 时,血液中含药量最高,达每毫升________ 微克,接着逐步衰减;(2) ________________________________________ 服药5时,血液中含药量为每毫升微克;(3) __________________________________________________ 当x≤2时,y与X之间的函数关系式是 ____________________________________________ :.(4)当¢2时,y与X之间的函数关系式是___________________ :(5)如果每毫升血液中含药量3微克或3微克以上时,治疗疾病最有效,那么这个有效时间范围•是 _____________2.如图,OB.AB分别"表示甲、乙两人的运动图象,请根据图象回答下列问题:(1)如果用f表示时间,$表示路程,那么甲、乙两人各自的路程与时间的函数关系式是甲: ______________________________________________ ,乙:(2) _________________________________ 甲的运动速度是千米/时;(3) ________________________________________________ 两人同时出发,相遇时,甲比乙多走______________________________________________ 千米.3、观察甲、乙两图,解答下列问题(1)填空:两图中的(_)图比较符合传统寓言故事《龟免赛跑》中所描述的情节.(2)根据1中所填答案的图象填写下表:甲明(3)根据1中所填答案求:①龟免赛胞过程中的函数关系式(要注明各函数的自变量的取值范国);线型7'''∖主人公(龟或兔)到达时间(分)最快速度(米/•分)平均速度(米/分)实线虚线4、某电视机厂要印刷产品宣传材料,甲印刷厂提岀:每份材料收1元印刷费,另收1500 元制版费;乙印刷厂提岀:每份材料收2・5元印刷费,不收制版费.(1)分别写岀两厂的收费y (元)与印制数量兀(份)之间的关系式;(2)在同一直角坐标系内作岀它们的图象;(3)根据图象回答下列问题:①印制800份宣传材料时,选择哪家印刷厂比较合算?②电视机厂拟拿岀3000元用于印刷宣传材料,找哪家印刷厂印刷宣传材料能多些?5、生态公园汁划在园内的坡地上造一片有A 3两种树的混合林,需要购买这两种树苗2000 棵.种植4, B 两种树苗的相关信息如下表:设购买A种树苗X棵,选这片林的总费用为y 元.解答下列问题:(1)写出y (元)与X (棵)之间的函数关系式:(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?品种单价(元/棵)成活率劳务费(元/棵)A1595%3B2099%46、如图,Z与厶分别表示A步行与B骑车同一路上行驶的路程S与时间/的关系.(I)B出发时与A相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)B岀发后经过多少小时与A相遇?(4)若B的自行车不发生故障,保持岀发时的速度前进,那么经过多少时间与A相遇?相遇点离3的岀发点多远?你能用哪些方法解决这个问题?在图中表示出这个相遇点C・第2课时单个一次函数图象的应用1.一•次函数y=kx÷b的图象如图所示,看图填空:(1)当X二O 时,y= r_______ , 当X二 _________ 时,y r=0;(2) ___________ k= _____________ , b二;(3) _____________________ 当X二5 时,y二___________ ,当y二30 时,X= . 2.油箱中存油「20升,油从油箱中均匀流出,流速为0. 2升/分钟,则油箱中剩余油量Q (升)与流出时间t(分钟)的函数关系是().A. Q = 0.2/B. Q = 20 — 0.2/ rC. f = 0.2QD. t = 20 — 0.2Q3.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定, 则需要购买行李票,行李票费JTIy元是行李质量班千克)的一次函数,其图象如下图所示.(1)写出y与X之间的函数关系式;(2)旅客最多可免费携带多少千克行李?4.已知直线y = kx+b经过点(:,0)且与坐标轴围成的三角形的面积为兰,2求该直线的表达式.5.如图,某气象冲心观测一场沙尘暴从开始到结束的全过程.开始时风速平均每小时增加2km∕h, 4h后,沙「尘暴经过开阔的荒漠地,风速变为平均每小时增加4km∕h. 一段时间,风迟保持不「变.当沙尘暴遇到绿色植被区时,其风速平均每小时减少Ikm∕h,最终停止.结合图象,回答下列问题:(1)在y轴括号内填入相应的数值;的家庭数S (户)与的函数关系如图所(2) 沙尘暴从发生到结束,共经过多少小时?(3) 求出当X >25∕7,风速y (km/h )与时间x (小时)之间的函数关系式•6. 某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给 希望工程.盒内钱数),(元)与存钱月数X 之间的函数关系如周所示.观察图象回 答下列问题:(1) 盒内原来有多少元? 2个月后盒内有多少元;?(2) 该同学经过儿个月能存够200元?(3) 该同学至少存儿个月存款才能超过140元?7. 当得知周边地区的干旱情况后,育才学校的川、明意识到节约用水的捶要 性,当夭在班倡议节约用水,得到全班同学乃至全校师生的积极响应•从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加;T 活动,并且参加该活动根据图象回答下列问题:若每户每天节约用水0.1吨,写出活动开展到第5天时,全校师生共节约多少吨水?第3课时两个一次函数图象的应用1. (2015-孝感一模)已知甲乙两人沿同一条公路从A地到B地,图中线段OC, DE分別表示甲乙从离开A地到达B地的过程中路程s (单位:km)与时间t(单位h)的函数关系, 则从A地到B地的路程为()A. 60kmB. 80kmC. 90kmD. 12Okm2. (2015∙⅞坊区一模)随着哈尔滨汽车的增加,哈市某乙储油库的储油量一直以每天相同的速度持续减少.为保证用户用油量,大庆某甲储汕库立即以管道运输方式向哈市的乙储油库输油2天.如图,是两储汕库的储汕量y (升)与时间X (天)之间的函数图象.在单位时间内,甲储油库的放油量与乙储汕库的进油量相同(油在排放、接收以及输送过程中的损耗不计).下列四种说法:(1)甲储汕库向乙储油库输汕期间每天的输油量是2000升:(2)在第4天时甲储油库输岀的油开始注入乙储油库:(3)乙储油库每天减少550升;(4)乙储汕库最低汕量是600升,最髙油量是4200升.其中正确的个数是()A・1个 B. 2个 C. 3个D・4个(2014∙鞍山)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时岀发,两车距甲地的距离y千米与行驶时间X小时之间的函数图象如图所示,则下列说法中错误的是A. 客车比岀租车晚4小时到达目的地B. 客车速度为60千米/时,岀租车速度为100千米/时C. 两车出发后3.75小时相遇D. 两车相遇时客车距乙地还有225千米。

北师大版初中数学八年级(上)4-4 一次函数的应用(第3课时)(学案+练习)

北师大版初中数学八年级(上)4-4 一次函数的应用(第3课时)(学案+练习)

4 一次函数的应用(第3课时)学习目标1.能通过函数图象获取信息,掌握两个一次函数图象的应用;(重点)2.能利用同一坐标系内两个函数图象的关系,解决简单的实际问题. (难点)自主学习学习任务一 新课导入1.某工程队在“村村通”工程中修建的公路长度y (米)与时间x (天)之间的关系如图1.根据图象提供的信息,可知该公路的长度是 米.图1 图22.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售, 售出土豆质量x (千克)与他手中持有的钱(含备用零钱)y (元)的关系如图2所示,结合图象回答下列问题:(1)农民自带的零钱是 ;(2)降价前他每千克土豆出售的价格是 ;(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱) 是26元,他一共带了 千克土豆.学习任务二 探究两个一次函数图象在同一坐标系中的应用1.如图3,l 1反映了某公司产品的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)当销售量为2 t 时,销售收入= 元, 销售成本=元.(2)当销售量为6 t 时,销售收入= 元, 销售成本=元.(3)当x =3时,销售收入= 元,销售成本= 元;盈利(收入-成本)= 元.(4)当销售量等于 时,销售收入等于销售成本.(5)当销售量 时,该公司盈利(收入大于成本);当销售量 时,该公司亏损(收入小于成本).(6) l 1对应的函数表达式是 ,l 2对应的函数表达式是 .分组讨论.k 1表示 ,b 1表示 ;k 2表示 ,b 2表示 .2.我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(如图4①),图4②中l 1,l 2分别表示两船相对于海岸的距离s (n mile)与追赶时间t (min)之间的关系.① ②图4根据图象回答下列问题:(1) 表示B 到海岸的距离与追赶时间之间的关系.(2) 速度快.(3)10 min 内B (填“能”或“不能”)追上A .(4)如果一直追下去,那么B (填“能”或“不能”)追上A .(5)当A 逃到离海岸12 n mile 的公海时,B 将无法对其进行检查.照此速度,B (填“能”或“不能”)在A 逃入公海前将其拦截.(6)l 1与l 2对应的两个一次函数s =k 1t +b 1与s =k 2t +b 2中,k 1,k 2的实际意义分别是 ,可疑船只A 与快艇B 的速度分别是 .合作探究如图5,小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为 36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少千米?当堂达标1.如图6,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和运动时间,根据图象可知,快者的速度比慢者的速度每秒快( )A.2.5米B.2米C.1.5米D.1米图6 图7 图52.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.如图7表示的是甲、乙两人前往目的地所行驶的路程s (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多行驶的路程是( )A.0.5千米B.1千米C.1.5千米D.2千米3.一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米,甲、乙两名长跑爱好者同时从点A 出发,甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (时)函数关系的图象是( )A B C D4.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通信时间x (分)与收费y (元)之间的函数关系如图8所示.(1)有月租费的收费方式是 (填“①”或“②”),月租费是 元;(2)分别求出①②两种收费方式中y 与x 之间的函数关系式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.课后提升 如图9,l A 与 l B 分别表示A 步行与B 骑车同一路上行驶的路程s 与时间t 的关系.(1)B 出发时与A 相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)B 出发后经过多少小时与A 相遇?(4)若B 的自行车不发生故障,保持出发时的速度前进,那么经过多少时间与A 相遇?在图中表示出这个相遇点C .反思感悟我的收获:我的易错点:图8参考答案当堂达标1.C2.A3.C4.解:(1)①30(2)设y有=k1x+30,y无=k2x,由题意得500k1+30=80,k1=0.1;500k2=100,k2=0.2. 故所求的关系式为y有=0.1x+30;y无=0.2x.(3)由y有=y无,得0.2x=0.1x+30,解得x=300.当x=300时,y有=y无=60.故由题图可知当通话时间在300分钟内时,选择通信收费方式②实惠;当通话时间超过300分钟时,选择通信收费方式①实惠;当通话时间为300分钟时,选择通信收费方式①,②一样实惠.课后提升解:(1)由题图可知,B出发时与A相距10千米.(2)B修理自行车所用的时间为:1.5-0.5=1小时.(3)3小时时两人的路程都是22.5千米,所以,B出发后3小时与A相遇.(4)出发时A的速度为22.5103=256千米/时,B的速度为7.50.5=15千米/时,设若B的自行车不发生故障,保持出发时的速度前进,x小时与A相遇,根据题意得,15x-256x=10,解得x=1213.答:经过1213h与A相遇,图10中点C即为相遇点.图10。

北师大版八年级上册数学第四章 一次函数含答案

北师大版八年级上册数学第四章 一次函数含答案

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、苹果的单价为4元/kg,购买x(kg)苹果与总价y(元)之间的关系式是y=4x,这里总价y随着kg数x的增大而()A.增大B.减小C.不变D.不确定2、已知点,都在直线上,则y1、y2的大小关系是()A. B. C. D.3、下列函数中,正比例函数是()A.y=﹣8xB.y=C.y=8x 2D.y=8x﹣44、正比例函数y=3x的大致图象是()A. B. C.D.5、若正比例函数y=kx的图象经过点(2,1),则k的值为()A.﹣B.C.﹣2D.26、在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥7、若y=是一次函数,则m的值为()A.0B.-1C.0或﹣1D.±18、给出下列5个命题:①两点之间直线最短;②同位角相等;③等角的补角相等;④不等式组的解集是﹣2<x<2;⑤对于函数y=﹣0.2x+11,y 随x的增大而增大.其中真命题的个数是()A.2B.3C.4D.59、如图,点G是BC的中点,点H在AF上,动点P以每秒2㎝的速度沿图1的边线运动,运动路径为:G→C→D→E→F→H,相应的△ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2,若AB=6cm,则下列六个结论中正确的个数有()①图1中的BC长是8cm;②图2中的M点表示第4秒时y的值为24cm2;③图1中的CD长是4cm;④图1中的DE长是3cm;⑤图2中的Q点表示第8秒时y的值为33;⑥图2中的N点表示第12秒时y的值为18cm2.A.3个B.4个C.5个D.6个10、关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大11、直线y=2x+2沿y轴向下平移6个单位后与x轴的交点坐标是()A.(-4,0)B.(-1,0)C.(0,2)D.(2,0)12、如图,直线y=ax+b与x轴交于点A(7,0),与直线y=x交于点B(2,4),则不等式kx≤ax+b的解集为()A.x≤2B.x≥2C.0<x≤2D.2≤x≤613、在平行四边形ABCD中,点P从起点B出发,沿BC,CD逆时针方向向终点D匀速运动.设点P所走过的路程为x,则线段AP,AD与平行四边形的边所围成的图形面积为y,表示y与x的函数关系的图象大致如下图,则AB边上的高是()A.3B.4C.5D.614、如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE ∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B. C. D.15、直线的截距是()A.-3B.-1C.1D.3二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l 2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A 4,…依次进行下去,则点A2017的坐标为________.17、某天早晨,亮亮、悦悦两人分别从A、B两地同时出发相向跑步而行,途中两人相遇,亮亮到达B地后立即以另一速度按原路返回.如图是两人离A地的距离y(米)与悦悦运动的时间x(分)之间的函数图象,则亮亮到达A地时,悦悦还需要________分到达A地.18、如图,若将线段AB平移至A1B1,则a+b的值为________.19、小明早上步行去车站,然后坐车去学校.下列图象中,能近似的刻画小明离学校的距离随时间变化关系的图象是________.(填序号)20、一次函数y=kx+b(kb<0)图象一定经过第________ 象限.21、若正比例函数的图象经过第一、三象限,则的取值范围是________.22、已知A,B两地相距10千米,上午9:00甲骑电动车从A地出发到B地,9:10乙开车从B地出发到A地,甲、乙两人距A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则乙到达A地的时间为________.23、如果,那么________.24、函数y=2x+6的图象与x、y轴分别交于A、B两点,坐标系原点为O,求△ABO的面积________.25、当k=________时,函数y=是关于x的一次函数.三、解答题(共5题,共计25分)26、已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(3)若这个函数是一次函数,且图象不经过第四象限, 求的取值范围.27、某超市开设了自助收银区,实施自助收银,以节省顾客的排队时间.某日上午10点,超市值班经理发现在自助收银区已经有80人在等待自助收银,此时仍有顾客不断前来排队等候.在自助收银区,假设顾客按固定的速度增加,每个收银口自助收银的速度也是固定的,其中每分钟新增排队人数为3人,每分钟每个收银口自助收银2人.(1)若10点后收银的前a分钟只开放4个收银口,10点后排队等候收银的人数y(人)与收银时间x(分钟)的关系如图所示.①求a值;②求超市在10点20分时,自助收银区排队等候收银的顾客人数.(2)超市有承诺:顾客排队不超过10分钟,即要在10点10分内让所有排队的顾客都能完成自助收银,以便后来的顾客能随到随收.请帮助值班经理计算一下10点后至少需要同时开放几个收银口?28、一次越野跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程s(米)与时间t(秒)的关系如图,结合结合图象,求图中S1和S的位置.29、暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?30、如图,出租车是人们出行的一种便利交通工具,折线ABC是在我市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,当x≥3时y为x的一次函数,请写出函数关系式;(2)某人乘坐13km,应付多少钱?(3)若某人付车费42元,出租车行驶了多少千米?参考答案一、单选题(共15题,共计45分)2、C3、A4、B5、B6、B7、B8、A9、B10、C11、12、A13、B14、A15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

北师大版八年级数学上册《4.4 一次函数的应用》 同步练习

北师大版八年级数学上册《4.4 一次函数的应用》  同步练习

4.4 一次函数的应用一.选择题1.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=30.以上结论正确的有()A.①②B.①②③C.①③④D.①②④2.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系如图所示.下列四种说法:其中正确的个数是()①每分钟的进水量为5升.②每分钟的出水量为3.75升.③从计时开始8分钟时,容器内的水量为25升.④容器从进水开始到水全部放完的时间是20分钟.A.1个B.2个C.3个D.4个3.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有()A.1个B.2个C.3个D.4个4.如图,OA和BA分别表示甲乙两名学生练习跑步的一次函数的图象,图中S和t分别表示路程(米)和时间(秒),根据图象判定跑210米时,快者比慢者少用()秒.A.4秒B.3.5秒C.5秒D.3秒5.李刚和父母一起从家到姑妈家去,两地相距650km,出发前汽车油箱里有30L油,途中加油若干升,加油前后汽车都以100km/h的速度匀速行驶.已知油箱中剩余油量y(L)与行驶时间t(h)之间的关系如图所示.则下列说法:①汽车行驶了2h后加油;②途中加油37L;③加油前油箱中剩余油量y(L)与行驶时间t(h)之间的函数关系式是y =﹣9t+30;④汽车加油后还可行驶4h;⑤汽车到达姑妈家,油箱中还剩余1L油.其中全部正确的是()A.①④⑤B.①③C.②⑤D.③④⑤6.一辆货车从A地开往B地,一辆小汽车从B地开往A地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),s与t之间的函数关系如图所示,下列说法:①A、B两地相距60千米:②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米;⑤出发2小时,小货车离终点还有80千米,其中正确的有()A.5个B.4个C.3个D.2个7.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h8.甲、乙两人进行1500米比赛,在比赛过程中,两人所跑的路程y(米)与所用的时间x (分)的函数关系如图所示,则下列说法正确的是()A.甲先到达终点B.跑到两分钟时,两人相距200米C.甲的速度随时间增大而增大D.起跑两分钟后,甲的速度大于乙的速度9.小甬,小真两人的跑步路程y(米)和跑步时间x(分)之间的关系如图所示,已知小甬的跑步速度比小真快,则下列说法正确的是()A.小甬每分钟跑200米.小真每分钟跑100米B.小甬每跑100米时,小真只能跑60米C.相遇时,小甬、小真两人都跑了500米D.经过4分钟时,小甬、小真两人都跑800米10.如图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)汽车共加速行驶了10分钟A.1个B.2个C.3个D.4个11.甲,乙两车从A出发前往B城,在整个行程中,甲、乙两车离开A城的距离y与时t 的对应关系如图所示,则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③甲车的平均速度比乙车的平均速度每小时慢40千米;④当甲、乙两车相距20千米时,t=7或8.其中正的结论个数为()A.1个B.2个C.3个D.4个12.一个有进水管与出水管的容器,从某时刻开始的4min内只进水不出水,在随后的8min 内既进水又出水,每min的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.根据图象提供的信息,则下列结论错误的是()A.第4min时,容器内的水量为20LB.每min进水量为5LC.每min出水量为1.25LD.第8min时,容器内的水量为25L13.等腰三角形ABC中,AB=AC,记AB=x,周长为y,定义(x,y)为这个三角形的坐标.如图所示,直线y=2x,y=3x,y=4x将第一象限划分为4个区域.下面四个结论中,①对于任意等腰三角形ABC,其坐标不可能位于区域Ⅰ中;②对于任意等腰三角形ABC,其坐标可能位于区域Ⅳ中;③若三角形ABC是等腰直角三角形,其坐标位于区域Ⅲ中;④图中点M所对应等腰三角形的底边比点N所对应等腰三角形的底边长.所有正确结论的序号是()A.①③B.①③④C.②④D.①②③14.如图,直线y=﹣x+6分别与x、y轴交于点A、B,点C在线段OA上,线段OB沿BC翻折,点O落在AB边上的点D处.以下结论:①AB=10;②直线BC的解析式为y=﹣2x+6;③点D(,);④若线段BC上存在一点P,使得以点P、O、C、D为顶点的四边形为菱形,则点P的坐标是(,).正确的结论是()A.①②B.①②③C.①③④D.①②③④15.如图,在平面直角坐标系中,直线y=﹣x+4与x轴交于点A,与y轴交于点B,点C 是AB的中点,∠ECD绕点C按顺时针旋转,且∠ECD=45°,∠ECD的一边CE交y 轴于点F,开始时另一边CD经过点O,点G坐标为(﹣2,0),当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为()A.B.C.D.二.填空题16.甲、乙两地相距360km,一辆货车从甲地以60km/h的速度匀速前往乙地,到达乙地后停止.在货车出发的同时,另一辆轿车从乙地沿同一公路匀速前往甲地,到达甲地后停止.两车之间的路程y(km)与货车出发时间x(h)之间的函数关系如图中的折线CD ﹣DE﹣EF所示.其中点C的坐标是(0,360),点D的坐标是(2,0),则点E的坐标是.17.某快递公司快递员甲匀速骑车去距公司6000米的某小区取物件,出发几分钟后,该公司快递员乙发现甲的手机落在公司,于是立马匀速骑车去追赶甲,乙出发几分钟后,甲也发现自己的手机落在了公司,立即调头以原速的2倍原路返回,1分钟后遇到了乙,乙把手机给甲后,乙以原速的一半原路返回公司,甲以返回时的速度继续去小区取物件,刚好在事先预计的时间到达该小区.甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(给手机及中途其它耽误时间忽略不计),则甲到小区时,乙距公司的路程是米.18.“赛龙舟”是我国的一个传统运动项目.某天,甲乙两队在一个笔直的湖面进行“赛龙舟”比赛,全程300米.两队同时出发,刚出发,乙队就以明显优势领先,甲队发现形式不利,迅速调整比赛状态,把速度提升了,并以提升后的速度赛完全程,假设乙队全程是匀速比赛状态,甲队提速前和提速后也分别是匀速运动,甲、乙两队之间的距离y (米)与乙队行驶x(秒)之间的关系如图所示,则甲队到达终点时,乙队离终点还有米.19.如图所示,王芳,李莉两人分别从A、B两地出发,相向而行,已知李莉先出发4分钟后,王芳才出发,他们两人相遇后,李莉立即以原速返回B地,王芳以原速继续向B地前行,王芳、李莉分别到达B地后都停止行走,王芳、李莉两人相距的路程y(米)与李莉出发的时间x(分钟)之间的关系如图所示,则王芳到达B地时,李莉与B地相距的路程是米.20.已知天目山的主峰海拔约1500m,据研究得知地面上空h(m)处的气温t与地面气温s 有如下关系t=﹣kh+s,现用气象气球测得某时刻离地面200m处的气温t为8.4℃,离地面600m处的气温t为6℃,则此时天目山主峰的气温约为.21.某学校创客小组进行机器人跑步大赛,机器人小A和小B从同一地点同时出发,小A 在跑到1分钟的时候监控到程序有问题,随即开始进行远程调试,到3分钟的时候调试完毕并加速前进,最终率先到达终点,测控小组记录的两个机器人行进的路程与时间的关系如图所示,则以下结论正确的有(填序号).①两个机器人第一次相遇时间是在第2分钟;②小B每分钟跑50米;③赛程总长200米;④小A到达终点的时候小B距离终点还有20米.22.小夏、小熙两同学从距学校3000米的同一小区同时出发,各自将作业本拿回学校,他们俩将作业本拿回学校后,又各自以原速原路返回自己居住的小区,在整个过程中,她们两人均保持各自的速度匀速行驶,且小夏的速度比小熙的速度快.整个过程中两人相距的路程y(米)与小夏离开小区的时间x(分钟)之间的关系如图所示(返校逗留时间不计),则小夏返回到小区时,小熙距小区的路程为米.23.白鹤公园风景秀丽,成为广大市民休闲锻炼的圣地,星期天,小明和爸爸到白鹤公园登山锻炼,他们同时从山脚出发,以各自的速度匀速登山,前20分钟小明以v1的速度一直在前,由于小明体力不支,休息了20分钟,这时他发现爸已超过他走在了前面,小明立即以v2的速度追赶爸爸,直到与爸爸相遇,如图是两人之间相距的路程y(米)与爸爸登山时间x(分)之间的函数图象,则=.24.如图,将一块等腰直角三角板ABC放置在平面直角坐标系中,∠ACB=90°,AC=BC,点A在y轴的正半轴上,点C在x轴的负半轴上,点B在第二象限,AC所在直线的函数表达式是y=2x+4,若保持AC的长不变,当点A在y轴的正半轴滑动,点C随之在x 轴的负半轴上滑动,则在滑动过程中,点B与原点O的最大距离是.25.如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为;(3)若CQ平分△OAC的面积,求直线CQ对应的函数关系式.三.解答题26.下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:距离地面高度(千米)012345所在位置的温度(℃)201482﹣4(1)上表反映的两个变量中,是自变量,是因变量;(2)若用h表示距离地面的高度,用y表示温度,则y与h之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机在2千米高空大约盘旋了分钟.(4)飞机发生事故16分钟后所在高空的温度是.27.小蕾家与外婆家相距270km,她假期去看望外婆,返回时,恰好有一辆顺路车可以带小蕾到A服务区,于是,小蕾与爸爸约定,她先搭乘顺路车到A服务区,爸爸驾车到A服务区接小蕾回家.两人在A服务区见面后,休息了一会儿,然后小蕾乘坐爸爸的车以60km/h的速度返回家中.返回途中,小蕾与自己家的距离y(km)和时间x(h)之间的关系大致如图所示.(1)求小蕾从外婆家到A服务区的过程中,y与x之间的函数关系式;(2)小蕾从外婆家回到自己家共用了多长时间?28.一辆汽车的油箱中现有汽油50升,如果不再加油,那么油箱中的余油量y(单位:升)随行驶里程x(单位:千米)的增加而减少,平均每千米的耗油量为0.1升.(1)写出y与x之间的函数关系式;(2)汽车最多可行驶多少千米?(3)汽车行驶200千米时,油箱中还有多少油?(4)写出自变量x的取值范围.29.已知,如图,点A坐标为(6,0),直线y=﹣x﹣2交y轴于点B.(1)求直线AB的函数解析式;(2)若点C为直线y=﹣x﹣2上第四象限内一点,且满足△ABC的面积为13,求点C 的坐标;(3)在(2)中C点坐标的条件下,在x轴上取两点M、N,点M在点N的左侧,使得MN=2,求使得四边形BMNC周长最小时点M、N的坐标.30.如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2).E为AB的中点,过点D(6,0)和点E的直线分别与BC、y轴交于点F、G.(1)求直线DE的函数关系式;(2)函数y=mx﹣1的图象经过点F且与x轴交于点H,求出点F的坐标和m值;(3)在(2)的条件下,求出四边形OHFG的面积.参考答案一.选择题1.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③正确;④a=1200÷40+4=34,结论④错误.故结论正确的有①②③,故选:B.2.解:由图象可得,每分钟的进水量为20÷4=5(L),故①正确;每分钟的出水量为5﹣(30﹣20)÷(12﹣4)=3.75(L),故②正确;从计时开始8分钟时,容器内的水量为:20+(8﹣4)×(5﹣3.75)=25(L),故③正确;容器从进水开始到水全部放完的时间是:12+30÷3.75=20(分钟),故④正确;故选:D.3.解:由图象可知A、B两城市之间的距离为300km,故①正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,把y=150代入y甲=60t,可得:t=2.5,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(2.5,150)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,乙的速度:150÷(2.5﹣1)=100,乙的时间:300÷100=3,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故②正确;甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③错误;令|y甲﹣y乙|=40,可得|60t﹣100t+100|=40,即|100﹣40t|=40,当100﹣40t=40时,可解得t=,当100﹣40t=﹣40时,可解得t=,又当t=时,y甲=40,此时乙还没出发,当t=时,乙到达B城,y甲=260;综上可知当t的值为或或或t=时,两车相距40千米,故④不正确;故选:B.4.解:由图象可得,甲的速度为:60÷10=6(米/秒),乙的速度为:(60﹣10)÷10=5(米/秒),(210﹣10)÷5﹣210÷6=40﹣35=5(秒),故选:C.5.解:由图象可得,汽车行驶了2h后加油,故①正确;途中加油37﹣12=25(L),故②错误;设加油前油箱中剩余油量y(L)与行驶时间t(h)之间的函数关系式是y=kt+b,,解得,即加油前油箱中剩余油量y(L)与行驶时间t(h)之间的函数关系式是y=﹣9t+30,故③正确;汽车加油后还可行驶37÷[(30﹣12)÷2]=4(小时),故④错误;650÷100=6.5(小时),2+4<6.5,故汽车加油后不能到达姑妈家,故⑤错误;故选:B.6.解:由图象可得,A、B两地相距120千米,故①错误;出发1小时,货车与小汽车相遇,故②正确;小汽车的速度是120÷1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),即小汽车的速度是货车速度的80÷40=2倍,故③正确;出发1.5小时,小汽车比货车多行驶了(80﹣40)×1.5=60(千米),故④正确;出发2小时,小货车离终点还有120﹣40×2=40(千米),故⑤错误;故选:C.7.解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.8.解:由图象可得,乙先到达终点,故选项A错误;甲的速度为:1500÷5=300(米/分),故当跑到两分钟时,两人相距300×2﹣400=200(米),故选项B正确;甲的速度保持不变,故选项C错误;起跑两分钟后,乙的速度大于甲的速度,故选项D错误;故选:B.9.解:∵小甬的跑步速度比小真快,∴小甬的图象经过原点,设小真跑步路程y(米)和跑步时间x(分)之间的关系式为y=kx+200,则800=4k+200,解得k=150,∴小真跑步路程y(米)和跑步时间x(分)之间的关系式为y=150x+200,150×2+200=500,∴小甬的图象经过(2,500),∴小甬路程y(米)和跑步时间x(分)之间的关系式为y=250x,∴小甬的速度:小真的速度=250:150,∴小甬每跑100米时,小真只能跑60米.故选:B.10.解:读图可得,在x=40时,速度为0,故(1)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;汽车共加速行驶的时间为:5+(15﹣10)=10(分钟),故(4)正确.综上可得(1)(2)(4)正确,共3个.故选:C.11.解:①由题可得,A,B两城相距300千米,故①正确;②由图可得,乙车比甲车晚出发1小时,却早到1小时,故②正确;③甲车的平均速度为300÷(10﹣5)=60(km/h),乙车的平均速度为300÷(9﹣6)=100(km/h),所以甲车的平均速度比乙车的平均速度每小时慢40千米故③正确;④相遇前:60(t﹣5)﹣100(t﹣6)=20,解得t=7;相遇后:100(t﹣6)﹣60(t﹣5)=20,解得t=8.当乙到底B城后,5+(300﹣20)÷60=;即当甲、乙两车相距20千米时,t=7或8或.故④错误.即正的结论个数为3个.故选:C.12.解:由图象可得,第4min时,容器内的水量为20L,故选项A正确;每min进水量为:20÷4=5(L),故选项B正确;每min出水量为:5﹣(30﹣20)÷(12﹣4)=3.75(L),故选项C错误;第8min时,容器内的水量为:20+(8﹣4)×(5﹣3.75)=25(L),故选项D正确;故选:C.13.解:如图,等腰三角形ABC中,AB=AC,记AB=x,周长为y,设BC=z,则y=2x+z,x>0,z>0.①∵BC=z>0,∴y=2x+z>2x,∴对于任意等腰三角形ABC,其坐标位于直线y=2x的上方,不可能位于区域Ⅰ中,故结论①正确;②∵三角形任意两边之和大于第三边,∴2x>z,即z<2x,∴y=2x+z<4x,∴对于任意等腰三角形ABC,其坐标位于直线y=4x的下方,不可能位于区域Ⅳ中,故结论②错误;③若三角形ABC是等腰直角三角形,则z=x,∵1<<2,AB=x>0,∴x<x<2x,∴3x<2x+x<4x,即3x<y<4x,∴若三角形ABC是等腰直角三角形,其坐标位于区域Ⅲ中,故结论③正确;④由图可知,点M位于区域Ⅲ中,此时3x<y<4x,∴3x<2x+z<4x,∴x<z<2x;点N位于区域Ⅱ中,此时2x<y<3x,∴2x<2x+z<3x,∴0<z<x;∴图中点M所对应等腰三角形的底边比点N所对应等腰三角形的底边长,故结论④正确.故选:B.14.解:∵直线y=﹣x+6分别与x、y轴交于点A、B,∴点A(8,0),点B(0,6),∴OA=8,OB=6,∴AB===10,故①正确;∵线段OB沿BC翻折,点O落在AB边上的点D处,∴OB=BD=6,OC=CD,∠BOC=∠BDC=90°,∴AD=AB﹣BD=4,∵AC2=AD2+CD2,∴(8﹣OC)2=16+OC2,∴OC=3,∴点C(3,0),设直线BC解析式为:y=kx+6,∴0=3k+6,∴k=﹣2,∴直线BC解析式为:y=﹣2x+6,故②正确;如图,过点D作DH⊥AC于H,∵CD=OC=3,∴CA=5,∵S△ACD=AC×DH=CD×AD,∴DH==,∴当y=时,=﹣x+6,∴x=,∴点D(,),故③正确;∵线段BC上存在一点P,使得以点P、O、C、D为顶点的四边形为菱形,且OC=CD,∴PD∥OC,∴点P纵坐标为,故④错误,故选:B.15.解:∵直线y=﹣x+4与x轴交于点A,与y轴交于点B,∴B(0,4),A(4,0),∵点C是AB的中点,∴C(2,2),①当一边CD经过点O时,点F的坐标为(0,2),此时点F、B、C三点的圆心为BC的中点,坐标为(1,3);②当直线CD过点G时,如图取OB的中点N,连接CN,OC,则CN=ON=2,∴OC=2,∵G(﹣2,0),∴直线GC的解析式为:y=x+1,∴直线GC与y轴交点M(0,1),过点M作MH⊥OC,∵∠MOH=45,∴MH=OH=,∴CH=OC﹣OH=,∵∠NCO=∠FCG=45°,∴∠FCN=∠MCH,又∵∠FNC=∠MHC,∴△FNC∽△MHC,∴,即,得FN=,∴OF=2+=.∴F(,0),此时过点F、B、C三点的圆心在BF的垂直平分线上,设圆心坐标为(x,),则,解得x=,当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径为线段,即由BC的中点到点(,),∴所经过的路径长==.故选:A.二.填空题16.解:由题意可得,轿车的速度为:360÷2﹣60=120(km/h),则点E的横坐标为:360÷120=3,纵坐标为:60×(3﹣2)+120×(3﹣2)=180,故点E的坐标为(3,180),故答案为:(3,180).17.解:设甲开始的速度为a(m/min),则甲后来的速度为2a(m/min),由题意可得,9+,解得,a=500,设乙的速度为b(m/min),由甲乙相遇知,(9﹣)b+2a•1=(9﹣1)a,∴b=1000,∴甲乙相遇时乙距公司的路程为:(9﹣)×1000=3000,甲到达小区的时间为:=12(min),∴甲到小区时,乙距公司的路程为:3000﹣1000××(12﹣9)=1500(m),故答案为:1500.18.解:由图可得,乙队的速度为300÷100=3(米/秒),设甲队开始的速度为a米/秒,15(3﹣a)=(45﹣15)×[a(1+)﹣3],解得a=2,∴甲队提速后的速度为2×(1+)=3.5(米/秒),∴甲队到达终点用的时间为:15+(300﹣15×2)÷3.5=15+=15+77=92(秒),∴甲队到达终点时,乙队离终点还有3×(100﹣92)=3×7=3×=(米),故答案为:.19.解:由题意可得,李莉的速度为:(1500﹣1300)÷4=50(米/分),王芳的速度为:(1300﹣390)÷(11﹣4)﹣50=80(米/分),王芳、李莉相遇时的时间为:1300÷(50+80)+4=14(分钟),∴李莉距离B地的路程为:50×14=700(米),∵王芳到达B地时间的时间为:1300÷80+2=(分),∴王芳到达B地时,李莉与B地相距的路程是:700×2﹣50×﹣200=287.5(米),故答案为:287.5.20.解:∵t=﹣kh+s,某时刻离地面200m处的气温t为8.4℃,离地面600m处的气温t为6℃,∴,解得,∴t=﹣0.006h+9.6,当h=1500时,t=﹣0.006×1500+9.6=0.6,即此时天目山主峰的气温约为0.6℃,故答案为:0.6℃.21.解:根据题意结合图象可知小A在第1到第3分钟的速度为:(米/分),∴两个机器人第一次相遇时间是在:1+=2(分钟),故①正确;小B的速度为:80÷2=40(米/分),故②错误;小A第3分钟后的速度为:(米/分),∴赛程总长:100+80=180(米),故③错误;180﹣40×4=20(米),即小A到达终点的时候小B距离终点还有20米,故④正确.综上所述,正确的有①④.故答案为:①④22.解:的速度为:3000÷20=150(米/分),小熙的速度为:3000÷30=100(米/分),小夏返回到小区的时间为:3000×2÷150=40(分),在小夏返回到小区时,小熙走的总路程为:100×40=4000(米),∴小夏返回到小区时,小熙距小区的路程为:3000×2﹣4000=2000(米).故答案为:2000.23.解:爸爸的速度为:1000×2÷20=100(米/分钟),v1=1000÷20+100=150(米/分钟),v2=1000÷10+100=200(米/分钟),∴=.故答案为:.24.解:当x=0时,y=2x+4=4,∴A(0,4);当y=2x+4=0时,x=﹣2,∴C(﹣2,0).∴OA=4,OC=2,∴AC==2.如图所示,过点B作BD⊥x轴于点D.∵∠ACO+∠ACB+∠BCD=180°,∠ACO+∠CAO=90°,∠ACB=90°,∴∠CAO=∠BCD.在△AOC和△CDB中,,∴△AOC≌△CDB(AAS),∴CD=AO=4,DB=OC=2,OD=OC+CD=6,∴点B的坐标为(﹣6,2).如图所示.取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=2,∴OE=CE=AC=,∵BC⊥AC,BC=2,∴BE==5,若点O,E,B不在一条直线上,则OB<OE+BE=5+.若点O,E,B在一条直线上,则OB=OE+BE=5+,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为5+,故答案为:5+.25.解:(1)∵由,得,∴C(2,2);(2)如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;(3)令﹣x+3=0,得x=6,由题意:Q(3,0),设直线CQ的解析式是y=kx+b,把C(2,2),Q(3,0)代入得:,解得:k=﹣2,b=6,∴直线CQ对应的函数关系式为:y=﹣2x+6.故答案为:(1)(2,2);(3)y=﹣2x+6.三.解答题26.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;故答案为:2;(4)当h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度,故答案为:8度.27.解:(1)设y与x之间的函数关系式为y=kx+b,根据题意得:,解得,∴y与x之间的函数关系式为y=﹣90x+270(0≤x≤2);(2)把x=2代入y=﹣90x+270,得y=﹣180+270=90,从A服务区到家的时间为:90÷60=1.5(小时),2.5+1.5=4(小时),答:小蕾从外婆家回到自己家共用了4小时.28.解:(1)根据题意,每行程x千米,耗油0.1x升,即总油量减少0.1x升,则油箱中的油剩下(50﹣0.1x)升,∴y与x的函数关系式为:y=50﹣0.1x;(2)当y=0时,50﹣0.1x=0,解得x=500,所以汽车最多可行驶500千米;(3)当x=200时,代入x,y的关系式:y=50﹣0.1×200=30.所以,汽车行驶200km时,油桶中还有30升汽油;(4)因为x代表的实际意义为行驶里程,所以x不能为负数,即x≥0;又行驶中的耗油量为0.1x,不能超过油箱中现有汽油量的值50,即0.1x≤50,解得,x≤500.综上所述,自变量x的取值范围是0≤x≤500.29.解:(1)对于y=﹣x﹣2,令x=0,则y=﹣2,故点B(0,﹣2),设直线AB的表达式为y=kx+b,则,解得,故直线AB的表达式为y=x﹣2;(2)连接OC,则△ABC的面积=S四边形OBCA﹣S△AOB=×OB×x C+AO×|y C|﹣×AO×OB=13,即×2×x C+×6×(﹣y C)﹣×2×6=13,即﹣3y C+x C=19①,而y C=﹣x C﹣2②,联立①②并解得,即点C(4,﹣5);(3)作点C关于x轴的对称点C′(4,5),将点C′向左平移2个单位得到点C″(2,5),连接BC″交x轴于点M,将点M向右平移2个单位得到点N,则点M、N为所求点,此时四边形BMNC周长最小,理由:∵MN∥C″C′且MN=C″C′,故四边形MNC′C″为平行四边形,故C′N=C″M=CN,则四边形BMNC周长=MN+BM+BC+CN=MN+BM+BC+C′N=MN+BM+BC+C″M=CB+MN+BC″为最小,由点B、C″的坐标得,直线BC″的表达式为y=x﹣2,令y=0,即y=x﹣2=0,解得x=,故点M、N的坐标分别为(,0)、(,0).30.解:(1)设直线DE的解析式为:y=kx+b,∵顶点B的坐标为(4,2),E为AB的中点,∴点E的坐标为:(4,1),∵D(6,0),则,解得,∴直线DE的函数关系式为:y=﹣x+3;(2)∵点F的纵坐标为2,且点F在直线DE上,∴﹣x+3=2,解得:x=2,∴点F的坐标为(2,2);∵函数y=mx﹣1的图象经过点F,∴2m﹣1=2,解得:m=;(3)如图:设直线FH交y轴于点K,对于y=x﹣1,当y=0时,x﹣1=0,解得x=,即H(,0),令x=0,则y=﹣1,则点K(0,﹣1);同理可得,点G(0,3),则KG=4,四边形OHFG的面积=S△GKF﹣S△OHK=×4×2﹣×1×=.。

北师大版八年级上册数学第四章 一次函数含答案

北师大版八年级上册数学第四章 一次函数含答案

北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h2、某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C.y=-2x D.y=2x3、出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(g)与月龄x(月)间的关系可以用y=a+700x来表示,其中a是婴儿出生时的体重,一个婴儿出生时的体重是3000g,这个婴儿第4个月的体重为( )A.6000gB.5800gC.5000gD.5100g4、如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B. C. D.5、一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 LB.25 LC.27LD.30 L6、已知一次函数的图象,如图所示,当时,的取值范围是()A. B. C. D.7、正比例函数如图所示,则这个函数的解析式为( )A.y=xB.y=-xC.y=-2xD.y=8、弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm9、如图,点、、、是正方形四条边(不含端点)上的点,设线段的长为,四边形的面积为,则能够反映与之间函数关系的图象大致是()A. B. C. D.10、已知点都在直线上,则大小关系是()A. B. C. D.不能比较11、若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0B.1C.±1D.-112、如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t (月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产 D.1月至3月每月产量不变, 4、5两月均停止生产13、某种出租车收费标准是:起步价7元(即行驶距离不超过3千米需付7元车费),超过了3千米以后,每增加1千米加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是A.11B.8C.7D.514、如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A. B. C. D.15、直线y=﹣x+1不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、已知是一次函数,则________.17、如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点A1(1,)作x轴的垂线交于点A2,过点A2作y轴的垂线交于点A3,过点A3作x轴的垂线交于点A4…,一次进行下去,则点的横坐标为________ .18、某水果店五一期间开展促销活动,卖出苹果数量x(kg)与售价y(kg/元)的关系如下表:数量x(kg) 1 2 3 4 5 …售价y(kg/元)9 15 21 27 33 …则售价y(kg/元)与数量x(kg)之间的关系式是________.19、正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是________.20、在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为________ .(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是________ .21、若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=________.22、如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为________.23、已知一次函数的图象经过点和,那么的值为________.24、直线y=-3x+m经过点A(-1,a)、B(4,b),则a________b(填“>”或“<”)25、已知一次函数的图像经过点,则________.三、解答题(共5题,共计25分)26、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.27、将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.28、某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.29、某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4kg,乙种材料1kg;生产一件B产品需甲、乙两种材料各3kg.经测算,购买甲、乙两种材料各1kg共需资金60元;购买甲种材料2kg 和乙种材料3kg共需资金155元.(1)甲、乙两种材料每kg分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.30、某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12kg,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2kg,但耗水量是甲车间的一半.已知A产品售价为30元/kg,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、B6、7、B8、B9、A10、C11、B12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。

北师大版八年级上册数学 一次函数图像应用(典型题选)

北师大版八年级上册数学   一次函数图像应用(典型题选)

6 1 020 30 60 80 s /千米t /分 函数图像应用专题训练1、某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为y 1、y 2千米,y 1、y 2与x 的函数关系图象如图所示.根据图象解答下列问题:(1)直接写出,y 1、y 2与x 的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?(3)甲、乙两班相距4千米时,时间x 是多少小时?2、邮递员小王从县城出发,骑自行车到A 村投递,途中遇到县城中学的学生李明从A 村步行返校.小王在A 村完成投递工作后,返回县城途中又遇到李明,便用自行车载上李明,一起到达县城,结果小王比预计时间晚到1分钟.二人与县城间的距离s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计.(1)小王和李明第一次相遇时,距县城多少千米?请直接写出答案.(2)求小王从县城出发到返回县城所用的时间. (3)李明从A 村到县城共用多少时间?3、某物流公司的快递车和货车每天往返于A 、B 两地,快递车比货车多往返一趟.下图表示快递车距离A 地的路程y (单位:千米)与所用时间x (单位:时)的函数图象.已知货车比快递车早1小时出发,到达B 地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A 地晚1小时. ⑴请在图11中画出货车距离A 地的路程y (千米)与所用时间x (时)的函数图象;⑵求两车在途中相遇的次数(直接写出答案);⑶求两车最后一次相遇时,距离A 地的路程和货车从A 地出发了几小时?O 2 2.5 x /小时y 1 y 2 10 y /千米480 y (千米)甲 乙 D F C A B E O 1.25 3 6 4.9 7 7.25 x (小时) 4、为了参观上海世博会,某公司安排甲、乙两车分别从相距300千米的上海、泰州两地同时出发相向而行,甲到泰州带客后立即返回,下图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)请直接写出甲离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量x 的取值范围;(2)当它们行驶4.5小时后离各自出发点的距离相等,求乙车离出发地的距离y (千米)与行驶时间x (小时)之间的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,甲、乙两车从各自出发地驶出后经过多少时间相遇?5、2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程y 甲(千米)、y 乙(千米)与时间x (小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了 小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米.请通过计算说明,按图像所表示的走法是否符合约定.6、一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y 1(km ),出租车离甲地的距离为y 2(km ),客车行驶时间为x (h ),y 1,y 2与x 的函数关系图象如图所示(1)根据图象,直接写出....y 1,y 2关于x 的函数关系式。

八年级(上)北师大版一次函数练习题1-图文

八年级(上)北师大版一次函数练习题1-图文

八年级(上)北师大版一次函数练习题1-图文八年级(上)北师大版一次函数练习题1.已知一次函数y=k某+b的图象如图1-6-1所示,当某<0时,y的取值范围是()A、y>0B、y<0C、-2<y<0D、y<-22.下列关于某的函数中,是一次函数的是()A.y=3(某-1)2B.y=某+C.y=1某9(-,1)28.在下列函数中是一次函数且图象过原点的是()1A.y=-32某B.y=-5某+1C.y=4某+8D.y=-5某49.直线y=3某+4与某轴交于A,与y轴交于B,O为原点,则△AOB的面积为()A.12B.24C.6D.1010.已知函数:①y=-某,②y=7-3某,③y=3某-1,④y=3某2,1-某D.y=(某+3)2-某22某3.如果直线y=k某+b经过一、二、四象限,那么有()某3⑤y=3,⑥y=某中,正比例函数有()A.k>0,b>0B.k>0,b<0A.①⑤B.①④C.①③D.③⑥C.k<0,b<0D.k<0,b>011.如果每盒圆珠笔有12支,售价6元,那么圆ac4.若ab>0,bc<0,则直线y=-某-不通过珠笔的售价y(元)与圆珠笔的支数某(支)bb()之间的关系式是()1A.第一象限B.第一象限C.第三象限A.y=2某B.y=2某C.y=6某D.y=12某D.第四象限315.已知一次函数y=2某+m和y=-2某+n的图象都经过点A(-2,0)且与y轴分别交于B、C两点,那么△ABC的面积是()A.2B.3C.4D.66..在下列函数中,满足某是自变量,y是因变量,b是不等于0的常数,且是一次函数的是()5A.y=2某B.y=-某C.y=-25某+2D.y=某12.一次函数y=3某-2的图象不经过的象限是()A.第一象限B第二象限C.第三象限D.第四象限13.一次函数的图象如图l-6-42所示,那么这个一次函数的表达式是()A.y=-2某+2B.y=-2某-2C.y=2某+2D.y=2某-214.油箱中存油20升,油从油箱中均匀流出,流速为0.2升/分钟,则油箱中剩余油量Q(升)与流出时间t(分钟)的函数关系是()7.直线y=2某+6与某轴交点的坐标是()A.(0,-3)B.(0,3)C.(-3,0)D.A.Q=0.2tB.Q=20-0.2tC.t=0.2QD.t=20—0.2Q15.下列函数中,图象经过原点和二、四象限的为()某A.y=5某B.y=-5C.y=5某+1D.y某=-5+116.次函数y=k某+b,当-3≤某≤1时,对应的y值为1≤y≤9,则k·b的值为()A.14B.-6C.-4或21D.-6或1417.幸福村办工厂,今年前五个月生产某种产品的总量C(件)关于时间t(月)的函数图象如图l-6-43所示,则该工厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减小B.l月至3月生产总量逐月增加,4、5两月生产总量与3月持平C.l月至3月每月生产总量逐月增加,4、5两月均停止生产D.l月至3月每月生产总量不变,4、5两月均停止生产18.已知方程组y=2某+3与13y=2某+2的交点坐标为()A.(l,5)B.(-1,1)C.(l,2)D.(4,l)19.一天,小军和爸爸去登山,已知山脚到山顶ì2某-y=-3í某-2y=-3的路程为300米.小军先走了一段路程,爸爸才开始出发.图l-6-44中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t(分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是()A.爸爸登山时,小军已走了50米B.爸爸走了5分钟,小军仍在爸爸的前面C.小军比爸爸晚到山顶D.爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快20.在函数y=2某+3中当自变量某满足______时,图象在第一象限.21.若函数y=(m—2)某+5-m是一次函数,则m满足的条件是__________.22.一次函数y=2某—6中,y值随某值的增大而23.若正比例函数的图象经过(-l,5)那么这个函数的表达式为__________,y的值随某的减小而____________24.若一次函数y=k某—3经过点(3,0),则k=,该图象还经过点(0,)和(,-2)25.一某市市内出租车行程在4km以内(含则m的取值范围是()1A、m<0B.m>0C.m<2D.m>1228.两个一次函数y1=m某+n,y2=n某+m,它们在同一坐标系中的图象可能是图l-6-2中的()232.已知直线y=某+2与直线y=3某+2交于C29.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图l-6-3所示,那么小李赚了()A.32元B.36元C.38元D.44元30.已知一次函数y=(3a+2)某-(4-b),求字母a、b为何值时:(1)y随某的增大而增大;(2)图象不经过第一象限;(3)图象经过原点;(4)图象平行于直线y=-4某+3;(5)图象与y轴交点在某轴下方.31.如图l-6-39,直线l1、l2相交于点A,l1与某轴的交点坐标为(-1,0),l2与y轴的交点坐标为(0,-2),结合图象解答下列问题:⑴求出直线l2表示的一次函数的表达式;⑵当某为何值时,l1、l2表示的两个一次函数的函数值都大于0?点,直线y=-某+2与某轴交点为A,直线2y=3某+2与某轴交点为B。

2022学年北师大版八年级数学上册【一次函数的应用】训练卷附答案解析

2022学年北师大版八年级数学上册【一次函数的应用】训练卷附答案解析

2022学年北师大版八年级数学上册【一次函数的应用】训练卷一、单选题1.“漏壶”是一种古代计时器,如图所示,在壶内盛一定量的水,水从壶底的小孔漏出,壶内壁画有刻度,人们根据壶中水面的位置计算时间.用x 表示漏水时间,y 表示壶底到水面的高度,不考虑水量变化对压力的影响,下列图象能表示y 与x 对应关系的是()A .B .C .D .2.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:2m )与工作时间t (单位:h )之间的函数关系如图所示.则该绿化组提高工作效率前每小时完成的绿化面积是()A .2150mB .2200mC .2250mD .2300m 3.为了让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 2,打开进水口注水时,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图像如图所示,下列说法错误的是()A .注水2小时,游泳池的蓄水量为380m 3B .该游泳池内开始注水时已经蓄水100m 3C .注水2小时,还需注水100m 3,可将游泳池注满D .每小时可注水190m 34.现有甲、乙两个长方体蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的深度y (米)(小时)之间的函数图象如图所示,当甲、乙两池中水的深度相同时,y 的值为()A .3.2米B .4米C .4.2米D .4.8米5.在平面直角坐标系中,长方形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点,若E 为x 轴上的一个动点,当△CDE 的周长最小时,求点E 的坐标()A .(一3,0)B .(3,0)C .(0,0)D .(1,0)6.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是()A .B .C .D .7.已知A 、B 两地相距600米,甲、乙两人同时从A 地出发前往B 地,所走路程y (米)与行驶时间x (分)之间的函数关系如图所示,则下列说法中:①甲每分钟走100米;②2分钟后,乙每分钟走50米;③甲比乙提前3分钟到达B 地;④当x =2或6时,甲乙两人相距100米.其中,正确的是()A .①②③B .②③④C .①②④D .①②8.A 、B 两地相距350km ,甲骑摩托车从A 地匀速驶向B 地.当甲行驶1小时途径C 地时,一辆货车刚好从C 地出发匀速驶向B 地,当货车到达B 地后立即掉头以原速匀速驶向A 地.如图表示两车与B 地的距离(km)y 和甲出发的时间(h)x 的函数关系.则下列说法错误的是()A .甲行驶的速度为80km/hB .货车返回途中与甲相遇后又经过3h 8甲到B 地C .甲行驶2.7小时时货车到达B 地D .甲行驶到B 地需要35h 8二、填空题9.弹簧的长度()cm y 与所挂物体的质量()kg x 的关系如图所示,则当弹簧所挂物体质量是10kg 时的长度是______cm .10.如图,在平面直角坐标系中有两点(1,4)A ,(2,2)B ,点M 是y 轴上一点,使MA MB +最小,则点M 的坐标为11.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y (千米)与时间t (分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.12.如图,平面直角坐标系内,点A (4,0)与点B (0,8)是坐标轴上两点,点C 是直线y =2x 上一动点(点C 不与原点重合),若△ABC 是直角三角形,则点C 的坐标为_____.13.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明姥姥乘车路程为__________千米.14.甲、乙两车从A 地出发,匀速驶往B 地.乙车出发1h 后,甲车才沿相同的路线开始行驶.甲车先到达B 地并停留30分钟后,又以原速按原路线返回,直至与乙相遇.图中的折线段表示从开始到相遇止,两车之间的距离y (km )与甲车行驶的时间x (h )的函数关系的图象,则(1)=a ___________________.(2)d =___________________.三、解答题15.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标.(3)若3kx b x +<,请直接写出x 的取值范围.16.某公交车每月的支出费用为4000元,每月的乘车人数x (人)与每月的利润y (元)的变化关系如下表所示:(利润=收入费用-支出费用,每位乘客的公交票价是固定不变的):x (人)50010001500200025003000…y (元)3000-2000-1000-010002000…(1)在这个变化过程中,直接写出自变量和因变量;(2)观察表中数据可知,每月乘客量达到_____人以上时,该公交车才会盈利;(3)请你估计每月乘车人数为3500人时,每月的利润为______元;(4)根据表格直接写出y 与x 的表达式,并求出5月份乘客量需达多少人时,可获得5000元的利润.17.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数).(I )根据题意,填写下表:游泳次数101520…x 方式一的总费用(元)150175______…______方式二的总费用(元)90135______…______(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x >20时,小明选择哪种付费方式更合算?并说明理由.18.如图,在平面直角坐标系中,点O 为坐标原点,直线y =kx +b 经过A (-6,0),B (0,3)两点,点C 在直线AB 上,C 的纵坐标为4.(1)求k 、b 的值及点C 坐标;(2)若点D 为直线AB 上一动点,且△OBC 与△OAD 的面积相等,试求点D 的坐标.19.一列快车和一列慢车同时从甲地出发,分别以速度1v 、2v (单位:km/h ,且122v v >)匀速驶向乙地.快车到达乙地后停留了2h ,沿原路仍以速度1v 匀速返回甲地,设慢车行驶的时间为()h x ,两车之间的距离为()km y ,图中的折线表示从慢车出发至慢车到达乙地的过程中,y 与x 之间的函数关系.(1)甲乙两地相距______km;点A实际意义:______;(2)求a,b的值;(3)慢车出发多长时间后,两车相距480km?20.如图①,在A、B两地之间有汽车站C,客车由A地驶往C站,货车由B地驶往A地,两车同时出发,匀速行驶,图②是客车、货车离C站的路程1y、2y(km)与行驶时间x(h)之间的函数图像.(1)客车的速度是km/h;(2)求货车由B地行驶至A地所用的时间;(3)求点E的坐标,并解释点E的实际意义。

一次函数的应用同步练习 2024-2025学年北师大版八年级数学上册

一次函数的应用同步练习 2024-2025学年北师大版八年级数学上册

一次函数的应用[时间: 60分钟分值: 100分]一、选择题(每题4分,共32分)1. 已知正比例函数的图象如图所示,则这个函数的表达式为( )A.y=−12x B. y 12C. y=-2xD. y=2x2.如图,直线y= ax+b过点A(0,2),B(-3,0),则方程ax+b=0的解是( )A. x=2B. x=0C. x=-1D. x=-33.已知方程kx+b=0的解是x=3,则函数y= kx+b的图象可能是( )4.数形结合是解决数学问题常用的思想方法.如图,一次函数y= kx+b(k,b为常数,且k<0)的图象与直线y=13x都经过点A(3,1),当kx+b<13x时,根据图象可知,x的取值范围是( )A. x>3B. x<3C. x<1D. x>15. 小聪在画一次函数的图象时,他列表后,发现题中一次函数y=◆x+◆中的k和b看不清了,根据如下表格可知( )A. k=2,b=3B.k=−23,b=2x 0 3C. k=3,b=2D. k=1,b=-1 y 2 06. 身边的数学一辆汽车油箱中剩余的油量y(L)与已行驶的路程x( km)的对应关系如图所示,如果这辆汽车每千米耗油量相同,当油箱中剩余的油量为35 L时,该汽车已行驶的路程为( )A.150 kmB.165 kmC.125 kmD.350 km7.身体中的数据大拇指与小拇指尽量张开时,两指尖的距离称为“指距”,研究表明,一般情况下,人的身高h ( cm)与指距d( cm)之间的一次函数为h=9d+b,已知当d=20时,h=160,当某人的身高为178 cm时,他的指距约为( )A.21 cmB.22 cmC.23 cmD.24 cm8.甲、乙两车沿同一路线从A城出发前往B城,在整个行程中,汽车离A 城的距离y与时刻t的对应关系如图所示,关于下列结论:①A,B两城相距300 km;②甲车的平均速度是60 km/h,乙车的平均速度是100 km/h;③乙车先出发,先到达B 城;④甲车在9:30追上乙车.正确的有( )A.①②B.①③C.②④D.①④二、填空题(每题5分,共20分)9.如图,已知函数y=2x+b和y= ax-3的图象交于点(-2,-5),根据图象可得关于x 的方程2x+b= ax-3的解是.10.如图,一次函数y= kx+b的图象与正比例函数y=2x的图象互相平行,且经过点A,则一次函数y= kx+b 的表达式为.11.如图,在平面直角坐标系中,直线y=x-6分别与x轴、y轴交于点A,B,点P的坐标为(0,8).若点M在直线AB 上,则PM长的最小值为.12.生活应用快递员经常驾车往返于公司和客户之间.在快递员完成某次投递业务时,他与客户的距离s( km)与行驶时间t(h)之间的函数关系如图所示(因其他业务,曾在途中有一次折返,且快递员始终匀速行驶),那么快递员的行驶速度是km/h.三、解答题(共48分)13.(18 分)如图,在平面直角坐标系中,直线l经过点A(0,2),B(-3,0).(1)求直线l的函数表达式;(2)若点M(3,m)在直线l上,求m的值;(3)若y=-x+n的图象过点B,交y轴于点C,求△ABC的面积.14.(16 分)已知A,B两地之间有一条长440千米的高速公路,甲、乙两车分别从A,B两地同时出发,沿此公路相向而行,甲车先以100千米/小时的速度匀速行驶200 千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止,两车距A 地的路程y(千米)与各自的行驶时间x(小时)之间的函数关系如图所示.(1) m= ,n= ;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A 地的路程.15.(14 分) 我国航天事业发展迅速,2024年4月25 日20时59分,神舟十八号载人飞船成功发射.某玩具店抓住商机,先购进了1 000件相关航天模型玩具进行试销,进价为50元/件.(1)设玩具售价为x元/件,全部售完的利润为y元,求利润y(元)关于售价x(元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好为10 000元,请问该店继续购进了多少件航天模型玩具?一、1. A 2. D 3. C 4. A5. B 【点拨】将x=0,y=2;x=3,y=0分别代入y= kx+b中,得b=2,3k+b=0,解得k=−23.故选B.6. A7. B 【点拨】把d=20,h=160代入h=9d+b,得160=9×20+b,解得b=-20.所以h=9d-20.当h=178时,178=9d-20,解得d= 22.所以他的指距约为22 cm.8. D 【点拨】由图象可知,A,B 两城相距300 km,乙车先出发,甲车先到达B城,故①符合题意,③不符合题意;甲车的平均速度是300÷3=100( km/h),乙车的平均速度是300÷5=60( km/h),故②不符合题意;由图象知,甲车在9:3 0追上乙车,故④符合题意.综上所述,正确的有①④.故选D.二、9. x=-210. y=2x-4 【点拨】由一次函数y= kx+b的图象与正比例函数y=2x的图象互相平行可得k=2,然后把点(1,-2)的坐标代入y=2x+b即可求出b的值.11.√2【点拨】如图,过P点作PQ⊥y轴交直线AB 于Q,由垂线段最短可知,当PM⊥AB时,PM的长有最小值.在y=x-6中,当x=0时,y=-6;当y=8时,x=14,所以B(0,-6), Q(14,8).因为P(0,8),所以PQ=14,PB=14.所以BQ=√BP2+PQ2=14√2.因为S PQB=12BP⋅PQ=12BQ⋅PM,即14×14=14√2PM,所以PM=7√2,所以PM长的最小值为√212.35 【点拨】因为快递员始终匀速行驶,所以快递员的行驶速度是8.750.55−2×(0.35−0.2)=35(km/ℎ).三、13.【解】(1)设直线l的函数表达式为y= kx+b.把点A(0,2),B(-3,0)的坐标分别代入,得b=2,-3k+b=0,解得k=23.所以直线l的函数表达式为y=23x+2(2)当x=3时, 23×3+2=4.所以m=4.(3)因为y=-x+n的图象过点B,所以3+n=0,所以n=-3,所以y=-x-3. 所以当x=0时,y=-3.所以C(0,-3).所以AC=5.因为B(-3,0),所以OB=3.所以S ABC=12AC⋅OB=12×5×3=152.14.【解】(1)2;6(2)两车相遇后,甲车的速度是(440-200)÷(6-2)=60(千米/小时),所以两车相遇后,甲车距A地的路程y与x 之间的函数关系式为y=200+60(x-2)=60x+80(2<x≤6).(3)乙车的速度为(440-200)÷2=120(千米/小时).所以乙车到达A地所需时间为440÷120=113(小时).当x=113时,y=60×113+80=300,所以当乙车到达A地时,甲车距A地的路程为300千米.15.【解】(1)函数表达式为y=1000(x-50)=1000x-50 000.(2)设该店继续购进了m 件航天模型玩具,根据题意,得(60-50)(1000+m)×20%=10 000,解得m=4 000.答:该店继续购进了4 000件航天模型玩具.。

初中数学北师大版八年级上册3.4一次函数的应用练习题

初中数学北师大版八年级上册3.4一次函数的应用练习题

初中数学北师大版八年级上册第四章4一次函数的应用练习题一、选择题1.甲,乙两车在笔直的公路AB上行驶,乙车从AB之间的C地出发,到达终点B地停止行驶,车从起点A地与乙车同时出发到达B地休息半小时后立即以另一速度返回C地并停止行驶,在行驶过程中,两车均保持匀速,甲、乙两车相距的路程y(千米)与乙车行驶的时间x(小时)之间的关系如图所示,下列说法错误的是()A. 乙车行驶的速度为每小时40千米B. 甲车到达B地的时间为7小时C. 甲车返回C地比乙车到B地时间晚3小时D. 甲车全程共行驶了840千米2.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(km)与甲车行驶的时间t(ℎ)之间的函数关系如图所示.下列说法错误的是()A. A,B两城相距300千米B. 乙车比甲车晚出发1小时,却早到1小时C. 乙车出发后1.5小时追上甲车D. 在一车追上另一车之前,当两车相距40千米时,t=323.一条公路旁依次有A,B,C三个村庄,甲乙两人骑自行车分别从A村、B村同时出发前往C村,甲乙之间的距离s(km)与骑行时间t(ℎ)之间的函数关系如图所示,下列结论:①A,B两村相距10km;②出发1.25ℎ后两人相遇;③甲每小时比乙多骑行8km;④相遇后,乙又骑行了15min或65min时两人相距2km.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个4.如图,表示一艘轮船和一艘快艇沿相同路线从甲港岀发到乙港行驶路程随时间变化的图象.则下列结论错误的是()A. 轮船的速度为20千米/时B. 快艇的速度为40千米/时C. 轮船比快艇先出发2小时D. 快艇到达乙港用了6小时5.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A. 甲园的门票费用是60元B. 草莓优惠前的销售价格是40元/kgC. 乙园超过5kg 后,超过的部分价格优惠是打五折D. 若顾客采摘12kg 草莓,那么到甲园或乙园的总费用相同6. 甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个7. 甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A. 甲车的平均速度为60km/ℎB. 乙车的平均速度为100km/ℎC. 乙车比甲车先到B城D. 乙车比甲车先出发1h8.甲、乙两名运动员同时从A地出发前往B地,在笔直的公路上进行骑自行车训练.如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t=0.5或t=2.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个9.在一条公路上每隔100千米有一个仓库(如图),共有五个仓库.1号仓库存有10吨货物,2号仓库存有20吨货物,5号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.5元的运费,那么最少要花()元运费才行.A. 5000B. 5500C. 6000D. 650010.如图,购买一种苹果所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()A. 4元B. 3元C. 2元D. 1元11.一个容器有进水管和出水管,每分钟的进水量和出水量是两个常数.从某时刻开始4min内只进水不出水,从第4min到第24min内既进水又出水,从第24min开始只出水不进水,容器内水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则图中a的值是()A. 32B. 34C. 36D. 38二、填空题12.一条笔直的公路上顺次有A、B、C三地,小明驾车从B地出发匀速行驶前往A地,到达A地后停止,在小明出发的同时,小李驾车从B地出发匀速行驶前往A地,到达A地停留2小时后,调头按原速向C地行驶,若AB两地相距200千米,在行驶的过程中,两人之间的距离y(千米)与小李驾驶时间x(小时)之间的函数图象如图所示,则在他们出发后经过______小时相遇.13.一艘轮船和一艘快艇分别从甲、乙两个港口同时出发(水流速度不计)相向而行,快艇匀速航行到达甲港后,立即原速返回乙港(掉头时间忽略不计),在返回途中追上轮船时刚好到达一个景点,轮船靠岸1小时供游客观赏游玩,然后继续以原速航行到乙港,两船到达乙港均停止航行,轮船和快艇之间的距离y(千米)与轮船出发时间x(小时)之间的函数图象如图所示,当快艇返回到乙港时,轮船距乙港还有______千米.14.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为______米.15.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后______秒与甲相遇.三、解答题x+4与16.如图,在平面直角坐标系xOy中,直线l:y=−43x轴、y轴分别相交于B、A两点,点C是AB的中点,点E、F分别为线段AB、OB上的动点,将△BEF沿EF折叠,使点B的对称点D恰好落在线段OA上(不与端点重合).连接OC分别交DE、DF于点M、N,连接FM.(1)求tan∠ABO的值;(2)试判断DE与FM的位置关系,并加以证明;(3)若MD=MN,求点D的坐标.17.一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1)李越骑车的速度为______米/分钟;F点的坐标为______;(2)求李越从乙地骑往甲地时,s与t之间的函数表达式;(3)求王明从甲地到乙地时,s与t之间的函数表达式;(4)求李越与王明第二次相遇时t的值.18.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.19.小明、小军是同班同学.某日,两人放学后去体育中心游泳,小明16:00从学校出发,小军16:03也从学校出发,沿相同的路线追赶小明.设小明出发x分钟后,与体育中心的距离为y米.如图,线段AB表示y与x之间的函数关系.(1)求y与x之间的函数解析式;(不要求写出定义域)(2)如果小军的速度是小明的1.5倍,那么小军用了多少分钟追上小明?此时他们距离体育中心多少米?答案和解析1.【答案】D【解析】解:图象过(0,60)点,因此AC的距离为60千米,过(3,0),说明经过3小时,甲追上乙,可求出速度的差为20千米/时,两辆的最大距离为80千米,说明甲到达B地,而乙还在途中,可得甲从追上乙到B地由用了80÷20=4小时,因此甲行全程用3+4=7小时,故B选项正确的;当甲在B地休息半小时,两车的距离减少80−60=20千米,说明乙车用半小时行20千米,求得乙的速度为40千米/小时,故A选项是正确的;再根据速度差为20千米/小时,可求出甲的速度为40+20=60千米/小时,故全程为60×7=420千米;C地到B地的距离为360千米,甲从A地到B地然后返回到C共行驶360+420=780千米.故D选项是不正确的;故选:D.图象过(0,60)点,因此AC的距离为60千米,过(3,0),说明经过3小时,甲追上乙,可求出速度的差为20千米/时,两辆的最大距离为80千米,说明甲到达B地,而乙还在途中,可得甲从追上乙到B地由用了80÷20=4小时,因此甲行全程用3+4=7小时,当甲在B地休息半小时,两车的距离减少80−60=20千米,说明乙车用半小时行20千米,求得乙的速度为40千米/小时,根据速度差为20千米/小时,可求出甲的速度为40+20=60千米/小时,故全程为60×7=420千米;C地到B地的距离为240千米,甲从A地到B地然后返回到C共行驶240+420=660千米.考查对函数意义的理解以及从图象获取知识的能力,进一步结合实际问题体会自变量、因变量的变化关系,熟练掌握行程类应用题的数量关系是解决问题的重中之重.2.【答案】D【解析】解:由图象可知A、B两城市之间的距离为300km,故A正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,=60t,∴y甲设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得{m +n =04m +n =300,解得{m =100n =−100,∴y 乙=100t −100,令y 甲=y 乙可得:60t =100t −100,解得t =2.5, 即甲、乙两直线的交点横坐标为t =2.5, 乙的速度:150÷(2.5−1)=100, 乙的时间:300÷100=3,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故B 正确;甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故C 正确;乙在甲后面40km 时,y 甲−y 乙=40,可得60t −100t +100=40,解得t =32,乙车在甲车前面40km 时,100t −100−60t =40或60t =300−40,解得t =72或t =133.即在一车追上另一车之前,当两车相距40千米时,t =32或t =72或t =133,故D 错误.故选:D .由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为40,可求得t ,可得出答案. 本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.3.【答案】D【解析】解:由图象可知A 村、B 村相离10km ,故①正确,当1.25ℎ时,甲、乙相距为0km ,故在此时相遇,故②正确,当0≤t ≤1.25时,易得一次函数的解析式为s =−8t +10,故甲的速度比乙的速度快8km/ℎ.故③正确当1.25≤t ≤2时,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s =kt +b 代入得{0=1.25k +b 6=2k +b ,解得{k =8b =−10∴s =8t +10当s =2时.得2=8t −10,解得t =1.5ℎ由1.5−1.25=0.25ℎ=15min同理当2≤t ≤2.5时,设函数解析式为s =kt +b 将点(2,6)(2.5,0)代入得 {0=2.5k +b 6=2k +b ,解得{k =−12b =30∴s =−12t +30当s =2时,得2=−12t +30,解得t =73 由73−1.25=1312ℎ=65min故相遇后,乙又骑行了15min 或65min 时两人相距2km ,④正确. 故选:D .根据图象与纵轴的交点可得出A 、B 两地的距离,而s =0时,即为甲、乙相遇的时候,同理根据图象的拐点情况解答即可.此题为一次函数的应用,渗透了函数与方程的思想,重点是读懂图象,根据图象的数据进行解题.4.【答案】D【解析】解:观察图象,可知轮船出发4小时后被快艇追上,所以错误的是第四个结论. 故选:D .观察图象,该函数图象表示的是路程与之间的函数关系,可知轮船出发4小时后被快艇追上,在4小时时快艇和轮船行驶的路程相等.本题考查了一次函数的图象的运用,行程问题的数量关系的运用,解答时分析清楚函数图象提供的信息是关键.5.【答案】D【解析】解:由图象可得,甲园的门票为60元,故选项A 正确;乙园草莓优惠前的销售价格是:200÷5=40(元/千克),故选项B 正确;400−20015−5÷40=0.5,即乙园超过5kg 后,超过的部分价格优惠是打5折,故选项C 正确;若顾客采摘12kg 草莓,甲园花费为:60+12×40×0.6=344(元),乙园的花费为:40×5+(12−5)×40×0.5=340(元),∵344>340,∴若顾客采摘12kg 草莓,那么到甲园比到乙园的总费用高,故选项D 错误; 故选:D .根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.6.【答案】B【解析】 【分析】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t 是甲车所用的时间.观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t ,可判断④,可得出答案. 【解答】解:由图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时, ∴①②都正确;设甲车离开A 城的距离y 与t 的关系式为y 甲=kt , 把(5,300)代入可求得k =60, ∴y 甲=60t ,设乙车离开A 城的距离y 与t 的关系式为y 乙=mt +n , 把(1,0)和(4,300)代入可得{m +n =04m +n =300,解得{m =100n =−100,∴y 乙=100t −100,令y 甲=y 乙可得:60t =100t −100,解得t =2.5, 即甲、乙两直线的交点横坐标为t =2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车, ∴③不正确;令|y 甲−y 乙|=50,可得|60t −100t +100|=50,即|100−40t|=50, 当100−40t =50时,可解得t =54, 当100−40t =−50时,可解得t =154,又当t =56时,y 甲=50,此时乙还没出发,当t =256时,乙到达B 城,y 甲=250;综上可知当t 的值为54或154或56或256时,两车相距50千米, ∴④不正确;综上可知正确的有①②共两个, 故选:B .7.【答案】D【解析】解:由图象知: A .甲车的平均速度为30010−5=60km/ℎ,故A 选项不合题意;B .乙车的平均速度为3009−6=100km/ℎ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D .甲5时出发,乙6时出发,所以乙比甲晚出发1h ,故此选项错误, 故选:D .根据图象逐项分析判断即可.本题考查了一次函数的应用,函数的图象,正确识别图象并能提取相关信息是解答的关键.8.【答案】B【解析】解:①甲的速度为1203=40,故正确;②t ≤1时,已的速度为501=50,t >1后,乙的速度为120−503−1=35,故错误;③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确; ④由①②③得:甲的函数表达式为:y =40x ,已的函数表达为:0≤t ≤1时,y =50x ,t >1时,y =35x +15, t =0.5时,甲、乙两名运动员相距=50×12−40×12=5,t=2时,甲、乙两名运动员相距=(35×2+15)−2×40=5,同理t=4时,甲、乙两名运动员相距为5,故错误.故选:B.①甲的速度为1203,即可求解;②t≤1时,乙的速度为501=50,t>1后,乙的速度为120−503−1=35,即可求解;③行驶1小时时,甲走了40千米,乙走了50千米,即可求解;④甲的函数表达式为:y=40x,乙的函数表达为:0≤t≤1时,y=50x,t>1时,y=35x+15,即可求解.本题为一次函数应用题,此类问题主要通过图象计算速度,即为一次函数的k值,进而求解.9.【答案】A【解析】解:设把所有的货物集中存放在x号仓库里,需要的总运费为w元,当x≤2时,w=10×(x−1)×100×0.5+20×(2−x)×100×0.5+40×(5−x)×100×0.5=−2500x+11500,∵−2500<0,∴w随x的增大而减小,∴当x=2时,w取得最小值,最小值=−2500×2+11500=6500;当2<x≤5时,w=10×(x−1)×100×0.5+20×(x−2)×100×0.5+40×(5−x)×100×0.5=−500x+7500,∵−500<0,∴w随x的增大而减小,∴当x=5时,w取得最小值,最小值=−500×5+7500=5000.∵6500>5000,∴最少要花5000元运费才行.故选:A.设把所有的货物集中存放在x号仓库里,需要的总运费为w元,分x≤2及2<x≤5两种情况,根据总运费=1号仓库货物转运需要的费用+2号仓库货物转运需要的费用+5号仓库货物转运需要的费用,即可得出w关于x的函数关系式,再利用一次函数的性质可求出每段的最小值,比较后即可得出结论.本题考查了一次函数的应用,分x≤2及2<x≤5两种情况,利用各数量之间的关系找出w关于x的函数关系式.10.【答案】C【解析】解:由图象可得,当0<x≤2时,每千克苹果的单价是20÷2=10(元),当x>2时,每千克苹果的单价是(36−20)÷(4−2)=8(元),故一次购买3千克这种苹果需要花费:10×2+8×(3−2)=28(元),分三次每次购买1千克这种苹果需要花费:10×3=30(元),30−28=2(元),即一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元,故选:C.根据函数图象中的数据,可以得到0<x≤2和x>2时的苹果单价,然后即可算出一次购买3千克这种苹果的花费和分三次每次购买1千克这种苹果的花费,再作差即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】C【解析】解:由图象可知,进水的速度为:20÷4=5(L/min),出水的速度为:5−(35−20)÷(16−4)=3.75(L/min),第24分钟时的水量为:20+(5−3.75)×(24−4)=45(L),a=24+45÷3.75=36.故选:C.根据图象可知进水的速度为5(L/min),再根据第16分钟时容器内水量为35L可得出水的速度,进而得出第24分钟时的水量,从而得出a的值.此题考查了一次函数的应用,解题时首先正确理解题意,利用数形结合的方法即可解决问题.12.【答案】427【解析】解:∵最终两车相距400千米,∴A、C两地相距400千米.小李的速度为(200+400)÷(8−2)=100(千米/小时),小李从B 到达A 地的时间为200÷100=2(小时), 小明的速度为(200−120)÷3=40(千米/小时),小李从A 地返回时,两车的间距为200−40×4=40(千米), 两车相遇的时间为4+40100+40=427(小时) 故答案为:427.观察函数图象可知A 、C 两地的间距,由速度=路程÷时间可求出小李的速度,结合小明、小李速度间的关系可求出小明的速度,再求出小李从A 地返回时,两车的间距,依据相遇时间=4+两车间的间距÷两车速度和,即可求出小明、小李相遇的时间. 本题考查了一次函数的应用,观察函数图象结合数量关系,列式计算是解题的关键.13.【答案】65【解析】解:设轮船的速度为x 千米/小时,快艇的速度为y 千米/小时,依题意得: {2.5(x +y)=1505(y −x)=150, 解得{x =15y =45,150−15×(300÷45−1)=65(千米).答:当快艇返回到乙港时,轮船距乙港还有65千米. 故答案为:65根据题意可知甲、乙两个港口相距150千米,轮船和快艇第一次相遇用了2.5小时,第二次相遇用了5小时,根据“路程、速度与时间的关系”列方程组即可分别求出轮船和快艇的速度,再根据题意列式计算即可求出当快艇返回到乙港时,轮船距乙港的路程. 本题考查的是用一次函数解决实际问题,以及待定系数法求函数的解析式,注意利用数形结合可以加深对题目的理解.14.【答案】1500【解析】解:由图可得,小宁跑步的速度为:(4500−3500)÷5=200m/min ,则步行速度为:200×12=100m/min ,设小宁由跑步变为步行的时刻为a 分钟, 200a +(35−a)×100=4500, 解得,a =10,设小强骑车速度为xm/min,200(10−5)+(10−5)x=3500−1000,解得,x=300,即小强骑车速度为300m/min,小强到家用的时间为:4500÷300=15min,则当弟弟小强到家时,小宁离图书馆的距离为:4500−10×200−(5+15−10)×100=1500m,故答案为:1500.根据题意和函数图象可以求得小宁的跑步速度和步行速度,从而可以求得小宁由跑步变为步行的时刻,进而求得小强骑车速度,再根据题意即可得到则当弟弟到家时,小宁离图书馆的距离.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.【答案】30【解析】解:由图象可得V甲=9030=3m/s,V追=90120−30=1m/s,故V乙=1+3=4m/s,则乙走完全程所用的时间为:12004=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200−990=210m则最后相遇的时间为:2103+4=30s故答案为:30由图象可以V甲=9030=3m/s,V追=90120−30=1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:12004=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.16.【答案】解:(1)直线l:y=−43x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0);tan∠ABO=OAOB =43=tanα;(2)DE 与FM 的位置关系为相互垂直,理由: 点C 是AB 的中点,则∠COB =∠CBO =∠EDF =α,∠ONF =∠DNM , ∴∠DMN =∠DFO , ∴O 、F 、M 、D 四点共圆, ∴∠DMF +∠DOF =180°, ∴∠DOF =90°,即:DE ⊥FM ;(3)MD =MN ,∴∠MDN =∠MND =α,而∠COB =α,∠DNM =∠ONF =α,即△OCF 为以ON 为底,底角为α的等腰三角形, 则tan∠NFO =NH NF=247=tanβ,则cosβ=725(证明见备注);设OF =m ,则DF =FB =3−m , cos∠DFO =cosβ=m3−m , 解得:m =2132,OD 2=DF 2−OF 2=(3−m)2−m 2=8116; 则OD =94, 故点D(0,94).备注:如下图,过点N 作HN ⊥OF 于点H ,tanα=43,则sinα=45,作FM ⊥ON 于点M , 设FN =OF =5a ,则FN =4a ,则ON =6a , 同理可得:NH =24a 5,tan∠NFO=NHNF =247=tanβ,则cosβ=725.【解析】(1)直线l:y=−43x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0),即可求解;(2)证明O、F、M、D四点共圆,即可求解;(3)MD=MN,∠MDN=∠MND=α,而∠COB=α,∠DNM=∠ONF=α,即△OCF为以ON为底,底角为α的等腰三角形,则tan∠NFO=NHNF =247=tanβ,则cosβ=725,设OF=m,则DF=FB=3−m,cos∠DFO=cosβ=m3−m ,解得:m=2132,OD2=DF2−OF2=(3−m)2−m2=8116;即可求解.本题考查的是一次函数综合运用,涉及到圆的基本知识、解直角三角形等,综合性强,难度很大.17.【答案】240 (25,0).【解析】解:(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,2400÷96=25,所以F点的坐标为(25,0).故答案为:240;(25,0);(2)设李越从乙地骑往甲地时,s与t之间的函数表达式为s=kt,2400=10k,得k=240,即李越从乙地骑往甲地时,s与t之间的函数表达式为s=240t,故答案为:s=240t;(3)设王明从甲地到乙地时,s与t之间的函数表达式为s=kt+2400,根据题意得,25k+2400=0,解得k=−96,所以王明从甲地到乙地时,s与t之间的函数表达式为:s=−96x+2400;(4)根据题意得,240(t−2)−96t=2400,解得t=20.答:李越与王明第二次相遇时t 的值为20.(1)由函数图象中的数据可以计算出李越骑车的速度,根据王明步行的速度可得F 点的坐标;(2)运用待定系数法,即可求出李越从乙地骑往甲地时,s 与t 之间的函数表达式;(3)运用待定系数法,可得王明从甲地到乙地时,s 与t 之间的函数表达式;(4)根据题意列方程解答即可.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.【答案】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480t,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将t =6代入v =480t 得v =80;将t =245代入v =480t 得v =100.∴小汽车行驶速度v 的范围为:80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t 得v =9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B 地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解;(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v 关于t 的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v 关于t 的函数表达式,可得速度大于120千米/时,从而得答案.本题是反比例函数在行程问题中的应用,根据时间、速度和路程的关系可以求解,本题属于中档题. 19.【答案】解:(1)设y 与x 之间的函数解析式为y =kx +b ,{b =60010k +b =0,得{k =−60b =600, 即y 与x 之间的函数解析式为y =−60x +600;(2)小明的速度为:600÷10=60米/分钟,则小军的速度为:60×1.5=90米/分钟,设小军用了a分钟追上小明,90a=60(a+3),解得,a=6,当a=6时,他们距离体育中心的距离是600−90×6=60米,答:小军用了6分钟追上小明,此时他们距离体育中心60米.【解析】(1)根据函数图象中的数据可以求得y与x之间的函数解析式;(2)根据图象中的数据可以分别得甲乙的速度,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。

【北师大版】初二数学第一学期一次函数的应用同步练习

【北师大版】初二数学第一学期一次函数的应用同步练习

【知识点考查题】一、容易题1.(2017届黑龙江哈尔滨松北区九年级上期末)甲、乙两车沿同一平直公路由A 地匀速行驶(中途不停留),前往终点B 地,甲、乙两车之间的距离S (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.下列说法:①甲、乙两地相距210千米;②甲速度为60千米/小时;③乙速度为120千米/小时; ④乙车共行驶321小时,其中正确的个数为( )A .1个B .2个C .3个D .4个2.(2016-2017学年广西玉林市九年级上期末)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 23.(2016—2017学年江苏宿迁现代实验学校八年级上第二次月考)在同一坐标系中,正比例函数y=kx 与一次函数y=x -k 的图象为( )4.(2017届北京十三中九年级上期中)如图1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发沿图中某一个扇形顺时针匀速运动,设∠APB=y(单位:度),如果y与点P 运动的时间x(单位:秒)的函数关系的图象大致如图2所示,那么点P的运动路线可能为( )A.O→B→A→O B.O→A→C→O C.O→C→D→O D.O→B→D→O二、中等题5.(2016届重庆育才成功学校中考一诊)在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(米)与所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,下列说法正确的是()A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180秒时,两人相遇D.在起跑后50秒时,小梅在小莹的前面6.(2016届天津河西区中考模拟数学)如图是自行车骑行训练场地的一部分,半圆O的直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A点停止.设运动时间为t,点B到直线OC的距离为d,则下列图象能大致刻画d与t之间的关系是()A.B.C.D.水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A. B. C. D.8.(2016届黑龙江哈尔滨香坊区中考模拟)随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:(1)“快车”行驶里程不超过5公里计费8元;(2)“顺风车”行驶里程超过2公里的部分,每公里计费1。

2021-2022学年北师大版八年级数学上册《一次函数的应用》期末综合复习训练(附答案)

2021-2022学年北师大版八年级数学上册《一次函数的应用》期末综合复习训练(附答案)

2021-2022学年北师大版八年级数学上册《一次函数的应用》期末综合复习训练(附答案)1.速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=40,则b=.其中说法正确的是()A.①②③B.①④C.①②D.①③2.小明和小李住在同一个小区,暑假期间,他们相约去缙云山某地露营;小明先出发5分钟后,小李以65米/分的速度从小区出发,小明到达相约地点后放下装备,休息了10分钟,立即按原路以另一速度返回,途中与小李相遇,随后他们一起步行到达目的地.小李与小明之间的距离y(米)与小明出发的时间x(分)之间的关系如图,则下列说法正确的是()A.小明首次到达目的地之前的速度是75米/分B.小明首次到达目的地时,小李距离目的地还有200米C.从小区到目的地路程为2800米D.小明返回时的速度是33米/分3.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了36分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个4.甲、乙两车从A地出发,沿同一路线驶向B地,甲车先出发匀速驶向B地,40min后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地.甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示,则下列说法:①a=4.5;②甲的速度是60km/h;③乙刚开始的速度是80km/h;④乙出发第一次追上甲用时80min.其中正确的是()A.①②③B.①②④C.①③④D.①②③④5.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离乙地的距离y(单位:km)与慢车行驶时间x(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.h B.h C.h D.2h6.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距13km.其中正确的结论有()A.1个B.2个C.3个D.4个7.货车和轿车分别沿同一路线从A地出发去B地,已知货车先出发10分钟后,轿车才出发,当轿车追上货车5分钟后,轿车发生了故障,花了20分钟修好车后,轿车按原来速度的继续前进,在整个行驶过程中,货车和轿车均保持各自的速度匀速前进,两车相距的路程y(米)与货车出发的时间x(分钟)之间的关系的部分图象如图所示,对于以下说法:①货车的速度为1500米/分;②OA∥CD;③点D的坐标为(65,27500);④图中a的值是,其中正确的结论有()个.A.1B.2C.3D.48.已知A、B两地相距810千米,甲车从A地匀速前往B地,到达B地后停止.甲车出发1小时后,乙车从B地沿同一公路匀速前往A地,到达A地后停止.设甲、乙两车之间的距离为y(千米),甲车出发的时间为x(小时),y与x的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F的坐标是(9,540);③图中a的值是13.5;④当甲、乙两车相遇时,两车相遇地距A地的距离为360千米.其中正确的结论是()A.①②③B.①②④C.②③④D.①③④9.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了6.5小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是()A.1B.2C.3D.410.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:h)的函数关系如图,则两车先后两次相遇的间隔时间是()A.h B.h C.h D.h11.笔直的海岸线上依次有A,B,C三个港口,甲船从A港口出发,沿海岸线匀速驶向C 港口,1小时后乙船从B港口出发,沿海岸线匀速驶向A港口,两船同时到达目的地.甲船的速度是乙船的1.25倍,甲、乙两船与B港口的距离y(km)与甲船行驶时间x(h)之间的函数关系如图所示.给出下列说法:①A,B港口相距400km;②乙船的速度为80km/h;③B,C港口相距200km;④乙船出发4h时,两船相距220km.其中正确是(填序号).12.小明早8点从家骑自行车出发,沿一条直路去公园锻炼,小明出发的同时,他的爸爸锻炼结束从公园沿同一条道路匀速步行回家;小明在公园锻炼了一会后沿原路以原速返回,小明比爸爸早3分钟到家.设两人离家的距离s(m)与小明离开家的时间t(min)之间的函数关系如图所示,有以下说法:①公园与家的距离为1200米;②爸爸的速度为48m/min;③小明到家的时间为8:22;④小明在返回途中离家360米处与爸爸相遇.其中,说法正确的是:(请把正确说法的序号都填在横线上).13.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子先到达终点;③乌龟比兔子晚出发40分钟;④兔子在760米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)14.小明和小杰在同一直道的A,B两点间作匀速往返走锻炼(忽略掉头等时间).小明从A 地出发,同时小杰从B地出发,两人第一次相遇时小明曾停下接电话数分钟.图中的折线表示从开始到小杰第一次到达A地止,两人之间的距离y(米)与行走时间x(分)的函数关系图象.则图中的b=米,d=分.15.甲、乙两车分别从A、B两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为2:3,甲、乙两车离AB中点C的路程y(千米)与甲车出发时间t(时)的关系图象如图所示,则下列说法①乙车的速度为90千米/时;②a的值为;③b的值为150;④当甲、乙车相距30千米时,甲行走了h或h.正确的是.16.甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论正确的是.①a的值为40;②当1.5<x≤7时,甲车行驶路程y与时间x的函数表达式为y=40x﹣20;③乙车比甲车早1.5h到达B地;④乙车行驶0.5h或2.5h时,两车恰好相距40km.17.甲、乙两人相约周末沿同一条路线登山,甲、乙两人距地面的高度y(米)与登山时间x(分钟)之间的函数图象如图所示,根据图象所提供的信息解答下列问题.(1)甲登山的速度是多少?(2)乙到达A地后决定提速,提速后乙的速度是甲登山速度的3倍,求乙登山全过程中,登山时距地面的高度y(米)与登山时间x(分钟)之间的函数解析式;(3)在(2)的条件下,当x为多少时,甲、乙两人距地面的高度差为80米?18.如图,在平面直角坐标系中,一次函数y=﹣x+b的图象与x轴,y轴分别交于B,C两点,与正比例函数y=x的图象交于点A,点A的横坐标为4.(1)求A,B,C三点的坐标;(2)若动点M在线段OA上运动,当三角形OMC的面积是三角形OAC的面积的时,求点M的坐标;(3)若点P(m,1)在三角形AOB的内部(不包括边界),求m的取值范围.19.已知A、B两地间有C地,客车由A地驶向C地,货车由B地经过C地去A地(客货车在A、C两地间沿同一条路行驶),两车同时出发,匀速行驶.货车的速度是客车速度的.如图是客车、货车离C站的路程y(km)与行驶时间x(h)的函数关系图象.(1)求货车的速度并求A、B两地间的路程.(2)求客车y与x的函数关系式并直接写出货车y与x的函数关系式.(3)求点P的坐标并说出点P的实际意义.(4)出发后经过多长时间两车间路程是70km?20.如图,在平面直角坐标系中,O为坐标原点,已知直线y=﹣x+8与x轴、y轴分别交于B、A两点.直线OD⊥直线AB于点D.现有一点P从点D出发,沿线段DO向点O 运动,另一点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止.设运动时间为t秒.(1)点A的坐标为.(2)设△OPQ的面积为S,问当t为何值时S的值最大?最大值是多少?(3)是否存在某一时刻t,使得△OPQ为等腰三角形?若存在,直接写出所有满足条件的t的值;若不存在,则说明理由.21.甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求乙车从B地到达A地的速度;(2)求乙车到达B地时甲车距A地的路程;(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.22.如图,在平面直角坐标系中,直线AB:y=﹣x+3,与x轴,y轴交于点A、B,直线x =﹣1与直线AB交于点D,直线l过点A,与y轴交于点C,点C的纵坐标是﹣.(1)求直线AC的解析式;(2)在直线l上是否存在点P,点P在直线x=﹣1的左侧,使得S△ABC=S△PDB,若存在,请求出点P的坐标,若不存在,请说明理由.(3)在第(2)问的条件下,点Q是线段PD的动点,过点Q做QM∥x轴,交直线AB 与点M,在x轴上是否存在点N,使得△QMN为等腰直角三角形,若存在,请直接写出点N的坐标,若不存在,请说明理由.23.如图,在平面直角坐标系中,O为坐标原点,一次函数y=x+4与x轴,y轴分别交于点B,点A,点C的坐标为C(5,0),点P是射线BO上一动点.(1)点A的坐标是;点B的坐标是;(2)连接AP,若△ABP的面积为10,求点P的坐标;(3)当点P在射线BO上运动时,若△APC是等腰三角形,请直接写出点P的坐标.24.在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.设甲、乙两人到C 村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题.(1)A,C两村间的距离为km,a=.(2)求出图中点P的坐标,并解释该点坐标所表示的实际意义.(3)乙在行驶过程中,何时距甲20km.25.某剧院举行新年专场音乐会,成人票每张40元,学生票每张10元,剧院制定了两种优惠方案,且每个团体购票时只能选择其中一种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与x(x≥4)名学生去观赏这次音乐会,设用方案1和方案2付款的总金额分别为y1(元)和y2(元).(1)分别求出y1、y2与x之间的函数关系式;(2)当学生人数为20名时,请通过计算说明哪种方案更优惠;(3)请通过计算说明:当学生人数为多少时,选择两种方案一样优惠?26.为全面打造“艺美郓城”美育品牌,逐步形成具有郓城特色的美育体系.某校学生展示花鼓表演,在笔直的跑道两端有A、B两地相距240米,甲队从A地跑到B地,乙队从B 地跑到A地.已知乙队的速度是甲队的2倍,两队同时出发,乙队到达A地后12分钟甲队到达B地.(1)求甲队每分钟跑米;(2)如图表示的是甲、乙两队离B地的距离S(米)与时间t(分钟)之间的函数图象,请分别求出甲、乙两队的函数关系式,并求出甲、乙两队相遇时t的值;(3)求甲、乙两队相距30米时t的值.27.小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是米;小明在书店停留了分钟;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(3)请直接写出小明出发后多长时间离家的距离为900米?28.A、B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是(填“l1”或“l2”);甲的速度是km/h,乙的速度是km/h.(2)甲出发多长时间两人相遇?(3)甲出发多长时间后两人恰好相距5km?参考答案1.解:①两车的速度之差为80÷(b+2﹣b)=40(km/h),∴a=100﹣40=60,结论①正确;②两车第一次相遇所需时间=(h),∵s的值不确定,∴b值不确定,结论②不正确;③两车第二次相遇时间为b+2+=b+(h),∴c=b+,结论③正确;④∵b=,s=40,∴b=1,结论④不正确.故选:D.2.解:小明首次到达目的地之前的速度是=80(米/分),故A不正确;两地间的距离为:80×35=2800(米),小李在小明到达目的地时行走的路程为:65×(35﹣5)=65×30=1950(米),∴2800﹣1950=850(米),此时,小李距目的地还有850米,故B不正确;C正确;D、850﹣65×10=200(米),200÷(47﹣45)=100(米/分),100﹣65=35(米/分),故D不正确;故选:C.3.解:由题意可得:甲步行速度==60(米/分);故①结论正确;设乙的速度为:x米/分,由题意可得:16×60=(16﹣4)x,解得x=80,∴乙的速度为80米/分;∴乙走完全程的时间==30(分),故②结论错误;由图可得,乙追上甲的时间为:16﹣4=12(分);故③结论错误;乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360(米),故④结论错误;故正确的结论有①共1个.故选:A.4.解:由图象可得,a=4+0.5=4.5,故①正确;甲的速度是460÷(7+)=60(km/h),故②正确;设乙刚开始的速度是vkm/h,则后来的速度为(v﹣50)km/h,4v+(7﹣4.5)×(v﹣50)=460,解得v=90,故③错误;设乙出发第一次追上甲用时th,90t=60(t+),解得t=,h=80min,故④正确;故选:B.5.解:根据图象可知,慢车的速度为=60(km/h).对于快车,由于往返速度大小不变,总共行驶时间是(9﹣3)h,故其速度为=180(km/h).所以对于慢车,y与t的函数表达式为y=540﹣60x(0≤x≤9)①.对于快车,设当3≤x≤6时,y与x的函数表达式为y=kx+b,由题意得:,解得:,∴对于快车,当3≤x≤6时,y与x的函数表达式为y=﹣180x+1080②,对于快车,设当6<x≤9时,y与x的函数表达式为y=kx+b,由题意得:,解得:,∴对于快车,当3≤x≤6时,y与x的函数表达式为y=180x﹣1080③,联立①②,可解得交点横坐标为x=,联立①③,可解得交点横坐标为x=,因此,两车先后两次相遇的间隔时间是﹣=(h),故选:B.6.解:由图象可得,乙车出发1.5小时后甲乙相遇,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是km/h,故③正确;当乙车出发2小时时,两车相距:20+(2﹣1.5)×40﹣×2=km,故④错误;故选:B.7.解:①由图象可知,当x=10时,轿车开始出发;当x=45时,轿车开始发生故障,则x=45﹣5=40(分钟),即货车出发40分钟时,轿车追上了货车,设货车,轿车的速度分别为m米/分,n米/分,根据题意,得,解得,所以货车的速度为1500米/分,故①正确;②由题意可知,OA段货车在行驶,轿车停止;CD段货车在行驶,轿车发生故障停止,则OA与x轴夹角和CD与x轴夹角相等,所以OA∥CD,故②正确;③轿车故障花了20分钟修好,由题意图象可知,B点时x=45,此时轿车开始分钟故障,D点时轿车刚修好,即此时x=45+20=65,∴D点纵坐标为:(20﹣)×1500=30000﹣2500=27500,∴D点坐标为:(65,27500),故③正确;④在D点时,轿车的速度变为原来的,即此时轿车的速度为:2000×=1800(米/分),D点坐标为:(65,27500),到x=a时轿车开始追赶货车直到两车相遇,∴(a﹣65)×(1800﹣1500)=27500,解得a=65+=,即图中a的值是,故④正确.综上所述,正确的结论①②③④.故选:D.8.解:由图象可知,甲车行驶的速度为(810﹣750)÷1=60(千米/时),设乙车的速度为x千米/时,根据题意得:6×60+(6﹣1)x=810,解得x=90.即乙车的速度为90千米/时,故①正确;乙车从B地到达A地的时间为810÷90=9(小时),∵甲车出发1小时后,乙车从B地沿同一公路匀速前往A地,∴甲车行驶的时间为9+1=10(小时),∴甲车10小时行驶的路程为60×10=600(千米),∴点F的坐标为(10,600),故②错误;甲车从A地匀速前往B地的时间为810÷60=13.5(小时),∴a=13.5,故③正确;当甲、乙两车相遇时,甲车行驶了6小时,行驶的路程为60×6=360(千米),故④正确,综上,正确的结论是①③④,故选:D.9.解:由题意,得m=1.5﹣0.5=1,故①结论正确;120÷(3.5﹣0.5)=40(km/h),则a=40,故②结论正确;设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得:,解得,∴y=40x﹣20(1.5<x≤7),当y=260时,260=40x﹣20,解得:x=7,∴甲车从A地到B地共用了7小时,故③结论错误;当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得:,解得,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,∴﹣2=,﹣2=,所以乙车行驶小时或小时,两车恰好相距50km,故④结论错误.∴正确结论的个数是2个.故选:B.10.解:根据图象可知,慢车的速度为.对于快车,由于往返速度大小不变,总共行驶时间是4 h,因此单程所花时间为2 h,故其速度为.所以对于慢车,y与t的函数表达式为①.对于快车,y与t的函数表达式为y=,联立①②,可解得交点横坐标为t=3,联立①③,可解得交点横坐标为t=4.5,因此,两车先后两次相遇的间隔时间是1.5,故选:B.11.解:由题意和图象可知,A、B港口相距400km,故①正确;∵甲船4个小时行驶了400km,∴甲船的速度为:400÷4=100(km/h),∵甲船的速度是乙船的1.25倍,∴乙船的速度为:100÷1.25=80(km/h),故②正确;∵乙船的速度为80km/h,∴400÷80=(400+s BC)÷100﹣1,解得:s BC=200km,故③正确;乙出发4h时两船相距的距离是:4×80+(4+1﹣4)×100=420(km),故④错误.故答案为:①②③.12.解:由图象可得,公园与家的距离为1200米,故①正确;爸爸的速度为:1200÷(12+10+3)=48(m/min),故②正确;∵10+12+10=22(min),∴小明到家的时间为8:22,故③正确;小明的速度为:1200÷10=120(m/min),设小明在返回途中离家a米处与爸爸相遇,=12+,解得,a=240,即小明在返回途中离家240米处与爸爸相遇,故④不正确;故答案为:①②③.13.解:由函数图象可得,“龟兔再次赛跑”的路程为1000米,故①说法正确;兔子先到达终点,故②说法正确;兔子比乌龟晚出发40分钟,故③说法错误;当40≤x≤60时,设y1与x的函数关系式为y1=kx+b,∵点(40,600),(60,1000)在该函数图象上,∴,解得,∴当40≤x≤60时,y1与x的函数关系式为y1=20x﹣200;当40≤x≤50时,设y2与x的函数关系式为y2=mx+n,∵点(40,0),(50,1000)在该函数图象上,∴,解得,即当40≤x≤50时,y2与x的函数关系式为y2=100x﹣4000;令20x﹣200=100x﹣4000,解得x=47.5,∴当x=47.5时,此时y1=y2=750,即兔子在750米处追上乌龟,故④错误;故答案为:①②.14.解:由折线可知小杰的速度为:4200÷70=60米/分,且=60,解得c=30,则两人速度和为4200÷30=140米/分,故小明速度为:140﹣60=80米/分,d点表示小明到达B地开始返向,4200=30×80+(d﹣40)×80,得d=62.5,则a=62.5×60=3750,b=3750﹣(80﹣60)×7.5=3600.故答案为:3600,62.5.15.解:①A、B两地之间的距离为30×2÷(﹣)=300(千米),∴出发时,甲、乙两车离AB中点C的路程是300÷2=150(千米),即b=150,③正确;②乙车的速度为(150+30)÷2=90(千米/小时),①正确;③甲车的速度为(150﹣30)÷2=60(千米/小时),∴a的值为150÷60=,③正确;④设出发xh甲、乙车相距30千米,则(90+60)x=300﹣30或(90+60)x=300+30,解得:x=或x=,故④错误.综上所述:正确的结论有①②③.故答案为:①②③.16.解:a=120÷(3.5﹣0.5)×1=40,故①正确;当1.5<x≤7时,设甲车行驶路程y与时间x的函数表达式为y=kx+b,,得,即当1.5<x≤7时,甲车行驶路程y与时间x的函数表达式为y=40x﹣20,故②正确;乙车的速度为:120÷(3.5﹣2)=80(km/h),乙车从A地到B地用的时间为:260÷80=3.25(h),乙车比甲车早[3.5+(260﹣120)÷40]﹣(2+3.25)=1.75h到达B地,故③错误;当乙车行驶0.5h时,两车相距[40+(2+0.5﹣1.5)×40]﹣80×0.5=40(km),当乙车行驶2.5h时,两车相距80×2.5﹣[40+(2﹣1.5+2.5)×40]=40(km),故④正确;故答案为:①②④.17.解:(1)甲登山的速度为:(300﹣100)÷20=10(米/分),答:甲登山的速度是10米/分;(2)V乙=3V甲=30米/分,t=2+(300﹣30)÷30=11(分钟),设2到11分钟,乙的函数解析式为y=kx+b,∵直线经过A(2,30),(11,300),∴,解得,∴当2<x≤11时,y=30x﹣30,设当0≤x≤2时,乙的函数关系式为y=ax,∵直线经过A(2,30),∴30=2a解得a=15,∴当0≤x≤2时,y=15x,综上,y=;(3)设甲的函数解析式为:y=mx+100,将(20,300)代入得:300=20m+100,∴m=10,∴y=10x+100.∴当0≤x≤2时,由(10x+100)﹣15x=80,解得x=4>2矛盾,故此时没有符合题意的解;当2<x≤11时,由|(10x+100)﹣(30x﹣30)|=80得,|130﹣20x|=80,∴x=2.5或x=10.5;当11<x≤20时,由300﹣(10x+100)=80得x=12,∴x=2.5或10.5或12.∴当x为2.5或10.5或12时,甲、乙两人距地面的高度差为80米.18.解:(1)∵点A在正比例函数y=x的图象上,且点A的横坐标为4.∴点A(4,2),∵一次函数y=﹣x+b的图象与正比例函数y=x的图象交于点A,∴2=﹣4+b,∴b=6,∴一次函数解析式为y=﹣x+6,∵一次函数y=﹣x+6的图象与x轴,y轴分别交于B,C两点,∴点B(6,0),点C(0,6);(2)由(1)可知:OC=6,x A=4,∴S△OAC=×OC×x A=×6×4=12,∵S△OMC=S△OAC=4,∴S△OMC=×OC×|x M|=4,∴|x M|=,∴x M=±,当动点M在线段OA上时,x>0,则当x=时,y=×=,∴此时M点的坐标为(,);(3)∵点P(m,1)在△AOB的内部(不包括边界),∴当y=1时,代入正比例函数中得:1=x,解得:x=2,当y=1时,代入一次函数中得:1=﹣x+6,解得:x=5,∴2<m<5.故答案为:2<m<5.19.解:(1)由图象可得,客车的速度:720÷9=80(km/h),则货车速度:(km/h).A与B两地间路程为:60×2+720=840(km),即货车的速度是60km/h,A、B两地间的路程是840km;(2)设客车y与x的函数关系式是y=kx+b,,解得,即客车y与x的函数关系式是y=﹣80x+720;当0≤x≤2时,设货车y与x的函数关系式是y=ax+c,∵货车的速度为60km/h,60×2=120,∴该函数过点(0,120),(2,0),∴,解得,即当0≤x≤2时,货车y与x的函数关系式是y=﹣60x+120;720÷60=12,当2<x≤14时,设货车y与x的函数关系式是y=mx+n,∵点(2,0),(14,720)在该函数图象上,∴,解得,即当2<x≤14时,货车y与x的函数关系式是y=60x﹣120;由上可得,货车y与x的函数关系式是y=;(3)令﹣80x+720=60x﹣120,解得x=6,则x=6时,y=60×6﹣120=360﹣120=240,∴点P的坐标为(6,240),点P的实际意义是:两车出发6小时,两车相遇.与C地相距240km;(4)当两车相遇前相距70千米时,(﹣80x+720)﹣(60x﹣120)=70,解得x=5.5,当两车相遇后相距70千米时,(60x﹣120)﹣(80x+720)=70,解得x=6.5,综上所述,出发后经过5.5小时或6.5小时,两车相距70千米.20.解:(1)y=﹣x+8与x轴、y轴分别交于B、A两点,令x=0,则y=8,∴A(0,8),故答案为:(0,8);(2)∵A(0,8),∴OA=8,令y=0,则﹣x+8=0,∴x=6,∴B(6,0),∴OB=6,∴AB=10,∵OD⊥AB,∴S△AOB=OA×OB=AB×OD,∴OD==,如图,过点P作PH⊥OA于H,在Rt△AOD中,OA=8,OD=,根据勾股定理得,AD=,由运动知,DP=t,OQ=t,∴OP=OD﹣DP=﹣t,∴PH=(﹣t)×,∴t=时,S最大,最大值为;(3)∵△OPQ为等腰三角形,∴①当OQ=OP时,∴t=﹣t,∴t=,②当OQ=PQ时,在Rt△AOD中如图,过点Q作QM⊥OD于M,∴OM=OP=(﹣t),在Rt△OMQ中,OM=t,∴(﹣t)=t,∴t=,③当PO=PQ时,如图,过点P作PH⊥OA于H,∴OH=OQ=t,在Rt△POH中,OH=(﹣t),∴t=(﹣t),∴t=,∴△OPQ为等腰三角形时,t的值为秒或秒或秒.21.解:(1)由图象可得,乙车从A地到B地的速度为:180÷1.5=120(千米/时),∴120m=300,解得m=2.5,∴乙车从B地到达A地的速度为:300÷(5.5﹣2.5)=300÷3=100(千米/时),即乙车从B地到达A地的速度是100千米/时;(2)由图象可得,甲车的速度为:(300﹣180)÷1.5=120÷1.5=80(千米/时),则乙车到达B地时甲车距A地的路程是:300﹣2.5×80=300﹣200=100(千米),即乙车到达B地时甲车距A地的路程是100千米;(3)乙车返回前甲、乙两车相距40千米时,设乙车行驶的时间为t小时,甲乙相遇之前:80t+120t+40=300,解得t=1.3;甲乙相遇之后:80t+120t﹣40=300,解得t=1.7;答:乙车返回前甲、乙两车相距40千米时,乙车行驶的时间是1.3小时或1.7小时.22.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,∴A(3,0),B(0,3),∵点C的纵坐标是﹣,∴C(0,﹣),设直线AC的解析式为y=kx﹣,把A(3,0)代入得:0=3k﹣,解得k=,∴直线AC的解析式为y=x﹣;(2)在直线l上存在点P,使得S△ABC=S△PDB,设PB交直线x=﹣1于E,如图:∵A(3,0),B(0,3),C(0,﹣),∴S△ABC=BC•OA=×(3+)×3=,在y=﹣x+3中,令x=﹣1得y=4,∴D(﹣1,4),设P(m,m﹣),直线PB为y=k'x+3,则m﹣=k'm+3,解得k'=,∴直线PB为y=x+3,令x=﹣1得y=,∴E(﹣1,),∴DE=4﹣=,∵S△ABC=S△PDB,∴DE•|x B﹣x P|=,即××(﹣m)=,解得m=﹣6,∴P(﹣6,﹣);(3)在x轴上存在点N,使得△QMN为等腰直角三角形,由P(﹣6,﹣),D(﹣1,4)得直线PD解析式为y=x+,设Q(t,t+),∵QM∥x轴,M在AB上,∴在y=﹣x+3中令y=t+,得x=﹣t﹣,∴M(﹣t﹣,t+),∴QM=﹣t﹣﹣t=﹣,①当Q为直角顶点时,如图:∵QM=QN,∴﹣=t+,解得t=﹣,∴N(﹣,0);②当M为直角顶点时,如图:∵QM=MN,∴﹣=t+,解得t=﹣,∴N(,0);③当N为直角顶点时,过N作NH⊥QM,如图:∵QM=2NH,∴﹣=2×(t+),解得t=﹣,∴Q(﹣,),∴QH=NH=,∴ON=﹣=,∴N(﹣,0);综上所述,N的坐标为:(﹣,0)或(,0)或(﹣,0).23.解:(1)在y=x+4中,令y=0,得x+4=0,解得:x=﹣8,∴B(﹣8,0),令x=0,得y=4,∴A(0,4),故答案为:(0,4),(﹣8,0);(2)∵S△ABP=BP•OA=10,∴×BP×4=10,∴BP=5,∴PO=3,∵点P是射线BO上一动点,∴P(﹣3,0);(3)设P(x,0),①若AP=AC,∴x2+42=42+52,∴x=﹣5,x=5(舍去),∴P(﹣5,0);②若AC=PC,∴(5﹣x)2=42+52,∴x=5+或x=5﹣,∴P(5+,0)或P(5﹣,0);③若AP=PC,∴x2+42=(x﹣5)2,∴x=,∴P(,0).综合以上可得,点P的坐标为(﹣5,0)或(5+,0)或P(5﹣,0)或(,0).24.解:(1)A、C两村间的距离120km,a=120÷[(120﹣90)÷0.5]=2;故答案为120,2;(2)设y2=k2x+90,代入(3,0),得0=3k2+90,解得k2=﹣30,所以y2=﹣30x+90.当y1=y2时,﹣60t+120=﹣30t+90,解得:t=1,所以甲乙二人行驶1小时后两人相遇,此时距离C村60km,故P点坐标为P(1,60).(3)当y1﹣y2=20,即﹣60x+120﹣(﹣30x+90)=20解得x=,当y2﹣y1=20,即﹣30x+90﹣(﹣60x+120)=20解得x=,当甲走到C地,而乙距离C地20km时,﹣30x+90=20解得x=;综上所知当x=h,或x=h,或x=h乙距甲20km.25.解:(1)由题意可得,y1=4×40+10(x﹣4)=10x+120,y2=(4×40+10x)×90%=9x+144;(2)当x=20时,y1=10×20+120=320,y2=9×20+144=324;∵320元<324元,∴当x=20时,方案一更优惠;(3)令10x+120=9x+144,得x=24,答:当学生为24人时,两种方案一样优惠.26.解:(1)由图象可得,甲队每分钟跑:240÷24=10(米),故答案为:10;(2)设甲队离B地的距离S(米)与时间t(分钟)之间的函数关系式为S=kt+b,∵点(0,240),(24,0)在该函数图象上,∴,解得,即甲队离B地的距离S(米)与时间t(分钟)之间的函数关系式为S=﹣10t+240(0≤t ≤24);设乙队离B地的距离S(米)与时间t(分钟)之间的函数关系式为S=at,∵点(12,240)在该函数图象上,∴240=12a,解得a=20,即乙队离B地的距离S(米)与时间t(分钟)之间的函数关系式为S=20t(0≤t≤12);当甲和乙相遇时,﹣10t+240=20t,解得t=8,即甲、乙两队相遇时t的值是8;(3)当甲和乙相遇前相距30米,﹣10t+240﹣20t=30,解得t=7;当甲和乙相遇后相距30米,∴20t﹣(﹣10t+240)=30,解得t=9,即甲、乙两队相距30米时t的值是7或9.27.解:(1)根据图象,学校的纵坐标为1500,小明家的纵坐标为0,故小明家到学校的路程是1500米;根据题意,小明在书店停留的时间为从8分到12分,故小明在书店停留了4分钟.故答案为:1500;4;(2)由图象可知:12~14分钟时,平均速度==450米/分,∵450>300,∴小明买到书后继续骑车到学校,这段时间速度不在安全限度内;(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间,①在0~6分钟时,平均速度为:=200米/分,距家900米的时间为:t1=900÷200=4.5(分);②在6~8分钟内,平均速度==300米/分,距家900米时时间为t2,则:1200﹣300(t2﹣6)=900,解得:t2=7,③在12~14分钟内,平均速度450米/分,距家900米时时间为t3,则600+450(t3﹣12)=900,解得:t3=12,综上,小明出发4.5分钟或7分钟或12分钟时距家900米.28.解:(1)∵甲先出发,由图象可知l1,l2分别表示甲、乙的函数图象,∴甲的速度为60÷2=30(km/h),乙的速度为60÷(3.5﹣0.5)=20(km/h),故答案为l2,30,20;(2)设甲出发xh后两人相遇,根据题意得:30x+20(x﹣0.5)=60,解得x=1.4,∴甲出发1.4h后两人相遇;(3)设甲出发th时后两人恰好相距5km,①两人相遇前:30t+20(t﹣0.5)+5=60,解得t=1.3,②两人相遇后:30t+20(t﹣0.5)﹣5=60,解得:t=1.5,∴甲出发1.3h或1.5h时后两人恰好相距5km.。

北师大版八年级(上)数学《一次函数》应用题练习(含答案)

北师大版八年级(上)数学《一次函数》应用题练习(含答案)

第四章 一次函数1.某商场购进一批内衣,经试验发现,若每件按20元销售时,每月能卖360件;若每件按25元销售时,每月能卖210件,假定每月销售数y (件)是销售单价x (元)的一次函数,求y 与x 之间的函数关系式.2.已知甲、乙两人分别从相距18km 的A 、B 两地同时相向而行,甲以4千米/时的平均速度步行,乙以每小时比甲快1千米的平均速度步行,相遇为止.(1)求甲、乙两人相距的距离为y (km )和所用时间x (小时)的函数关系式;(2)求出函数图像与x 轴、y 轴的交点坐标,画出函数图像,并求出自变量的取值范围;(3)求当甲、乙两人相距6千米时,所需用的时间.3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,付话费0.6元(这里均指市内通话).若一个月内通话x 分钟,两种通讯方式的费用分别为1y 和2y 元.(1)写出1y 、2y 与x 之间的函数关系式;(2)一个月内通话多少分钟,两种通讯方式的费用相同?(3)若某人预计一个月内使用话费200元,则应选择哪种通讯方式较合算?4.某城市按以下规定收取每月煤气费:用煤气不超过603m ,按0.8元/3m 收费;如果超过603m ,超过部分按1.2元/3m 收费.(1)设煤气用量为)60(m 3 x x ,应交煤气资为y 元,写出y 关于x 的函数解析式,并画出函数的图像;(2)已知某用户一月份的煤气费平均每立方米0.88元,那么一月份该用户应交煤气费共多少元?5.如图,公路上有A、B、C三个车站,一辆汽车在上午8时从离A站10km 的P地出发向C站匀速前进,15分钟后,离A站20km.(1)设出发x小时后,(2)当汽车行驶到离A站150km 汽车离A站y km,写出y与x之间的函数关系式;的B站时,接到通知要在中午12时前赶到离B站30千米的C站,汽车若按原速能否按时到达?若能,是在几点几分到达;若不能,车速最少应提高多少?6.随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势.试用你所学的函数知识解决下列问题:(1)求入学儿童人数y(人)与年份x(年)的函数关系式;(2)利用所求函数关系式,预测该地区从哪一年起入学儿童的人数不超过1000人?7.《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表累进计算:(纳税款=应纳税所得额×对应的税率)按此规定解答下列问题:(1)设某甲的月工资、薪金所得为x 元(28001300<<x ),需缴交的所得税款为y 元,试写出y 与x 的函数关系式;(2)若某乙一月份应缴交所得税款95元,那么他一月份的工资、薪金是多少元?8.某家电集团公司生产某种型号的新家电,前期投资200万元,每生产1台这种新家电,后期还需其他投资0.3万元,已知每台新家电可实现产值0.5万元.(1)分别求出总投资额1y (万元)和总利润比2y (万元)关于新家电的总产量x (台)的函数关系式;(2)当新家电的总产量为900台时,该公司的盈亏情况如何?(3)请你利用(1)中2y 与x 的函数关系式,分析该公司的盈亏情况. (注:总投资=前期投资+后期其他投资,总利润=总产值-总投资)9.通过电脑拨号上“因特网”的费用是由电话费和上网费两部分组成.以前我市通过“黄冈热线”上“因特网”的费用为电话费0.18元/3分钟,上网费为7.2元/小时,后根据信息产业部调整“因特网”资费的要求,自1999年3月1日起,我市上“因特网”的费用调整为电话费0.2元/3分钟,上网费为每月不超过60小时,按4元/小时计算;超过60小时部分,按8元/小时计算.(1)根据调整后的规定,将每月上“因特网”的费用y (元)表示为上网时间x (小时)的函数;(2)资费调整前,网民晓刚在其家庭经济预算中,一直有一笔每月70小时的上网费用支出,“因特网”资费调整后,晓刚要想不超过其家庭经济预算中的上网费用支出,他现在每月至多可上网多少小时?(3)从资费调整前后的角度分析,比较我市网民上网费用的支出情况.10.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元,做一套N型号的时装需用A种布料1.1m,B 种布料0.4m,可获利润50元,若设生产N型号的时装套数为N,用这批布料生产这两种型号的时装所获的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)该服装厂在生产这批时装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?参考答案1..96030+-=x y2.(1)189+-=x y (2)(2,0),(0,18),20≤<x (3)34小时 3.(1).6.04.05021x y x y =+=, (2)每月内通话250分钟,两种移动通讯费用相同. (3)200元话费用“全球通”可通话375分钟,“神州行”可通话31333分钟,选择“全球通”合算. 4.(1).242.1)60(2.1608.0-=-+⨯=x y x y , (2)x x 88.0242.1=-,75=x ,667588.0=⨯=y (元)5.(1)汽车速度为40千米/时,.1040+=x y (2)汽车若按原速度不能按时到达,若要汽车按时到达C 站,车速最少应提高到每小时60km .6.(1)直线b kx y +=过(2000,2500),(2001,2330)两点,∴ ⎩⎨⎧=+=+,23302001,25202000b k b k 解得⎩⎨⎧=-=.382520,190b k ∴.382520190+-=x y (2)设x 年时,入学人数为1000人,1000382520190=+-x ,2008=x ,即从2008年起入学儿童人数不超过1000人.7.(1)∵ 28001300<<x ,∴ 2000800500<-<x ,∴ %.5500%10)500800(⨯+⨯--=x y(2)∵ %5%1020095%5500+⨯<<⨯,∴ 2000,251.0)1300(95=+⨯-=x x ,某乙一月份工资、薪金是2000元.8.(1).2002.0)2003.0(5.02003.021-=+-=+=x x x y x y ,(2)当总产量是900台时,该公司会亏损,亏损20万元.(3)产量小于1000台时,该公司亏损,产量是1000台时,该公司不亏损也不盈利,产量大于1000台时,该公司会盈利.9.(1)⎩⎨⎧>-≤≤=).60(,2404.12),600(,4.8x x x x y (2)资费调整前,上网70小时所需费用为75670)2.76.3(=⨯+元.资费调整后,若上网60小时,则所需费用为504604.8=⨯(元). ∵ 504756>,∴ 晓刚现在上网时间超过60小时.由7562404.12≤-x ,解得32.80≤x . ∴ 晓刚现在每月至多可上网约80.32小时.(3)设调整前所需费用为1y (元);调整后所需费用2y (元),则x y 8.101=.当600≤≤x 时,x x x y 4.88.104.82>=,,故21y y >. 当60>x 时,2404.122-=x y ,当21y y =时,150,2404.128.10=-=x x x ;当21y y >时,150,2404.128.10<->x x x ;当21y y <时,150,2404.128.10>-<x x x .综上可得:当150<x 时,调整后所需费用少;当150=x 时,调整前后所需费用相同;当150>x 时,调整前所需费用少.10.(1)x x y 50)80(45+-=.由⎩⎨⎧≤+-≤+-.524.0)80(9.0,701.1)80(6.0x x x x 解得4440≤≤x . ∴ 自变量的取值范围为40,41,42,43,44.(2)当44=x 时,有最大值,最大值为3820元.。

北师大版八年级上期一次函数的实际应用练习

北师大版八年级上期一次函数的实际应用练习

北师大版八年级上期一次函数的实际应用练习1.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止,如图所示的图象分别表示货车、轿车离甲地的距离y(千米)与轿车行驶时间x(小时)的关系.(1)求轿车在返回甲地过程中的速度;(2)当轿车从乙地返回甲地的途中与货车相遇时,求相遇处离甲地的距离;(3)请求出两车出发多久后相距10千米.2、已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中DE、OC分别表示甲、乙离开A地的路程s(km)与时间t(h)的函数关系的图象,(1)乙先出发,甲后出发,相差____h;(2)甲骑摩托车的速度为60km/h,直接写出甲离开A地后s(km)与时间t(h)的函数表达式及自变量t的取值范围;(3)当乙出发几小时后,两人相遇.3、甲、乙两地相距480千米,货车和轿车先后从甲地出发驶向乙地,其中货车先出发0.5小时,如图,线段OA表示货车离甲地的距离y货(千米)与货车行驶时间x(小时)之间的图象关系,折线BCD表示轿车离甲地的距离y轿(千米)与货车行驶时间x(小时)之间的图象关系,根据图象解答下列问题:(1)货车的速度=千米/小时,y货=(用含x的代数式表示);(2)①当0.5≤x<5.5时,求y轿(千米)与货车行驶时间x(小时)的关系式;②当轿车追上货车时,求x的值.(3)轿车追上货车后,两车继续行驶至乙地,当两辆车相距20千米时,求x的值.4、如图(1),直线BC交x轴于点C,交y轴于点B,与直线y=ax交于点A,点A的横坐标为2,∠ACO=45°,△ABO的面积为1.(1)求a的值和直线BC的解析式;(2)直线y=ax+m与y轴交于点D,当OABD的面积为4时,求m的值;(3)若点P为直线BC上的一点,点Q为坐标平面内一点,是否存符合条件的点P Q,使点O,A,P,Q为顶点的四边形为菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.5、某人因需要经常去复印资料,甲复印社按A4纸每10页2元计费,乙复印社则按A4纸每10页1元计费,但需按月付一定数额的承包费,两复印社每月收费情况如图所示,根据图中提供的信息解答下列问题:(1)乙复印社要求客户每月支付的承包费是元;(2)乙复印社收费情况y关于复印页数x的函数解析式是(3)当每月复印页时,两复印社实际收费相同;(4)如果每月复印200页时,应选择复印社?6、A,B两地相距50km,甲于某日骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车从A地出发驶往B地,在这个变化过程中,甲和乙所行驶的路程用变量S(km)表示,甲所用的时间用变量t(小时)表示,图中折线OPQ和线段MN分别表示甲和乙所行驶的路程S与t 的变化关系,请根据图象回答:(1)直接写出:甲出发后小时,乙才开始出发;(2)乙的行驶速度是千米/小时;(3)求乙行驶几小时后追上甲,此时两人相距B地还有多少千米?7、小明从甲地匀速步行前往乙地,同时小红从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系如图中折线所示.(1)小明与小红出发min相遇;(2)在步行过程中,若小明先到达乙地.①求小明和小红的步行速度;②求出点C的坐标,并解释点C的实际意义.8、甲、乙两名同学骑自行车从A地出发沿同一条路前往B地,他们离A地的距离S(km)与甲离开A地的时间t(h)之间的关系图象如图所示,根据图象提供的信息,回答下列问题:(1)A地与B的路程是km;(2)同学先到达B地;提前了h;(3)乙的骑行速度是km/h;(4)甲从A地到B地的平均速度是km/h.9、小聪和小慧去某风景区游览,约好在飞瀑见面,上午9:00,小聪从塔林出发,沿景区公路(如图1)步行15分钟至草甸,休息若干分钟后搭乘景区班车赶往飞瀑,车速为36km/h,小慧也于上午9:00从古刹出发,骑自行车前往飞瀑,两人离古刹的路程y(米)与时间x(分)的函数关系如图2所示,已知古刹与塔林的路程为1500m.(1)求小聪步行时离古刹的路程y(米)与时间x(分)的函数表达式.(2)求小聪乘坐景区班车的时间.(3)若小慧比小聪早到2分钟,求两人几时几分相遇.10、为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x (单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求ME的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间..(3)求两车最后一次相遇时离武汉的距离(直接写出答案)11、快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程km,快车的速度为km/h;慢车的速度为km/h;(2)出发小时后,快慢两车相遇;(3)求快慢两车出发几小时后第一次相距150km?12、王老师和小颖住同一小区,小区距离学校2400米,王老师步行去学校,出发10分钟后小颖才骑共享单车出发,小颖途经学校继续骑行若干米到达还车点后,立即跑步返回学校,小颖跑步比王老师步行每分钟快70米,设王老师步行的时间为x(分钟),图1中线段OA和折线B-C-D分别表示王老师和小颖离开小区的路程y(米)与x(分钟)的关系:图2表示王老师和小颖两人之间的距离S(米)与x(分钟)的关系(不完整).(1)求王老师步行的速度和小颍出发时王老师离开小区的路程;(2)求小颖骑共享单车的速度和小颖到达还车点时王老师、小颖两人之间的距离;(3)在图2中,画出当25≤x≤30时S关于x的大致图象(要求标注关键数据)。

北师大版初中数学八年级上册《一次函数》例题精选

北师大版初中数学八年级上册《一次函数》例题精选

例题精选1.下列函数中,是一次函数的是()A.y= B.y=x2+3 C.y=3x-1 D.y=解析:根据一次函数的定义解题,若两个变量x,y间的关系式可以表示成y=kx+b(k、b为常数,k≠0的形式,则称y是x的一次函数,其中x是自变量,y是因变量.当b=0时,则y=kx(k≠0)称y是x的正比例函数.函数是一次函数必须符合下列两个条件:(1)关于两个变量x,y的次数是1次;(2)必须是关于两个变量的整式.答案:选C.2.下列函数中,不是正比例函数的是( 7.D )A.B.y=kx(k<0)C.y=kx(k>0)D.解析:根据一次函数的定义解题,若两个变量x,y间的关系式可以表示成y=kx+b(k、b为常数,k≠0的形式,则称y是x的一次函数,其中x是自变量,y是因变量.当b=0时,则y=kx(k≠0)称y是x的正比例函数.本题中不是正比例函数的是.故答案:选D.3.一次函数y=x+2中,当x=9时,y值为()A.-4 B.-2 C.6 D.8解析:把x=9带入y=x+2,求得y=8,故选D.答案:选D.4.当x逐渐增大,y反而减小的函数是()A.y=x B.y=0.001x C.y= D.y=-5x解析:根据一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的性质:当k>0时,y随x的增大而增大.当k<0时,y随x的增大而减小.函数y=x中,k=1>0,y随x的增大而增大;函数y=0.001x中,k=0.001>0,y随x 的增大而增大;函数y=的图象是平行于x轴的一条直线;函数y= y=-5x中,k=-5<0,y 随x的增大而减小.故选D.答案:选D.5.函数y=-mx(m>0)的图象是( )解析:因为函数y=-mx(m>0)为正比例函数,所以其图象经过原点.又因为m>0,则-m<0,所以y随x的增大而减小,其图象经过二、四象限.故选A.答案:选A .6.一次函数y=kx+b 的图象经过第一、三、四象限,则( )A .k>0,b>0B .k>0,b<0C .k<0,b>0D .k<0,b<0解析:根据直线y=kx+b(k≠0)在坐标平面内的位置与k 、b 的关系:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b>0时,直线与y 轴正半轴相交;b=0时,直线过原点;b<0时,直线与y 轴负半轴相交.本题如图1所示:图1故选B .答案:选B .7.某市自来水公司年度利润表如图3,观察该图表可知,下列四个说法中错误的是( )A .1996年的利润比1995年的利润增长-2145.33万元B .1997年的利润比1996年的利润增长5679.03万元C .1998年的利润比1997年的利润增长315.51万元D .1999年的利润比1998年的利润增长-7706.77万元解析:从图象中获得的信息可得:1999年的利润比1998年的利润增长8652.01-(-945.30)=-9597.31.故选D .答案:选D .8.若函数y =2x +3与y =3x -2b 的图象交x 轴于同一点,则b 的值为( )A .-3B .-C .9D .-49解析:本题可先求函数y =2x +3与x 轴的交点,当y =0时,x =-,即:交点(-,0).再把交点(-,0)代入函数y =3x -2b ,求得b =-49.故选D . 答案:选D .9.已知一次函数y =kx +5过点P (-1,2),则k =_________;函数y 随自变量x 的增大而_________.解析:把点P (-1,2)代入一次函数y =kx +5,求得k =3;因为k =3>0,所以函数y 随自变量x 的增大而增大答案:3 增大10.已知一次函数y=2x+4的图象经过点(m,8),则m=_________.解析:要求m的值,实质是求当y=8时,x=?把y=8代入一次函数y=2x+4,求得x=2,所以m=2.答案:211.如图5下面有三个关系式和三个图象,哪一个关系式与哪一个图象能够表示同一个一次函数?(1)y=1-x2; (2)a+b=3; (3)s=2t图5解析:(1)中,的图象是一次函数的图象,而y=1-x2不是一次函数;(2)函数a+b=3可变形为b=-a+3,当a=3时,b=0,当a=0时,b=3,即:其图象经过点(3,0)和(0,3),所以符合要求;(3)先把函数s=2t变形为t =s,当s=1时,t =,即:其图象经过点(1,),所以它不符合要求;答案:(2)符合要求12.作出函数y=1-x的图象,并回答下列问题.(1)随着x值的增加,y值的变化情况是_________;(2)图象与y轴的交点坐标是_________,与x轴的交点坐标是_________;(3)当x_________时,y≥0.解析:因为函数y=1-x是一次函数,其图象是一条直线,所以可用两点确定一条直线的方法画这个函数的图象.取(0,1)、(1,0)较简便,如图.(1)根据一次函数y=kx+b(k≠0)与正比例函数y=kx(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.函数y=1-x中,k=-1<0,y随x的增大而减小;(2)求图象与y轴的交点坐标,只须把x =0代入y=1-x中,求出y即可;与x轴的交点坐标,只须把y =0代入y=1-x中,求出x即可;(3)从图象中可以看出当x≤1时,y≥0.答案:函数图象如图6所示:图6(1)因为k<0所以随着x的增加,y的值逐渐减小;(2)图象与y轴的交点坐标是 (0,1),与x轴的交点坐标是(1,0);(3)当x≤1时,y≥0.习题精选一、选择题1.下图是南昌市某天的温度随时间变化的图像,通过观察可知:下列说法错误的是()A.这天15点时温度最高B.这天3点时温度最低C.这天最高温度与最低温度的差是13℃D.这天21点时温度是30℃2.以下是2002年3月12日《南国早报》刊登的南宁市自来水价格的调整表:南宁市自来水价格调整表(部分)单位:元/立方米则调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图像如下图中的()3.某装满水的水池按一定的速度放掉水池的一半水后,停止放水并立即按一定的速度注水,水池注满后,停止注水,又立即按一定的速度放完水池的水.若水池的存水量为v (立方米),放水或注水的时间为t(分钟),则v与t的关系的大致图像只能是下图中的()4.张大伯出走散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家.下图中哪个图形表示张大伯离家时间与距离之间的关系?()5.下图是某地一天的气温随时间变化的图像.根据图像可知,在这一天中最高气温与达到最高气温的时刻分别是()A.14℃,12时 B.4℃,2时 C.12℃,14时 D.2℃,4时6.某校举行趣味运动会,甲、乙两名学生同时从A地到B地,甲先骑自行车到B地后跑步回A地,乙则是先跑步到B地后骑自行车回A地(骑自行车速度快于跑步的速度),最后两人恰好同时回到A地.已知甲骑自行车比乙骑自行车的速度快.若学生离开A地的距离s与所用时间t的函数关系用图像表示如下(实线表示甲的图像,虚线表示乙的图像),则正确的是()二、填空题1.等腰三角形的顶角为y度,底角为x度,则y、x之间的函数关系式为__________.2.在函数中,当时,y=__________.3.若点在函数的图像上,则b=__________.4.一个圆的半径r与圆的周长C的关系是__________,与它的面积S的关系是__________.三、解答题1.下图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图像.两地间的距离是80千米.请你根据图像回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?2.某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司中的一家签订月租车合同.设汽车每月行驶x km,应付给个体车主的月费用是元,应付给出租车公司的月费用是元,与x之间的函数关系图像如图所示.(1)观察图像并根据图像选择较合算的车;(2)如果这个单位估计每月行驶路程为2700km,又如何选择?3.某人从甲地出发,骑摩托车去乙地,途中因车出现故障而停车修理,到达乙地时正好用2小时,已知摩托车行驶的路程s(km)与时间t(h)之间的函数关系如图所示,若这辆摩擦车平均耗油量为每100千米2升,根据上面的信息,从甲地到乙地,这辆摩托车共耗油多少升?4.用总长为80m的篱笆围成矩形场地,求矩形面积与一边长之间的关系式,并指出式子中的自变量与函数.5.某礼堂共有25排座位,第1排有20个座位,后面每排比前一排多1个座位,写出每排座位数m与这排的排数n的关系式,并说出自变量可取值的范围.6.如图,正方形ABCD的边长为5,P为CD边上一动点,设DP的长为x,的面积为y,求y与x之间的函数关系式,及自变量x的取值范围.7.已知函数,当时,y的值是多少?当,时,x的值是多少?参考答案:一、1. C 2.C 3. A 4. D 5. C 6. B二、1.或 2. 3. 4.三、1.(1)骑自行车的人出发较早,早3个小时,骑摩托车的人到达乙地较早,早3个小时.(2)自行车速度为10千米/时,摩托车速度为40千米/时.2.(1)当每月行驶路程小于1500km时,用国营出租车较合算;当每月行驶路程大于1500km时,用个体出租车较合算.(2)当每月行驶2700km时,选择个体出租车.3.0.8升(提示:只需要算行驶了40千米,而50千米用油1升)4.,l是自变量,S是l的函数.5.,n是整数6.7.,,一、选择题1.在一次函数中,为()A.正实数 B.非零实数C.任意实数 D.非负实数2.下列说法中,不正确的是()A.不是一次函数就一定不是正比例函数B.正比例函数是一次函数C.不是正比例函数就不是一次函数D.一次函数不一定是正比例函数3.若函数是正比例函数,则()A. B. C. D.4.如果为一次函数,且不是正比例函数,则()A. B. C. D.5.当时,一次函数与的值相等,那么与的值分别是()A., B.-1,9 C.1,11 D.5,156.正比例函数,当,,时,对应的,,之间的关系是()A. B. C. D.无法确定7.如果的自变量增加4,函数值相应地减少16,则值()A.4 B.-4 C. D.8. 在一次函数中,当时则的值为()A、-1B、1C、5D、-59.已知与成正比例,如果时时,,那么时,()A、 B、2 C、3 D、610.下列说法中不正确的是()A、在时,与成正比例;B、在中,与成正比例;C、在中,与成正比例;D、在圆面积公式中,与成正比例11.下列关系式中,与成正比例的是()A、 B、C、 D、二、填空题1.如果是关于的一次函数,那么的取值范围是________.2.已知方程给出了与的函数关系,则用自变量来表示函数的形式为_______.3.若,是变量,且是正比例函数,则值为________.4.在一次函数.当时,的取值范围是_______.5.已知函数,满足时,,则_____.6. 若点在正比例函数的图象上,则___.7.与成正比例,当时,,这个函数的解析式为.8. 已知与成正比例,当时,则时.9.与成正比,当时,,则时,.三、解答题1.解答下列各题(1)某奶站的牛奶全月订价为32元,每订一份牛奶奶站得到25%的送奶费用,某社区订了x份牛奶,奶站得到的送奶费用y(元)与x的关系式是什么?(2)某人承包一个快餐店、人工费、税费等平均每天需要180元,每卖出一个盒饭净收入为0.8元,那么快餐店每天净收入y(元)与卖出盒饭x(个)之间的函数关系是什么?(3)冲一个胶卷3元,洗一张照片0.45元,那么冲一个胶卷并洗x张照片所需费用y(元)之间的关系是什么?(4)一个三角形的高为10cm,其面积S与底边a之间的函数关系式是什么?(5)火车离开A地10km后,以每小时90km的速度继续前进,求火车离A地距离s与时间t的函数关系式.2.下列函数中,哪些是一次函数,哪些又是正比例函数?(1);(2);(3);(4);(5);(6).3.声音在空气里传播速度v(米/秒)与温度t(℃)的函数关系式是,画出函数的图像,并根据图像求出当℃及℃时声音传播速度.4.一个矩形的周长是12cm,长是x cm.(1)求它的宽y,写出x的取值范围;(2)画出这个函数的图像.5.学生甲每小时走3km,出发1.5小时后,学生乙以每小时4.5km的速度追甲,令乙行走的时间为t,小时.(1)写出甲、乙两同学每人所走的路程s与时间t的关系;(2)在同一坐标系内作出它们的图像;(3)求出两条直线的交点坐标,说明它的实际意义.6.某工厂有甲、乙两条生产线先后投产,在乙生产线投产以前,甲生产线已生产了200吨成品,从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品.(1)分别求出甲、乙两条生产线投产后,总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;(2)在直角坐标系中,作出上述两个函数在第一象限内的图像,观察图像,分别指出第15天和第25天结束时,哪条生产线的总产量高?7.从A地向B地打长途电话,按通话时间收费,3分钟内收费2.4元,每加1分钟加收1元,求时间(分)时电话费y(元)与t之间的函数关系式,并写出自变量t的取值范围.8.有一批货物,如果月初售出,可获利1000元,并可将本利之和再去投资,到月末可再获利1.5%;如果月末售出这批货,可获利1200元,但要付50元保管费,问这批货在月初售出好还是月末售出好?9.如图,在中,与的平分线交于点P,设,,当变化时,求y与x之间的函数关系式,并判断y是不是x的一次函数,指出自变量的取值范围.10.某自行车保管站在一个星期日接受保管的自行车有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每辆一次0.3元.(1)若设一般车停放的辆次数为x,总的保管费为y元,试写出y关于x的函数关系式;(2)若估计前来停放的3500辆次自行车中,变速车的辆次不少于25%,但不多于40%,试该保管站这个星期日收入保管费总数的范围.答案:一、1.B 2.C 3.A 4.D 5.C 6.B 7.B 8. B 9. A 10.A 11.D .二、1.且.2..3.1.4..5..6. 7. 8. 9. 6 .三、1.(1),或(2)(3)(4)(5)2.(1)、(3)、(5)、(6)是一次函数,并且(1)、(6)是正比例函数.3.图像略,328米/秒,340米/秒4.(1)(2)图像略.5.(1),(2)略(3),在甲出发4.5小时时,乙追上了甲,这时两人都走了13.5km.6.(1),即第20天结束时,两条生产线产量相同.(2)如图所示,第15天结束时甲生产线的总产量高,第25天结束时,乙生产线的总产量高.7.,t为整数.8.,即货物成本大于9000之时,月初出售比较好,货物成本小于9000之时,月末售比较好,货物成本等于9000之时,月初、月末出售相同.9.,y是x的一次函数,10.(1),x是整数.(2)变速车停放的辆次不少于3500的25%,也不大于3500的40%,也就是一般自行车停放辆次在与之间.当时,,当时,.∴这个星期日保管站保管费的收入在1225元至1330元之间.温馨提示-专业文档供参考,请仔细阅读后下载,最好找专业人士审核后使用!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档