怎样描述圆周运动
圆周运动的基本概念与公式
圆周运动的基本概念与公式圆周运动是物体在一个平面上绕着固定轴旋转的运动形式。
在物理学中,我们通常使用一些基本概念和公式来描述圆周运动的性质和特征。
本文将对圆周运动的基本概念和公式进行详细介绍。
一、基本概念1. 圆周运动的轴:圆周运动的轴是指物体绕其旋转的直线。
这条直线被称为圆周运动的轴线,也称为转轴。
2. 半径:半径是指轴到物体运动轨迹上某一点的距离。
在圆周运动中,物体的运动轨迹是一个圆形,因此我们可以用半径来描述圆周运动的性质。
3. 角度和弧长:角度是指两条射线之间的夹角,常用度(°)作为单位。
而弧长是沿着圆周的一段弧的长度,常用单位是米(m)或者弧度(rad)。
4. 角速度和角频率:角速度是描述物体在圆周运动中角度变化快慢的物理量,通常用符号ω表示,单位是弧度/秒(rad/s)。
角频率是描述物体圆周运动的频率,即每秒通过的弧长与半径之比,用符号ν表示,单位是赫兹(Hz)或者弧度/秒(rad/s)。
二、基本公式1. 弧长公式:物体运动经过的弧长与半径之间的关系可以用以下公式表示:弧长(s) = 半径(r) ×弧度数(θ)2. 角速度与角频率的关系:角速度和角频率之间存在下列关系:角速度(ω) = 角频率(ν)× 2π3. 周期和频率的关系:周期是指物体从一个位置回到该位置所需的时间,频率是指每秒钟完成的周期数。
周期和频率之间存在下列关系:周期(T) = 1 / 频率(f)三、应用实例为了更好地理解圆周运动的基本概念和公式,我们来看几个具体的实例:1. 风扇转动:当我们打开风扇时,风叶开始绕转轴线旋转。
这个旋转运动可以看作是圆周运动。
我们可以测量风叶的半径和角速度,利用弧长公式计算风叶移动的弧长。
2. 地球自转:地球自转是一个经典的圆周运动例子。
地球围绕自身的轴线旋转一圈所需的时间是24小时。
根据周期和频率的关系,我们可以计算出地球自转的频率。
3. 行星公转:行星绕太阳公转是一种圆周运动。
圆周运动的基本概念
圆周运动的基本概念圆周运动是物体在绕定点旋转的过程中所描述的运动形式。
在这种运动中,物体沿着一个固定的轨道以相同的速度绕圆心旋转。
下面将详细介绍圆周运动的基本概念。
一、圆周运动的定义圆周运动是指一个物体围绕一个固定轴进行的运动,该物体在运动过程中保持相对于轴点的距离恒定。
二、圆周运动的特征1. 轨道形状:圆周运动的轨道为一个圆,物体在圆形轨道上做匀速运动。
2. 运动方向:物体的运动方向始终与径向方向(从物体到旋转中心的方向)垂直。
3. 周期与频率:圆周运动的周期是指物体完成一次完整运动所需要的时间,频率则是指单位时间内物体完成的运动次数。
三、圆周运动的相关参数1. 半径:圆周运动的轨道是一个圆,半径表示物体离圆心的距离。
2. 角速度:角速度是指物体单位时间内绕圆心转过的角度,通常用弧度/秒(rad/s)表示。
3. 线速度:线速度是指物体的运动速度,即物体单位时间内沿圆周轨道走过的线段长度。
线速度与角速度之间存在简单的线性关系。
四、保持物体做圆周运动的力1. 向心力:向心力是指使物体保持圆周运动的力,它的方向指向圆心。
向心力的大小与物体的质量和半径成正比,与物体的角速度的平方成正比。
2. 引力:在地球表面上的物体做圆周运动时,向心力来自于重力,这种运动被称为圆周运动。
五、惯性力与非惯性力1. 惯性力:在物体做圆周运动时,如果观察者位于物体上,则观察者会感受到一个与运动方向相反的离心力,这个力被称为惯性力。
2. 非惯性力:在物体做圆周运动时,观察者所处坐标系受到了加速度,因此需要引入一个与观察者加速度相反的力来平衡,这个力被称为非惯性力。
六、应用场景圆周运动广泛应用于各个领域,如天体运动、车辆转弯、行星公转等。
在机械工程中,圆周运动的概念和原理被广泛应用于传动系统和转动部件的设计与分析。
总结:圆周运动是物体围绕一个固定轴进行的运动形式,具有固定轨道形状、垂直的运动方向以及周期和频率等特征。
物体在圆周运动中保持相对于轴点的距离恒定,而向心力起到了保持物体做圆周运动的作用。
圆周运动知识点总结
圆周运动知识点总结圆周运动是指物体沿定轴匀速运动的一种运动形式。
下面对圆周运动的知识点进行总结。
1.圆周运动的定义圆周运动是指物体以其中一点为轴心,在平面内以圆周运动的一种运动形式。
它是一种二维的运动,也被称为平面运动。
2.圆周运动的要素圆周运动包括轴心、半径、角速度、角位移、角加速度等要素。
-轴心:圆周运动的轴心是指物体围绕其旋转的轴线。
在圆周运动中,轴心可以是固定的,也可以是在运动中变化的。
-半径:圆周运动的半径是指从轴心到物体所在位置的距离。
在运动过程中,半径可以保持不变,也可以发生变化。
-角速度:角速度表示物体在单位时间内绕轴心转过的角度。
通常用符号ω表示,其单位是弧度/秒。
-角位移:角位移表示物体从一个位置到另一个位置所转过的角度。
通常用符号θ表示,其单位是弧度。
-角加速度:角加速度表示角速度的变化率。
通常用符号α表示,其单位是弧度/秒^23.圆周运动的描述方法圆周运动可以通过角度和弧长来描述。
-角度:角度是描述物体旋转角度的单位。
一周的角度为360度,一个弧度等于180度/π。
圆周运动的角位移和角速度都是用角度表示的。
-弧长:弧长是物体沿圆周运动所走过的路径的长度。
弧长与角度之间存在着一一对应的关系,可以根据圆周的半径和角度计算得到。
4.圆周运动的速度和加速度在圆周运动中,物体具有切向速度和径向速度,同时也具有切向加速度和径向加速度。
-切向速度:切向速度是物体在圆周运动过程中与圆周切线方向相切的速度分量。
切向速度与角速度之间存在着一一对应的关系,切向速度等于角速度乘以半径。
-径向速度:径向速度是物体在圆周运动过程中沿半径方向的速度分量。
很明显,径向速度等于零。
-切向加速度:切向加速度是物体在圆周运动过程中与圆周切线方向相切的加速度分量。
切向加速度与角加速度之间存在着一一对应的关系,切向加速度等于半径乘以角加速度。
-径向加速度:径向加速度是物体在圆周运动过程中沿半径方向的加速度分量。
很明显,径向加速度不为零。
圆周运动的基本知识
圆周运动的基本知识圆周运动是物体沿着一个圆形轨道做匀速运动的过程。
它在物理学中具有重要的地位,并且在许多实际应用中都有广泛的应用。
本文将从圆周运动的定义、特性以及相关公式等方面进行探讨,以帮助读者更好地理解圆周运动的基本知识。
一、圆周运动的定义圆周运动是指物体在一个固定圆周轨道上做匀速运动的过程。
在圆周运动中,物体围绕圆心O做运动,轨迹形成一个圆形。
这个圆形的半径称为圆周运动的半径,记作R。
物体从起始点开始,经过一定时间后回到起始点,完成一个完整的圆周运动。
二、圆周运动的特性1. 圆周运动的速度恒定:圆周运动的速度在整个运动过程中保持不变。
物体沿着圆周轨道匀速运动,其速度大小始终保持不变。
2. 圆周运动的加速度始终指向圆心:在圆周运动中,物体的运动方向发生改变,因此存在加速度。
这个加速度的方向始终指向圆心,与物体在圆周轨道上的位置有关。
3. 圆周运动的周期:圆周运动的周期是指物体完成一个完整圆周运动所需要的时间。
圆周运动的周期与物体的速度和圆周的半径有关,可以用公式T=2πR/v来表示,其中T表示周期,π表示圆周率,R表示半径,v表示速度。
三、圆周运动的相关公式1. 圆周运动的速度公式:圆周运动的速度可以用公式v=2πR/T表示,其中v表示速度,R表示半径,T表示周期。
根据这个公式,我们可以通过已知半径和周期来计算圆周运动的速度。
2. 圆周运动的加速度公式:圆周运动的加速度可以用公式a=v²/R表示,其中a表示加速度,v表示速度,R表示半径。
根据这个公式,我们可以通过已知速度和半径来计算圆周运动的加速度。
3. 圆周运动的向心力公式:在圆周运动中,物体受到的向心力也是非常重要的。
向心力可以用公式F=mv²/R表示,其中F表示向心力,m表示物体的质量,v表示速度,R表示半径。
根据这个公式,我们可以通过已知质量、速度和半径来计算圆周运动的向心力。
四、圆周运动的应用1. 行星绕太阳的圆周运动:根据万有引力定律,行星绕太阳做圆周运动。
高一物理2.1怎样描述圆周运动
返回目录
退出
图2-1-5
【解析】皮带不打滑,表示皮带触点处线速度大小相等,故vB=vC, 因A与B为同一轮上的两点,角速度相等,线速度与半径成正比,vA=3vB。 故三点的线速度之比为3:1:1。 因vB=vC,当线速度相等时,角速度与半径成反比,又因rB:rC=1:2, 所以ωB:ωC=2:1。又ωA=ωB,故三点的角速度之比为2:2:1.
图2-1-2
【例2】机械手表的分针与秒针从重合至第二次重合,中间经历的时间为 ( 59 61 60 A. 60 min B.1 min C. min D. 60 min
59
C
)
2
如图2-1-1所示,直径为d的纸制圆 筒,使它以角速度ω绕其中心轴O 匀速转动,然后使子弹沿直径穿过 圆筒。若子弹在圆筒旋转不到半周 时在圆筒上留下a、b两个弹孔,已 知aO、bO夹角为φ,求子弹的速度 为多大。
【评析】在处理传动装置中各物理量间的关系时,关键是 确定其相同的量(线速度或角速度),再由描述圆周运动的 各物理量间的关系,确定其他各量间的关系。
4 如图2-1-6,A、B两个齿轮的齿数分别是z1、z2,各自固定在 过O1、O2的轴上。其中过O1的轴与电动机相连接,此轴每 分钟转速为n1。求: (1)B齿轮的转速n2; (2) A、B两齿轮的半径之比; (3)在时间t内,A、B两齿轮转过的角度之比,以及B齿轮外 缘上一点通过的路程。(设A齿轮的半径为R1、B齿轮的半 径为R2)
图2-1-1
【解析】小车的速度等于车轮的周长与单位时间内车轮转动的圈数的乘积。 设车轮的半径为R,单位时间内车轮转动圈数为k,则有 v=2πRk 若齿轮齿数为p,则齿轮转一圈电子电路显示脉冲数即为p,已知单位时间 内的脉冲数为n,所以单位时间内齿轮转动圈数为n/p,由于齿轮与车轮同轴相 连,它们在单位时间内转动圈数相等,即k=n/p,由以上两式可得v=2πRn/p。 同理,设车轮转动的累计圈数为k,则有 s=2πRk,且k=N/p,所以s=2πRN/p 可见,要测出小车的速度v和行程s,除单位时间内的脉冲数n和累计脉冲 数N外,还必须测出车轮半径R和齿轮的齿数p。
怎样描述圆周运动1
❖ 2、下列关于甲乙两个做圆周运动的物体的有
关说法正确的是(C)❖ A、它们线速度相等,角速度一定相等
❖ B、它们角速度相等,线速度一定也相等
❖ C、它们周期相等,角速度一定也相等
❖ D、它们周期相等,线速度一定也相等
3、如图4所示,A、B两轮半径之比为1:3,两 轮边缘挤压在一起,在两轮转动中,接触点不存 在打滑的现象,则两轮边缘的线速度大小之比等 于__1_:_1__,角速度之比等于_3__:___1,周期之比_1__:__3_, 两轮的转数之比等于__3_:_1__,
圆周运动
转盘
水流星
圆周运动
地球仪
圆周运动特征: 质点的轨迹是圆周(圆弧)、 具有周期性
圆锥摆
自行车中的转动
飞轮
讨论:
后轮
链轮
如何比较自行车的链轮、飞轮和后轮上各点的运 动快慢呢?
思 考
两物体均做圆周运动,怎样比较它们运动的快慢?
比较物体转 过一圈所用 时间的多少
比较物体在 一段时间内 转过的圈数
图4
如何估算你骑自行车的正常速度
(1)要测量哪些物理量?
C
B
A (2)写出自行车正常
行驶的速度与测
量量之间的关系
(3)估算正常行驶的速度
即:
f
1 T
单位:赫兹,Hz
5.转速——单位时间内转过的圈数。
即:n
N t
单位:转/秒,r/s
皮带传动
常见传动从动装置
齿轮传动
摩擦传动
AB
c
皮带传动,由于相等时间里转过的弧长 相等,所以线速度相等。 在同一转动轴上,物体由于相等时间里 转过的角度相等,所以角速度相等。
巩固训练
圆周运动知识点
圆周运动知识点圆周运动是物理学中的一个重要概念,它是物体在一定力作用下所做的一种周期性运动。
本文将介绍圆周运动的基础知识、应用以及未来的发展前景。
一、圆周运动基础知识圆周运动是指一个物体沿着一个圆形轨迹进行运动,通常称为“圆周运动”。
圆的周长、直径和半径等参数都可以用来描述圆周运动。
其中,圆的周长公式为:C=2πr,其中C表示圆的周长,r表示圆的半径。
圆的直径是圆的任意两条直径或半径的距离,而圆的半径则是从圆心到圆上的任意一点的距离。
在圆周运动中,最重要的概念是角速度和角加速度。
角速度是描述物体在单位时间内转过的角度的物理量,而角加速度则是描述物体在单位时间内角速度的变化率。
根据角速度的定义,可以得到角速度的公式:ω=Δθ/Δt,其中ω表示角速度,Δθ表示物体转过的角度,Δt表示时间间隔。
同样地,角加速度的公式为:α=Δω/Δt,其中α表示角加速度。
二、圆周运动的应用圆周运动在日常生活和工程应用中有着广泛的应用。
例如,手表、时钟等计时器就是利用圆周运动来测量时间的。
在交通工程中,车辆的轮胎也是基于圆周运动原理进行设计和制造的。
在建筑学中,圆周运动也得到了应用。
例如,摩天轮、旋转餐厅等都是基于圆周运动原理设计的。
在物理学中,圆周运动也被用来解释许多自然现象,如天体运动、原子核衰变等。
三、未来发展前景随着科学技术的不断发展,圆周运动的应用前景也越来越广阔。
例如,在能源领域,基于圆周运动的储能技术正在成为研究的热点。
在医疗领域,基于圆周运动的微操作技术也得到了广泛应用。
总之,圆周运动作为物理学中的一个重要概念,在日常生活和工程应用中有着广泛的应用。
随着科学技术的不断发展,圆周运动的应用前景也将越来越广阔。
圆周运动小结知识点总结
圆周运动小结知识点总结一、圆周运动的基本概念1. 圆周运动的定义:圆周运动是一个物体或者一个系统绕着一个固定的圆心做圆周运动。
2. 圆周运动的特点:在圆周运动中,物体绕着一个固定的圆心做圆周运动,由于物体的运动方向和加速度方向垂直,因而圆周运动中的加速度称为向心加速度。
3. 向心加速度的方向:向心加速度的方向始终指向圆心。
4. 向心加速度的大小:向心加速度的大小与圆周运动的线速度的平方和圆的半径成正比,公式为 a = v²/r,其中 a 表示向心加速度,v 表示线速度,r 表示半径。
5. 圆周运动的周期:圆周运动完成一次运动所需的时间称为圆周运动的周期,用 T 表示。
6. 圆周运动的频率:圆周运动单位时间内完成的圆周运动次数称为圆周运动的频率,用 f 表示。
7. 圆周运动的角速度:圆周运动角度在单位时间内转过的角度称为角速度,用ω 表示。
二、圆周运动的运动规律1. 圆周运动的速度:圆周运动的速度是指物体绕圆心做圆周运动时在圆周上的线速度。
2. 圆周运动的线速度公式:圆周运动的线速度 v 与角速度ω 和圆的半径 r 成正比,公式为v = ωr。
3. 圆周运动的角速度公式:圆周运动的角速度ω 与圆周运动的周期 T 成反比,公式为ω = 2π/T。
4. 圆周运动的受力分析:在圆周运动中,物体受到向心力的作用,向心力一般由拉力、重力等提供。
5. 圆周运动的牛顿运动定律:在圆周运动中,牛顿第一定律和牛顿第二定律仍然成立,不过要根据实际情况进行修正。
6. 圆周运动的能量转化:在圆周运动中,由于向心力的作用,物体的机械能将发生转换,动能和势能将不断地进行转换。
三、圆周运动的相关公式1. 圆周运动的线速度公式:v = ωr。
2. 圆周运动的角速度公式:ω = 2π/T。
3. 圆周运动的向心加速度公式: a = v²/r。
4. 圆周运动的周期和频率之间的关系: f = 1/T。
5. 圆周运动的动能公式: KE = 1/2mv²。
圆周运动
圆周运动的规律及其应用,圆周运动的描述(考纲要求Ⅰ)1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:判断正误,正确的划“√”,错误的划“×”.(1)匀速圆周运动是速度不变的曲线运动.()(2)做匀速圆周运动的物体向心加速度与半径成反比.()(3)做匀速圆周运动的物体角速度与转速成正比.()(4)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢看周期、角速度.( ),匀速圆周运动的向心力 (考纲要求 Ⅱ)1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小:F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r .3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.,离心现象1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势.图4-3-13.受力特点当F =mrω2时,物体做匀速圆周运动; 当F =0时,物体沿切线方向飞出;当F <mrω2时,物体逐渐远离圆心,F 为实际提供的向心力,如图4-3-1所示.判断正误,正确的划“√”,错误的划“×”.(1)随圆盘一起匀速转动的物块受重力、支持力和向心力的作用.( )(2)做圆周运动的物体所受合外力突然消失,物体将沿圆周切线方向做匀速直线运动.( )(3)摩托车转弯时,如果超过一定速度,摩托车将发生滑动,这是因为摩托车受到沿半径方向向外的离心力作用.( )基 础 自 测1.(多选)下列关于匀速圆周运动的说法中,正确的是( ). A .线速度不变 B .角速度不变C .加速度为零D .周期不变2.(多选)质点做匀速圆周运动,则( ). A .在任何相等的时间里,质点的位移都相同 B .在任何相等的时间里,质点通过的路程都相等C .在任何相等的时间里,连接质点和圆心的半径转过的角度都相等D .在任何相等的时间里,质点运动的平均速度都相同 3.(单选)下列关于离心现象的说法正确的是( ). A .当物体所受的离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做背离圆心的圆周运动C .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做曲线运动 4.(单选)汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长,某国产轿车的车轮半径约为30 cm ,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h ”上,可估算出该车车轮的转速约为( ). A .1 000 r/s B .1 000 r/minC .1 000 r/h D .2 000 r/s.5.(单选)甲、乙两质点均做匀速圆周运动,甲的质量与运动半径分别是乙的一半,当甲转动80转时,乙正好转过60转,则甲与乙所受的向心力大小之比为( ). A .1∶4 B .4∶1C .4∶9D .9∶4热点一 描述圆周运动的各物理量间的关系 1.圆周运动各物理量间的关系 2.对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 3.对a =v 2r =ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.【典例1】(多选)如图4-3-2所示为皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径是4r ,小轮的半径是2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中皮带不打滑,则( ). A .a 点和b 点的线速度大小相等 B .a 点和b 点的角速度大小相等 C .a 点和c 点的线速度大小相等 D .a 点和d 点的向心加速度大小相等 反思总结常见的三种传动方式及特点1.皮带传动:如图4-3-3甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .图4-3-32.摩擦传动:如图4-3-4甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .图4-3-43.同轴传动:如图4-3-4乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB .【跟踪短训】1.(2013·桂林模拟)(单选)如图4-3-5所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( ).A .线速度大小之比为3∶2∶2B .角速度之比为3∶3∶2C .转速之比为2∶3∶2图4-3-2图4-3-5D .向心加速度大小之比为9∶6∶4热点二 匀速圆周运动中的动力学问题)1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力. 【典例2】(2013·重庆卷,8)如图4-3-6所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO ′重合.转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO ′之间的夹角θ为60°,重力加速度大小为g . (1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;(2)若ω=(1±k )ω0,且0<k ≪1,求小物块受到的摩擦力大小和方向.【跟踪短训】2.(多选)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内、外轨高度差h 的设计不仅与r 有关.还与火车在弯道上的行驶速度v 有关.下列说法正确的是( ).A .速率v 一定时,r 越小,要求h 越大B .速率v 一定时,r 越大,要求h 越大C .半径r 一定时,v 越小,要求h 越大D .半径r 一定时,v 越大,要求h 越大物理建模 6.竖直平面内圆周运动的“轻绳、轻杆”模型1.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑. 2.模型特点图4-3-6该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:【典例3】(单选)如图4-3-7所示,2012年8月7日伦敦奥运会体操男子单杠决赛,荷兰选手宗德兰德荣获冠军.若他的质量为60 kg ,做“双臂大回环”,用双手抓住单杠,伸展身体,以单杠为轴做圆周运动.此过程中,运动员到达最低点时手臂受的总拉力至少约为(忽略空气阻力,g =10 m/s 2)( ). A .600 N B .2 400 N C .3 000 N D .3 600 N图4-3-7即学即练(单选)如图4-3-8所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L ,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为( ). A.3mg B .23mg C .3mg D .4mgA 对点训练——练熟基础知识题组一 匀速圆周运动的运动学问题1.(多选)在“天宫一号”的太空授课中,航天员王亚平做了一个有趣实验.在T 形支架上,用细绳拴着一颗明黄色的小钢球.设小球质量为m ,细绳长度为L .王亚平用手指沿切线方向轻推小球,小球在拉力作用下做匀速圆周运动.测得小球运动的周期为T ,由此可知A .小球运动的角速度ω=T /(2π) B .小球运动的线速度v =2πL /T C .小球运动的加速度a =2π2L /T 2 D .细绳中的拉力为F =4m π2L /T 22.(单选)2013年6月20日上午10时,中国载人航天史上的首堂太空授课开讲.航天员做了一个有趣实验:T 形支架上,用细绳拴着一颗明黄色的小钢球.航天员王亚平用手指沿切线方向轻推小球,可以看到小球在拉力作用下在某一平面内做圆周运动.从电视画面上可估算出细绳长度大约为32 cm ,小球2 s 转动一圈.由此可知王亚平使小球沿垂直细绳方向获得的速度为 ( ). A .0.1 m/s B .0.5 m/s C .1 m/sD .2 m/s题组二 匀速圆周运动的动力学问题3.(单选)如图4-3-9所示,是某课外研究小组设计的可以用来测量转盘转速的装置.该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小图4-3-8球穿在光滑细杆与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动.当转盘不转动时,指针指在O 处,当转盘转动的角速度为ω1时,指针指在A 处,当转盘转动的角速度为ω2时,指针指在B 处,设弹簧均没有超过弹性限度.则ω1与ω2的比值为( ). A.12B.12C.14D.134.(2013·扬州中学期中考试)(单选)如图4-3-10所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两物体A 和B ,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好没有发生滑动时,烧断细线,则两物体的运动情况将是( ). A .两物体均沿切线方向滑动B .两物体均沿半径方向滑动,远离圆心C .两物体仍随圆盘一起做匀速圆周运动,不会滑动D .物体A 仍随圆盘做匀速圆周运动,物体B 沿曲线运动,远离圆心5.(2013·江苏卷,2)(单选)如图4-3-11所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( ).A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C .悬挂A 、B 的缆绳与竖直方向的夹角相等D .悬挂A 的缆绳所受的拉力比悬挂B 的小题组三 离心现象6.(单选)世界一级方程式锦标赛新加坡大奖赛赛道单圈长5.067公里,共有23个弯道,如图4-3-12所示,赛车在水平路面上转弯时,常常在弯道上冲出跑道,则以下说法正确的是( ).A .是由于赛车行驶到弯道时,运动员未能及时转动 方向盘才造成赛车冲出跑道的B .是由于赛车行驶到弯道时,运动员没有及时加速才造成赛车冲出跑道的C .是由于赛车行驶到弯道时,运动员没有及时减速才造成赛车冲出跑道的图4-3-10图4-3-12图4-3-11D.由公式F=mω2r可知,弯道半径越大,越容易冲出跑道7.(多选)公路急转弯处通常是交通事故多发地带.如图4-3-13,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处().A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小题组四圆周运动的临界问题8.(2013·上海卷,6)(单选)秋千的吊绳有些磨损.在摆动过程中,吊绳最容易断裂的时候是秋千().A.在下摆过程中B.在上摆过程中C.摆到最高点时D.摆到最低点时9.(多选)如图4-3-14所示,半径为R的光滑圆形轨道竖直固定放置,小球m在圆形轨道内侧做圆周运动.对于半径R不同的圆形轨道,小球m通过轨道最高点时都恰好与轨道间没有相互作用力.下列说法中正确的有().A.半径R越大,小球通过轨道最高点时的速度越大B.半径R越大,小球通过轨道最高点时的速度越小C.半径R越大,小球通过轨道最低点时的角速度越大D.半径R越大,小球通过轨道最低点时的角速度越小10.(单选)在光滑水平面上,有一转轴垂直于此平面,交点O的上方h处固定一细绳,绳的另一端连接一质量为m的小球B,绳长l>h,小球可随转轴转动在光滑水平面上做匀速圆周运动,如图4-3-15所示.要使小球不离开水平面,转轴转速的最大值是().A.12πgh B.πghC.12πgl D.12πlg图4-3-13图4-3-15图4-3-1411.(多选)如图4-3-16所示,长为L 的轻杆一端固定质量为m 的小球,另一端固定转轴O ,现使小球在竖直平面内做圆周运动.P 为圆周轨道的最高点.若小球通过圆周轨道最低点时的速度大小为92gL ,则以下判断正确的是( ). A .小球不能到达P 点B .小球到达P 点时的速度小于gLC .小球能到达P 点,但在P 点不会受到轻杆的弹力D .小球能到达P 点,且在P 点受到轻杆向上的弹力B 深化训练——提高能力技巧12.(2013·常州市上学期期中考试)如图4-3-17所示,将一质量为m =0.1 kg 的小球自水平平台右端O 点以初速度v 0水平抛出,小球飞离平台后由A 点沿切线落入竖直光滑圆轨道ABC ,并沿轨道恰好通过最高点C ,圆轨道ABC 的形状为半径R =2.5 m 的圆截去了左上角127°的圆弧,BC 为其竖直直径,(sin 53°=0.8,cos 53°=0.6,重力加速度g 取10 m/s 2)求: (1)小球经过C 点的速度大小;(2)小球运动到轨道最低点B 时小球对轨道的压力大小; (3)v0的数值.图4-3-16图4-3-17。
圆周运动的特点
圆周运动总结
圆周运动总结圆周运动是我们生活中常见且重要的一种运动形式。
无论是地球绕太阳的运动,还是电子绕原子核的运动,都可以看作是圆周运动的具体例子。
在物理学研究中,我们对圆周运动进行了深入的探索与总结。
在这篇文章中,我将带您回顾圆周运动的基本概念、描述方法以及其中的一些重要定律。
一、圆周运动的基本概念圆周运动即物体在固定轨道上以恒定的速率绕着中心点旋转的运动形式。
在这个过程中,物体的加速度方向恒向圆心指向,速度大小不断变化。
而物体绕圆心运动的距离称为圆周运动的半径。
圆周运动在真实世界中随处可见,例如地球绕太阳公转和自转、行星围绕中心恒星的运动等。
二、圆周运动的描述方法为了描述圆周运动,我们引入一些重要的物理量。
首先是角速度(ω),它定义为物体单位时间内绕圆心旋转的角度。
角速度是圆周运动的特征之一。
另一个重要的物理量是线速度(v),它描述了物体在圆周运动中在单位时间内通过的距离。
线速度与角速度的关系可以由下式表示:v = rω,其中r为圆周运动的半径。
线速度的方向沿着位于物体上的切线方向。
三、圆周运动的重要定律1. 弗朗茨定律圆周运动与引力有关时,弗朗茨定律是一个重要的定律。
它描述了物体在圆周运动过程中所受到的向心力。
根据弗朗茨定律,向心力的大小与物体的质量、线速度以及半径有关。
向心力的方向指向圆心,它被定义为mv²/r,其中m为物体的质量。
向心力的作用使得物体维持在固定的轨道上,并让它成为圆周运动。
2. 开普勒定律开普勒定律是描述行星围绕太阳运动的规律。
它包括三个定律,分别是:(1)开普勒第一定律,也称为椭圆轨道定律。
根据该定律,行星的轨道是一条椭圆,在其中太阳处于一个焦点上。
(2)开普勒第二定律,也称为面积定律。
根据该定律,行星在相同时间内扫过的面积相等。
这意味着当行星靠近太阳时,它将加速,而当行星远离太阳时,它将减速。
(3)开普勒第三定律,也称为调和定律。
根据该定律,行星绕太阳的周期平方与它的平均距离的立方成正比。
圆周运动知识点总结总结
圆周运动知识点总结总结1. 圆周运动的基本概念在圆周运动中,物体沿着一个圆形轨道围绕一个点或轴线做运动。
这个点或轴线被称为圆周运动的中心。
在圆周运动中,物体离中心的距离被称为半径,用符号r表示。
围绕圆心的角度称为角度,通常用符号θ表示。
当物体在圆周运动中通过一个完整的圆周,它所围绕的角度是360度,或者用弧度表示为2π弧度。
2. 圆周运动的运动学描述在圆周运动中,物体在单位时间内通过的角度称为角速度,通常用符号ω表示。
角速度是一个矢量量,它的大小等于单位时间内旋转的角度。
角速度的单位通常是弧度每秒(rad/s)。
物体在圆周运动中所围绕的圆周的长度称为弧长,通常用符号s表示。
弧长和半径之间的关系可以用下面的公式描述:s = rθ在圆周运动中,物体在单位时间内通过的弧长称为线速度,通常用符号v表示。
线速度的大小等于弧长与时间的比值,即v = s/t。
线速度和角速度之间的关系可以用下面的公式描述:v = rω这个公式表明线速度和角速度是成正比的关系。
当半径增大时,线速度也会增大;当角速度增大时,线速度也会增大。
这也说明了在圆周运动中,线速度的方向是垂直于半径的方向。
线速度的方向与角速度的方向有一定的关系,具体关系可根据右手螺旋法则来确定。
3. 圆周运动的动力学描述在圆周运动中,物体所受的向心力(或者称为离心力)是造成它做圆周运动的根本原因。
向心力的大小等于物体的质量和其线速度的平方与半径的乘积之比,即F_c = mv^2/r其中F_c表示向心力,m表示物体的质量,v表示物体的线速度,r表示物体所围绕的圆周的半径。
向心力的方向始终指向圆周运动的中心。
向心力是一种虚拟力,它并不是真实存在的力,但是它却能够改变物体的运动状态,使得物体在圆周运动中始终保持向中心的方向运动。
圆周运动中的向心力和角速度之间有一定的关系。
向心力的大小和角速度的平方成正比,即F_c = mrω^2这个关系表明当角速度增大时,向心力也会增大,从而使得物体在圆周运动中的向中心的加速度也会增大。
圆周运动的基本概念与公式
圆周运动的基本概念与公式圆周运动是物体在圆形轨道上做的运动,通常也被称为旋转运动。
我们可以用一些基本概念和公式来描述和计算圆周运动的相关物理量。
本文将详细介绍圆周运动的基本概念与公式。
一、圆周运动的基本概念1.轨道半径(r):圆周运动的轨道是一个圆形,轨道半径是指圆心到物体在轨道上某一点的距离。
2.圆周运动的周期(T):圆周运动的周期是指物体完成一次完整的圆周运动所需要的时间。
3.角速度(ω):角速度是指物体在圆周运动中单位时间内绕圆心旋转的角度。
4.线速度(v):线速度是指物体在圆周运动中单位时间内沿轨道运动的距离。
5.圆周运动的频率(f):圆周运动的频率是指物体完成一次完整的圆周运动所需要的时间,即频率的倒数。
二、圆周运动的公式1.周期与频率的关系:T = 1 / f2.线速度与角速度的关系:v = rω3.线速度与周期的关系:v = (2πr) / T4.角速度与频率的关系:ω = 2πf5.线速度与频率的关系:v = 2πrf6.圆周运动的加速度(a):a = rω²7.圆周运动的向心加速度(ac):ac = v² / r = rω²根据上述公式,我们可以通过已知的物理量来计算圆周运动中的其他物理量。
例如,如果我们已知圆周运动的轨道半径和角速度,就可以计算出线速度;如果我们已知轨道半径和线速度,就可以计算出角速度和周期等。
三、实例应用假设一个半径为2米的物体以每秒钟2π弧度的角速度绕一个圆形轨道运动,我们可以利用上述公式来计算其他物理量。
首先,计算周期与频率:T = 1 / f = 1 / (2π) ≈ 0.16秒f ≈ 6.28赫兹接下来,计算线速度:v = rω = 2 × π × 2 ≈ 12.57米/秒然后,计算圆周运动的加速度和向心加速度:a = rω² ≈ 2 × 2²π² ≈ 25.12米/秒²ac = v² / r = (12.57)² / 2 ≈ 39.62米/秒²通过这个实例,我们可以看到如何利用圆周运动的基本概念和公式来计算相关物理量。
圆周运动知识点总结
圆周运动知识点总结圆周运动是物体沿圆周路径运动的一种形式,它在物理学中占有重要地位。
以下是关于圆周运动的一些关键知识点:1. 圆周运动的基本概念:圆周运动是指物体沿圆周轨迹运动的过程,其中物体的速度方向时刻变化,始终指向圆心。
2. 圆周运动的类型:圆周运动可以分为匀速圆周运动和变速圆周运动。
匀速圆周运动是指物体以恒定速度沿圆周轨迹运动,而变速圆周运动则是指物体的速度大小或方向在运动过程中发生变化。
3. 圆周运动的描述:描述圆周运动时,通常使用线速度、角速度、周期、频率等物理量。
线速度是物体沿圆周轨迹的切线方向的速度,角速度是物体绕圆心转过的角度与时间的比值,周期是物体完成一次圆周运动所需的时间,频率是单位时间内物体完成圆周运动的次数。
4. 圆周运动的物理量关系:对于匀速圆周运动,线速度v、角速度ω、周期T和频率f之间的关系为v = ωr = 2πr/T = 2πf,其中r是圆周运动的半径。
5. 向心力:物体做圆周运动时,需要一个指向圆心的力来维持运动,这个力称为向心力。
向心力的大小与物体的质量、速度和半径有关,其公式为F_c = mω^2r = mv^2/r。
6. 向心加速度:物体做圆周运动时,由于速度方向时刻改变,会产生向心加速度,其大小为a_c = vω = ω^2r = v^2/r,方向始终指向圆心。
7. 圆周运动的实例:生活中的许多现象都涉及到圆周运动,如行星绕太阳的运动、车轮的旋转、钟摆的摆动等。
8. 圆周运动的动力学分析:在分析圆周运动时,需要考虑物体所受的所有力,包括向心力、摩擦力、重力等,并通过牛顿第二定律进行动力学分析。
9. 圆周运动的稳定性:圆周运动的稳定性与物体的质量和速度有关,质量越大、速度越小,圆周运动越稳定。
10. 圆周运动的实验研究:通过实验可以研究圆周运动的规律,例如使用旋转圆盘实验来测量角速度和线速度的关系,或者通过测量物体在圆周运动中的向心力来验证物理定律。
这些知识点为理解和分析圆周运动提供了基础,对于深入学习物理学中的动力学和运动学问题至关重要。
描述圆周运动
描述圆周运动嘿,朋友们!今天咱来聊聊圆周运动呀!你看那车轮子,咕噜咕噜转个不停,那就是圆周运动的典型例子呀!想象一下,一个点绕着一个中心,一圈又一圈地跑,是不是挺有意思?圆周运动可到处都是呢!就像公园里的旋转木马,小朋友们坐在上面,跟着音乐开心地转呀转。
还有那钟摆,滴答滴答地来回晃悠,也是一种圆周运动呢!咱再说说运动员们扔铁饼吧!那铁饼被运动员用力一甩,就沿着一个圆形轨迹飞出去啦。
这可不就是圆周运动嘛,只不过这个圆比较大,而且还飞出去了一段。
这就好像我们的生活,有时候会沿着一个固定的轨迹前进,但也会有一些意外的“飞出去”的时候呢。
还有那游乐场里的摩天轮,慢悠悠地转着,把人们带到高处,又送回地面。
坐在上面,你能看到不一样的风景,这多像我们人生的起起落落呀。
有时候在高处风光无限,有时候又回到低处重新开始。
圆周运动里有个很重要的概念,就是角速度。
角速度就像是一个人的脾气,有的快有的慢。
脾气急的人做事风风火火,就像角速度大的圆周运动;脾气慢的人做事稳稳当当,就像角速度小的圆周运动。
你说这比喻妙不妙?而且圆周运动可不光是好玩,在很多实际应用中也很重要呢!比如机器里的齿轮转动,那都是圆周运动在发挥作用呀。
没有圆周运动,这些机器可就没法好好工作啦。
再想想,地球绕着太阳转,这也是圆周运动呀!要是没有这个圆周运动,我们的世界会变成什么样呢?那可不敢想象!所以说呀,圆周运动看似简单,实则蕴含着无穷的奥秘和乐趣。
它就在我们的生活中无处不在,等着我们去发现,去感受。
我们要像享受圆周运动一样享受生活,不管是快的角速度还是慢的角速度,都有它独特的魅力和价值。
不要小瞧了这一圈又一圈的运动,它能带给我们很多惊喜呢!这就是我对圆周运动的理解,你们觉得呢?。
高中物理--圆周运动
一、描述圆周运动的物理量及其相互关系 1、线速度⑴定义:质点做圆周运动通过的弧长s 和所用时间t 的比值叫做线速度.⑵大小:2s rv t T π==单位为m/s.⑶方向:某点线速度的方向即为该点的切线方向.(与半径垂直) ⑷物理意义:描述质点沿圆周运动的快慢.注:对于匀速圆周运动,在任意相等时间内通过的弧长都相等,即线速度大小不变,方向时刻改变。
2、角速度⑴定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度 跟所用时间t 的比值,就是质点运动的角速度.⑵大小: 单位:rad/s. ⑶物理意义:描述质点绕圆心转动的快慢.注:对于匀速圆周运动,角速度大小不变。
说明:匀速圆周运动中有两个结论:⑴同一转动圆盘(或物体)上的各点角速度相同.⑵不打滑的摩擦传动和皮带(或齿轮)传动的两轮边缘上各点线速度大小相等。
3、周期、频率、转速⑴周期:做匀速圆周运动的物体,转过一周所用的时间叫做周期。
用T 表示,单位为s 。
⑵频率:做匀速圆周运动的物体在1 s 内转的圈数叫做频率。
用f 表示,其单位为转/秒(或赫兹),符号为r/s(或Hz)。
⑶转速:工程技术中常用转速来描述转动物体上质点做圆周运动的快慢。
转速是指物体单位时间所转过的圈数,常用符号n 表示,转速的单位为转/秒,符号是r/s ,或转/分(r/min)。
4、向心加速度⑴定义:做圆周运动的物体,指向圆心的加速度称为向心加速度. ⑵大小:ϕ2t T ϕπω==⑶方向:沿半径指向圆心.⑷意义:向心加速度的大小表示速度方向改变的快慢.说明:①向心加速度总指向圆心,方向始终与速度方向垂直,故向心加速度只改变速度的方向,不改变速度的大小。
②向心加速度方向时刻变化,故匀速圆周运动是一种加速度变化的变加速曲线运动(或称非匀变速曲线运动).③向心加速度不一定是物体做圆周运动的实际加速度。
对于匀速圆周运动,其所受的合外力就是向心力,只产生向心加速度,因而匀速圆周运动的向心加速度是其实际加速度。
圆周运动
圆周运动一、圆周运动的描述1、圆周运动:指物体沿着圆周的运动,即物体运动的轨迹是圆;(1)圆周运动是个变速运动,位移、速度方向时刻在改变;(2)圆周运动的原因:受到合力与速度方向不再一条直线上,沿垂直速度方向的力改变其方向,沿速度方向改变大小;圆周运动方向改变的程度一样,所以垂直于速度方向上的力,大小不变,方向沿半径指向圆心,改变速度方向程度一样,而言速度方向里随意变化;(3)圆周运动是个非匀变速曲线运动;因为其受到的力时刻在改变着;2、线速度:物体沿圆周运动时在△t时间内通过的弧长为△s,那么它们的比值就是物体做圆周运动的线速度,用v表示,则v=△s/△t;(1)物理意义:它是表述物体做圆周运动的运动快慢的物理量,只是以弧长变化角度来描述的;(2)线速度有平均线速度和瞬时线速度之分:当△t较大则表示平均线速度,当△t足够小时得到的就是瞬时线速度;(3)线速度是个矢量:大小为v=△s/△t,单位为m/s;方向是物体在圆周运动某点的线速度方向为该点的切线方向,即线速度方向一定是垂直于圆周的半径,和圆弧相切;3、匀速圆周运动:线速度的大小处处相等的圆周运动就是匀速圆周运动;(1)匀速圆周运动是一种变速运动,速度大小不变,方向时刻在改变,这里的“匀速”指的是其速率不变;(2)有曲线运动的原理可得,匀速圆周运动物体受到的合外力,时刻都是沿圆周的半径方向,指向圆心,方向不变,去改变物体运动的方向,速度反方向上没有分力所以速率不变;(3)匀速圆周运动是非匀变速曲线运动,合外力时刻改变,速度的变化量时刻在改变,有匀速圆周运动受力特点可得,速度变化量的大小不变,方向沿半径方向指向圆心时刻在改变。
4、角速度:物体在△t时间内有A点运动到B,半径OA在这段时间内转到半径OB,其角度变化△Q,他与时间△t之间的比值叫做物体圆周运动的角速度,用w来表示,即w= (1)物理意义:描述物体圆周运动的转动快慢的物理量,只是在转动角度方面描述;(2)角速度是个矢量:大小为△Q/△t,单位为弧度每秒,符号rad/s,弧度表示的是角度的大小,其大小为弧长△s比上半径R;方向是垂直于圆面(右手定则判断);(3)匀速圆周运动:是角速度不变的圆周运动,注意匀速圆周运动线速度时刻在改变;5、周期T、频率f和转速n(1)周期T:做圆周运动的物体,转过一周所用的时间就是匀速圆周运动的周期;单位s, (2)频率f:做圆周运动的物体,在1s内转过的圈数叫做频率,用f表示,单位1Hz=1/s;(3)转速n:做圆周运动的物体,在单位时间内沿圆周绕圆心转过的圈数叫做转数,用n表述,单位为r/s或r/min;①他们都是表述物体圆周运动快慢的物理量,只是在转过的圈数上来不同定义;②匀速圆周运动的周期、频率和转速都是固定不变的;二、描述圆周运动各种物理量间的关系(匀速圆周运动)1、线速度和角速度间关系:v =rw 或w=v/r(推到以整个圆来推导);由此可得:(1)半径相同时:线速度大的角速度也大,角速度大的线速度也大,且成正比;如图(一条直线,x轴为w,y周围v);(2)当角速度相同时,半径大的线速度大且成正比(如图x轴r,y轴v);(3)当线速度相同时,半径大角速度小,半径小角速度大,且成反比(如图:当x周围1/r 时,y轴为w,是一条直线;当x轴为r时,y轴为w时,是反比函数);2、线速度与周期的关系:v=2﹠r/T(推导过程一个周期来推到);由此可得只有当半径相同时,周期小的线速度大,当半径不同,周期小的线速度不一定大,所以线速度和周期表述圆周运动快慢是不一样的;3、角速度和周期关系:w=2﹠/T,(推导与前面一样);角速度和周期一定成反比,周期大的角速度一定小;所以周期和角速度描述匀速圆周运动快慢是一样的;4、w=2﹠fv=2﹠frf=nv=wr=2﹠/Tr=2﹠fr=2﹠nr三、常见的转动装置1、共轴转动:如图,物体在以同心的半径不同的圆盘上的运动;两盘转动方向相同;(1)当圆盘转动时由于是同一个圆盘,其不同半径上任意一点出的角速度相同,转动周期相同,都等于圆盘的转动周期和角速度;(2)线速度与半径成正比;2、皮带转动:如图,皮带套着两个圆盘转动过程;注意过程皮带不打滑,(1)在两轮的边缘上任意一定的线速度大小都相同,都等于皮带本身的线速度,原因是由于他们都是由皮带的转动所带动的;(2)两圆盘边缘角速度、周期根据其各自半径,和线速度计算即可;(3)同一个盘上,由于已知边缘线速度,再根据前面共轴转动过程求解即可;3、齿轮转动:如有图,两盘由于边缘齿轮相互作用而转动;两盘转动方向相反;具体原理同皮带转动情况一样处理;四、题型和练习:本节题型(1)匀速圆周运动概念的理解(2)描述匀速圆周运动物理量见关系的计算主要是三种转动装置应用,(3)有关匀速圆周运动的计算1、关于匀速圆周运动线速度、角速度、周期说法正确的是:A线速度大角速度一定大B线速度大周一一定小C角速度大的半径一定小D角速度大的周期一定小(D)2、质点匀速圆周运动则A在任何相等时间内,质点位移相等B任何相等时间内,质点通过路程都相等C任何相等时间内质点运动的平均速度都相等D任何相等时间内,链接质点和圆心的半径转过的角速度相等(BD)3、质点做匀速圆周运动,不变的物理量是A速度B速率C角速度D加速度(BC)4、如图皮带带动两个轮,a、b分别是两轮边缘的两点,c点在O1轮上,且有ra=2rb=2rc,则有A va=vb B wz=wb C va=vc D wa=wc (AD)5、如图BC两轮固定与同一转轴上,C轮半径为B轮半径的两倍,A、B两轮有一个皮带带着转动,且A轮半径是B轮的两倍,皮带不打滑,球A、B、C轮边缘上的a、b、c三点的角速度之比和线速度之比?6、设一个半径为R的圆盘水平放置,并绕其中心竖直方向的轴做匀速圆周运动;现有一小球在圆盘中央中心正上方高h处沿OB方向水平抛出,要使小球下落到B点,问盘转动的角速度和小球的水平速度各是多少?。
圆周运动的描述
圆周运动的描述1.匀速圆周运动(匀速率圆周运动的简称,这里的“匀速”非速度不变)(1)定义:做圆周运动的物体,在任意相等的时间内通过的圆弧长都。
(2)特点:(3)性质:(4)条件:物体所受的合外力全部提供向心力。
合外力大小不变、方向始终指向圆心。
特别注意:匀速圆周指的是速率不变的圆周运动,其线速度方向不断变化,是一种变速运动,具有加速度。
一、描述圆周运动的物理量1.线速度(v):物体沿圆周通过的________和所需时间的比值,即v____.方向是_____,单位是____.物理意义:2.角速度(ω):物体与圆心连线所转过的___与所用时间的比值.即ω=________,单位是________.物理意义:3.周期(T)、频率(f)做圆周运动的物体运动一周所用的时间叫做周期.匀速圆周运动是一种周期性运动。
做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.【重点提示】(1)做圆周运动的线速度、角速度、周期和转速都是描述物体做圆周运动快慢的物理量.(2)角速度的物理意义是单位时间内半径所转过的角度,而转速是单位时间内物体沿圆周转过的圈数.二者易混淆,应特别注意.【例题1】做匀速圆周运动的物体,下列哪个物理量是不变的( )A.运动线速度B.运动的加速度C.运动的角速度D.相同时间内的位移 E 运动的周期F运动的转速【例题2】匀速圆周运动特点是( )A.速度不变,加速度不变B.速度不变,加速度变化C.速度变化,加速度不变D.速度和加速度的大小不变,方向时刻在变4.v、ω、T、f的关系(1)v与ω的关系________.(2)ω与T的关系________.(3)v与T的关系________.(4)ω与f的关系________.(5)T与f的关系________.【例题3】下列关于甲、乙两个做匀速圆周运动的物体的有关说法正确的是( )A.它们的线速度相等,角速度一定相等B.它们的角速度相等,线速度一定相等C.它们的周期相等,角速度一定相等D.它们的周期相等,线速度一定相等【例题4】关于匀速圆周运动的周期大小,下列判断正确的是( )A.若线速度越大,则周期一定越小B.若角速度越大,则周期一定越小C.若半径越大,则周期一定越大D.若角速度越大,则周期一定越大5、传动问题中线速度、角速度的关系1.同轮以及同轴上的各轮:各点的角速度相等,线速度与半径成正比(v =ωr ),2.皮带、链条、齿轮以及摩擦传动的两轮:两轮边缘的线速度大小相等(由v =s /t ,s 相同),角速度与半径成反比(ω=v r), 例5:如图所示为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n 【例题6】如图所示,两个轮通过皮带传动,设皮带与轮之间不打滑,A 为半径为R 的O 1 轮缘上一点,B 、C 为半径为2R 的O 2轮缘和轮上的点,O 2C =2R /3,当皮带轮转动时,A 、B 、C 三点的角速度之比ωA :ωB :ωC = ;A 、B 、C 三点的线速度之比v A :v B :v C = 及三点的向心加速度之比a A :a B :a C =练习:如图所示是一个玩具陀螺.a 、b 和c 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )A .a 、b 和c 三点的线速度大小相等B .a 、b 和c 三点的角速度相等C .a 、b 的角速度比c 的大D .c 的线速度比a 、b 的大如图所示,皮带传动装置转动后,皮带不打滑,则皮带轮上A .B 、C 三点的情况是( AC )A .v A =vB ,v B >vC ; B .ωA =ωB ,v B =v CC .v A =v B ,ωB =ωc ;D .ωA >ωB ,v B =v C6.向心加速度(1)物理意义:描述 ________改变的快慢.(2)大小:a =v 2r= ________. (3)方向:总是指向 ________.所以不论a 的大小是否变化,它都是个变化的量.(4)对向心加速度的理解① 向心加速度是匀速圆周运动的瞬时加速度,而不是平均加速度,在匀速圆周运动中,加速度的大小不变,方向时刻变化,所以是非匀变速运动② 向心加速度不一定是物体的做圆周运动的实际加速度,指针对于匀速圆周运动。
机械运动的圆周运动原理
机械运动的圆周运动原理1. 圆周运动的定义圆周运动指物体在轨道上做半径不变的运动。
在机械系统中,圆周运动广泛应用于许多设备和机械装置中。
了解圆周运动的原理对于设计和分析这些系统至关重要。
2. 圆周运动的基本原理圆周运动的基本原理是通过力的作用来改变物体在轨道上的方向。
轨道上的物体受到一个向心力的作用,该力指向轨道的中心点,使物体保持在轨道上做圆周运动。
3. 向心力的产生向心力是由一个物体与轨道之间的相互作用引起的。
在圆周运动中,向心力的产生来自以下几个方面:- 引力:例如地球围绕太阳的运动中,地球受到太阳的引力产生向心力。
- 弹力:例如弹簧的两端固定,拉伸或压缩弹簧时,弹簧产生的向心力使物体做圆周运动。
- 静摩擦力:例如车辆在弯道行驶时,轮胎与地面之间的静摩擦力提供了使车辆保持在弯道上的向心力。
4. 圆周运动的数学描述圆周运动可以用数学公式来描述。
以下是一些常用的数学公式:- 圆周运动的速度公式为v = ωr,其中 v 表示物体的线速度,ω 表示物体的角速度,r 表示圆周运动的半径。
- 圆周运动的角速度公式为ω = v / r。
- 圆周运动的加速度公式为a = ω^2r,其中 a 表示物体的向心加速度。
5. 圆周运动的应用圆周运动在机械工程中有广泛的应用,如:- 车辆转弯时的转向原理,通过控制车辆的转向角度和速度,使车辆保持在弯道上做圆周运动。
- 旋转机械装置的设计和分析,如风力发电机的转子叶片、汽车发动机的曲轴等。
- 机械调速装置的设计和控制,通过改变转速和转向来实现不同的运动要求。
了解圆周运动原理对于机械工程师来说是非常重要的,它可以帮助他们设计和优化各种机械系统,并确保系统的稳定运行和高效性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.地球上的物体A、B随地球自 转做匀速圆周运动,其中OB 与OA成300,求A、B两物体随 地球自转的周期、角速度、线 速度之比。
解:由题意得:两物体的周期TA=TB,TA:TB=1:1
由ω=2π/T得:ωA=ωB,ωA:ωB=1:1 由V=2πr/T得:vA:vB=rA:rB
由几何关系的得:rB:rA=COS300=√3/2 rA:rB=2√3/3 则vA:vB=2√3/3
ωC=VC/rC=8π/0.2rad/s=40πrad/s
2.地球上的物体A、B随地球自 转做匀速圆周运动,其中OB 与OA成300,求A、B两物体随
地球自转的周期、角速度、线 速度之比。 分析:地球上的物体A、B随地球自转做匀速
圆周运动,两个物体绕地轴转一圈用时相同, 所以两物体的周期TA=TB。
分析:每分钟转600转,就是一分钟转600圈, 一秒钟转10圈,n=10r/s
解:由题意得:nB=600/60r/s=10r/s,=nB A,B点的线速度和角速度: ωA=ωB=2πnA=2×π×10m/s=20πrad/s
VA=2πrAnA=2×π×0.4×10m/s=8πm/s
VB=2πrBnB=2×π×0.2×10m/s=4πm/s
怎样描述圆周运动
1.皮带传动机构的示意图
(1)三轮子轮缘上哪些点 可能具有相同的线速度?
VA=VC VA=VC>VB
三个轮子的转速的关系?
ω=2πn ωA=ωB nA=nB
A
v=2πrn vA=vc rA>rc nA<nc B
nA=nB<nc 方法总结:控制变量法
(2)设轮A与轮B的半径分别 为0.4m和0.2m,轮C的半径为 0.2m.已知轮B每分钟转600转, 计算每个轮子边缘上一点的线 速度大小和角速度的大小。
(2)设轮A与轮B的半径分别 为0.4m和0.2m,轮C的半径为 0.2m.已知轮B每分钟转600转, 计算每个轮子边缘上一点的线 速度大小和角速度的大小。
C点的线速度和角速度:
VA=2πrAnA=2×π×0.4×10m/s=8πm/s
VC=VA=2πrAnA=2×π×0.4×10m/s=8πm/s