九年级数学圆的知识点总结大全

合集下载

九年级圆的全部知识点归纳

九年级圆的全部知识点归纳

九年级圆的全部知识点归纳圆是几何学中的重要概念,具有广泛的应用价值。

在九年级的学习中,我们需要对圆的相关知识进行全面的了解,包括定义、性质、定理等方面。

本文将对九年级学习中的圆相关知识点进行归纳总结。

一、定义与基本术语1. 圆:由平面上到定点的距离相等的所有点的轨迹称为圆。

2. 圆心:圆上所有点到圆心的距离相等,圆心是圆的中心点。

3. 半径:连接圆心和圆上任意一点的线段称为半径,用字母r 表示。

4. 直径:通过圆心并且两端点都在圆上的线段称为直径,直径的长度等于半径的两倍。

5. 弧:圆上的两点间的部分称为弧。

6. 弦:圆上任意两点之间的线段称为弦。

二、圆的性质与定理1. 弧长公式:在圆心角相等的情况下,弧长和半径的乘积是相等的。

即L = rθ,其中L为弧长,r为半径,θ为对应的圆心角的度数。

2. 弧度制:1个圆周角对应的弧长等于圆周长的2π,使用弧度制时,1个圆周角对应的弧长等于半径的2π,即1圆周角= 2π弧度。

3. 弦弧定理:在圆上,相等弧所对应的弦相等,弦所对应的弧相等。

4. 弦切定理:一条弦上的两个切线所截的弧相等。

5. 切线与半径的关系:切线与半径的垂直分离定理,切线切圆的点与圆心连线垂直。

三、圆的重要定理与推论1. 中心角定理:圆上的中心角的度数等于它所对应的弧的度数。

2. 弧度的定义与利用:弧度是角度制的单位,通过弧长和半径之间的比值得到。

利用弧度可以简便地描述与计算圆的相关问题。

3. 圆周角定理:圆周角的度数等于360度,对应的弧度等于2π。

4. 平行弦定理:平行弦所对应的圆心角相等。

5. 弦割定理:当两条弦交于圆的内部一点时,各自所对应的弧之积相等。

四、圆的应用圆具有广泛的应用价值,在日常生活中有很多应用场景。

比如在建筑领域,圆经常用于设计弧形的拱门、圆顶等;在工程测量中,圆常被用于测量水井、桥梁等的半径;在电子工程中,圆被运用于制作集成电路的微缩线路等。

总结:通过本文对九年级学习中的圆相关知识点进行归纳总结,我们了解了圆的定义与基本术语、性质与定理以及应用。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

圆是数学中的一个基本几何概念,九年级数学中关于圆的知识点如下:一、圆的定义和要素:1.圆的定义:由平面上离一个确定点(圆心)的距离相等的点的全体,构成一个平面图形,称为圆。

2.圆的要素:圆心、半径、直径、弧、弦、切线、割线、扇形、弓形等。

二、圆的性质:1.圆的任意两点之间的距离相等。

2.圆的半径是圆上任意一点到圆心的距离。

3.圆的直径是通过圆心的一条线段,直径的长度等于半径的两倍。

4.圆的弧是圆上两点之间的一段曲线,圆的圆心角对应的弧长是圆的周长的一部分。

5.圆的弦是圆上的两点间的线段。

6.圆的切线是与圆只有一个交点的直线。

7.圆的割线是与圆有两个交点的直线。

8.圆的相似圆是指具有相同圆心,半径成比例的圆。

9.圆与其他几何图形的关系,如圆与直线、圆与多边形等。

三、圆的图形和公式:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

2.圆的一般方程:x²+y²+Dx+Ey+F=0,对应一般方程的圆心坐标为(-D/2,-E/2),半径为√((D²+E²)/4-F)。

3.圆的表示方法:各种符号和字母的含义及表示。

四、圆的计算题:1.圆的周长:C=2πr,其中C为周长,r为半径。

2.圆的面积:A=πr²,其中A为面积,r为半径。

3.圆的弧长公式:L=2πr(θ/360°),其中L为弧长,r为半径,θ为圆心角的度数。

4.扇形的面积公式:A=(θ/360°)πr²,其中A为扇形的面积,r为半径,θ为圆心角的度数。

5. 弓形的面积公式:A=(θ/360°)πr²-hr,其中A为弓形的面积,r为半径,θ为弧对应的圆心角的度数,h为弓形的高。

五、圆的证明题:1.圆上的弦垂直于直径。

2.圆上的垂直于弦的直径。

3.圆的半径与切线垂直。

六、圆的应用:1.圆的模拟应用,如钟表等。

初三数学圆知识点总结

初三数学圆知识点总结

初三数学圆知识点总结要点总结:一、圆的定义与相关概念:圆是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为半径。

圆心角、弧、弦、弦心距之间有一定关系。

弦是圆上任意两点的线段,直径是经过圆心的弦,直径等于半径的2倍。

圆弧分为优弧和劣弧,圆心角是圆心所对的角。

二、过三点的圆和垂径定理:不在同一条直线上的三点可以确定一个圆。

三角形的外接圆圆心是三边垂直平分线的交点。

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

三、与圆相关的角:圆心角、圆周角、弦切角是与圆相关的角。

圆心角的度数等于它所对的弦的度数,圆周角等于所对弦角的一半。

同弧或等弧所对的圆周角相等,半圆所对的圆周角相等。

弦切角等于它所夹的弧所对的圆周角,两个弦切角所夹的弧相等,那么这两个弦切角也相等。

四、点与圆的位置关系。

文章改写:圆是平面内到定点的距离等于定长的点的集合,其中定点为圆心,定长为半径。

圆的位置由圆心确定,大小由半径确定,半径相等的两个圆为等圆。

圆可以通过线段OA绕圆心O旋转一周,另一个端点A随之旋转所形成的图形来定义。

另外,圆的相关概念包括弦、直径、圆弧、圆心角等。

弦是圆上任意两点的线段,直径是经过圆心的弦,直径等于半径的2倍。

圆弧分为优弧和劣弧,圆心角是圆心所对的角。

圆心角、弧、弦、弦心距之间有一定关系,其中定理是:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。

推论是:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

通过不在同一条直线上的三点可以确定一个圆,三角形的外接圆圆心是三边垂直平分线的交点。

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

与圆相关的角包括圆心角、圆周角、弦切角,它们有一些性质,例如圆心角的度数等于它所对的弦的度数,圆周角等于所对弦角的一半,同弧或等弧所对的圆周角相等,半圆所对的圆周角相等,弦切角等于它所夹的弧所对的圆周角,两个弦切角所夹的弧相等,那么这两个弦切角也相等。

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结

九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。

2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。

二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。

2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。

4.圆内接四边形的对角互补。

三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。

六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。

七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。

在平面内,各边相等,各内角也都相等的多边形叫做正多边形。

正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。

正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。

九年级数学圆知识点梳理

九年级数学圆知识点梳理

九年级数学圆知识点梳理一、圆的定义与特点圆是由平面上离定点(圆心)距离相等的点构成的图形。

圆的特点有:1. 圆心:圆中心点的位置。

2. 半径:连接圆心和圆上任意一点的线段的长度,即半径。

3. 直径:通过圆心的两个点所构成的线段,即直径。

直径的长度是半径的两倍。

4. 弧:连接圆上两点的弧。

5. 圆周:由圆上所有点组成的曲线,也叫圆周。

二、圆的计算公式1. 圆的周长公式:C = 2πr,其中C代表圆的周长,r代表圆的半径。

π取近似值3.14。

2. 圆的面积公式:S = πr²,其中S代表圆的面积,r代表圆的半径。

三、圆的相交关系1. 相离:两个圆没有任何公共点,彼此之间没有交集。

2. 外切:两个圆相切于一点,且外切的圆没有穿过另一个圆。

3. 相交:两个圆有公共点,且相交的圆穿过另一个圆。

4. 内切:一个圆刚好位于另一个圆内部,并且两圆相切于一点。

5. 同心圆:有相同的圆心,但半径不同的圆。

四、圆的性质和定理1. 弧与角度的关系:圆心角是以圆心为顶点的角,圆心角的度数等于其所对应的弧所对角的度数。

2. 弧长公式:弧长等于圆周的$\frac{1}{n}$,其中n是圆周上被划分的几等分,m是圆周上的弧所对应的角的角度。

3. 弧与切线的关系:圆上的切线与切点处的弧垂直。

4. 切线定理:当一条直线与圆相切时,切点与切线的连线垂直于半径。

5. 弦的性质:如果两个弦在圆内或圆外相交,那么穿过内圆或外圆的弦的两边相乘的和等于其他穿过的弦的两边相乘的和。

6. 弧度制:以圆心为顶点的角所对应的弧长与半径的比值等于一个常数,即弧度制。

7. 平行切线定理:平行于切线的直线也是切线。

8. 平行弦定理:当两个弦平行时,两个弦的长度之比等于两个弦所对应的弧的长度之比。

五、圆的应用1. 几何画图:根据已知的圆心、半径、弦、切线等元素要求画出几何图形。

2. 圆的作图:根据已知条件画出满足要求的圆。

3. 物体的运动轨迹:物体在圆周运动时,物体的位置与时间的关系可表示为圆。

九年级数学圆知识点大全

九年级数学圆知识点大全

九年级数学圆知识点大全数学中的圆是我们学习的重要几何概念之一,它具有独特的性质和应用。

在九年级数学中,我们将学习有关于圆的知识点,本文将为你详细介绍九年级数学中与圆相关的知识点,帮助你更好地理解和掌握这一部分内容。

一、圆的定义和基本性质1. 圆的定义:圆是由平面上距离一个点(圆心)相等的所有点构成的集合。

2. 圆的要素:圆心、半径、直径,这三个要素是圆的基本要素。

3. 圆的基本性质:圆上任意两点与圆心的距离相等;圆上任意一点到圆心的距离等于半径的长度;直径是圆上任意两点之间的最长线段。

二、圆的相关线段和角1. 弦:在圆上连接两点得到的线段叫做弦。

直径是一个特殊的弦,它通过圆心并且长度等于圆的直径。

2. 弧:在圆上连接两点得到的弧(简称弧段)。

弧由弦所确定,弧长是弧的长度,是弧上所有点按照圆周距离的累加。

3. 弦切角:在圆上,以弦的两端点为顶点,圆上一个点为腰的角叫做弦切角。

弦切角的大小等于它所对应的弧所对的角。

三、圆的重要定理1. 切线定理:一个切线垂直于半径。

垂直于半径的线段叫做切线,切线与半径的交点与圆心的连线垂直。

2. 弦弧定理:在圆上,等长的弦所对应的弧也等长。

3. 弧心角定理:在圆上,等长的弧所对应的弧心角也相等。

4. 切割线定理:如果有两条决定于一圆的割线相交成一点,那么从这个点到四个割线外割出的四条弦对应的两对点构成两组共轭点。

四、圆的计算1. 圆的周长:圆的周长等于圆周上任意一段弧长,可以通过直径或半径来计算。

周长公式:C = 2πr 或C = πd,其中C表示周长,r表示半径,d表示直径,π约等于3.14。

2. 圆的面积:圆的面积可以通过半径来计算。

面积公式:S =πr²,其中S表示面积,r表示半径,π约等于3.14。

五、圆与其他几何图形的关系1. 圆与直线的关系:在平面几何中,一条直线可以与圆有三种不同的位置关系,分别是相离、相切和相交。

2. 圆与多边形的关系:正多边形的外接圆和内切圆,以及正多边形与圆内接四边形的关系等。

九年级数学圆知识点归纳

九年级数学圆知识点归纳

一、圆的基本性质:1.定义:平面上离定点距离等于定长的点的轨迹叫做圆。

2.圆的要素:圆心、半径。

3.圆的元素之间的关系:a.半径相等的圆互相重合。

b.位于同一直线上且相交的两个圆的交点两两相互重合。

c.等圆的圆心位于同一直线上。

二、圆的方程与切线:1.圆的标准方程:(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。

2.切线的定义:与圆仅有一个公共点的直线叫做圆的切线。

切点为圆上的点,切线与半径垂直。

3.切点的判别条件:圆心到直线的距离等于半径,即直线与半径的垂直平分线重合。

4.切线方程的求解:a.公式法:将切点代入圆的方程求解。

b.几何法:通过圆心到切线的垂线求解。

三、圆的内接三角形:1.内接三角形定义:将一个圆放置在一个三角形内,使得三角形的每一边都与圆相切,则称这个三角形为内接三角形。

2.内接三角形的性质:a.每个内接角等于其对应的弧所对的圆心角的一半。

b.三条内角的和等于180°。

c.角平分线上的垂足连线到对边的垂线与切线垂直。

d.内接三角形与圆心连线的中点连线到对边的垂线等于半径。

e.内接三角形的面积等于半周长与半径的乘积。

除了上述知识点外,还可以探讨其他与圆相关的内容,如:1.圆的面积公式:S=πr²。

2.弧长公式:L=2πr(θ/360°),其中θ为圆心角度数。

3.扇形面积公式:S=a/360°*πr²,其中a为弧所对的圆心角度数。

4.球的表面积与体积公式:对于半径为r的球,其表面积为4πr²,体积为(4/3)πr³。

总结:九年级数学中关于圆的知识点主要涵盖了圆的基本性质、圆的方程与切线、圆的内接三角形等内容。

对这些知识点的掌握和理解对于学生的数学学习和解题能力具有重要的意义。

九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳

九年级圆的知识点详细总结归纳一、圆的定义和关键概念圆是一个平面上的简单闭曲线,由与一个固定点的所有点到该点的距离相等的点组成。

下面是一些重要的圆的关键概念:1. 圆心 (Center):圆心是圆的中心点,标记为O。

2. 圆周 (Circumference):圆的周长,也称为圆周,用C表示。

3. 直径 (Diameter):直径是通过圆心的、连接圆上两点的线段。

直径的长度是圆直径的两倍。

直径用d表示。

4. 半径 (Radius):半径是从圆心到圆上任意一点的线段。

半径的长度是直径的一半。

半径用r表示。

5. 弧 (Arc):圆上两点之间的一段路径叫做弧。

6. 弦 (Chord):圆上两点之间的线段叫做弦。

7. 切线 (Tangent):切线是切于圆的一条直线,且与圆仅有一个交点。

二、圆的性质和定理圆的性质和定理是研究圆的重要基础,下面是一些常见的圆的性质和定理:1. 直径定理:直径是最长的弦,且它把一个圆分成两个半圆。

2. 弧长定理:一个圆的弧长是根据圆的半径和弧度来计算的。

弧长等于半径乘以弧的弧度。

3. 弧心角定理:圆心角是以圆心为顶点的角,它的弧度等于弧长与半径的比值。

4. 切线定理:切线与半径的关系是垂直。

5. 切线和半径的性质:当一条直线与圆相切时,与切点相连的半径垂直于切线。

6. 切割定理:如果一个弦垂直于一个半径,那么它将被切分成两个互为正方向的弧。

7. 切割角度定理:互不相交的弧它们对应的圆心角相等,相交的弧,它们对应切线切割的角相等。

8. 重合弧定理:在同一个圆上,两个重合的弧对应的圆心角相等。

三、圆的应用圆在日常生活和实际问题中有很多应用,下面是一些常见的圆的应用:1. 圆的测量:通过测量圆的直径或半径可以计算圆的周长和面积。

2. 圆的构造:通过给定圆的半径或直径可以构造圆。

3. 圆的几何关系:圆与直线、圆与圆之间有各种几何关系,如相离、相切、相交等。

4. 圆的运动学:在物理学中,圆的运动学广泛应用于描述物体的圆周运动和周期性运动。

初三数学圆知识点总结

初三数学圆知识点总结

初三数学圆知识点总结圆是初中数学中非常重要的一个概念,几乎涵盖了整个数学知识体系中的各个方面。

圆的性质和应用广泛,不仅在数学中有着重要的地位,而且在生活和实际应用中也有着广泛的应用。

本文将对初三数学圆的知识进行总结和归纳。

一、基本概念和性质1. 圆的定义:圆是由平面上离定点(圆心)的距离相等于定长(半径)的所有点的轨迹构成。

圆的边界称为圆周,圆周上的任意两点与圆心的线段称为弦,通过圆心的连线称为直径。

2. 圆的要素:圆心、半径、直径、圆周等是圆的基本要素。

圆心用字母O表示,半径用字母r表示,直径用字母d表示,圆周用字母C表示。

3. 圆的性质:圆周上的任意一点到圆心的距离相等;圆的直径是圆周的一种特殊的弦,它的长度等于半径的两倍;圆的任意弦都可以作为其两点连线的中垂线。

二、圆的要素之间的关系1. 圆心角和弧度:圆心角是指以圆心为顶点,两条弦为腰的角。

它的大小是圆周上这两个点所对的弧所夹的角度。

弧度是用来度量圆心角大小的单位,1弧度等于圆心角所对的弧长与半径的比值。

2. 弧长和扇形面积:弧长是指圆周上的一段弧的长度,它等于圆心角的大小乘以半径的长度。

扇形是以圆心角为顶角,圆的一部分为底边的图形。

扇形的面积等于圆心角所对的弧长与圆周长的比值乘以圆的面积。

3. 弦长和正弦定理:弦长是指圆上任意两点所确定的线段的长度。

正弦定理是指在一个圆内,三角形的三个边与其对角的正弦值之间的关系。

三、圆的重要定理和公式1. 切线定理和割线定理:切线定理是指从同一外点向圆引切线,切线上的切点到引线点距离的平方等于切点到圆心距离的平方。

割线定理是指从同一外点向圆引割线,割线上的切点到引线点的两部分距离的乘积等于引线点到圆心距离的平方减去割线长的平方。

2. 求圆内切多边形的边长和面积:对于正多边形,可以利用正多边形内接圆与外接圆之间的关系来求解多边形的边长和面积。

3. 余弦定理和正弦定理:余弦定理是它描述了一个三角形的边与角之间的关系。

九年级圆知识点归纳

九年级圆知识点归纳

九年级圆知识点归纳在九年级数学学习中,圆是一个非常重要的知识点。

本文将对九年级圆的相关知识进行归纳,包括圆的定义、圆的性质、圆的元素以及圆的应用等内容。

一、圆的定义圆是由平面内和一个确定点距离相等的点的全体组成。

其中,确定点称为圆心,距离称为半径。

二、圆的性质1. 圆心角:圆心角是以圆心为顶点的角,其对应的弧长等于该角的大小。

2. 弦:圆上连接两点的线段称为弦,等长的弦对应的圆心角相等。

3. 切线:切线是与圆只有一点相切的直线,切线与半径垂直。

4. 弧:两个点间的圆弧是连接这两点且完全位于圆内的曲线部分。

5. 弧长:弧长是弧上的一段弧所对应的圆心角的大小乘以半径。

三、圆的元素1. 圆心:圆心是圆上任意一点到圆心的距离都相等。

2. 半径:半径是圆心到圆上任意一点的距离,用字母r表示。

3. 直径:直径是通过圆心的任意两点之间的线段,直径等于半径的两倍。

4. 弦:弦是圆上的线段,连接圆上任意两点,但不通过圆心。

5. 弧:弧是弦所对应的曲线部分,也可以用来求解弧长。

四、圆的应用1. 圆的面积:圆的面积可以通过半径或直径来计算,公式分别为πr²和π(d/2)²,其中π是一个常数,取近似值3.1415。

2. 弧长和扇形面积:根据圆的定义,可以推导出弧长和圆心角的关系,进而计算弧长和扇形面积。

3. 圆的切线与切点:通过圆心和切点的连线垂直于切线,可以利用圆的性质求解相关问题。

4. 圆的相交关系:两个圆相交时,可以根据相交的弧长、圆心角等来求解相应的问题。

总结:通过本文的归纳,我们对九年级圆的相关知识点有了一个整体的了解。

圆的定义、性质、元素以及应用都是我们在解题过程中需要掌握的重要内容。

希望同学们能够通过不断练习,熟练掌握圆的相关知识,提高数学解题能力。

初三数学圆知识点归纳

初三数学圆知识点归纳

初三数学圆知识点归纳数学是一门理科学科,也是一门需要不断探索和实践的学科。

在初中数学中,圆是一个重要的几何图形,它具有许多特殊性质和应用。

掌握好圆的知识点,将有助于我们更好地理解几何学的基本原理和应用于实际生活中的问题。

本文将对初三数学圆知识点进行归纳总结。

1. 圆的性质圆是由一个固定点到平面上所有距离相等的点组成的图形。

圆的性质有:- 圆心:圆内任意两点与圆心的距离相等。

- 半径:圆心到圆上任意一点的距离称为半径。

- 直径:通过圆心的一条线段,两个端点都在圆上,称为直径。

直径是圆的最长线段,它的长度等于圆的直径的两倍。

- 弦:在圆上任意选取两点,它们之间的线段称为弦。

- 弧:在圆上两点之间的一段曲线称为弧。

- 弧长:弧上的一段长度称为弧长。

圆的周长就是圆的一整个弧的长度,公式为C = 2πr。

其中,C表示圆的周长,r表示圆的半径,π是一个数学常数,约等于3.14。

2. 圆的元素与关系- 圆心角:由两条半径所夹的角叫做圆心角。

圆心角的角度是圆心所对的弧所占整个圆的弧长的比例。

- 弧度:用半径为1的圆的弧长所对应的角度叫做1弧度(1 rad)。

- 弧度制与度制的换算关系:360° = 2π rad,180° = π rad。

- 同弧度的圆心角相等,同圆心角的弧长成比例。

- 弦切线关系:当一条弦的两个端点与切线的交点重合时,这条弦称为切线所对应的弦。

圆心角是直径所对应的切线所对应的弦的两倍。

3. 圆的位置关系- 相交: 两个圆的交点不为空,称为相交。

- 相切: 两个圆只有一个交点,称为相切。

- 相离: 两个圆没有公共的交点,称为相离。

4. 圆与直线的关系- 切线: 若一条直线与圆只有一个交点,且交点在圆的外部,那么这条直线称为圆的切线。

- 弦: 若一条直线有两个交点分别在圆的内部和外部,那么这条直线称为圆的弦。

- 垂直与切线的直径: 过圆切点的直径垂直于切线。

5. 圆的构造- 构造圆心: 已知圆上一点,可以通过画弦、垂直平分线、等分弧等方法构造出圆心。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。

2.圆的要素:圆心、半径、圆周。

3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。

二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。

2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。

3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。

4.圆周角的度量:可以用角的度数来衡量。

三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。

2.切线与半径的关系:切线与半径的关系是切线⊥半径。

3.弦的定义:两点之间的线段叫做弦。

4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。

四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。

2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。

五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。

2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。

六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。

九年级数学圆知识点总结

九年级数学圆知识点总结

圆是数学中的一个重要几何概念,九年级数学主要涉及圆的性质、周长、面积、弧长、扇形、切线等知识。

以下是九年级数学圆知识点的总结:一、基本概念1.圆的定义:平面上的点到一个固定点的距离等于一个给定的正数,这个固定点叫做圆心,这个正数叫做半径,所有满足这一条件的点的集合就是圆。

2.圆的元素:圆心、半径、直径、弦、弧、圆心角、半径角、弧长、圆周、切线等。

二、性质与定理1.圆周率:圆周长与直径的比值叫做圆周率,通常用希腊字母π表示,近似取值为3.14162.半径与直径的关系:直径是半径的两倍,即直径等于半径的2倍。

3.圆的周长:圆的周长等于直径与圆周率的乘积,公式为C=2πr,其中C表示圆的周长,π表示圆周率,r表示半径。

4.弧长与圆心角的关系:弧长等于半径与圆心角的乘积,公式为L=rθ,其中L表示弧长,r表示半径,θ表示圆心角。

5.圆的面积:圆的面积等于圆周率与半径的平方的乘积,公式为S=πr²,其中S表示圆的面积,r表示半径。

6.弓形的面积:弓形的面积等于扇形的面积减去三角形的面积。

7. 相交弦的性质:相交弦与垂直弦的乘积相等,即ad=bc,其中a、b表示相交弦的两个部分,c、d表示垂直弦的两个部分。

8.切线与半径的关系:与同一弦相交的切线段相等,且切线段的平方等于切点到圆心的线段与相切弦的乘积。

9.相切线与半径的关系:相切线与半径的关系是垂直关系,且切点、圆心、相切线的交点三点在同一条直线上。

三、图形计算1.求圆周长:已知半径或直径,利用公式C=2πr或C=πd计算圆的周长。

2.求圆面积:已知半径,利用公式S=πr²计算圆的面积。

3.求弧长:已知半径和圆心角,利用公式L=rθ计算弧长。

4.求扇形面积:已知半径和圆心角,利用公式S=½r²θ计算扇形的面积。

5. 求弓形面积:已知半径、圆心角和弦长,利用公式S=½r²θ-½ab计算弓形的面积。

九年级数学圆知识点总结

九年级数学圆知识点总结

引言:正文:一、圆的基本概念1.1圆的定义圆是平面上所有到圆心距离都相等的点的集合。

1.2圆的要素圆包括圆心、半径和直径三个要素。

圆心是圆上所有点的中心点,通常用大写字母O表示;半径是圆心到圆上任意一点的距离,通常用小写字母r表示;直径是由圆心穿过圆的两个点所构成的线段,是圆的最长直径。

1.3圆的常见术语圆上的任意一条线段叫做弦,通过圆心且两端点在圆上的弦叫做直径,通过圆心的弦叫做直径的平分线,通过圆心的两条半径叫做直径的垂直平分线。

二、圆的性质2.1圆的轴对称性圆具有轴对称性,即圆上的任意一点关于圆心对称的另一点也在圆上。

2.2圆的切线性质若直线与圆相切于某一点,则这条直线的斜率与半径的斜率互为相反数。

即斜率k1斜率k2=1。

2.3弧的度数圆上的弧可以用弧度来度量,一个完整的圆周分为360度(或2π弧度)。

2.4弧长和扇形面积圆弧的长度与圆的半径和弧度有关,可以使用公式:弧长=半径弧度。

圆的扇形面积可以使用公式:扇形面积=1/2半径的平方弧度。

三、圆的运算3.1圆的周长圆的周长可以使用公式:周长=2π半径。

3.2圆的面积圆的面积可以使用公式:面积=π半径的平方。

3.3弧长的计算已知角度和半径,可以使用公式求弧长:弧长=弧度半径。

四、圆与三角形的关系4.1判定圆内外点的位置关系对于圆外的一点,通过连接这个点和圆心,可以构成一个直角三角形。

利用勾股定理可以判断这个点与圆的位置关系。

4.2圆与正方形的关系正方形内接圆的半径等于正方形边长的一半。

正方形的对角线与圆的直径,且正方形的对角线垂直。

4.3圆与等边三角形的关系等边三角形内切圆的半径等于等边三角形边长的一半。

五、圆周角与弧度制5.1圆周角的度量圆周角是一个角度,以角度制度量,一个完整的圆周角为360度。

5.2弧度制弧度制是用弧长和半径的比值来度量角度,一个完整的圆周角为2π弧度。

总结:九年级数学圆的知识点总结了圆的基本概念、圆的性质、圆的运算、圆与三角形的关系以及圆周角和弧度制。

(完整版)九年级数学圆的知识点总结大全

(完整版)九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长: C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²—r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心.连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径.圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系A1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

图4图5推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

九年级数学圆的知识点总结大全

九年级数学圆的知识点总结大全

圆的知识点总结:一、圆的定义和性质:1.圆的定义:平面上到一个定点的距离恒定的点的轨迹称为圆。

2.圆的性质:(1)圆的半径相等的两个圆,称为相等的圆。

(2)圆的直径是任何一条穿过圆心的线段,它的两个端点都在圆上。

(3)圆的弦是任何一条连接圆上两点的线段。

(4)圆心角是顶点在圆心的角。

(5)弧是圆上的一段弯曲部分。

(6)弦长是弦的长度。

(7)弧长是弧所对的圆心角所对应的圆周上的弧所对应的弧长。

(8)圆内角是圆内部构成的角。

(9)圆周角是拓展到同弧所对应的圆心角。

二、圆的构造:1.以三点确定一个圆:通过三点构造两条垂直平分线,其交点即为圆心,半径为圆心到点的距离。

2.以圆心和一个点确定一个圆:以圆心为中心,该点到圆心的距离作为半径。

3.以圆上两点确定一个圆:以两点为直径的线段的中点为圆心,该线段长度的一半为半径。

三、圆的基本元素的关系:1.半径和直径的关系:直径是半径的两倍。

2.弧的关系:相等的圆周角对应的弧相等,幅弧对应的圆心角相等。

3.圆心角和弧的关系:圆心角等于其所对的弧的弧长所对应的圆心角的一半。

四、圆的性质和定理:1.圆心角的性质和定理:(1)同圆的圆心角相等。

(2)同弧的圆心角相等。

(3)对径的邻角互补,即它们的和为180°。

2.弦的性质和定理:(1)在圆上,如果一个正方形的对角线两个端点和落在圆上,那么它的两边就是两条弦,这两条弦是相等的。

(2)在圆中,如果两条弦相交,并且两对交点分别相连,则交点两侧形成的四个角对应的弧那么他们的和是不变。

3.弧的性质和定理:(1)在圆中,如果两个圆弧所封的圆心角相等,则它们所封的圆弧相等。

(2)在圆中,相等的弧对应的圆心角相等。

4.切线和切线定理:(1)切线与半径的关系:切点处的切线垂直于通过该切点的半径。

(2)切线与弦的关系:切线与弦的切点角相等。

(3)切线与圆心角的关系:切线与半径的夹角等于切点处所对的圆心角的一半。

(4)两切线定理:两个切线分别切割一个圆,则切线的外部分段长度的积等于两切点外部分段长度的积。

九年级圆数学知识点总结

九年级圆数学知识点总结

九年级圆数学知识点总结在九年级的数学学习中,圆是一个重要的几何形状。

本文将总结九年级学生需要了解的关于圆的数学知识点,包括圆的定义、圆的性质、圆的周长和面积计算公式等。

一、圆的定义圆是平面上所有到圆心距离相等的点的集合。

圆由圆心和半径两个要素唯一确定。

二、圆的性质1. 圆心角性质:圆心角的度数等于所对弧的度数。

2. 弧长角性质:圆心角和所对弧的弧长成正比,即圆心角是所对弧的弧长的一半。

3. 正切线性质:切线与半径的垂直关系。

4. 直径性质:直径是过圆心的两个端点,也是圆的两个切线的临界情况。

5. 弦性质:弦是圆上任意两点的连线,圆心角大于所对弦的弦长所对应的圆心角。

三、圆的周长和面积计算公式1. 圆的周长计算公式:周长等于直径乘以π(π取近似值3.14),或者等于半径乘以2π。

2. 圆的面积计算公式:面积等于半径的平方乘以π。

四、圆的相关概念和定理1. 弧:弧是圆上的一段弧段,可以用圆心角的度数或弧长来表示。

2. 弧度制和角度制:弧度制是以圆的半径长度为单位,角度制是以度数为单位。

3. 弧长公式:弧长等于圆心角的弧度数乘以半径。

4. 扇形:扇形是由圆心角和所对弧组成的图形。

5. 圆锥曲线:圆是一种特殊的椭圆,椭圆的两个焦点重合形成圆。

6. 圆和直线的位置关系:直线可能与圆相切、相交或不相交。

五、九年级圆的应用1. 圆的测量:了解如何使用直径、弧长和半径求圆的周长和面积。

2. 圆的运动学应用:了解圆的运动学应用,如圆周运动和圆周速度的计算等。

3. 圆的工程应用:了解圆在工程领域中的应用,如轮胎的制造和车辆的转弯半径计算等。

六、小结在九年级数学学习中,圆是一个重要的几何形状。

通过掌握圆的定义、性质、周长和面积计算公式,以及相关概念和定理,学生可以更好地理解圆的特点和应用。

掌握圆的知识,有助于解决和应用各类与圆相关的数学问题,同时也为进一步学习高级几何打下坚实的基础。

九年级数学上册 《 圆的知识点归纳总结大全》

九年级数学上册 《 圆的知识点归纳总结大全》
圆的知识点归纳总结大全
一、圆的定义。
1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的元素。
1、半径:圆上一点与圆心的连线。
2、直径:连接圆上两点且经过圆心的线段。
3、弦:连接圆上两点的线段(注:直径也是弦)。
4、弧:圆上两点之间的曲线部分。(注:半圆周也是弧。)
(2)△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三边于点D、E、F。
求:AD、BE、CF的长。
(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。求内切圆的半径r。
(4)S△ABC=
14、(补充)
(1)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。
如图,BC切⊙O于点B,AB为弦,∠ABC叫弦切角,∠ABC=∠D。
(1)劣弧:小于半圆周的弧。(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,两边与圆相交的角(注:圆周角的两边是弦。)
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质。
1、圆的对称性。
(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(2)直径所对的圆周角是直角。
(3)若圆周角为直角,那么它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
2)、
9、平面直角坐标系中,A(x1,y1)、B(x2,y2)。 则AB=

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点

初中数学九年级上圆的知识点圆是初中数学九年级上的一个重要知识点,下面将从圆的定义、圆的性质、圆的相关定理以及圆的应用等方面进行论述。

一、圆的定义圆是平面上的重要几何图形之一,是由与一个定点距离相等的所有点构成的集合。

这个定点称为圆心,距离称为半径,用字母r表示。

圆通常用圆的轮廓线表示,在数学表达中用字母O表示。

二、圆的性质1. 圆的任意两点到圆心的距离相等。

这意味着圆上的每一个点到圆心的距离都相等,即圆的半径。

2. 圆的直径是圆上任意两点之间的最长距离。

直径的长度是半径的两倍。

3. 圆的弦是圆上任意两点之间的线段。

弦不一定通过圆心,可以在圆内或圆外。

4. 圆上的切线垂直于半径。

切线是与圆相切的线,与圆的切点处的半径垂直。

三、圆的相关定理1. 弧与角的关系圆上的弧对应的圆心角是两个端点在圆心所对应的角,它们的度数相等。

2. 弧长与圆周角的关系圆的弧长是圆心角所对应的弧所在圆的一部分的长度,弧长等于这个圆心角所对应的圆周角度数的比值。

3. 弦长与弦心角的关系弦上的弦长是弦心角所对应的弦所在圆的一部分的长度,弦长等于这个弦心角所对应的圆周角度数的比值的2倍。

4. 割线定理割线是两个切点之间的线段,割线上的两个切线段长度乘积等于这条割线与这两个切点之间的弦段长度乘积。

四、圆的应用1. 圆的测量圆的周长等于圆周上的任意一段弧长,即C=πd或C=2πr,其中d为直径,r为半径。

圆的面积等于圆内所包围的面积,即S=πr²。

2. 圆的位置关系两个圆之间的位置关系可以分为外切、内切、相交、相离四种情况,通过判断两个圆心的距离与两个圆的半径之间的关系可以确定两个圆的位置关系。

3. 圆的轴对称与旋转对称圆具有轴对称性和旋转对称性,利用这个特性可以解决一些与圆相关的问题。

综上所述,圆是初中数学九年级上的重要知识点,通过对圆的定义、性质、相关定理和应用进行论述,可以帮助同学们更好地理解和掌握圆的知识,提高数学学科的学习成绩。

九年级数学圆的知识点总结

九年级数学圆的知识点总结

圆是一种特殊的几何图形,是平面上所有到一些点的距离相等的点的集合。

在九年级数学中,我们学习了许多与圆相关的知识点,包括圆的性质、圆的方程、圆的切线和弦、圆与直线的位置关系等。

下面是对这些知识点的详细总结。

一、圆的性质1.圆的定义:平面上到一个固定点的距离相等的点的集合叫做圆。

2.圆的元素:圆心、半径、直径、弦、弧等。

3.圆的表示方法:圆心为O,半径为r的圆可以表示为O(r),或者简写为O。

二、圆的方程1.标准方程:以圆心为原点O(0,0),半径为r的圆的方程为x²+y²=r²。

2.一般方程:以圆心为(h,k),半径为r的圆的方程为(x-h)²+(y-k)²=r²。

三、圆的切线和弦1.切线:与圆只有一个交点的直线叫做圆的切线。

切线垂直于半径。

2.弦:连接圆上两个不相邻点的线段叫做圆的弦。

圆心到弦的中点的线段垂直于弦。

四、圆与直线的位置关系1.直线与圆的位置关系有三种情况:a.直线与圆相交于两点:直线穿过圆的内部,与圆有两个交点。

b.直线与圆相切:直线与圆只有一个交点,且切点在圆上。

c.直线与圆相离:直线没有与圆的交点。

五、圆的相关定理1.切线定理:切线与半径的垂直定理。

切线与半径的垂线相互垂直。

2.弦切角定理:圆弦上的两个角对相同弧的度数相等。

3.弧上的角等于圆心角的一半:弧上的角等于它所对的圆心角的一半。

4.切线垂直半径定理:过圆的切点作切线,与过切点的半径垂直。

六、圆的计算1.弧长公式:弧长L=2πr(θ/360°),其中r为半径,θ为圆心角度数。

2.弧度制与角度制转换:1°=π/180,1弧度=180/π。

以上是九年级数学中圆的主要知识点的总结,通过对这些知识点的学习和理解,能够更好地理解和解决与圆相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆知识点总结
知识回顾
圆的周长: C=2πr或C=πd、圆的面积:S=πr²
圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)
知识要点
一、圆的概念
集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系
1、点在圆内⇒d r
<⇒点C在圆内;
2、点在圆上⇒d r
=⇒点B在圆上;
3、点在圆外⇒d r
>⇒点A在圆外;
三、直线与圆的位置关系
1、直线与圆相离⇒d r
>⇒无交点;
2、直线与圆相切⇒d r
=⇒有一个交点;
3、直线与圆相交⇒d r
<⇒有两个交点;
四、圆与圆的位置关系
A
外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;
五、垂径定理
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

推论2:圆的两条平行弦所夹的弧相等。

即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD
六、圆心角定理
顶点到圆心的角,叫圆心角。

圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。


图4
图5
B
D
定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;
③OC OF =;④ 弧BA =弧BD
七、圆周角定理
顶点在圆上,并且两边都与圆相交的角,叫圆周角。

1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。

即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对
的弧是等弧;
即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,
所对的弦是直径。

即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三
角形。

即:在△ABC 中,∵OC OA OB ==
∴△ABC 是直角三角形或90C ∠=︒
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。

八、圆内接四边形
B
B
A
B
A
O
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

即:在⊙O 中,
∵四边形ABCD 是内接四边形 ∴
180C BAD ∠+∠=︒
180B D ∠+∠=︒
DAE C ∠=∠
九、切线的性质与判定定理
(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA ⊥且MN 过半径OA 外端
∴MN 是⊙O 的切线 (2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:
即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

十、切线长定理 切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。

即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠
十一、圆幂定理
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。

即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅
(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径
所成的两条线
段的比例中项。

D
B
B
A
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅
(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这
点到割线与圆交点的两条线段长的比例中项。

即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅
(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。

即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅
十二、两圆公共弦定理
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。

如图:12O O 垂直平分AB 。

即:∵⊙1O 、⊙2O 相交于A 、B 两点 ∴12O O 垂直平分AB 十三、圆的公切线 两圆公切线长的计算公式:
(1)公切线长:12Rt O O C ∆
中,221AB CO ==
(2)外公切线长:2CO 是半径之差; 内公切线长:2CO 是半径之和 。

十四、圆内正多边形的计算 (1)正三角形
在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进


::2OD BD OB =;
(2)正四边形
同理,四边形的有关计算在Rt OAE ∆中进行

::OE AE OA =
(3)正六边形
同理,六边形的有关计算在Rt OAB ∆中进行

::2AB OB OA =.
十五、扇形、圆柱和圆锥的相关计算公式 1、扇形:(1)弧长公式:180
n R
l π=
; (2)扇形面积公式: 21
3602
n R S lR π=
= n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积
2、圆柱:
(1)A 圆柱侧面展开图
2S S S =+侧表底=222rh r ππ+
B 圆柱的体积:2
V r h π=
(2)A 圆锥侧面展开图
S S S =+侧表底=2Rr r ππ+
B 圆锥的体积:21
3
V r h π=
l
O
C 1
D 1
1.已知:如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线,交CA 的延长线于点E ,∠EBC =2∠C . ①求证:AB =AC ; ②若tan ∠ABE =21,(ⅰ)求BC
AB
的值;(ⅱ)求当AC =2时,AE 的长.
2.如图,PA 为⊙O 的切线,A 为切点,⊙O 的割线PBC 过点O 与⊙O 分别交于B 、C ,PA =8cm ,PB =4cm ,求⊙O 的半径.
3.已知:如图,BC 是⊙O 的直径,AC 切⊙O 于点C ,AB 交⊙O 于点D ,若AD ︰DB
=2︰3,AC =10,求AC ︰A B 的值.
4.如图,PC 为⊙O 的切线,C 为切点,PAB 是过O 的割线,CD ⊥AB 于点D ,若CD ︰DB =
2
1
,PC =10cm ,求三角形BCD 的面积.
5.如图,在两个半圆中,大圆的弦MN 与小圆相切,D 为切点,且MN ∥AB ,MN =a ,ON 、CD 分别为两圆的半径,求阴影部分的面积.
6.已知,如图,以△ABC 的边AB 作直径的⊙O ,分别并AC 、BC 于点D 、E ,弦FG ∥AB ,S △CDE ︰S △ABC =1︰4,
DE =5cm ,FG =8cm ,求梯形AFGB 的面积.
7.如图所示:PA 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,
PA=10,PB=5,求:
(1)⊙O的面积(注:用含π的式子表示);
(2)cos∠BAP的值.。

相关文档
最新文档