第2章 平面连杆机构

合集下载

第2章 平面连杆机构

第2章 平面连杆机构

起重机 材料学院
受电弓
15
材料加工机械设计
2.3Байду номын сангаас铰链四杆机构的力学特性
2.3.1 铰链四杆机构曲柄存在条件 2.3.2 急回运动 2.3.3 压力角和传动角 2.3.4 死点位置
16
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
通过对铰链四杆机构的三种基本形式的分析可以 看到,三种基本形式的区别在于有无曲柄和有几个曲 柄。观察铰链四杆机构四个杆相对长度对机构类型的 影响的动画,可以观察到,铰链四杆机构的三种基本 形式与机构中四个杆相对长度有关系。那么,铰链四 杆机构在什么情况下有曲柄呢?
个曲柄、两个曲柄或没有曲柄,还需根据取何杆
为机架来判断。
24
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
观看动画
进入演示
25
材料学院
材料加工机械设计
2.3.2 急回运动
首先我们看一看曲柄摇杆机构急回特性 在曲柄摇杆机构,AB为曲柄是原动件等角速度转
动,BC为连杆,CD为摇杆,当CD杆处于C1D位置为 初始位置,C2D终止位置,摇杆在两极限位置之间所 夹角度称为, 摇杆的摆角,用 表示。当摇杆CD由C1D摆 动到C2D位置时,所需时间为t1,平均速度为
23
材料学院
材料加工机械设计
2.3.1 铰链四杆机构曲柄存在条件
如果铰链四杆机构中的最短杆与最长杆长度之
和大于其余两杆长度之和,则该机构中不可
能存在曲柄,无论取哪个构件作为机架,都只
能得到双摇杆机构。
由上述分析可知,最短杆和最长杆长度之和小
于或等于其余两杆长度之和是铰链四杆机构曲柄

第2章平面连杆机构

第2章平面连杆机构
2. 双曲柄机构 两连架杆都作整周转动的 铰链四杆机构称为双曲柄机 构
3. 双摇杆机构 两连架杆均为摇杆的铰链四 杆机构称为双摇杆机构。
6
铰链四杆机构基本类型的特性
曲柄摇杆机构
两个连架杆中,一个是曲柄,一个 是摇杆。通常曲柄主动,摇杆从动,但 也有摇杆主动的情况。应用例:牛头刨 床进给机构、雷达调整机构、缝纫机脚 踏机构、复摆式腭式破碎机、钢坯输送 机等。
满足: 最短杆为机架: 双曲柄机构
最短杆为连杆: 双摇杆机构
22
课堂练习
23
24
§2-2 铰链四杆机构的演变
一、曲柄滑块机构
图a 所示的曲柄摇杆机构中,C点的轨 迹位于半径为 的圆周上。显然,若将回转 副D直径增大,再将杆3作成圆环形,C点的 运动规律不变,但机构却演化为曲柄滑块机 构了。若进一步将导路的曲率半径增大趋于 ∞,则得到图c 所示的曲柄滑块机构。
11
行程速比系数K
急回特性常用行程速比系数K(摇杆反、正行程平均速度之 比)来度量。
如图所示,曲柄顺时针匀速转动,摇杆左右摆动(顺时针为 正行程,逆时针为反行程)。我们把摇杆处于两极限位置时 连杆对应位置所夹的锐角称为极位夹角,用θ表示。根据 行程速比系数的定义有:
c1c2
K v2 v1
t2
7
雷达调整机构和缝纫机脚踏机构
8
腭式破碎机
9
钢材输送机
四杆机构运动时,其连杆通常作平面复杂 运动,连杆上每一点的轨迹都是一条封闭的曲 线,我们称之为连杆曲线。图示步进式传送机 构就是连杆曲线的典型应用,当两个曲柄同步 转动时,与两个连杆相连的推杆5沿着红色的 卵形曲线平动,从而实现定时间隙地传送工件。
33
三、给定连架杆的三对对应位置

第二章 平面连杆机构

第二章 平面连杆机构
平面机构自由度计算公式:
运动副对自由度的影响: 当两个构件组成运动副以后,它们的相对运动 就受到约束,自由度即相应减少。
低副:引人了两个约束而相应地减少了两个自由度; 高副:只引人一个约束.只减少一个自由度。
F 3n 2 pL pH
自由度计算示例
自由度计算示例1
例1 试计算牛头刨床传动机构的自
按照不同的接触特性,通常把运动副分为两大 类:
低副和高副。
低副
两构件通过面接触组成的运 动副称为低副。
平面机构中的低副有转动副 和移动副两种。
1)转动副
若组成运动的两构件只能绕 轴线作相对转动,这种运动 副称为转动副或铰链。若两 构件中有一个是固定的,则 称为固定铰链。若两个构件 都未固定,则称为活动铰链。
2)移动副
若组成运动副的两构件只能沿轴线相 对移动,这种运动副称为移动副。
低副的优点:低副具有制造简便、耐磨损 和承载力强等,因此在机械 中应用最广。
高副
2.高副
两构件通过点或 线接触组成的运动 副称为高副。
*空间运动副 两构件间的相对运动是空间运动的运动副。常
用的有球面副和螺旋副。 球面副中的构件1和2可绕空间坐标系的x、y、
E’ 和2’ 是虚约束
计算示例2
例题2 试计算圆盘锯主体 机构(直线机构)的自由 度。
解 机构中共有7个活动构件 (即n=7);在 B、C、D、 E四处都是由 3个构件组成的 复合铰链,故各有2个转动副, 整个机构共有10个转动副 (即PL=10)由式(2-1) 可得机构的自由度为
F 3n 2pL pH 37 210 1
2. 双曲柄机构 转动翼板式水泵.SWF
3. 双摇杆机构 双摇杆机构.avi 飞机起落架.SWF

02第二章 平面连杆机构

02第二章  平面连杆机构

第二章平面连杆机构及其设计【基本要求】1.了解平面四杆机构的基本型式,掌握其演化方法。

2.掌握平面四杆机构的工作特性。

3.了解连杆机构传动的特点及其功能。

4.掌握平面连杆机构运动分析的方法,学会将复杂的平面连杆机构的运动分析问题转化为可用计算机解决的问题。

5.了解平面连杆机构设计的基本问题,熟练掌握根据具体设计条件及实际需要,选择合适的机构型式和合理的设计方法,解决具体设计问题。

【重点难点】本章内容包括平面连杆机构和空间连杆机构两部分,其中平面连杆机构是本章的重点。

通过本章的学习,最终要求达到:根据实际需求,确定满足此需求的连杆机构类型,选择合适的设计方法设计出此连杆机构。

设计完成后需对所设计的连杆机构进行运动学和动力学分析,校验此机构是否实用,是否满足实际要求。

【学习内容】平面连杆机构是常用的低副机构,其中以由四个构件组成的四杆机构应用最广泛,而且是组成多杆机构的基础。

因此本章着重讨论四杆机构的基本类型、性质及常用设计方法。

2.1 铰链四杆机构的类型及应用2.2 铰链四杆机构的曲柄存在条件2.3 铰链四杆机构的演化2.4 平面四杆机构的基本特性2.5 平面四杆机构的设计平面连杆机构若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。

空间连杆机构若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构较空间连杆机构应用更为广泛,故着重介绍平面连杆机构。

在平面连杆机构中,结构最简单的且应用最广泛的是由4个构件所组成的平面四杆机构,其它多杆机构可看成在此基础上依次增加杆组而组成。

●下面介绍平面四杆机构的基本型式及其演化。

铰链四杆机构所有运动副均为转动副的四杆机构称为铰链四杆机构。

它是平面四杆机构的基本型式。

2.1 铰链四杆机构的类型及应用2.1.1铰链四杆机构的类型由转动副联接四个构件而形成的机构,称为铰链四杆机构,奴图所示。

图中固定不动的构件AD是机架;与机架相连的构件AB、CD称为连架杆;不与机架直接相连的构件BC称为连杆。

机械设计基础第二章

机械设计基础第二章

第2章平面连杆机构2.1平面连杆机构的特点和应用连杆机构是由若干刚性构件用低副连接组成的机构,又称为低副机构。

在连杆机构中,若各运动构件均在相互平行的平面内运动,称为平面连杆机构;若各运动构件不都在相互平行的平面内运动,则称为空间连杆机构。

平面连杆机构被广泛应用在各类机械中,之所以广泛应用,是因为它有较显著的优点:(1)平面连杆机构中的运动副都是低副,其构件间为面接触,传动时压强较小,便于润滑,因而磨损较轻,可承受较大载荷。

(2)平面连杆机构中的运动副中的构件几何形状简单(圆柱面或平面),易于加工。

且构件间的接触是靠本身的几何约束来保持的,所以构件工作可靠。

(3)平面连杆机构中的连杆曲线丰富,改变各构件的相对长度,便可使从动件满足不同运动规律的要求。

另外可实现远距离传动。

平面连杆机构也存在一定的局限性,其主要缺点如下:(1)根据从动件所需要的运动规律或轨迹设计连杆机构比较复杂,精度不高。

(2)运动时产生的惯性力难以平衡,不适用于高速的场合。

(3)机构中具有较多的构件和运动副,则运动副的间隙和各构件的尺寸误差使机构存在累积误差,影响机构的运动精度,机械效率降低。

所以不能用于高速精密的场合。

平面连杆机构具有上述特点,所以广泛应用于机床、动力机械、工程机械等各种机械和仪表中。

如鹤式起重机传动机构(图2-1),摇头风扇传动机构(图2-2)以及缝纫机、颚式破碎机、拖拉机等机器设备中的传动、操纵机构等都采用连杆机构。

图2-1鹤式起重机图2-2 摇头风扇传动机构2.2平面连杆机构的类型及其演化2.2.1 平面四杆机构的基本形式全部用转动副组成的平面四杆机构称为铰链四杆机构,如图2-3所示。

机构的固定件4称为机架;与机架相联接的杆1和杆3称为连架杆;不与机架直接联接的杆2称为连杆。

能作整周转动的连架杆,称为曲柄。

仅能在某一角度摆动的连架杆,称为摇杆。

按照连架杆的运动形式,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。

第2章平面连杆机构

第2章平面连杆机构

把铰销B扩大,使其包含A,这时曲柄演化为一几何中心不与回转中 心相重合的圆盘,此盘称为偏心轮,两中心间距称偏心距,等于曲柄之 长,这种机构称为偏心轮机构。 该结构可避免在较短的曲柄两端设两个转动副而引起的结构设计上 的困难, 且盘状构件在强度上比杆状高得多,所以多用于载荷较大或AB较短的 场合。 2、 转动副转化成移动副
例:设计一曲柄摇杆机构,已知摇杆长C及摆角ψ,行程速度变化 系数K。 步骤:①计算 ②按已知条件画C1D、C2D ③连C1C2作∠ C1C2P=90°— ∠ C2C1P=90° ④作C1.C2.P的外接园 ⑤延长C1D、C2D与园交于C1′、C2′ ⑥在或上任取一点即可作A ⑦ AC1=b-a θ。说明此为曲柄与连杆共线的两位置) AC2=b+a 而AD即为机架长度d 由上述知A是可任选的,∴有无数解,若另有其他辅助条件,加给 定d或min或给定a等,则A点便可确定了。 若为曲柄滑块机构:则可由e在园上定A。 若为摆动导杆机构:由 在ψ角平分线上由d→A→B 3、按给定两连架杆对应位置设计(解析法、实验法) 例已知两连架杆AB和CD对应位置 取坐标系如图示,各构件长度在x、y轴上投影,得如下关系式
连杆曲线,用缩放仪求出图谱中的曲线与要求轨迹的相差倍数,将机构 尺寸作相应缩放,从而求得所需的四杆机构尺寸。 这种方法可使设计过程大为简化,适合于工厂和设计单位使用。
几组机构错位安装。 则用死点:例飞机起落架机构 连杆与从动件CD位于一直线上,机构处于死点。机轮着地时产生的 巨大冲击力不致使从动件CD转动,从而保持支撑状态。 又例如机床夹具。见22页图2-6 对其他四杆机构应会用同样方法分析以上四个特性。
§2-4 平面四杆机构的设计
基本问题:按给定的运动条件————确定运动简图的尺寸参数。 给定运动规律(位置、速度、加速度) 已知条件 给定运动轨迹 图解法: 直观 设计方法 解折法: 精确 应根据已知条件和机构具体情况选用 某 实验法: 简便 某种方法 一、按给定的运动规律设计四杆机构 1、按给定的连杆位置设计四杆机构(找圆心法) 已知连杆长度b及两位置B1C1、B2C2,设计该铰链四杆机构(定A、 D点)分析铰链四杆机构ABCD知: B1、B2、B3……应位于园弧k A上 C1、C2、C3……就位于园弧 k c上 作B1B2、B2 B3垂直平分线A C1C2、C2C3垂直平分成D 当给定两个位置时,只能得B1B2、C1C2,分别作其垂直平分线b12、 C12 A点可在b12上任选一点 ∴有无数解 D点可在C12上任选一点 在多解的情况下,可添加一些辅助条件,如满足有曲柄,紧凑的尺 寸,较好的传动角,固定铰链的位置等,从中选取满足附加条件的机 构。(如要求A、D水平) 当给定连杆三个位置时: 作B1B2中垂线 交点为A 作B2 B3中垂线 有唯一解ABCD 作C1C2中垂线 交点为D 作C2C3中垂线 2、按给定的行程速度变化系数K设计(三点共园法)

机械设计基础(专科)第2章平面连杆机构

机械设计基础(专科)第2章平面连杆机构

缝纫机踏板机构动画
缝纫机动画(3D)
缝纫机跳线机构动画
缝纫机刺布机构动画(3D)
搅拌机动画
雷达天线俯仰机构动画
双曲柄机构动画
惯性筛动画
升降台动画(3D)
正平行四边形动画
机车车轮动画(3D)
机车车轮联动机构动画
反平行四边形动画
车门启闭机构动画
车门启闭动画(3D)
3、双摇杆机构:两个连架杆都是摇杆。
右图中的局部自由度 经上述处理后,则机构 自由度:
F 3n 2P P 3 2 2 2 1 1 L H
局部自由度动画
(3) 虚约束:
对机构运动实际上不起约束作用的约束 称为虚约束。 1)转动副轴线重合的虚约束
转动副轴线重合的虚约束动画
2)移动副导路平行的虚约束 当两构件在多处形成移动副,并且各 移动副的导路互相平行,则其中只有一个 移动副起实际的约束作用,而其余移动副 均为虚约束。
解:1)分析运动,确定构 件的类型和数量
进气阀3

2)确定运动副的类型和 数目
3)选择视图平面
活塞2
排气阀4
顶杆8
气缸体1
4)选取比例尺,根据机 连杆5 构运动尺寸,定出各运动副 间的相对位置 曲轴6
5)画出各运动副和机构 符号,并表示出各构件
齿轮10
凸轮7
内燃机的机构运动简图
内燃机凸轮动画
2.2.4
机构运动简图绘制 1.分析机械的结构和动作原理,确定构件 的数目。 2.分析构件间的相对运动,确定运动副的 数目和类型。 3.选定视图投影面及比例尺μL=实际尺寸/ 图上尺寸(m/mm),顺序确定转动副和移动 副导路的位置,根据原动件的位置及各杆 长等绘出各构件,得到机构运动简图。

第2章 平面连杆机构

第2章 平面连杆机构

第2章平面连杆机构平面连杆机构是由若干构件通过低副联接而成的平面机构,也称平面低副机构。

平面连杆机构广泛应用于各种机械和仪表中,其主要优点是:(1)由于运动副是低副,面接触,传力时压强小,磨损较轻,承载能力较高;(2)构件的形状简单,易于加工,构件之间的接触由构件本身的几何约束来保持,故工作可靠;(3)可实现多种运动形式及其转换,满足多种运动规律的要求;(4)利用平面连杆机构中的连杆可满足多种运动轨迹的要求。

主要缺点有:(1)由于低副中存在间隙,机构不可避免地存在着运动误差,精度不高,(2)主动构件匀速运动时,从动件通常为变速运动,故存在惯性力,不适用于高速场合。

平面机构常以其组成的构件(杆)数来命名,如由四个构件通过低副联接而成的机构称为四杆机构,而五杆或五杆以上的平面连杆机构称为多杆机构。

四个机构是平面连杆机构中最常见的形式,也是多杆机构的基础。

1.1 四杆机构的基本形式及其演化1.1.1 四杆机构的基本形式构件间的运动副均为转动副联接的四杆机构,是四杆机构的基本形式,称为铰链四杆机构,如图1-1所示。

由三个活动构件和一个固定构件(即机架)组成。

其中,AD杆是机架,与机架相对的杆(BC杆)称为连杆,与机架相联的构件(AB杆和CD杆)称为连架杆,能绕机架作360°回转的连架杆称为曲柄,只能在小图1-1于360°范围内摆动的连架杆称为摇杆。

根据两连架杆的运动形式的不同,铰链四杆机构可分为三种基本形式并以其连架杆的名称组合来命名。

(1)曲柄摇杆机构两连架杆中一个为曲柄另一个为摇杆的四杆机构,称为曲柄摇杆机构。

曲柄摇杆机构中,当以曲柄为原动件时,可将曲柄的匀速转动变为从动件的摆动。

如图1-2所示的雷达天线机构,当原动件曲柄1转动时,通过连杆2,使与摇杆3固结的抛物面天线作一定角度的摆动,以调整天线的俯仰角度。

图1-3为汽车前窗的刮雨器,当主动曲柄AB回转时,从动摇杆作往复摆动,利用摇杆的延长部分实现刮雨动作。

《机械设计基础》第2章_平面连杆机构解析

《机械设计基础》第2章_平面连杆机构解析
0 0
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:

第二章 平面连杆机构

第二章 平面连杆机构
2.双曲柄机构 在铰链四杆机构中,两个连架杆都作为曲柄。 3.双摇杆机构 在铰链四杆机构中,两个连架杆都作为摇杆。
自卸载货汽车
机车主动轮联动 装置
(三)铰链四杆机构基本类型的判别
1.当a+d≤c+b时: a为最短杆;d为最长杆
B
b
C
c
D
a
A
与最短杆相邻的杆AD固定,此时为: 曲柄摇杆机构
2.已知四杆机构如图所示。四根杆的长度分别为LCD=500mm, LAD=240mm,LAB=600mm,LBC=400mm,试证明当取杆LAB 为机 架时有否曲柄存在?若分别以LBC和LAD为机架时各得到什么 机构?
4-2含有一个移动副的四杆机构
一、曲柄滑块机构 曲柄滑块机构是由曲柄摇杆机构演化而来的
其中AD、BC均为摇杆
26
3.已知在四杆机构中,机架长40mm,两连架杆长度分别 为18mm和45mm,则当连杆的长度在什么范围内,该 机构为曲柄摇杆机构?
分析:1.连杆的长度不可能是最短杆,否则的话为 双摇杆机构; 2.根据分析1确定18mm为最短杆;
3.说明连杆要么是最长杆,要么45mm的杆为最长杆;
应用:牛头刨床、往复式运输机等。都是为了提高生产效率, 将机构的工作行程安排在摇杆平均速度较低的行程,而将机 构的空回行程安排在摇杆平均速度较高的行程。
曲柄滑块机构: 当θ >0°时,偏置曲柄滑块机构可实现急 回运动。对心曲柄滑块机构。 由于θ =0° ,没有急回特 慢行程 C C 性。
1 1 2
2.死点位置
•对于曲柄摇杆机构,如以摇杆3为原动件,而曲柄1为从动件, •则当摇杆摆到极限位置C1D和C2D)时,连杆2与曲柄1共线。若 •不计各杆的质量,则这时连杆加给曲柄的力将通过铰链中心A。 •此力对A点不产生力矩,因此不能使曲柄转动。机构的这种位置 •称为死点位置。

第2章 平面连杆机构

第2章 平面连杆机构

曲 柄 摇 杆 机 构
急回特性 摇杆在空回行程中的平均速度大于工作行程的 平均速度的特性。 平均速度的特性。 行程速度变化系数K(或称行程速比系数) 行程速度变化系数 (或称行程速比系数) 从动件在空回行程中的平均速度与工作行程中 的平均速度之比值。 的平均速度之比值。
K −1 θ = 180 K +1
缝纫机踏板机构
2.双曲柄机构 双曲柄机构
具有两个曲柄的铰链四杆机构称为双曲柄机构。 具有两个曲柄的铰链四杆机构称为双曲柄机构。 两个曲柄的铰链四杆机构称为双曲柄机构
原动件: 原动件 匀速转动) 主动曲柄 (匀速转动 匀速转动 从动件: 从动件 变速转动) 从动曲柄 (变速转动 变速转动
应用实例: 应用实例
当以最短杆的相邻杆为机架时, 当以最短杆的相邻杆为机架时,必为曲柄摇 杆机构; 杆机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆为机架时,必为双曲柄机构; 当以最短杆的对面杆为机架( 当以最短杆的对面杆为机架(最短杆为连 必为双摇杆机构。 杆) 时,必为双摇杆机构。
实验与思考
平面四杆机构的演化
死点
消除死点位置的不利影响的措施 安装飞轮,加大从动件惯性; 安装飞轮,加大从动件惯性; 采用错列机构。 采用错列机构。
飞 轮
错列机构
死点
死点位置的利用
飞机起落架机构
2.4 平面四杆机构的运动设计
两类基本问题 按给定从动件的运动规律设计四杆机构 按给定运动轨迹设计四杆机构 三种设计方法 图解法 实验法 解析法
曲柄移动导杆机构
双滑块机构
曲柄移动导杆机构(正弦机构) 曲柄移动导杆机构(正弦机构)的演化 (2)双滑块机构 (2)双滑块机构 应用实例
椭 圆 仪

第二章 平面连杆机构及其设计

第二章  平面连杆机构及其设计

搅拌机
抓片机构
输送机
10/49
§2—1 铰链四杆机构的基本型式和特性
2)摇杆为原动件,曲柄为从动件时: 摇杆的往复摆动 曲柄的连续转动。 3 2
如图所示的缝纫机踏板机构。
3 2 1 4 摇杆主动
4 1
缝纫机踏板机构
11/49
§2—1 铰链四杆机构的基本型式和特性
二、双曲柄机构
双曲柄机构:两个连架杆都是曲柄。 传动特点: 主动曲柄连续等速转动时,从动 曲柄一般作变速转动。
冲床机构
如图所示的旋转式水泵和如上图所示的冲床机构。
A
1 D C 3 A B 2 4 D
1 B
2 C 3
旋转式叶片泵
振动筛机构
12/49
§2—1 铰链四杆机构的基本型式和特性
三、双摇杆机构
两个连架杆都是摇杆,则称为双摇杆机构。 其运动特性是:两摇杆都作摆动,但两 摇杆的摆角大小不同。 应用实例: 图2-6所示的工件夹紧机构、图2-11的飞机起落架机 构 ;
优 点:
图c
图d
3/49
2、缺点:
1)低副中存在间隙,会引起运动误差,使效率降低;
2)动平衡较困难,所以一般不宜用于高速传动;
3)设计比较复杂,不易精确地实现复杂的运动规律。
应 用:
连杆机构广泛地应用在各种机械和仪器中。 如雷 达调整机构(图2-3)、缝纫机踏板机构(图2-5) 、 鹤式起重机、机车驱动轮联动机构(图2-10)、牛头刨 床、椭圆仪(图2-22) 、机器人等。
1、在满足杆长条件下,即Lmin+Lmax≤Li+Lj : 1)取Lmin为机架时,机架上有两个整转副,该机构为 双曲柄机构(2个曲柄)。 2)取Lmin为连架杆(即最短杆的邻边为机架)时,机 架上只有一个整转副,该机构为曲柄摇杆机构(1 个曲柄)。 3)取Lmin为连杆(即最短杆的对边为机架)时,机架 上没有整转副,该机构为双摇杆机构(无曲柄)。

第2章 平面连杆机构

第2章 平面连杆机构

设计:潘存云
特例:等腰梯形机构-汽车转向机构
ω P
作者:潘存云教授
铰链四杆机构 (1)曲柄摇杆机构 (2)双曲柄机构 (3)曲柄摇杆机构 (4)双摇杆机构
曲柄滑块机构
• (a)曲柄滑块机构; • (b)导杆机构; • (c) 摇块机构; • (d) 直动滑杆机构(定
块机构)。
本章重点: 四杆机构的基本形式及其应用
应用实例: 内燃机、鹤式吊、火车轮、手动冲床、牛头刨床、椭圆 仪、机械手爪、开窗户支撑、公共汽车开关门、折叠伞、 折叠床、 单车制动操作机构等。
常以构件数命名: 四杆机构、六杆机构。
§2-1 平面连杆机构的类型和应用
一. 铰链四杆机构:全部是转动副
名词解释:
连杆
曲柄—作整周定轴回转的构件; 曲柄 连杆—作平面运动的构件;
天平
C
B
C
B
设计:潘存云
A
D
AB = CD BC = AD
A BB
设计:潘存云
D C
耕地
料斗
设计:潘存云
(3)双摇杆机构 特征:两个摇杆 应用举例:铸造翻箱机构 、风扇摇头机构、起重吊车、
钻床夹具
C' B'
B
设计:潘存云
C
A
DA
D 蜗蜗杆杆
风风扇扇座座
摇杆—作定轴摆动的构件;
连架杆—与机架相联的构件;
周转副—能作360度相对回转的运动副;
摆转副—只能作有限角度摆动的运动副。
铰链四杆机构三种基本型式:
(1)曲柄摇杆机构
(2)双曲柄机构
(3)双摇杆机构
摇杆
三种基本型式: (1)曲柄摇杆机构 特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。

机械设计基础第二章平面连杆机构

机械设计基础第二章平面连杆机构
(3)过C1、C2、 P 作圆
(4)AC1=L2-L1, AC2=L2+L1→ L1=1/2(AC2-AC1)
→无数解
以L1为半径作圆,交B1,B2点 →曲柄两位置
M
N
在圆上任选一点A
C1M与C2N交于P点
作∠C1C2N=90-θ,
P
2.导杆机构: P.33
→取决于机构各杆的相对长度
A
D
B
B’
B”
C
C’
C”
三式相加 → ┌ l1≤l2 │ l1≤l3 └ l1≤l4
当杆1处于AB ”位置→ △AC ”D
→ l1+l2≤l3+l4 (2-3)
→┌(l2-l1) +l3 ≥l4 →┌l1+l4≤l2+l3 (2-1) └(l2-l1) +l4 ≥l3 └l1+l3≤l2+l4 (2-2)
图2-4
曲柄摇杆机构
φ1
φ2
ψ
(2-4)
(二)压力角和传动角 P.30
1.压力角α-
2.传动角γ
:BC是二力杆,驱动 力F 沿BC方向
作用在从动件上的驱动力F与该力作用点绝对速度VC之间所夹的锐角。
工作行程: 空回行程:
B2→B1 (φ 2) →摇杆C2→C1 (ψ) ∵ φ 1> φ 2 , 而ψ不变
B1→B2 (φ1) → 摇杆C1→C2 (ψ)
→ 工作行程时间>空回行程时间
曲柄(主)匀速转动(顺) 摇杆(从)变速往复摆动
图2-4
曲柄摇杆机构
φ1
φ2
ψ
极位:
缺点:
2.应用:
优点
1.手动冲床: ← 两个四杆机构组成 (双摇杆~+摇杆滑 块机构)
2.筛料机构: 六杆机构←两个四杆 机构组成(双曲柄~ +曲柄滑块~)

平面连杆机构

平面连杆机构
如图所示,铰链四杆机构由机架4、连 架杆(与机架相连的1、3两杆)和连杆 (与机架不相联的中间杆2)组成。
曲柄——能绕机架上的转动副作整周 回转的连架杆。
摇 杆 —— 只 能 在 某 一 角 度 范 围 ( 小 于
360°)内摆动的连架杆。
一、铰链四杆机构的基本型式
铰链四杆机构按照连架杆是曲柄还是 摇杆分为曲柄摇杆机构、双曲柄机构、 双摇杆机构三种基本型式 。
(一)、转动副转化成移动副
1、铰链四杆机构中一个转动副转化为移 动副
对心曲柄滑块机构 偏置曲柄滑块机构
曲柄存在条件: 对心曲柄滑块机构:L1<L2 行程 S=2L1 偏置曲柄滑块机构:L1+e<L2
2、铰链四杆机构中两个转动副转化为移动副
由于此机构当主 动件1等速回转时, 从动到导杆3的位 移为y=Labsinα , 故又称正弦机构
第2章 平面连杆机构
§2-1 平 面 四 杆 机 构 的 基 本 型 式 和 特 征 §2-2 铰 链 四 杆 机 构 有 整 转 副 的 条 件 §2-3 铰链四杆机构的演化 §2-4 平面四杆机构的设计
§2-1 平 面 四 杆 机 构 的 基本型式和特征
平面连杆机构——由若干个构件通过平 面低副(转动副和移动副)联接而构成的平 面机构,也叫平面低副机构。
曲柄是连架杆,只有整转副处于机架
上才能形成曲柄。当铰链四杆机构满足
整转副条件时,机构中最短杆的两端转
动副一定为整转副。 因此可以得出铰链四杆机构存在曲柄
的条件: ⑴最短杆与最长杆长度之和小于或
等于其余两杆长度 之和; ⑵连架杆和机架中,必有一个是最
短杆。
结论: 若铰链四杆机构满足上述整转副条件,
缝纫机

机械原理 第2章-连杆机构

机械原理 第2章-连杆机构

图2-8a
图2-8b
内燃机内的核心构件活塞、连杆、曲轴和缸套就 是曲柄滑块机构。其活塞就是滑块,缸体就相当 于上图的机架,它的制造要求十分精密。
22
2、导杆机构
图2-9(a)就是和图2-8一样的曲柄滑块机构。但如果改AB杆(1杆)为 机架,就变为图(b)所示的导杆机构。在图(b)中,杆4称为导杆,滑 块3相对导杆滑动并一起绕 A点转动,通常把杆2作为原动件。在图(b) 中,由于L1<L 2,两连架杆2 和4 均可相对于机架 1整周回转,称为曲柄转 动导杆机构或转动导杆机构。 但图(b)中如果L1>L2,则图(b)就变成为图2-10了,此时连架杆4 就只能往复摆动,称为曲柄摆动导杆机构或摆动导杆机构。摆动导杆机 构在牛头刨床中应用较多,其简图见右下图。
〖1〗最短杆的对边作为机架,两连架杆就是二个摇杆。 〖2〗这时最短杆与最长杆长度之和不论小于或大于其余两杆长度之和都只 能得到双摇杆机构,且有,如果最短杆和最长杆长度之和大于其余两杆长 度之和,无论哪个构件作机架都只能得到双摇杆机构。
18
(3)双摇杆机构的应用
双摇杆机构有广泛的应用。如下面二图中都是由摇杆机构组成,它们 都是把最短边BC的对边AD作机架。请注意它们的运动轨迹,对左图鹤式 起动机,它能使E点沿水平线EE’移动,这对吊放物体很有利;而对于右 图飞机起落架,放下时ABC成一线,保证了稳定,收起时轮胎成水平,节 约了空间。这些设计十分巧妙,这是我们要学习的。
图2-2e
图2-2e1
图2-2e2 机车车轮联动机构
16
(3)双曲柄机构的应用 双曲柄机构也有一定的应用,如下面惯性筛就是一种, 但用的最多是平行四边形机构,所以又叫平行双曲柄机构。 下面的摄影平台升降机构,就是利用了平行四边形机构运 动中,构件始终保持水平的特点,使人站在上面不觉得倾 斜。

第二章平面连杆机构

第二章平面连杆机构

§2-1 平面四杆机构的基本类型
a曲柄摇杆机构 b双曲柄机构
c曲柄摇杆机构 d双摇杆机构
曲柄摇杆机构 平面四杆机构基本型式: 双曲柄机构
双摇杆机构
§2-1 平面四杆机构的基本类型
(一)曲柄摇杆机构(a、c图) 两连架杆中,一个为曲柄,而另一个为摇杆。
曲柄摇杆机构
例:牛头刨床横向进给机构1
§2-1 平面四杆机构的基本类型
回转式油泵
曲柄滑块泵
简易冲床
双滑块机构
摆动式油缸
刨床机构
§2-1 平面四杆机构的基本类型
一、铰链四杆机构基本类型
连接两连 架杆的杆
与机架相 连的杆
固定不动 的杆
曲柄—能绕机架整周回转的连架杆;
摇杆—只能在一定角度范围内绕机架摆动的连架杆;
周转副(整转副)—能作360 相对回转的运动副; 摆转副—只能作有限角度摆动的运动副。
搅拌器1
剖光机
刮雨器
C 2 3 B1 4 D A
缝纫机脚踏板机构1
飞剪
雷达调整机构
§2-1 平面四杆机构的基本类型
(二)双曲柄机构(b图)
两连架杆均为曲柄。
双曲柄机构
平行双曲柄机构
反平行四边形机构
§2-1 平面四杆机构的基本类型
例:旋转式水泵
机车驱动联动机构1 3
公共汽车车门启闭机构
惯性筛
§2-1 平面四杆机构的基本类型
四、死点
C1 F A C2 D
F B1 γ=0
B2
γ=0
曲柄摇杆机构中,以摇杆为原动件,摇杆处在 两极限位置时(当曲柄与连杆共线时),γ=0,这 时通过连杆传给从动件曲柄的力恰好通过其回转中 心,使机构出现“顶死”现象。该位置称死点位置。

第二章 平面连杆机构

第二章  平面连杆机构

铰链四杆机构类型的判断条件: 铰链四杆机构类型的判断条件: 在满足杆长和的条件下: 1)在满足杆长和的条件下:
(1)以最短杆的相邻构件为机架,则最短杆为曲柄, 以最短杆的相邻构件为机架,则最短杆为曲柄, 另一连架杆为摇杆,即该机构为曲柄摇杆机构 曲柄摇杆机构; 另一连架杆为摇杆,即该机构为曲柄摇杆机构; 以最短杆为机架,则两连架杆为曲柄, (2)以最短杆为机架,则两连架杆为曲柄,该机构为 双曲柄机构; 双曲柄机构; 以最短杆的对边构件为机架,均无曲柄存在, (3)以最短杆的对边构件为机架,均无曲柄存在,即 该机构为双摇杆机构 为双摇杆机构。 该机构为双摇杆机构。
B’’ A B’ B’’ B
a
B C’’ C C’ γmin γ’’ b C C’ ’’ C γ’ =arccos( γmin= γ’=arccos(a+e)/b =arccos
在主动曲柄与机 架共线的位置, 架共线的位置, 都有可能出现 γmin
e
A
B’
为提高机械传动效率, 为提高机械传动效率,应使其最小传动角处于工作 阻力较小的空回行程中。 阻力较小的空回行程中。
2)若不满足杆长和条件,该机构只能是双摇杆 机构。 机构。
注意: 注意:铰链四杆机构必须满足四构件组成的封闭多边形 条件:最长杆的杆长< 条件:最长杆的杆长<其余三杆长度之和。
曲柄滑块机构有曲柄的条件
a
D
B C” B’
b C C’
e B’’
A
AB’’, ADC’’ 1 ) 曲 柄 在 AB , 在 三 角 形 ADC 中 , AD≤ AC’’, AC ,即b>a+e 曲柄在AB 在三角形ADC AB’, ADC’中 AC’, 2)曲柄在AB ,在三角形ADC 中,AD≤ AC , 即b+a>e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A C E B D D E B C
Q
Q A
搅拌机构
鹤式起重机 要求连杆上E点的轨 迹为一条水平直线 要求连杆上E点的轨 迹为一条卵形曲线
给定的设计条件: 1)几何条件(给定连架杆或连杆的位置) 2)运动条件(给定K)
3)动力条件(给定γmin)
设计方法:图解法、解析法、实验法
一、按给定的行程速比系数K设计四杆机构 C2 1) 曲柄摇杆机构 已知:CD杆长,摆角φ及K, E 设计此机构。步骤如下: θ φ ①计算θ=180°(K-1)/(K+1); ②任取一点D,作等腰三角形 A 腰长为CD,夹角为φ; ③作C2P⊥C1C2,作C1P使 ∠C2C1P=90°-θ,交于P;
180°+θ ω
B
C2
CC
D D
1
θ
B1
曲柄摇杆机构
3D
A B2
当曲柄以ω逆时针转过180°+θ时,摇杆从C1D位置 摆到C2D。 所花时间为t1 , 平均速度为V1,那么有:
t1 (180 ) / V1 C1C2 t1 C1C2 /(180 )
当曲柄以ω继续转过180°-θ时,摇杆从C2D,置摆到 C1D,所花时间为t2 ,平均速度为V2 ,那么有: C1 C2 t2 (180 ) /
θ D
C1 90°-θ
④作△P C1C2的外接圆,则A点必在此圆上。 ⑤选定A,设曲柄为l1 ,连杆为l2 ,则: A C1= l1+l2 ,A C2=l2- l1 => l1 =( A C1-A C2)/ 2 ⑥以A为圆心,A C2为半径作弧交于E,得: l1 =EC1/ 2 l2 = A C1-EC1/ 2
↓ ∞ 曲柄摇杆机构 曲柄滑块机构 偏心曲柄滑块机构
s =l sin φ
φ
l
→∞
对心曲柄滑块机构
双滑块机构
正弦机构
(2)改变运动副的尺寸
(3)选不同的构件为机架
B 1 A B 3 C 1 A
偏心轮机构
2 4
2 4 导杆机构
3 C 摆动导杆机构 转动导杆机构
曲柄滑块机构
应用实例:
D C 3 C C1
A
θ
φ=θ
D
3) 曲柄滑块机构 已知K,滑块行程H, 偏距e,设计此机构 。 ①计算: θ=180°(K-1)/(K+1); ②作C1 C2 =H
H C1
90°-θ 90°-θ
C2
A
E

e
o
③作射线C1O 使∠C2C1O=90°-θ, 作射线C2O使∠C1C2 O=90°-θ。 ④以O为圆心,C1O为半径作圆。 ⑤作偏距线e,交圆弧于A,即为所求。 ⑥以A为圆心,A C1为半径作弧交于E,得: l2 = A C2-EC2/ 2 l1 =EC2/ 2
缺点: ②产生动载荷(惯性力),不适合高速。
①构件和运动副多,累积误差大、运动精度低、效率低。
③设计复杂,难以实现精确的轨迹。
平面连杆机构
分类:
空间连杆机构
常以构件数命名:
四杆机构、多杆机构。
本章重点内容是介绍四杆机构。
一、平面四杆机构的基本型式: 基本型式-铰链四杆机构,其它四杆机构都是由它 演变得到的。 连杆 名词解释: 曲柄—作整周定轴回转的构件; 曲柄 连杆—作平面运动的构件; 摇杆—作定轴摆动的构件; 连架杆—与机架相联的构件; 周转副—能作360 相对回转的运动副; 摇杆 摆转副—只能作有限角度摆动的运动副。 三种基本型式: (1)曲柄摇杆机构 特征:曲柄+摇杆 作用:将曲柄的整周回转转变为摇杆的往复摆动。 如雷达天线。
A B
E F
D C
G
反平行四边形机构 --车门开闭机构
反向
(3)双摇杆机构 特征:两个摇杆 应用举例:铸造翻箱机构、风扇摇头机构
特例:等腰梯形机构-汽车转向机构
B’ C’ B C A D C C 电机 D
蜗轮 B B B A A A 蜗杆 蜗杆
D
E E
A
C
B
风扇座
二、平面四杆机构的演化
(1) 改变构件的形状和运动尺寸
CC 2 B 1
A
33 D
3
3 2
4
2
4
1 雷达天线俯仰机构 曲柄主动 1 (2)双曲柄机构 缝纫机踏板机构 4 摇杆主动 特征:两个曲柄 作用:将等速回转转变为等速或变速回转。 应用实例:如叶片泵、惯性筛等。
1
A D
B C2 3 C 2 3
6
E
B
1
4 D A
惯性筛机构
旋转式叶片泵
A
4 D 1 B 2 C 3
3
6 E 5 4
2 B A
B
2
4
1
C2 1
D
小型刨床
A
牛头刨床
(3)选不同的构件为机架
B 1 A B 2 1 3 A 2 3
4 C 曲柄滑块机构
B 2 3
4 C 摇块机构
1 A
应用实例 C 3
4 2 A
A A 11 4Aφ 1 4 1 4 AA 1 2 B 2 34 3 C3 C
4 C 导杆机构
B
特例:平行四边形机构 特征:两连架杆等长且平行, 连杆作平动
B
B’ A D
C C’
实例:火车轮 摄影平台 播种机料斗机构 天平
A
AB = CD BC = AD
B B B
C
B
C
D C 料斗
A
D
耕地
平行四边形机构在共线位置出现运 动不确定。采用两组机构错开排列。
B’ A’ E’ F’ D’ C’ G’
B2
车门 F α γ v A γ C1 C2 2 l 2 γ1 l 3
l1
B1
l4
D
机构的死点位置 摇杆为主动件,且连杆 F 与曲柄两次共线时,有: γ=0 γ=0 F 此时机构不能运动. γ=0 称此位置为: “死点” 避免措施: 两组机构错开排列,如火车轮机构; 靠飞轮的惯性(如内燃机、缝纫机等)。
二、按预定连杆位置设计四杆机构 a)给定连杆两组位置 将铰链A、D分别 选在B1B2, C1C2连线的垂直平分线上任意 位置都能满足设计要求。 有无穷多组解。 b)给定连杆上铰链BC的三组位置 有唯一解。
B1 B2 B1 B2
C1 C2 D D’ C1 C2 C3
A
A’
B3
A
D
三、给定两连架杆对应位置设计四杆机构 给定连架杆对应位置: y 构件3和构件1满足以下位置关系: B 1 ψi=f (φi ) i =1, 2, 3…n l1 φ 设计此四杆机构(求各构件长度)。A
第六章 平面连杆机构
§6-1 平面四杆机构的基本型式及其演化 §6-2 平面四杆机构的基本知识
§6-3 平面四杆机构的设计
§6-1 平面四杆机构的基本型式及演化
应用实例: 内燃机、鹤式吊、火车轮、急回冲床、牛头刨床、 翻箱机、椭圆仪、机械手爪、开窗、车门、折叠伞、 折叠床、牙膏筒拔管机、单车等。 定义:由低副(转动、移动)连接组成的平面机构。 特征:有一作平面运动的构件,称为连杆。 特点: ①采用低副。面接触、承载大、便于润滑、不易磨损 形状简单、易加工、容易获得较高的制造精度。 ②改变杆的相对长度,从动件运动规律不同。 ③连杆曲线丰富。可满足不同要求。
此时,铰链A为整转副。
若取BC为机架,则结论相同,可知铰链B也是整转副。 可知:当满足杆长条件时,其最短杆参与构成的转动 C 副都是整转副。 l
2
B A
l1 l4
l3Байду номын сангаас
D
当满足杆长条件时,说明存在整转副,当选择不同 的构件作为机架时,可得不同的机构。如:
曲柄摇杆、 双曲柄、 双摇杆机构。
6.1.2、急回运动和行程速比系数 在曲柄摇杆机构中,当曲柄与连杆两次共线时,摇杆 位于两个极限位置,简称极位。 此两处曲柄之间的夹角θ 称为极位夹角。
最长杆与最短杆 的长度之和≤其 他两杆长度之和
→ l1+ l3 ≤ l2 + l4 l2
l1
A l1
将以上三式两两相加的: l1≤ l2, l1≤ l3, l1≤ l4 B’ AB为最短杆
C’
C”
l2l
3
l3
D
l4 l4- l1
曲柄存在的条件: 1. 最长杆与最短杆的长度之和应≤其他两杆长度之和 称为杆长条件。 2.连架杆或机架之一为最短杆。
P
2) 导杆机构 已知:机架长度d,K,设计此机构。 分析: 由于θ与导杆摆角φ相等,设计此 机构时,仅需要确定曲柄 a。 ①计算θ=180°(K-1)/(K+1);
m A
n
φ=θ D
d
②任选D作∠mDn=φ=θ,作角分线; ③ 取 A 点 , 使 得 AD=d, a=dsin(φ/2)。 则 :
由余弦定律有: ∠B1C1D=arccos[l42 + l32-(l4 - l1)2]/2l2 l3 若∠B1C1D≤90°,则 γ1=∠B1C1D ∠B2C2D=arccos[l42 + l32-(l4 - l1)2]/2l2 l3 若∠B2C2D>90°, 则 γ2=180°-∠B2C2D γmin=[∠B1C1D, 180°-∠B2C2D]min 机构的传动角一般在运动链 最终一个从动件上度量。
K 1
6.2.3、四杆机构的压力角、传动角和死点 压力角: 从动件驱动力F与力作用点绝对速度之间所夹锐角。 切向分力: F’= Fcosα =Fsinγ 法向分力: F”= Fcosγ γ↑→ F’↑ →对传动有利。 可用γ的大小来表示机构传动力性能的好坏, F’ F” F 称γ为传动角。 为了保证机构良好的传力性能 γ C C F α γ 设计时要求: γmin≥50° B F’ F” B γmin出现的位置: A A D D 当∠BCD≤90°时, γ=∠BCD 当∠BCD>90°时, γ=180°- ∠BCD 当∠BCD最小或最大时,都有可能出现γmin 此位置一定是:主动件与机架共线两处之一。
相关文档
最新文档