高中数学必修3第三章单元测试卷

合集下载

人教A版高中数学必修三试卷第三章过关测试卷.docx

人教A版高中数学必修三试卷第三章过关测试卷.docx

高中数学学习材料唐玲出品第三章过关测试卷(100分,45分钟)一、选择题(每题3分,共21分)1.下列结论正确的是( )A .事件A 的概率P (A )必有0<P (A )<1B .事件A 的概率P (A )=0.999,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计其有明显的疗效的可能性为76%D .某奖券中奖率为50%,则某人购买此券10张,一定有5张中奖2.下列五种对某生活现象发生的表示:①“一定发生的”,②“很可能发生的”,③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”,其发生的概率由小到大的排列为( )A .①②③④⑤B .④⑤③②①C .①③②⑤④D .②③④⑤①3.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为0.03,出现丙级品的概率为0.01,则对产品抽查一次抽得正品的概率是( )A.0.09B.0.98C.0.97D.0.964.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( )A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件5.先后抛掷两枚质地均匀的骰子各一次,设出现的点数之和是12,11,10的概率依次是1P ,2P ,3P ,则( )A. 1P =2P <3PB. 1P <2P <3PC. 1P <2P =3PD. 3P =2P <1P6.在边长为2的正方形ABCD 中,E ,F ,G ,H 分别是正方形ABCD 四边的中点,将均匀的粒子撒在正方形中,则粒子落在如图1所示的四个图中阴影部分区域的概率依次为1P 、2P 、3P 、4P ,则关于它们的大小比较,正确的是( )① ② ③ ④图1A .1P <2P =3P <4PB .4P <2P =3P <1PC .1P =4P <2P <3PD .1P =4P <3P <2P7.〈海淀二模,文〉如图2,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m ,n ,则图形Ω面积的估计值为( )图2A. n maB. mna C. n ma 2 D. m na 2 二、填空题(每题5分,共20分)8.〈义二模,文〉如图3所示的茎叶图记录了甲、乙两组各四名工人1天加工的零件数,则甲组工人1天每人加工零件的平均数为 ;若分别从甲、乙两组中随机选取一名工人,则这两名工人加工零件的总数超过了38的概率为 .图3 图49.设a 是从集合{1,2,3,4}中随机取出的一个数,b 是从集合{1,2,3}中随机取出的一个数,构成一个基本事件(a ,b ).记“这些基本事件中,满足a b log ≥1”为事件E ,则E 发生的概率是 .10.某汽车站每天均有3辆开往省城的分上、中、下等级的客车.某天王先生准备在该汽车站乘车去省城办事,但他不知道客车的车况,也不知道发车顺序.为了尽可能乘上上等车,他采取如下策略:先放过第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为 .11.如图4,利用随机模拟的方法可以估计图中由曲线y =22x 与两直线x =2及y =0所围成的阴影部分的面积S:①先产生两组0~1的均匀随机数,a=RAND(),b=RAND();②做变换,令x=2a,y=2b;③产生N个点(x,y),并统计落在阴影内的点(x,y)的个数1N,已知某同学用计算器做模拟试验结果,当N=1 000时,1N=332,则据此可估计S的值为.三、解答题(13题15分,其余每题22分,共59分)12.〈济宁高三第一次模拟,文〉某校从参加高三年级期中考试的学生中随机统计了40名学生的政治成绩,这40名学生的成绩全部在40分至100分之间,据此绘制了如图5所示的样本频率分布直方图.(1)求成绩(单位:分)在[80,90)的学生人数;(2)从成绩大于或等于80分的学生中随机选2名学生,求至少有1名学生成绩(单位:分)在[90,100]内的概率.图513.下面有两个关于“袋子中装有红、白两种颜色的相同小球,从袋中无放回地取球”的游戏规则,这两个游戏规则公平吗?为什么?游戏1 游戏22个红球和2个白球3个红球和1个白球任取1个球,再任取1个球任取1个球,再任取1个球取出的两个球同色→甲胜取出的两个球同色→甲胜取出的两个球不同色→乙胜取出的两个球不同色→乙胜14.设有关于x 的一元二次方程222b ax x ++=0.(1)若a 是从集合A ={x ∈Z |0≤x ≤3}中任取一个元素,b 是从集合B ={x ∈Z |0≤x ≤2}中任取一个元素,求方程222b ax x ++=0恰有两个不相等实根的概率;(2) 若a 是从集合A ={x |0≤x ≤3}中任取一个元素,b 是从集合B ={x |0≤x ≤2}中任取一个元素,求上述方程有实根的概率.参考答案及点拨一、1.C 点拨:A 错误,应为0≤P (A ) ≤1;B 错误,必然事件的概率为1;C 中,380÷500=76%,正确;D 中,购买此券10张,可能1张也不中奖.2.B3.D4.B 点拨:根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.5.B 点拨:我们列出先后抛掷两枚质地均匀的骰子各一次出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率1P ,2P ,3P ,即可得到它们的大小关系.先后抛掷两枚质地均匀的骰子各一次,出现的点数有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36种,其中点数之和是12的有1种,故1P =361;点数之和是11的有2种,故2P =362=181;点数之和是10的有3种,故3P =363=121,故1P <2P <3P ,故选B. 6.D 点拨:正方形ABCD 的面积为2×2=4,对于题图①,阴影部分区域的面积为4-4×21,所以概率为1P =42=21;对于题图②,阴影部分区域的面积为π,所以概率为2P =4π;对于题图③,阴影部分区域的面积为4-2×12=3,所以概率为334P =;对于题图④,阴影部分区域的面积为12×2×2=2,所以概率为42142P ==,故选D. 7.C 点拨:设图形Ω的面积为S ,则由试验结果得2S a ≈m n,解得S ≈2ma n ,所以选C.二、8. 20;1116 点拨:甲组工人1天每人加工零件的平均数为14×(18+19+21+22)=20.所有的基本事件共有4×4=16(个),满足这两名工人加工零件的总数超过了38的基本事件有11个,故这两名工人加工零件的总数超过了38的概率为1116. 9. 512点拨:首先将已知的不等关系转化为a ,b 的关系,再求基本事件的个数,最后求概率.试验发生包含的事件是分别从两个集合中随机取两个数,共有4×3=12(种)结果,满足条件的事件是满足log b a ≥1,可以列举出所有的事件,当b =2时,a =2,3,4,当b =3时,a =3,4,共有3+2=5(种),所以根据古典概型的概率公式得到所求概率是512. 10. 12点拨:共有6种发车顺序:①上、中、下;②上、下、中;③中、上、下;④中、下、上;⑤下、中、上;⑥下、上、中(其中画线的表示王先生所乘的车),所以他乘上上等车的概率为31=62. 11. 1.328 点拨:先由试验结果估计落入阴影内的点(x ,y )的概率,再转化为几何的概型概率问题求解.根据题意:落入阴影内的点(x ,y )的概率是3321000,易知矩形的面积为4,所以4S ≈3321000,所以S ≈1.328. 三、12.解:(1)因为各组的频率之和为1,所以成绩(单位:分)在区间[80,90)的频率为:1- (0.005×2+0.015+0.020+0.045)×10=0.1,所以40名学生中成绩(单位:分)在区间[80,90)的学生人数为40×0.1=4.(2)设A 表示事件“在成绩大于或等于80分的学生中随机选2名学生,至少有1名学生成绩(单位:分)在区间[90,100]内”,由已知和(1)的结果可知成绩(单位:分)在区间[80,90)内的学生有4人,记这四个人分别为a ,b ,c ,d , 成绩(单位:分)在区间[90,100]内的学生有2人,记这两个人分别为e ,f . 则选取学生的所有可能结果为:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),基本事件数为15,事件A 的可能结果为:(a ,e ),(a ,f ),(b ,e ),(b ,f ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ), 基本事件数为9,所以()93155P A ==. 13. 解:游戏1:给2个红球编号A 、B , 2个白球编号1、2,事件“任取1个球,再任取1个球”,基本事件有:AB ,A 1,A 2,BA ,B 1,B 2,1A ,1B ,12,2A ,2B ,21,共12个.“取出的两个球同色”包含的基本事件有:AB , BA ,12,21,共4个.所以P (甲胜)=412=13,P (乙胜)=1-13=23.因此规则是不公平的. 游戏2:给3个红球编号1、2、3,1个白球编号m ,事件“任取1个球,再任取1个球”,基本事件有:12,13,1m ,21,23,2m ,31,32,3m ,m 1,m2,m3,共12个.“取出的两个球同色”包含的基本事件有12,13,21,23,31,32,共6个. 所以P (甲胜)=12,P(乙胜)=1-12=12.因此规则是公平的.14. 解: (1)由题意知a取集合{0,1,2,3}中任一个元素,b取集合{0,1,2}中任一个元素,a,b取值的所有情况是:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b的取值,即基本事件总数为12. 记“方程2220x ax b++=恰有两个不相等的实根”为事件A,其等价于a>b. 而当a>b时,a,b取值的情况有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),即A包含的基本事件数为6,所以方程2220x ax b++=恰有两个不相等实根的概率P(A)=612=12.(2)设事件B为“方程2220x ax b++=有实根”.当a≥0,b≥0时,方程2220x ax b++=有实根需满足a≥b.试验的全部结束所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.构成事件B的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}(如答图1所示的阴影部分).因此所求的概率为P(B)=2132222323⨯-⨯=⨯.答图1。

人教A版高中数学必修三试卷第三章测试.doc

人教A版高中数学必修三试卷第三章测试.doc

高中数学学习材料马鸣风萧萧*整理制作第三章测试(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的) 1.下列试验能够构成事件的是()A.掷一次硬币B.射击一次C.标准大气压下,水烧至100℃D.摸彩票中头奖解析事件包含确定事件与随机事件,在一定条件下随机试验及其结果称为基本事件,分析四个选项知D正确.答案 D2.下列命题:①对立事件一定是互斥事件;②若A,B为两个随机事件,则P(A ∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A与B是对立事件.其中正确命题的个数是()A.1 B.2C .3D .4解析 ①正确;②不正确,当A 与B 是互斥事件时,才有P (A ∪B )=P (A )+P (B ),对于任意两个事件A ,B 满足P (A ∪B )=P (A )+P (B )-P (AB );③也不正确.P (A )+P (B )+P (C )不一定等于1,还可能小于1;④也不正确.例如:袋中有大小相同的红、黄、黑、绿4个球,从袋中任摸一个球,设事件A ={摸到红球或黄球},事件B ={摸到黄球或黑球},显然事件A 与B 不互斥,但P (A )+P (B )=12+12=1.答案 A3.掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是( )A.1999B.11000C.9991000D.12解析 投掷一枚均匀的硬币正面向上的概率为12,它不因抛掷的次数而变化,因此抛掷一次正面向上的概率为12,抛掷第999次正面向上的概率还是12.答案 D4.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为( )A.13B.110C.25D.310解析 设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P =310.答案 D5.设某厂产品的次品率为3%,估计该厂8000件产品中次品的件数为( )A .3B .160C .240D .7480解析 次品数为8000×3%=240. 答案 C6.有四个游戏盘,将它们水平放稳后,在上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析 由几何概型概率公式知,图中中奖的概率依次是P (A )=38,P (B )=28,P (C )=26=13,P (D )=13,因此,要想增加中奖机会,应选择A 盘.答案 A7.在线段AB 上任取三个点x 1,x 2,x 3,则x 2位于x 1与x 3之间的概率为( )A.12B.13C.14D .1解析 由于x 1,x 2,x 3是任意的,它们的排列次序有:x 1x 2x 3,x 2x 1x 3,x 2x 3x 1,x 3x 2x 1,x 1x 3x 2,x 3x 1x 2,共6种情况.其中x 2在x 1与x 3之间有两种情况,故所求概率为26=13.答案 B8.中央电视台“幸运52”栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金金额,其余商标的背面是一张苦脸,若翻到苦脸就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干资金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( )A.14B.16C.15D.320解析 由题意知,第三次翻牌时,还有18个商标牌,其中有奖牌还有3个,故所求概率为P =318=16.答案 B9.某人从甲地去乙地共走了500m ,途中要过一条宽为x m 的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为( )A .100mB .80m C. 50mD .40m解析 设河宽x m ,则1-x 500=45,∴x =100. 答案 A10.如图的矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为( )A.235 B.2350 C. 10D .不能估计解析 利用几何概型的概率计算公式,得阴影部分的面积约为138300×(5×2)=235.答案 A11.在所有的两位数(10~99)中,任取一个数,则这个数能被2或3整除的概率是( )A.56B.45C.23D.12解析 在10~99中有99-10+1=90个整数,其中能被2整除的有45个,能被3整除的有30个,能被6整除的有15个,因此,所求的概率为P=45+30-1590=23.答案 C12.(2010·沈阳高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以710为概率的事件是()A.恰有1件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品解析将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=610,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=310,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-310=710.答案 C二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.一种投掷骰子的游戏规则是:交一元钱可掷一次骰子,若骰子朝上的点数是1,则中奖2元;若点数是2或3,则中奖1元,若点数是4,5或6,则无奖,某人投掷一次,那么中奖的概率是______.解析由题意知,投掷一次骰子若点数为1,2,3则获奖,若出现点数4,5,6无奖,所以中奖的概率为12.答案 1214.设集合A ={0,1,2},B ={0,1,2},分别从集合A 和B 中随机取一个数a 和b ,确定平面上一个点P (a ,b ),设“点P (a ,b )落在直线x +y =n 上”为事件C n (0≤n ≤4,n ∈N ),若事件C n 的概率最大,则n 的可能值为________.解析 基本事件为点(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),总数为9.当n =0时,落在直线x +y =0上的点有1个(0,0); 当n =1时,落在直线x +y =1上的点有2个,(0,1)和(1,0); 当n =2时,落在直线x +y =2上的点有(1,1),(2,0),(0,2),共3个;当n =3时,落在直线x +y =3上的点有(1,2),(2,1)共2个; 当n =4时,落在直线x +y =4上的点只有(2,2)1个. 因此,当C n 的概率最大时,n =2. 答案 215.已知区域E ={(x ,y )|0≤x ≤3,0≤y ≤2},F ={(x ,y )|0≤x ≤3,0≤y ≤2,x ≥y },若向区域E 内随机投掷一点,则该点落入区域F 内的概率为________.解析 依题意可知,本问题属于几何概型,区域E 和区域F 的对应图形如图所示.其中区域E 的面积为3×2=6,区域F 的面积为12×(1+3)×2=4,所以向区域E 内随机投掷一点,该点落入区域F 内的概率为P =46=23.答案 2316.从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有1名女生的概率为45,那么所选3人中都是男生的概率为____.解析 设A ={3人中至少有1名女生},B ={3人中都是男生},则A ,B 为对立事件,∴P (B )=1-P (A )=15.答案 15三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)某学校篮球队,羽毛球队、乒乓球队各有10名队员,某些队员不止参加了一支球队,具体情况如图所示,现从中随机抽取一名队员,求:(1)该队员只属于一支球队的概率; (2)该队员最多属于两支球队的概率.解 由图知,三支球队共有队员10+4+3+3=20人,其中只参加一支球队的队员有5+4+3=12人,参加两支球队的队员有1+2+3=6人.(1)设“该队员只属于一支球队”为事件A , 则P (A )=1220=35.(2)设“该队员最多属于两支球队”为事件B , 则P (B )=1220+620=1820=910.(或P (B )=1-220=910)18.(12分)高一军训时,某同学射击一次,命中10环,9环,8环的概率分别为0.13,0.28,0.31.(1)求射击一次,命中10环或9环的概率;(2)求射击一次,至少命中8环的概率; (3)求射击一次,命中环数小于9环的概率.解 设事件“射击一次,命中i 环”为事件A i (0≤i ≤10,且i ∈N ),且A i 两两互斥.由题意知P (A 10)=0.13,P (A 9)=0.28,P (A 8)=0.31.(1)记“射击一次,命中10环或9环”的事件为A ,那么P (A )=P (A 10)+P (A 9)=0.13+0.28=0.41.(2)记“射击一次,至少命中8环”的事件为B ,那么P (B )=P (A 10)+P (A 9)+P (A 8)=0.13+0.28+0.31=0.72.(3)记“射击一次,命中环数小于9环”的事件为C ,则C 与A 是对立事件,∴P (C )=1-P (A )=1-0.41=0.59.19.(12分)水池的容积是20m 3,向水池注水的水龙头A 和水龙头B 的流速都是1m 3/h ,它们在一昼夜内随机开放(0~24小时),求水池不溢出水的概率.(精确到0.01)解 设水龙头A 开x 小时,水龙头B 开y 小时,若水池不溢出水,则x +y ≤20,记“水池不溢出水”为事件M ,则M 所占区域面积为12×20×20=200,整个区域的面积为24×24=576,由几何概型的概率公式,得P (M )=200576≈0.35,即水池不溢出水的概率为0.35.20.(12分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率也是512,试求得到黑球、黄球、绿球的概率各是多少?解 从袋中任取一球,记事件A ={得到红球},事件B ={得到黑球},事件C ={得到黄球},事件D ={得到绿球},则有⎩⎪⎪⎨⎪⎪⎧ P (A )=13,P (B ∪C )=P (B )+P (C )=512,P (C ∪D )=P (C )+P (D )=512,P (B ∪C ∪D )=1-P (A )=23,解得P (B )=14,P (C )=16,P (D )=14.所以得到黑球的概率为14,得到黄球的概率为16,得到绿球的概率为1421.(12分)同时掷四枚均匀硬币,求:(1)恰有2枚“正面向上”的概率;(2)至少有2枚“正面向上”的概率.解设一枚硬币“正面向上”用1表示,“反面向上”用0表示,这个问题中所说4枚硬币投掷的结果就可以用(x1,x2,x3,x4)表示(其中x i仅取0,1).例如(0,1,0,1)就表示4枚硬币所掷的结果是反,正,反,正,这样一来,问题就可以转化为:(1)记“x1+x2+x3+x4=2”为事件A,求P(A);(2)记“x1+x2+x3+x4≥2”为事件B,求P(B).首先,每个x i都可取0或1,4枚硬币所掷出的结果包括(0,0,0,0),(0,0,0,1),(0,0,1,1),(0,1,1,1),(1,0,0,0),(1,0,0,1),(1,0,1,1),(1,1,1,1),(1,1,0,0),(1,1,0,1),(0,1,0,0),(0,0,1,0),(1,0,1,0),(0,1,0,1),(0,1,1,0),(1,1,1,0)共16种.其次,对于A,∵x1+x2+x3+x4=2,∴只要其中两个取1、两个取0即可,包括(1,1,0,0),(1,0,0,1),(0,0,1,1),(1,0,1,0),(0,1,0,1),(0,1,1,0)共6种.∴P(A)=616=38.对于B,∵x1+x2+x3+x4≥2,∴包含以下三种情形:x1+x2+x3+x4=2,有6种,x1+x2+x3+x4=3,包括(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1)共4种,x1+x2+x3+x4=4,包括(1,1,1,1),1种,∴P(B)=6+4+116=1116.22.(12分)将长度为a的木条折成三段,求三段能构成三角形的概率.解设事件A表示“三段能构成三角形”,x,y分别表示其中两段的长度,则第三段的长度为a-x-y,则x ,y 构成的区域Ω={(x ,y )|0<x <a,0<y <a,0<x +y <a }. 要使三段能构成三角形,则x +y >a -x -y ⇒x +y >a 2;x +a -x -y >y ⇒y <a 2;y +a -x -y >x ⇒x <a 2.故三段能构成三角形的区域A ={(x ,y )|x +y >a 2,x <a 2,y <a 2}.如图所示,由图知所求的概率为P =S A S Ω=12×⎝ ⎛⎭⎪⎫a 2212a 2=14.。

高中数学必修三第三章《概率》单元测试题

高中数学必修三第三章《概率》单元测试题

高中数学必修三第三章《概率》单元测试题(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.42.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P16.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-10.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间[0,20) [20,40) [40,60) [60,80) [80,100) (分钟)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.20.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.高中数学必修三第三章《概率》单元测试题参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件事件5红3白一 3 0二 2 1三 1 2四0 3对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20) [20,40) [40,60) [60,80) [80,100) 人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=.答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为. 【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:年降水量100~150 150~200 200~250 250~300 (单位:mm)概率0.12 0.25 0.16 0.14(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)参加书法社团未参加书法社团参加演讲社团8 5未参加演讲社团 2 30(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.。

人教版高中数学必修3第三章测试卷

人教版高中数学必修3第三章测试卷

测试卷一.选择题: (每小题5分,共60分)1. 某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是()A.1000名学生是总体B.每个学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002. 将两个数a=8,b=17下面语句正确一组是(A. B.3. 给出以下四个问题,①输入一个数x,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c中的最大数.④求函数.1.2{)(≥-<+= xx xxxf的函数值. 其中不需要用条件语句来描述其算法的有( )A. 1个B. 2个C. 3个D. 4个4. 一组数据中的每一个数据都减去80,得一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )(A)81.2, 4.4 (B)78.8, 4.4 (C)81.2, 84.4 (D)78.8, 75.65.关于频率分布直方图的下列有关说法正确的是( )(A)直方图的高表示取某数的频率(B)直方图的高表示该组上的个体在样本中出现的频率(C)直方图的高表示取某组上的个体在样本中出现的频数与组距的比值(D)直方图的高表示取该组上的个体在样本中出现的频率与组距的比值6. 将389 化成四进位制数的末位是( )A. 1B. 2C. 3D. 07. 下列各数中最小的数是( )A.)9(85 B.)6(210 C.)4(1000 D.)2(1111118. 用秦九韶算法计算多项式1876543)(23456++++++=xxxxxxxf当4.0=x时的值时,需要做乘法和加法的次数分别是( )A. 6 , 6B. 5 , 6C. 5 , 5D. 6 , 59. 某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一,高二,高三各年级抽取的人数分别为()A.45,75,15B.45,45,45C.30,90,15D.45,60,3010. 甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为和,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是()A.甲B.乙C.甲、乙相同D.不能确定11. 从2 006名学生中选取50名组成参观团,若采用以下方法选取:先用简单随机抽样从2 006名学生中剔除6名,再从2 000名学生中随机抽取50名.则其中学生甲被剔除和被选取的概率分别是( )(A) 311 00340, (B) 311 00040,(C) 3251 0031003, (D) 3251 0001 003,12. 上右程序运行后输出的结果为 ( ) A. 3 4 5 6 B. 4 5 6 7 C. 5 6 7 8 D. 6 7 8 9 二. 填空题.(每小题4分,共16分) 13.. (1)将二进制数(2)101101化为十进制数为______________(2)将十进制1375转化为六进制数为_____________(6) (3)212(8)= (2)14. 在一次实验中,测得(x, y)的四组值分别是 A(1,2),B(2,3),C(3,4),D(4,5).则y 与x 之间的回归直线方程为______________________________15. 下左程序运行后输出的结果为_________________________.16问题:①有1000个乒乓球分别装在3个箱子内,其中红色箱子内有 500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个 容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法 Ⅱ.系统抽样法 Ⅲ.分层抽样法.其中问题与方法 能配对的是① ② 。

数学必修3第三章概率测试题(附答案)

数学必修3第三章概率测试题(附答案)

高中数学必修3第三章 概率单元检测一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是( ). A .241 B .61C .83D .121 2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ).A .31B .π2C .21D .32 3.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103B .51C .101D .121 5.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513B .12516C .12518D .12519 6.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .161 7.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ).A .51 B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61 B .31C .21D .32 9.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ). A .21 B .31C .61D .121 二、填空题10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为 .13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为 .14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b .则a +b 能被3整除的概率为 .三、解答题16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数小于8环的概率.17.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.18.同时抛掷两枚相同的骰子(每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准),试计算出现两个点数之和为6点、7点、8点的概率分别是多少?19.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.参考答案一、选择题 1.D解析:1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是121. 2.A解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使cos x 的值介于0到21之间,需使-2π≤x ≤-3π或3π≤x ≤2π,两区间长度之和为3π,由几何概型知cos x 的值介于0到21之间的概率为π3π=31.故选A.3.D解析:从5个数中选出3个数的选法种数有10种,列举出各种情形后可发现,和等于6的两个数有1和5,2和4两种情况,故选出的3个数中任何两个数的和不等于6的选法有(10-3×2)种,故所求概率为104=52. 4.A解析:从五个球中任取两个共有10种情形,而取出的小球标注的数字之和为3或6的只有3种情况:即1+2=3,2+4=6,1+5=6,,故取出的小球标注的数字之和为3或6的概率为103. 5.D解析:由于一个三位数,各位数字之和等于9,9是一个奇数,因此这三个数必然是“三个奇数”或“一个奇数两个偶数”.又由于每位数字从1,2,3,4,5中抽取,且允许重复,因此,三个奇数的情况有两种:(1)由1,3,5组成的三位数,共有6种;(2)由三个3组成的三位数,共有1种.一个奇数两个偶数有两种:(1)由1,4,4组成的三位数,共有3种;(2)由3,2,4组成的三位数,共有6种;(3)由5,2,2组成的三位数,共有3种.再将以上各种情况组成的三位数的个数加起来,得到各位数字之和等于9的三位数,共有19种.又知从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数共有53=125种.因此,所求概率为12519. 6.D解析:所求概率为224π1π⨯⨯ =161. 7.B解析:区域Ω为区间[-2,3],子区域A 为区间(1,3],而两个区间的长度分别为5,2. 8.A解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比. 9.B解析:A ,B 为互斥事件,故采用概率的加法公式P (A +B )=P (A )+(B )=61+61=31. 二、填空题 10.61. 解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,例如(13∶00,14∶00),而且取各点的可能性一样,要遇到等待时间短于10分钟,只有当他打开收音机的时间正好处于13∶50至14∶00之间才有可能,相应的概率是6010=61. 11.31.解析:基本事件有A ,B ;A ,C ;B ,C 共3个,A 未被照看的事件是B ,C ,所以A未被照看的概率为31.12.32. 解析:A ,B 为互斥事件,故采用概率的加法公式得P (A +B )=31,1-P (A +B )=32.13.32. 解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2]. 14.34. 解析:从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P =43. 15.13.解析:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除”为事件A ,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P (A )=13.三、解答题16.解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A ,B ,C ,D ,E ,则(1)P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52. 所以,射中10环或9环的概率为0.52.(2)P (A ∪B ∪C ∪D )= P (A )+P (B )+P (C )+P (D )=0.24+0.28+0.19+0.16=0.87. 所以,至少射中7环的概率为0.87.(3)P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29. 所以,射中环数小于8环的概率为0.29.17.解:这是一个几何概型问题.设甲、乙两艘船 到达码头的时刻分别为x 与y ,A 为“两船都不需要等待 码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要 等待码头空出,当且仅当甲比乙早到达1h 以上或乙比甲 早到达2h 以上,即y -x ≥1或x -y ≥2.故所求事件构 成集合A ={(x ,y )| y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 对应图中阴影部分,全部结果构成集合Ω为边长是24的正方形. 由几何概型定义,所求概率为P (A )=的面积的面积ΩA =22224212-24211-24⨯⨯+)()(=5765.506=0.879 34.18.解:将两只骰子编号为1号、2号,同时抛掷,则可能出现的情况有6×6=36种,即n =36.出现6点的情况有(1,5),(5,1),(2,4),(4,2),(3,3).∴m 1=5, ∴概率为P 1=n m 1=365. 出现7点的情况有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3).23 22∴m 2=6, ∴概率为P 2=n m 2=366=61. 出现8点的情况有(2,6),(6,2),(3,5),(5,3),(4,4). ∴m 3=5, ∴概率为P 3=n m 3=365. 19.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,b ),(b ,a 1),(b ,a 2)。

最新人教版高中数学必修3第三章本章测评

最新人教版高中数学必修3第三章本章测评

本章测评1.下列事件中,是随机事件的有( ) A .某人投篮3次,投中4次B .标准大气压下,水加热到100℃ 时沸腾C .掷一枚质地均匀的硬币,出现“正面朝上”D .抛掷一颗骰子,出现7点思路解析:根据随机事件的定义求解. 答案:C2.下列叙述随机事件的频率与概率的关系中,说法正确的是( ) A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数的增多,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定思路解析:弄清频率与概率的关系,正确理解概率的定义. 答案:C3.若干个人站成一排,其中为互斥事件的是( ) A .“甲站排头”与“乙站排头” B .“甲站排头”与“乙不站排尾” C .“甲站排头”与“乙站排尾” D .“甲不站排头”与“乙不站排尾” 思路解析:“互斥事件”指在一次实验中不能同时发生的两个事件. 答案:A4.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为70%,则甲、乙两人下一盘棋,你认为最可能出现的情况是( )A .甲获胜B .乙获胜C .甲、乙下成和棋D .无法得出 思路解析:分别将“甲胜”“和棋”“乙胜”的概率求出,并比较. 答案:C5.某人忘记了电话号码的最后一个数字,随意拨号,则拨号不超过三次而接通电话的概率为( ) A .109 B .103 C .81 D .101 思路解析:“拨号不超过三次接通电话”包括三种情况:拨号分别为一次、二次、三次接通电话,每种情况是等可能的.P =101+101+101=103. 答案:B6.有4条线段,长度分别为1、3、5、7,从这四条线段中任取三条,则所取三条线段能构成一个三角形的概率是( ) A .41B .21C .31D .52 思路解析:根据构成三角形的条件用列举法.答案:A7.利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品为20个,合格品有70个,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A =“是一等品”,B =“是合格品”,C =“是不合格品”,则下列结果错误的是( )A .P(B)=107B .P(A+B)=109C .P(A ∩B)=0D .P(A ∪B)=P(C)思路解析:根据事件的关系及运算求解. 答案:D8.某部三册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左恰好为第1、2、3册的概率为( ) A .61 B .31 C .21 D .32 思路解析:由古典概型概率计算公式求解,三册小说放在书架的同一层共有6种情况.答案:B9.有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,他应当选择的游戏盘为( )思路解析:由几何概型求解,转化为面积比计算,并比较计算结果的大小. 答案:A10.若以连续两次掷骰子分别得到的点数m 、n 作为点P 的坐标(m ,n ),则点P 在圆x 2+y 2=25外的概率是( ) A .365 B .127 C .125 D .31思路解析:本题中涉及两个变量的平方和,类似于两变量的和或积的情况,可以用列表法(如图),使x 2+y 2>25的次数与总试验次数的比就近似为本题结果,即3621=127.答案:B11.某人到公共汽车站等一路车,若一路车每隔15分钟一趟,则此人至少等5分钟的概率是__________.思路解析:由几何概率求解,转化为长度比计算. 答案:3212.有以下说法:①一年按365天计算,两名生日相同的概率是3651;②买彩票中奖的概率为0.001,那么买1000张彩票就一定能中奖;③乒乓球赛前,决定谁先发球,抽签方法是从1~10共10个数字中各抽取1个,再比较大小,这种抽签方法是公平的;④昨天没有下雨,则说明“昨天气象局的天气预报降水概率是90%”是错误的.根据我们所学的概率知识,其中说法正确的序号是___________. 思路解析:根据“概率的意义”求解. 答案:①③13.袋中装有100个大小相同的红球、白球、黑球,从中任取一球,摸出红球、白球的概率是0.4和0.35,那么黑球共有_________个.思路解析:可求得摸出黑球的概率为1-0.4-0.35=0.25,袋中共有100个球,所以黑球有25个. 答案:2514.将一个各个面上均涂有颜色的正方体锯成64个同样大小的正方体,从这些小正方体中任取一个,其中恰有两面涂色的概率是____________.思路解析:由古典概型求解,画出正方体图形,结合图形进行,可知恰有两面涂色的有24个. 答案:8315.向三个相邻的军火库投掷一颗炸弹,炸中第一个军火库的概率为0.025,炸中其余两个军火库的概率都为0.1,只要炸中一个,另外两个也要爆炸,求军火库爆炸的概率. 思路解析:根据互斥事件的概率加法公式求解. 解:设“炸弹炸中第一个军火库”为事件A ;“炸弹炸中第二个军火库”为事件B ;“炸弹炸中第三个军火库”为事件C ;“军火库发生爆炸”为事件D. 则P(A)=0.025,P(B)=P(C)=0.1.由题意知P(D)=P(A ∪B ∪C). 因为事件A 、B 、C 彼此互斥,所以P(D)=P(A ∪B ∪C)=P(A)+P(B)+P(C)= 0.025+0.1+0.1=0.225.思路解析:根据古典概型的概率计算公式,分别求出三项游戏的概率,再作比较. 解:游戏①获奖为P 1=21;游戏②获奖为P 2=62=31;游戏③获奖为P 3=106=53.所以选择参与游戏①和③.17.有两个人在一座11层大楼的底层进入电梯,设他们中的每一个人自第二层开始的每一层离开是等可能的,求两个人在不同层离开的概率.思路解析:由古典概型概率计算公式求解,两人离开的方法共有10×10=100种,两人在不同层离开有10×9=90种. 解:两人中的第一个人自第二层开始在每一层离开是等可能的,即每人都可以从第二层到第十一层的任何一层离开,因此每人有10种离开的方法,所以共有不同的离开方法,即基本事件总数为n=10×10=100.记“两个人在不同层离开”为事件A ,下面求A 包含的基本事件数.第一人离开时有10种方法,第二人离开时有9种方法,故共有不同离开方法数是m=10×9=90.∴由古典概型概率公式,得P(A)= n m =10090=0.9.18.如图3-2,设有一个等边三角形网格,其中每个最小等边三角形的边长都是34cm ,现用直径等于2cm 的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.图3-2思路解析:硬币落下后与格线没有公共点等价于硬币中心与格线的距离都大于半径1,在等边三角形内作三条与正三角形三边距离为1的直线,构成小等边三角形,当硬币中心在小等边三角形内时,硬币与三边都没有公共点,所以硬币与格线没有公共点就转化为硬币中心落在小等边三角形内的问题.解:记A ={硬币落下后与格线没有公共点}.在等边三角形内作小等边三角形,使其三边与原等边三角形三边距离都为1,如题图所示,则小等边三角形的边长为43-23=23,由几何概率公式得P(A)=∆∆大等边小等边S S =()()23342123322122⨯⨯⨯⨯=41.19.从一副扑克牌(没有大、小王)的52张牌中任取两张,求: (1)两张是不同花色牌的概率; (2)至少有一张是红心的概率.思路解析:根据古典概型概率计算公式求解.解:从52张牌中任取2张,取第一张时有52种取法,取第二张时有51种取法,但第一张取2、第二张取4和第一张取4、第二张取2是同一基本事件,故共有取法种数为n=21×52×51.(1)记“两张是不同花色牌”为事件A ,下面计算A 含的基本事件总数.取第一张时有52种取法,不妨设第一张取到了方块,则第二张需从红心、黑心、梅花共39张牌中任取一张,不妨设取到一张红心,但第一张取方块、第二张取红心和第一张取红心、第二张取方块是同一基本事件,所以事件A 含的基本事件数为m 1=21×52×39. ∴P(A)=n m 1=5139=1713. (2)记“至少有一张是红心”为事件B ,其对立事件C 为“所取两张牌都不是红心”,即两张都是从方块、梅花、黑桃中取的,事件C 含的基本事件数为m 2=21×39×38. ∴P(C)=n m 2=3419. ∴由对立事件的性质,得P(B)=1-P(C)=1-3419=3415. 20.(1)如图3-3,某人投标投中圆的概率是多少(投在正方形外面或边缘不算)? (2)同(1)中图形,利用随机模拟的方法近似计算正方形内切圆的面积,并估计π的近似值.图3-3思路解析:由几何概型及随机模拟试验过程求解.解:(1)这是一个面积型几何概率问题,圆与正方形面积之比为所求概率,为4. (2)①利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND ;②进行平移和伸缩变换,a=(a 1-0.5)*2,b=(b 1-0.5)*2,得到两组[-1,1]上的均匀随机数;③统计试验总次数N 和落在圆内的点数N 1; ④计算频率f n (A)=NN 1,即为所求概率的近似值; ⑤设圆的面积为S ,由几何概率公式得点落在阴影部分的概率为P=4S . ∴4S =N N 1.∴S ≈NN 14. 又S 圆=πr 2=π,∴π=S ≈NN 14,即为圆周率的近似值.。

北师大版数学必修三第三章检测卷附答案

北师大版数学必修三第三章检测卷附答案

第三章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,是必然事件的是( C ) A .打雷后会下雨 B .明天下雪 C .1小时等于60分钟D .下雨后有彩虹[解析] 选项A 、B 、D 中的事件都可能发生,也可能不发生,都是随机事件,只有C 中为必然事件.2.某校团委要组建诗歌、绘画、演讲三个协会,某位学生只报了其中的2个,则基本事件共有( C )A .1个B .2个C .3个D .4个[解析] 这个同学选报的协会可能为(诗歌,绘画),(诗歌,演讲),(绘画,演讲),即有3个基本事件.3.抛掷一只骰子,落地时向上的点数是5的概率是( D ) A .13B .14C .15D .16[解析] 掷一次骰子相当于做一次试验,因为骰子是均匀的,它有6个面,每个面朝上的机会是均等的,故出现5点的可能性是16.4.据人口普查统计,育龄妇女生男生女是等可能的,则某一育龄妇女两胎均是女孩的概率是( C )A .12B .13C .14D .15[解析] 所有基本事件总数为4,分别为(男,男),(男,女),(女,男),(女,女),故两胎均是女孩的概率是14.5.某医院治疗一种疾病的治愈率为15,前4个病人都没有治好,第5个病人的治愈率为( B )A .1B .15C .45D .0[解析] 治愈率为15,表明第n 个病人被治愈的概率为15,并不是5个人中必有1个人治愈.6.设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( C ) A .15B .25C .35D .45[解析] 0≤p ≤5且方程有实根满足p 2-4≥0,则2≤p ≤5,所以对应的概率为P =5-25-0=35. 7.某产品的设计长度为20 cm ,规定误差不超过0.5 cm 为合格品,今对一批产品进行测量,测得结果如下表:A .580B .780C .1720D .320[解析] P =5+75+68+7=320.8.甲、乙两人随意住两间空房,则甲、乙两人各住一间房的概率是( C ) A .14B .13C .12D .23[解析] 不妨设两间空房为A 、B ,则甲、乙两人随意入住的所有可能情况为:甲、乙都住A ;甲、乙都住B ;甲住A ,乙住B ;甲住B ,乙住A 共4种情况.其中甲、乙两人各住一间的情形有2种,故所求的概率P =24=12.9.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( B )A .π2B .π4C .π6D .π8[解析] 总面积2×1=2. 半圆面积12×π×12=π2.∴p =π22=π4.10.一个球形容器的半径为3 cm ,里面装满纯净水,因不小心混入了1个感冒病毒,从中任取1 mL 水含有感冒病毒的概率为( C )A .13B .13πC .136πD .49π[解析] 纯净水的体积为43π×33=36π(cm 3)=36π(mL),任取1 mL 水含有感冒病毒的概率P =136π.11.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5]使f (x 0)≤0的概率是( C )A .1B .23C .310D .25[解析] 任取一点x 0∈[-5,5]的结果有无限多个,属于几何概型.画出函数f (x )的图像(图略),由图像得当x 0∈[-1,2]时,f (x 0)≤0.设“使f (x 0)≤0”为事件A ,则事件A 构成的区域长度是2-(-1)=3,全部结果构成的区域长度是5-(-5)=10,则P (A )=310.故选C .12.(2019·山西柳林县高一期末测试)如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形.若直角三角形中较小的锐角θ=30°,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是( A )A .2-32B .32C .14D .12[解析] 大正方形面积为2×2=4,小正方形的边长为2cos30°-2sin30°=3-1,∴小正方形的面积为(3-1)2=4-23,∴飞镖落在小正方形内的概率是P =4-234=2-32,故选A .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.下列试验是古典概型的为_①②④__.①从6名同学中选出4名参加数学竞赛,每人被选中的可能性大小; ②同时掷两颗骰子,点数和为7的概率; ③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.[解析] ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.14.如图所示,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为13a与12a ,高为b .向该矩形内随机投一点,则所投的点落在梯形内部的概率为 512.[解析] S 矩形=ab ,S 梯形=12(13a +12a )·b =512ab ,故所投的点落在梯形内部的概率为S 梯形S 矩形=512ab ab =512.15.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为 25 .[解析] 基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e )共10个,含a 的有4个,故概率为410=25.写全基本事件个数是解决问题的关键.16.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为1316. [解析] 本题主要考查几何概型.∵去看电影的概率P 1=π×12-π×(12)2π×12=34;∴去打篮球的概率P 2=π×(14)2π×12=116.小波不在家看书的概率P =34+116=1316.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)高一军训时,某同学射击1次,命中10环、9环、8环的概率分别是0.13,0.28,0.31.(1)求射击1次,命中10环或9环的概率; (2)求射击1次,至少命中8环的概率.[解析] 设事件“射击1次,命中k 环”为事件A k (k ∈N 且k ≤10)且事件A k 两两互斥.由题意,知P (A 10)=0.13,P (A 9)=0.28,P (A 8)=0.31.(1)记“射击1次,命中10环或9环”的事件为A ,那么P (A )=P (A 10)+P (A 9)=0.13+0.28=0.41.(2)记“射击1次,至少命中8环”的事件为B ,那么P (B )=P (A 10)+P (A 9)+P (A 8)=0.13+0.28+0.31=0.72.18.(本小题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较,在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两。

最新人教版高中数学必修3第三章模块综合测评(附答案)

最新人教版高中数学必修3第三章模块综合测评(附答案)

模块综合测评(时间120分钟,满分150分)一、选择题:本大题共12个小题,每题5分,共60分.1.某林场有树苗30000棵,其中松树苗4000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为A .30B .25C .20D .15答案:C 样本中松树苗的数量为15030000×4000=20.2.用秦九韶算法求一元n 次多项式f(x)=a n x n +a n -1x n -1+…+a 1x +a 0当x =x 0时的值时,一个反复执行的步骤是A.⎩⎪⎨⎪⎧v 0=a 0v k =v k -1x +a n -k (k =1,2,…,n) B.⎩⎪⎨⎪⎧ v 0=a n v k =v k -1x +a k (k =1,2,…,n) C.⎩⎪⎨⎪⎧ v 0=a n v k =v k -1x +a n -k (k =1,2,…,n) D.⎩⎪⎨⎪⎧v 0=a 0v k =v k -1x +a k (k =1,2,…,n)答案:C 由秦九韶算法可知,若v 0=a n ,则v k =v k -1x +a n -k . 3.下列程序语言中表达式的值正确的是A .6*sqrt(4)+3.2*2=154 B.3*(5+4)+sqrt(9). 2=17C .(5+3*(12-7)/4=5 D.(2+3)*5-4+2*3*sqrt(4) =72 答案:C A 中64+32×2=12+18=30;B 中3×9+(9)2=36;C 中[5+3×(12-7)]÷4=(5+15)÷4=5;D 中5×5-4+2×3×4=45.4.已知直线y =x +b ,b ∈[-2,3],则直线在y 轴上的截距大于1的概率为 A.15 B.25 C.35 D.45答案:B 由题意μΩ=[-2,3]的长度=5,μA =(1,3]的长度=2,∴P(A)=25.5.一个游戏转盘上有四种颜色:红、黄、蓝、黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为A.613B.713C.413D.1013答案:B 由几何概型的求法知所求的概率为6+16+2+1+5=713.答案:B 由几何概型的求法知所求的概率为6+16+2+1+5=713.6.(2009福建高考,理6)阅读下图所示的程序框图,运行相应的程序,输出的结果是A .2B .4C .8D .16 答案:C 输入S =2,n =1;当n =2时,S =11-2=-1;当n =4时,S =11-(-1)=12;当n =8时,S =11-12=2.符合条件,故输出8.7.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登错了,甲实得80分却记成了50分,乙实得70分却记成了100分,则更正后平均分和方差分别是A .70,50B .70,75C .70,1.04D .65,25答案:A 由题意知平均分不变,方差应为75×48-300-90048=50.8.从1、2、3、4、5、6这6个数字中,不放回地任取两数,两数都是偶数的概率是 A.12 B.13 C.14 D.15 答案:D 从6个数字中不放回的任取两数有6×5=30种取法,均为偶数的取法有3×2=6种取法,∴所求概率为630=15.9.为了了解学生遵守《中华人民共和国交通安全法》的情况,调查部门在某学校进行了如下的随机调查:向被调查者提出两个问题:(1)你的学号是奇数吗?(2)在过路口的时候你是否闯过红灯?要求被调查者背对调查人员抛掷一枚硬币,如果出现正面,就回答第(1)个问题;否则就回答第(2)个问题 .被调查者不必告诉调查人员自己回答的是哪一个问题,只需要回答“是”或“不是”,因为只有被调查者本人知道回答了哪个问题,所以都如实作了回答.结果被调查的600人(学号从1到600)中有180人回答了“是”,由此可以估计在这600人中闯过红灯的人数是A .30B .60C .120D .150答案:B 抛掷一枚硬币出现正面和反面的概率都是0.5,因此600个被调查的学生中大约有300个人回答了第一个问题,300个回答了第二个问题,又因为学号是奇数和偶数的概率相等,都是0.5,故300个回答第一个问题的学生中大约有150人回答了“是”,所以300个回答第二个问题的学生中有180-150=30个回答了“是”,即曾经闯过红灯,故在这600人中闯过红灯的人数大约是60人.10.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如右图.假设现在青蛙在A 叶上,则跳三次之后停止在A 叶上的概率是A.13B.29C.49D.827答案:A 由题意可知跳三次之后落到A 叶上的方法有:(A ,B ,C ,A),(A ,C ,B ,A),落到B 叶上有:(A ,B ,A ,B),(A ,B ,C ,B),落到C 叶上有:(A ,C ,A ,C),(A ,C ,B ,C),故落到A 叶上的概率为13.11.一块每个面上均涂有油漆的正方体被锯成1000个同样大小的正方体,若将这些小正方体均匀搅混在一起,则任意取出一个小正方体,该正方体两面均涂有油漆的概率是A.12125B.325C.110D.112 答案:A 处在正方体的每条棱上(不包括端点)的小正方体均为两面涂色有8个,∴一共有8×12=96个,∴所求概率P =961000=12125.12.1990年度大学学科能力测验12万名学生,各学科成绩采用15级分,数学学科能力测验成绩分布图如下图所示.请问有多少考生的数学成绩高于11级分?选出最接近的数目.A .4000人B .10000人C .15000人D .20000人 答案:B 12,13,14,15级分所占的比例之和约为9%,低于10%.二、填空题:本大题共4个小题,每题4分,共16分.13.(2009安徽高考,理13)程序框图(即算法流程图)如图所示,其输出结果是________.14.(2009湖南高考,理13)一个总体分为A ,B 两层,其个体数之比为4∶1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为__________.15.在区间[-2,2]上随机任取两个数x ,y ,则满足x 2+y 2<1的概率等于__________.执行一次后:a =2×1+1=3, 执行二次后:a =2×3+1=7, 执行三次后:a =2×7+1=15, 执行四次后:a =2×15+1=31, 执行五次后:a =63, 执行六次后:a =127, 此时a>100,输出a =127.14.40 设B 层中个体数为x ,由分层抽样的方法可知容量为10的样本中,B 层中的个体数为2,从B 层中抽取2个有x(x -1)2种方法,甲、乙均被抽到有1种方法,∴1x(x -1)2=128,解得x =8,∴A 层中个体数为32个,∴总体中的个体数为40.15.π16 如图所示知,μΩ=16,μA =π,∴P(A)=π16.16.4 第一个条件分支结构中,x =-1,第二个条件分支结构中y =3-x =3+1=4,∴最后输出的y 结果是4.三、解答题:本大题共5个小题,共74分.17.(12分)某居民区的物业管理部门每月向居民收取卫生费,计费方法是:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,画出程序框图,并写出程序语句.答案:解:若设住户的人数为x(人),收取的卫生费为y(元),依题意有y =⎩⎪⎨⎪⎧5,5+1.2(x -3)x ≤3,x>3.这是一个分段函数求值问题,可用条件分支结构实现算法.解:算法略. 程序框图如下:程序语句如下: x =input(“x =”); if x<=3 y =5; elsey =5+1.2*(x-3) ; end18.(12分)某地区100位居民的人均月用水量(单位:t)的分组的频数如下: [0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2. (1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的众数.(3)当地政府制订了人均月用水量为3t 的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不会超出这个标准,这个解释对吗?为什么?答案:解:(1)(2)众数约为2.25.(3)对,上面的图和表显示了样本数据落在各个小组的比例大小.从中我们可以看到,月用水量在区间[2,2.5]内的居民最多,在[1.5,2]的次之,大部分居民的月用水量都在[1,3]之间,其中月用水量在3 t 以上的居民所占的比例为6%+4%+2%=12%,即大约占12%的居民月用水量在3 t 以上,88%的居民月用水量在3 t 以下.因此居民月用水量标准定为3 t 是一个可以考虑的标准,即不超出这个标准的概率约为88%,在85%以上.19.(12分)某人有5把钥匙,但忘了开门的是哪一把,只好逐把试开,问: (1)此人恰好在第三次打开房门的概率是多少?(2)此人三次内打开房门的概率是多少?答案:解:(1)设“恰好第三次打开房门”为事件A,5把钥匙是随机的.因此,哪一次打开房门的概率均相等,这是一个等可能事件.故P(A)=15.(2)设“三次内打开房门”为事件B ,它可以分解成三个互斥事件: 事件B 1:第一次打开房门;事件B 2:第二次打开房门; 事件B 3:第三次打开房门.因为P(B 1)=P(B 2)=P(B 3)=15,由互斥事件概率的加法公式,得P(B)=P(B 1∪B 2∪B 3)=P(B 1)+P(B 2)+P(B 3)=15+15+15=35.20.(12分)有5张大小相同的卡片分别写着数字1,2,3,4,5,甲、乙二人依次从中各抽取一张卡片(不放回),试求:(1)甲抽到写有奇数数字卡片,且乙抽到写有偶数数字卡片的概率;(2)甲、乙二人至少抽到一张奇数数字卡片的概率.答案:解:甲、乙二人抽卡片树状图为:所以,甲、乙二人依次抽取,每张卡片被抽中的可能性相等,共有20个基本事件. (1)甲抽到奇数,乙抽到偶数的基本事件数共有6个,∴概率为620=310.(2)甲、乙二人至少抽到一张奇数数字卡片的对立事件为甲、乙二人抽到的都是偶数数字卡片.而甲、乙二人抽到的都是偶数数字卡片的基本事件数共有2个.概率为220=110,故甲、乙二人至少抽到一张奇数数字卡片的概率为1-110=910.21.(12分)甲盒中有红、黑、白三种颜色的球各3个,乙盒中有黄、黑、白三种颜色的球各2个,从两个盒子中各取1个球:(1)求取出的两个球是不同颜色的概率;(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).答案:解:(1)设A =“取出的两球是相同颜色”,B =“取出的两球是不同颜色”.则事件A 的概率为:P(A)=3×2+3×29×6=29;由于事件A 与事件B 是对立事件,所以事件B 的概率为:P(B)=1-P(A)=1-29=79;(2)随机模拟的步骤:S1 利用抓阄法或计算机(计算器)产生1~3和2~4两组取整数值的随机数,每组各有N 个随机数.用“1”表示取到红球,用“2”表示取到黑球,用“3”表示取到白球,用“4”表示取到黄球.S2 统计两组对应的N 对随机数中,每对中的两个数字不同的对数n.S3 计算n N 的值,则nN就是取出的两个球是不同颜色的概率的近似值.22.(14分)以下是收集到的某市二手房屋的销售价格y 和房屋的大小x 的数据:(1)画出数据的散点图;(2)用最小二乘法估计求回归直线方程,并在散点图中加上回归直线;(3)估计房屋的大小为90m 2时的销售价格.答案:解:(1)数据的散点图如图.(2)x =15∑5i =1x i =109,∑5i =1(x i -x )2=1570,y =23.2,∑5i =1(x i -x )(y i -y )=308, ∴b ^=3081570≈0.1962.a ^=y -b ^x =23.2-109×3081570≈1.8166,∴回归直线方程为y ^=1.8166+0.1962x.(3)若x =90,则y ^=1.8166+0.1962×90≈19.5(万元). 故房屋的大小为90m 2时的销售价格约为19.5万元.。

高中数学必修三第三章《概率》单元测试卷及答案

高中数学必修三第三章《概率》单元测试卷及答案

高中数学必修三第三章《概率》单元测试卷及答案高中数学必修三第三章《概率》单元测试卷及答案(2套)一、选择题1.下列说法正确的是()A。

甲、乙二人比赛,甲胜的概率为3/5,则比赛5场,甲胜3场B。

某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C。

随机试验的频率与概率相等D。

天气预报中,预报明天降水概率为90%,是指降水的可能性是90%2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()A。

选出1人是班长的概率为1/40B。

选出1人是男生的概率是1/25C。

选出1人是女生的概率是1/15D。

在女生中选出1人是班长的概率是03.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A。

1/2B。

1/3C。

1/4D。

1/84.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、XXX四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A。

对立事件B。

不可能事件C。

互斥但不是对立事件D。

以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A。

1/10B。

3/10C。

7/10D。

9/106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?()A。

①②B。

①③C。

②③D。

①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为()A。

16B。

16.32C。

16.34D。

15.9688.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a<20的概率是()A。

3/10B。

北师大版高中数学必修3第三章单元质量评估A卷

北师大版高中数学必修3第三章单元质量评估A卷

第三章单元质量评估(一)时限:120分钟 满分:150分 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列说法正确的是( ) A .任何事件的概率总是在(0,1)之间 B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是( )A.1999B.11 000C.9991 000D.123.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在(4.8,4.85)(g)范围内的概率是( )A .0.62B .0.38C .0.02D .0.684.从装有10个红球和10个白球的罐子里任取2个球,下列是互斥而不对立的两个事件是( )A .至少有一个红球,至少有一个白球B .恰有一个红球,都是白球C .至少有一个红球,都是白球D .至多有一个红球,都是红球5.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y =5下方的概率为( )A.16B.14C.112D.196.某产品的设计长度为20 cm ,规定误差不超过0.5 cm 为合格品,今对一批产品进行测量,测得结果如下表:A.580B.780C.1720D.3207.如图所示,ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π88.甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率是( )A.13B.14C.12D .无法确定9.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.2310.一个袋中装有2个红球和2个白球,现从袋中取出一球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A.12B.13C.14D.2511.在区间(-1,1)内任取一个数a ,能使方程x 2+x +a =0有两个不相等的实根的概率为( )A.14B.34C.54D.5812.对于给定的实数a 1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),记出现向上的点数分别为m ,n ,如果m +n 是偶数,则把a 1乘以2后再减去2;如果m +n 是奇数,则把a 1除以2后再加上2,这样就可得到一个新的实数a 2,对a 2仍按上述方法进行一次操作,又得到一个新的实数a 3.当a 3>a 1时,甲获胜,否则乙获胜.若甲获胜的概率为34,则a 1的值不可能是( )A .0B .2C .3D .4答案1.C 利用概率的概念以及和频率的关系来判断可知选C. 2.D 由于硬币出现正面朝上的概率与试验的次数无关,故概率是12.3.C 利用互斥事件的概率计算公式可知对应概率为0.32-0.3=0.02.4.B A 中,“至少有一个红球”可能为一红一白,“至少有一个白球”可能为一白一红,两事件可能同时发生,故不是互斥事件.B 中,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任选2个球还有“两球都是红球”的情况,故不是对立事件.C 中,两个事件是对立事件.D 中,两个事件是对立事件.5.A 试验是连续掷两次骰子,故共包含6×6=36个基本事件.事件点P 在x +y =5下方,共包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个基本事件,故p =636=16.6.D 记“产品为19.5 cm 以下”为事件A ,P (A )=580;记“产品为20.5 cm 以上”为事件B ,P (B )=780,则事件A 和B 互斥,产品不合格即为事件A ∪B ,P (A ∪B )=P (A )+P (B )=580+780=320.7.B 根据几何概型概率公式得所求概率为p =S 阴影S 长方形ABCD=2-12π·122=1-π4,故选B.8.C 设两间空房分别为A 、B .情况1,甲、乙同住A 房间.情况2,甲、乙同住B 房间.情况3,甲住A 房间,乙住B 房间.情况4,甲住B 房间,乙住A 房间.所以答案是12.9.C 如图,作PE ⊥BC ,AD ⊥BC ,垂足分别为E ,D ,当△PBC 的面积等于S 4时,PE =14AD ,若S △PBC >14S ,则PE >14AD ,即PB >14AB ,故概率P =34AB AB =34.10.A 现从袋中取出一球,然后放回袋中再取出一球,共有4种结果:(红,红),(红,白),(白,红),(白,白).记“取出的两个球同色”为事件A ,则A 包含的结果有(白,白),(红,红)2种,由古典概型的概率计算公式可得P (A )=12.11.D Δ=1-4a >0,∴a <14.又∵a ∈(-1,1),∴-1<a <14,∴P =14+11+1=58.故选D.12.C 本题考查概率的意义.依题意,m +n 是偶数的概率为12;若a 1=0,则a 2=-2或a 2=2,当a 2=-2时,a 3=-6<a 1或a 3=1>a 1;当a 2=2时,a 3=2>a 1或a 3=3>a 1,此时甲获胜的概率为34,因此a 1的值可能是0.同理可结合各选项检验,a 1的值可能是2,4,a 1的值不可能是3,故选C.————————————————————————————第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上)13.我国西部某个地区的年降水量在下列区间内的概率如下表所示:14.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.15.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.16.某班委会由4名男生与3名女生组成,现从中选出2人担任正、副班长,其中至少有1名女生当选的概率是__________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的所有基本事件; (2)求恰有两枚正面向上的概率.18.(本题满分12分)如图所示的正方形的边长为2,正方形的中心与坐标原点O 重合,有人随机地向正方形投掷飞镖,求飞镖落在图中阴影部分的概率.(结果保留三位小数)答案13.0.25解析:利用互斥事件的概率计算公式可知对应概率为0.13+0.12=0.25.14.34解析:从长度为2,3,4,5的四条线段中任意取出三条共有4种不同的取法,其中可以构成三角形的有(2,3,4)、(2,4,5)、(3,4,5)三种,故所求概率为p =34.15.83解析:由几何概型概率公式可得P =S 阴影S 正方形=23,又S 正方形=2×2=4,所以S 阴影=23×4=83.16.57解析:∵从7人中选2人共有21种选法,从4个男生中选2人共有6种选法,∴没有女生当选的概率是621=27.∴至少有1名女生当选的概率为1-27=57.17.解:(1)这个试验的基本事件有(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)共8个.(2)记A =“恰有两枚正面向上”,它包含的基本事件有:(正,正,反),(正,反,正),(反,正,正)3个.所以P (A )=38.18.解:正方形的面积S =2×2=4,直线6x -3y -4=0与正方形两边的交点坐标分别为⎝ ⎛⎭⎪⎫1,23和⎝ ⎛⎭⎪⎫16,-1.所以阴影部分的面积 S 1=12×⎝ ⎛⎭⎪⎫1+23×⎝ ⎛⎭⎪⎫1-16=2536.记“飞镖落在图中阴影部分”的事件为A , 则P (A )=S 1S =25364=25144≈0.174.——————————————————————————— 19.(本题满分12分)某医院一天内派出医生下乡医疗的人数及其概率如下:(2)派出医生至少2人的概率.20.(本题满分12分)设关于x的一元二次方程为x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.答案19.解:设事件A为“不派出医生”;事件B为“派出1名医生”;事件C为“派出2名医生”;事件D为“派出3名医生”;事件E 为“派出4名医生”;事件F为“派出5名及以上医生”.易知事件A、B、C、D、E、F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.2,P(D)=0.3,P(E)=0.2,P(F)=0.04.(1)“派出医生至多2人”的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.2=0.46.(2)“派出医生至少2人”的概率为P(C∪D∪E∪F)=P(C)+P(D)+P(E)+P(F)=0.2+0.3+0.2+0.04=0.74.20.解:设事件A为“方程x2+2ax+b2=0有实根”.当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.(1)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,故事件A 发生的概率P (A )=912=34.(2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}. 构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为3×2-12×223×2=23. ————————————————————————————21.(本题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15),…,第五组[17,18].如图是按分组得到的频率分布直方图:(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m ,n 表示该班某两位同学的百米测试成绩,且已知m ,n ∈[13,14)∪[17,18].求事件“|m -n |>1”的概率.22.(本题满分12分)在甲、乙等5位学生参加的一次社区专场演唱会中,每位学生的节目集中安排在一起演出,若采用抽签的方式随机确定各位学生的演出顺序(序号为1,2,3,4,5).求:(1)甲、乙两人的演出序号至少有一个为偶数的概率;(2)甲、乙两人的演出序号不相邻的概率.答案21.解:(1)由题中的直方图知,成绩在[14,16)内的人数为50×0.16×1+50×0.38×1=27,所以该班成绩良好的人数为27人.(2)设事件M:“|m-n|>1”.由频率分布直方图知,成绩在[13,14)的人数为50×0.06×1=3,设这3人分别为x,y,z.成绩在[17,18]的人数为50×0.08×1=4,设这4人分别为A,B,C,D.若m,n∈[13,14),则有xy,xz,yz,共3种情况;若m,n∈[17,18],则有AB,AC,AD,BC,BD,CD,共6种情况.当m,n分别在[13,14)和[17,18]内时,此时有|m-n|>1.共12种情况.所以基本事件总数为3+6+12=21种.则事件“|m-n|>1”所包含的基本事件个数为12.∴P(M)=1221=47.22.解:甲、乙两人可能被排在1,2号;1,3号;1,4号;1,5号;2,3号;2,4号;2,5号;3,4号;3,5号;4,5号,共10种情形.其中甲、乙两人至少有一个被安排在偶数号的情形有:1,2号;1,4号;2,3号;2,4号;2,5号;3,4号;4,5号,共7种情形.甲、乙两人被安排在不相邻的演出序号有:1,3号,1,4号;1,5号;2,4号;2,5号;3,5号,共6种情形.(1)记“甲、乙两人的演出序号至少有一个为偶数”为事件A,则P(A)=7 10.(2)记“甲、乙两人的演出序号不相邻”为事件B,则P(B)=610=35.。

最新人教版高中数学必修3第三章数学三模块综合测评(附答案)

最新人教版高中数学必修3第三章数学三模块综合测评(附答案)

模块综合测评(时间:120分钟,总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列赋值语句正确的是( )A.m+n=3B.l=mC.m=1,n=1D.m=m-1 解析:判断是否为赋值语句,主要看它是否满足赋值语句的特点.注意,赋值语句中的等号与数学中等号意义的区别. 答案:D2.抛掷一枚骰子,观察骰子出现的点数,若“出现2点”这个事件发生,则下列事件一定发生的是( )A.“出现奇数点”B.“出现偶数点”C.“点数大于3”D.“点数是3的倍数”解析:若事件A 发生,则事件B 发生,则事件A 和事件B 的关系是A B ,令事件A={出现2点},则事件B={出现偶数点}一定发生. 答案:B 3.高三(1)、(2)班在一次数学考试中,成绩平均分相同,但(1)班的成绩比(2)班整齐,若(1)、(2)班的成绩方差分别为s 12和s 22,则( )A.s 12>s 22B.s 12<s 22C.s 12=s 22D.s 1>s 2解析:方差的大小描述了数据的分散程度,因为(1)班成绩比(2)班成绩整齐,这说明(1)班的成绩分布比较集中,所以s 21<s 22. 答案:B4.某地招生办为了了解2007年高考文科数学主观题的阅卷质量,将2 050本试卷中封面保密号的尾数是11的全部抽出来,再次复查,这种抽样方法采用的是( )A.抽签法B.简单随机抽样C.系统抽样D.分层抽样 解析:由各抽样方法的使用条件可知,这种抽样为系统抽样. 答案:C5.若以连续抛掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=25内的概率是( ) A.21 B.3613 C.94 D.125 解析:设P 点坐标为(m,n),则P 点落在圆内,即满足m 2+n 2<25通过列举法可得满足条件的点(m,n)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2)共13个,而(m,n)所有可能的点有36种,所以P 点落在圆内的概率为3613,本题也可从对立事件角度去考虑. 答案:B6.①学校为了解高一学情,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90—110分,12人低于90分,现从中抽取12人了解有关情况;③运动会服务人员为参加400 m 决赛的6名同学安排跑道.就这三件事,合适的抽样方法为( ) A.分层抽样、分层抽样、简单随机抽样 B.系统抽样、系统抽样、简单随机抽样 C.分层抽样、简单随机抽样、简单随机抽样 D.系统抽样、分层抽样、简单随机抽样 解析:明确各种抽样方法的适用范围,进而选择合适的抽样方法. 答案:D7.在如下图所示的Rt △ABC 中,∠A=30°,过直角顶点C 在∠ACB 内任作一条射线交线段AB 于M ,则使AM >AC 的概率是( )A.61 B.65 C.232- D.21 解析:它属于几何概型,令事件A={过直角顶点C 在∠ACB 内任作一条射线交线段AB 于M ,使AM >AC },事件A 发生的区域为∠BCM=15°(如图),构成事件总的区域为∠ACB=90°,由几何概型的概率公式得P(A)=61. 答案:A8.已知框图,则表示的算法是( )A.求和S=2+22+…+264B.求和S=1+2+22+…+263C.求和S=1+2+22+…+264D.以上均不对解析:关键是要读懂框图的含义.循环结构中是完成数据的累加,要实现所求算法,框图中第一次执行循环体时i 的值应为0,框图中最后一次执行循环体时i 的值应为64,结合条件不满足时执行循环体,当i >64时就会终止循环. 答案:C9.一人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是( ) A.至少有一次中靶 B.两次中靶 C.两次都不中靶 D.只有一次中靶 解析:若A 、B 为互斥事件则A∩B=∅. 答案:C10.现有语文、数学、英语、历史、政治和物理共六本书,从中任取一本,取出的是文科书的概率是( ) A.21 B.65 C.61 D.32 解析:取到的书是文科书,即取到的书为语文、英语、历史、政治书,根据互斥事件的概率公式可求得P=3261616161=+++.答案:D11.甲口袋内装有大小相等的8个红球和4个白球,乙口袋内装有大小相等的9个红球和3个白球,从两个口袋内各摸出1个球,那么125等于( ) A.2个球都是白球的概率 B.2个球中恰好有1个是白球的概率 C.2个球都不是白球的概率 D.2个球都不是红球的概率 解析:依次求出A 、B 、C 、D 四项中所求事件的概率,四个选项的概率依次是A :121121234=⨯⨯;B :12512129438=⨯⨯+⨯;C :21121298=⨯⨯;D :21121234=⨯⨯答案:B12.用辗转相除法求204与85的最大公约数时,需要做除法的次数是( )A.1次B.2次C.3次D.4次 解析:用辗转相除法可得:204÷85=2…34,85÷34=2…17,34÷17=2,到此时可以判断它们的最大公约数是17,使用了3次除法得出结果. 答案:C二、填空题(本大题共4小题,每小题4分,共16分.把正确答案填在题中的横线上)13.设集合P={x,1},Q={y,1,2},P ⊆Q,x,y ∈{1,2,3,…,9},且在直角坐标平面内,从所有满足这些条件的有序实数对(x,y )所表示的点中任取一个,其落在圆x 2+y 2=r 2内的概率恰为72,则r 2的一个可能的整数值是____________.(只需写出一个即可) 解析:由于P ⊆Q,所以x=2或x=y.当x=2时,点(x,y )有(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)、(2,9)共7个;当x=y 时,点(x,y )有(3,3)、(4,4)、(5,5)、(6,6)、(7,7)、(8,8)、(9,9)共7个;所以满足条件的点(x,y )总共有7+7=14个.由于落在圆x 2+y 2=r 2内的概率恰为72,则共有72×14=4点落在圆x 2+y 2=r 2内. 将满足条件的14个点(x,y )按横纵坐标的平方和从小到大的顺序排列:(2,3)、(3,3)、(2,4)、(2,5)、(4,4)、(2,6)、(5,5)、(2,7)、(2,8)、(6,6)、(2,9)、(7,7)、(8,8)、(9,9).则第4个点是A (2,5),第5个点是B (4,4),显然r 2只需满足|OA|2<r 2<|OB|,即22+52<r 2<42+42,所以有29<r 2<32,则r 2的一个可能的整数值是30或31,故填30(或31也行). 答案:30(或31).14.x=input(“请输入一个正的两位数x=”); if 9<x and x <100 then a=x/10;b=x mod 10; x=10*b+a ; print x elsedisp(“输入有误!”) end以上程序运行的含义是______________.解析:读懂程序的流程和程序的意图(或程序目的),可以代入数据试运行,这样一般可以得到准确的答案.答案:将一个数的十位数与个位对换 15.一个样本方差是S 2=151[(x 1-12)2+(x 2-12)2+…+(x 15-12)2],则这个样本的平均数是___________,样本容量是___________. 解析:在样本方差的公式S 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]中我们可以知道样本的容量为n 及样本的平均数为x ,因此同学们应记清公式中各个量的含义.答案:12 1516.将一批数据分成4组,列出频率分布表,其中第1组的频率是0.27,第2组与第4组的频率之和为0.54,则第3组的频率是______________.解析:在直方图中频率之和为1,所以第3组的频率为1-0.27-0.54=0.19. 答案:0.19三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(12分)根据下面程序,画出程序框图,并说出表示了什么样的算法. a=input(“a=”); b=input(“b=”); c=input(“c=”); if a >b and a >c then print(% io (2),a ); elseif b >c thenprint (% io (2),b ); elseprint (% io (2),c ); end end end分析:我们根据程序按顺序从上到下分析. 第一步:是输入a ,b ,c 三个数;第二步:是判断a 与b ,a 与c 的大小,如果a 同时大于b ,c ,则输出a ,否则执行第三步; 第三步:判断b 与c 的大小,因为a 已小于b 与c ,则只需比较b 与c 的大小就能看出a ,b ,c 中谁是最大的了,如果b >c ,则输出b ,否则输出c.通过上面的分析,程序表示一个什么样的算法已经非常清楚了. 解:框图如图所示:以上程序表示了输出a ,b ,c 中三个数的最大数的一个算法.18.(12分)在一个边长为a ,b(a >b >0)的矩形内画一个梯形,梯形上、下底分别为a 31与a 21,高为b ,向该矩形内随机投一点,求所投的点落在梯形内部的概率. 分析:投中矩形内每一点都是一个基本事件,基本事件有无限多个,并且每个基本事件发生的可能性相等,所以投中某一部分的概率只与这部分的几何度量(面积)有关,符合几何概型的条件.解:记A={所投的点落在梯形内部},S 矩形=ab ,S 梯形=125)2131(21=+b a a ab ,P(A)=125125=ab ab, 即所投的点落在梯形内部的概率是125.19.(12分)一个小球从100 m 高处自由落下,每次着地后又跳回到原高度一半再落下,编写程序,求当它第10次着地时, (1)向下运动共经过多少米? (2)第10次着地后反弹多高? (3)全程共经过多少米?分析:搞清楚小球的运动的特点,通过循环来设计程序. 解:程序: i=100; sum=0; k=1;while k <=10 sum=sum+i i=i/2 k=k+1 endprint(% io (2),sum) print(% io (2),i)print(“全程共经过(单位:(m))”;2*sum -100) end20.(12分)某地区100位居民的人均月用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的众数.(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?分析:众数即直方图中所有矩形中最高矩形的中点的横坐标.解:(1)(2)众数约为2.25.(3)对,上面的图和表显示了样本数据落在各个小组的比例大小.从中我们可以看到,月用水量在区间[2,2.5]内的居民最多,在[1.5,2]的次之,大部分居民的月用水量都在[1,3]之间,其中月用水量在3t以上的居民所占的比例为6%+4%+2%=12%,即大约占12%的居民月用水量在3t以上,88%的居民月用水量在3t以下.因此居民月用水量标准定为3t是一个可以考虑的标准.即不超出这个标准的概率约为88%,在85%以上.21.(13分)A、B两个箱子中分别装有标号为0、1、2的三种卡片,每种卡片的张数如下表所示:(1)从A、B箱中各取1张卡片,用x表示取出的2张卡片的数字之积,求x=2的概率.(2)从A、B箱中各取1张卡片,用y表示取出的2张卡片的数字之和,求x=0且y=2的概率.分析:本题属于古典概型,关键是列举出基本事件的个数. 解:(1)记事件A={从A 、B 箱中各取1张卡片,两卡片的数字之积等于2},由上图知总基本事件个数为6×5=30(个),事件A 包含基本事件个数为5个. 由古典概型的概率公式得:P(A)=61305=. 即x=2的概率为61. (2)记事件B={从A 、B 箱中各取1张卡片,其数字和为2且积为0},由图知事件B 包含基本事件个数为10个.所以由古典概型的概率公式得P(B)=313010=. 即x=0且y=2的概率为31. 22.(13分)(2007广东高考,理17)下表提供了某厂节能降耗技术改造后生产甲产品过程中(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程=bx+a.(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)分析:根据表中的数据在直角坐标系中把所给的数据点(x,y )描出,然后根据最小二乘法思想求出b 与a 的,代入回归直线方程,把所得到的回归直线方程用来估计总体. 解:(1)如下图.(2)∑=ni ii yx 1=3×2.5+4×3+5×4+6×4.5=66.5,46543+++=x =4.5,45.4435.2+++=y =3.5,∑=ni ix12=32+42+52+62=86,b=8186635.665.44865.35.445.662--=⨯-⨯⨯-=0.7,a=y -b x =3.5-0.7×4.5=0.35. 故线性回归方程为yˆ=0.7x+0.35. (3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故耗能减少了90-70.35=19.65(吨标准煤).。

人教A版高中数学必修三试卷新课标高中章节素质测试题—第三章 概率.doc

人教A版高中数学必修三试卷新课标高中章节素质测试题—第三章 概率.doc

新课标高中数学人教A 版必修3章节素质测试题——第三章 概率(考试时间120分钟,满分150分)姓名_______评价______一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(10北京文3)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a b >的概率是( ) A.45 B.35 C.25 D.152.(12北京理2)设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.4π B.22π- C.6πD.44π-3.(07江西文6)一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3644.(11新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12 C .23D .345.(11福建文7)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ) A .14 B .13C . 12D . 236.(11湖北5)已知随机变量ξ服从正态分布()22N ,a ,且8.0)4(=<ξP ,则=<<)20(ξP ( )A.0.6B .0.4C .0.3D .0.27.(09安徽文10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( ) A.1B.21 C. 31D. 08.(10安徽文10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.318 B.418 C.518 D.6189.(09辽宁文9)ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A.4πB.14π-C.8πD.18π-10.(08辽宁理7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .3411.(12湖北理8)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )12.(12辽宁理10)在长为12cm 的线段AB 上任取一点C.现作一矩形,令边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( ) A.16 B. 13 C. 23 D. 45二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上) 13.(10江苏3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_________.14.(11江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.15.(09湖南理13)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为_______. 16.(11江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,A. π21-B.π121-C. π2D. π1在家看书,则小波周末不.在家看书的概率为_________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17.(本题满分10分,11天津文15)编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下:(Ⅰ)将得分在对应区间内的人数填入相应的空格;(Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人, (i )用运动员的编号列出所有可能的抽取结果; (ii )求这2人得分之和大于50的概率.18.(本题满分12分,12湖南文17)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%. (Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)19.(本题满分12分,08广东19)某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(Ⅰ)求x 的值;(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (Ⅲ)已知245,245y z ≥≥,求初三年级中女生比男生多的概率.20.(本题满分12分,11辽宁19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (Ⅰ)假设n =2,求第一大块地都种植品种甲的概率;(Ⅱ)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.21.(本小题满分12分,10山东19)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2+<m n 的概率.22.(本小题满分12分,09山东19)一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (Ⅰ)求z 的值;(Ⅱ)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(Ⅲ)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.新课标高中数学人教A 版必修3章节素质测试题——第三章 概率(参考答案)一、选择题:(本大题共12题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分)13.21. 14. 31. 15. 40 . 16. 1613. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. 解:(Ⅰ)4,6,6(Ⅱ)(i )解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种.(ii )解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种.所以51().153P B == 18. 解:(Ⅰ)由已知得251055,35,15,20y x y x y ++=+=∴==,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为:115 1.530225 2.5203101.9100⨯+⨯+⨯+⨯+⨯=(分钟).(Ⅱ)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,123,,A A A 分别表示事件“该顾客一次购物的结算时间为1分钟”, “该顾客一次购物的结算时间为1.5分钟”, “该顾客一次购物的结算时间为2分钟”.将频率视为概率,得123153303251(),(),()10020100101004P A P A P A ======. 123123,,,A A A A A A A =Q U U 且是互斥事件,123123()()()()()P A P A A A P A P A P A ∴==++U U 33172010410=++=. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.19. 解:(Ⅰ)∵19.02000x=,∴.380=x(Ⅱ)初三年级人数为.500)370380377373(2000=+++-=+z y现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:200048×500=12名. (Ⅲ)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z):由(Ⅱ)知500=+z y ,且y ,z ∈N , 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个. 事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个. ∴P(A)=115. 20. 解:(Ⅰ)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个: (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2). 所以1().6P A =(Ⅱ)品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.21. 解:(Ⅰ)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个. 从袋中随机取出的球的编号之和不大于4的事件有1和2,1和3,共2个.因此所求事件的概率为.3162==P (Ⅱ)先从袋中随机取一个球,记下编号为m ,放回后,在从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3)(4,4),共16个. 有满足条件2+≥m n 的事件为(1,3)、(1,4)、(2,4),共3个, 所以满足条件2+≥m n 的事件的概率为.1631=P故满足条件2+<m n 的事件的概率为.1613163111=-=-=P P 22. 解:(Ⅰ)设该厂本月生产轿车为n 辆,由题意得,5010100300n =+,解得.2000=n .400)600450150300100(2000=++++-=∴z(Ⅱ)设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本, 所以40010005m=,解得.2=m 也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则 从中任取2辆的所有基本事件为:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2), 所以从中任取2辆,至少有1辆舒适型轿车的概率为710. (Ⅲ)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=, 那么与样本平均数之差的绝对值不超过0.5的数为9.4,8.6,9.2,8.7,9.3,9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为75.086=.。

高二数学必修三第三章单元测试题(人教版)

高二数学必修三第三章单元测试题(人教版)

高二数学必修三第三章单元测试题(人教版)概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。

小编准备了高二数学必修三第三章单元测试题,具体请看以下内容。

一、填空。

(每空2分,共16分)1.常用的统计图有( )、( )、( )。

2.如果想清楚地看出各种数量的多少,选( )统计图;如果想看数量增减变化的情况,选( )统计图;如果要反映各部分量与总数之间的关系,选( )统计图。

3.明明在期末考试中,语文94分,数学98分,外语84分,三科平均分是( )。

4.六(一)班男生有24人,平均身高是156厘米,女生16人,平均身高是152厘米,全班同学的平均身高是( )厘米。

二、判断。

(每题3分,共12分)1.条形统计图和折线统计图都可以表示出数量的多少。

( )2.一个口袋中装有除颜色外完全相同的5个白球和5个红球,任意摸出一个球,是白球的可能性是1/2. ( )3.为了能够清楚地表示出某一年平均气温的变化情况,应该绘制条形统计图。

( )4.口袋中有10个白球和2个黑球,任意摸出一个球,一定是白球。

( )三、选择。

(每空4分,共12分)1.一个布袋里装有13个红球,2个黄球,7个花球,任意摸出一个球,摸到( )的可能性最大,可能性大约是( )%。

A.红球B.黄球C.花球D.59.1E.65F.542.要表示出六年级各班收集废旧电池节数的情况,绘制( )统计图较好。

A.条形B.折现C.扇形3.按5个红球,4个白球,3个黑球的顺序排列180个球,第158个球是( ).A.黑球B.白球C.红球四、看一看,填一填。

(每空2分,共24分)1.把下面的统计图补充完整。

航线原价/元现价/元折扣(现价占原价的百分比)西安北京900810西安上海1120七五折西安东京3600六折西安纽约7200五折优惠最大的票价是至西安到北京的现价比原价下降了%。

2.请将东风小学六年级向灾区捐款统计表补充完整。

数学必修三第三单元练习题

数学必修三第三单元练习题

数学必修三第三单元练习题一、选择题1. 函数 \( f(x) = x^2 - 4x + 3 \) 的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, -1)D. (0, 1)2. 如果 \( \frac{d}{dx}[f(x)] = 2x + 1 \),那么 \( f(x) \) 可能是:A. \( x^2 + x + 1 \)B. \( x^2 + x \)C. \( x^2 + 2x \)D. \( x^2 + 1 \)3. 积分 \( \int x^2 dx \) 的结果是:A. \( \frac{1}{3}x^3 \)B. \( \frac{1}{2}x^2 \)C. \( x^3 \)D. \( x^2 + C \)二、填空题1. 函数 \( y = 3x - 2 \) 的斜率是 __________。

2. 导数 \( \frac{d}{dx}[x^n] \) 的结果是 __________。

3. 积分 \( \int e^x dx \) 的结果是 __________。

三、解答题1. 求函数 \( f(x) = 2x^3 - 5x^2 + 3x - 1 \) 的导数。

2. 计算定积分 \( \int_{0}^{1} (3x^2 + 2x - 1) dx \)。

3. 已知 \( f(x) = x^2 + 2x \),求 \( f'(2) \) 和 \( f''(2) \)。

四、应用题1. 某物体从静止开始,以加速度 \( a(t) = 3t^2 - 2t \) 进行加速运动。

求物体在 \( t = 1 \) 秒时的速度。

2. 一个容器的容积随时间变化的函数是 \( V(t) = 2t^3 + 3t^2 -5t + 7 \),求 \( t = 2 \) 秒时容器的容积。

3. 一个物体在 \( x \) 轴上移动,其位置函数是 \( s(t) = 4t^3 - 6t^2 + 2t \)。

高二必修三数学第三章概率单元练习题(含答案北师大版)

高二必修三数学第三章概率单元练习题(含答案北师大版)

高二必修三数学第三章概率单元练习题(含答案北师大版)数学在科学发展和现代生活生产中的应用非常广泛,以下是查字典数学网为大家整理的高二必修三数学第三章概率单元练习题,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

一、选择题1.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则()A.概率为0.6B.频率为0.6C.频率为6D.概率接近于0.6【解析】连续抛掷了10次,正面朝上的情形出现了6次,只能说明频率是0.6,只有进行大量的试验时才可估计概率. 【答案】 B2.下列说法错误的是()A.频率反映事件的频繁程度,概率反映事件发生的可能性大小B.做n次随机试验,事件A发生m次,则事件A发生的频率mn就是事件A的概率C.频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值D.频率是概率的近似值,概率是频率的稳定值【解析】根据频率与概率的意义可知,A正确;C、D均正确,B不正确,故选B.【答案】 B3.从存放号码分别为1,2,,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119则取到号码为奇数的频率是()A.0.53B.0.5C.0.47D.0.37【解析】mn=13+5+6+18+11100=0.53.【答案】 A4.(2019沈阳检测)某彩票的中奖概率为11 000意味着()A.买1 000张彩票就一定能中奖B.买1 000张彩票中一次奖C.买1 000张彩票一次奖也不中D.购买彩票中奖的可能性是11 000【解析】中奖概率为11 000,并不意味着买1 000张彩票就一定中奖,中一次奖或一次也不中,因此A、B、C均不正确.【答案】 D5.2019年山东省高考数学试题中,共有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率为14,某家长说:要是都不会做,每题都随机选择其中一个选项,则一定有3题答对这句话() A.正确B.错误C.不一定D.无法解释【解析】把解答一个选择题作为一次试验,答对的概率是14,说明做对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3题的可能性较大,但是并不一定答对3道,也可能都选错,或仅有2,3,4题选对,甚至12个题都选择正确.【答案】 B二、填空题6.样本容量为200的频率分布直方图如图3-1-1所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[6,10)内的概率约为________.图3-1-1【解析】样本数据落在[6,10)内的频率为0.084=0.32,频数为2019.32=64.由频率与概率的关系知数据落在[6,10)内的概率约为0.32. 【答案】64 0.327.在5张不同的彩票中有2张奖票,5个人依次从中各抽取1张,各人抽到奖票的概率________(填相等不相等).【解析】因为每人抽得奖票的概率均为25,与前后的顺序无关.【答案】相等8.如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),每次从中任取一球,记下颜色后放回并搅匀,取了10次有9次白球,估计袋中数量最多的是________. 【解析】取了10次有9次白球,则取出白球的频率是910,估计其概率约是910,那么取出黑球的概率是110,那么取出白球的概率大于取出黑球的概率,所以估计袋中数量最多的是白球.【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中任意地抽取100件,其中一定有2件次品这一说法对不对?为什么? (2)若某次数学测验,全班50人的及格率为90%,若从该班中任意抽取10人,其中有5人及格是可能的吗?【解】(1)这种说法不对,因为产品的次品率为2%,是指产品是次品的可能性为2%,所以从该产品中任意地抽取100件,其中有可能有2件次品,而不是一定有2件次品.(2)这种情况是可能的.10.(2019课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图3-1-2所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图3-1-2(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.【解】(1)当X[100,130)时,T=500X-300(130-X)=800X-39 000.当X[130,150]时,T=500130=65 000.所以T=800X-39 000,100130,?65 000,130150.(2)由(1)知利润T不少于57 000元当且仅当120190.由直方图知需求量X[120, 150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.11.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位:mm)共有100个数据,将数据分组如下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计100(1)画出频率分布直方图;(2)估计纤度落在[1.38,1.50)mm中的概率及纤度小于1.42的概率是多少.【解】(1)频率分布直方图,如图:(2)纤度落在[1.38,1.50)mm中的频数是30+29+10=69,则纤度落在[1.38,1.50)mm中的频率是69100=0.69,所以估计纤度落在[1.38,1.50)mm中的概率为0.69.纤度小于1.42 mm的频数是4+25+30=59,则纤度小于1.42 mm的频率是59100=0.59,要练说,得练看。

高中数学必修三第三章《概率》单元测试卷及答案

高中数学必修三第三章《概率》单元测试卷及答案

高中数学必修三第三章《概率》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()①选出1人是班长的概率为140;②选出1人是男生的概率是125;③选出1人是女生的概率是115;④在女生中选出1人是班长的概率是0.A.①②B.①③C.③④D.①④3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A.12B.13C.14D.184.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不是对立事件D.以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A.110B.310C.710D.9106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?( ) A .①②B .①③C .②③D .①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为( ) A .16B .16.32C .16.34D .15.968.在区间(15,25]内的所有实数中随机取一个实数a ,则这个实数满足17<a <20的概率是( ) A .13B .12C .310D .7109.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.45B .0.67C .0.64D .0.3210.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( ) A .9100B .350C .3100D .2911.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( ) A .710B .310 C .35D .2512.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .4πB .12π C .14π-D .112π-二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[]200,300内的概率为0.5,那么重量超过300克的概率为________.14.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件A B +发生的概率为________.(B 表示B 的对立事件)15.先后两次抛掷同一枚骰子,将得到的点数分别记为a ,b .将a ,b ,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.16.设b和c分别是先后抛掷一颗骰子得到的点数,则方程x2-bx+c=0有实根的概率为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:(1(2)至少3人排队等候的概率是多少?18.(12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C 三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.(1)求从A,B,C区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.19.(12分)在区间(0,1)上随机取两个数m,n,求关于x的一元二次方程20+=有x m实根的概率.20.(12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x,y)表示“甲在x号车站下车,乙在y号车站下车”.(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.21.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一天能赚多少钱?22.(12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】D【解析】A选项,此概率只说明发生的可能性大小,具有随机性,并非一定是5场胜3场;B选项,此治愈率只说明发生的可能性大小,具有随机性,并非10人一定有人治愈;C选项,试验的频率可以估计概率,并不等于概率;D选项,概率为90%,即可能性为90%.故选D.2.【答案】D【解析】本班共有40人,1人为班长,故①对;而“选出1人是男生”的概率为255408=;“选出1人为女生”的概率为153408=,因班长是男生,∴“在女生中选班长”为不可能事件,概率为0.故选D.3.【答案】C【解析】抛掷两枚质地均匀的硬币,可能出现“正、正”、“反、反”、“正、反”、“反、正”,因此两个正面朝上的概率14P =.故选C . 4.【答案】C【解析】由互斥事件的定义可知:甲、乙不能同时得到红牌,由对立事件的定义可知:甲、乙可能都得不到红牌,即“甲、乙分得红牌”的事件可能不发生.故选C . 5.【答案】B【解析】从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为310P =.故选B . 6.【答案】A【解析】从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A “两球都为白球”发生时,①②不可能发生,且A 不发生时,①不一定发生,②不一定发生,故非对立事件,而A 发生时,③可以发生,故不是互斥事件.A 选项正确. 7.【答案】B 【解析】由题意204300S S =阴矩,∴204=24=16.32300S ⨯阴.故选B . 8.【答案】C【解析】∵(]15,25a ∈,∴()201731720251510P a -<<==-.故选C .9.【答案】D【解析】摸出红球的概率为45.45100=0,因为摸出红球,白球和黑球是互斥事件,因此摸出黑球的概率为10.450.230.32--=.故选D . 10.【答案】A【解析】任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i )(i =0,1,2,…,9);(1,i )(i =0,1,2,…,9);(2,i )(i =0,1,2,…,9);…;(9,i )(i =0,1,2,…,9).故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种. 故所求概率为9100.故选A . 11.【答案】A 【解析】建立平面直角坐标系(如图所示),则由图可知满足m >n 的点应在梯形OABD 内, 所以所求事件的概率为7=10OABD OABCS P S =梯形矩形.故选A . 12.【答案】C 【解析】4144P --ππ===-正方形面积圆锥底面积正方形面积.故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0.3【解析】所求的概率10.20.50.3P =--=. 14.【答案】23【解析】事件A 包含的基本事件为“出现2点”或“出现4点”;B 表示“大于等于5的点数出现”,包含的基本事件为“出现5点”或“出现6点”.显然A 与B 是互斥的,故()()()112333P A B P A P B +==+=.15.【答案】718【解析】基本事件的总数为6×6=36.∵三角形的一边长为5,∴当a =1时,b =5符合题意,有1种情况; 当a =2时,b =5符合题意,有1种情况; 当a =3时,b =3或5符合题意,即有2种情况; 当a =4时,b =4或5符合题意,有2种情况; 当a =5时,b ∈{1,2,3,4,5,6}符合题意, 即有6种情况;当a =6时,b =5或6符合题意,即有2种情况. 故满足条件的不同情况共有14种, 所求概率为1473618=.36【解析】基本事件总数为36个,若使方程有实根,则Δ=b 2-4c ≥0,即b 2≥4c .当c =1时,b =2,3,4,5,6;当c =2时,b =3,4,5,6; 当c =3时,b =4,5,6;当c =4时,b =4,5,6; 当c =5时,b =5,6;当c =6时,b =5,6.符合条件的事件个数为5+4+3+3+2+2=19,因此方程x 2-bx +c =0有实根的概率为1936.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)0.56;(2)0.44.【解析】记“有0人等候”为事件A ,“有1人等候”为事件B ,“有2人等候”为事件C ,“有3人等候”为事件D ,“有4人等候”为事件E ,“有5人及5人以上等候”为事件F ,则易知A 、B 、C 、D 、E 、F 互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C , 所以()()()()()=0.10.160.30.56P G P ABC P A P B P C =++=++=.(2)记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D ∪E ∪F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44. 也可以这样解,G 与H 互为对立事件, 所以()()110.560.44P H P G --===.18.【答案】(1)A ,B ,C 分别抽取2人,3人,2人;(2)1121. 【解析】(1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为71639=,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2人,3人,2人.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2)共有11种,所以这2个工厂中至少有1个来自A 区的概率为()1121P X =.8【解析】在平面直角坐标系中,以x 轴和y 轴分别表示m ,n 的值,因为m ,n 在(0,1)内与图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件A 表示方程20x nx m +=有实根,则事件()40,0101n m A m n m n ⎧⎫-≥⎧⎪⎪⎪=<<⎨⎨⎬⎪⎪⎪<<⎩⎩⎭,所对应的区域为图中的阴影部分,且阴影部分的面积为18,故()18S P A S ==阴影正方形,即关于x的一元二次方程20x nx m +=有实根的概率为18.20.【答案】(1)见解析;(2)19;(3)23.【解析】(1)甲、乙两人下车的所有可能的结果为:(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4). (2)设甲、乙两人同在第3号车站下车的事件为A ,则()19P A =.(3)设甲、乙两人在不同的车站下车的事件为B ,则()121393P B =-⨯=.21.【答案】(1)0.05;(2)40元.【解析】(1)把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3. 从6个球中随机摸出3个的基本事件为:ABC 、AB 1、AB 2、AB 3、AC 1、AC 2、AC 3、A 12、A 13、A 23、BC 1、BC 2、BC 3、B 12、B 13、B 23、C 12、C 13、C 23、123, 共20个.事件E ={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123, ()10.0520P E ==. (2)事件F ={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P (F )=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件F 发生有10次,不发生90次.则一天可赚90×1-10×5=40,每天可赚40元. 22.【答案】(1)400;(2)710;(3)34. 【解析】(1)设该厂这个月共生产轿车n 辆, 由题意得5010100300n =+,所以n =2000. 则z =2 000-(100+300)-(150+450)-600=400. (2)设所抽样本中有a 辆舒适型轿车, 由题意得40010005a=,即a =2. 因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”, 则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3)共7个.故()710P E =,即所求概率为710. (3)样本平均数()19.48.69.29.68.79.39.08.298x =⨯+++++++=.设D 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包括的基本事件有: 9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以()6384P D ==,即所求概率为34. 单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军; ②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4°C 时结冰. A .1B .2C .3D .4。

人教A版高中数学必修三练习:第三章 概率 单元质量评估 Word版含答案

人教A版高中数学必修三练习:第三章 概率 单元质量评估 Word版含答案

单元质量评估(12019 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( C )A.随机事件的概率总在[0,1]内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对2.下列事件中,随机事件的个数为 ( C )①在某学校校庆的田径运动会上,学生张涛获得100米短跑冠军;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4 ℃时结冰.A.1B.2C.3D.43.甲,乙,丙三人随意坐一排座位,乙正好坐中间的概率为( B )A. B. C. D.4.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( B )A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥5.函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0,使得f(x0)≤0的概率是( A )A. B. C. D.6.如图,在矩形ABCD中,点E为边CD的中点.若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于( C )A. B. C. D.7.给甲,乙,丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( B )A. B. C. D.8.如图,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,则P(A)= ( D )A. B. C.2 D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+ π2有零点的概率为( B )A. B.1- C. D.-110.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( C )A. B. C. D.11.掷一枚均匀的正六面体骰子,设A表示事件“出现2点”,B表示“出现奇数点”,则P(A∪B)等于( B )A. B. C. D.12.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( C )A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.一个口袋内装有大小相同的10个白球,5个黑球,5个红球,从中任取一球是白球或黑球的概率为.14.某人从甲地去乙地共走了500 m,途经一条宽为x m的河流.此人不小心把一件物品丢在了途中,若掉在河里就找不到,否则就能找到,已知该物品能被找到的概率为,则河宽为100 m.15.已知集合A={(x,y)|x2+y2=1},集合B={(x,y)|x+y+a=0},若A∩B≠的概率为1,则a的取值范围是16.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是,这两个数字之和是偶数的概率是.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(10分)从甲,乙,丙,丁四个人中选两名代表.求:(1)甲被选中的概率.(2)丁没被选中的概率.【解析】(1)从甲,乙,丙,丁四个人中选两名代表,共有{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}6个基本事件,甲被选中的事件有{甲,乙},{甲,丙},{甲,丁}共3个,若记甲被选中为事件A,则P(A)==.(2)记丁被选中为事件B,则P()=1-P(B)=1-=.18.(12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n个.从袋子中随机取出1个小球,取到白球的概率是.(1)求n的值.(2)记从袋中随机取出的一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.【解析】(1)由题意可得=,解得n=2.(2)设红球为a,黑球为b,白球为c1,c2,从袋子中取出2个小球的所有基本等可能事件为:(a,b),(a,c1),(a,c2),(b,c1),(b,c2),(c1,c2),共有6个,其中得2分的基本事件有(a,c1),(a,c2),所以总得分为2分的概率为P==.19.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知,=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个.事件A包含的基本事件为(0,21),(0,22),(21,0),(22,0),共4个,所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.20.(12分)已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图矩形ABCD区域,事件B 包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.21.(12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[7,8]内的概率.(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.【解析】(1)融合指数在[7,8]内的3家“省级卫视新闻台”记为A1,A2,A3;融合指数在[4,5)内的2家“省级卫视新闻台”记为B1,B2.从融合指数在[4,5)和[7,8]内的5家“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3, B2},{B1,B2},共10个.其中,至少有1家融合指数在[7,8]内的基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},共9个.所以所求的概率P=.(2)这20家“省级卫视新闻台”的融合指数平均数为4.5×+5.5×+6.5×+7.5×=6.05.22.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【解析】(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A,D),(A,E),(B,D),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为. (2)记F是标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D), (C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.关闭Word文档返回原板块。

人教A版高中数学必修三试卷高一(下)单元测试题三(数学三第三章).docx

人教A版高中数学必修三试卷高一(下)单元测试题三(数学三第三章).docx

高一数学(下)单元测试题三(数学三第三章)一、选择题(总共8个小题,每题5分,共40分)1、在所有的两位数中,任取一个数,则这个数能被2整除的概率为( )A .3 B .4 C .2 D .10 2、一栋楼房有4个单元,甲乙两人住在此楼内,则甲乙两人同住一单元的概率是( )A .81B .41C .21D .31 3、考察下列命题: (1)掷两枚硬币,可能出现“两个正面”、“两个反面”、“一正一反”3种结果; (2)某袋中装有大小均匀的三个红球、二个黑球、一个白球,那么每种颜色的球被摸到的可能性相同;(3)从2,1,0,1,2,3,4----中任取一数,取到的数小于0与不小于0的可能性相同; (4)分别从3个男同学、4个女同学中各选一个作代表,那么每个同学当选的可能性相同;(5)5人抽签,甲先抽,乙后抽,那么乙与甲抽到某号中奖签的可能性肯定不同. 其中正确的命题有( )A .0个B .1个C .2个D .3个 4、如果事件ABC 相互独立,则下列等式中正确的是( ) A .P (A +B +C )=P (A )+P (B )+P (C ) B .P (ABC )=P (A )+P (B )+P (C )C .P (A ·B ·C )=P (A )P (B )P (C )D .P (A )+P (B )+P (C )=15、给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,其中属于互斥事件的有 ( ) A .1对 B .2对 C .3对 D .4对6、某产品分甲、乙、丙三级,其中乙、丙两级均属次品若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对成品抽查一件抽得正品的概率为 ( )A .0.99B .0.98C .0.97D .0.967、一家旅社有100间相同的客房,经过一段时间经营实践,发现有如下表给出的关系,为使每天总收人达到最高,每间客房的每天定价应为 ( ) A .70元 B . 60元 C .50元 D . 40元8、某年度大学学科能力测验有12万名学生,各学科成绩采用15级分,数学学科能力测验成绩分布图如下图。

高一年级数学必修3第三章单元测试卷

高一年级数学必修3第三章单元测试卷

高一数学必修3第三章单元测试卷班级: 姓名: 座号: 评分:总分100分一、选择题:(本大题共10题;每小题5分;共50分)1.下列说法正确的是( )A. 任何事件的概率总是在(0;1)之间B. 频率是客观存在的;与试验次数无关C. 随着试验次数的增加;频率一般会越来越接近概率D. 概率是随机的;在试验前不能确定2.掷一枚骰子;则掷得奇数点的概率是( )A. 61B. 21C. `31 D. 41 3. 抛掷一枚质地均匀的硬币;如果连续抛掷1000次;那么第999次出现正面朝上的概率是( )A. 9991B. 10001C. 1000999D. 21 4.从一批产品中取出三件产品;设A =“三件产品全不是次品”;B =“三件产品全是次品”;C =“三件产品不全是次品”;则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥5.从一批羽毛球产品中任取一个;其质量小于的概率为;质量小于的概率为;那么质量在[4.8;4.85]( g )范围内的概率是( )A. B. 0.38 C. D.6.同时抛掷两枚质地均匀的硬币;则出现两个正面朝上的概率是( )A. 21B. 41C. 31D. 81 7.甲;乙两人随意入住两间空房;则甲乙两人各住一间房的概率是( )A. 31 .B. 41C. 21 8.从五件正品;一件次品中随机取出两件;则取出的两件产品中恰好是一件正品;一件次品的概率是( )A. 1B. 21C. 31D. 32 9.一个袋中装有2个红球和2个白球;现从袋中取出1球;然后放回袋中再取出 一球;则取出的两个球同色的概率是( )A. 21B. 31C. 41D. 52 10.现有五个球分别记为A ;C ;J ;K ;S ;随机放进三个盒子;每个盒子只能放 一个球;则K 或S 在盒中的概率是( )A. 101B. 53C. 103D. 109 二、填空题(本大题共4小题;每小题5分;共20分)11. 某小组有三名女生;两名男生;现从这个小组中任意选出一名组长;则其中一名女生小丽当选为组长的概率是___________12. 掷两枚骰子;出现点数之和为3的概率是_____________13. 某班委会由4名男生与3名女生组成;现从中选出2人担任正副班长;其中至少有1名女生当选的概率是______________14. 我国西部一个地区的年降水量在下列区间内的概率如下表所示:则年降水量在[ 200;300 ] (m,m)范围内的概率是___________三、解答题(本大题共3小题;共30分;解答应写出文字说明;证明过程或演算步骤)15.(8分)如图;在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形;现有均匀的粒子散落在正方形中;问粒子落在中间带形区域的概率是多少?16.(8分)10本不同的语文书;2本不同的数学书;从中任意取出2本;能取出数学书的概率有多大?17.(14分)甲盒中有红;黑;白三种颜色的球各3个;乙盒子中有黄;黑;白;三种颜色的球各2个;从两个盒子中各取1个球(1)求取出的两个球是不同颜色的概率.(2)请设计一种随机模拟的方法;来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).高一数学必修3第三章单元测试卷参考答案一、选择题:(本大题共10题;每小题5分;共50分)二、填空题(本大题共4小题;每小题5分;共20分)11. 51 12. 181 13. 75 三、解答题(本大题共3小题;共30分;解答应写出文字说明;证明过程或演算步骤)15. 解:因为均匀的粒子落在正方形内任何一点是等可能的所以符合几何概型的条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修3第三章
单元测试卷
班级: 姓名: 座号: 评分:
一、选择题:(本大题共10题,每小题5分,共50分)
1.下列说法正确的是( )
A. 任何事件的概率总是在(0,1)之间
B. 频率是客观存在的,与试验次数无关
C. 随着试验次数的增加,频率一般会越来越接近概率
D. 概率是随机的,在试验前不能确定
2.掷一枚骰子,则掷得奇数点的概率是( )
A. 61
B. 21
C. `
31 D. 41 3. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( )
A. 9991
B. 10001
C. 1000
999 D. 21 4.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )
A. A 与C 互斥
B. B 与C 互斥
C. 任何两个均互斥
D. 任何两个均不互斥
5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85]( g )范围内的概率是( )
A. 0.62
B. 0.38
C. 0.02
D. 0.68
6.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )
A. 21
B. 41
C. 31
D. 8
1 7.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )
A. 31 .
B. 41
C. 2
1 D.无法确定 8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是( )
A. 1
B. 21
C. 31
D. 3
2 9.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出 一球,则取出的两个球同色的概率是( )
A. 21
B. 31
C. 41
D. 5
2 10.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放 一个球,则K 或S 在盒中的概率是( )
A. 101
B. 53
C. 103
D. 10
9 二、填空题(本大题共4小题,每小题5分,共20分)
11. 某小组有三名女生,两名男生,现从这个小组中任意选出一名组长,
则其中一名女生小丽当选为组长的概率是___________
12. 掷两枚骰子,出现点数之和为3的概率是_____________
13. 某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,
其中至少有1名女生当选的概率是______________
14. 我国西部一个地区的年降水量在下列区间内的概率如下表所示:
则年降水量在 [ 200,300 ] (m,m )范围内的概率是___________
三、解答题(本大题共3小题,共30分,解答应写出文字说明,证明过程
或演算步骤)
15.(8分)如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三
角形,现有均匀的粒子散落在正方形中,
问粒子落在中间带形区域的概率是多少?
16.(8分)10本不同的语文书,2本不同的数学书,从中任意取出2本,
能取出数学书的概率有多大?
17.(14分)甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白,
三种颜色的球各2个,从两个盒子中各取1个球
(1)求取出的两个球是不同颜色的概率.
(2)请设计一种随机模拟的方法,来近似计算(1)中取出两个球是不同颜色的概率(写出模拟的步骤).
澄海莲阳中学高中数学必修3第三章单元测试卷参考答案
一、选择题:(本大题共10题,每小题5分,共50分)
二、填空题(本大题共4小题,每小题5分,共20分)
11. 51 12. 181 13. 7
5 14. 0.25 三、解答题(本大题共3小题,共30分,解答应写出文字说明,证明过程
或演算步骤)
15. 解:因为均匀的粒子落在正方形内任何一点是等可能的
所以符合几何概型的条件。

设A =“粒子落在中间带形区域”则依题意得
正方形面积为:25×25=625
两个等腰直角三角形的面积为:2×
2
1×23×23=529 带形区域的面积为:625-529=96
∴ P (A )= 62596 16. 解:基本事件的总数为:12×11÷2=66
“能取出数学书”这个事件所包含的基本事件个数分两种情况:
(1)“恰好取出1本数学书”所包含的基本事件个数为:10×2=20
(2)“取出2本都是数学书”所包含的基本事件个数为:1
所以“能取出数学书”这个事件所包含的基本事件个数为:20+1=21 因此, P (“能取出数学书”)=
22
7 17 解:
(1)设A =“取出的两球是相同颜色”,B =“取出的两球是不同颜色”.
则事件A 的概率为:
P (A )=692323⨯⨯⨯+=92 由于事件A 与事件B 是对立事件,所以事件B 的概率为:
P (B )=1-P (A )=1-
92=9
7 (2)随机模拟的步骤:
第1步:利用抓阄法或计算机(计算器)产生1~3和2~4两组
取整数值的随机数,每组各有N 个随机数。

用“1”表
示取到红球,用“2”表示取到黑球,用“3”表示取到
白球,用“4”表示取到黄球。

第2步:统计两组对应的N 对随机数中,每对中的两个数字不同
的对数n 。

第3步:计算N n 的值。

则N
n 就是取出的两个球是不同颜色的概率的近似值。

相关文档
最新文档