回溯法和分支限界法解决背包题
动态规划与回溯法解决0-1背包问题
0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
背包问题回溯法
背包问题回溯法背包问题回溯法是一种用于解决背包问题的算法。
背包问题是一个经典的组合优化问题,在许多领域都有广泛的应用。
它的基本形式是在给定一组物品和一个容量为C的背包的情况下,选择将哪些物品放入背包中,以使得放入背包中物品的总价值最大。
回溯法是一种通过搜索所有可能的解空间来求解问题的算法。
在背包问题中,回溯法通过递归地尝试将物品放入背包或不放入背包来寻找最优解。
具体而言,回溯法从问题的初始状态开始,根据问题的约束条件和目标函数的要求,逐步生成问题的解空间,并通过剪枝策略来减少搜索空间的规模,直到找到问题的最优解或无解。
在使用回溯法解决背包问题时,需要定义一个递归函数来实现搜索过程。
该函数的输入参数包括当前已选择的物品、当前已选择物品的总价值、当前已选择物品的总重量、剩余物品的可选范围、剩余背包容量等等。
在函数的实现中,首先需要判断当前选择的物品是否满足约束条件,如果满足则继续递归地对剩余的物品进行选择;如果不满足,则进行剪枝操作,即回溯到上一层递归函数继续搜索其他可能的解。
当递归函数搜索完所有可能的解空间时,返回问题的最优解或无解。
背包问题回溯法的关键是如何定义约束条件和剪枝策略。
在背包问题中,约束条件包括物品的重量不能超过背包的容量,物品的总价值不能超过已选择的物品的总价值。
而剪枝策略可以根据问题的具体情况来进行设计,例如可以根据当前已选择物品的总价值和剩余物品的可选范围来进行剪枝,减少搜索空间的规模,提高算法的效率。
背包问题回溯法的时间复杂度取决于问题的规模和剪枝策略的设计。
由于回溯法需要搜索所有可能的解空间,所以在最坏情况下,时间复杂度为指数级别。
为了提高算法的效率,可以引入一些优化技巧,例如动态规划和贪心策略,来减少搜索空间的规模并加速算法的执行速度。
总之,背包问题回溯法是一种用于解决背包问题的经典算法。
通过搜索所有可能的解空间,并根据约束条件和剪枝策略来寻找最优解,可以求解出背包问题的最优解或无解。
分支限界法结局0~1背包问题
Bound( i ) cleft = c – cw; b = cp; while( i <= n && w[i] <= cleft ){ cleft -= w[i]; b += p[i]; i++; } if( i<=n) b += p[i]/w[i] * cleft; return b; }
此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结 点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为 止。
与回溯法区别
求解目标不同: 一般而言,回溯法的求解目标是找出解空间树中满 足的约束条件的所有解,而分支限界法的求解目标 则是尽快的找出满足约束条件的一个解。
搜索方法不同 回溯法使用深度优先方法搜索,而分支限界一般用宽 度优先或最佳优先方法来搜索;
按照队列先进先出(FIFO)原则选取下一个节点为扩展节点;
数据结构:队列
(2)优先队列式分支限界法
按照优先队列中规定的优先级选取优先级最高的节点成为当前 扩展节点。 数据结构:堆 最大优先队列:使用最大堆,体现最大效益优先
最小优先队列:使用最小堆,体现最小费用优先
【0-1背包问题】
物品数量n=3,重量w=(20,15,15),价值v=(40,25,25) 背包容量c=30,试装入价值和最大的物品? 解空间:{(0,0,0),(0,0,1),…,(1,1,1)}
分支限界法解决0/1背包问题
分支限界法思想概述 与回溯法区别 求解步骤 常见的两种分支限界法 0-1背包问题
分支限界法的基本思想
分支限界法基本思想
分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜 索问题的解空间树。
回溯法解决0-1背包问题
回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
背包问题的分支定界法
背包问题的分支定界法
背包问题的分支定界法是一种求解背包问题的有效方法。
分支定界法的基本思想是将问题分解为若干个子问题,通过逐个解决子问题来逼近原问题的解。
在背包问题中,分支定界法通过将问题分解为一系列背包问题,从最简单的情况开始逐步扩展问题的规模,从而逐步逼近最优解。
分支限界法求解:
1.初始化:首先确定问题的约束条件和目标函数,并初始化问题的解空间树。
解空间树是问题解的搜索空间,其中每个节点表示一个可能的解。
2.搜索:从根节点开始,按照广度优先或最小耗费优先的方式搜索解空间树。
在搜索过程中,每个节点代表一个子问题,通过对子问题进行求解,可以逐步逼近原问题的解。
3.剪枝:在搜索过程中,根据问题的约束条件和目标函数,对一些不可能成为最优解的节点进行剪枝,从而减少搜索空间的大小。
剪枝可以提高搜索效率,但需要注意避免剪枝过度导致最优解丢失。
4.求解:当搜索到叶子节点时,表示找到了一个可行的解。
此时需要对叶子节点进行评估,确定其是否为最优解。
如果叶子节点的价值大于当前最优解的价值,则更新最优解;否则将叶子节点加入到已访问节点集合中。
5.回溯:如果搜索到叶子节点时发现当前最优解的价值不小于已访问节点集合中的最大价值,则说明当前最优解已经是最优解或者已经超出了搜索空间的上限。
此时需要进行回溯操作,即从当前节点向上回溯到上一层节点,并继续搜索。
6.结束:当搜索到根节点时,表示已经搜索完了解空间树。
此时需要判断是否找到了最优解,如果没有找到则需要进一步调整搜索策略或调整问题的约束条件和目标函数。
优先队列式分支限界法求解0-1背包问题
算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。
背包问题的多种解法
一个最优解:w i X i Wi2w1X1nmaX v i X i 。
如果不是的话,设(y2,y3, , y n) 是这X i {0,1}( 2 i n) i2问题描述0/1 背包问题 :现有n种物品,对1<=i<=n ,已知第i种物品的重量为正整数 W i,价值为正整数 V i, 背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过 W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:n w i x i Wi 1i i(1)x i { 0,1}( 1 i n)nmax v i x i (2)i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的解向量X (x1, x2 ,x3, ......... , x n) 。
首先说明一下 0-1 背包问题拥有最优解。
假设(X i,X2,X3,……,Xn)是所给的问题的一个最优解,则(X2,X3,……,Xn)是下面问题的n n n个问题的一个最优解,则v i y i v i X i ,且w1X1 w i y i W 。
因此,i 2 i 2 i 2n n n物品1W2=3V2=12物品2W3=4V3=40物品3W4=5V4=25物品4V1X1 V i y i V1X1 V i V i X i,这说明(X i,y2,y3, ............................................................... ,y n)是所给的 0-1 背包问i 2 i 2 i 1题比(X i,X2,X3, ........................... , X n)更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1背包问题,需要考虑给定 n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。
分支界限方法01背包问题解题步骤
分支界限方法是一种用于解决优化问题的算法。
在动态规划算法中,分支界限方法被广泛应用于解决01背包问题。
01背包问题是一个经典的动态规划问题,其解题步骤如下:1. 确定问题:首先需要明确01背包问题的具体描述,即给定一组物品和一个背包,每个物品有自己的价值和重量,要求在不超过背包容量的情况下,选取尽可能多的物品放入背包,使得背包中物品的总价值最大。
2. 列出状态转移方程:对于01背包问题,可以通过列出状态转移方程来描述问题的求解过程。
假设dp[i][j]表示在前i个物品中,背包容量为j时能够获得的最大价值,则状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i])3. 初始化边界条件:在动态规划中,需要对状态转移方程进行初始化,一般情况下,dp数组的第一行和第一列需要单独处理。
对于01背包问题,可以初始化dp数组的第一行和第一列为0。
4. 利用分支界限方法优化:针对01背包问题,可以使用分支界限方法来优化动态规划算法的效率。
分支界限方法采用广度优先搜索的思想,在每一步选择最有希望的分支,从而减少搜索空间,提高算法的效率。
5. 实际解题步骤:根据上述步骤,实际解决01背包问题的步骤可以概括为:确定问题,列出状态转移方程,初始化边界条件,利用分支界限方法优化,最终得到问题的最优解。
分支界限方法在解决01背包问题时起到了重要的作用,通过合理的剪枝策略,可以有效地减少动态规划算法的时间复杂度,提高问题的求解效率。
分支界限方法也可以应用于其他优化问题的求解过程中,在算法设计和实现中具有重要的理论和实际意义。
在实际应用中,分支界限方法需要根据具体问题进行灵活选择和调整,结合动态规划和剪枝策略,以便更好地解决各类优化问题。
掌握分支界限方法对于解决复杂问题具有重要的意义,也是算法设计和优化的关键技术之一。
分支界限方法在解决01背包问题的过程中,具有重要的作用。
0-1背包问题——回溯法求解【Python】
0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。
回溯法核⼼:能进则进,进不了则换,换不了则退。
(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。
解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。
将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。
若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。
在层数达到物品的个数时,停⽌继续扩展,开始回溯。
注:如何回溯呢?怎样得到的,怎样恢复。
放⼊背包中的重量取出,加在bagV上的价值减去。
约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。
核⼼结构:递归思路进⾏解决。
层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。
# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
回溯法解决01背包问题
回溯法是一个既带有系统性又带有跳跃性的搜索算法。
它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。
算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
运用回溯法解题通常包含以下三个步骤:∙针对所给问题,定义问题的解空间;∙确定易于搜索的解空间结构;∙以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;在0/1背包问题中,容量为M的背包装载。
从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。
最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。
约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。
在这个表达式中,需求出Xi的值。
Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。
∙即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n)∙目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤i<n)0/1背包问题是一个自己选取问题,适合于用子集树表示0/1背包问题的解空间。
在搜索解空间树时,只要左儿子节点是一个可行节点,搜索就进入左子树,在右子树中有可能包含最优解才进入右子树搜索,否则将右子树剪去。
程序分析:将物品个数,每个物品体积/价值输入,计算总物品体积S,输入背包体积V,如果V<0或者V>S则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。
假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件物品不合适,应将i拿出,继续从i+1及以后的物品中选取,如此重复,直到找到满足条件的解。
分支限界法解决01背包问题
分⽀限界法解决01背包问题 分⽀限界法和之前讲的回溯法有⼀点相似,两者都是在问题的解的空间上搜索问题的解。
但是两者还是有⼀些区别的,回溯法是求解在解的空间中的满⾜的所有解,分⽀限界法则是求解⼀个最⼤解或最⼩解。
这样,两者在解这⼀⽅⾯还是有⼀些不同的。
之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有⼀个解的。
下⾯就讲讲分⽀限界法的基本思想。
分⽀限界法常以⼴度优先或以最⼩消耗(最⼤效益)优先的⽅式搜索问题的解空间树。
问题的解空间树是表⽰问题解空间的⼀颗有序树,常见的有⼦集树和排列树。
分⽀限界法和回溯法的区别还有⼀点,它们对于当前扩展结点所采⽤的扩展⽅式也是不相同的。
分⽀限界法中,对于每⼀个活结点只有⼀次机会成为扩展结点。
活结点⼀旦成为了扩展结点,就⼀次性产⽣其所有的⼦结点,⼦结点中,不符合要求的和⾮最优解的⼦结点将会被舍弃,剩下的⼦结点将加⼊到活结点表中。
再重复上⾯的过程,直到没有活结点表中没有结点,⾄此完成解决问题的⽬的。
分⽀限界法⼤致的思想就是上⾯的叙述,现在就可以发现,对于结点的扩展将会成为分⽀限界法的主要核⼼。
所以,分⽀限界法常见的有两种扩展结点的⽅式,1.队列式(FIFO)分⽀限界法,2.优先队列式分⽀限界法。
两种⽅法的区别就是对于活结点表中的取出结点的⽅式不同,第⼀种⽅法是先进先出的⽅式,第⼆种是按优先级取出结点的⽅式。
两中⽅法的区别下⾯也会提到。
在背包问题中还会提到⼀个⼦树上界的概念,其实就是回溯法中的剪枝函数,只不过,分⽀限界法⾥的剪枝函数改进了⼀些,剪枝函数同样也是分⽀限界法⾥⽐较重要的东西。
下⾯就讲⼀讲01背包问题的实现。
01背包问题和前⾯讲的背包问题的区别不⼤,就是01背包问题的物品不可以只放⼊部分,01背包问题的物品只能放⼊和不放⼊两个选择,这也是名字中01的原因。
其他的和背包问题相差不⼤,这⾥也不再累述。
算法的主体是⽐较容易想的,⾸先,将数据进⾏处理,这也是上⾯讲到的第⼆种取结点的⽅式(优先队列式)。
ACM背包问题
背包问题
如果给你一个背包,要你从许多东西里选择一些装进来,只要这个包装得下,你就可 以将包里的东西全部拿走了,那么你会如何选择物品呢?这里你需要考虑的是背包的体积 和承重限制,当然最重要的是你拿走的东西的总价值最大。这样的问题就是背包问题,许 多问题都可以转化为背包问题来考虑。背包问题是一个在运筹学领域里常见的典型 NP-C 难题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有一定的意义。
while (goods[0].flag<goods[i].flag) {
goods[i+1]=goods[i]; i--; } goods[i+1]=goods[0]; } ///////////////////////////////////////////
·78·
第 4 章 背包问题
cout<<"最优解为:"<<endl; for(i=1;i<=n;i++) {
4.3.1 〖案例 2〗0/1 背包
需对容量为 c 的背包进行装载。从 n 个物品中选取装入背包的物品,每件物品 i 的重 量为 wi,价值为 pi。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最 佳装载是指所装入的物品价值最高。限制:每个物品不能被分割,要不被装载,要不不被 装载。
第一行物品个数,接下来分别为物品价值,再接下来分别为物品的价值。再接下来分 别为物品的重量,最后为背包的容量。
数据结构与算法: 不需要特殊的数据结构 算法采用贪婪法 首先输入物品信息和背包容量,然后每次选比重最大的装载。
struct goodinfo
{ float p; float w; float X; int flag;
背包问题 实验报告
实验报告课程名称:算法设计与分析实验名称:解0-1背包问题任课教师:王锦彪专业:计算机应用技术班级: 2011 学号: ****** 姓名:严焱心完成日期: 2011年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1. 要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2. 要求显示结果。
三、实验环境和工具:操作系统:Windows7开发工具:Eclipse3.7.1 jdk6开发语言:Java四、实验问题描述:0/1背包问题:现有n 种物品,对1<=i<=n ,第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数C ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过C 且总价值尽量大。
动态规划算法描述: 根据问题描述,可以将其转化为如下的约束条件和目标函数:⎪⎩⎪⎨⎧≤≤∈≤∑∑==)1}(1,0{C max 11n i x x w x v ini i i ni ii寻找一个满足约束条件,并使目标函数式达到最大的解向量),......,,,(321n x x x x X =,使得C 1∑=≤n i i i x w ,而且∑=ni i i x v 1达到最大。
0-1背包问题具有最优子结构性质。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤n i i i ini i i x v n i x x w x w 2211max )2}(1,0{C 。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i n i i i i i x v y v 22,且∑=≤+n i i i y w x w 211C 。
背包问题
(0-1)背包问题的解法小结1.动态规划法递推关系:– 考虑一个由前i 个物品(1≤i ≤n )定义的实例,物品的重量分别为w 1,…,w i ,价值分别为v 1,…,v i ,背包的承重量为j (1≤j ≤W )。
设V [I,j]为该实例的最优解的物品总价值– 分成两类子集:• 根据定义,在不包括第i 个物品的子集中,最优子集的价值是V [i -1,j ]• 在包括第i 个物品的子集中(因此,j -w ≥0),最优子集是由该物品和前i -1个物品中能够放进承重量为i -w j 的背包的最优子集组成。
这种最忧子集的总价值等于v i +V [i -1,j -w i ].0]0,[时,0 当0;][0,时,0初始条件:当],1[}],1[],,1[max{],[=≥=≥<≥⎩⎨⎧-+---=i V i j V j w j w j j i V v w j i V j i V j i V i i i i以记忆功能为基础的算法:用自顶向下的方式对给定的问题求解,另外维护一个类似自底向上动态规划算法使用的表格。
一开始的时候,用一种“null”符号创始化表中所有的单元,用来表明它们还没有被计算过。
然后,一旦需要计算一个新的值,该方法先检查表中相应的单元:如果该单元不是“null ”,它就简单地从表中取值;否则,就使用递归调用进行计算,然后把返回的结果记录在表中。
算法 MFKnapsack(I,j)//对背包问题实现记忆功能方法//输入:一个非负整数i 指出先考虑的物品数量,一个非负整数j 指出了背包的承重量 //输出:前i 个物品的最伏可行子集的价值//注意:我们把输入数组Weights[1..n],Values[1..n]和表格V[0..n,0..W]作为全局变量,除了行0和列0用0初始化以外,V 的所有单元都用-1做初始化。
if V[I,j]<01if j<Weights[i]value ←MFKnapsack(i-1,j)elsevalue ←max(MFKnapsack(i-1),j), Value[i]+MFKnapsack(i-1,j-eights[i]))V[I,j]←valuereturn V[I,j]2.贪心算法1) 背包问题基本步骤:首先计算每种物品单位重量的价值Vi/Wi ,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。
《程序设计创新》分支限界法解决01背包问题
《程序设计创新》分支限界法解决01背包问题一、引言分枝限界法通常以广度优先或最小成本(最大收益)优先搜索问题的解空间树。
在分枝限界方法中,每个活动节点只有一次成为扩展节点的机会。
当活动节点成为扩展节点时,将同时生成所有子节点。
这些子节点将丢弃不可执行或非最优解的子节点,并将剩余的子节点添加到活动节点表中。
然后,从活动节点表中选择节点作为当前扩展节点,然后重复上述节点扩展过程。
此过程将持续到所需的解决方案或节点表为空。
二、研究背景在生活或企业活动中,我们常常会遇到一些装在问题。
例如在生活中我们要出去旅游,背包的容量是有限的而要装物品可能很多,但是每个物品的装载优先级肯定是不一样的,那么怎么装更合适一些呢。
在企业活动中,比如轮船集装箱装载问题,集装箱是有限的,那么怎么装载这些货物才能每次都是装载最多的,只有这样企业利润才能最大化。
三、相关技术介绍上述问题就是我们算法中会遇到的背包问题。
而背包问题又分许多。
如背包问题,通常用贪心法解决。
如01背包问题通常用动态规划或者分支限界法解决。
本次我们考虑使用分支限界法来解决01背包问题四、应用示例在01背包问题中,假设有四个物品。
重量W(4,7,5,3),价值V(40,42,25,12),背包重量W为10,试求出最佳装载方案。
定义限界函数: ub = v + (W-w)×(Vi+1/W+1)画出状态空间树的搜索图步骤:①在根结点1,没有将任何物品装入背包,因此,背包的重量和获得的价值均为0,根据限界函数计算结点1的目标函数值为10×10=100;②在结点2,将物品1装入背包,因此,背包的重量为4,获得的价值为40,目标函数值为40 + (10-4)×6=76,将结点2加入待处理结点表PT中;在结点3,没有将物品1装入背包,因此,背包的重量和获得的价值仍为0,目标函数值为10×6=60,将结点3加入表PT 中;③在表PT中选取目标函数值取得极大的结点2优先进行搜索;④在结点4,将物品2装入背包,因此,背包的重量为11,不满足约束条件,将结点4丢弃;在结点5,没有将物品2装入背包,因此,背包的重量和获得的价值与结点2相同,目标函数值为40 + (10-4)×5=70,将结点5加入表PT中;⑤在表PT中选取目标函数值取得极大的结点5优先进行搜索;⑥在结点6,将物品3装入背包,因此,背包的重量为9,获得的价值为65,目标函数值为65 + (10-9)×4=69,将结点6加入表PT中;在结点7,没有将物品3装入背包,因此,背包的重量和获得的价值与结点5相同,目标函数值为40 + (10-4)×4=64,将结点6加入表PT中;⑦在表PT中选取目标函数值取得极大的结点6优先进行搜索;⑧在结点8,将物品4装入背包,因此,背包的重量为12,不满足约束条件,将结点8丢弃;在结点9,没有将物品4装入背包,因此,背包的重量和获得的价值与结点6相同,目标函数值为65;⑨由于结点9是叶子结点,同时结点9的目标函数值是表PT中的极大值,所以,结点9对应的解即是问题的最优解,搜索结束。
分支限界法-01背包问题
分⽀限界法-01背包问题1、分⽀限界法介绍分⽀限界法类似于,也是在问题的解空间上搜索问题解的算法。
⼀般情况下,分⽀限界法与回溯法的求解⽬标不同。
回溯法的求解⽬标是找出解空间中满⾜约束条件的所有解;⽽分⽀限界法的求解⽬标则是找出满⾜约束条件的⼀个解,或是在满⾜约束条件的解中找出使某⼀⽬标函数值达到极⼤或极⼩的解,即在某种意义下的最优解。
由于求解⽬标不同,导致分⽀限界法与回溯法对解空间的搜索⽅式也不相同。
回溯法以深度优先的⽅式搜索解空间,⽽分⽀限界法则以⼴度优先或以最⼩耗费优先的⽅式搜索解空间。
分⽀限界法的搜索策略是,在扩展结点处,先⽣成其所有的⼉⼦结点(分⽀),然后再从当前的活结点表中选择下⼀扩展结点。
为了有效地选择下⼀扩展结点,加速搜索的进程,在每⼀个活结点处,计算⼀个函数值(限界),并根据函数值,从当前活结点表中选择⼀个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分⽀推进,以便尽快地找出⼀个最优解。
这种⽅式称为分⽀限界法。
⼈们已经⽤分⽀限界法解决了⼤量离散最优化的问题。
2、常见的两种分⽀限界法1. 队列式(FIFO)分⽀限界法:按照先进先出原则选取下⼀个节点为扩展节点。
活结点表是先进先出队列。
LIFO分⽀限界法:活结点表是堆栈。
2. LC(least cost)分⽀限界法(优先队列式分⽀限界法):按照优先队列中规定的优先级选取优先级最⾼的节点成为当前扩展节点。
活结点表是优先权队列,LC分⽀限界法将选取具有最⾼优先级的活结点出队列,成为新的E-结点。
FIFO分⽀限界法搜索策略:§⼀开始,根结点是唯⼀的活结点,根结点⼊队。
§从活结点队中取出根结点后,作为当前扩展结点。
§对当前扩展结点,先从左到右地产⽣它的所有⼉⼦,⽤约束条件检查,把所有满⾜约束函数的⼉⼦加⼊活结点队列中。
§再从活结点表中取出队⾸结点(队中最先进来的结点)为当前扩展结点,……,直到找到⼀个解或活结点队列为空为⽌。
(C++)分支限界法求解背包问题
(C++)分⽀限界法求解背包问题1.beibao.h⽂件代码如下:#ifndef BEIBAO_H#define BEIBAO_H#include <math.h>//⼦空间中节点类型class BBnode{public:BBnode* parent; //⽗节点bool leftChild; //左⼉⼦节点标志BBnode(BBnode* par,bool ch){parent=par;leftChild=ch;}BBnode(){}};class HeapNode {public:BBnode* liveNode; // 活结点double upperProfit; //结点的价值上界double profit; //结点所相应的价值double weight; //结点所相应的重量int level; // 活结点在⼦集树中所处的层次号//构造⽅法HeapNode(BBnode* node, double up, double pp , double ww,int lev){liveNode = node;upperProfit = up;profit = pp;weight = ww;level = lev;}HeapNode(){}int compareTo(HeapNode o) {double xup =o.upperProfit;if(upperProfit < xup)return -1;if(upperProfit == xup)return 0;elsereturn 1;}};class Element {public:int id;double d;Element(){}Element(int idd,double dd){id=idd;d=dd;}int compareTo(Element x){double xd=x.d;if(d<xd)return -1;if(d==xd)return 0;return 1;}bool equals(Element x){return d==x.d;}};class MaxHeap{public:HeapNode *nodes;int nextPlace;int maxNumber;MaxHeap(int n){maxNumber = pow((double)2,(double)n);nextPlace = 1;//下⼀个存放位置nodes = new HeapNode[maxNumber];}MaxHeap(){}void put(HeapNode node){nodes[nextPlace] = node;nextPlace++;heapSort(nodes);}HeapNode removeMax(){HeapNode tempNode = nodes[1];nextPlace--;nodes[1] = nodes[nextPlace];heapSort(nodes);return tempNode;}void heapAdjust(HeapNode * nodes,int s,int m){HeapNode rc = nodes[s];for(int j=2*s;j<=m;j*=2){if(j<m&&nodes[j].upperProfit<nodes[j+1].upperProfit)++j;if(!(rc.upperProfit<nodes[j].upperProfit))break;nodes[s] = nodes[j];s = j;}nodes[s] = rc;}void heapSort(HeapNode * nodes){for(int i=(nextPlace-1)/2;i>0;--i){heapAdjust(nodes,i,nextPlace-1);}}} ;#endif2.测试代码#include <iostream>using namespace std;//⼦空间中节点类型#include "beibao.h"double c=30;const int n=3;double *w;double *p;double cw;double cp;int *bestX;MaxHeap * heap;//上界函数bound计算结点所相应价值的上界double bound(int i){double cleft=c-cw;double b=cp;while(i<=n&&w[i]<=cleft){cleft=cleft-w[i];b=b+p[i];i++;}//装填剩余容量装满背包if(i<=n)b=b+p[i]/w[i]*cleft;return b;}//addLiveNode将⼀个新的活结点插⼊到⼦集树和优先队列中void addLiveNode(double up,double pp,double ww,int lev,BBnode* par,bool ch){ //将⼀个新的活结点插⼊到⼦集树和最⼤堆中BBnode *b=new BBnode(par,ch);HeapNode node =HeapNode(b,up,pp,ww,lev);heap->put(node);}double MaxKnapsack(){//优先队列式分⽀限界法,返回最⼤价值,bestx返回最优解BBnode * enode=new BBnode();int i=1;double bestp=0;//当前最优值double up=bound(1);//当前上界while(i!=n+1){//⾮叶⼦结点//检查当前扩展结点的左⼉⼦⼦结点double wt=cw+w[i];if(wt<=c){if(cp+p[i]>bestp)bestp=cp+p[i];addLiveNode(up,cp+p[i],cw+w[i],i+1,enode,true);}up=bound(i+1);if(up>=bestp)addLiveNode(up,cp,cw,i+1,enode,false);HeapNode node =heap->removeMax();enode=node.liveNode;cw=node.weight;cp=node.profit;up=node.upperProfit;i=node.level;}for(int j=n;j>0;j--){bestX[j]=(enode->leftChild)?1:0;enode=enode->parent;}return cp;}double knapsack(double *pp,double *ww,double cc,int *xx){//返回最⼤值,bestX返回最优解c=cc;//n=sizeof(pp)/sizeof(double);//定义以单位重量价值排序的物品数组Element *q=new Element[n];double ws=0.0;double ps=0.0;for(int i=0;i<n;i++){q[i]=Element(i+1,pp[i+1]/ww[i+1]);ps=ps+pp[i+1];ws=ws+ww[i+1];}if(ws<=c){return ps;}p=new double[n+1];w=new double[n+1];for(int i=0;i<n;i++){p[i+1]=pp[q[i].id];w[i+1]=ww[q[i].id];}cw=0.0;cp=0.0;bestX = new int[n+1];heap = new MaxHeap(n);double bestp = MaxKnapsack();for(int j=0;j<n;j++)xx[q[j].id]=bestX[j+1];return bestp;}void main(){w=new double[4];w[1]=16;w[2]=15;w[3]=15;p=new double[4];p[1]=45;p[2]=25;p[3]=25;int *x = new int[4];double m = knapsack(p,w,c,x);cout<<"*****分⽀限界法*****"<<endl;cout<<"*****物品个数:n="<<n<<endl;cout<<"*****背包容量:c="<<c<<endl;cout<<"*****物品重量数组:w= {"<<w[3]<<" "<<w[1]<<" "<<w[2]<<"}"<<endl; cout<<"*****物品价值数组:v= {"<<p[3]<<" "<<p[1]<<" "<<p[2]<<"}"<<endl; cout<<"*****最优值:="<<m<<endl;cout<<"*****选中的物品是:";for(int i=1;i<=3;i++)cout<<x[i]<<" ";cout<<endl;}3.测试结果:*****分⽀限界法**********物品个数:n=3*****背包容量:c=30*****物品重量数组:w= {15 16 15} *****物品价值数组:v= {25 45 25} *****最优值:=50*****选中的物品是:0 1 1。
01背包分支限界
01背包分支限界思想:借助大顶堆来实现优先队列,构造大顶堆(按优先队列中所能达到的最大价值来构造这个大顶堆),实现对堆中元素的插入和删除;在回溯法的基础上改进,首先对物品按单位权重非递减排序,堆中存放的是每一个当前物品所能达到的情况:1。
将第一个单位权重最大的物品插入大顶堆中,并用回溯法中计算边界条件的函数计算出该物品放入背包时所能达到的最大价值,用这一队列最后一个结点记录下当前得到的队列的情况,它可以得到的最大值(double型),用它该取的下一层次号,所达到的最大价值,所占用背包的体积;2.如果物品层次号(从0开始)小于总个数,取出堆顶元素,对将要遍历到的这一层次上的物品判断选择取与不取的情况.若已经占用的体积+该物品的体积不超过背包体积,则该物品可以放入,即可以是左儿子结点,isLchild=true,将这一结点加入优先队列并放入大顶堆中;若右子树可能存在最优解,isLchild=false,即不放该物品时可能达到的最大价值(double 型变量)〉=放入该物品时当前背包达到的最优解,则也将这一结点加入优先队列中并放入大顶堆中;3.重复步骤2。
感觉算法比较费力,对于01背包来说,由于不满足贪心的性质,所以分支限界在构造好了堆的前提下,它要比回溯法好.代码:头文件:主要为大顶堆的构造,大顶堆中元素的插入,删除;插入时:先将要插入的结点放入堆中最后一个元素的位置,然后自下向上调整.删除时:因为当取出了堆顶元素后,需要对堆中剩余元素调整(堆从标号1开始).将堆中最后一个元素放在堆顶的位置,然后自上向下调整成为一个新的大顶堆.#define header#include〈iostream〉using namespace std;const int MAXN=0x0fffff;typedef struct Node{Node * par;bool isLchild;};typedef struct HeapNodeNode *par;//指向此优先队列中所包涵的所有结点double cp,cw;//当前达到的价值,重量double up;//此优先队列所能达到的最大价值int level;//它所处的层次}*HP;typedef struct Heap{int hsize;//堆中元素个数HeapNode *heapnodes;//堆中存放可能的解}*BigHeap;//用大顶堆来实现的优先队列BigHeap bigHeap;HeapNode GetMax(int i)//取出一个最大结点,并向下调整{HeapNode tempNode,maxNode=bigHeap->heapnodes[i];//堆从1开始tempNode=bigHeap-〉heapnodes[i]=bigHeap->heapnodes[bigHeap—〉hsize——];//将最后一个结点提升,并使hsize-1int j;for(j=i<<1;j〈=bigHeap-〉hsize;j<〈=1)//开始向下调整{if(j〈bigHeap->hsize&&bigHeap—〉heapnodes[j]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0-1背包问题
计科1班朱润华 32
方法1:回溯法
一、回溯法描述:
用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大
形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:
0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至
装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,
n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装的物品2。
由此得一个解为[1,,1,1],其相应价值为22。
尽管这不是一个可行解,但可以证明其价值是最优值的上界。
因此,对于这个实例,最优值不超过22。
在实现时,由Bound计算当前节点处的上界。
类Knap的数据成员记录解空间树中的节点信息,以减少参数传递调用所需要的栈空间。
在解空间树的当前扩展节点处,仅要进入右子树时才计算上界Bound,以判断是否可将右子树剪去。
进入左子树时不需要计算上界,因为上界预期父节点的上界相同。
三、回溯法实现代码:
#include ""
#include <iostream>
using namespace std;
template<class Typew,class Typep>
class Knap
{
template<class Typew,class Typep>
friend Typep Knapsack(Typep [],Typew [],Typew,int);
private:
Typep Bound(int i);
void Backtrack(int i);
Typew c; D = i;
Q[i-1].d = * p[i]/w[i];
P += p[i];
W += w[i];
}
if(W <= c)D];
[i] = w[Q[i-1].ID];
}
= 0;
= 0;
= c;
= n;
= 0;
求找一n
元向量(x1,x2,…,xn,), xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、分支限界法步骤思想:
首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。
在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。
算法首先检查当前扩展结点的左儿子结点的可行性。
如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。
当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优先队列。
当扩展到叶节点时为问题的最优值。
例如:0-1背包问题,当n=3时,w={16,15,15}, p={45,25,25}, c=30。
优先队列式分支限界法:处理法则:价值大者优先。
{}—>{A}—>{B,C}—>{C,D,E}—>{C,E}—>{C,J,K}—>{C}—>{F,G}—>{G,L,M}—>{G,M}—>{G}—>{N,O}—>{O}—>{}。
三、分支限界法解决0-1背包问题实现代码:
D = i;
Q[i-1].d = *p[i]/w[i];
P += p[i];
W += w[i];
}
if(W<=c)
{
return P;D];
[i] = w[Q[i-1].ID];
}
= 0;
= 0;
= c;
= n;
D] = [j];
}
delete Q;
delete [];
delete [];
delete [];
return bestp;
}
template<class Type>
void BubbleSort(Type a[],int n) {
//记录一次遍历中是否有元素的交换 bool exchange;
for(int i=0; i<n-1;i++)
{
exchange = false ;
for(int j=i+1; j<=n-1; j++)
{
if(a[j]<=a[j-1])
{
Swap(a[j],a[j-1]);
exchange = true;
}
}
//如果这次遍历没有元素的交换,那么排序结束 if(false == exchange)
{
break ;
}
}
}
template <class Type>
inline void Swap(Type &a,Type &b)
{
Type temp = a;
a = b;
b = temp;
}
四、程序运行结果:
五、分支限界法解决0-1背包问题复杂度分析:
时间复杂度为:O(2^n);空间复杂度:O(n2^n)。
六、回溯法与分支限界法分析比较:
这两种算法都得到了验证,运行结果证明了算法设计是可行的。
通过对O-1背包问题的算法设计及时间复杂度分析可以看出:无论采用回溯法还是分支限界法,都是在已知约束条件下求解最大值建立数学模型算法实现的过程;但算法具体实现和数据结构的建立要用到递归和栈操作。
比较回溯法和分支限界法,前者的时间复杂度高于后者,从耗费上而言优于后者。
对于回溯法,能够获得最优解,时间复杂度较高,判断右子树时,按效率密度vi/wi对剩余对象排序;对于分支限界法:速度较快,易求解,不过占用的内存较大,效率不高。
成绩单。