FLUENT中NOX模型
FLUENT非预混燃烧模型
《数值计算与工程仿真》专刊—FLUENT HELP 算例精选中文版(二)算例 13引言使用非预混燃烧模型煤粉燃烧的模拟包括气相连续流场的建模和它与煤粒非连续相的作用的建 模。
穿过气体的煤粒会挥发燃烧并成为与气相反应的燃料源。
反应可以用组份 输运模型(the species transport)或模型(the non-premixed combustion)模拟, 在本指南中你将用非预混燃烧模型模拟简单煤粉燃烧炉中的化学反应。
在本指南中你将学会: 1.怎样用 prePDF 预处理程序为煤粉燃料准备 PDF 表格。
2.怎样为非预混燃烧化学模型定义输入条件。
3.怎样定义煤粒的非连续相。
4.怎样解决包含非连续相煤粒的反应的模拟。
非预混燃烧模型用这样的一种建模方法:用一个或二个守恒量,即混合分 数求解输运方程。
多种化学组份,包括基团和中间产物组份可能被包含在对问 题的定义当中,而且它们的浓度将来至于混合分数分布的预测。
组份的特性参 数是通过化学数据库获得。
湍流化学反应是用 Beta 或者双 delta 概率密度函数 来模拟的。
关于非预混燃烧模拟方法的更多细节请参看使用手册。
前提条件本指南是建立在你已经熟悉 FLUENT 的菜单结构并且已经做完指南 1 的基 础上的。
因此在建立过程中的一些步骤和解决过程将被省略。
问题描述本指南中用的煤燃烧系统为一简单的 10m*1m 的二维管道, 如图 13.1 所示。
因为是对称的,所以只模拟宽度方向上的一半区域。
2D 管道的进口分为两股流 动。
管道中心附近的高速流速度为 50m/s,宽度为 0.125m。
另一股流的速度为 15m/s, 宽度为 0.375m.两股流都为 1500K 的空气。
煤粒在高速流的附近以 0.1kg/s—151 —《数值计算与工程仿真》专刊—FLUENT HELP 算例精选中文版(二)(炉膛中的总流量为 0.2kg/s)的质量流量进入炉膛。
Fluent燃烧模型介绍
1.Generalized Finite-Rate Model(通用有限速率模型)该模型基于求解组分质量分数疏运方程,化学反应机理由用户自己定义。
反应速率在组分疏运方程中作为源项,并且由阿累尼乌斯公式计算。
该模型适合求解预混,部分预混以及非预混湍流燃烧。
2.Non-Premixed Combustion Model(非预混燃烧模型)该模型求解混合分数输运方程,单个组分的浓度由预测得到的混合分数的分布求得。
该模型是专门为求解湍流扩散火焰问题而发展,有许多方面都比有限速率模型要优越。
该模型考虑了湍流对燃烧的影响,反映机理不能由用户自己设定。
)3.Premixed Combustion Model(预混燃烧模型)该模型主要针对纯预混湍流燃烧问题,在这些问题中,反应物和生成物由火焰峰面隔开,该模型通过求解各种反应过程参数来预测火焰峰面的位置,该模型为考虑湍流对燃烧的影响,引入了一个湍流火焰速度。
4.Partially Premixed Combustion Model(部分预混燃烧模型)该模型针对预混合肥预混燃烧都存在的湍流反应流动。
通过求解混合分数方程和反应过程参数来确定火焰峰面的位置。
position PDF Transport Combustion Model(组分概率密度输运燃烧模型)该模型用来模拟湍流火焰中实现中存在的有限速率反应,任意的反应机理都可以导入FLUENT,该模型可用于求解预混,非预混及部分预混火焰,但只用此模型需要大投资。
FLUENT软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型1.有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
基于FLUENT的氧燃烧低NOX研究
基于FLUENT 的氧燃烧低NO X 研究张锋,刘定坡,巨荣西安热工研究院有限公司,陕西西安 710032;【摘要】本文以国际火焰研究中心(IFRF)用来验证工业煤粉燃烧模型的2.5MW 的炉膛为对象,利用CFD 商业软件FLUENT 针对氧燃烧方式下,NO X生成的新特点,在进氧量相同的情况下计算比较了空气气氛和氧气气氛下NO X生成。
在采用氧燃烧技术的基础上,进一步结合一、二次风氧气浓度差的方法探究氧燃烧方式下进一步降低NO X生成的方法。
计算结果表明,将这两种方法结合能较大的降低NO X排放。
【关键词】氧燃烧氮氧化物CFD 氧气浓度差Study NOx Emission control of Oxy-fuel Combustionbase on the CFDZhang FengThermal Power Research Institute Co. ,Ltd. ,Xi’an 710032 Shanxi Province China Abstract: The commercial CFD codes FLUENT is used to investigate the performance of the international flame research foundation(IFRF) 2.5MW experimental facility on air combustion and oxy-fuel combustion, which is an ideal facility to validate industrial coal combustion models. In view of the oxy-fuel combustion, the NO X emission have new characteristic. NO X emission is compared between air combustion and oxy-fuel combustion by Simulation base on the same oxygen consumes. In uses the oxy-fuel combustion technology in the foundation, further unifies the Oxygen concentration difference between the primary stream and secondary swirl stream technique to further reduces the NO X emission is researched. The computed result indicate that combined of these two methods can reduce the NO X emission further more.Key words: Oxy-fuel combustion, nitrogen oxide, computational fluid dynamics, Oxygen concentration difference氧燃烧技术是一种能同时控制CO2、SO2和NO x排放的新型洁净燃烧技术[1][2][3]。
fluent算例模拟燃烧
计算流体力学作业FLUENT 模拟燃烧问题描述:长为2m、直径为的圆筒形燃烧器结构如图1所示,燃烧筒壁上嵌有三块厚为 m,高 m的薄板,以利于甲烷与空气的混合。
燃烧火焰为湍流扩散火焰。
在燃烧器中心有一个直径为 m、长为 m、壁厚为 m的小喷嘴,甲烷以60 m/s的速度从小喷嘴注入燃烧器。
空气从喷嘴周围以 m/s的速度进入燃烧器。
总当量比大约是(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷嘴直径的雷诺数约为×103。
假定燃料完全燃烧并转换为:CH4+2O2→CO2+2H2O反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。
利用FLUENT的finite-rate化学反应模型对一个圆筒形燃烧器内的甲烷和空气的混合物的流动和燃烧过程进行研究。
1、建立物理模型,选择材料属性,定义带化学组分混合与反应的湍流流动边界条件2、使用非耦合求解器求解燃烧问题3、对燃烧组分的比热分别为常量和变量的情况进行计算,并比较其结果4、利用分布云图检查反应流的计算结果5、预测热力型和快速型的NO X含量6、使用场函数计算器进行NO含量计算一、利用GAMBIT建立计算模型第1步启动GAMBIT,建立基本结构分析:圆筒燃烧器是一个轴对称的结构,可简化为二维流动,故只要建立轴对称面上的二维结构就可以了,几何结构如图2所示。
(1)建立新文件夹在F盘根目录下建立一个名为combustion的文件夹。
(2)启动GAMBIT(3)创建对称轴①创建两端点。
A(0,0,0),B(2,0,0)②将两端点连成线(4)创建小喷嘴及空气进口边界①创建C、D、E、F、G点②连接AC、CD、DE、DF、FG。
(5)创建燃烧筒壁面、隔板和出口①创建H、I、J、K、L、M、N点(y轴为,z轴为0)。
②将H、I、J、K、L、M、N向Y轴负方向复制,距离为板高度。
③连接GH、HO、OP、PI、IJ、JQ、QR、RK、KL、LS、ST、TM、MN、NB。
Fluent燃烧模型
Rosseland模型是最为简化的辐射模型,只能应用于大尺度辐射计算。其优点是速度最快,需要内存最少。
Discrete Ordinates (DO) Model
DO模型是所有四种模型是最为复杂的辐射模型,从小尺度到大尺度辐射计算都适用,且可计算非-灰度辐射和散射效应,但需要较大计算量。
三、污染模型
NOx模拟
Fluent软件提供了三种NOx形成的模型:Thermal NOx、Prompt NOx和Fuel NOx形成模型。从而可以模拟绝大多数情况下的NOx生成问题。
烟尘模型(Soot Model)
Fluent软件可以考虑单步和两步的烟尘生成问题。烟尘的燃烧由有限速率模型模拟,并考虑了烟尘对辐射吸收的影响。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
非平衡反应模型
层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。
FLUENT软件的燃烧模型介绍
Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍:
二、分散相燃烧模型
除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型:
Fluent燃烧模型
除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型:
在拉格朗日坐标下,模拟分散相(包括固体颗粒/油滴/气泡等)在瞬态和稳态下的运动轨迹
多种球形和非球形粒子的曳力规律
线性分布或Rosin-Rammler方程的粒子大小分布
三、污染模型
NOx模拟
Fluent软件提供了三种NOx形成的模型:Thermal NOx、Prompt NOx和Fuel NOx形成模型。从而可以模拟绝大多数情况下的NOx生成问题。
烟尘模型(Soot Model)
Fluent软件可以考虑单步和两步的烟尘生成问题。烟尘的燃烧由有限速率模型模拟,并考虑了烟尘对辐射吸收的影响。
连续相的湍流效应对粒子传播的影响
分散相的加热/冷却
液滴的汽化和蒸发
燃烧粒子,包括油滴的挥发过程和焦碳的燃烧
连续相与分散相的耦合
模拟油滴在湍流的影响而产生的扩散效应时,FLUENT可以采用粒子云模型和随机轨道模型。
随机轨道模型
该模型利用离散的随机跟踪法模拟瞬态湍流速度脉动对粒子轨迹的影响。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
非平衡反应模型
层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。
纵上所述,我们可以看到,无论在模型数量上,还是在模型先进性上,FLUENT软件提供了远远优于其它商用CFD软件的燃烧模型。例如,在气相燃烧模型上,Star-CD仅仅提供了传统的有限速率模型和PDF模型,而缺乏在航空航天领域燃烧问题中应用最为重要的非平衡火焰模型和预混模型;在分散相模型上,与Star-CD相比,Fluent软件同样提供了更为丰富、更为先进的物理模型。
Fluent多相流模型选择
FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。
fluent燃烧简介
FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
fluent-介绍
想起CFD,人们总会想起FLUENT,丰富的物理模型使其应用广泛,从机翼空气流动到熔炉燃烧,从鼓泡塔到玻璃制造,从血液流动到半导体生产,从洁净室到污水处理工厂的设计,另外软件强大的模拟能力还扩展了在旋转机械,气动噪声,内燃机和多相流系统等领域的应用。
今天,全球数以千计的公司得益于FLUENT的这一工程设计与分析软件,它在多物理场方面的模拟能力使其应用范围非常广泛,是目前功能最全的CFD软件。
FLUENT因其用户界面友好,算法健壮,新用户容易上手等优点一直在用户中有着良好的口碑。
长期以来,功能强大的模块,易用性和专业的技术支持所有这些因素使得FLUENT成为企业选择CFD 软件时的首选。
网格技术,数值技术,并行计算计算网格是任何CFD计算的核心,它通常把计算域划分为几千甚至几百万个单元,在单元上计算并存储求解变量,FLUENT使用非结构化网格技术,这就意味着可以有各种各样的网格单元:二维的四边形和三角形单元,三维的四面体核心单元、六面体核心单元、棱柱和多面体单元。
这些网格可以使用FLUENT的前处理软件GAMBIT自动生成,也可以选择在ICEM CFD工具中生成。
六面体核心网格四边形平铺网格在目前的CFD市场, FLUENT以其在非结构网格的基础上提供丰富物理模型而著称,久经考验的数值算法和鲁棒性极好的求解器保证了计算结果的精度,新的NITA算法大大减少了求解瞬态问题的所需时间,成熟的并行计算能力适用于NT,Linux或Unix平台,而且既适用单机的多处理器又适用网络联接的多台机器。
动态加载平衡功能自动监测并分析并行性能,通过调整各处理器间的网格分配平衡各CPU的计算负载。
并行速度的比较湍流和噪声模型FLUENT的湍流模型一直处于商业CFD软件的前沿,它提供的丰富的湍流模型中有经常使用到的湍流模型、针对强旋流和各相异性流的雷诺应力模型等,随着计算机能力的显著提高,FLUENT已经将大涡模拟(LES)纳入其标准模块,并且开发了更加高效的分离涡模型(DES),FLUENT提供的壁面函数和加强壁面处理的方法可以很好地处理壁面附近的流动问题。
Fluent软件的燃烧模型介绍
FLUENT软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型·有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
∙PDF模型该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。
在该模型中,用概率密度函数PDF来考虑湍流效应。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
∙非平衡反应模型层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。
在模拟富油一侧的火焰时,典型的平衡火焰假设失效。
该模型可以模拟形成Nox的中间产物。
应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。
∙预混燃烧模型该模型专用于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被火焰面隔开。
通过求解反应过程变量来预测火焰面的位置。
湍流效应可以通过层流和湍流火焰速度的关系来考虑。
应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。
Fluent大作业
Fluent大作业——圆筒燃烧器内甲烷燃烧的数值模拟引言:根据公安部消防局的统计数据,2010年因火灾死亡的人数为1205人,其中多数人是因为火灾产生的有毒有害高温气体而死,因此研究火灾中有毒有害气体的分布有着重要意义。
下面以一个简单的模型,对一个圆筒燃烧器内的甲烷和空气的混合物的流动与燃烧过程进行研究,模拟其中的温度场、有害气体的分布情况。
问题描述:长为2m、直径为0.45m的圆筒燃烧器结构如下图所示,燃烧器壁上嵌有三块厚为0.005m,高0.05m的薄板,以利于甲烷与空气的混合。
燃烧火焰为湍流扩散火焰。
在燃烧器中心有一个直径为0.01m、长0.01m、壁厚为0.002m的小喷嘴,甲烷以60m/s的速度从小喷嘴注入燃烧器。
空气从喷嘴周围以0.5m/s的速度进入燃烧器。
总当量比约为0.76(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷口直径的雷诺数约为5.7X103。
图1燃烧器结构使用通用的finite-rate化学模型分析甲烷-空气混合与燃烧过程。
同时假定燃料完全燃烧并转换为CO2和H2O。
反应方程为CH4+2O2→CO2+2H2O反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。
计算结果:图2采用恒定的Cp值(1000J/kg·K)计算的温度分布图3采用mixing-law计算的温度分布从上面两图可以看出,当Cp值恒定为1000J/kg·K时,最高温度超过2900K。
火焰温度的计算结果偏高,可以通过一个更真实的依赖于温度和组分热容模型来修正。
比热对温度和组分的依赖性将对火焰温度的计算结果有着明显的影响。
Mixing-law会得到基于全部组分质量分数加权平均的混合比热。
在Fluent中,还有一个Fluent物性数据库随温度变化的Cp(T)多项式,可以启动组分比热随温度的变化特性。
设置后的计算结果如图2,可以看出最高温度已经降低到大约2200K。
Fluent软件的燃烧模型介绍(精)
Fluent软件的燃烧模型介绍Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
下面对Fluent软件的燃烧模型作一简单介绍:一、气相燃烧模型·有限速率模型这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。
反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。
有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。
应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。
PDF模型该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。
各组分浓度由混合组分分布求得。
PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。
在该模型中,用概率密度函数PDF来考虑湍流效应。
该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型或化学平衡计算来处理,因此比有限速率模型有更多的优势。
应用领域:该模型应用于非预混燃烧(湍流扩散火焰,可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。
非平衡反应模型层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。
在模拟富油一侧的火焰时,典型的平衡火焰假设失效。
该模型可以模拟形成Nox的中间产物。
应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET 的燃烧问题。
预混燃烧模型该模型专用于燃烧系统或纯预混的反应系统。
在此类问题中,充分混合的反应物和反应产物被火焰面隔开。
通过求解反应过程变量来预测火焰面的位置。
湍流效应可以通过层流和湍流火焰速度的关系来考虑。
应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。
FLUENT中NOX模型
17.1.1 Overview and LimitationsNOx emission consists of mostly nitric oxide (NO). Less significant arenitrogen oxide (NO2) and nitrous oxide (N2O). NOx is a precursor forphotochemical smog, contributes to acid rain, and causes ozone depletion. Thus, NOx is a pollutant. The FLUENT NOx model provides a tool to understand the sources of NOx production and to aid in the design of NOx control measures.NOx Modeling in FLUENTThe FLUENT NOx model provides the capability to model thermal, prompt, and fuel NOx formation as well as NOx consumption due to reburning in combustion systems. It uses rate models developed at the Department of Fuel and Energy, The University of Leeds, England as well as from the open literature.To predict NOx emission, FLUENT solves a transport equation for nitric oxide (NO) concentration. With fuel NOx sources, FLUENT solves an additional transport equation for an intermediate species (HCN or NH3). The NOx transport equations are solved based on a given flow field and combustion solution. In other words, NOx is postprocessed from a combustion simulation. It is thus evident that an accurate combustion solution becomes a prerequisite of NOx prediction. For example, thermal NOx production doubles for every 90 K temperature increase when the flame temperature is about 2200 K. Great care must be exercised to provide accurate thermophysical data and boundary condition inputs for the combustion model. Appropriate turbulence, chemistry, radiation and other submodels must be applied.To be realistic, one can only expect results to be as accurate as the input data and the selected physical models. Under most circumstances, NOx variation trends can be accurately predicted but the NOx quantity itself cannot be pinpointed. Accurate prediction of NOx parametric trends can cut down on the number of laboratory tests, allow more design variations to be studied, shorten the design cycle, and reduce product development cost. That is truly the power of the FLUENT NOx model and, in fact, the power of CFD in general.The Formation of NOx in FlamesIn laminar flames, and at the molecular level within turbulent flames, the formation of NOx can be attributed to four distinct chemical kinetic processes: thermal NOx formation, prompt NOx formation, fuel NOx formation, and reburning. Thermal NOx is formed by the oxidation of atmospheric nitrogen present in the combustion air. Prompt NOx is produced by high-speed reactions at the flame front, and fuel NOx is produced by oxidation of nitrogen contained in the fuel. The reburning mechanism reduces the total NOx formation by accounting for the reaction of NO with hydrocarbons. The FLUENT NOx model is able to simulate all four of these processes.Restrictions on NOx Modeling•You must use the segregated solver. The NOx models are not available with either of the coupled solvers.•The NOx models cannot be used in conjunction with the premixed combustion model.17.1.2 Governing Equations for NOx TransportFLUENT solves the mass transport equation for the NO species, taking into account convection, diffusion, production and consumption of NO and related species. This approach is completely general, being derived from the fundamental principle of mass conservation. The effect of residence time in NOx mechanisms, a Lagrangian reference frame concept, is included through the convection terms in the governing equations written in the Eulerian reference frame. For thermal and prompt NOx mechanisms, only the NO species transport equation is needed:(17.1.1)As discussed in Section 17.1.5, the fuel NOx mechanisms are more involved. The tracking of nitrogen-containing intermediate species isspecies important. FLUENT solves a transport equation for the HCN or NH3in addition to the NO species:(17.1.2)(17.1.3), and NO in where , , and are mass fractions of HCN, NH3the gas phase. The source terms , , and are to be determined next for different NOx mechanisms.17.1.3 Thermal NOx FormationThe formation of thermal NOx is determined by a set of highly temperature-dependent chemical reactions known as the extended Zeldovich mechanism. The principal reactions governing the formation of thermal NOx from molecular nitrogen are as follows:(17.1.4)(17.1.5)A third reaction has been shown to contribute, particularly atnear-stoichiometric conditions and in fuel-rich mixtures:(17.1.6)Thermal NOx Reaction RatesThe rate constants for these reactions have been measured in numerous experimental studies [ 21, 70, 162], and the data obtained from these studies have been critically evaluated by Baulch et al. [ 11] and Hanson and Salimian [ 88]. The expressions for the rate coefficients for Reactions 17.1-4- 17.1-6used in the NOx model are given below. These were selected based on the evaluation of Hanson and Salimian [ 88].(17.1.7)(17.1.8)(17.1.9)(17.1.10)(17.1.11)(17.1.12)In the above expressions, k1, k2, and k3 are the rate constants for the forward reactions 17.1-4- 17.1-6, respectively, and k-1, k -2, and k-3are the corresponding reverse rates.The net rate of formation of NO via Reactions 17.1-4- 17.1-6 is given by =- (17.1.13)where all concentrations have units of gmol/m 3.In order to calculate the formation rates of NO and N, the concentrations of O, H, and OH are required.The Quasi-Steady Assumption for [N]The rate of formation of NOx is significant only at high temperatures (greater than 1800 K) because fixation of nitrogen requires the breaking of the strong N2triple bond (dissociation energy of 941 kJ/gmol). This effect is represented by the high activation energy of Reaction 17.1-4, which makes it the rate-limiting step of the extended Zeldovich mechanism. However, the activation energy for oxidation of N atoms is small. When there is sufficient oxygen, as in a fuel-lean flame, the rate of consumption of free nitrogen atoms becomes equal to the rate of its formation and therefore a quasi-steady state can be established. This assumption is valid for most combustion cases except in extremelyfuel-rich combustion conditions. Hence the NO formation rate becomes(17.1.14)Sensitivity of Thermal NOx to TemperatureFrom Equation 17.1-14it is clear that the rate of formation of NO will increase with increasing oxygen concentration. It also appears that thermal NO formation should be highly dependent on temperature but independent of fuel type. In fact, based on the limiting rate described in Equation 17.1-7, thermal NOx production rate doubles for every 90 K temperature increase beyond 2200 K.Decoupling NOx and Flame CalculationsIn order to solve Equation 17.1-14, concentration of O atoms and the free radical OH will be required in addition to concentration of stablespecies (i.e., O2, N2). Following the suggestion by Zeldovich, the thermalNOx formation mechanism can be decoupled from the main combustion process, by assuming equilibrium values of temperature, stable species, O atoms, and OH radicals. However, radical concentrations, O atoms in particular, are observed to be more abundant than their equilibrium levels. The effect of partial equilibrium O atoms on NOx formation rate has been investigated [ 159] during laminar methane-air combustion. The results of these investigations indicate that the level of NOx emission can beunderpredicted by as much as 28% in the flame zone, when assuming equilibrium O-atom concentrations.Determining O Radical ConcentrationThere has been little detailed study of radical concentration in industrial turbulent flames, but work [ 56] has demonstrated the existence of this phenomenon in turbulent diffusion flames. Presently, there is no definitive conclusion as to the effect of partial equilibrium on NOx formation rates in turbulent flames. Peters and Donnerhack [ 178] suggest that partial equilibrium radicals can account for no more than a 25% increase in thermal NOx and that fluid dynamics has the dominant effect on NOx formation rate. Bilger et al. [ 18] suggest that in turbulent diffusion flames, the effect of O atom overshoot on NOx formation rate is very important.In order to overcome this possible inaccuracy, one approach would be to couple the extended Zeldovich mechanism with a detailed hydrocarbon combustion mechanism involving many reactions, species, and steps. This approach has been used previously for research purposes [ 156]. However, long computer processing time has made the method economically unattractive and its extension to turbulent flows difficult.To determine the O radical concentration, FLUENT uses one of three approaches--the equilibrium approach, the partial equilibrium approach, and the predicted concentration approach--in recognition of the ongoing controversy discussed above.Method 1: Equilibrium ApproachThe kinetics of the thermal NOx formation rate is much slower than the main hydrocarbon oxidation rate, and so most of the thermal NOx is formed after completion of combustion. Therefore, the thermal NOx formation process can often be decoupled from the main combustion reaction mechanism and the NOx formation rate can be calculated by assuming equilibration of the combustion reactions. Using this approach, the calculation of the thermal NOx formation rate is considerably simplified. The assumption of equilibrium can be justified by a reduction in the importance of radical overshoots at higher flame temperature [ 55]. According to Westenberg [ 265], the equilibrium O-atom concentration can be obtained from the expression(17.1.15) With k p included, this expression becomes(17.1.16)where T is in Kelvin.Method 2: Partial Equilibrium ApproachAn improvement to method 1 can be made by accounting for third-bodydissociation-recombination process:reactions in the O2(17.1.17) Equation 17.1-16is then replaced by the following expression [ 255]:(17.1.18)which generally leads to a higher partial O-atom concentration. Method 3: Predicted O ApproachWhen the O-atom concentration is well-predicted using an advanced chemistry model (such as the flamelet submodel of the non-premixed model), [O] can be taken simply from the local O-species mass fraction.Determining OH Radical ConcentrationFLUENT uses one of three approaches to determine the OH radical concentration: the exclusion of OH from the thermal NOx calculation approach, the partial equilibrium approach, and the use of the predicted OH concentration approach.Method 1: Exclusion of OH ApproachIn this approach, the third reaction in the extended Zeldovich mechanism (Equation 17.1-6) is assumed to be negligible through the following observation:This assumption is justified for lean fuel conditions and is a reasonable assumption for most cases.Method 2: Partial Equilibrium ApproachIn this approach, the concentration of OH in the third reaction in the extended Zeldovich mechanism (Equation 17.1-6) is given by [ 12, 264](17.1.19)Method 3: Predicted OH ApproachAs in the predicted O approach, when the OH radical concentration is well-predicted using an advanced chemistry model such as the flamelet model, [OH] can be taken directly from the local OH species mass fraction.SummaryTo summarize, thermal NOx formation rate is predicted by Equation 17.1-14. The O-atom concentration needed in Equation 17.1-14 is computed using Equation 17.1-16 for the equilibrium assumption, usingEquation 17.1-18 for a partial equilibrium assumption, or using the local O-species mass fraction. You will make the choice during problem setup. In terms of the transport equation for NO (Equation 17.1-1), the NO source term due to thermal NOx mechanisms is(17.1.20)where is the molecular weight of NO, and is computed from Equation 17.1-14.17.1.4 Prompt NOx FormationIt is known that during combustion of hydrocarbon fuels, the NOx formation rate can exceed that produced from direct oxidation of nitrogen molecules (i.e., thermal NOx).Where and When Prompt NOx OccursThe presence of a second mechanism leading to NOx formation was first identified by Fenimore [ 63] and was termed ``prompt NOx''. There is good evidence that prompt NOx can be formed in a significant quantity in some combustion environments, such as in low-temperature, fuel-rich conditions and where residence times are short. Surface burners, staged combustion systems, and gas turbines can create such conditions [ 6].At present the prompt NOx contribution to total NOx from stationary combustors is small. However, as NOx emissions are reduced to very low levels by employing new strategies (burner design or furnace geometry modification), the relative importance of the prompt NOx can be expected to increase.Prompt NOx MechanismPrompt NOx is most prevalent in rich flames. The actual formation involves a complex series of reactions and many possible intermediate species. The route now accepted is as follows:(17.1.21)(17.1.22)(17.1.23)(17.1.24)A number of species resulting from fuel fragmentation have been suggested as the source of prompt NOx in hydrocarbon flames (e.g., CH, CH, C, C2H), but the major contribution is from CH (Equation 17.1-21) and CH 2, via2(17.1.25)The products of these reactions could lead to formation of amines and cyano compounds that subsequently react to form NO by reactions similar to those occurring in oxidation of fuel nitrogen, for example:(17.1.26)Factors of Prompt NOx FormationPrompt NOx formation is proportional to the number of carbon atoms present per unit volume and is independent of the parent hydrocarbon identity. The quantity of HCN formed increases with the concentration of hydrocarbon radicals, which in turn increases with equivalence ratio. As the equivalence ratio increases, prompt NOx production increases at first, then passes a peak, and finally decreases due to a deficiency in oxygen.Primary ReactionReaction 17.1-21 is of primary importance. In recent studies [ 201], comparison of probability density distributions for the location of the peak NOx with those obtained for the peak CH have shown close correspondence, indicating that the majority of the NOx at the flame base is prompt NOx formed by the CH reaction. Assuming that Reaction 17.1-21 controls the prompt NOx formation rate,(17.1.27)Modeling StrategyThere are, however, uncertainties about the rate data for the above reaction. From Reactions 17.1-21- 17.1-25, it can be concluded that the prediction of prompt NOx formation within the flame requires coupling ofthe NOx kinetics to an actual hydrocarbon combustion mechanism. Hydrocarbon combustion mechanisms involve many steps and, as mentioned previously, are extremely complex and costly to compute. In the present NOx model, a global kinetic parameter derived by De Soete [ 223] is used. De Soete compared the experimental values of total NOx formation rate with the rate of formation calculated by numerical integration of the empirical overall reaction rates of NOx and N2formation. He showed that overall prompt formation rate can be predicted from the expression=(17.1.28)In the early stages of the flame, where prompt NOx is formed underfuel-rich conditions, the O concentration is high and the N radical almost exclusively forms NOx rather than nitrogen. Therefore, the prompt NOx formation rate will be approximately equal to the overall prompt NOx formation rate:(17.1.29)For C2H4(ethylene)-air flames,kpr=Ea= 60 kcal/gmolwhere a is the oxygen reaction order, R is the universal gas constant, and p is pressure (all in SI units). The rate of prompt NOx formation isfound to be of the first order with respect to nitrogen and fuel concentration, but the oxygen reaction order, a, depends on experimental conditions.Rate for Most Hydrocarbon FuelsEquation 17.1-29 was tested against the experimental data obtained by Backmier et al. [ 4] for different mixture strengths and fuel types. The predicted results indicated that the model performance declined significantly under fuel-rich conditions and for higher hydrocarbon fuels. To reduce this error and predict the prompt NOx adequately in all conditions, the De Soete model was modified using the available experimental data. A correction factor, f, was developed, which incorporates the effect of fuel type, i.e., number of carbon atoms, and air-to-fuel ratio for gaseous aliphatic hydrocarbons. Equation 17.1-29 now becomes(17.1.30) so that the source term due to prompt NOx mechanism is(17.1.31)In the above equations,(17.1.32)n is the number of carbon atoms per molecule for the hydrocarbon fuel,and is the equivalence ratio. The correction factor is a curve fit for experimental data, valid for aliphatic alkane hydrocarbon fuels (C n H2 ) and for equivalence ratios between 0.6 and 1.6. For values outside n+2the range, the appropriate limit should be used. Values of k' pr and E'are selected in accordance with reference [ 58].aHere the concept of equivalence ratio refers to an overall equivalence ratio for the flame, rather than any spatially varying quantity in the flow domain. In complex geometries with multiple burners this may lead to some uncertainty in the specification of . However, since the contribution of prompt NOx to the total NOx emission is often very small, results are not likely to be biased significantly.Oxygen Reaction OrderOxygen reaction order depends on flame conditions. According to De Soete [ 223], oxygen reaction order is uniquely related to oxygen mole fraction in the flame:(17.1.33) 17.1.5 Fuel NOx FormationFuel-Bound N 2It is well known that nitrogen-containing organic compounds present in liquid or solid fossil fuel can contribute to the total NOx formed during the combustion process. This fuel nitrogen is a particularly important source of nitrogen oxide emissions for residual fuel oil and coal, which typically contain 0.3-2% nitrogen by weight. Studies have shown that most of the nitrogen in heavy fuel oils is in the form of heterocycles and it is thought that the nitrogen components of coal are similar [ 107]. Itis believed that pyridine, quinoline, and amine type heterocyclic ring structures are of importance.Reaction PathwaysThe extent of conversion of fuel nitrogen to NOx is dependent on the local combustion characteristics and the initial concentration ofnitrogen-bound compounds. Fuel-bound nitrogen-containing compounds are released into the gas phase when the fuel droplets or particles are heated during the devolatilization stage. From the thermal decomposition of these compounds, (aniline, pyridine, pyrroles, etc.) in the reaction zone,, N, CN, and NH can be formed and converted to radicals such as HCN, NH3NOx. The above free radicals (i.e., secondary intermediate nitrogen compounds) are subject to a double competitive reaction path. This chemical mechanism has been subject to several detailedinvestigations [ 157]. Although the route leading to fuel NOx formation and destruction is still not completely understood, different investigators seem to agree on a simplified model:Recent investigations [ 94] have shown that hydrogen cyanide appears to be the principal product if fuel nitrogen is present in aromatic or cyclic form. However, when fuel nitrogen is present in the form of aliphatic amines, ammonia becomes the principal product of fuel nitrogen conversion.In the FLUENT NOx model, sources of NOx emission for gaseous, liquid and coal fuels are considered separately. The nitrogen-containingonly. Two transport equations intermediates are grouped to be HCN or NH3( 17.1-1and 17.1-2or 17.1-3) are solved. The source terms , , and are to be determined next for different fuel types. Discussionsto follow refer only to fuel NOx sources for . Contributions from thermal and prompt mechanisms have been discussed in previous sections.Fuel NOx from Gaseous and Liquid FuelsThe fuel NOx mechanisms for gaseous and liquid fuels are based on different physics but the same chemical reaction pathways.Fuel NOx from Intermediate Hydrogen Cyanide (HCN)When HCN is used as the intermediate species:The source terms in the transport equations can be written as follows:(17.1.34)(17.1.35) HCN Production in a Gaseous FuelThe rate of HCN production is equivalent to the rate of combustion of the fuel:(17.1.36)where = source of HCN (kg/m 3-s)= mean limiting reaction rate of fuel (kg/m 3-s)= mass fraction of nitrogen in the fuelThe mean limiting reaction rate of fuel, , is calculated from the Magnussen combustion model, so the gaseous fuel NOx option is available only when the generalized finite-rate model is used.HCN Production in a Liquid FuelThe rate of HCN production is equivalent to the rate of fuel release into the gas phase through droplet evaporation:(17.1.37)where = source of HCN (kg/m 3-s)= rate of fuel release from theliquid droplets to the gas (kg/s)= mass fraction of nitrogen in the fuelV= cell volume (m 3)HCN ConsumptionThe HCN depletion rates from reactions (1) and (2) in the above mechanism are the same for both gaseous and liquid fuels, and are given by De Soete [ 223] as(17.1.38)(17.1.39)where= conversion rates of HCN (s -1),T= instantaneous temperature (K)X= mole fractionsA=13.5 s -1A= 3.0 s -12E= 67 kcal/gmol1E= 60 kcal/gmol2The oxygen reaction order, a, is calculated from Equation 17.1-33.Since mole fraction is related to mass fraction through molecular weights of the species ( M w, i) and the mixture ( M w, m),(17.1.40)HCN Sources in the Transport EquationThe mass consumption rates of HCN which appear in Equation 17.1-34are calculated as(17.1.41)(17.1.42)where = consumption rates of HCN inreactions 1 and 2 respectively (kg/m 3-s) p= pressure (Pa)= mean temperature (K)R= universal gas constantNOx Sources in the Transport EquationNOx is produced in reaction 1 but destroyed in reaction 2. The sources for Equation 17.1-35 are the same for a gaseous as for a liquid fuel, and are evaluated as follows:(17.1.43)(17.1.44))Fuel NOx from Intermediate Ammonia (NH3is used as the intermediate species:When NH3The source terms in the transport equations can be written as follows:(17.1.45)(17.1.46)Production in a Gaseous FuelNH3The rate of NHproduction is equivalent to the rate of combustion of3the fuel:(17.1.47)(kg/m 3-s)where = source of NH3= mean limiting reaction rate of fuel (kg/m 3-s)= mass fraction of nitrogen in the fuelThe mean limiting reaction rate of fuel, , is calculated from the Magnussen combustion model, so the gaseous fuel NOx option is available only when the generalized finite-rate model is used.NHProduction in a Liquid Fuel3production is equivalent to the rate of fuel release into The rate of NH3the gas phase through droplet evaporation:(17.1.48)where = source of NH(kg/m 3-s)3= rate of fuel release from theliquid droplets to the gas (kg/s)= mass fraction of nitrogen in the fuelV= cell volume (m 3)ConsumptionNH3depletion rates from reactions (1) and (2) in the above mechanism The NH3are the same for both gaseous and liquid fuels, and are given by De Soete [ 223] as(17.1.49)(17.1.50)where, = conversion rates of NH3(s -1)T= instantaneous temperature (K)X= mole fractionsA1=4.0 s -1A2=1.8 s -1E1= 133.9 kJ/gmolE2= 113 kJ/gmolThe oxygen reaction order, a, is calculated from Equation 17.1-33. Since mole fraction is related to mass fraction through molecular weights of the species ( M i) and the mixture ( M m),(17.1.51)NH3Sources in the Transport EquationThe mass consumption rates of NH3which appear in Equation 17.1-45are calculated as(17.1.52)(17.1.53)where = consumption rates of NHin3reactions 1 and 2 respectively (kg/m 3-s) p= pressure (Pa)= mean temperature (K)R= universal gas constantNOx Sources in the Transport EquationNOx is produced in reaction 1 but destroyed in reaction 2. The sources for Equation 17.1-46 are the same for a gaseous as for a liquid fuel, and are evaluated as follows:(17.1.54)(17.1.55)Fuel NOx from CoalNitrogen in Char and in VolatilesFor the coal it is assumed that fuel nitrogen is distributed between the volatiles and the char. Since there is no reason to assume that N is equally distributed between the volatiles and the char, we have allowed the fraction of N in the volatiles and the char to be specified separately.When HCN is used as the intermediate species, two variations of fuel NOxis used as the intermediate mechanisms for coal are included. When NH3species, two variations of fuel NOx mechanisms for coal are included, much like in the calculation of NOx production from the coal via HCN. It is assumed that fuel nitrogen is distributed between the volatiles and the char.Coal Fuel NOx Scheme A [ 222]The first HCN mechanism assumes that all char N converts to HCN which is then converted partially to NO [ 222]. The reaction pathway is described as follows:With the first scheme, all char-bound nitrogen converts to HCN. Thus,(17.1.56)(17.1.57)where S c= char burnout rate (kg/s)= mass fraction of nitrogen in charV= cell volume (m 3)Coal Fuel NOx Scheme B [ 144]The second HCN mechanism assumes that all char N converts to NO directly [ 144]. The reaction pathway is described as follows:According to Lockwood [ 144], the char nitrogen is released to the gas phase as NO directly, mainly as a desorption product from oxidized char nitrogen atoms. If this approach is followed, then(17.1.58)(17.1.59)Which HCN Scheme to Use?The second HCN mechanism tends to produce more NOx emission than the first. In general, however, it is difficult to say which one outperforms the other.The source terms for the transport equations are(17.1.60)(17.1.61)Source contributions , , , and are described previously. Therefore, only the heterogeneous reaction source,, the char NOx source, , and the HCN production source, , need to be considered.NOx Reduction on Char SurfaceThe heterogeneous reaction of NO reduction on the char surface has been modeled according to reference [ 134]:(17.1.62)where =rate of NO reduction (gmol/m -s)= mean NO partial pressure (atm)E= 34 kcal/gmol3A=3230 gmol/m -s-atm= mean temperature (K)The partial pressure is calculated using Dalton's law:The rate of NO consumption due to reaction 3 will then bewhere = BET surface area (m 2/kg)c= concentration of particles (kg/m 3)s= NO consumption (kg/m 3-s)BET Surface AreaThe heterogeneous reaction involving char is mainly an adsorption process whose rate is directly proportional to the pore surface area. The pore surface area is also known as the BET surface area due to the researchers who pioneered the adsorption theory (Brunauer, Emmett and Teller [ 28]). For commercial adsorbents, the pore (BET) surface areas range from 100,000 to 2 million square meters per kilogram, depending on the microscopic structure. For coal, the BET area is typically 25,000 m 2/kg which is used as the default in FLUENT. The overall source of HCN ( ) is a combination of volatile contribution ( ) and char contribution ( ):HCN from VolatilesThe source of HCN from the volatiles is related to the rate of volatile release:。
fluent 软件介绍
百科名片Fluent是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%,凡是和流体、热传递和化学反应等有关的工业均可使用。
它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,在航空航天、汽车设计、石油天然气和涡轮机设计等方面都有着广泛的应用。
简介Fluent算例CFD商业软件FLUENT,是通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。
由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。
灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。
基本特点FLUENT软件具有以下特点:FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法;定常/非定常流动模拟,而且新增快速非定常模拟功能;Fluent 前处理网格划分FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。
网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。
其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题;FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。
值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术;FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的;FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。
湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。
fluent燃烧说明介绍
FLUENT燃烧简介FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。
1.1 FLUENT燃烧模拟方法概要燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。
FLUENT可以模拟宽广范围内的燃烧问题。
然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。
FLUENT在模拟燃烧中的应用可如下图所示:图 1 FLUENT模拟过程中所需的物理模型1.1.1 气相燃烧模型一般的有限速率形式(Magnussen模型)守恒标量的PDF模型(单或二组分混合分数)层流火焰面模型(Laminar flamelet model)Zimount 模型1.1.2 离散相模型煤燃烧与喷雾燃烧1.1.3 热辐射模型DTRM,P-1,Rosseland 和Discrete Ordinates 模型1.1.4 污染物模型NOx模型,烟(Smoot)模型2.1气相燃烧模型·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下:有限速率燃烧模型---预混、部分预混和扩散燃烧混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧反应进度方法(Zimont模型)---预混燃烧混合物分数和反应进度方法的结合---部分预混燃烧2.2.1 有限速率模型化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。
求解积分的输运方程,得到每种组分的时均质量分数值,如下:-----(1)其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率:-----(2)-----(3)计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。
有限速率模型的有缺点:优点:适用于预混、部分预混和扩散燃烧,简单直观;缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。
fluent教程 第五章,燃烧模拟解析
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
燃烧模拟
广泛应用与均相和非均相燃 烧过程模拟
燃烧炉 锅炉 加热器 燃气轮机 火箭发动机 流场流动特性及其混合特 性 温度场 组分浓度场 颗粒和污染物排放
Temperature in a gas furnace
求解内容
生成新的混合物. 改变已有混合物的物性/化学反应.
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
有限速率模型小节
优点:
可以应用于nonpremixed, partially premixed和premixed combustion 简单、直观 应用广泛 不适合混合速率与化学反应动力学时间尺度相当时候的化学反应 (要 求 Da >>1). 没有严格考虑湍流-化学反应之间的相互作用问题 不能考虑中间产物或组分、不能考虑分裂影响. 模型常数不确定, 特别是用于计算多个化学反应的时候尤为如此,模 型常数通用性较差。.
计算流体与传热传质
热科学与能源工程系 2003年10月
FLUENT中组分输运及化学反应 (燃烧)模拟
Temperature in a gas furnace
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
概要
应用 燃烧模拟简介 化学动力学 气相燃烧模型 稀疏相燃烧模型 污染物排放模拟 燃烧数值模拟步骤介绍
CO2 mass fraction
Stream function
©燃烧
计算流体与传热传质
基于FLUENT的火化机污染物排放数值模以
环 境 工 程
182
2020 年第 38 卷增刊
燃料的 双 燃 烧 室 火 化 炉 污 染 物 排 放 情 况。 Nobuo
等
[ 5]
探究了采用燃油、电和生物质气化气 3 种不同燃
料的双燃烧室火化 炉 火 化 后 污 染 物 排 放 的 种 类 及 对
环境 的 影 响。 2016 年, Xue 等
程也 涉 及 气 液 固 三 相,实 际 燃 烧 十 分 复 杂。 因 此,本
研究对燃烧物组分采取一定程度的等效简化,同时将
燃烧物定义为多孔介质区。
1. 1 燃烧物组分模型
根据人体 组 成 学 的 测 量 数 据, 标 准 人 体 由 65%
水分、15% 脂 类、 14% 蛋 白 质 和 6% 骨 骼 四 部 分 构
基金项目:民政部一零一研究所基本科研业务费项目( 118011000000160004) 。
第一作者:郭婵( 1988-) ,女,硕士,主要研究方向为热工分析。 chanchan0407@ 126. com
∗通信作者:张永学( 1977-) ,男,教授,博士生导师,主要研究方向为水力机械流动理论。 zhyx@ cup. edu. cn
替代前 / %
18
碳
氧
比了不同年份、省份的污染物排放。 国内外学者的研
表 1 替代前后物性对比
物性
CH 2 O
灰分
总计
表 3 燃烧物组分模型
人体
质量 / kg
燃油
含量 / %
39. 00
65
3. 48
质量 / kg
含量 / %
—
3. 48
4. 97
—
5. 8
6. 42
FLUENT软件的应用及其污染物生成模型分析_方海鑫
rian/ Lagrangian 方法 , 在 3 种不同工况下, 对 200 MW 四角切向燃烧煤粉锅炉炉内的流动、 传热及燃烧进 行了数值模拟。模拟结果表明 : 炉内最高温度出现 在燃烧器区域, 随着炉 膛高度的增加 , 温度逐 渐降 低。整个炉膛空间存在旋转流场 , 从下至上旋转强 度从弱到强, 然后再逐渐减弱 , 直到炉膛出口仍存在 32
工
业
ห้องสมุดไป่ตู้
炉
第 26 卷
第3期
2004 年 5 月
NOx 的输运方程通过给定的流场和燃烧结果来解。 也就是说 NOx 的预测是燃烧模拟的后处理过程, 因 此准确地燃烧模拟结果是 NOx 预测的前提, 必须提 供给燃烧模型准确的热物理参数和边界条件以及必 须采用湍流、 化学、 辐射和其他子模型。然而, 在大 多数情况下 , NOx 的变化趋势能够准确地被预测, 但 是 NOx 的量不能精确的预测。这主要是因 FLUENT 软件所使用的湍流反应模型存在较大的局限性。 目前的湍流反应模型有直接模拟 ( DNS) 、 大涡 模拟 ( LES) 、 概率密度函数 ( PDF) 输运方程模拟、 条 件矩封闭 ( CMC) 模型、 简化 PDF 模型、 EBU- Arrhe nius( E- A) 模型等。DNS、 LES 和 PDF 方程模型比较 严格、 合理, 但是计算量太大, 目前难以直接应用于 工程中大尺寸的复杂流动中 , 只能作为基础研究手 段。而 CMC 模型处于发展过程中, 尚不成熟。E- A 模 型和简化 PDF 模型 ( 包括快速反应和有限反应的简 化 PDF 模型 ) 被 广泛用于商业软件中 , 分别 用来预 测工程装置中复杂流动的湍流燃烧和 NO 生成
收稿日期 : 2004- 01- 19 基金项目 : 国家自然科学基金资助项目 ( 50276017) ; 广东省自然 科学基金资助项目 ( 000475) . 作者简介 : 方海鑫 ( 1979 ) , 男 , 硕士研究生 , 研究方向 为材料装 备及计算机应用 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1.1 Overview and Limitations
NOx emission consists of mostly nitric oxide (NO). Less significant are
nitrogen oxide (NO
2) and nitrous oxide (N
2
O). NOx is a precursor for
photochemical smog, contributes to acid rain, and causes ozone depletion. Thus, NOx is a pollutant. The FLUENT NOx model provides a tool to understand the sources of NOx production and to aid in the design of NOx control measures.
NOx Modeling in FLUENT
The FLUENT NOx model provides the capability to model thermal, prompt, and fuel NOx formation as well as NOx consumption due to reburning in combustion systems. It uses rate models developed at the Department of Fuel and Energy, The University of Leeds, England as well as from the open literature.
To predict NOx emission, FLUENT solves a transport equation for nitric oxide (NO) concentration. With fuel NOx sources, FLUENT solves an additional transport equation for an intermediate species (HCN or NH
3
). The NOx transport equations are solved based on a given flow field and combustion solution. In other words, NOx is postprocessed from a combustion simulation. It is thus evident that an accurate combustion solution becomes a prerequisite of NOx prediction. For example, thermal NOx production doubles for every 90 K temperature increase when the flame temperature is about 2200 K. Great care must be exercised to provide accurate thermophysical data and boundary condition inputs for the combustion model. Appropriate turbulence, chemistry, radiation and other submodels must be applied.
To be realistic, one can only expect results to be as accurate as the input data and the selected physical models. Under most circumstances, NOx variation trends can be accurately predicted but the NOx quantity itself cannot be pinpointed. Accurate prediction of NOx parametric trends can cut down on the number of laboratory tests, allow more design variations to be studied, shorten the design cycle, and reduce product development cost. That is truly the power of the FLUENT NOx model and, in fact, the power of CFD in general.
The Formation of NOx in Flames
In laminar flames, and at the molecular level within turbulent flames, the formation of NOx can be attributed to four distinct chemical kinetic processes: thermal NOx formation, prompt NOx formation, fuel NOx formation, and reburning. Thermal NOx is formed by the oxidation of atmospheric nitrogen present in the combustion air. Prompt NOx is produced by high-speed reactions at the flame front, and fuel NOx is produced by oxidation of nitrogen contained in the fuel. The reburning mechanism reduces the total NOx formation by accounting for the reaction of NO with hydrocarbons. The FLUENT NOx model is able to simulate all four of these processes.
Restrictions on NOx Modeling
•You must use the segregated solver. The NOx models are not available with either of the coupled solvers.
•The NOx models cannot be used in conjunction with the premixed combustion model.
17.1.2 Governing Equations for NOx Transport
FLUENT solves the mass transport equation for the NO species, taking into account convection, diffusion, production and consumption of NO and related species. This approach is completely general, being derived from the fundamental principle of mass conservation. The effect of residence time in NOx mechanisms, a Lagrangian reference frame concept, is included through the convection terms in the governing equations written in the Eulerian reference frame. For thermal and prompt NOx mechanisms, only the NO species transport equation is needed:
(17.1.1)
As discussed in Section 17.1.5, the fuel NOx mechanisms are more involved. The tracking of nitrogen-containing intermediate species is
species important. FLUENT solves a transport equation for the HCN or NH
3
in addition to the NO species:。