几何综合1

合集下载

2023年数学中考试题精选:几何综合证明(一)

2023年数学中考试题精选:几何综合证明(一)

1.(2023.营口24题)在平行四边形ABCD中,∠ADB=90°,点E在CD 上,点G在AB上,点F在BD的延长线上,连接EF,DG, ∠FED=∠ADG,ADBD =DG EF=k.(1)如图1,当k=1时,请用等式表示线段AG与线段DF的数量关系________;(2)如图2,当k=√(3)时,写出线段AD,DE和DF之间的数量关系,并说明理由;(3)在(2)的条件下,当点G是AB的中点时,连接BE,求tan∠EBF的值2.(2023.本溪铁岭辽阳25题)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF 的数量关系;(2)如图2,当点D在线段AB上时,求证:CG+BD=√2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.3.(2023.大连25题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质。

已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折,同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”补足探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.4.(2023.牡丹江26题)平行四边形ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.(1)当点E在线段BC上,∠ABC=45°时,如图1,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图2,当点E在线段CB延长线上,∠ABC=135°时,如图3,请猜想并直接写出线段AE,EC,BF的数量关系;(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE=______.5.(2023.贵州省25题)如图1,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图2,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为______度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图3,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD将于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.6.(2023.沈阳24题)如图1.在平行四边形纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将平行四边形ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C`,D`,射线C`E与射线AD将于点F.(1)求证:AF=EF;(2)如图2,当EF⊥AF时,DF的长为______;(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM 交C`D`于点N,连接AN,EN,求△ANE的面积。

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义)➢ 课前预习1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为.2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表达式为 .3.如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为.第 3 题图第 4 题图4.如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B .(1) 设点 A 的横坐标为 t ,则点 A 的坐标为,点 B的坐标为 ,线段 AB 的长为;(用含 t的式子表示)(2) 若 AB =4,则点 A 的坐标是.➢ 知识点睛1. 一次函数与几何综合的处理思路:从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题.2. 函数与几何综合问题中常见转化方式:(1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段长,结合几何特征利用线段长列方程;(2) 研究几何特征,考虑线段间关系,通过设线段长进而表达点坐标,将点坐标代入函数表达式列方程.表达线段长:横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.1➢ 精讲精练1.如图,直线 y = - 3x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C4是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为.第 1 题图第 2 题图2.如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 .3.如图,直线l :y = 3x + 6 与 y 轴相交于点 N ,直线l :y = kx -31 42与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为.4.如图,一次函数 y = 1x + 2 的图象与 y 轴交于点 A ,与正比例3函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为.5. 如图,点A,B 的坐标分别为(-8,0),(0,4),点C(a,0)为x轴上一个动点,过点C 作x 轴的垂线,交直线AB 于点D,若CD=5,则a 的值为.6.如图,直线y=kx+6 与x 轴、y 轴分别交于点A,B,点A 的坐标为(6,0),点C 的坐标为(4,0).若点P 是直线y=kx+6 上的一个动点,当点P 的坐标为时,△OPC 的面积为4.7.如图,直线y =-1x +b 与x 轴、y 轴分别交于点A,B,与直2线y=x 交于点M,点M 的横坐标为2,点C 为线段AM 上一点,过点C 作x 轴的垂线,垂足为点D,交直线y=x 于点E.若ED=4CD,则点E 的坐标为.8.如图,直线l1:y=2x+1 与直线l2:y=mx+4 相交于点P(1,b),垂直于x 轴的直线x=a 与直线l1,l2 分别交于点A,B,若线段AB 的长为2,则a 的值为.9.如图,直线AB:y=-x+20 与y 轴交于点A,与直线OB:y =1 x 3交于点B.点C 为线段OB 上一点,过点C 作y 轴的平行线交直线AB 于点D,向y 轴作垂线,垂足为点E.若DC=2CE,则点C 的坐标为.10.如图,在平面直角坐标系中,点A,C 和B,D 分别在直线y=1x+3和x 轴上,若△OAB,△BCD 都是等腰直角三角形,2∠OAB=∠BCD=90°,则点C 的坐标为.11.如图,直线l1:y 3x 与直线l2:y=-x+7 相交于点A.点P 4在x 轴正半轴上,过点P 作x 轴的垂线,与直线l1,l2 分别交于点B,C.设点P 的横坐标为t.(1)当t=1 时,求线段BC 的长;(2)用含t 的式子表达BC 的长;(3)若三个点B,C,P 中恰有一点是其他两点所连线段的中点,则称B,C,P 三点为“共谐点”.请直接写出使得B,C,P 三点成为“共谐点”的t 的值.⎨ 【参考答案】➢ 课前预习1. y = 2x - 52. y = -2x + 63. y = x + 24. (1)(t ,3t ),(t ,t ),2t(2)(2,6)➢ 精讲精练1. y = 1x - 222. 63. y = - 3x - 32 4. - 13 5. 2 或-186. (4,2)或(8,-2)7. (4,4)8. 5 或 13 3 9. (6,2) 10. (30,18) 11. (1) BC =21;4 ⎧- 7t + 7(0 < t ≤ 4) (2) BC = ⎪4 ;7 ⎪ t - 7(t > 4) ⎩ 4(3)当 t 的值为14 ,56或 28 时,B ,C ,P 三点成为“共5 11谐点”⎪。

第10讲 几何综合一-完整版

第10讲 几何综合一-完整版

第十讲几何综合一内容概述复杂的长度、角度计算;复杂的直线形比例关系,其中包括平行线分线段成比例及相似三角形的相关知识,具有一定综合性的直线形计算问题.典型问题兴趣篇:1.图10-1中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a=2厘米,b=4厘米,c=5厘米,求图形的面积.答案:35平方厘米【解析】因为g=a+c+e=2+5+e=7+e,但g最大只能是8厘米,所以g=8厘米,e=l厘米.观察图形可知,h-b=f-d.而b=4厘米,代入有:h-4 =f-d.而d、f、h要从3厘米、6厘米、7厘米中选择,所以h=7厘米,f=6厘米,d=3厘米.作辅助线把图形分割成三个长方形①、②、③.如图所示,所以①的面积为a×b=2×4=8(平方厘米),②的面积为d×e=3×1=3(平方厘米),③的面积为g ×(f-d)=8×(6-3)=24(平方厘米).因此整个图形的总面积为24+8+3=35(平方厘米).2.如图10-2所示,∠1+∠2+∠3+∠4+∠5+∠6等于多少度?答案:360°【解析】解法一:这个图形中,六个三角形围着一个处于中心的六边形,如图所示,∠1和六边形的内角∠7互成补角.类似地,可以发现,∠2、∠3、∠4,∠5、∠6也分别和∠8、∠9、∠10、∠11、∠12互成补角,并且它们对应的内角各不相同.由于∠1和六边形的内角∠7互成补角,所以∠1 =180°-∠7.类似地,有∠2=180°-∠8,∠3=180°-∠9,∠4=180°-∠10,∠5=180°-∠11,∠6=180°-∠12.所以∠1+∠2+∠3+∠4+∠5+∠6=180°×6-(∠7+∠8+∠9+∠10+∠11+∠12)=180°×6 -180°×(6-2)=360°.解法二:任意多边形的外角和为360°.通过观察可以看出,∠1、∠2、∠3、∠4、∠5、∠6恰为中间六边形的外角和,因此∠l+∠2+∠3+∠4+∠5+∠6等于360°.3.如图10-3,平行四边形ABCD的周长为75厘米.以BC为底时高是14厘米,以CD为底时高是16厘米.求平行四边形ABCD的面积.答案:280平方厘米【解析】平行四边形的面积等于底乘以高,所以底边BC和CD之比就等于它们各自对应的高的反比.由此可知底边的倍数关系为147168 CDBC==,因为平行四边形的周长为75厘米,所以BC+CD=752,从而BC=75820278⨯=+厘米,因此平行四边形ABCD面积为20×14=280平方厘米.4.如图10-4,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是310平方米、25平方米、15平方米和110平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?答案:25441平方米【解析】由于FG=HG-HF,则先求HG与HF的长度.而四边形AEFH和EBIF有公共的竖直边,所以它们的面积比等于水平边的比.于是HF是FI的323 1054÷=,所以HF 是HI 的33347=+,即HF 为37米. 观察下面的两个小长方形,同理可知,HG 是GI 的112510÷=倍,所以HG 为22213=+米. 因此FG=HG-HF=2353721-=米,所以正方形的面积为:55252121441⨯⨯= 平方米.5.如图10-5,红、黄、绿三块大小一样的正方形纸片,放在一个正方体盒内,它们之间相互重叠.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是10.那么,正方体盒子的底面积是多少?答案:51.2【解析】把黄色的正方形挪动位置,如下图所示:可以发现,把黄色正方形移到左边后,它露在外面的部分少了长方形①,但是绿色正方形露在外面的部分又多了长方形①.那么移动之后,黄、绿两个正方形露在外面的面积之和不变,还是14+10=24.因为各个正方形的边长相同,而由上图可看出,移动后,黄、绿两个正方形露出的面积相等,此时它们露出的面积都为24÷2=12.由“红×空白正方形=黄×绿”,可得右上角正方形的面积是12×12÷20=7.2. 所以大正方形盒子的底面积为20+12+12+7.2=51.2.6.如图10-6,三角形ABC 中,DE 与BC 平行,且AD :DB=5:2,求AE :EC 及DE :BC .答案:5:2,5:7【解析】根据金字塔模型的结论即可直接得出答案.7.如图10-7,已知三角形ABC 的面积为1平方厘米,D 、E 分别是AB 、AC 边的中点.求三角形OBC 的面积.答案:13平方厘米【解析】由D 、E 分别是AB 、AC 边的中点,可知DE 与BC 平行,且12DE BC =. 如右图所示,沙漏DEOBC 中,有12OD OE DE OC OB BC ===. 把线段的比例关系转化为面积的比例关系,得到=2BODDOESS,=2COEDOESS,=24BOCCOEDOES S S =.那么梯形DECB 的面积就是(1+2+2+4)×9DOE DOESS=.由于△ABC 的面积为1平方厘米,则△ADE 的面积是14平方厘米.而梯形DECB 的面积是13144-=平方厘米.因此1131==99412DOE BCDE S S =⨯⨯梯形平方厘米,从而 11=44123BOC DOE S S =⨯=平方厘米.8.在图10-8的正方形中,A 、B 、C 分别是ED 、EG 、GF 的中点.请问:三角形CDO 的面积是三角形ABO 面积的几倍?答案:3倍【解析】不妨设正方形的边长是2,所以FC=CG=GB=BE=EA=AD=1.又A 、C 分别是所在边的中点,所以AC ∥GE ,即OA ∥BE .由此可见OA 是△DBE 的中位线,有12OA BE =,所以△OAD 的面积是111224⨯÷=.△AOB 的面积等于△BAD 的面积减去△AOD 的面积,等于1111244⨯÷-=.△COD的面积等于△CAD的面积减去△AOD的面积,等于13 21244⨯÷-=.由此可得,△CDO的面积是△ABO面积的3倍.9.如图10-9,四边形ABCD是平行四边形,面积为72平方厘米,E、F分别为边AB、BC的中点,请问:阴影部分的面积为多少平方厘米?答案:48平方厘米【解析】因为E为边AB的中点,四边形ABCD是平行四边形,所以12AE CD=,且AE∥CD.在沙漏AEHCD中,有AH:HC=1:2,EH:HD=1:2.由EH:HD =1:2可知,△AEH的面积为△AED面积的13.易知△AED面积为平行四边形ABCD的面积的14,即72×14=18平方厘米,所以△AEH的面积为18×13=6平方厘米.由F为边BC的中点,同理可求出△FOC的面积为6平方厘米.由AH:HC=1:2,FD:OD=1:2可知,H、0为边AC的三等分点,所以S△HOD =S△AHD=S△DOC=13S△ACD,而S△ACD =172362⨯=平方厘米,所以S△HOD=13×36=12平方厘米,于是空白部分面积为S△AEH +S△FOC+S△HOD=6+6+12=24平方厘米,因此阴影部分的面积为72-24=48平方厘米.10.如图10-10,在三角形ABC中,CE=2AE,F是AD的中点,三角形ABC的面积是1,那么阴影部分的面积是多少?答案:5 12【解析】连结CF,把阴影部分分成△CEF和△DCF,如图1所示.假设△AEF 的面积是“1”,由于CE= 2AE,因此△CEF的面积就是“2”.而F又是AD的中点,则△CFD的面积是“3”,如图2所示.剩下两块空白部分:△ABF、△DBF.因为F是AD中点,因此它们的面积相同.不妨设为“x”,如图3所示.利用2×S△ABE =S△CBE作为等量关系列出方程:()2123x x⨯+=++,解得3x=.因此△ABF与△DBF的面积都是“3”,如图4所示.则△ABC的面积是“1”+“2”+“3”+“3”+“3”="12”,所以“1”=112.那么阴影部分的面积就是1551212⨯=.拓展篇:1.如图10-11,A、B是两个大小完全一样的长方形,已知这两个长方形的长比宽长8厘米,图10-11中的字母表示相应部分的长度.问:A、B中阴影部分的周长哪个长?长多少?答案:B长,长16厘米【解析】根据A图中标出的字母,我们马上就能写出长方形的长为a+2b,宽为a+b.再根据长比宽多8厘米,就能求出b=8厘米,要比较阴影部分的周长,可以把它们的边长都求出来,进而再求出周长进行比较.长方形A中,阴影部分为两个小长方形①和②.①的长为2b,宽为b,则周长为(2b+b)×2=6b.②的长为a,宽为a+b-2b=a-b,则周长为(a+a-b)×2=4a-2b.所以阴影部分的周长为6b+4a-2b=4(a+b).长方形B中,阴影部分有6条边,它的周长其实就等于大长方形的周长,为(a+2b+a+b)×2=4a+6b.所以,长方形B中的阴影部分周长比长方形A中的阴影部分周长要长,并且多出的长度为(4a+6b)-(4a+4b)=2b=2×8=16厘米.当然还可以直接利用平移的方法,直接看出B中的阳影部分的周长比A中的阴影部分的周长多2b,即16厘米.2.如图10-12,三角形ABC中,AD=CD,∠B=51°,∠DCB=73°,求∠CDB 和∠A.答案:∠CDB=56°,∠A=28°【解析】因为∠B+∠DCB+∠CDB+∠ADC+∠A+∠ACD=360°,又∠CDB+∠ADC=180°,∠A=∠ACD,所以51°+73°+180°+2∠A=360°,解得∠A=28°,那么∠CDB=∠A+∠ACD=56°.3.如图10-13,ABCDE是正五边形,CDF是正三角形,那么∠BFE等于多少度?答案:168°【解析】正五边形的内角和是(5-2)×180°=3×180°=540°,每个内角是540°÷5=108°.而△CDF是正三角形,每个内角是60°,因此∠CFD=∠FCD=60°.而∠BCF=108°-60°=48°,是等腰△BCF的顶角,因此∠BFC=(180°-48°)÷2=66°,同理∠DFE也等于66°.于是∠BFE=360°-∠BFC -∠CFD -∠DFE=360°-66°-60°- 66°=168°.4.一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边框重合,如图10-14所示.问:图中的阴影部分(即折叠的部分)的面积是多少平方厘米?答案:183平方厘米【解析】如图所示,折叠后△AED 与△ACD 面积相等,且AE=AC=5厘米.因此BE=BA-AE=13-5=8厘米,则△BDE 的面积是△AED 的面积的85.而大△ABC 的面积是l2×5÷2=30平方厘米,那么阴影部分的面积就是 81825301130553⎛⎫÷++=÷= ⎪⎝⎭平方厘米.5.在图10-15中大长方形被分为四个小长方形,面积分别为12、24、36、48.请问:图中阴影部分的面积是多少?答案:2147【解析】上面的两个小长方形有公共的竖直边,所以它们的面积比就等于水平边的比,可得EH 是GE 的24÷12=2倍,所以CE=13GH .下方的两个小长方形也有公共的竖直边,同理可知,FH 是GH 的36336487=+.因此,EF 是GH 的13513721--=,所以△EFC 的面积为长方形AGHC 的51521242⨯=,△EFJ 的面积也是长方形GHDJ 的542. 由此可知,阴影部分的面积也占整个大长方形的542;为(12+24+36+48)×51002144277==.6.三个面积都是12的正方形放在一个长方形的盒子里面,如图10-16,盒中空白部分的面积已经标出,求图中大长方形的面积.答案:45【解析】把大长方形如下图所示分割:在最上面的加粗的长方形中,面积为4的长方形和①组成了一个新的长方形,面积为3的长方形和①,②组成了一个新长方形,面积为5的长方形和②也组成了一个新长方形.这3个长方形的面积显然是相等的.所以有4+①的面积=3+①的面积+②的面积=5+②的面积.于是不难求出①的面积为2,②的面积为l,所以加粗长方形的面积为4+2+3+1+5=15.再来观察左边的三个长方形,如下图加粗部分所示:上、下两块长方形的面积都是4+2=6,而左边正方形的面积为12,所以中间长方形的面积也是6.因此,左边加粗长方形为最上面的小长方形面积的3倍,于是所求的大长方形面积等于第一个图中加粗长方形面积的3倍,即15×3=45.7.如图10-17,三角形ABC的面积为1.D、E分别为AB、AC的中点.F、G 是BC边上的三等分点.请问:三角形DEF的面积是多少?三角形DOE的面积是多少?答案:13 , 420【解析】注意到D、E分别为AB、AC的中点,则DE就是△ABC的中位线,连结CD,如图1所示.则△DEF 与△CDE 面积相等,因此S △DEF =S △CDE =12S △ACD =1122⨯⨯S △ABC =14. 在沙漏DEOFG 中,OE DEOF FG=(如图2).而DE=12BC ,FG=13BC ,因此32OE DE OF FG ==,即有33325OE EF ==+,转化为面积比35DOE DEFS S=.而S △DEF =14,所以S △DOE =35×S △DEF =3135420⨯=.8.如图1 -18,在三角形ABC 中,IF 和BC 平行,GD 和AB 平行,HE 和AC 平行.已知AG :GF :FC=4:3:2,那么AH:HI:IB 和BD:DE:EC 分别是多少?答案:AH:HI:IB =3:4:2,BD:DE:EC=4:2:3【解析】(1)因为AG :GF :FC=4:3:2,所以AF :FC=7:2. 又因为IF ∥BC ,所以AI :IB=AF :FC=7:2. 因为GD ∥AB ,所以GF :AG=OF :IO=3:4. 又因为HE ∥AC ,所以AH :H=OF :IO=3:4. 由上可得AH ;HI :IB=3:4:2.(2)因为AG :GF :FC=4:3:2,所以AG :GC=4:5. 又因为GD ∥AB ,所以BD :DC=AG :GC=4:5.因为GF :FC=3:2,IF ∥BC ,所以OD :GO=FC :GF=2:3. 又因为HE ∥AC,所以DE :EC=OD :GO=2:3. 由上可得BD :DE :EC=4:2:3. 9.如图10-19,梯形ABCD 的上底AD 长10厘米,下底BC长15厘米.如果EF 与上、下底平行,那么EF 的长度为多少?答案:l2厘米【解析】在沙漏ADOBC 中,23OA AD OC BC ==,于是25AO AC =(如图所示).由于EO//BC ,因此25EO AO BC AC ==,即2215655EO BC =⨯=⨯=厘米.同理,OF 也等于6厘米,所以EF=EO+OF=6+6=12厘米.10.如图10-20,正六边形的面积为6,那么阴影部分的面积是多少?答案:223【解析】方泫一:连结阴影部分的对角线,如图l 所示.这条辅助线平分阴影部分,也正好把正六边形平分成两个等腰梯形,那么每个梯形的面积为6÷2=3.要求出阴影部分的面积,只需求出其中的一半即可.画出其中一个梯形,给它的各个顶点标上字母,如图2所示,△BCD 和△ABD 是一对等高三角形,并且底边BC 是AD 的2倍,所以△BCD的面积是△ABD 面积的2倍,于是△BCD 面积为3×23=2.在沙漏ADOBC 中,12OD OB =,所以S △BOC=23S △BDC=113.因此正六边形中的阴影部分面积为1212233⨯=.方法二:利用正六边形中的格点,将其分割,如图3所示.观察图形可知,这时正六边形被分割成18个三角形,这些三角形面积全都相等.阴影部分由8个三角形组成,所以阴影部分面积为6÷l8×8=223.11.两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?答案:6米【解析】根据题意画出如图所示的图,延长FE 与AC 交于I ,则△AEI 和△EFH 以及△CEI 和△EFG 都能组成沙漏三角. 、不难看出,EI=4-1.5=2.5米.而在沙漏AIEFH 中,又有2.551.53AE IE EH EF ===. 在沙漏ACEGH 中,有53AC AE GH EH ==.由此可知3310655GH AC ==⨯=米,这就是两个影子的总长度.12.如图10-21,O 是长方形ABCD 一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影直角三角形的面积是多少?答案:138【解析】由S △AOD =4可知S △BCD =12×S 长方形ABCD =12×4×S △AOD =8.而△CDF 与△CDB 从C 出发的高相同,则38CDF CDBSDF DB S==. 由于EF ∥CD ,把线段的比例转移到BC 上,则有38CE DF BC DB ==,从而得到35188BE BC =-=,所以阴影△BEF 的面积是△BCF 面积的58,于是阴影三角形的面积是()()55525838888BCF BCD CDF S S S ⨯=⨯-=⨯-=.13.如图10-22,在三角形ABC 中,AE=ED ,D 点是BC 的四等分点,请问:阴影部分的面积占三角形ABC 面积的几分之几?答案:37【解析】连结四边形CDEF 的对角线CE ,将其分为△EFC 和△ECD ,如下图所示.由题意,D 点是BC 的四等分点,不妨就设△CDE 的面积是“1”,而△BDE 的面积则是“3”,再根据E 是AD 的中点,那么△ABE 的面积就是“3”,△ACE 的面积是“1”.根据燕尾模型得34ABE CBESAF FC S==,所以△AEF 的面积就是“37”份,△ECF 的面积就是“47”份,如下图所示.由此可得阴影部分的面积和是“337”,而△ABC 的总面积是“8”,所以阴影部分占总面积的333877÷=.14.如图10-23,在三角形ABC 中,三角形AEO 的面积是1,三角形ABO 的面积是2,三角形BOD 的面积是3,那么四边形DCEO 的面积是多少?答案:24【解析】连结四边形CDOE 的对角线OC ,将其分为△EOC 和△OCD ,如图1所示.很明显,EO :OB=1:2.四边形CDOE 被分成了两部分,不妨设△EOC 为x ,那么在△EBC 中,12OCE BCOS OE SOB ==,所以△OBC 的面积为2x ,△ODC 的面积就是2x-3(如图2所示).在△ADC 中,23OCA OBA DCODBOS SAO SDO S===,也就是12233x x +=-. 交叉相乘可得3(1+x)=2(2x-3),解得x=9.于是2x-3=15,所以四边形CEOD 的面积是9+15=24.超越篇:1.如图10-24,长方形的面积是60平方厘米,其内3条长度相等且两两夹角为120°的线段将长方形分成了两个梯形和一个三角形.请问:一个梯形的面积是多少平方厘米?答案:25平方厘米【解析】连结AE 、EB ,如右图所示,从中容易看出,△AOB 、△B0E和△AOE都是顶角为120°的等腰三角形,它们的底角都是(180°-120°)÷2=30°,因此△ABE 的三个角都是60°,是一个正三角形.这样一来,△AOB 、△BOE 和△AOE 的面积都相等,它们的面积之和是△ABE 的面积,即长方形面积的一半60÷2=30平方厘米,因此这3个三角形的面积都是30÷3=10平方厘米.大长方形由2个梯形以及△AOB 组成,那么1个梯形的面积就是(60-10)÷2=25平方厘米.2.如图10-25,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PCCH 的面积是15,四边形BEPF 的面积是20.请问:三角形ABC 的面积是多少?答案:72【解析】当两个平行四边形的高相等时,它们底边的比等于面积比.考虑平行四边形BEPF 和AIPD ,分别以PE 和PD 为底边,它们的高相等,因此它们底边的比等于面积比,即205123BEPF AIPDSEP PD S===. 由于IH ∥AC ,所以53EH EP HC PD ==,转化为面积比,得到: 11552236PEH PGCH S EH S HC =⨯=⨯=而平行四边形PGCH 的面积是15,则△PEH 的面积是5251562⨯=.类似的方法可以求出△FPI 和△DPG 的面积分别是8和92,因此这三个小三角形的面积分别是92、8、252,所以大△ABC 的面积就是92512152087222+++++= .3.如图10-26所示,正方形ABCD的面积为1.E、F分别是BC和DC 的中点,DE与BF交于M点,DE与AF交于N点,那么阴影三角形MFN的面积为多少?答案:1 30【解析】如下图,延长AF、BC交于点G,在沙漏ADNEG中,AD:EG=2:3,所以DN:NE=2:3,故DN=25 DE.如下图,延长BF、AD交于景H,在沙漏DHMBE中,DH:BE=2:1,所以DM:ME=2:1,故ME=13 DE.所以21415315NM DE DE⎛⎫=--=⎪⎝⎭,故4414111151******** MFN DFE DCES S S==⨯⨯=⨯⨯=.4.如图10-27,三角形ABC的面积为1,D、E、F分别是三条边上的三等分点,求阴影三角形的面积.答案:17【解析】给中间三角形的3个顶点标上字母,如图1所示.由于D 、E 、F 分别是3条边上的三等分点,而△ABC 的面积为1,所以△ABE 、△BCF 、△CAD 的面积都是13,这3个三角形的面积之和就等于大△ABC 的面积.它们的重叠部分是3个小三角形:△AME 、△BNF 、△CPD.因此阴影△MNP 的面积就等于这3个小三角形的面积之和.假设S △CPD =“1”,由于D 是BC 上的三等分点,可知S △BPD =“2”(如图2所示).由燕尾模型可得2APC BPCSAFSFB ==,所以S △APC =“6”;而2APB APCS BDSDC==,所以S △ABP =“12”(如图3所示).因此整个△ABC 的面积是“12”+“6”+“2”+“1”=“21”,则“1”=121,即S △PCD =121. 类似地,小△BNF 和小△AME 的面积都是121,那么阴影部分的面积就是121×3=17.5.如图10-28,小高测出家里瓷砖的长为21厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?答案:64平方厘米【解析】利用平行线中的线段比例关系来计算,把瓷砖右下角的直角三角形标上字母(如图所示),同时过B作BC⊥AG于C,DE⊥FG于E.由于BC与FG平行,所以21147BC ACFG AG===,因此117177BC FG=⨯=⨯=.由于DE与AG平行,所以27DE FEAG FG==,因此2214477DE AG=⨯=⨯=.由此可得菱形的两条对角线分别为:24-4×2=16厘米,10-1×2=8厘米.那么菱形的面积就是16×8÷2=64平方厘米.6.如图10-29,ED垂直于等腰梯形ABCD的上底AD,并交BC于G,AE平行于BD,∠DCB=45°,且三角形ABD和三角形EDC的面积分别为75、45,那么三角形AED的面积是多少?答案:30【解析】已知的△CDE的底边是ED,高是CG;所求的△AED的底边是ED,高是AD;它们有公共的底边ED.另一个已知的三角形是△ABD,如果能找到一个以ED为底边的三角形,它的面积等于△ABD的面积,那么底边ED就成了这三个三角形的公共底边.如图1,连结BE.由于AE∥BD,把AABD作等积变换,变成△BDE,此时△BDE 以DE为底边以BG为高,且面积是75.这样一来,这3个三角形有相同的底边DE.于是来看看它们的高BG、CG、AD之间有什么关系.由于四边形ABCD是等腰梯形,如图2所示,再作分别从A、D出发与BC垂直的垂线AH、DG.容易看出,BH=GC ,AD=HG ,因此BG=BH+HG=GC +AD.在等式两边同时乘以DE ÷2,可得BG ×DE ÷2=(GC+AD)×DE ÷2. 用乘法分配律得BG ×DE ÷2=CC ×DE ÷2+AD ×DE ÷2.而S △BDE =BG ×DE ÷2,S △DEC =CG ×DE ÷2,S △AED =AD ×DE ÷2,因此所求的三角形的面积就是75-45=30.7.在长方形ABCD 中,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 上的点,将长方形的四个角分别沿着HE 、EF 、FG 、GH 对折后,A 点与B 点重合,C 点与D 点重合,已知EH=3,EF=4,求线段AD 与AB 的长度比.答案:25:24【解析】如图,由于对折后A 、B 两点要重合,所以E 点一定是AB 的中点,且AH 和BF 折过去后都在HF 这条线上.同理,G 点一定是CD 的中点.容易得到∠HEF 是直角,由于EH=3,EF=4,所以HF=5.根据已有的条件可以画出确定的部分,接着AH 和BF 都要适当地延长形成长方形ABCD ,并且满足G 是CD 的中点,∠HGF 是直角.试画一下后会发现:①若延长出去的不够多,则∠HGF 是钝角;②若延长出去的多,则∠HGF 是锐角;③只有刚好的一个位置使得∠HGF 是直角,并且会发现此时HD=BF ,AH=FC ,所以AD=AH+BF=HF=5, AB=2AE=2×345⨯=4.8.(其中AE=EB=△EFH 斜边上的高).所以AD :AB=25:24.8.如图10-30在长方形ABCD 中,AE:ED=AF:AB=BG:GC.已知△EFC 的面积为20,△FGD 的面积为16,那么长方形ABCD 的面积是多少?答案:52【解析】设AF 为a 、AB 为b ,AE 为a 、ED 为b ,BG 为a 、GC 为b (这里可能有人会疑惑AF 和AE 并不相等为什么都设为a ,因为这里一个是“a ”,一个是‘a ’;或者认为一个是a ,一个是ax ;但由于运算的过程当中,每个图形的面积都会涉及到长、宽两边的线段的乘积,所以最后产生的影响都会消掉,放心不会出错),那么可以列出2个等式:()()()()()()2221112022211116222b a b a b b a a b b a b a a b b b a a ⎧+----+=⎪⎪⎨⎪+-+---=⎪⎩化简得:220 32ab b =⎧⎨=⎩所以长方形ABCD的面积b(a+6)ab+b2=20+32=52.。

六年级奥数 几何;第4讲;几何综合_一_;学生版

六年级奥数 几何;第4讲;几何综合_一_;学生版

第四讲 几何综合(一)1. 熟练运用直线型面积的各种模型。

2.熟练掌握平面图形中的割补、旋转、平移、差不变等各种方法。

3. 针对勾股定理、弦图等特定方法熟练应用。

模块一:割补思想FEADCB例题44例题33例题22例题11【巩固】在图中,三角形ABC 和DEF 是两个完全相同的等腰直角三角形,其中DF长9厘米,CF 长3厘米,那么阴影部分的面积是多少平方厘米?C 1D 1E 1A 1EBC DA例题77例题66例题55【巩固】(2008年第六届“希望杯”五年级第二试)如图 (a ),ABCD 是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图(b ))拼成.那么,长方形ABCD 的面积是多少平方厘米?DC BA【巩固】如图,正方形硬纸片ABCD 的每边长20厘米,点E 、F 分别是AB 、BC 的中点,现沿图(a )中的虚线剪开,拼成图(b )所示的一座“小别墅”,则图(b )中阴影部分的面积是平方厘米. (b)(a)A⑤④③②①例题101例题99例题88【巩固】(2008年“迎春杯”初试六年级)一个等腰直角三角形和一个正方形如左下图摆放,①、②、③这三块的面积比依次为1:4:41.那么,④、⑤这两块的面积比是 .⑤④③②①CD150°B A板块二、旋转平移思想例题1例题121例题111【巩固】如图所示,外侧大正方形的边长是10cm ,在里面画两条对角线、一个圆、两个正方形,阴影的总面积为226cm,最小的正方形的边长为多少厘米?例题161例题171例题151例题141PDCBA2例题212例题202例题191例题181FECB DAEDCBAGFEDCBA例题252例题242例题232ADDCEBAABCD30°A 例题2例题282例题272例题262FBAABCD练习44练习33练习22练习11。

解析几何综合问题(1)(把几何关系转化为代数关系)

解析几何综合问题(1)(把几何关系转化为代数关系)

解析几何综合问题引例:已知)0(12222>>=+b a by a x 的右焦点为)0,3(2F ,离心率为e ; (1)若e=23,求椭圆的方程; (2)设直线kx y=与椭圆相交于A 、B 两点,M 、N 分别为线段AF 2,BF 2的中点,若坐标原点O 在以直线MN 为直径的圆上,且2322≤<e ,求k 的取值范围例1:椭圆C :1422=+y x ,过点D (0,4)的直线l 与椭圆C 交于两点E 、F ,根据以下条件,尝试把几何关系转化为代数关系:(1)设B (0,41-),若BE=BF ,求直线l 的斜率;(2)A 是椭圆的右顶点,且∠EAF 的角平分线是x 轴,求直线l 的方程;(3)以线段OE 、OF 为邻边作平行四边形OEFP ,其中顶点P 在椭圆C 上,O 为坐标原点,求O 到直线l 距离最小值;(4)若以EF 为直径的圆过原点,求直线l 的斜率;(5)点M 为直线y=21x 与该椭圆在第一象限内的交点,平行于OM 的直线l ,交椭圆于A 、B 两点,求证:直线MA 、MB 与x 轴始终围成一个等腰三角形。

例2:设椭圆C :)0(12222>>=+b a by a x 的左右焦点分别为F 1,F 2,上顶点为A ,过点A 与AF 2垂直的直线交x 轴负半轴于点Q ,且2221=+Q F F F ,若过A 、Q 、F 2三点的圆恰好与直线l :033=--y x 相切,过定点M(0,2)的直线l 1与椭圆C 交于G 、H 两点,(点G 在M 、H 之间)(1)求椭圆方程;(2)设直线l 1的斜率k>0,在x 轴上是否存在点P (m ,0),使得PG 、PH 为邻边的平行四边形是菱形,若存在,求出m 的取值范围,若不存在,请说明理由。

小结:(1)借助几何直观,把几何条件准确代数化,尽量减少变量个数;(2)明确算理,注意量与量的关系;(3)要有坚强的毅力,只要目标明确,坚持比方法重要。

二次函数与几何综合(1)

二次函数与几何综合(1)

二次函数与几何综合1.已知关于x 的一元二次方程a x 2+bx +1=0,中,b+m +1; (1)若a =4,求b 的值;(2)若方程a x 2+bx +1=0有两个相等的实数根,求方程的根.2.如图,利用一面增(墙EF 最长可利用28米),围成一个矩形花园ABCD .与培平行的一边 BC 上要预留2米宽的入口(如图中AN 所示,不用砌墙)用60米长的墙的材料,当矩形 的长BC 为多少米时,矩形花园的面积为30平方米:能否围成430平方米的矩形花为 什么?3.如图,直线AB :y =kx +3过点(-2,4)与抛物线y =交于A 、B 两点; (1)直接写出点A 、点B 的坐标;(2)在直线AB 的下方的抛物线上求点P ,使△ABP 的面积等于5.N4.如图,抛物线y=(x-1) 2+m的图象与x轴交于A、B两点与y轴交于点C,且AB=4;(1)求抛物线的解析式;(2)将抛物线沿对称轴向上平移k个单位长度后与线段BC交于D、E两个不同的点,求k 的取值范围;(3)M为线段QB上一点(不含O、B两点)过点M作y轴的平行线交抛物线于点M,交线段BC于点P,若△PCN为等腰三角形,求M点的坐标.图1图2图35.利用一面长为22米的墙和46米的篱笆围成如图所示的矩形菜地菜地有2个2米宽的门,门用其它材料.(1)如何搭建使矩形菜地的面积方200平方米?(2)如何搭建使矩形菜地的面积最大,最大为多少平方米?6.如图1,边长为4的正方形ABCD 中,点E 在AB 边上(不与点A ,B 重合),点F 在BC 边上(不与点B 、C 重合).第一次操作:将线段EF 绕点F 断时针旋转,当点E 落在正方形上时,记为点G ;第二次操作:将线段FG 绕点G 顺时针旋转,当点F 落在正方形上时,记为点H ;依此橾作下去…(1)图2中的△EFD 是经过两次操作后得到的,其形状为 ,求此时线段EF 的长; (2)若经过三次操作可得到四边形EFGH .①请判断四边形EFGH 的形状为 ,此时AE 与BF 的数蜇关系是 ;②以①中的结论为前提,设AE 的长为x ,四边形EFGH 的面积为y ,求y 与x 的函数关系式及面积y 的取值范围.图1 图2 备用图EF A B CDEFA B C DHF A BC DEG7.如图,一次函数122y x=+分别交y轴、x轴于A、B两点,抛物线2y x bx c=-++过A、B两点.(1)求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A,M、N、D为项点作平行四边形,求第四个项点D的坐标.8.某商场在1月至12月份经销某种品牌的服装,由于受到时令的影明,该种服装的销售情況 如下:销售价格1y (元/件)与销售月份x (月)的关系大致满足如图的函数,销售成本2y (元/件)与销售月份x (月)满足2y =10100(16)14(612)3x x x x x x -+⎧⎪⎨⎪⎩≤<且为整数≤<且为整数,月销售量3y (件)与销售月份x (月)満足3y =1Ox -20.(1)根据图象求出销售价格1y (元/件)与销售月份x (月)之间的函数关系式:(6≤x ≤12且x 为整数)(2)求出该服装月销售利润W (元)与月份x (月)之向的函数关系式,并求出哪个月份的销售利润最大?最大利润是多少?(6≤x ≤12且x 为整数)9.如图,等边△ABC 和等边△DEC ,CE 和AC 重合.CEB .(1)求证:AD =BE ;(2)若CE 绕点C 顺时针旋转30°,连BD 交AC 于点G ,取AB 的中点F 连FG ,求证:BE =2FG ; (3)在(2)的条件下AB =2,则AG =________.(直接写出结果)备用AB C DEFG G FEDCBAEDCBA10..如图开口向下的抛物线y=a2x+bx+c交x轴于A(−1,0)、B(5,0)两点,交y轴于点C(0,5)(1)求抛物线的解析式;(2)设抛物线的顶点为D,求△BCD的面积;(3)在(2)的条件下,P、Q为线段BC上两点(P左Q右,且P、Q不与B、C重合),PQ=,在第一象限的抛物线上是否存在这样的点R,使△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.备用图2备用图1。

解析几何复习系列之十(综合练习1)

解析几何复习系列之十(综合练习1)

解析几何综合练习(1)(完成时间40分钟) 一、填空题: 1、过点(2,3),法向量为(2,3)n = 的直线的点法向式方程为2、直线20x +=的倾斜角为3、若方程2220x y x y m ++-+=表示圆,则实数m 的取值范围是4、若直线1l :210x my ++=与直线2l :30x y -+=垂直,则实数m = 5、已知方程221713x y k k -=--表示焦点在y 轴上的椭圆,则实数k 的取值范围为 6、双曲线2211625x y -=的两条渐近线的夹角大小为 7、已知)0,2(-A 、)0,2(B ,且AB C ∆的周长等于10,则顶点C 的轨迹方程为8、以椭圆221169144x y +=的右焦点为圆心,且与双曲线221916x y -=的两条渐近线都相切的圆方程 _9、直线143x y +=与椭圆221169x y +=相交于A 、B 两点,该椭圆上点P 使PAB ∆的面积等于6,这样的点P 共有 个10、曲线1y =(2)4y k x =-+有两个公共点时,则实数k 的取值范围是二、选择题:11、平面内有定点A 、B 及动点P ,设命题甲是“|PA |+|PB |是定值”,命题乙是“点P 的轨迹是以A 、B 为焦点的椭圆”,那么甲是乙的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12、直线l 与两直线1:1l y =和2:70l x y --=分别交于,P Q 两点,线段PQ 的中点是(1,1)-,则 直线l 的斜率为( )A . 23B . 32C . 23-D .32- 13、经过双曲线1222=-y x 的右焦点2F 作直线l 交双曲线与A 、B 两点,若4AB =,则这样的 直线存在的条数为( )A. 4;B. 3;C. 2;D. 1三、解答题:14、已知直线l 的方程为(52)1030tx t y t +-+-=(t R ∈). (1)求证:不论t 取何值,直线l 恒过定点;(2)记(1)中的定点为P ,若l OP ⊥(O 为坐标原点),求实数t 的值.15、已知动圆与圆1C :22(5)49x y ++=和圆2C :22(5)1x y -+=都外切,(1)求动圆圆心P 的轨迹方程.(2)若动圆P 与圆2C 内切,与圆1C 外切,则动圆圆心P 的轨迹是若动圆P 与圆1C 内切,与圆2C 外切,则动圆圆心P 的轨迹是若把圆1C 的半径改为1,那么动圆P 的轨迹是(只需写出图形形状)。

初中数学几何综合-含答案

初中数学几何综合-含答案

一.选择题(共13小题)1.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:其中正确结论是()①S四边形ABCD=4S四边形ONBM;②BM2+CM2=2ON2;③△CON≌△DOM;④若AB=2,则S△OMN的最小值是1.A.①②③B.①③④C.①②④D.②③④2.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD 中点,则=.其中正确的有()A.1个B.2个C.3个D.4个3.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.4.如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是()A.1B.2C.3D.45.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.则HE的长为()A.2B.C.2D.或27.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤8.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,BE =CF,AE、BF分别交BD、AC于M、N两点,连OE、OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF=S正方形ABCD,其中正确的是()A.①②B.①④C.①②④D.①②③④9.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM、EM、CM,延长EM交AB于点F,若AM=EM,∠E=30°,则下列结论:①FM=ME;②BF=DE;③CM⊥EF;④BF+MD=BC,其中正确的结论序号是()A.①②③B.①②④C.②③④D.①②③④10.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE ⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个11.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=()A.90°B.45°C.30°D.22.5°12.如图,正方形ABCD中,点E在边CD上,连接AE,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC,EF于点G,H,连接EG,DH.则下列结论中:①AF=AE;②∠EGC=2∠BAG;③DE+BG=EG;④AD+DE=DH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有()A.2个B.3个C.4个D.5个13.如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC=2,则下列结论:①FB⊥OC;②△EOB≌△CMB;③四边形EBFD是菱形;④MB=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共3小题)14.如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE =40°,则∠DFC的度数为.15.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中只有8个等腰三角形.其中正确的有(填番号).16.如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE交DP于点F,连接BF,FC.若AE=2,则FC=.三.解答题(共24小题)17.如图,在直线l上将正方形ABCD和正方形ECGF的边CD和边CE靠在一起,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中FH交DG于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=4,求DM的长.18.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD 于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.19.如图示,正方形ABCD的对角线交于点O,点E、F分别在AB,BC的延长线上,且∠EOF=90°,OE与BC交于点M,连接EF,G是EF的中点,连接OG.(1)求证:OE=OF(2)若∠BOG=65°,求∠BOE的度数;(3)是否存在点M是BC中点,且使(1)的结论成立,若存在,请给予证明;若不存在,请说明理由.20.如图,正方形ABCD中,AB=,在边CD的右侧作等腰三角形DCE,使DC=DE,记∠CDE为α(0°<α<90°),连接AE,过点D作DG⊥AE,垂足为G,交EC的延长线于点F,连接AF.(1)求∠DEA的大小(用α的代数式表示);(2)求证:△AEF为等腰直角三角形;(3)当CF=时,求点E到CD的距离.21.如图1,在正方形ABCD中,点E在边CD上(不与点C,D重合),AE交对角线BD 于点G,GF⊥AE交BC于点F.(1)求证:AG=FG.(2)若AB=10,BF=4,求BG的长.(3)如图2,连接AF,EF,若AF=AE,求正方形ABCD与△CEF的面积之比.22.在正方形ABCD中,点E是DC上一点,连结AC,AE.(1)如图1,若AC=8,AE=10,求△ACE的面积.(2)如图2,EF⊥AC于点F,连结BF.求证:AE=BF.23.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若,求BG的长.24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C 重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG.(1)求证:△AOH≌△BOE;(2)求∠AGO的度数;(3)若∠OGC=90°,BG=,求△OGC的面积.25.如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF 的周长等于BC的长.(1)若AB=24,BE=6,求EF的长;(2)求∠EOF的度数;(3)若OE=OF,求的值.26.如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:∠BAG=∠CBF;(2)求证:AG=FG;(3)若GF=2BG,CF=,求AB的长.27.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.29.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.30.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE的某一边上时,直接写出正方形PRQS的面积.31.如图,在平行四边形ABCD中,AC⊥AD,延长DA于点E,使得DA=AE,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若AB=6,∠CAB=30°,求△OGC的面积.32.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.33.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.34.已知:如图,点E为▱ABCD对角线AC上的一点,点F在线段BE的延长线上,且EF =BE,线段EF与边CD相交于点G.(1)求证:DF∥AC;(2)如果AB=BE,DG=CG,联结DE、CF,求证:四边形DECF是矩形.35.如图,▱ABCD的对角线AC,BD交于点O,过点D作DE⊥BC于E,延长CB到点F,使BF=CE,连接AF,OF.(1)求证:四边形AFED是矩形.(2)若AD=7,BE=2,∠ABF=45°,试求OF的长.36.如图,平行四边形ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,点M为AB的中点,连接CM.(1)求证:四边形ADEC是矩形;(2)若CM=5,且AC=8,求四边形ADEC的周长.37.如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD =BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.38.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.39.如图,在平行四边形BPCD中,点O为BD中点,连接CO并延长交PB延长线于点A,连接AD、BC,若AC=CP,(1)求证:四边形ABCD为矩形;(2)在BA的延长线上取一点E,连接OE交AD于点F,若AB=9,BC=12,AE=3,则AF的长为.40.如图,菱形ABCD中,AC与BD交于点O,DE∥AC,DE=AC.(1)求证:四边形OCED是矩形;(2)连结AE,交OD于点F,连结CF,若CF=CE=1,求AC长.2021年01月06日杨莲莲的初中数学组卷参考答案与试题解析一.选择题(共13小题)1.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:其中正确结论是()①S四边形ABCD=4S四边形ONBM;②BM2+CM2=2ON2;③△CON≌△DOM;④若AB=2,则S△OMN的最小值是1.A.①②③B.①③④C.①②④D.②③④【分析】根据正方形的性质,依次判定△CNB≌△DMC,△AON≌△BOM,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AC⊥BD,AO=AC,BO=BD,AC=BD,∴AO=BO,∠OAN=∠OBM=45°,∠AOB=90°,∵CN⊥DM,∴∠MCN+∠CMD=∠CMD+∠CDM=90°,∴∠CDM=∠BCN,∵CD=BC,∠DCM=∠CBN,∴△CDM≌△BCN(AAS),∴CM=BN,∴AN=BM,∴△AON≌△BOM(SAS),∴S△AON=S△BOM,∴S四边形ONBM=S△AOB=S正方形ABCD,∴S四边形ABCD=4S四边形ONBM;故①正确;∵△AON≌△BOM,∴ON=OM,∠AON=∠BOM,∴∠NOM=∠AOB=90°,∴△NOM是等腰直角三角形,∴MN2=2ON2,∵BN2+BM2=MN2,∴CM2+BM2=2ON2,故②正确;∵∠MON=∠COD=90°,∴∠NOC=∠MOD,∵OD=OC,ON=OM,∴△CON≌△DOM(SAS),故③正确;∵AB=2,∴S正方形ABCD=4,∵△AON≌△BOM,∴四边形BMON的面积=△AOB的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x=﹣(x﹣1)2+,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故④不正确,故选:A.【点评】本题主要考查了正方形的性质、全等三角形的判定与性质,二次函数的最值以及勾股定理的综合应用,解题时注意二次函数的最值的运用.2.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD 中点,则=.其中正确的有()A.1个B.2个C.3个D.4个【分析】①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,易证△ADM≌△ABH,△AHN≌△AMN,得MN=HN,最后根据勾股定理可作判断;②延长CB,截取BI=DE,连接AI,如图,易证△ADE≌△ABI,△AIF≌△AEF,得IF=EF,即DE+BF=EF,成立.③作辅助线,则可证△AFJ为等腰直角三角形,CK=BF=KJ,证明∠JCK=45°,推出四边形BCJK为平行四边形,所以GJ=BC=AD,可证△GJM≌△DAM,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,CF=2a﹣x,CE=a,由勾股定理可知:3x=2a,则==,成立.【解答】解:①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADM,在△ADM和△ABM中,∵,∴△ADM≌△ABH(SAS),∴∠DAM=∠BAH,AM=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAM+∠BAN=∠BAH+∠BAN=45°,∴∠MAN=∠HAN=45°,在△AHN和△AMN中,∵,∴△AHN≌△AMN(SAS),∴MN=HN,Rt△BHN中,HN2=BH2+BN2,∴MN2=BN2+DM2,成立.②延长CB,截取BI=DE,连接AI,如图,在△ADE和△ABI中,∵∴△ADE≌△ABI(SAS),同理得△AIF≌△AEF(SAS),∴IF=EF,即DE+BF=EF,成立;③如图,过F作FJ⊥AF交AE的延长线于J,过J作JK⊥BC于K,连接CJ,过J作JG ∥BC交BD于G,∴∠AFJ=∠AFB+∠JFK=90°,∵∠AFB+∠BAF=90°,∴∠BAF=∠JFK,∵∠EAF=45°,∠AFJ=90°,∴△AFJ是等腰直角三角形,在△ABF和△FKJ中,∵,∴△ABF≌△FKJ(SAS),∴AB=FK=BC,BF=KJ,∴CK=BF=KJ,∴∠JCK=45°,∴∠DBC=∠JCK,∴BG∥CJ,∵JG∥BC,∴四边形BCJK为平行四边形,∴GJ=BC=AD,∵AD∥BC∥GJ,∴∠DAM=∠MJK,在△GJM和△DAM中,∵,∴△GJM≌△DAM(AAS),∴AM=MJ,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,∵E为CD中点,∴CD=BC=2a,∴CF=2a﹣x,CE=a,在Rt△EFC中,由勾股定理得:EF2=CE2+CF2∴(a+x)2=a2+(2a﹣x)2解得:3x=2a,则==,成立.故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.3.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.【分析】作以BD为对称轴作N的对称点N',连接MN',PN',根据PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,再证得△MCN'∽△BCA,从而推得△MCN'为等腰直角三角形,结合BM=3.正方形的边长为4,求得CM,即为MN',问题可解.【解答】解:如图所示,∵对角线BD平分∠NPM,∴作以BD为对称轴N的对称点N',连接MN',PN',根据轴对称性质可知,PN=PN',∠NPO=N′PO,NO=N′O∵在正方形ABCD中,AB=4∴AC=AB=4,∵O为AC中点∴OA=OC=2∵N为OA的中点∴ON=∴ON'=CN'=∴AN'=3∵BM=3∴CM=4﹣3=1∴==∵∠MCN'=∠BCA∴△MCN'∽△BCA∴∠CMN'=∠ABC=90°∵∠MCN'=45°∴△MCN'为等腰直角三角形∴MN'=CM=1∴PM﹣PN的值为1.故选:A.【点评】本题主要考查了正方形的性质,明确正方形的相关性质及相似三角形的判定、勾股定理等知识点,是解题的关键.4.如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据正方形的性质、全等三角形的判定和性质、勾股定理等知识逐项判断即可.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∵CF⊥CE,∴∠ECF=∠BCD=90°,∴∠BCE=∠DCF,在△BCE与△DCF中,,∴△BCE≌△DCF(SAS),故①正确;∵△BCE≌△DCF,∴∠CBE=∠CDF,∴∠DFB=∠BCD=90°,∴BF⊥DF,故②正确,过点D作DM⊥CF,交CF的延长线于点M,∵∠ECF=90°,FC=EC=1,∴∠CFE=45°,∵∠DFM+∠CFB=90°,∴∠DFM=∠FDM=45°,∴FM=DM,∴由勾股定理可求得:EF=,∵DE=,∴由勾股定理可得:DF=2,∵EF2+BE2=2BE2=BF2,∴DM=FM=,故③错误,∵△BCE≌△DCF,∴S△BCE=S△DCF,∴S四边形DECF=S△DCF+S△DCE=S△ECF+S△DEF=+,故④错误,故选:B.【点评】本题考查四边形的综合问题,涉及正方形的性质、全等三角形的性质与判定、勾股定理、三角形面积公式等知识内容,综合程度高,需要学生灵活运用知识解答.5.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD =90°,再根据邻补角的定义可得∠AME=90°,得出①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出③正确;过点M作MN⊥AB于N,由相似三角形的性质得出==,解得MN=a,AN=a,得出NB=AB﹣AN=2a﹣a=a,根据勾股定理得BM=a,求出ME+MF=+a=a,MB=a,得出ME+MF=MB,故④正确.于是得到结论.【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,∵E、F分别为边AB,BC的中点,∴AE=BF=BC,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;∵DE是△ABD的中线,∴∠ADE≠∠EDB,∴∠BAF≠∠EDB,故②错误;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF===a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得:AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故③正确;如图,过点M作MN⊥AB于N,则MN∥BC,∴△AMN∽△AFB,∴==,即==,解得MN=a,AN=a,∴NB=AB﹣AN=2a﹣a=a,根据勾股定理得:BM===a,∵ME+MF=+a=a,MB=a,∴ME+MF=MB,故④正确.综上所述,正确的结论有①③④共3个.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识;仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.则HE的长为()A.2B.C.2D.或2【分析】利用直角三角形斜边上的中线等于斜边的一半,分别求得HO和OE的长后即可求得HE的长.【解答】解:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,∴∠ACD=∠GCF=45°,∴∠ACF=90°,又∵H是AF的中点,∴CH=HF,∵EC=EF,∴点H和点E都在线段CF的中垂线上,∴HE是CF的中垂线,∴点H和点O是线段AF和CF的中点,∴OH=AC,在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,∴AC=,∴CF=3,又OE是等腰直角△CEF斜边上的高,∴OE=,∴HE=HO+OE=2.故选:C.【点评】本题考查了正方形的性质、直角三角形的性质及勾股定理的知识,综合性较强,难度较大.7.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤【分析】①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.【解答】证明:①在正方形ABCD中,∠ADC=∠C=90°,∠ADB=45°,∵EF∥CD∴∠EFD=90°,得矩形EFDC.在Rt△FDG中,∠FDG=45°,∴FD=FG,∵H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD,∴∠AFH=∠AFE+∠GFH=90°+45°=135°,∠EGH=180°﹣∠EGB=180°﹣45°=135°,∴∠AFH=∠EGH,∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG,∴∠AHF+AHG=∠EHG+∠AHG,即∠FHG=∠AHE=90°,∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠F AH=∠GEH,∵∠BAF=CEG=90°,∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH,∴△EHF≌△AHD所以④正确.⑤如图,过点H作HM⊥AD于点M,设EC=FD=FG=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,HM=x,AM=x,∴AH2=(x)2+(x)2=x2,S四边形DHEC=S梯形EGDC﹣S△EGH=(2x+3x)•x﹣×=2x2S△AHE=AH•EH=AH2=x2∴==.所以⑤不正确.故选:B.【点评】本题考查了正方形的性质、矩形的判定和性质、全等三角形的判定和性质、直角三角形的性质、三角形和梯形的面积等内容,解题关键是综合利用以上知识解决问题.8.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,BE =CF,AE、BF分别交BD、AC于M、N两点,连OE、OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF=S正方形ABCD,其中正确的是()A.①②B.①④C.①②④D.①②③④【分析】①易证得△ABE≌△BCF(ASA),则可证得结论①正确;②由△ABE≌△BCF,可得∠FBC=∠BAE,证得AE⊥BF,选项②正确;③证明△BCD是等腰直角三角形,求得选项③错误;④证明△OBE≌△OCF,根据正方形被对角线将面积四等分,即可得出选项④正确.【解答】解:①∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴AE=BF,故①正确;②由①知:△ABE≌△BCF,∴∠FBC=∠BAE,∴∠FBC+∠ABF=∠BAE+∠ABF=90°,∴AE⊥BF,故②正确;③∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴△BCD是等腰直角三角形,∴BD=BC,∴CE+CF=CE+BE==BC,故③错误;④∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,在△OBE和△OCF中,∵,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,故④正确;故选:C.【点评】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.9.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM、EM、CM,延长EM交AB于点F,若AM=EM,∠E=30°,则下列结论:①FM=ME;②BF=DE;③CM⊥EF;④BF+MD=BC,其中正确的结论序号是()A.①②③B.①②④C.②③④D.①②③④【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【解答】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠F AD=90°,∴∠F AM=90°﹣30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=x,则AM=AF=2x,AN=x,DN=MN=x,∴AD=AB=x+x,∴DE=BF=AB﹣AF=x+x﹣2x=x﹣x,∴BF+MD=(x﹣x)+x=x,∵BC=AD=x+x x,故④错误;所以本题正确的有①②③;故选:A.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM是等边三角形是解题的关键.【点评】此题考查的是正方形的性质,等腰直角三角形的性质和判定以及菱10.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF =BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠F AH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.形的判定与性质等知识.此题综合性较强,难度较大,注意掌握正方形的性质,注意数形结合思想的应用.11.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=()A.90°B.45°C.30°D.22.5°【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC =22.5°,根据三角形的内角和即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC=22.5°,∴∠P=180°﹣∠ACP﹣∠CAP=22.5°,故选:D.【点评】本题考查了正方形的性质,角平分线定义,正确的理解题意是解题的关键.12.如图,正方形ABCD中,点E在边CD上,连接AE,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC,EF于点G,H,连接EG,DH.则下列结论中:①AF=AE;②∠EGC=2∠BAG;③DE+BG=EG;④AD+DE=DH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有()A.2个B.3个C.4个D.5个【分析】①正确.证明△ADE≌△ABF(ASA)可得结论.②正确.证明△AGF≌△AGE(SAS),推出∠AGF=∠AGE=90°﹣∠BAG,推出∠EGF =180°﹣2∠BAG可得结论.③正确.证明△GAF≌△GAE,推出GF=GE可得结论.④正确.过点H作HM⊥AD于M,HN⊥CD于N,证明△HMA≌△HNE(AAS),推出AM=EN,HM=HN,再证明四边形HMDN是正方形可得结论.⑤正确.当DE=EC时,设DE=EC=a,BG=x,则EG=a+x,GC=2a﹣x,利用勾股定理构建方程求出x即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ABF=∠ADE=∠BAD=90°,∵AE⊥AF,∴∠EAF=∠BAD=90°,∴∠BAF=∠DAE,∴△ADE≌△ABF(ASA),∴AE=AF,故①正确,∵AG平分∠EAF,∴∠GAF=∠GAE,∵AF=AE,AG=AG,∴△AGF≌△AGE(SAS),∴∠AGF=∠AGE=90°﹣∠BAG,∴∠EGF=180°﹣2∠BAG,∵∠EGF=180°﹣∠EGC,∴∠EGC=2∠BAG,故②正确,∵△ADE≌△ABF,∴DE=BF,∵△GAF≌△GAE,∴GF=GE,∵FG=BF+BG=DE+BG,∴EG=BG+DE,故③正确,过点H作HM⊥AD于M,HN⊥CD于N,∵AE=AF,∠EAF=90°,AH平分∠EAF,∴AH⊥EF,HF=HE,∴HA=HE=HF,∵∠ADE+∠AHE=180°,∴∠HAD+∠DEH=180°,∵∠DEH+∠HEN=180°,∴∠HAM=∠HEN,∵∠AMH=∠ENH=90°,∴△HMA≌△HNE(AAS),∴AM=EN,HM=HN,∵∠HMD=∠HND=∠MDN=90°,∴四边形HMDN是矩形,∵HM=HN,∴四边形HMDN是正方形,∴DM=DN=HM=HN,DH=DM,∴DA+DE=DM+AM+DN﹣EN=2DM=DH,故④正确,当DE=EC时,设DE=EC=a,BG=x,则EG=a+x,GC=2a﹣x,在Rt△ECG中,∵EG2=EC2+CG2,∴(x+a)2=a2+(2a﹣x)2,解得x=a,∴CG=a,EG=a,∴CE:CG:EG=a:a:=3:4:5,故⑤正确,故选:D.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.13.如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC=2,则下列结论:①FB⊥OC;②△EOB≌△CMB;③四边形EBFD是菱形;④MB=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】连接BD,先证明△BOC是等边三角形,得FO=FC,BO=BC,故①正确;因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM,故②错误;再证明四边形EBFD是平行四边形,由OB⊥EF推出四边形EBFD是菱形故③正确,先判断出CM=,再由∠CBM=30°,判断出BC=2,进而判断出④,由此不难得到答案.【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中,,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∠AOE=∠FOC∴△AOE≌△COF(ASA),∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误;∵FO=FC=2,FM⊥OC,∠FCM=30°,∴CM=,∵∠CBM=30°,∴BC=2,∴BM=3,∴④错误.综上可知其中正确结论的个数是2个,故选:B.【点评】本题属于四边形的综合题,考查矩形的性质、等边三角形的判定和性质.全等三角形的判定和性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.二.填空题(共3小题)14.如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE =40°,则∠DFC的度数为110°.【分析】根据正方形性质和已知得:AD=DE,利用等腰三角形性质计算∠DAE=25°,由三角形的内角和定理得:∠AFD=110°,证明△ADF≌△CDF(SAS),∠DFC=∠AFD =110°.【解答】解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADB=∠BDC=45°,∵DC=DE,∴AD=DE,∴∠DAE=∠DEA,∵∠ADE=90°+40°=130°,∴∠DAE==25°,∴∠AFD=180°﹣25°﹣45°=110°,在△ADF和△CDF中,∵,∴△ADF≌△CDF(SAS),∴∠DFC=∠AFD=110°,故答案为:110°.【点评】本题考查了正方形的性质、三角形全等的性质和判定、等腰三角形的性质、三角形内角和定理,属于基础题,熟练掌握正方形的性质是关键.15.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中只有8个等腰三角形.其中正确的有②③(填番号).【分析】根据正方形的性质和已知推出四边形DECB是平行四边形,得到BD=CE,BD ∥CE,无法证出G为CE的中点;得到BD∥CE,推出∠DCG=∠BDC=45°,求出∠BGC=∠GBC,得到BC=CG=CD,求出∠CDG=∠DHG即可;根据三角形的面积公式推出△CDG和四边形DHGE的面积相等;可得有9个等腰三角形.【解答】解:∵正方形ABCD,DE=AD,∴AD∥BC,DE=BC,∠EDC=90°,∴四边形DECB是平行四边形,∴BD=CE,BD∥CE,∵DE=BC=AD,∴∠DCE=∠DEC=45°,要使CE=2DG,只要G为CE的中点即可,但DE=DC,DF=BD,∴EF≠BC,即△EFG和△BCG不全等,∴G不是CE中点,∴①错误;∵∠ADB=45°,DF=BD,∴∠F=∠DBH=∠ADB=22.5°,∴∠DHG=180°﹣90°﹣22.5°=67.5°,∵BD∥CE,∴∠DCG=∠BDC=45°,∵∠DHG=67.5°,∴∠HGC=22.5°,∠DEC=45°,∵∠BGC=180°﹣22.5°﹣135°=22.5°=∠GBC,∴BC=CG=CD,∴∠CDG=∠CGD=(180°﹣45°)=67.5°=∠DHG,∴②正确;∵CG=DE=CD,∠DCE=∠DEC=45,∠HGC=22.5°,∠GDE=90﹣∠CDG=90﹣67.5=22.5°,∴△DEG≌△CHG,要使△CDG和四边形DHGE的面积相等,只要△DEG和△CHG的面积相等即可,根据已知条件△DEG≌△CHG,∴③S△CDG=S四边形DHGE;正确,等腰三角形有△ABD,△CDB,△BDF,△CDE,△BCG,△DGH,△EGF,△CDG,△DGF;∴④错误;故答案为:②③.【点评】本题主要考查对三角形的内角和定理,等腰三角形的性质和判定,正方形的性质,平行四边形的性质和判定等知识.综合运用这些性质进行推理是解此题的关键.16.如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE交DP于点F,连接BF,FC.若AE=2,则FC=2.【分析】根据正方形的性质可得AB=AD,再求出∠BAE=∠DAF,∠ABE=∠ADF,然后利用“角边角”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AE=AF,从而判断出△AEF是等腰直角三角形,根据AE的长度求出EF,过点A作AH⊥EF于H,连接BH,根据等腰直角三角形的性质可得AH=EH=FH,利用“角边角”证明△APH 和△BPE全等,根据全等三角形对应边相等可得BE=AH,然后求出△BEH是等腰直角三角形,根据等腰直角三角形的性质可得∠EHB=45°,然后求出∠AHB=∠FHB,再利用“边角边”证明△ABH和△FBH全等,根据全等三角形对应边相等可得AB=BF,再根据全等三角形对应边相等求出BE=DF,全等三角形对应角相等求出∠BAH=∠BFE,然后求出∠BFE=∠ADF,根据等角的余角相等求出∠EBF=∠FDC,再利用“边角边”证明△BEF和△DFC全等,根据全等三角形对应边相等可得FC=EF.【解答】解:在正方形ABCD中,AB=AD,∠BAD=90°,∵F A⊥AE,∴∠EAF=90°,∴∠BAE=∠DAF,∵∠ABE+∠BPE=∠ADF+∠APD=90°,∴∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF,BE=DF,∵F A⊥AE,∴△AEF是等腰直角三角形,∴EF=AE=2,过点A作AH⊥EF于H,连接BH,。

几何综合题的解题策略(一)

几何综合题的解题策略(一)

几何综合题的解题策略(一)几何综合题的解题策略几何综合题是高考数学中难度较大的题型之一,它通常由多个几何图形组合而成,要求我们根据图形的性质和条件来解答问题。

为了帮助大家更好地应对这一题型,以下是一些解题策略供大家参考:确定图形在开始解题前,需要先确定题目所提供的几何图形究竟是什么,是三角形还是矩形?是正方形还是圆形?只有正确地确定图形,我们才能有针对性地运用几何知识解答问题。

此外,还需注意图形的数量,是只有一个图形还是多个图形组合而成。

刻画图形性质一旦确定了图形,接下来就要对每个图形进行性质的刻画。

我们需要看看这个三角形或者矩形是否是等边三角形或正方形,是否存在内切圆或外接圆等,同时需要刻画图形的角度大小、边长等信息。

建立方程在刻画了图形性质后,就需要建立方程。

通过图形性质的刻画,我们可以得出一些条件式,如勾股定理、三角形内角和等于180度等。

我们需要根据条件式建立出方程,并结合所求的未知量来解答问题。

同时也要注意方程的数学性质,如方程的次数、根的情况等。

运用几何关系在建立方程后,我们需要再次重温几何关系,如图形的相似性、共线性、重合性等,来看看是否能够得出更多的条件式。

通过这些条件式,我们能够得出更加精确的答案。

综合思考解题要点还不止于此。

有时我们还需要综合上述步骤来进行思考,如通过已知的图形性质和条件式,推出原本不是条件式的一些信息,再来解答问题。

此外,我们还需要灵活运用代数公式、三角函数等知识,才能有针对性地解决特殊问题。

通过以上几点,相信大家对几何综合题的解题策略又有了更深入的认识。

在练习几何综合题时,一定要耐心思考、仔细分析,相信高考难不倒我们!注意事项虽然有了上述的解题策略,但是在解题的过程中,我们还需要注意以下几点:•注意审题,看清题目要求,全面、准确理解问题的含义。

•注意画图,清晰地描绘出各种几何图形,符号的规范性。

•注意符号,符号的使用要准确、清晰,符合几何语言习惯。

•注意步骤,解题过程要有条不紊,分清主次,不漏逻辑,不失严密性。

人教版八年级数学下册期末复习解答培优:几何与函数综合(一)

人教版八年级数学下册期末复习解答培优:几何与函数综合(一)

人教版八年级数学下册期末复习解答培优:几何与函数综合(一)1.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A′,AA′的延长线交BC于点G.(1)求证:DE∥A′F;(2)求∠GA′B的大小;(3)求证:A′C=2A′B.2.如图,在四边形ABCD中,对角线AC与BD交于点O,已知OA=OC,OB=OD,过点O作EF⊥BD,分别交AB、DC于点E,F,连接DE,BF.(1)求证:四边形DEBF是菱形:(2)设AD∥EF,AD+AB=12,BD=4,求AF的长.3.如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度(AE=CF)向C、A运动,其速度为0.5cm/s.(1)当E与F不重合时,求证:四边形DEBF是平行四边形;(2)点E,F在AC上运动过程中,求当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形.4.如图,D、E、F分别是△ABC各边的中点,连接DE、EF、AE.(1)求证:四边形ADEF为平行四边形;(2)加上条件后,能使得四边形ADEF为菱形,请从①∠BAC=90°;②AE平分∠BAC;③AB=AC 这三个条件中选择1个条件填空(写序号),并加以证明.5.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过点D作DE∥AC且DE=AC,交BC于点O,连接CD、BE、CE.(1)求证:四边形BECD是菱形;(2)当AB和AC满足数量关系时,四边形BECD是正方形.6.下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.①图乙和图丙中(1)(2)(3)是否为正方形?为什么?②图中(1)(2)(3)的面积分别是多少?③图中(1)(2)的面积之和是多少?④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?7.在▱ABCD中,E为BC边上一点,F为对角线AC上一点,连接DE、BF,若∠ADE与∠CBF的平分线DG、BG交于AC上一点G,连接EG.(1)如图1,点B、G、D在同一直线上,若∠CBF=90°,CD=3,EG=2,求CE的长;(2)如图2,若AG=AB,∠DEG=∠BCD,求证:AD=BF+DE.8.如图,在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E,F连接AF,CE.(1)求证:OE=OF;(2)求证:四边形AFCE是菱形.9.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.10.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)如果∠A=80°,∠C=30°,求∠BDE的度数.11.如图,在平面直角坐标系中,O为坐标原点,直线y=kx+b,交x轴的正半轴于点A,与y轴正半轴交于点B,OA=OB,点P为线段OA上一点.(1)如图1,若b=4求,点A的坐标.(2)如图2,在(1)的条件下,连接BP,设点P横坐标为t,△APB的面积为S(S>0),求S与t的函数关系式,并直接写出t的取值范围.(3)过点B作BK⊥BA,交x轴于点K,过点P作PQ⊥OA,交直线KB于点Q,连接AQ,取AQ中点C,连接BP、BC、CP,作CH⊥OA于点H,连接BH,∠BHC=2∠ABP,OK﹣OP=4,求直线BH的解析式.12.如图,在平面直角坐标系中,直线y=x+b分别交x、y轴于B、A两点,且AB=8.(1)求直线AB的解析式;(2)点C是y轴负半轴上一点,纵坐标为d,点D是直线AB上一点,横坐标为t,d与t的函数关系为d=t+4,将线段CD绕点C顺时针旋转90°,得到线段CE,求E点坐标;(3)在(2)的条件下,线段CD交x轴于点M,CE交x轴于点P,G为点P右侧x轴上一点,连接GE并延长交直线AB于F,N是线段CE上一点,连接MN,过点E作EK⊥EC交过点A且平行于x轴的直线于点K,连接MK,若MK平分∠DMN,∠PEG=45°,3AF=4BD,求点N的坐标.13.如图,一次函数的图象经过点A(4,0),B(0,3).以线段AB为边在第一象限内作等腰直角三角形ABC,∠BAC=90°.若第二象限内有一点P(a,),且△ABP的面积与△ABC的面积相等.(1)求直线AB的函数表达式.(2)求a的值.(3)在x轴上是否存在点M,使△MAC为等腰三角形,若存在,直接写出点M的坐标;若不存在.请说明理由.14.在直角坐标系中,点A的坐标是(3,0),点P在第一象限内的直线y=﹣x+4上.设点P的坐标为(x,y).(1)在所给直角坐标系(如图)中画出符合已知条件的图形,求△POA的面积S与自变量x的函数关系式及x 的取值范围;(2)当S=时,求点P的位置;(3)在(2)的条件下,若以P、O、A、Q为顶点构成平行四边形,请直接写出第四个顶点Q的坐标.15.在一条笔直的公路上依次有A、C、B三地,甲、乙两人同时出发,甲从A地骑自行车匀速去B地,途经C 地时因事停留1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行匀速从B地至A地.甲、乙两人距A地的距离y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1)甲的骑行速度为米/分,点M的坐标为;(2)求甲返回时距A地的距离y(米)与时间x(分)之间的函数解析式(不需要写出自变量的取值范围);(3)请直接写出两人出发后,在甲返回到A地之前,分钟时两人距C地的距离相等.。

八年级数学上册几何期末综合复习题1

八年级数学上册几何期末综合复习题1

八年级期末几何综合复习(一)1.如图,设△ABC和△CDE都是等边三角形,且∠EBD=65°,则∠AEB的度数是()A.115°B.120°C.125°D.130°2.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=()A.18°B.20°C.25°D.15°3.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①DF=DN;②△DMN为等腰三角形;③DM平分∠BMN;④AE=EC;⑤AE=NC,其中正确结论的个数是()A.2个B.3个C.4个D.5个4.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC.点A、B分别在坐标轴上,且x轴恰好平分∠BAC,BC交x轴于点M,过C点作CD⊥x轴于点D,则的值为.5.已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,则△CDE的周长为.6.如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上,则△PMN周长的最小值为.7.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为度.8如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,点M在x轴负半轴上,S△ABM=6.当线段OM最长时,点M的坐标为.9.如图,△ABC中,AC=BC,∠ACB=90°,点D为BC的中点,点E与点C关于直线AD对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD,求证:(1)△BEF为等腰直角三角形;(2)∠ADC=∠BDG.10.如图,等腰△ABC中,AB=CB,M为ABC内一点,∠MAC+∠MCB=∠MCA=30°(1)求证:△ABM为等腰三角形;(2)求∠BMC的度数.11.如图,直线AB交x轴于点A(a,0),交y轴于点B(0,b),且a、b满足|a+b|+(a ﹣5)2=0(1)点A的坐标为,点B的坐标为;(2)如图,若点C的坐标为(﹣3,﹣2),且BE⊥AC于点E,OD⊥OC交BE延长线于D,试求点D的坐标;(3)如图,M、N分别为OA、OB边上的点,OM=ON,OP⊥AN交AB于点P,过点P 作PG⊥BM交AN的延长线于点G,请写出线段AG、OP与PG之间的数列关系并证明你的结论.12.如图,在等边三角形△ABC中,AE=CD,AD、BE交于P点,BQ⊥AD于Q,(1)求证:BP=2PQ;(2)连PC,若BP⊥PC,求的值.13.在△ABC中,AD平分∠BAC交BC于D.(1)如图1,∠MDN的两边分别与AB、AC相交于M、N两点,过D作DF⊥AC于F,DM=DN,证明:AM+AN=2AF;(2)如图2,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB,求四边形AMDN 的周长.14.如图1,在平面直角坐标系中,点A、B分别在x轴、y轴上.(1)如图1,点A与点C关于y轴对称,点E、F分别是线段AC、AB上的点(点E不与点A、C重合),且∠BEF=∠BAO.若∠BAO=2∠OBE,求证:AF=CE;(2)如图2,若OA=OB,在点A处有一等腰△AMN绕点A旋转,且AM=MN,∠AMN=90°.连接BN,点P为BN的中点,试猜想OP和MP的数量关系和位置关系,说明理由.15.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F.(1)如图1,若∠ACD=60°,则∠AFD=;(2)如图2,若∠ACD=α,连接CF,则∠AFC=(用含α的式子表示);(3)将图1中的△ACD绕点C顺时针旋转如图3,连接AE、AB、BD,∠ABD=80°,求∠EAB 的度数.16.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.17.如图,在平面直角坐标系中,已知A(0,a)、B(﹣b,0)且a、b满足+|a﹣2b+2|=0.(1)求证:∠OAB=∠OBA;(2)如图1,若BE⊥AE,求∠AEO的度数;(3)如图2,若D是AO的中点,DE∥BO,F在AB的延长线上,∠EOF=45°,连接EF,试探究OE和EF的数量和位置关系.19.如图①,平面直角坐标系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB为直角边作等腰Rt△ABC,∠CAB=90°,AB=AC.(1)求C点坐标;(2)如图②过C点作CD⊥X轴于D,连接AD,求∠ADC的度数;(3)如图③在(1)中,点A在Y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交Y轴于F,试问A点在运动过程中S△AOB:S△AEF的值是否会发生变化?如果没有变化,请直接写出它们的比值(不需要解答过程或说明理由).20.如图1,点A和点B分别在y轴正半轴和x轴负半轴上,且OA=OB,点C和点D分别在第四象限和第一象限,且OC⊥OD,OC=OD,点D的坐标为(m,n),且满足(m﹣2n)2+|n ﹣2|=0.(1)求点D的坐标;(2)求∠AKO的度数;(3)如图2,点P,Q分别在y轴正半轴和x轴负半轴上,且OP=OQ,直线ON⊥BP交AB 于点N,MN⊥AQ交BP的延长线于点M,判断ON,MN,BM的数量关系并证明.21.如图,△AOB和△ACD是等边三角形,其中AB⊥x轴于E点(1) 如图,若OC=5,求BD的长度(2) 设BD交x轴于点F,求证:∠OF A=∠DF A(3) 如图,若正△AOB的边长为4,点C为x轴上一动点,以AC为边在直线AC下方作正△ACD,连接ED,求ED的最小值八年级几何综合复习(二)1.如图,在△ABC中,∠C=90°,AC=3,BC=4,AB=5,角平分线AF和BG交于D,DE ⊥AB于E,则DE长为.2.已知AD为△ABC的内角平分线,AB=7cm,AC=8cm,BC=9cm,则CD的长为cm.如图,已知四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连结BE,且BE恰好平分∠ABC,判断AB的长与AD+BC的大小关系并证明.3.如图,△ABC中,∠ACB=90°,AC=BC,D在BC上,BM⊥AD于M,求∠CMA的度数.4.如图,BD是等腰直角△ABC的腰AC上的中线,AE⊥BD交BD、BC于E、F,求证:(1)∠ABD=∠CAF;(2)∠ADB=∠CDF.5.如图,平面直角坐标系中,A(2,0),△OAC为等边三角形.(1)如图1,若D(0,4),△ADE为等边三角形,∠DAC=10°,求∠AEC的度数.(2)如图2,若P为x轴正半轴上一点,且P在A的右侧,△PCM为等边三角形,MA的延长线交y轴于N,求AM﹣AP的值.(3)如图3,若P为x轴正半轴上一点,且P在A的右侧,△PAM为等边三角形,OM与PC交于F,求证:AF+MF=PF.6.已知△ABC中,∠ABC=90゜,AB=BC,点A、B分别是x轴和y轴上的一动点.(1)如图1,若点C的横坐标为﹣4,求点B的坐标;(2)如图2,BC交x轴于D,若点C的纵坐标为3,A(5,0),求点D的坐标.(3)如图3,分别以OB、AB为直角边在第三、四象限作等腰直角△OBF和等腰直角△ABE,EF交y轴于M,求S△BEM:S△ABO.7.如图,E是正方形ABCD中CD边上的任意一点,以点A为中心,把△ADE顺时针旋转90°得△ABE1,∠EAE1的平分线交BC边于点F,求证:△CFE的周长等于正方形ABCD 的周长的一半.8.如图,△ABC中,AC=BC,∠ACB=90°,点D为BC的中点,点E与点C关于直线AD 对称,CE与AD、AB分别交于点F、G,连接BE、BF、GD,求证:(1)△BEF为等腰直角三角形;(2)∠ADC=∠BDG.9.如图,等腰△ABC中,AB=CB,M为ABC内一点,∠MAC+∠MCB=∠MCA=30°(1)求证:△ABM为等腰三角形;(2)求∠BMC的度数.10.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°、∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:CE=AG;②若BF=2AF,连接CF,求∠CFE的度数;(2)如图2,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,直接写出=.11.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣4a﹣2b+5=0.①求a、b的值;②如图1,在①的条件下,将点B在x轴上平移,且b满足:0<b<2;在第一象限内以AB 为斜边作等腰Rt△ABC,请用b表示S四边形AOBC,并写出解答过程.(2)若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF.①如图2,判断AF与BF的关系并说明理由;②若BF=OA﹣OB,则∠OAF=(直接写出结果).12.已知点E在等边△ABC的边AB上,点P在射线CB上,AE=BP(1)如图1,求证:AP=CE;(2)如图2,求证:PE=EC;(3)如图3,若AE=2BE,延长AP至点M使PM=AP,连接CM,求证:CM=CE;13.CO是△ACE的高,点B在OE上,OB=OA,AC=BE(1)如图1,求证:∠A=2∠E;(2)如图2,CF是△ACE的角平分线.①求证:AC+AF=CE;②判断三条线段CE、EF、OF之间的数量关系,并给出证明.14.如图,在等腰Rt △ABC 中,∠ABC =90°,O 是AC 的中点,P ,Q 分别在AB ,BC 上(P ,Q 与A ,B ,C 都不重合),OP ⊥OQ ,OS ⊥AQ 交AB 于S .下列结论:①BQ =BS ;②P A =QB ;③S 是PB 的中点;④CQPS的值为定值.其中正确结论的个数是( )15.如图,AB ⊥BC ,AD ⊥DC ,∠BAD =130°,点M ,N 分别在BC ,CD 上,当△AMN 得周长最小时,∠MAN 的度数为_________.16.如图,在Rt △ABC 和Rt △BCD 中,∠BAC =∠BDC =90°,BC =8,AB =AC,∠CBD =45°,则△DMN 的周长为___________.17.如图1,在△ABC 中,AB =AC ,∠BAC =30°,点D 是△ABC 内一点,DB =DC ,∠DCB =30°,点E 是BD 延长线上一点,AE =AB . (1)直接写出∠ADE 的度数_______; (2)求证:DE =AD +DC ;(3)作BP 平分∠ABE ,EF ⊥BP ,垂足为F ,(如图2),若EF =3,求BP 的长.OBABC图2图1ABEBCF18.如图,在平面直角坐标系中,已知两点A (m ,0),B (0,n )(n >m >0),点C 在第一象限,AB ⊥BC ,BC =BA ,点P 在线段OB 上,OP =OA ,AP 的延长线与CB 的延长线交于点M ,AB 与CP 交于点N .(1)点C 的坐标为:__________(用含m ,n 的式子表示); (2)求证:BM =BN ;(3)设点C 关于直线AB 的对称点为D ,点C 关于直线AP 的对称点为G ,求证:D ,G 关于x 轴对称.19. 如图1,在平面直角坐标系中,△ABC 的顶点A (-3,0)、B (0,3),AD ⊥BC 于D 交BC 于D 点,交y 轴于点E (0,1) (1) 求C 点的坐标(2) 如图2,过点C 作CF ⊥CB ,且截取CF =CB ,连接BF ,求△BCF 的面积(3) 如图3,点P 为y 轴正半轴上一动点,点Q 在第三象限内,QP ⊥PC ,且QP =PC ,连接QO ,过点Q 作QR ⊥x 轴于R ,求OPQROC 的值。

高思奥数导引小学六年级含详解答案第7讲 几何综合一

高思奥数导引小学六年级含详解答案第7讲 几何综合一

第7讲几何综合一兴趣篇1. 图中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米。

已知a=2厘米,b=4厘米,c=5厘米,求图形的面积。

【分析】2S=⨯+⨯+⨯=++=2716531461535(cm)2. 如图所示,∠+∠+∠+∠+∠+∠123456等于多少度?【分析】将这六个角用中心六边形的六个内角代换,利用六边形内角和为720,列方程得(1801)(1802)(1803)(1804)(1805)(1806)720-∠+-∠+-∠+-∠+-∠+-∠=,所以12345)6360∠+∠+∠+∠+∠+∠=3. 如图,平行四边形ABCD 的周长为75厘米。

以BC 为底时高是14厘米,以CD 为底时高是16厘米。

求平行四边形ABCD 的面积。

【分析】 75237.5BC CD +=÷=,根据面积相等,底的比与高的比成反比例,所以:16:148:7BC CD ==,因此37.5(87)820BC =÷+⨯=,平行四边形ABCD 的面积是2014280⨯=平方厘米4. 如图所示,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是310平方米、25平方米、15平方米和110平方米。

已知图中的阴影部分是正方形,那么它的面积是多少平方米?【分析】 1251110CH HD ==,因此23CH =,13HD =,3310245AE EB ==,所以37AE =,47EB =,因此2353721FG =-=,那么它的面积是252521441⎛⎫= ⎪⎝⎭平方米5. 如图,红、黄、绿三块大小一样的正方形纸片,放在一个正方体盒内,它们之间相互重叠。

已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是10。

那么,正方体盒子的底面积是多少?绿黄红【分析】 将黄色纸片推到左边,则每块纸片露出的形状如右上图.黄、绿两色的面积之和保持14+10=24不变,则在右图中这两块面积相等,均为24212÷=.根据公式可知,空白处面积=黄⨯绿÷红=1212207.2⨯÷=,则正方形盒底面积是7.212122051.2+++=.6. 如图,在三角形ABC 中,IF 和BC 平行,GD 和AB 平行,HE 和AC 平行。

一次函数与几何综合一

一次函数与几何综合一

一次函数与几何综合(一)标模块一一次函数与线段长例1(2017江岸区八下期末)如图,直线l: y=2x+4.(1)①直接写出直线l关于y轴对称的直线l i的解析式:;②直接写出直线l向右平移2个单位得到的直线12的解析式: ;(2)在(1)的基础上,点M是x轴上一点,过点M作x轴的垂线交直线l i于点Q、交直线l2于点P,若PM = 2PQ,求M 点的坐标.例2(2017斫口区八下期末)图1中两条经过原点O的射线组成的图形E表示y关于x的函数关系式.(1)直接写出图形E表示的函数解析式;(2)如图2,过直线y=3上一点P(m, 3)作x轴的垂线交图形E于点C,交直线y=- x- 1于点D.①若m>0,试比较PC与PD的大小,并证明你的结论;②若CD <3,求m的取值范围.图图2挑战压轴题(2017黄陂区八下期末第24题)如图,直线l i经过点P(2, 2),分别交x轴、y轴于点A(4, 0)、B.(1)求直线l i的解析式;(2)点C为x轴负半轴上一点,过点C的直线l2:y=mx+ n交线段AB于点D.①如图1,当点D恰与点P重合时,点Q(t, 0)为x轴上一动点,过点Q作QM,x轴,分别交直线11、12于点M、N,若m= - , MN = 2MQ,求t 的值;2②如图2,若BC=CD,试判断m、n之间的数量关系并说明理由.模块二一次函数与特殊三角形知识导航1.等腰直角三角形一三垂直全等如图,△ ABC中,AB = AC, / BAC=90°,可构造如图所示的三垂直全等模型,“△ ACD^A BAE",从而可以转化为水平线段长度与点坐标的基本计算.若已知等腰直角三角形三个顶点坐标中的两个便可通过此方法求第三顶点坐标.2.等腰三角形的存在性一两圆一中垂已知A、B为定点,C为动点,△ ABC为等腰三角形,则分下列情况:(1)若CA = CB,则点C在AB中垂线上(不与AB共线).(2)若AC = AB,则点C在以A为圆心,AB为半径的圆上(不与点B重合).(3)若BA=BC,则点C在以B为圆心,AB为半径的圆上(不与点A重合).3.直角三角形的存在性一两垂一圆已知A、B为定点,C为动点,△ ABC为直角三角形,则分下列情况:(1)若/ CAB = 90°,则点C在过点A且垂直AB的直线上(不与点A重合).(2)若/ CBA = 90°,则点C在过点B且垂直AB的直线上(不与点B重合).(3)若/ ACB = 90°,则点C在以AB为直径的圆上(不与点A、B重合).八下会把特殊三角形的顶点放在一次函数背景下讨论、计算.例3如图,在直角坐标系中,矩形OABC的两边在坐标轴上,其中点B的坐标为(4, 3),过点A的直线AD 的解析式为y=2x+3,点P是直线AD上一动点,点Q是线段BC(包才B, C两点)上一动点.若AP = AQ 且AP^AQ,求点P的坐标及直线AQ的解析式;练习如图1,在平面直角坐标系中,A(a, 0), B(0, b),且b= "a -4+”5 +16a 2(1)求直线AB的解析式;(2)如图2,若点M为直线y=mx在第一象限上一点,且^ ABM是等腰直角三角形,求m.图1 图2例4在平面直角坐标系中,直线y=kx— k经过一定点P.(1)直接写出P点坐标;(2)在y轴上有一点A(0, 2),当k = 2时,将直线y=kx—k向上平移2个单位得到直线1,在直线l上找点C,使得△ ACO为等腰三角形,求点C的坐标.练习3 ........................................... 如图,在平面直角坐标中,一次函数y= — x+ 2的图象与x轴交于A点,与y轴交于B点,在x轴上是3否存在点P,使^ PAB为等腰三角形?若存在,求出符合条件的P点的坐标;若不存在,请说明理由.3 ............... ............................ 例5如图,在平面直角坐标系中,直线y=- ^r-x+ 6与x轴、y轴分别交于B、A点,已知点C从点A出3发沿AO以每秒1cm的速度向点O运动,同时点D从点B出发沿BA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DELOB于点E.连接DC,当t为何值时,△ DEC为直角三角形?模块三一次函数与特殊四边形例61如图,已知函数y=- -x+ b的图象与x轴、y轴分别交于点A, B,与函数y=x的图象交于点E,点E的3横坐标为3.⑴求点A的坐标.1(2)在x轴上有一点F(a, 0),过点F作x轴的垂线,分别交函数y=—-x+b和y=x的图象于点C、D.若3以点B, O, C, D为顶点的四边形为平行四边形,求a的值.练习如图,在平面直角坐标系xOy中,直线y=kx+b交x轴于点A,交y轴于点B,线段AB的中点E的坐标为(2, 1).⑴求k、b的值;(2)P为直线AB上一点,PC^x轴于点C, PD^y轴于点D,若四边形PCOD为正方形,求点P的坐标.例7(2017东湖高新区八下期末)平面直角坐标系中,直线y=ax+b与x轴分别交于点B、C,且a、b满足a= *6-b + J b — 6 +3,不论k为何值,直线l: y=kx—2k都经过x轴上一定点A.(1)a =, b =, 点A 的坐标为;(2)如图1,当k= 1时,将线段BC沿某个方向平移,使点B、C对应的点M、N恰好在直线l和直线y= 2x—4上.请你判断四边形BMNC的形状,并说明理由;(3)如图2,当k的取值发生变化时,直线l: y=kx—2k绕着点A旋转,当它与直线y=ax+b相交的夹角为450时,求出相应的k的值.图1 图2拓展1平面直角坐标系中,直线li: y= —/x+3与x轴交于点A,与y轴交于点B,直线12:y=kx+2k与x轴父于点C,与直线l i交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE^x轴于点巳交直线12于点F,若DF=2DE,求k的值.(3)如图2,点P在第二象限内,PM^x轴于M,以PM为边向左作正方形PMNQ, NQ的延长线交直线11 于点R,若PR= PC,求点P的坐标.课后作业A基础巩固1.已知点A的坐标是(2, 2),若点P在x轴上,且^ APO是等腰三角形,则点P的坐标为 .1 2.如图,P是y轴上一动点,是否存在平行于y轴的直线x=t(t>0),使它与直线y=x和直线y=-2x+2分别交于点D、E(E在D的上方),且4 PDE为等腰直角三角形.若存在,求t的值及点P的坐标;若不存在,请说明理由.3.如图,直线y=kx+b与坐标轴分别交于点A, B,且A(—4, 0), &AOB =4.(1)求直线y= kx+ b的解析式;(2)若点P为直线y=kx+b上一点,PC^x轴于C, PD^y轴于D,若四边形PCOD为正方形,求点P坐标.4 .如图,在平面直角坐标系中,直线 y=- — x+ 6与x 轴、y 轴分别交于A 、B 点,已知点C 从点A 出 3发沿AO 以每秒1cm 的速度向点O 运动,同时点D 从点B 出发沿BA 以每秒2cm 的速度向点A 运动,运 动时间为t 秒(0<t<6),过点D 作DELOB 于点E.(1)①直接写出/ ABO 的度数为②证明在C 、D 运动过程中,四边形 ACED 是平行四边形; 5 . (2017洪山区八下期末)3y=— —x+b 分别与x 轴、y 轴父于点 A 、B,且点A 坐标为(8, 0),点 4C 为AB 的中点.⑴写出点B 的坐标(2)如图1,点P 为直线AB 上的一个动点,过点 P 作x 轴的垂线,与直线 OC 交于点Q,设点P 的横坐标 为m,线段PQ 的长度为d,求d 与m 的函数解析式(请直接写出自变量 m 的取值范围);数学故事为什么2187是个幸运的数字尽管不符合常规理解的“幸运”含义,2187这个数字仍有一系列让人吃惊的特征.在纪念马丁 加德纳 100周年诞辰之际,我们来回顾他在 1997年为《数学信使》(MathematicalIntelligencer)写的一篇文章.在这篇文章中,他问他想象中的好友欧文约书亚矩阵博士(Dr. Irving JoshuaMatrix)关于数字2187的问题.欧文 约书亚 矩阵博士是“世界最著名的数字命理学家”,也是在《科学美国人》(Scientific American )"数学游戏”(Mathematical Games)专栏中经常出现的角色;而 2187,则是加德 纳儿时在美国俄克拉荷马州(Okla)塔尔萨(Tulsa)老家的门牌号码.矩阵博士立刻列举了一系列关于 2187的事实,这让加德纳感到非常兴奋: 2187,是3的7次方,它的.三进制写法是 10000000; 9999减去2187等于7812,恰好与其顺序相反;21乘以87等于1827, 27乘以81又刚好等于2187.“每个数字都有数不 尽的独特的特征,”矩阵博士点评说,同时补充道, 2187也是一个幸运数.幸运数是素数的远亲,素数是只能被1和它本身整除的正整数.尽管这两者在很多方面都不同,但它们都可以利用被称为“筛法”的方法得到.希腊数学家埃拉托斯特尼 (Eratosthenes)设计了一种在正整数序列中寻找素数的方法一一著名的埃拉托斯特尼筛法:首先删除所有除2以外2的倍数,然后删除3的倍数,然后是5, 7, 11等等.这样不断删除到无穷大,就可以得到所有素数.波兰裔美国数学家斯塔尼斯拉夫 乌拉姆(Stanislaw Ulam)在20世纪50年代中期开发出了另一种筛法:同样是从正整数序列开始,先将数列 中的第 2n 个数 (偶数 )删除,只留下奇数;这样剩下的数列中第二项是 3,因此将新数列的第 3n 个数删除;(2)当 t = 时,四边形ACED 是菱形.如图,在平面直角坐标系中,直线(3)如图2,当点P 在线段 AB 上,在第一象限内有一点 N,使得四边形 OBNP 为菱形,求出N 点坐标.B 综合训练再剩下的新数列中的第三项为7,因此将新数列的第7n 个数删除;再剩下的新数列中的第四项为9,因此将新数列的第9n 个数删除;这样继续下去,最终有一些数永远地逃离了被删除的命运而留下来,这就是为什么乌拉姆把它们称作“幸运数”.幸运数和素数有一些由奇妙的筛法得到的数字的共同特征.比如说,在小于100 的数中,有25 个素数和23 个幸运数,其中有八对孪生素数(之差为 2 的两个素数)以及七对孪生幸运数.关于素数,尚未解决的最有名的问题之一就是哥德巴赫猜想——任一大于2 的偶数,都可表示成两个素数之和.同样另一个未解决的问题是一个相似的命题——任一大于2 的偶数,都可表示成两个幸运数之和.关于2187,还有另一个有趣的事实——如下所示,等号右边的数字之和等于左边与2187 相加的排列不同的数字之和.2187 + 1234=34212187+12345= 145322187 + 123456= 1256432187 + 1234567= 12367542187+ 12345678=123478652187+ 123456789= 123458976。

初中数学几何综合试题1及答案

初中数学几何综合试题1及答案

初中数学几何综合试题班级____ 学号____ 姓名____ 得分____一、 单选题(每道小题 3分 共 9分 )1. 下列各式中正确的是[ ]A.sin12=30 B.tg1=45C.tg30=3D.cos60=122. 如图,已知AB 和CD 是⊙O 中两条相交的直径,连AD 、CB 那么α和β的关系是 [ ]A B C D ....αββαβαβα=><=121223. 在一个四边形中,如果两个内角是直角,那么另外两个内角可以 [ ] A .都是钝角 B .都是锐角C .一个是锐角一个是直角D .都是直角或一个锐角一个钝角二、 填空题(第1小题 1分, 2-7每题 2分, 8-9每题 3分, 10-14每题 4分, 共 39分)1. 人们从实践经验中总结出来的图形的基本性质,我们把它叫做_______.2. 小于直角的角叫做______;大于直角而小于平角的角叫做________.3. 已知正六边形外接圆的半径为R , 则这个正六边形的周长为_______.4. 在中若则Rt ABC ,C =90,cosB =23,sinA =∆∠ .5. 如果圆的半径R 增加10% , 则圆的面积增加_____________.6. cos sin cos sin .45306030-+=7. 已知∠a=60°,∠AOB=3∠a,OC 是∠AOB 的平分线,则∠a=___∠AOC .8. 等腰Rt △ABC, 斜边AB 与斜边上的高的和是12厘米, 则斜边AB= 厘米.9. 已知:如图△ABC 中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF 的度数为________.10. 在同一个圆中, 当圆心角不超过180°时, 圆心角越大, 所对的弧______;所对的弦_______, 所对弦的弦心距_______.11. 如图,在直角三角形ABC 中,∠C=90°,D 、E 分别是AB 、AC 中点, AC=7,BC=4,若以C 为圆心,BC 为半径做圆,则ED 与⊙o 的位置关 系是:D 在______, E 在_____.12. 在△ABC 中,∠C=90°若a=5,则S △ABC =12.5,则c=_________,∠A=_________13. 如图:CB ⊥AB,CE 平分∠BCD,DE 平分∠CDA,∠1+∠2=90° 求证:DA ⊥AB证明:∵∠1+∠2=90°(已知)∠2=∠4,∠1=∠3(角平分线定义) ∴∠3+∠4=90°(等量代换)∴∠ADC+∠BCD=180°(等量代换) AD ∥BC( )∵BC ⊥AB(已知)∴AD ⊥AB( )14. 圆外切四边形ABCD 中,如果AB=2,BC=3,CD=8,那么 AD= .三、 计算题(第1小题 4分, 2-3每题 6分, 共 16分)1. 求值:cos 245°+tg30°sin60°2. 已知正方形ABCD ,E 是BC 延长线上一点,AE 交CD 于F ,如果AC=CE , 求∠AFC 的度数.3. 如图:AB 是半圆的直径,O 为圆心,C 是AB 延长线上的一点,CD 切半圆于,于,已知:,,求之长.D DE AB E EB AB CD BC ⊥==152四、 解答题(1-2每题 4分, 第3小题 6分, 第4小题 7分, 共 21分)1. 在△Rt △ABC 中,∠C=90°,AB+AC=a,∠B=a,求AC.2. 如图:铁路的路基的横截面是等腰梯形斜坡的坡度为为米基面宽米求路基的高,基底的宽及坡角的度数答案可带根号,AB 13,33,AD 2,AE BEC B .():BE3. 如图,某厂车间的人字屋架为等腰三角形,跨度AB=12米,∠A=30°,求中柱CD 和上弦AC 的长(答案可带根号)4. 如图:已知AB∥CD , ∠BAE=40°, ∠ECD=62°, EF平分∠AEC , 则∠AEF是多少度?五、证明题(第1小题 4分, 2-4每题 7分, 共 25分)1. 已知:如图 , AB=AC , ∠B=∠C.BE、DC交于O点.求证:BD=CE2. 已知:如图,PA=PB,PA切⊙O于A,BCD交⊙O于C、D,PC延长交⊙O于E,连结BE交⊙O于F.求证:DF∥PB.3. 如图:EG∥AD , ∠BFG=∠E.求证:AD平分∠BAC.4. 已知:如图 , 在∠AOB的两边OA , OB上分别截取OQ=OP , OT=OS , PT 和QS相交于点C.求证:OC平分∠AOB六、画图题(第1小题 2分, 2-3每题 4分, 共 10分)1. 已知:如图, ∠AOB求作:射线OC, 使∠AOC=∠BOC.(不写作法)2. 已知:两角和其中一个角的对边 ,求作:三角形ABC(写出已知 , 求作 , 画图,写作法)3. 如图, 要在河边修建一个水泵站, 分别向张村, 李村送水.修在河边什么地方, 可使所用的水管最短?(写出已知, 求作, 并画图)初中数学模拟考试题答案一、单选题1. D2. D3. D二、填空题1. 公理2. 锐角,钝角3. 6R4. 2 35. 0.21πR26. 21 27. 2 38. 89. 70°10. 越长, 越长, 越短11. 在圆外,在圆内12. 5245,13. 同旁内角互补,两直线平行;一条直线和两条平行线中的一条垂直,也和另一条垂直14. 7三、计算题1. 解:原式=+⨯=+=()2233321212122. 解:∵AC=CE 则∠1=∠2 又∵∠ACE=135°∴∠1=(180°-135°)÷2=22.5°故∠AFC=180°-(45°+22.5°)=112.5°3. 解:如图,连结、,为直径∴又∵,∽∴·同理·而,∴··∴::∵切半圆于,∽,:::AD DB ABADBDE AB ADE ABDADABAEADAD AE ABBD BE AB BE ABADBDAE ABBE ABC CAD BDCD D CDB A ADC DBC DC BC AD BD CDBC∠=⊥======∠=∠=∠=∠====︒9015412121212222∆∆∆∆四、解答题1. 解:在中则即即Rt ABC CACABAC ABACaACACa∆∠==+=+=+=+∴90111sinsinsinsinsinsinsinααααααα2. 解:米米AEAEBCB3313326330===+∠=∴()()()3. CDAC为米为米2343解:过E作EG∥AB∵∠BAE=40°∴∠AEG=40°同理∠CEG=62°∴∠AEC=102°又∵EF平分∠AEC ∴∠AEF=51°五、证明题4.1. 证:∵∠A=∠A , AB=AC , ∠B=∠C.∴△ADC≌△AEB(ASA)∴AD=AE∵AB=AC,∴BD=CE.2. 证明:如图,切⊙于,交⊙于、,又的公用∽又∥PA O A BCD O C DAP PC PEPA PB PB PC PEPBPCPEPBBPC PBC PEBEE BDF BDF DF PB∴=⋅=∴=⋅∴=∠∴∴∠=∠∴∠=∠∴∠=∠∴2211∆∆证明:∵∠BFG=∠E=∠EFAEG∥AD∴∠E=∠DAC ∠BFG=∠BAD∴AD平分∠BAC4. 证:作射线OC , 连结TS.在△SOP和△TOQ中 ,OS=OT , OQ=OP , ∠AOB=∠BOA.∴△SOP≌△TOQ(SAS) ∴∠1=∠2.∵OT=OS , ∴∠OST=∠OTS3.∴∠3=∠4 ∴CT=CS∵OC=OC , OS=OT , CT=CS∴△OCS≌△OCT (SSS)∴∠5=∠6∴OC平分∠AOB六、画图题1. 射线OC为所求.2. 已知:∠a、∠b、线段a求作:△ABC使∠A=∠a , ∠B=∠b, BC=a作法:1.作线段BC=a2.在BC的同侧作∠DBC=∠b,∠ECB=180-∠a-∠b,BD和CE交于A, 则△ABC为所求的三角形.3. 已知:直线a和a的同侧两点A、B.求作:点C, 使C在直线a上, 并且AC+BC最小.作法:1.作点A关于直线a的对称点A'.2.连结A'B交a于点C.则点C就是所求的点.证明:在直线a上另取一点C', 连结AC,AC', A'C', C'B.∵直线a是点A, A'的对称轴, 点C, C'在对称轴上∴AC=A'C, AC'=A'C'∴AC+CB=A'C+CB=A'B在△A'C'B中,∵A'B<A'C'+C'B∴AC+CB<AC'+C'B即AC+CB最小.。

北师大版八年级数学下册几何综合练习一

北师大版八年级数学下册几何综合练习一

八下几何综合练习一1.将两个等腰直角三角形ABC和DPE如图1摆放,点P是边AC的中点,点B在DP上,已知∠ABC=∠DPE=90°,BA=BC,PD=PE,连接BE、CD.(1)线段BE、CD之间存在什么关系?请给出证明;(2)将△PDE绕点P逆时旋转45°,得到△PD1E1,如图2所示,连接BE1、CD1.此时线BE1、CD1之间存在什么关系?请给出证明;(3)如图1,若AB=AE=4,连接AD,将△DPE绕点P逆时针旋转180°,请直接写出旋转过程中AD2的最大值和最小值.2.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6 cm,DC=7 cm,把△DEC绕点C顺时针旋转15°得到△D1E1C(如图乙),这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数.(2)求线段AD1的长.(3)若把△D1E1C绕点C顺时针旋转30°得到△D2E2C,这时点B在△D2E2C的内部,外部,还是边上?证明你的判断.3.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角是度;②线段OD的长为;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,∠A0B=135︒,OA=1,0B=2,求OC的长.小明同学借用了图1的方法,将△BAO绕点B顺时针旋转后得到△BCD,请你继续用小明的思路解答,或是选择自己的方法求解.4.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.5. 在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图①,若△ABC是等边三角形,且AB=AC=2,点D在线段BC上.①求证:∠BCE+∠BAC=180°;②当四边形ADCE的周长取最小值时,求BD的长.(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.6.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.7.数学学习小组“文化年”最近正在进行几何图形组合问题的研究,认真研读以下三个片段,并回答问题.【片断一】小文说:将一块足够大的等腰直角三角板置于一个正方形中,直角顶点与对角线交点重合,在转动三角板的过程中我发现某些线段之间存在确定的数量关系.如图(1),若三角板两条直角边的外沿分别交正方形的边AB,BC于点M,N,则①OM+ON=MB+NB;②AM+CN=OD.请你判断他的猜想是否正确?若正确请说明理由;若不正确请说明你认为正确的猜想并证明.【片断】小化说:将角板中个45°角的顶点和正方形的一个顶点重合放置,使得这个角的两条边与正方形的一组邻边有交点.如图(2),若以A为顶点的45°角的两边分别交正方形的边BC、CD于点M,N.交对角线BD于点E、F,我发现:BE2+DE2=2AE2,只要准确旋转图(2)中的一个三角形就能证明这个结论.请你在图2中画出图形并写出小化所说的具体的旋转方式:.【片断三】小年说:将三角板的一个45°角放置在正方形的外部,同时角的两边恰好经过正方形两个相邻的顶点.如图(3),设顶点为E的45°角位于正方形的边AD上方,这个角的两边分别经过点B、C,连接EA,ED,那么线段EB,EC,ED也存在确定的数量关系:(EB+ED)2=2EC2,请你证明这个结论.8.如图1,在Rt△ABC中,AB=AC,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF.(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.9.如图,在平面直角坐标系中,O是坐标原点,正方形OABC的顶点A、C分别在x轴与y轴上,已知正方形边长为3,点D为x轴上一点,其坐标为(1,0),连接CD,点P从点C出发以每秒1个单位的速度沿折线C→B→A的方向向终点A运动,当点P与点A重合时停止运动,运动时间为t秒.(1)连接OP,当点P在线段BC上运动,且满足△CPO≌△ODC时,求直线OP的表达式;(2)连接PC、PD,求△CPD的面积S关于t的函数表达式;(3)点P在运动过程中,是否存在某个位置使得△CDP为等腰三角形,若存在,直接写出点P的坐标,若不存在,说明理由.10.如图①,四边形ABCD和四边形CEFG都是正方形,且BC=2,CE=2,正方形ABCD固定,将正方形CEFG绕点C顺时针旋转α角(0°<α<360°).(1)如图②,连接BG、DE,相交于点H,请判断BG和DE是否相等?并说明理由;(2)如图②,连接AC,在旋转过程中,当△ACG为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P为边EF的中点,连接PB、PD、BD,在正方形CEFG的旋转过程中,△BDP的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.11.如图①,在平面直角坐标系中,直线l1:y=﹣x+6分别与x轴、y轴交于点B、C,且与直线l2:y=x交于点A,以线段AC为边在直线l1的下方作正方形ACDE,此时点D恰好落在x轴上.(1)求出A,B,C三点的坐标.(2)求直线CD的函数表达式.12. 如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ(1)如图a,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图b,求证:BE⊥DQ;②如图c,若△BCP为等边角形,判断△DEP的形状,并说明理由,(3)填空:若正方形ABCD的边长为10,DE=2,PB=PC,则线段PB的长为.13. 如图1,在平面直角坐标系中.直线y=﹣x+3与x轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)如图2,将△BCD沿x轴正方向平移得△B′C′D′,当直线B′C′经过点D时,求点D的坐标及△BCD平移的距离;(3)*若点P在y轴上,点Q在直线AB上.是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐;若不存在,请说明理由.14.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC的度数.15.如图,在平面直角坐标系中,直线AB分别交x、y轴于点A、B,直线BC分别交x、y轴于点C、B,点A的坐标为(2,0),∠ABO=30°,且AB⊥BC.(1)求直线BC和AB的解析式;(2)将点B沿某条直线折叠到点O,折痕分别交BC、BA于点E、D,在x轴上是否存在点F,使得点D、E、F为顶点的三角形是以DE为斜边的直角三角形?若存在,请求出F点坐标;若不存在,请说明理由;(3)在平面直角坐标系内是否存在两个点,使得这两个点与B、C两点构成的四边形是正方形?若存在,请直接写出这两点的坐标;若不存在,请说明理由.16.【观察发现】(1)如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系和位置关系.(只要求写出结论,不必说出理由)【深入探究】(2)如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.【拓展应用】(3)如图3,直线l上有两个动点A、B,直线l外有一点动点Q,连接QA,QB,以线段AB为边在l的另一侧作正方形ABCD,连接QD.随着动点A、B的移动,线段QD的长也会发生变化,若QA,QB长分别为,6保持不变,在变化过程中,线段QD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.17.问题的提出:如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?(1)问题的转化:把△APC绕点A逆时针旋转60°得到△AP′C′,连接PP′,这样就把确定PA+PB+PC 的最小值的问题转化成确定BP+PP′+P′C的最小值的问题了,请你利用图1证明:PA+PB+PC=BP+PP′+P′C;(2)问题的解决:当点P到锐角△ABC的三顶点的距离之和PA+PB+PC的值为最小时,求∠APB和∠APC的度数;(3)问题的延伸:如图2是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.18.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.(1)求C点的坐标;(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由19.如图①,四边形ABCD和四边形CEFG都是正方形,且BC=2,CE=2,正方形ABCD固定,将正方形CEFG绕点C顺时针旋转α角(0°<α<360°).(1)如图②,连接BG、DE,相交于点H,请判断BG和DE是否相等?并说明理由;(2)如图②,连接AC,在旋转过程中,当△ACG为直角三角形时,请直接写出旋转角α的度数;(3)如图③,点P为边EF的中点,连接PB、PD、BD,在正方形CEFG的旋转过程中,△BDP的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.20.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)。

八上数学(几何)综合测试一

八上数学(几何)综合测试一

一.选择题(共10小题) 1.下列说法正确的有( )(1)等边三角形是等腰三角形;(2)三角形的两边之差大于第三边;(3)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形. A .1个 B .2个 C .3个 D .4个 2.下列结论中正确的是( )A .三角形的一个外角大于这个三角形的任何一个内角B .三角形按边分类可以分为:不等边三角形、等腰三角形、等边三角形C .三角形的三个内角中,最多有一个钝角D .若三条线段a 、b 、c ,满足a+b >c ,则此三条线段一定能组成三角形 3.下列说法正确的有( )①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形. A .①② B .①③④ C .③④ D .①②④ 4.下面说法正确的是个数有( )①如果三角形四个内角的比是1:2:3,那么这个三角形是直角三角形 ②三角形的三条中线的交点叫三角形的中心③如果三条线段的比1:2:3则这三条线段可构成三角形 ④在△ABC 中,若∠A ﹣2∠B+∠C=0°,那么∠B=30°⑤若三角形的一个内角于另两个内角之差,那么这个三角形是直角三角形; ⑥三角形按边分类可分为等腰三角形和等边三角形. ⑦各边相等或各角相等的多边形一定是正多边形 ⑧正多边形一定是凸多边形⑨一个正多边形的各条对角线一定相等⑩若一个多边形用剪刀剪掉一个角后,所得的新多边形内角和为1080°则原多边形一定是8边形. A .6个 B .5个 C .4个 D .3个 5.下列说法正确的是( )A .按角分类,三角形可以分为钝角三角形、锐角三角形和等腰直角三角形B .按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C .三角形的外角大于任何一个内角D .一个三角形中至少有一个内角不大于60° 6.三角形按角分类可以分为( )A .锐角三角形、直角三角形、钝角三角形B .等腰三角形、等边三角形、不等边三角形C .直角三角形、等边直角三角形D .以上答案都不正确7.下列说法正确的是( )A .三角形分为等边三角形和三边不相等的三角形B .等边三角形不是等腰三角形C .等腰三角形是等边三角形D .三角形分为锐角三角形,直角三角形,钝角三角形8.下列说法:(1)三角形按边分类可分为不等边三角形、等腰三角形和等边三角形;(2)三角形两边之和不一定大于第三边;(3)等边三角形一定是等腰三角形;(4)有两边相等的三角形一定是等腰三角形.其中说法正确的个数是( ) A .1个 B .2个 C .3个 D .4个9.如图,为测量池塘边上两点A 、B 之间的距离,小明在池塘的一侧选取一点O ,测得OA 、OB 的中点分别是点D 、E ,且DE=14米,那么A 、B 间的距离是( )A .18米B .24米C .30米D .28米10.上午9时,一艘船从A 处出发以每小时20海里的速度向正北方向航行,11时到达B 处,若在A 处测得灯塔C 在北偏西34°,且∠ACB=∠BAC ,则在B 处测得灯塔C 应为( )A .北偏西68°B .南偏西85°C .北偏西85°D .南偏西68° 二.填空题(共2小题)11.下列说法正确的是 . ①等边三角形是等腰三角形. ②三角形的两边之差大于第三边.③三角形按边分类可分为等腰三角形、等边三角形、不等边三角形. ④三角形按角分类应分锐角三角形、直角三角形、钝角三角形. 12.下列说法:①三角形三条中线的交点叫做三角形的重心;②三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形; ③各边都相等的多边形是正多边形; ④周长相等的两个三角形全等;⑤两条直角边分别相等的两个直角三角形全等. 其中正确的有 .(填序号) 三.解答题(共14小题)13.小明和小红在一本数学资料书上看到有这样一道竞赛题:“已知△ABC 的三边长分别为a ,b ,c ,且|b+c ﹣2a|+(b+c ﹣5)2=0,求b 的取值范围”.(1)小明说:“b 的取值范围,我看不出如何求,但我能求出a 的长度.”你知道小明是如何计算的吗?你帮他写出求解的过程.(2)小红说:“我也看不出如何求b 的范围,但我能用含b 的代数式表示c”.同学,你能吗?若能,帮小红写出过程. (3)小明和小红一起去问数学老师,老师说:“根据你们二人的求解,利用书上三角形的三边满足的关系,即可求出答案.”你知道答案吗?请写出过程.14.如图,在△ABC 中,∠A 是钝角,完成下列作图题.(1)作△ABC 的高线CD 、中线AE ,EA 与CD 的延长线交于点F ; (2)连接BF ,请写出以DF 为高的三角形.15.如图,在四边形ABCD 中,∠BAD=∠ADC ,∠ABC=∠BCD ,∠BAD 的角平分线AE 与∠ABC 的角平分线BF 交于点G ,(1)AD 与BC 有什么关系,为什么? (2)∠AGB 的度数是多少?16.如图,在△ABC 中,已知点D ,E ,F 分别为BC ,AD ,CE 的中点,且S △ABC =4cm 2,则阴影部分的面积是多少?17.如图,从A 处观测C 处仰角∠CAD=30°,从B 处观测C 处的仰角∠CBD=45°,从C 外观测A 、B 两处时视角∠ACB 的大小是多少?北偏西36°,航行到B 处时,又测得灯塔C 在北偏西72°,求从B 到灯塔C 的距离.19.如图,上午10时,一艘船从A 出发以20海里/时的速度向正北方向航行,11时45分到达B 处,从A 处测得灯塔C 在北偏西26°方向,从B 处测得灯塔C 在北偏西52°方向,求B 处到达塔C 的距离.20.如图,△ABC 的内角度数∠A :∠B :∠C=5:10:3,AD 是∠BAC 的角平分线,求∠ADC的度数.21.如图,在△ABC 中,∠C=90°,∠B=40°,AD 是∠BAC 的角平分线,求∠ADC 的度数.22.如图所示,将△ABC 沿EF 折叠,使点C 落到点C′处,试探求∠1,∠2与∠C 的数量关系.23.如图,CE 是△ABC 的外角∠ACD 的角平分线,且CE 交BA 的延长线于点E ,求证:∠BAC=∠B+2∠E .24.如图,CE 是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,∠B=40°,∠E=30°,求∠BAC 的度数.25.如图,CE 是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,若∠B=30°,∠BAC=80°,求∠E 的度数.26.如图,CE 是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,判断∠BAC ,∠B ,∠E 之间的关系,并说明理由.一.选择题(共10小题)1.下列说法正确的有()(1)等边三角形是等腰三角形;(2)三角形的两边之差大于第三边;(3)三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.1个B.2个C.3个D.4个【解答】解:(1)等边三角形是一特殊的等腰三角形,正确;(2)根据三角形的三边关系知,三角形的两边之差小于第三边,错误;(3)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(4)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论有2个.故选:B.2.下列结论中正确的是()A.三角形的一个外角大于这个三角形的任何一个内角B.三角形按边分类可以分为:不等边三角形、等腰三角形、等边三角形C.三角形的三个内角中,最多有一个钝角D.若三条线段a、b、c,满足a+b>c,则此三条线段一定能组成三角形【解答】解:A、三角形的一个外角大于这个三角形的和它不相邻的一个内角,故选项错误;B、三角形按边分类可以分为:不等边三角形、等腰三角形,故选项错误;C、三角形的三个内角中,最多有一个钝角是正确的;D、如a=8、2、1,满足a+b>c,但是能组成三角形,故选项错误.故选C.3.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.A.①② B.①③④C.③④ D.①②④【解答】解:①∵有两个边相等的三角形叫等腰三角形,三条边都相等的三角形叫等边三角形,∴等腰三角形不一定是等边三角形,∴①错误;②∵三角形按边分可分为不等边三角形和等腰三角形,其中等腰三角形又可分为底和腰不相等的三角形和等边三角形,∴②错误;③∵两边相等的三角形称为等腰三角形,∴③正确;④∵三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,∴④正确.故选C.4.下面说法正确的是个数有()①如果三角形四个内角的比是1:2:3,那么这个三角形是直角三角形②三角形的三条中线的交点叫三角形的中心③如果三条线段的比1:2:3则这三条线段可构成三角形④在△ABC中,若∠A﹣2∠B+∠C=0°,那么∠B=30°⑤若三角形的一个内角于另两个内角之差,那么这个三角形是直角三角形;⑥三角形按边分类可分为等腰三角形和等边三角形.⑦各边相等或各角相等的多边形一定是正多边形⑧正多边形一定是凸多边形⑨一个正多边形的各条对角线一定相等⑩若一个多边形用剪刀剪掉一个角后,所得的新多边形内角和为1080°则原多边形一定是8边形.A.6个B.5个C.4个D.3个【解答】解:如果三角形三个内角的比是1:2:3,则三个角分别为30°、60°、90°,这个三角形是直角三角形,所以①正确;三角形的三条中线的交点叫三角形的重心,所以②错误;如果三条线段的比1:2:3,这三条线段不能构成三角形,所以③错误;在△ABC中,若∠A﹣2∠B+∠C=0°,而∠A+∠B+∠C=180°,则3∠B=180°,得到∠B=60°,所以④错误;若三角形的一个内角等于另两个内角之差,即一个角等于另外两个角之和,则这个三角形是直角三角形,所以⑤正确;三角形按边分类可分为等腰三角形和不等边三角形,所以⑥错误;各边相等且各角相等的多边形一定是正多边形,所以⑦错误;正多边形一定是凸多边形,所以⑧正确;一个正多边形的各条对角线不一定相等,所以⑨错误;若一个多边形用剪刀剪掉一个角后,所得的新多边形内角和为1080°则原多边形可能为7或8或9边形,所以⑩错误.故选D.5.下列说法正确的是()A.按角分类,三角形可以分为钝角三角形、锐角三角形和等腰直角三角形B.按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C.三角形的外角大于任何一个内角D.一个三角形中至少有一个内角不大于60°【解答】解:A、按角分类,三角形可以分为钝角三角形、锐角三角形和直角三角形,所以A错误;B、按边分类,三角形可分为等腰三角形、不等边三角形,所以B错误;C、三角形的外角大于任何一个与它不相邻内角,所以C错误;D、因为三角形的内角和等于180°,所以一个三角形中至少有一个内角不大于60°,所以D正确.故选D6.三角形按角分类可以分为()A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确【解答】解:三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,故选:A.7.下列说法正确的是()A.三角形分为等边三角形和三边不相等的三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形,直角三角形,钝角三角形【解答】解:A.三角形分为等腰三角形和三边不相等的三角形,故本选项错误,B.等边三角形是等腰三角形,故本选项错误,C.等腰三角形不一定是等边三角形,故本选项错误,D.三角形分为锐角三角形,直角三角形,钝角三角形,故本选项正确,故选:D.8.下列说法:(1)三角形按边分类可分为不等边三角形、等腰三角形和等边三角形;(2)三角形两边之和不一定大于第三边;(3)等边三角形一定是等腰三角形;(4)有两边相等的三角形一定是等腰三角形.其中说法正确的个数是()A.1个B.2个C.3个D.4个【解答】解:(1)三角形按边分类可分为不等边三角形、等腰三角形,故命题错误;(2)三角形两边之和一定大于第三边,故命题错误;(3)正确;(4)正确.故选B.9.如图,为测量池塘边上两点A、B之间的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,那么A、B间的距离是()A.18米B.24米C.30米D.28米【解答】解:∵D、E分别是OA、OB的中点,∴DE是△ABO的中位线,根据三角形的中位线定理,得:AB=2DE=28米.故选:D .10.上午9时,一艘船从A 处出发以每小时20海里的速度向正北方向航行,11时到达B 处,若在A 处测得灯塔C 在北偏西34°,且∠ACB=∠BAC ,则在B 处测得灯塔C 应为( ) A .北偏西68° B .南偏西85° C.北偏西85°D .南偏西68°【解答】解:如图所示:根据题意可知:∠A=34°, ∵∠ACB=∠BAC ,∴∠ACB=由三角形的外角的性质可知:∠1=∠ACB+∠BAC=34°+51°=85°. 故选:C .二.填空题(共2小题)11.下列说法正确的是 ①④ . ①等边三角形是等腰三角形. ②三角形的两边之差大于第三边.③三角形按边分类可分为等腰三角形、等边三角形、不等边三角形. ④三角形按角分类应分锐角三角形、直角三角形、钝角三角形.【解答】解:等边三角形是等腰三角形,所以①正确; 三角形的任意两边之差小于第三边,所以②错误;三角形按边分类可分为等腰三角形、不等边三角形,所以③错误;三角形按角分类应分锐角三角形、直角三角形、钝角三角,所以④正确. 故答案为①④. 12.下列说法:①三角形三条中线的交点叫做三角形的重心;②三角形按边分类可分为三边都不相等的三角形、等腰三角形和等边三角形; ③各边都相等的多边形是正多边形; ④周长相等的两个三角形全等;⑤两条直角边分别相等的两个直角三角形全等. 其中正确的有 ①⑤ .(填序号)【解答】解:①三角形三条中线的交点叫做三角形的重心,正确; ②三角形按边分类可分为三边都不相等的三角形、等腰三角形,错误; ③各边都相等、各角都相等的多边形是正多边形,错误; ④周长相等的两个三角形不一定全等,错误;⑤两条直角边分别相等的两个直角三角形全等,正确; 故答案为:①⑤三.解答题(共14小题)13.小明和小红在一本数学资料书上看到有这样一道竞赛题:“已知△ABC 的三边长分别为a ,b ,c ,且|b+c ﹣2a|+(b+c ﹣5)2=0,求b 的取值范围”.(1)小明说:“b 的取值范围,我看不出如何求,但我能求出a 的长度.”你知道小明是如何计算的吗?你帮他写出求解的过程.(2)小红说:“我也看不出如何求b 的范围,但我能用含b 的代数式表示c”.同学,你能吗?若能,帮小红写出过程. (3)小明和小红一起去问数学老师,老师说:“根据你们二人的求解,利用书上三角形的三边满足的关系,即可求出答案.”你知道答案吗?请写出过程.【解答】解:(1)∵|b+c ﹣2a|+(b+c ﹣5)2=0, ∴b+c ﹣2a=0且b+c ﹣5=0, ∴2a=5,解得a=;(2)由b+c ﹣5=0,得c=5﹣b ; (3)由三角形的三边关系,得 当5﹣b ≥,即b ≤时,则,解得<b ≤;当5﹣b <时,即b >,则,解得<b <,∴b 的取值范围为<b <.14.如图,在△ABC 中,∠A 是钝角,完成下列作图题.(1)作△ABC 的高线CD 、中线AE ,EA 与CD 的延长线交于点F ; (2)连接BF ,请写出以DF 为高的三角形.【解答】解:(1)如图所示:(2)如图,连接BF ,以DF 为高的三角形有△ADF ,△BDF ,△BAF .15.如图,在四边形ABCD 中,∠BAD=∠ADC ,∠ABC=∠BCD ,∠BAD 的角平分线AE 与∠ABC 的角平分线BF 交于点G ,(1)AD 与BC 有什么关系,为什么? (2)∠AGB 的度数是多少?【解答】解:(1)AD ∥BC ,理由是:∵在四边形ABCD 中,∠BAD=∠ADC ,∠ABC=∠BCD ,∠BAD+∠ADC+∠ABC+∠BCD=360°, ∴2∠BAD+2∠ABC=360°,∴∠BAD+∠ABC=180°,∴AD∥BC;(2)∵∠BAD的角平分线AE与∠ABC的角平分线BF交于G,∴∠BAG=∠BAD,∠ABG=ABC,∵∠BAD+∠ABC=180°,∴∠BAG+∠ABG=90°,∴∠AGB=180°﹣(∠BAG+∠ABG)=90°.16.如图,在△ABC中,已知点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积是多少?【解答】解:∵点D为BC的中点,∴S△ABD=S△ADC=S△ABC=2,∵点E为AD的中点,∴S△EBD=S△EDC=S△ABD=1,∴S△EBC=S△EBD+S△EDC=2,∵点F为EC的中点,∴S△BEF=S△BEC=1,即阴影部分的面积为1cm2.18.如图,从A处观测C处仰角∠CAD=30°,从B处观测C处的仰角∠CBD=45°,从C外观测A、B两处时视角∠ACB的大小是多少?【解答】方法1:∵∠CBD是△ABC的外角,∴∠CBD=∠CAD+∠ACB,∴∠ACB=∠CBD-∠ACB=45°-30°=15°.方法2:由邻补角的定义可得∠CBA=180°-∠CBD=180°-45°=135°.∵∠CAD=30°,∠CBA=135°,∴∠ACB=180°-∠CAD-∠CBA=180°-30°-135°=180°-165°=15°.18.上午8时,一艘轮船从A处出发以每小时20海里的速度向正北航行,10时到达B处,则轮船在A处测得灯塔C在北偏西36°,航行到B处时,又测得灯塔C在北偏西72°,求从B到灯塔C的距离.【解答】解:由题意得:AB=(10﹣8)×20=40海里,∵∠C=72°﹣∠A=36°=∠A,∴BC=AB=40海里.答:从B到灯塔C的距离为40海里.19.如图,上午10时,一艘船从A出发以20海里/时的速度向正北方向航行,11时45分到达B处,从A处测得灯塔C在北偏西26°方向,从B处测得灯塔C在北偏西52°方向,求B处到达塔C的距离.【解答】解:据题意得,∠A=26°,∠DBC=52°,∵∠DBC=∠A+∠C,∴∠A=∠C=26°,∴AB=BC,∵AB=20×=35,∴BC=35(海里).∴B处到达塔C的距离是35海里.20.如图,△ABC的内角度数∠A:∠B:∠C=5:10:3,AD是∠BAC的角平分线,求∠ADC的度数.【解答】解:∵△ABC的内角度数∠A:∠B:∠C=5:10:3,∴设∠A=5x,∠B=10x,∠C=3x,∵∠A+∠B+∠C=180°,∴5x+10x+3x=180°,解得:x=10°,∴∠BAC=5x=50°,∠B=10x=100°,∠C=3x=30°,∵AD是∠BAC的角平分线,∴=25°,∵∠DAC+∠C+∠ADC=180°,∴∠ADC=180°﹣∠DAC﹣∠C=125°.21.如图,在△ABC中,∠C=90°,∠B=40°,AD是∠BAC的角平分线,求∠ADC的度数.【解答】解:∵∠C=90°,∠B=40°,∴∠BAC=50°,∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=25°,∴∠ADC=∠B+∠BAD=40°+25°=65°.22.如图所示,将△ABC沿EF折叠,使点C落到点C′处,试探求∠1,∠2与∠C的数量关系.【解答】解:∵∠1=180°﹣2∠CEF,∠2=180°﹣2∠CFE,(4分)∴∠1+∠2=360°﹣2(∠CEF+∠CFE)(6分)=360°﹣2(180°﹣∠C)=360°﹣360°+2∠C=2∠C.(9分)【一图多变】23.如图,CE是△ABC的外角∠ACD的角平分线,且CE交BA的延长线于点E,求证:∠BAC=∠B+2∠E.【解答】证明:在△BCE中,∠1=∠B+∠E,∵CE是△ABC的外角∠ACD的角平分线,∴∠1=∠2,在△ACE中,∠BAC=∠E+∠2=∠E+∠B+∠E=∠B+2∠E,即:∠BAC=∠B+2∠E.24.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.【解答】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE是△ABC的外角∠ACD的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.25.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,若∠B=30°,∠BAC=80°,求∠E的度数.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠BAC=30°+80°=110°,∵CE是∠ACD的平分线,∴∠ECD=∠ACD=×110°=55°,∵∠ECD是△EBC的外角,∴∠ECD=∠B+∠E,∴∠E=∠ECD﹣∠B=55°﹣30°=25°.答:∠E的度数是25°.26.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,判断∠BAC,∠B,∠E之间的关系,并说明理由.【解答】解:∠BAC=∠B+2∠E.理由:在△BCE中,∠DCE=∠B+∠E,因为CE是△ABC的外角∠ACD的平分线,所以∠DCE=∠ACE.在△ACE中,∠BAC=∠E+∠ACE=∠E+∠B+∠E=∠B+2∠E,即∠BAC=∠B+2∠E.。

2018六年级奥数数学几何综合训练一

2018六年级奥数数学几何综合训练一

2017年六年级外冲班数学几何综合训练一一、兴趣篇1.图中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a=2厘米,b=4厘米,c=5厘米,求图形的面积.2.如图所示,∠1+∠2+∠3+∠4+∠5+∠6等于度.3.平行四边形ABCD周长为75厘米,以BC为底时高是14厘米(如图);以CD 为底时高是16厘米.求:平行四边形ABCD的面积.4.如图,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是平方米、平方米、平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?5.如图,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?6.如图,在三角形ABC中,IF和BC平行,GD和AB平行,HE和AC平行.已知AG:GF:FC=4:3:2,那么AH:HI:IB和BD:DE:EC分别是多少?7.如图,已知三角形ABC的面积为60平方厘米,D、E分别是AB、AC边的中点,求三角形OBC的面积.8.在如图的正方形中,A、B、C分别是ED、EG、GF的中点.请问:三角形CDO 的面积是三角形ABO面积的几倍?9.如图,ABCD是平行四边形,面积为72平方厘米,E,F分别为AB,BC的中点,则图中阴影部分的面积为平方厘米.10.如图,在三角形ABC中,CE=2AE,F是AD的中点,三角形ABC的面积是1,那么阴影部分的面积是多少?二、拓展篇11.如图,A、B是两个大小完全一样的长方形,已知这两个长方形的长比宽长8厘米,图中的字母表示相应部分的长度.问:A、B 中阴影部分的周长哪个长?长多少?12.如图,ABCDE是正五边形,CDF是正三角形,∠BFE等于多少度?13.一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边相重合,如图所示.问:图中的阴影部分(即折叠的部分)的面积是多少平方厘米?14.图中大长方形被分成四个小长方形,面积分别为12、24、36、48.请问:图中阴影部分的面积是多少?15.三个面积都是12的正方形放在一个长方形的盒子里面,如图,盒中空白部分的面积已经标出,求图中大长方形的面积.16.如图,三角形ABC的面积为1,D、E分别为AB、AC的中点,F、G是BC边上的三等分点.求三角形DEF和三角形DOE的面积.17.如图,梯形ABCD的上底AD长10厘米,下底BC长15厘米.如果EF与上、下底平行,那么EF的长度为多少?18.如图,正六边形的面积为6,那么阴影部分的面积是多少?19.两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?20.如图,D是长方形ABCD一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影直角三角形的面积是多少?21.如图,在三角形ABC中,AE=ED,D点是BC的四等分点,阴影部分的面积占三角形ABC面积的几分之几?22.如图,在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,则四边形DCEO的面积是多少?三、超越篇23.如图,长方形的面积是60平方厘米,其内3条长度相等且两两夹角为120°的线段将长方形分成了两个梯形和一个三角形.请问:一个梯形的面积是多少平方厘米?24.如图,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?25.如图所示,正方形ABCD的面积为1.E、F分别是BC和DC的中点,DE与BF 交于M点,DE与AF交于N点,那么阴影三角形MFN的面积为多少?26.如图,三角形ABC的面积为1,D、E、F分别是三条边上的三等分点,求阴影三角形的面积.27.如图,小悦测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?28.如图,ED垂直于等腰梯形ABCD的上底AD,并交BC于G,AE平行于BD,∠DCB=45°,且三角形ABD和三角形EDC的面积分别为75、45,那么三角形AED的面积是多少?29.在长方形ABCD中,E、F、G、H分别是边AB、BC、CD、DA上的点,将长方形的四个角分别沿着HE、EF、FG、GH对折后,A点与B点重合,C点与D点重合.已知EH=3,EF=4,求线段AD与AB的长度比.30.如图,在长方形ABCD中,AE:ED=AF:AB=BG:GC.已知△EFC的面积为20,△FGD的面积为16,那么长方形ABCD的面积是多少?2017年六年级外冲班数学几何综合训练一参考答案与试题解析一、兴趣篇1.图中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a=2厘米,b=4厘米,c=5厘米,求图形的面积.【解答】解:如图所示,图形的面积为:7×2+5×(7﹣4)+6×1=14+15+6=35(平方厘米)答:图形的面积是35平方厘米.2.如图所示,∠1+∠2+∠3+∠4+∠5+∠6等于360 度.【解答】解:∠3=∠7,所以∠2+∠3=180°﹣∠A;同理,∠6=∠8,所以∠1+∠6=180°﹣∠C;∠4+∠5=180°﹣∠B;则∠1+∠2+∠3+∠4+∠5+∠6,=180°×3﹣(∠A+∠B+∠C),=540°﹣180°,=360°,答:∠1+∠2+∠3+∠4+∠5+∠6=360°.故答案为:360.3.平行四边形ABCD周长为75厘米,以BC为底时高是14厘米(如图);以CD 为底时高是16厘米.求:平行四边形ABCD的面积.【解答】解:由平行四边形面积公式知14×BC=16×CD,即14BC=16CD,则BC:CD=16:14=8:7,BC=CD,又2×(BC+CD)=75,则BC+CD=37.5(厘米),CD+CD=37.5(厘米),CD=17.5(厘米),因此,平行四边形ABCD的面积为:16×17.5=280(平方厘米);答:平行四边形ABCD的面积为280平方厘米.4.如图,一个边长为1米的正方形被分成4个小长方形,它们的面积分别是平方米、平方米、平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?【解答】解:如图所示:+++=1(平方米);大正方形的边长就是1米;(FE×AE):(FE×EB)=:,即:AE:EB=3:4;AE就是大正方形边长的;1×=(米);(CH×HG):(HG×HD)=:;BE:EC=2:1;CH是大正方形边长的;1×=(米);FG=﹣=(米);×=(平方米);答:阴影部分的面积是平方米.5.如图,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【解答】解:把黄块向左移动就会发现,黄色减少的面积等于绿色增加的面积,从而得出黄+绿=24,黄和绿各是24÷2=12,即两个长方形的面积都是12,设红块边长是b,与红色并排的绿边是a,则根据正方形的面积公式,得大正方形面积b2=20,两个长方形的面积ab=12,小正方形的面积a2=(ab)2÷b2=12×12÷20=144÷20,=7.2;底面积:20+12×2+7.2=51.2;答:正方形盒子的底面积是51.2.6.如图,在三角形ABC中,IF和BC平行,GD和AB平行,HE和AC平行.已知AG:GF:FC=4:3:2,那么AH:HI:IB和BD:DE:EC分别是多少?【解答】解:AG:GF:FC=4:3:2,则(AG+GF):FC=(4+3):2,即AF:FC=7:2;因为IF和BC平行,所以△AIF∽△ABC,则AI:IB=AF:FC=7:2;因为GD和AB平行,所以△FGO∽△FAI,则FO:OI=FG:GA=3:4;因为HE和AC平行,所以△IHO∽△IAF,则HI:AH=OI:FO=4:3;所以AH:HI:IB=3:4:2同理可证:BD:DE:EC=4:2:3答:AH:HI:IB=3:4:2;BD:DE:EC=4:2:3.7.如图,已知三角形ABC的面积为60平方厘米,D、E分别是AB、AC边的中点,求三角形OBC的面积.【解答】解:由题意可知AE=CE,AD=BD,根据等底同高的三角形的面积相等得:S△ADC=S△BDC=60÷2=30平方厘米,S△AEB=S△CBE=30(平方厘米),所以S△ADC=S△AEB=30(平方厘米),则S△BOD=S△COE再根据等底同高的三角形的面积相等得:S△AOE=S△COE,S△AOD=S△BOD,所以S△AOE=S△COE=S△AOD=S△BOD,S△ADC=S△AOE+S△COE+S△AOD=30(平方厘米),所以S△COE=30÷3=10(平方厘米),所以S△BOC是:30﹣10=20(平方厘米),答:S△BOC是20平方厘米.8.在如图的正方形中,A、B、C分别是ED、EG、GF的中点.请问:三角形CDO 的面积是三角形ABO面积的几倍?【解答】解:因为四边形是正方形且A、B、C分别是ED、EG、GF的中点.所以:AD=DE=CE=BE=DE,线段AO=BE所以:S△BED=S△CAD,S△AOD=S△BED=S△CAD,S△ABD=S△CAD所以:S△AOB=S△BAD﹣S△AOD=S△CAD﹣S△CAD=S△CADS△COD=S△CAD﹣S△AOD=S△CAD﹣S△CAD=S△CADS△CDO÷S△ABO=S△CAD÷S△CAD=3答:三角形CDO的面积是三角形ABO面积的3倍.9.如图,ABCD是平行四边形,面积为72平方厘米,E,F分别为AB,BC的中点,则图中阴影部分的面积为48 平方厘米.【解答】解:DE、DF分别于AC交于点M、N,M、N是AC的三等分点因为平行四边形的面积=72平方厘米,则S△ADC=72÷2=36(平方厘米),S△ADM=S△DMN=S△DNC=S△ADC=×36=12(平方厘米),S△AEM=S△NFC=S△ADM=×12=6(平方厘米),所以阴影部分的面积=72﹣12﹣6﹣6=60﹣12,=48(平方厘米);答:阴影部分的面积是48平方厘米.故答案为:48.10.如图,在三角形ABC中,CE=2AE,F是AD的中点,三角形ABC的面积是1,那么阴影部分的面积是多少?【解答】解:连接CF,因为CE=2AE,根据燕尾定理,所以==,同理,=,设S△AEF=1份,那么S△CEF=2份,因为F是AD的中点,S△CFD=S△ACF=S△AEF+S△CEF=1+2=3份,同理,,又因为==,所以,所以S△BDF=S△ABF=3份,这样S△ABC=1+2+3+3+3=12份,阴影部分的份数是:2+3=5份,5÷12=,即1×=.二、拓展篇11.如图,A、B是两个大小完全一样的长方形,已知这两个长方形的长比宽长8厘米,图中的字母表示相应部分的长度.问:A、B 中阴影部分的周长哪个长?长多少?【解答】解:图形A中阴影部分的周长是:2(a+a﹣b)+2(b+2b)=4a+4b,图形B中阴影部分的周长是:2(a+2b+a+b)=4a+6b,4a+6b﹣(4a+4b)=2b,又因为大长方形的长比宽长8厘米,即a+2b﹣(a+b)=8,可得b=8厘米,所以2b=2×8=16(厘米),答:图形B中的阴影部分的周长较长,比图形A中的阴影部分的周长长16厘米.12.如图,ABCDE是正五边形,CDF是正三角形,∠BFE等于多少度?【解答】解:∠BCF=∠EDF=108°﹣60°=48°,因为BC=CF,DF=DE,所以∠BFC=∠EFD=(180°﹣48°)÷2=66°,因此∠BFE=360°﹣66°×2﹣60°=168°.答:∠BFE等于168度.13.一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边相重合,如图所示.问:图中的阴影部分(即折叠的部分)的面积是多少平方厘米?【解答】解:见下图:×13×DC=×(12﹣DC)×5,13×DC=60﹣DC×5,DC=(厘米);△ADC=△AEC=××5=(平方厘米).答:图中的阴影部分(即折叠的部分)的面积是平方厘米.14.图中大长方形被分成四个小长方形,面积分别为12、24、36、48.请问:图中阴影部分的面积是多少?【解答】解:如图,阴影部分面积为:是EF×AJ,设大长方形的长为a,宽为b,则EF=a﹣a=a,因此,阴影部分面积为×a×b,=×(a×b)=×(12+24+36+48)=×120=答:图中阴影部分的面积.故答案为:.15.三个面积都是12的正方形放在一个长方形的盒子里面,如图,盒中空白部分的面积已经标出,求图中大长方形的面积.【解答】解:由分析可知,小长方形3的面积=(大长方形的底边﹣2倍的正方形边长)×(大长方形宽﹣正方形边长)=3,小长方形4+小长方形5的面积=(大长方形底边﹣正方形边长)×(大长方形宽﹣正方形边长)=9,(大长方形底边﹣正方形边长)÷(大长方形的底边﹣2倍的正方形边长)=3,大长方形底边﹣正方形边长=3倍大长方形的底边﹣6倍的正方形边长,2倍大长方形的底边=5倍的正方形边长,大长方形的底边=2.5倍的正方形边长,则大长方形的宽=1.5倍正方形边长,大长方形面积=大长方形的底边×大长方形的宽=2.5倍正方形边长×1.5倍正方形边长=2.5×1.5倍的正方形面积=2.5×1.5×12=45.答:大长方形的面积是45.16.如图,三角形ABC的面积为1,D、E分别为AB、AC的中点,F、G是BC边上的三等分点.求三角形DEF和三角形DOE的面积.【解答】解:①过点A作线段BC的垂线,垂足为Q,过点D作线段BC的垂线,垂足为M,所以线段DM=AQ那么三角形ABC的面积是:BC×AQ÷2=1所以:BC×AQ=2因为D、E分别为AB、AC的中点,所以线段DE=BC,所以三角形DEF的面积:DE×DM÷2=×BC××AQ÷2=×2÷2=②又因为DE=,FG=,所以=,所以三角形DOE面积为:三角形DEF面积×3÷(3+2)=×3÷5=.答:三角形DEF的面积是,三角形DOE的面积.17.如图,梯形ABCD的上底AD长10厘米,下底BC长15厘米.如果EF与上、下底平行,那么EF的长度为多少?【解答】解:∵AD∥BC,EF∥BC,∴===,又==,==∴OE=BC=×15=6(厘米),OF=AD=×10=6(厘米)∴EF=OE+OF=6+6=12(厘米)答:EF的长度为12厘米.18.如图,正六边形的面积为6,那么阴影部分的面积是多少?【解答】解:如图,连结AC、BF、CE、DF,根据六正边形的特征及蝴蝶定理,阴影部分面积:×6=×6=答:阴影部分的面积是.故答案为:.19.两盏4米高的路灯相距10米,有一个身高1.5米的同学行走在这两盏路灯之间,那么他的两个影子总长度是多少米?【解答】解:如图所示:CD、EF为路灯高度,AB为该人高度,BM、BN为该人前后的两个影子.由题意得:b=4米,a=1.5米,DF=10米,∵AB∥CD,∴==,∴==即MB=DB同理BN=FB∴MB+BN=(DB+FB)=0.6×10=6(米)答:他的两个影子总长度是6米.20.如图,D是长方形ABCD一条对角线的中点,图中已经标出两个三角形的面积为3和4,那么阴影直角三角形的面积是多少?【解答】解:如图:设BC=x,阴影部分三角形的高为h,DC=y因为四边形ABCD是长方形,点O是对角线的中点,所以S△ABC=2×4=8,S△BCD=8所以:S△BWC=8﹣3=5即为:xh÷2=5xh=10所以S长方形ABCD=xy=4×4=16xh:xy=10:16即为:h:y=5:8所以:==所以:=S△BQW=×5=答:阴影直角三角形的面积是.21.如图,在三角形ABC中,AE=ED,D点是BC的四等分点,阴影部分的面积占三角形ABC面积的几分之几?【解答】解:连接CE,设S△CDE=1,因为AE=ED,S△ACE=1,D点是BC的四等分点,根据燕尾模型可得:S△BDE=S△ABE=3,则,所以,S△AEF=,.22.如图,在三角形ABC中,三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,则四边形DCEO的面积是多少?【解答】解:如图:过点O作线段OF∥BC交AC于点F,因为三角形AEO的面积是1,三角形ABO的面积是2,三角形BOD的面积是3,所以==,==所以:S△EOF:S△EBC=,S△AOF:S△ADC=设S△EOF=x,S四边形EODF=y所以x:(3+y+x)=1:9①(1+x):(1+x+y)=4:25②由①②解得:x=3,y=21所以四边形DCEO的面积是:3+21=24答:四边形DCEO的面积是24.三、超越篇23.如图,长方形的面积是60平方厘米,其内3条长度相等且两两夹角为120°的线段将长方形分成了两个梯形和一个三角形.请问:一个梯形的面积是多少平方厘米?【解答】解:过F点作FG⊥BC于G.因为∠BFC=120°,BF=CF=EF,所以∠FBG=30°,所以EF=BF=2FG,所以FG=EG,所以△BFC=长方形的面积×=10(平方厘米)(60﹣10)÷2=50÷2=25(平方厘米).答:一个梯形的面积是25平方厘米.24.如图,P是三角形ABC内一点,DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.请问:三角形ABC的面积是多少?【解答】解:DE平行于AB,FG平行于BC,HI平行于CA,四边形AIPD的面积是12,四边形PGCH的面积是15,四边形BEPF的面积是20.又因为四边形AIPD和四边形BEPF的高相等,所以DP:PE=12:20=3:5;则DG:GC=3:5,又因为三角形PDG与平行四边形PHCG高相等,所以三角形PDG的面积与四边形PHCG的面积的一半的比是3:5,所以三角形PDG的面积是:(15÷2)×3÷5=4.5,同理:三角形PEH的面积与平行四边形PFBE的面积的一半的比是:5:4,所以三角形PEH的面积是:(20÷2)×5÷4=12.5,同理三角形PIF的面积与四边形PEBF的面积的一半的比是4:5,所以三角形PIF的面积是:(20÷2)×4÷5=8,12+20+15+4.5+12.5+8=72.答:三角形ABC的面积是72.25.如图所示,正方形ABCD的面积为1.E、F分别是BC和DC的中点,DE与BF 交于M点,DE与AF交于N点,那么阴影三角形MFN的面积为多少?【解答】解:连接CM、EF和AE,因为E、F是中点,所以S△BEM=S△CEM=S△CMF=1÷4÷3=,因为F是CD的中点,所以S△DEF=1÷4÷2=,AN:FN=S△ADE:S△DEF=(1÷2):=1:4所以S△DFN=1÷4÷(1+4)=,所以S△MFN=S△DEC﹣S△CME﹣S△CMF﹣S△DFN=﹣﹣﹣=.答:阴影三角形MFN的面积为.26.如图,三角形ABC的面积为1,D、E、F分别是三条边上的三等分点,求阴影三角形的面积.【解答】解:1×××=××=×=.答:阴影三角形的面积是.27.如图,小悦测出家里瓷砖的长为24厘米,宽为10厘米,而且还测出了边上的中间线段均为4厘米,那么中间菱形的面积是多少平方厘米?【解答】解:左右两边三角形的高为:(10+4)×2÷7=4(厘米)上下两个三角形的高为:(3+4)×2÷14=1(厘米)四个小三角形的面积和为:(4×4÷2+4×1÷2)=20(平方厘米)大直角三角形的面积为:7×14÷2=49(平方厘米)空白部分面积为:49×4﹣20=176(平方厘米)中间大菱形面积为:24×10﹣176=64(平方厘米)答:中间菱形的面积为64平方厘米.28.如图,ED垂直于等腰梯形ABCD的上底AD,并交BC于G,AE平行于BD,∠DCB=45°,且三角形ABD和三角形EDC的面积分别为75、45,那么三角形AED的面积是多少?【解答】解:过A作AH⊥BC,垂足为H,AH交BD于F,则AH∥EG.因为四边形ABCD是等腰梯形,AD∥BC,∠DCB=45°,所以∠ABC=45°,AH=DG=GC=BH,又因为AE∥BD,所以四边形AFDE是平行四边形,DE=AF,S△AED=S△AFD,因为S△DEC=DE•GC=45,S△ABD=S△AFD+S△AFB=75,其中S△AFD=S△AED,S△AFB=AF•BH=DE•GC=S△DEC=45,这样S△AED=S△ABD﹣S△AFB=75﹣45=30.答:三角形AED的面积是30.29.在长方形ABCD中,E、F、G、H分别是边AB、BC、CD、DA上的点,将长方形的四个角分别沿着HE、EF、FG、GH对折后,A点与B点重合,C点与D点重合.已知EH=3,EF=4,求线段AD与AB的长度比.【解答】解:由对称性得:∠AEH=∠A'EH,∠BEF=∠B'EF,∠AEH+∠A'EH+∠BEF+∠B'EF=180°,∠A'EH+∠B'EF=90°,∠HEF=90°.根据勾股定理得:HF=5,HF×EA'=HE×EF=3×4=12,EA'=2.4.由对称性得:AE=A'E BE=B'E A'E=B'E 所以AE=BE AE=BE=2.4,AB=4.8.由对称性得:AH=A'H BF=B'F DH=D'H CF=C'F A'H+B'F+D'H+C'F=2HF=10AH+BF+DH+CF=10AD+BC=10AD=5AD:AB=5:4.8=25:24答:线段AD与AB的长度比为25:24.30.如图,在长方形ABCD中,AE:ED=AF:AB=BG:GC.已知△EFC的面积为20,△FGD的面积为16,那么长方形ABCD的面积是多少?【解答】解:设矩形ABCD的对边AB=CD=a,AD=BC=b,再设题中的比例常数AE:ED=AF:AB=BG:GC=k,把这个表达式变换成k和矩形ABCD边长a、b的表达式,则有:AE=BG=kb:(k+1)ED=GC=AF=ka,FB=(1﹣k)aS(矩形ABCD)=ab=S(Rt△AFE)+S(△FEC)+S( Rt△EDC)+S(Rt△FBC)=×AF×AE+20+×ED×CD+×FB×BC=×ka×kb:(k+1)+20+×b:(k+1)×a+×(1﹣k)a×b=×ab+20解ab,得:ab=(1)同理S(矩形ABCD)=ab=S(Rt△FBG)+S(△FGD)+S( Rt△GDC)+S(Rt△AFD)=FB×BG+16+GC×CD+AF×AD=(1﹣k)a×+16++b×a+ka×b=×ab+16解ab,得:ab=32(k+1)(2)根据(1)(2),解得k=,代入(1)或(2),得到S(矩形ABCD)=ab=52cm。

新版华数思维导引六年级 第七讲 立体图形几何综合1

新版华数思维导引六年级 第七讲 立体图形几何综合1

几何图形的设计与构造.涉及比例与整数分解,需要添加辅助线、寻找规律或利用对称性解的较为复杂的直线形和圆的周长与面积计算问题.1.今有9盆花要在平地上摆成9行,其中每盆花都有3行通过,而且每行都通过3盆花.请你给出一种设计方案,画图时用点表示花,用直线表示行.【分析与解】如下图所示,我们给出四种不同的排法.2.已知如图12-1,一个六边形的6个内角都是120°,其连续四边的长依次是1、9、9、5厘米.求这个六边形的周长.【分析与解】如下图所示,将六边形的六条边分别延长,相交至三点,并将其标上字母,因为∠BAF=120°,而么∠IAF=180°-∠BAF=60°.又∠EFA=120°,而∠IFA=180°-∠EFA:60°,则△IAF为等边三角形.同理△BCG、△EHD、△IGH均为等边三角形.在△IAF中,有IA=IF=AF=9(厘米),在△BGC中,有BG=GC=BC=1(厘米),有IA+AB+BG=IG=9+9+1=19,即为大正三角形的边长,所以有IG=IH=GH=19(厘米).则EH=IH-IF-FE=19-9-5=5(厘米),在△EDH中,DH=EH=5(厘米),所以CD=GH-GC-DH=19-1-5=13(厘米).于是,原图中六边形的周长为1+9+9+5+5+13=42(厘米).3.图12-2中共有16条线段,每两条相邻的线段都是互相垂直的.为了计算出这个图形的周长,最少要量出多少条线段的长度?【分析与解】如下图所示,我们想像某只昆虫绕图形爬行一周,回到原出发点,那么往右的路程等于往左的路程,往上的路程等于往下的路程.于是只用量出往右的路程,往下的路程,再将它们的和乘以2即为所求的周长.所以,最少的量出下列6段即可.4.将图12-3中的三角形纸片沿虚线折叠得到图12-4,其中的粗实线图形面积与原三角形面积之比为2:3.已知图12-4中3个画阴影的三角形面积之和为1,那么重叠部分的面积为多少?【分析与解】设重叠部分的面积为x,则原三角形面积为1+2x,粗实线的面棚为1+x.因此(1+2x):(1+x)=3:2,解得x=1,即重叠部分面积为1.5.如图12-5,涂阴影部分的小正六角星形面积是16平方厘米.问:大正六角星形的面积是多少平方厘米?【分析与解】 如下图所示,在正六边形ABCDEF 中,与面积相等,12个组成小正六角星形,那么由6个及12个组成的正六边形的面积为16÷12×(12+6)=24(平方厘米).而通过下图,我们知道,正六边形ABCDEF 可以分成6个小正三角形,并且它们面积相等,且与六个角的面积相等,所以大正六角星形的积为24÷6×12=48(平方厘米).6.如图12-6所示,在三角形ABC 中,DC=3BD ,DE=EA .若三角形ABC 的面积是1.则阴影部分的面积是多少?【分析与解】 △ABC 、△ADC 同高,所以底的比等于面积比,那么有33.44ADC ABC ABC DC S S S BC ∆∆∆=⨯=⨯=而E 为AD 中点,所以13.28DEC ADC S S ∆∆== 连接FD ,△DFE 、△FAE 面积相等,设,FEA S x ∆=则.FDE S ∆的面积也为x ,11.44ABD ABC S S ∆∆==12,4BDF ABD FEA FDE S S S S x ∆∆∆∆=--=-而3.8FDC FDE DEC S S S x ∆∆∆=+=+ 13:(2);()1:348BDF FDC S S x x ∆∆=-+=,解得356x =.所以,阴影部分面积为333.8567DEC FEA S S ∆∆+=+=7.如图12-7,P 是三角形ABC 内一点,DE 平行于AB ,FG 平行于BC ,HI 平行于CA ,四边形AIPD 的面积是12,四边形PGCH 的面积是15,四边形BEPF 的面积是20.那么三角形ABC 的面积是多少?【分析与解】 有平行四边形AIPD 与平行四边形PGCH 的面积比为IP 与PH 的比,即为12:15=4:5. 同理有FP:PG=20:15=4:3, DP:PE=12:20=3:5.如图12-7(a),连接PC 、HD ,有△PHC 的面积为152△DPH 与△PHC 同底PH ,同高,所以面积相等,即152DPH S ∆=,而△DPH 与△EP H 的高相等,所以底的比即为面积的比,有::3:5DPH EPH S S DP PE ∆∆==,所以551525.3322EPH DPH S S ∆∆=⨯=⨯⨯如图12-7(b)所示,连接FH 、BP ,4108;5IFP EPH FBP IP IP S S S PH PH ∆∆∆===⨯=如图12-7(c)所示,连接FD、AP,396.42 DPG DFP APDPG PGS S SFP FP∆∆∆===⨯=有925122015872.22 ABC AIPD BEPF CGPH IFP DGP EHPS S S S S S S∆∆∆∆=+++++=+++++=8.如图12-8,长方形的面积是小于100的整数,它的内部有三个边长是整数的正方形,①号正方形的边长是长方形长的512,②号正方形的边长是长方形宽的18.那么,图中阴影部分的面积是多少?【分析与解】有①号正方形的边长为长方形长的512,则图中未标号的正方形的边长为长方形长的712.而②号正方形的边长为宽的18,所以未标号的正方形的边长为长方形宽的78.所以在长方形中有:712长=78宽,则长:宽=12:8,不妨设长的为12k,宽为8k,则①号正方形的边长为5k,又是整数,所以k为整数,有长方形的面积为962k,不大于100.所以k只能为1,即长方形的长为12,宽为8.于是,图中①号正方形的边长为5,②号正方形的边长为1,则未标号的正方形的边长为7,所以剩余的阴影部分的面积为:22212851721.⨯---=9.如图12-9,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?【分析与解】以下用E横表示E部分横向的长度,E坚竖表示E部分竖向的长度,其他下标意义类似.有E横:D横=5:4,A横:B横=l:2.而E横+A横=D横+B横,所以有E横:D横:A横:B横=5:4:1:2.而A横+B横+C横=E横+A横对应为5+1=6,那么C横对应为3.而A面积:B面积:C面积=1:2:3,所以A坚=B坚=C坚.有A坚+C坚竖对应为6,所以A坚=C坚对应为3.那么长方形的竖边为6+C坚对应为9,长方形横边为E横+6+D横对应为5+6+4=15.所以长方形的长与宽的比为15:9=5:3.10.如图12-10,红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合.已知露在外面的部分中,红色的面积是20,黄色的面积是14,绿色的面积是lO.那么,正方形盒子的底面积是多少?【分析与解】如下图所示,我们将黄色的正方形纸片向左推向纸盒的过缘,有露在外面的部分,黄色减少的面积等于绿色增加的面积,也就是说黄色、绿色部分露在外面部分的面积和不变.并且有变化后,黄色露出面积+红色部分面积,绿色露出面积+红色部分面积,都是小正方形纸片边长乘以大正方形盒子边长的积.所以,黄色露出面积+红色部分面积=绿色露出面积+红色部分面积,于是.黄色露出面积=绿色露出面积,而它们的和为14+10=24,即黄色露出面积=绿色露出面积=12.有黄:空白=红:绿,12:空白=20:12,解得空白=7.2,所以整个正方形纸盒的底面积为12+7.2+20+12=51.2.11.如图12-11,在长260厘米,宽150厘米的台球桌上,有6个球袋A,B,C,D,E,F,其中AB=EF=130厘米.现在从4处沿45°方向打出一球,碰到桌边后又沿45°方向弹出,当再碰到桌边时,仍沿45°方向弹出,如此继续下去.假如球可以一直运动,直至落入某个球袋中为止,那么它将落人哪个袋中?【分析与解】将每个点的位置用一组数来表示,前一个数是这个点到FA的距离,后一个数是点到FD的距离,于是A的位置为(0,150),球经过的路线为:(0,150)→(150,0) →(260,110) →(220,150) →(70,0) →(0,70) →(80,150) →(230,0) →(260,30) →(140,150) →(0,10) →(10,0) →(160,150) →(260,50) →(210,0) →(60,150) →(0,90) →(90,0) →(240,150) →(260,130) →(130,0).因此,该球最后落入E袋.12.长方形ABCD是一个弹子盘,四角有洞.弹子从A出发,路线与边成45度角,撞到边界即反弹,并一直按此规律运动,直到落人一个洞内为止.如图12-12.当AB=4,AD=3时,弹子最后落入B洞.问:若AB=1995,AD=1994时,弹子最后落入哪个洞?在落入洞之前,撞击BC边多少次?【分析与解】撞击AD边的点,每次由A向D移动2;撞击BC边的点,每次由C向B移动2.因为第一次撞击BC边的点距C点1,第一次撞击AB边的点距A点为2,1994÷2=997.所以最后落人D洞,在此之前撞击BC边997次.13.10个一样大的圆摆成如图12-13所示的形状.过图中所示两个圆心A ,B 作直线,那么直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是多少?【分析与解】直线AB 的右上方的有2个完整的圆,2个半圆,1个1个而1个1个正好组成一个完整的圆,即共有4个完整的圆.那么直线AB 的左下方有10-4=6个完整的圆,每个圆的面积相等,所以直线右上方圆内图形面积总和与直线左下圆内图形面积总和的比是4:6=2:3.14.在图12-14中,一个圆的圆心是0,半径r=9厘米,∠1=∠2=15°.那么阴影部分的面积是多少平方厘米?(π取3.14)【分析与解】有AO=OB ,所以△A OB 为等腰三角形,AO=OC ,所以△A OC 为等腰三角形.∠ABO=∠1=15°,∠AOB=180°-∠1-∠ABO=150°. ∠ACO=∠2=15°,∠AOC=180°-∠2-∠ACO=150°. 所以 ∠BOC=360°-∠AOB-∠AOC=60°,所以扇形BOC 的面积为260942.39360π⨯⨯≈(平方厘米).15.图12-15是由正方形和半圆形组成的图形.其中P 点为半圆周的中点,Q 点为正方形一边的中点.已知正方形的边长为10,那么阴影部分的面积是多少?(π取3.14)【分析与解】 过P 做AD 平行线,交AB 于O 点,P 为半圆周的中点,所以0为AB 中点.有2ABCD DPC 101S 1010100S 12.522ππ=⨯==⨯⨯=半圆,(). AOP OPQB 101101S 510+37.5S 105550.2222∆⎡⎤⎛⎫=⨯⨯==++⨯⨯= ⎪⎢⎥⎝⎭⎣⎦梯形(), 阴影部分面积为ABCD AOP DPC OPQB S S S S 10012.537.55012.512.551.75.ππ∆+-=+--=+≈半圆梯形-。

36[1].平面解析几何综合分析(一)

36[1].平面解析几何综合分析(一)

平面解析几何综合分析(一)【例题精选】:例1:已知四点()()A a b M N E ,、,、,、,03152292⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪,若点A 关于点M的对称点是B ,点B 关于点N 的对称点是点C ,点C 关于点E 的对称点是A ,求A 点的坐标。

解:设()()B x y C x y 1122,,,由中点坐标公式:a x b y +=+=⎧⎨⎪⎪⎩⎪⎪112023解得x a y b 116=-=-⎧⎨⎩()∴--B a b ,6-+=-+=⎧⎨⎪⎪⎩⎪⎪=+=-⎧⎨⎩a x b y x a y b 222221625221解得()∴+-C a b 21,()a ab b a b A ++=+-=⎧⎨⎪⎪⎩⎪⎪∴==⎧⎨⎩∴22212921515,例2:求点()P a b ,关于直线x y -+=10的对称点的坐标。

分析:这是求点关于直线对称点问题,由前面提供的方法求出。

解:设P 点关于直线l :x y -+=10的对称点为()'P x y , 则P 、'P 的中点为M x a y b ++⎛⎝ ⎫⎭⎪22,直线P 、'P 的斜率为k y bx aPP '=--,直线l 的斜率为k =1。

x a y by b x ax b y a +-++=--=-⎧⎨⎪⎪⎩⎪⎪=-=+⎧⎨⎩2210111解得∴P 点关于直线l 的对称点为()'-+P b a 11,例3:求点P (4,0)关于直线54210x y ++=的对称点的坐标。

解:设P 点关于直线l :54210x y ++=的对称点为()'P x y ,则有542422104541···x y y x +++=-⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪=-⎧⎨⎪⎪⎩⎪⎪解得:x y =-=-⎧⎨⎩68()∴P 40,关于直线l :54210x y ++=的对称点为()'--P 68,例4:平面上有两点()()A a b B b a ++--2246,,,,且这两点关于直线l :4311x y +=对称,求a ,b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点
解答题
(9分)已知:如图,四边形ABCD是正方形,BD 是对角线,BE平分
∠DBC交DC于E点,交
DF于M点,F是BC延长
线上一点,且CE CF.
(1)求证:BM⊥DF;(2)若正方形ABCD的边长为2,求ME·MB的值.
M
A
C
D
E
F B
22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不与点B 重合),
∠BPE =21
∠ACB ,PE 交BO 于点E ,过点B 作
BF ⊥PE ,垂足为F ,交AC 于点G .
(1)当点P 与点C 重合时(如图1),求证: △BOG ≌△POE ;
(2)通过观察、测量,猜想:
PE BF
= ,并结合图2证明
你的猜想;
(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若
∠ACB =α,求PE
BF 的
值.(用含α
的式子表示)
A
O
B
D
F P
G
E C B D
F
G E
P
O
A
1.如图所示,一个含60°角的三角形纸片,剪去这
个60°角后,得到一个四边形,则∠1+∠2的度数为【 】
A .120°
B .180°
C .240°
D .300°
2.小明想测量一棵树的高度,如图,他发现树的影子恰好落在地面和一斜坡上,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米、垂直于地面放置的
C (P )E A
G O
F D
B 60°2
1
标杆在地面上的影长为2米,则树的高度为【 】
A .
(6米 B .12米 C .
(4-米 D .10米
3.如图,平行四边形ABCD 的对角线相交于点O ,且AB ≠AD ,过O 作OE ⊥BD 交BC 于点E .若 △CDE 的周长为10,则平行四边形
的周长为______.
ABCD
4.如图,∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△11
2
A B A ,
△2
2
3
A B A ,△3
3
4
A B A …均为等边三角形.若1
1OA =,则△
1
n n n A B A +的边长为 .
N M
B 3
B 2
B 1
43
2
1O
O
D
A
C
E B
6.如图,四边形ABCD 是矩形,对角线AC ,BD 相交于点O ,BE ∥AC 交DC 的延长线于点E . (1)求证:BD=BE ;
(2)若∠DBC =30︒,BO =4,求四边形ABED 的面积.
O
E
D
C B
A
7.(10分)在△ABC 中,AB =AC ,D 为BC 边的中点,以D 为顶点作∠MDN =∠B .
(1)如图1,当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅助线,
写出图中所有与△ADE 相似的三角形.
(2)如图2,将∠MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交线段
AC ,AB 于E ,F 两点(点E 与点A 不重合),不添加辅助线,写出图中所
有的相似三角形,并证明你的结论.
(3)在图2中,若AB =AC =10,BC =12,当△DEF 的面积为△ABC 面积的14
时,求线段EF 的长.
F
A B
D C
E M N 图2
图1
N
M E
D B
A
22.(10分)正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF CF.(1)如图2,若点P在线段AO上(不与点A,O 重合),PE⊥PB且PE交CD于点E.
①求证:DF=EF;
②写出线段PC,PA,CE之间的一个等量关系,并证明你的结论.
(2)若点P在线段CA的延长线上,PE⊥PB且PE 交直线CD于点E.请补全图3,并判断(1)中的结论①、②是否仍成立,若不成立,请写出相应
的结论.(所写结论均不必证明)
1如图,AD 是△ABC
的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为【 】
A .11
B .5.5
C .7
D .3.5 8.如图,在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方
向以每秒1cm 的速度运动,同时动点N 自A 点出
发沿折线AD -DC -CB
以每秒3cm 的速度运动,到达B 点时运动同时停止,设△AMN 的面积为y (cm 2
).运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是【 】
图3
图2
图1
P (O )
F
C
D
B
A
G
F E
D
C
B A
M
N
D C B
A
A.B.C.D.
4.如图,在等腰梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,下列结论不一定正确的是【】
A.AC=BD B.∠OBC=∠OCB C.S△AOB=S△COD D.∠BCD=∠BDC
7.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E,F,G,H 分别是AB,AC,CD,BD的中点,则四边形EFGH的周长是【】
A.7 B.9C.10D.11
8.如图,在△ABC中,∠ACB=90º,AC>BC,分别以AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,
O
B C
D
A
H G
F
E
C
D
A
S1
A D
E
F
ND ,设△AEF ,△CGM ,△BND 的面积分别为S 1,S 2,S 3,则下列结论正确的是【 】 A .S 1=S 2=S 3 B .S 1=S 2<S 3
C .S 1=S 3<S 2
D .S 2=S 3<S 1
6.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y =kx -2与线段AB 有交点,则k 的值不可
能是【 】 A .-5 B .-2 C .2
D .5
7.如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD
=CD
,点P 在四边形ABCD 的边上,距离为3
2
,则点P 的个数
若P 到BD 的为【 】 A .1 B .2
C .3
D .4
6.若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底
角为【 】 A .75°或15°
B .36°或60°
C .75°
D .30°
8.如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点 B ′的横坐标是a ,则点B 的横坐标是【 】 A .12
a - B .1
(1)2
a -+
C .1
(1)2a -- D .
1
(3)2
a -+。

相关文档
最新文档